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Abstract

Objective—Regulatory T cells (Tregs) contribute to HIV-1 disease progression by impairing 

antiviral immunity; however, the precise mechanisms responsible for the development of Tregs in 

the setting of HIV-1 infection are incompletely understood.

Design—In this study, we provide evidence that HIV-induced expansion of monocytic myeloid-

derived suppressor cells (M-MDSCs) promote the differentiation of Foxp3+ Tregs.

Methods—We measured MDSC induction and cytokine expression by flow cytometry and 

analyzed their functions by co-culturing experiments.

Results—We observed a dramatic increase in M-MDSC frequencies in the peripheral blood of 

HIV-1 seropositive (HIV-1+) individuals, even in those on antiretroviral therapy (ART) with 

undetectable viremia, when compared to healthy subjects. We also observed increases in M-

MDSCs after incubating healthy peripheral mononuclear cells (PBMCs) with HIV-1 proteins 

(gp120 or Tat) or Toll-like receptor (TLR) 4 ligand Lipopolysaccharides (LPS) in vitro, an effect 

that could be abrogated in the presence of the pSTAT-3 inhibitor, STA-21. Functional analyses 

indicated that M-MDSCs from HIV-1+ individuals express higher levels of IL-10, TGF-β, IL-4Rα, 

p47phex, PD-L1, and pSTAT-3 – all of which are known mediators of myelopoiesis and 

immunosuppression. Importantly, incubation of healthy CD4+ T cells with MDSCs derived from 

HIV-1+ individuals significantly increased differentiation of Foxp3+ Tregs. In addition, depletion 

of MDSCs from PBMCs of HIV-1+ individuals led to a significant reduction of Foxp3+ Tregs and 

increase of IFN-γ production by CD4+ T effector cells (Teffs).

**Corresponding author: Zhi Q. Yao, M.D., Ph.D., AAHIVS, Professor of Medicine, Infectious Diseases, Director, Center of 
Excellence for HIV/AIDS, East Tennessee State University, Quillen College of Medicine, Johnson City, TN 37614, Tel: 
423-439-6380; Fax: 423-439-7010, ; Email: yao@etsu.edu 
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Conclusions—These results suggest that HIV-induced MDSCs promote Treg cell development 

and inhibit T cell function - a hallmark of many chronic infectious diseases.
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HIV-1; gp120; MDSCs; pSTAT-3; Tregs

Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 

myeloid cells that are generated due to aberrant myelopoiesis under certain pathological 

conditions, such as cancer, inflammatory and infectious diseases [1-3]. MDSCs suppress 

immune responses via increased expression of inflammatory and immunosuppressive 

mediators, including inducible nitric oxide synthase (iNOS), arginase 1 (ARG1), reactive 

oxygen species (ROS), IL-4 receptor-α (IL-4Rα), programmed death-ligand 1 (PD-L1), 

interleukin-10 (IL-10), tumor growth factor-β (TGF-β), and phosphorylated signal transducer 

and activator of transcription 3 (pSTAT-3), all of which are important mediators of innate 

immune responses against pathogenic infections [4-10]. In mice, MDSCs are defined by the 

co-expression of the Gr-1 and CD11b surface antigens; whereas human MDSCs are less 

well-characterized due to the lack of uniform phenotypic markers. However, they usually 

express the common myeloid markers CD33 and CD11b, but lack the maturation marker 

HLA-DR [7-10]. Given the heterogeneous nature of MDSCs, human MDSCs are primarily 

dissected into two subsets: monocytic MDSCs (M-MDSCs; CD33+CD11b+CD14+HLA-

DRlow/−) and granulocytic MDSCs (G-MDSCs; CD33+CD11b+CD14−HLA-DRlow/−). 

These 2 subtypes of MDSCs can have different biological functions and use different 

mechanisms for immune suppression [1-3].

While the immunosuppressive roles of MDSCs have been well-characterized in many tumor 

models, their roles during infectious diseases have been less well-studied, in particular 

during responses to retroviral infections that cause immunodeficiency. Although MDSCs can 

contribute to immune homeostasis after infection by limiting excessive inflammatory 

processes, their expansion may be at the expense of pathogen elimination and thus may lead 

to infection persistence or latency. Recent studies report MDSC expansion plays a role in 

suppressing T cell responses and disease progression of HIV-1 infection [11-18]. However, 

the phenotypic and functional features of MDSCs and their mechanisms in regulation of T 

cell responses in HIV-1+ individuals remain unclear. This is particularly true for those on 

antiretroviral therapy (ART) with undetectable viremia, as they exhibit persistent dampened 

immunity, such as lower expression of Th1 cytokines and poor response to vaccinations 

[19]. Thus, phenotypic and functional characterizations of MDSCs in ART-controlled HIV-

infected individuals may delineate the mechanisms by which MDSCs mediate 

immunosuppression and promote viral persistence or latency.

