
DePauw University DePauw University

Scholarly and Creative Work from DePauw University Scholarly and Creative Work from DePauw University

Science Research Fellows Posters Student Work

10-2-2019

Machine Learning to Support an Interactive Theorem Prover Machine Learning to Support an Interactive Theorem Prover

Salman Haider
DePauw University

Andy Le
DePauw University

Echo Wu
DePauw University

Brian T. Howard
DePauw University, bhoward@depauw.edu

Follow this and additional works at: https://scholarship.depauw.edu/srfposters

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Haider, Salman, Andy Le, Echo Wu and Brian Howard. "Machine Learning to Support an Interactive
Theorem Prover." Poster presented at the DePauw University Science Research Fellows Poster Session,
Greencastle, IN, October 2019.

This Poster is brought to you for free and open access by the Student Work at Scholarly and Creative Work from
DePauw University. It has been accepted for inclusion in Science Research Fellows Posters by an authorized
administrator of Scholarly and Creative Work from DePauw University. For more information, please contact
bcox@depauw.edu.

https://scholarship.depauw.edu/
https://scholarship.depauw.edu/srfposters
https://scholarship.depauw.edu/studentwork
https://scholarship.depauw.edu/srfposters?utm_source=scholarship.depauw.edu%2Fsrfposters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.depauw.edu%2Fsrfposters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcox@depauw.edu

Machine Learning to Support an Interactive Theorem Prover
Salman Haider, Andy Le, and Echo Wu

Brian Howard
Computer Science Department, DePauw University, Greencastle, IN, 46135

Machine Learning: A technique to infer parameters to make a model fit
patterns in a given set of data.

We are using Machine Learning to automate the interaction with proof assistants.

Abstract

Interactive Theorem Proving

Machine Learning

Experiments Conclusions and Future Work

References

Interactive Theorem Proving (ITP) involves the use of a computer program
to assist the development of formal proofs by human-machine collaboration. One
of the popular ITP is Coq, which is a formal proof management system with a
functional programming language -- Gallina. Moreover, a language of Tactics in
Coq guide the process of developing the steps of the proof. We use Abstract
Syntax Tree (AST) as a way to present the syntax of programming language as a
tree-like structure.

GamePad and CoqGym are prior recent projects on this topic. GamePad
was released in the summer of 2018, CoqGym was a continuation of
GamePad, released in the summer of 2019.

Both GamePad and CoqGym include a tool for interacting with Coq.

GamePad was trained on 1,600 theorems leading to a proof of the
Feit-Thompson Theorem in group theory, whereas CoqGym was trained on
71,000 theorems, covering a broad spectrum of both mathematics and program
verification.

CoqGym generates complete tactics that can be used to obtain full proofs,
whereas GamePad group all tactics into categories and only predicts the
category, not the specific tactic.

Previous Work

● Coq: The Coq Development Team (INRIA, et al.), https://coq.inria.fr/
● GamePad: Daniel Huang and Dawn Song (UC Berkeley), Prafulla Dhariwal and Ilya

Sutskever (OpenAI), https://github.com/ml4tp/gamepad
● CoqGym: Kaiyu Yang and Jia Deng (Princeton),

https://github.com/princeton-vl/CoqGym

Supported by the DePauw Science Research Fellows Program, the J. William Asher and Melanie J. Norton Endowed Fund in the Sciences, the Information Technology Associates Program and the Tenzer Technology Center, the DePauw Computer Science Department, and Google Cloud.

(Image from Yang & Deng, “CoqGym”)

An Interactive Theorem Prover (ITP) is a computer program that can assist a
human in creating a proof of a mathematical theorem or the correctness of a piece
of software. At each step in the proof, the human has the computer apply a chosen
"tactic" to attempt to make progress toward the goal. We are exploring the
possibility of using Machine Learning (ML) to assist in this tactic selection.
Building on recent work at UC Berkeley and Princeton, where they adapted the
Coq ITP so that it could interface with ML libraries via the Python scripting
language, we have been evaluating strategies to encode the current proof state to
try to improve the accuracy of tactic prediction.

Although we were able to confirm that the CogGym model is able to learn some
patterns in the training data, we were unable to improve the tactic prediction accuracy
beyond 17%. This is unlikely to be helpful as a hint tool in an interactive theorem prover.

One idea for future work is to modify the tactic decoder so that it generates a list of
suggested tactics, where the loss score will be low if any tactic on the list matches the
expected (ground truth) tactic.

If the model can be modified to increase the accuracy rate, then further work will focus
on integrating the tactic suggestions into an interface for Coq, such as CoqIDE. The
long-term goal is to provide a tool that will help both students and professional
programmers in producing verified software.

Given a model with sufficient accuracy that we could integrate into a system for
interaction with Coq, our next step would be to conduct user studies to see if the tactic
suggestions are indeed useful, for a range of possible users: students who are just learning
to use Coq, experienced programmers who are attempting to produce verified software,
and current Coq users looking for an additional tool to assist in their work.

We use a TreeLSTM on ASTs to feed
the input goals and premises. This type of
model allows us to encode tree topologies
(ASTs). The model is trained on a set of
proofs and evaluated on the accuracy of
tactic prediction.

Our main focus of this summer project is to figure out ways to improve the CoqGym model
to attain better tactic recommendations for humans to develop proofs. In order to achieve this, we
conducted four experiments, as listed below:

0. Original CoqGym model 17%

1. Restrict to program verification proofs 17%

2. Trivial AST input 7%

3. Leave tokens in AST 17%

4. Generate tactic_list (in progress)

0. We ran the original CoqGym model and got 17% accuracy on tactic prediction.

1. As mentioned previously, CoqGym was trained on over 71,000 theorems, covering a broad
spectrum of both mathematics and program verification. Since we are only interested in the
latter, we restricted the training and testing data to see if the machine can make more relevant
connections. However, we did not see a significant change.

2. In order to make sure the inputs indeed have an impact on the model, we ran a version with
trivial input. Rather than having a complex tree-like structure of data, we changed it to a single
node. As a result, we ran into a notable drop, to 7% accuracy.

3. In the original CoqGym model, the tokens that hold module and identifier names were
removed. Based on the second experiment, we hoped that more information will yield better
results. Hence, we kept all these tokens and ran the model. Again, we did not see any changes.

4. The original CoqGym model calculated its accuracy based on a single prediction of the
tactic. In this experiment, we will aim to change the model’s prediction to a list of plausible
tactics, rather than only one. Since a human is involved in the process of constructing proofs, we
assume that they can cognitively choose the correct tactic from that list. We are still in the
process of running this experiment, we are also the most optimistic about this one.

	Machine Learning to Support an Interactive Theorem Prover
	Recommended Citation

	tmp.1591358790.pdf.A6F5z