In this study, we characterized MDSCs in HIV-1+ individuals on ART with undetectable 

viremia and determined whether MDSCs contribute to the induction or maintenance of 

regulatory T (Treg) cell development and suppression of T effector (Teff) cell function 

during latent HIV-1 infection. We provide evidence that HIV-induced MDSCs control T cell 
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differentiation and functions, which represents a novel mechanism for viral persistence and a 

new strategy for immunotherapy against human viral diseases.

Methods

Subjects

The study protocol was approved by the joint institutional review board at East Tennessee 

State University and James H. Quillen VA Medical Center (ETSU/VA IRB, Johnson City, 

TN). The study subjects were composed of two populations: 65 chronically HIV-1 infected 

individuals and 72 healthy subjects (HS). In this study, we focused on HIV-1 patients who 

are on ART (truvada-based regimen) with undetectable viremia (aviremia, HIV RNA < 20 

copies/ml) and CD4 count ranging from 220 ~ 1,250. Healthy subjects were negative for 

HBV, HCV, and HIV infection and blood buffy coats were obtained from Key Biologics, 

LLC, Memphis, TN or Physician's Plasma Alliance LLC, Gray, TN. Written informed 

consent was obtained from all participants.

PBMC preparation and analysis by flow cytometry

PBMCs were isolated from whole blood by Ficoll-Percoll gradients centrifugation (GE 

Heathcare, Piscataway, NJ). For phenotypic analysis of MDSCs, PBMCs were immune-

stained with CD14-PerCP710, CD11b-PE, CD33-APC (eBioscience, San Diego, CA), and 

HLA-DR-FITC (BD Bioscience, San Jose, CA) antibodies or isotype controls. The cells 

were collected on an Accuri C6™ flow cytometer (BD, Franklin Lakes, NJ) and analyzed 

using FlowJo software (Tree Star, Inc., Ashland, OR). For intracellular cytokine staining, 

PBMCs were stimulated with 1 μg/ml LPS (Santa Cruz Biotechnology, Santa Cruz, CA) 

plus 2.5 μg/ml R848 (Santa Cruz) for 6 h, and 1 μg/ml Brefeldin A (BioLegend, San Diego, 

CA) was added 5 h prior to harvest. The cells were fixed and permeabilized using Inside 

Stain Kit (Miltenyi Biotec, Auburn, CA), and then stained with IL-10-PE, TGF-β-PE, PD-

L1(CD274)-PE (BD Bioscience), IL-4Rα-PE (R&D, Minneapolis, MN), p47phox and rat 

anti-mouse IgG1-PE. For pSTAT3-PE (pY705) staining, PBMCs were processed with Fix 

Buffer I and Perm Buffer III (BD) following the BD Phosflow™ protocol. The cells were 

also stained with surface antigens CD14-PerCP710, CD33-APC (clone p67.6), and HLA-

DR-FITC, then analyzed by flow cytometry. The fluorescence minus one (FMO) strategy 

and isotype controls were used to adjust multicolor compensation for cell gating and 

determine background levels.

Treatment of healthy PBMCs by HIV-1 proteins, LPS, and/or STA-21

PBMCs from HS were treated with HIV-1 gp120, Tat, β-gal (2 μg/ml, ViroGen), or LPS (1 

μg/ml, Santa Cruz), in the presence or absence of specific pSTAT-3 inhibitor STA-21 or 

DMSO control (20 μM, Santa Cruz). The cells were harvested at different time points for 

staining with CD33-APC, HLA-DR-FITC, CD11b-PE, and CD14-PerCP710, or isotype 

controls, followed by flow cytometric analysis.

Treg cell induction

CD33+HLA-DR− and CD33−HLA-DR− were isolated from PBMCs of HIV-1+ individuals 

by first selection of HLA-DR− populations, followed by positive selection of CD33+ cells 
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using their microbeads according to the manufacturer's instructions (Miltenyi Biotec., cell 

purity > 95%). The purified immature myeloid cells or non-myeloid cells from HIV-1+ 

individuals were co-cultured with healthy CD4+ T cells, or autologous HIV-1 CD4+ T cells, 

respectively, in a ratio of 1:2 in the presence of 1 μg/ml anti-CD3 and 2 μg/ml anti-CD28 

(BD Bioscience) for 3 days. Treg cell differentiation were analyzed by flow cytometry after 

staining with CD4-PE, CD25-Alexa488, Foxp3-PE-Cy5 (eBioscience), or isotype controls, 

using Foxp3 Staining Buffer Set (Milenyi Biotec).

Teff cell cytokine assays

PBMCs from HIV+ individuals, with or without depletion of CD33+ myeloid cells using 

CD33 microbeads (Miltenyi Biotec), were stimulated with 1 μg/ml anti-CD3 and 2 μg/ml 

anti-CD28 for 72 hours. The cells were treated with 1 μg/ml Brefeldin A for 5 hours before 

harvest. Teff intracellular cytokine expressions were assessed by IFN-γ-PE (BD Bioscience) 

or isotype control staining, followed by flow cytometry analysis as described above.

Statistical analysis

The data were summarized as mean ± standard error of the mean (SEM) or median with 

interquartile range, depending on the characteristics of the data distribution. Comparisons 

among groups were made by one-way analysis of variance (ANOVA) or Kruskal-Wallis test, 

followed with Dunn's or Fisher's multiple comparisons test. Independent t test or paired t test 

was used to compare the difference of mean between each two groups. Mann-Whitney test 

or Wilcoxon signed rank test was used to compare the difference of median between each 

two groups. All the data were analyzed using Minitab 17.0 and Graphpad Prism v6.0. 

*P<0.05, or **P<0.01, and ***P<0.001 were considered significant or very significant, 

respectively.

Results

M-MDSCs are expanded in HIV-1+ individuals on ART

Phenotypically, human MDSCs express the common myeloid markers CD33 and CD11b, 

but lack the maturation marker HLA-DR [7-10]. As an initial approach to determine the role 

of MDSCs in the pathogenesis of HIV-1 persistence and latency, we first compared the 

frequency of MDSCs in the peripheral blood of 31 HIV-1+ individuals on ART with 

undetectable viremia and 22 HS. As shown in Fig.1, the representative dot plots of flow 

cytometry and summary data for the frequencies of different myeloid cell populations, 

PBMCs were first gated on CD11b+ and CD33+ myeloid cells, and then analyzed for the 

immature HLA-DRlow/− populations within the monocytic (CD14+) and granulocytic 

(CD14−) subsets (Fig.1A). Although the overall numbers of myeloid cells (CD33+CD11b+) 

in HIV-1+ individuals were slightly lower than those in HS (Fig.1B), the numbers of MDSCs 

(HLA-DRlow/−CD33+CD11b+) (Fig.1C), in particular the M-MDSC (CD14+HLA-

DRlow/−CD33+CD11b+) subset (Fig.1D), but not the G-MDSC (CD14−HLA-

DRlow/−CD3+CD11b+) subset (Fig.1E), were significantly higher in HIV-1+ individuals. 

These results indicate that latently HIV-infected patients on ART have elevated numbers of 

M-MDSCs in their peripheral blood, consistent with the reports of MDSC expansion in 

actively HIV-infected individuals [11-18]. While it has been reported that the elevated M-
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MDSC frequency in HIV-1 viremic patients correlated with prognostic disease markers, 

including the HIV-1 RNA level, CD4 T cell number, and activated T cells [13], we did not 

find such a correlation of MDSC and CD4 cell frequencies in these HIV-1 aviremic subjects 

on ART. These data are the first observation showing that HIV-1+ individuals on ART with 

undetectable viremia still exhibit expanded M-MDSCs.

Immunosuppressive proteins are increased in M-MDSCs from HIV-1+ individuals

MDSCs are more accurately identified by their immunosuppressive functions rather than 

their phenotypic markers. MDSCs exert their suppressive activities via expression or 

secretion of copious amounts of immunosuppressive mediators [4-10]. For example, 

IL-4Rα, also known as CD124, is a 140kDa transmembrane glycoprotein that binds IL-4 

and IL-13, which are primarily responsible for IL-4-dependent activation of transcription 

factors that induce Th2 cell expansion [20]. Programmed death-ligand 1 (PD-L1), also 

known as CD274 or B7-H1, is a 40kDa transmembrane protein that has been speculated to 

play a major role in suppressing the host immune system during inflammation or infection 

[21]. P47phox is a 47 kDa cytosolic subunit of the multi-protein complex NADPH oxidase 

that is responsible for respiratory burst of phagocytes during defense responses [22]. IL-10 

and TGF-β are known to regulate immune responses via phosphorylation of STAT-3 

(pSTAT-3) [23]. To functionally characterize MDSCs during HIV-1 infection, we measured 

these inhibitory proteins and regulatory cytokines that have been suggested to play a role in 

MDSC expansion or suppressive functions [4-10]. As shown in Fig.2A, the representative 

dot plots of flow cytometry, and Fig.2B-2G, summary data for the expression of different 

cell mediators in M-MDSCs, including IL-4Rα, PD-L1, p47phox, IL-10, TGF-β, and 

pSTAT-3, all these inhibitory mediators expressed in M-MDSCs were found to be 

significantly up-regulated in PBMCs from HIV-1+ individuals compared to HS, suggesting 

that these molecules are involved in the differentiation and/or suppressive functions of 

MDSCs during viral infection.

HIV-1 proteins (gp120 and Tat) prevent myeloid cell maturation and drive MDSC expansion

Despite several reports of increases in the numbers of MDSCs in HIV-1+ individuals, factors 

responsible for MDSC expansion during HIV-1 infection are unclear. Since patients with 

chronic HIV-1 infection often suffer from confounding factors that may drive MDSC 

expansion, we determined whether the increased numbers of MDSCs during HIV-1 infection 

were directly caused by HIV-1 or other factors. To this end, purified PBMCs from HS were 

incubated with recombinant HIV-1 gp120 or Tat, two important proteins that have been 

shown to exert immunomodulatory effects [14, 24-26], or the control protein β-gal for 

different times, followed by the analysis of myeloid cell differentiation and maturation with 

flow cytometry. As shown in Fig.3A, the representative dot plots of flow cytometry, and Fig.
3B-3D, summary data for the frequencies of different myeloid cell populations by days after 

the treatment, healthy PBMCs treated with HIV-1 gp120 or Tat protein exhibited a slightly 

lower number of CD33+CD11b+ myeloid cells (data not shown), but a relatively higher 

number of CD14+ cells and HLA-DRlow/− cells, when compared to those treated with the 

control protein, leading to an increased CD14+HLA-DRlow/− subsets in the CD11b+CD33+ 

myeloid cell populations after the treatment (Fig.3B). Overall, an increased M-MDSCs in 

PBMCs was observed (Fig.3C), significantly higher at day 4-5 after gp120 or Tat treatment 
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(3D), when compared to those exposed to the control protein. Notably, the frequencies of M-

MDSCs decreased following PBMC incubation with the control protein, which is 

contributed by the decreased expression of CD14 but increased expression of HLA-DR 

maturation marker, indicating myeloid cell differentiation into a mature status when cultured 

in vitro over a period of time; whereas the CD14+HLA-DRlow/− population of myeloid cells 

remain in an immature state after exposure to HIV-1 proteins. These findings, which are in 

line with the observations in HIV-infected patients vs HS in vivo (Fig.1B and 1E), suggest 

that HIV-1 derived proteins prevent myeloid cell maturation and drive them toward 

differentiation into M-MDSCs.

HIV-1 protein (gp120) induces MDSC development via the STAT-3 pathway

STAT-3 phosphorylation and activation has been shown to play a pivotal role in 

myelopoiesis [27-29]. To further study the role of STAT-3 signaling in HIV-1-induced 

expansion of M-MDSCs, we incubated healthy PBMCs with HIV-1 gp120 or control β-gal 

protein with or without the pSTAT-3 specific inhibitor STA-21 [30] for 5 days, followed by 

flow cytometric analysis. As shown in Fig.4A, the representative dot plots of flow cytometry 

and Fig.4B-4C, summary data for the frequencies of pSTAT-3 expression and M-MDSC 

development following the treatment, healthy PBMCs treated with HIV-1 gp120 exhibited a 

significantly higher number of pSTAT-3+ M-MDSCs compared to those exposed to the 

control protein. This in vitro result is in line with the findings in vivo that HIV-1+ individuals 

exhibit significantly higher numbers of pSTAT-3+ M-MDSCs compared to the HS (Fig.2G). 

In addition, the HIV-1 gp120-induced M-MDSC expansion could be abrogated by pSTAT-3 

inhibitor when compared to those cells treated with DMSO control. Of note, STA-21 

treatment alone did not affect the M-MDSC development. Overall, these data suggest that 

HIV-1 gp120 induces M-MDSC differentiation via the STAT-3 pathway.

HIV-1 or its proteins may induce MDSC differentiation in the active or early phase of viral 

infection, but it remains unclear what factors can induce or maintain MDSC generation in 

the latent phase of viral infection, in particular for patients on ART with undetectable 

viremia (Fig.1). Recent reports suggest that ART-controlled, HIV-1+ individuals exhibit a 

chronic inflammatory state with over-activation of the immune system and T cell exhaustion 

during latent viral infection, which can be promoted by multiple inflammatory mediators, 

including TLR ligands such as LPS [31-34]. In addition, we have recently observed, in a 

gene array analysis, that TLR4 was upregulated on CD33+ myeloid cells derived from 

HIV-1+ individuals as well as HCV-infected individuals versus HS (data not show), 

suggesting that TLR4 pathway may be involved in MDSC expansion during viral infections. 

To determine whether TLR4 stimulation can cause MDSC development through the STAT-3 

pathway, we incubated healthy PBMCs with or without LPS in the presence of pSTAT-3 

inhibitor STA-21 or DMSO for 5 days, followed by flow cytometric analysis for the MDSC 

development. As shown in Fig.4D, PBMCs treated with LPS in vitro resulted in a significant 

increase in CD33+HLA-DRlow/− MDSCs, and these LPS-induced MDSC increases could be 

abrogated by the presence of pSTAT-3 inhibitor STA-21 when compared to the DMSO 

control. Of note, monocytic marker CD14 expression was almost lost on the surface of 

myeloid cells when they were cultured in vitro for 5 days, whereas LPS treatment prevented 

CD14 loss and HLA-DR expression, resulting in an inhibition of myeloid cell maturation 
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and increase in M-MDSC numbers (Fig.4E). Again, these LPS-induced M-MDSCs were 

diminished by the presence of STAT-3 inhibitor. Taken together, these results indicate that, in 

addition to HIV-1 proteins, LPS/TLR4-mediated inflammatory response can also induce 

MDSC development via the STAT-3 pathway.

MDSCs promote Treg cell development during HIV-1 infection

In addition to producing inhibitory proteins, it has been suggested that MDSCs exert their 

immunosuppressive functions by inducing CD4+CD25+Foxp3+ Treg cell differentiation in 

cancer patients and organ transplant recipients [35-37]. Therefore, we next sought to 

determine whether HIV-induced MDSCs can induce Foxp3+ Treg development. To this end, 

we first incubated healthy CD4+ T cells with or without MDSCs derived from HIV+ 

individuals for 3 days, followed by flow cytometric analysis for the differentiation of 

CD25+Foxp3+ Treg cells. As shown in Fig.5A, the representative dot plots of flow 

cytometry and summary data for the co-culture experiments, healthy CD4+ T cells co-

cultured with CD33+ myeloid cells isolated from HIV+ individuals induced a significant 

increase in Foxp3+ Tregs when compared to healthy CD4+ T cells incubated alone without 

the presence of HIV CD33+ myeloid cells. Given the heterogeneous populations of MDSCs, 

we further tested the role of MDSCs in induction of Tregs by co-culturing healthy CD4+ T 

cells with or without HIV immature myeloid cells (CD33+HLA-DR−). In this case, we use 

HIV immature non-myeloid cells (CD33−HLA-DR−), in addition to the HS CD4+ T cells 

cultured alone, as controls. As shown in Fig.5B, healthy CD4+ T cells co-cultured with 

CD33+HLA-DR− cells derived from HIV+ individuals induced a significant increase in 

Foxp3+ Tregs when compared to those co-cultured with HIV immature non-myeloid control 

cells (CD33−HLA-DR−), or healthy CD4+ T cells incubated alone (baseline). Since 

accumulation of Tregs is a characteristic of many chronic infectious diseases, including 

latent HIV-1 infection on ART [38-39], we also examined whether MDSCs are essential for 

maintaining the Foxp3+ Treg cells in the cultured conditions. To this end, we incubated HIV 

CD4+ T cells with or without autologous MDSCs ex vivo for 3 days, followed by flow 

cytometric analysis for the frequencies of Foxp3+ Tregs. As shown in Fig.5C, purified HIV 

CD4+ T cells incubated alone without the presence of HIV CD33+HLR-DR− MDSCs 

resulted in a significant decrease in Foxp3+ Treg cells when compared to those cultured with 

HIV CD33+HLA-DR− MDSCs. In addition, HIV CD4+ T cells co-cultured with HIV 

immature non-myeloid cells (CD33−HLA-DR−, MDSC depleted) also resulted in a 

significant decrease in the Foxp3+ Treg cells when compared to those co-cultured with HIV 

immature myeloid cells (CD33+HLA-DR−). Taken together, these results indicate that 

MDSCs promote Treg cell development during HIV-1 infection.

MDSCs inhibit IFN-γ production by Teff cells during HIV-1 infection

In addition to inducing Treg cell development, we also studied whether MDSCs from HIV+ 

individuals can directly or indirectly inhibit Teff cell functions by depletion experiments. To 

this end, PBMCs from HIV-1+ individuals were depleted for CD33+ myeloid cells (enrich in 

MDSCs), stimulated by anti-CD3 and anti-CD28 for 3 days, followed by flow cytometric 

analysis for IFN-γ production by CD4+ T cells. As shown in Fig.5D, the representative 

overlaid histogram of flow cytometry and summary data for the IFN-γ production by CD4+ 

T cells, compared to the cultures of bulk PBMCs, depletion of CD33+ myeloid cells from 
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PBMCs derived from HIV+ individuals resulted in a significant increase of IFN-γ production 

by CD4+ T cells. This holds true by measuring both the percentage of IFN-γ expressing 

CD4+ T cell frequencies and the mean florescence intensity (MFI) of the IFN-γ expression 

levels in CD4+ T cells. Overall, these results indicate that HIV-mediated MDSCs can inhibit 

Teff cell functions.

Discussion

Since the discovery of MDSCs, there has been rapid progress in the understanding of this 

particular type of suppressor cells in tumor progression and antitumor response. However, 

the role of MDSCs in viral persistence or latency remains controversial and far from clear. 

For example, while some studies have shown that monocytic MDSCs are remarkably 

elevated and play a role in the pathogenesis of HIV or HCV infection [13-15, 40-42], 

Bowers et al [16] reported an immune suppression by neutrophils during HIV-1 infection; 

whereas Nonnenmann et al [43] found no significant increases in MDSCs and lack of their 

suppressive functions in peripheral blood of chronically HCV-infected individuals. We 

postulated that these discrepancies in MDSC frequency and suppressive capability might 

partially result from measuring different MDSC subsets, using different methodologies, 

investigating different patient populations and/or focusing on different disease stages with 

specific cytokine milieus that may induce distinct MDSC phenotypes. In this study, we 

observed substantial increases in the monocytic (CD14+) immature (HLA-DRlow/−) myeloid 

cells (CD33+CD11b+) in latently HIV-1-infected patients on ART with undetectable 

viremia. These M-MDSCs, expressing significantly high levels of IL-4Rα, PD-L1, P47phox, 

IL-10, TGF-β, and pSTAT-3, could induce Foxp3+ Treg cell expansion and inhibit IFN-γ 

production by CD4+ Teff cells, which may play a pivotal role in the chronicity of HIV-1 

infection.

The mechanism underlying MDSC expansion in virus-infected individuals remains unclear. 

It has been suggested that the generation of MDSCs can be induced by the virus itself or by 

its coding proteins, including HCV, HIV, and lymphocytic choriomeningitis virus [13-15, 
40-42, 44]. For example, Garg and Spector [14] reported that HIV gp120-induced MDSC 

expansion is dependent upon IL-6 signaling. Here, we demonstrated that HIV-1 gp120 can 

induce M-MDSC expansion via the STAT-3 pathway, which is closely related to IL-6 

signaling. While HIV-1 or its proteins may induce MDSC development in the active or early 

phase of viral infection, the mediators involved in induction or maintenance of MDSC 

development in the latent phase of viral infection have not been identified, in particular for 

patients well-controlled by effective ART, which is our targeted population in this study. 

Notably, MDSCs expand in nearly all conditions where inflammation exists [1-3], and 

compelling data have shown that latently HIV-infected individuals, despite being well-

controlled by ART and exhibiting unmeasurable viral RNA or proteins, still exhibit a 

dampened immunity, as evidenced by low expression of Th1 cytokines and poor response to 

vaccinations [19]. These latently HIV-infected patients exhibit a chronic inflammatory state 

with immune cells over-activation followed by exhaustion or anergy and/or premature T cell 

aging or senescence; a series of detrimental effects that appear to be a major factor in HIV-1 

disease progression [31-34, 45]. Therefore, chronic inflammation or TLR stimulation, as we 

show LPS-mediated MDSC expansion via the STAT3 pathway in this study, may be the 
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continuing impetus underlying the expansion of MDSCs during the latent phase of HIV-1 

infection. These findings underscore the importance of transcription factor STAT-3 in the 

regulation of MDSC development and suppressive functions, and call for the use of STAT-3 

as a potential therapeutic target for infection-associated expansion of MDSCs, during which 

pSTAT-3 is often induced [26-28]. Indeed, inhibition of STAT-3 signaling has been shown to 

directly regulate the production of immunosuppressive cytokines, such as IL-6 and IL-10 

[29, 46].

In summary, this study demonstrates that HIV proteins or inflammatory mediators such as 

LPS-induced, STAT-3-mediated MDSC expansion contribute to Treg cell development and 

Teff cell suppression during HIV infection, shedding new light on the features of MDSCs 

and providing a novel mechanism for T cell regulation in chronic viral infection. Therefore, 

targeting MDSCs and/or STAT-3 signaling pathway may be a promising strategy for 

immunotherapy to treat human viral diseases.
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Fig.1. Phenotypic analysis of myeloid cell frequencies in HIV-1 patients versus HS
A) Representative dot plots for analysis of MDSCs by flow cytometry. CD33+CD11b+ 

myeloid cells were first gated in live cells of PBMCs isolated from HIV-1 patients and HS; 

monocytic MDSCs (M-MDSC, CD33+CD11b+CD14+HLA-DRlow/−) and granulocytic-

MDSCs (G-MDSC, CD33+CD11b+CD14−HLA-DRlow/−) were further characterized by the 

expression level of CD14 and HLA-DR, respectively. B) Summary data of myeloid cell 

(CD33+CD11b+) frequencies in HS (filled circle, n=22) versus chronically HIV-infected 

patients (open circle, n=31). C) Pooled data of myeloid suppressor cell 

(CD33+CD11b+HLA-DRlow/−) frequencies in HS versus HCV. D) Pooled data of M-MDSC 

(CD14+CD33+CD11b+HLA-DRlow/−) frequencies in HS versus HCV. E) Pooled data of G-

MDSC (CD14−CD33+CD11b+HLA-DRlow/−) frequencies in HS versus HCV. The 

frequencies of circulating MDSCs in the pooled data were calculated by the frequencies of 

CD33+CD11b+ cells in PBMCs multiplied by the frequencies of CD14+ HLA-DRlow/− or 

CD14− HLA-DRlow/− cells. Each symbol represents an individual subject, and the horizontal 

bars represent mean ± SEM (Fig.1B) or median with interquartile range (Fig.1C, 1D, 1E). 

**P<0.01; ***P<0.001; NS=no significance.
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Fig.2. Analysis of IL-4Rα, PD-L1, p47phox, IL-10, TGF-β, and pSTAT-3 expressions in M-
MDSCs from HIV-1 patients versus HS
PBMCs isolated from HIV-1-infected patients (n=12) and HS (n=9) were stimulated with 

TLR ligand LPS/R848 for 6 h, immune stained for IL-4Rα, PD-L1, p47phox, IL-10, TGF-β, 

and pSTAT-3 in M-MDSCs, followed by flow cytometric analysis. A) Representative dot 

plots for analysis of IL-10 expression in MDSCs by flow cytometry. Monocytic myeloid 

cells (CD14+CD33+) were first gated in PBMCs, followed by analysis of IL-10 expression 

in HLA-DRlow/− populations. B) - G) Summary data of IL-4Rα+ M-MDSCs, PD-L1+ M-

MDSCs, p47phox + M-MDSCs, IL-10+ M-MDSCs, TGF-β+ M-MDSCs, and pSTAT-3+ M-

MDSCs in PBMCs from HS and HCV patients. Each symbol represents an individual 

subject, and the horizontal bars represent mean ± SEM (Fig.2B, 2C, 2F) or median with 

interquartile range (Fig.2D, 2E, 2G). *P<0.05.
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Fig.3. HIV-1 proteins (gp120 and Tat) prevent myeloid cell maturation and drive MDSC 
differentiation
PBMCs isolated from HS (n=6) were treated with HIV-1 gp120, Tat or control protein for 

different days as indicated, followed by flow cytometric analysis. A) Representative dot 

plots for analysis of myeloid cells by flow cytometry. CD33+CD11b+ myeloid cells were 

first gated in PBMCs treated with HIV-1 protein or control protein; monocytic MDSCs (M-

MDSC, CD33+CD11b+CD14+HLA-DRlow/−) were further characterized by the expression 

level of CD14 and HLA-DR. B) Summary data for the percentage of CD14+HLA-DRlow/− 

cell frequencies in CD11b+CD33+ myeloid cells by days following various treatments. C) 
Summary data for the percentage of M-MDSC (CD33+CD11b+CD14+HLA-DRlow/−) 

induction in PBMCs by days after treatments as described above. D) Summary data for M-

MDSC (CD33+CD11b+CD14+HLA-DRlow/−) induction with PBMCs treated by HIV-1 

gp120 (triangle), Tat (circle), or control (square) protein for 4-5 days. Each symbol represent 

one particular donor, and the horizontal bars represent mean ± SEM (Fig.3B, 3C) or median 

with interquartile range (Fig.3D). *P<0.05, **P<0.01.
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Fig.4. Induction of M-MDSC development by HIV-1 gp120 via the STAT-3 pathway
A) Representative dot plots for induction of M-MDSCs by HIV-1 gp120 via the STAT-3 

pathway, analyzed by flow cytometry. PBMCs were first gated for CD33+CD11b+ or 

CD14+CD33+ myeloid cells, followed by analysis of CD14+HLA-DRlow/− or 

pSTAT-3+HLA-DRlow/− subsets. B) Summary data for the percentages of pSTAT-3+ M-

MDSC frequencies in healthy PBMCs treated with HIV-1 gp120 or control protein for 3 

days. C) Summary data for the percentages of M-MDSCs in PBMCs with different 

treatments for 5 days. D) Summary data for the percentages of CD33+HLA-DRlow/− cells in 

PBMCs treated with or without LPS in the presence of STA-21 or DMSO for 5 days. E) 
Summary data for the percentages of CD14+CD33+HLA-DRlow/− cells in PBMCs treated 

without or with LPS in the presence of DMSO or STA-21 for 5 days. Each symbol 

represents one subject with relevant treatment, and the horizontal bars represent mean ± 

SEM (Fig.4B, 4D, 4E) or median with interquartile range (Fig.4C). *P<0.05, **P<0.01, NS 

= no significance.
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Fig.5. MDSCs from HIV-1 patients induce Foxp3+ Treg cell differentiation
A) Representative dot plots and summary data of flow cytometric analysis for the induction 

of CD25+Foxp3+ Treg cells by co-culture of healthy CD4+ T cells with or without CD33+ 

myeloid cells derived from HIV+ individuals. B) Induction of Treg cells by co-culture of 

healthy CD4+ T cells with or without immature myeloid cells (CD33+HLA-DR−) or 

immature non-myeloid cells (CD33−HLA-DR−) derived from HIV+ individuals. C) 
Depletion of immature myeloid cells from HIV patients reduces Treg cells. CD4+ T cells 

isolated from HIV+ individuals were co-cultured with or without autologous CD33−HLA-

DR− or CD33+HLA-DR− cells for 3 days, followed by immune staining and flow cytometric 

analysis for CD25+Foxp3+ Treg cells. Each symbol represents one subject with relevant 

treatment, and the horizontal bars represent mean ± SEM (Fig.5B, 5E) or median with 

interquartile range (Fig.5C, 5D). D) Depletion of MDSCs from HIV patients boosts IFN-γ 

production by CD4+ Teff cells. PBMCs derived from HIV-1 patients, with or without 

depletion of CD33+ myeloid cells, were cultured ex vivo in the presence of anti-CD3/CD28 

stimulation, followed by intracellular staining for IFN-γ and flow cytometric analysis. 

Representative overlaid histogram of flow cytometry and cumulative results for the 

percentages as well as the MFI of IFN-γ expression by CD4+ T cells from 8 HIV-1+ patients 

are shown. Each symbol represents one individual subject, and the horizontal bars represent 

mean ± SEM (MFI) or median with interquartile range (Percentage). *P<0.05, **P<0.01, 

***P<0.001.

Wang et al. Page 17

AIDS. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Expansion of Myeloid-Derived Suppressor Cells Promotes Differentiation of Regulatory T Cells in HIV-1+ Individuals
	Citation Information

	Expansion of Myeloid-Derived Suppressor Cells Promotes Differentiation of Regulatory T Cells in HIV-1+ Individuals
	Copyright Statement
	Creator(s)

	Abstract
	Introduction
	Methods
	Subjects
	PBMC preparation and analysis by flow cytometry
	Treatment of healthy PBMCs by HIV-1 proteins, LPS, and/or STA-21
	Treg cell induction
	Teff cell cytokine assays
	Statistical analysis

	Results
	M-MDSCs are expanded in HIV-1+ individuals on ART
	Immunosuppressive proteins are increased in M-MDSCs from HIV-1+ individuals
	HIV-1 proteins (gp120 and Tat) prevent myeloid cell maturation and drive MDSC expansion
	HIV-1 protein (gp120) induces MDSC development via the STAT-3 pathway
	MDSCs promote Treg cell development during HIV-1 infection
	MDSCs inhibit IFN-γ production by Teff cells during HIV-1 infection

	Discussion
	References
	Fig.1
	Fig.2
	Fig.3
	Fig.4
	Fig.5

