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ABSTRACT 

COMPOSITIONAL ANALYSIS OF POTTERY FROM MIDDLE WOODLAND WAUKESHA 
PHASE SITES IN SOUTHEASTERN WISCONSIN AND HAVANA HOPEWELL RELATED SITES 

IN NORTHEASTERN AND NORTHWESTERN ILLINOIS 

by 

Megan Elizabeth Thornton 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor John D. Richards, Ph.D. 

This thesis provides a compositional analysis of a selected sample of Middle Woodland 

ceramic sherds from sites in southeastern Wisconsin and northern Illinois. The analysis compares 

the ceramic pastes from Middle Woodland pottery from nine different archaeological sites. 

These sites include the Peterson, Finch, Alberts, and Crab Apple Point sites in Wisconsin, the 

Sloan, Albany Village, Blythe, DeWitte/Liphardt Habitation sites in northwestern Illinois, and 

the Kautz site in northeastern Illinois. 

The analysis includes a review of available documentation, as well as descriptions and 

characterizations of sherds utilizing an attribute-based analysis of metric, morphological, and 

petrographic data. In southeastern Wisconsin, the Middle Woodland occupation is poorly 

understood, and sites with Middle Woodland components have been suggested to be part of the 

Waukesha phase. Haas’s (2019b) recent work at the Finch site has been the first detailed 

examination of the Waukesha phase since Salzer’s (n.d.) seminal study (Goldstein 1992). 

Although the phase is considered to represent some degree of interaction with Illinois Havana-

Hopewell (Jeske 2006; Mason 2001; Salzer 1986), direct evidence of such interaction is lacking. 

This analysis provides a comparative dataset to be used in future comparisons of Waukesha 

Phase ceramics. The results of the petrographic analysis suggest an overall homogeneity of paste 
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composition between the samples selected for this thesis. Statistical analysis of the data was 

unable to identify specific samples or recipes by region. The results of this project suggest that 

paste recipes may have been widely shared between people in southern Wisconsin and northern 

Illinois and may indicate existing relationships within groups in the study region. 
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CHAPTER 1: INTRODUCTION 

This thesis examines ceramic paste compositional variability between sites from the 

Middle Woodland Waukesha Phase in southeastern Wisconsin and Middle Woodland sites in 

northwestern and northeastern Illinois. The analysis focuses on Havana-Hopewell related pottery 

from the Wisconsin and Illinois sites. Using thin sections of the sherds, petrographic analysis 

was conducted to identify minerals present in the samples and examine compositional variation 

in the paste and body of the ceramics. 

The project examined twenty-seven ceramic sherds from nine sites with Middle 

Woodland components located in southeast Wisconsin and northern Illinois (Figure 1.1). The 

number of samples from each site varies. From the Wisconsin sites, seven samples were selected 

from the Peterson site (47WK199), six samples from Finch (47JE902), and a single sample was 

chosen from both the Alberts (47JE887) and Crab Apple Point (47JE93) sites. From the 

northwestern Illinois sites, eight samples were selected from the Sloan site (11MC86), and a 

single sample was drawn from the Albany Village (11WT1), Blythe (11HA40), and 

DeWitte/Liphardt Habitation (11RI57) sites. A single sherd was sampled from the Kautz site 

(11DU46/1) in northeastern Illinois in order to provide an eastern Illinois example of Havana 

Zoned pottery to compare to the western Illinois sample. 
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Figure 1.1 Archaeological site locations in Illinois and Wisconsin. 
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The analysis detailed below was designed to determine if Havana-Hopewell stylistic 

influences were adapted to locally-produced pottery, or if Havana vessels recovered from 

southeast Wisconsin sites represent imports from locations further south. To do this, two main 

goals were established. The first was to determine the extent to which all samples are similar or 

different. The second was to determine if inter-regional or inter-site analysis could be used to 

identify statistically significant patterns to examine if the paste and recipe composition of the 

samples can be used to separate or identify samples by region.  

An attempt was made to select sherds broadly representative of region-wide Middle 

Woodland ceramic traditions. Sherds chosen represent three primary wares including Rock 

Ware, diagnostic of Waukesha Phase Middle Woodland in southeast Wisconsin, Havana Ware, 

and Hopewell Ware, both more reflective of a northern Illinois River distribution. To a great 

degree, sample selection was predicated on availability of samples suitable for destructive 

analysis and for which permission to conduct the work could be obtained. Thus, it cannot be 

argued that the analyzed sample set is truly representative of ceramic paste variability within the 

study area. Nonetheless, results of this study demonstrate the utility of this kind of analysis and 

represent a necessary first step in designing a more extensive project based on a larger, more 

inclusive sample set. All sherds and associated ceramic thin sections used in this thesis are 

curated by the University of Wisconsin Milwaukee (UWM) Archaeological Research Laboratory 

(ARL). 

The Middle Woodland period is dated between AD 100 to 400 (Stevenson et al. 1997) in 

southeast Wisconsin and northern Illinois. In southeast Wisconsin, the Middle Woodland 

component of an archaeological site is often one of several multi-component habitations at the 

site (Goldstein 1992:158; Jeske 2006:299). Recent research at the Finch site in Jefferson County 
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by Haas (2019b) suggests that the dates acquired from Middle Woodland vessels overlap those 

of preceding Early Woodland vessels. Additionally, lithic analysis indicates inter-regional trade 

between Wisconsin and groups to the south for raw material types (Haas 2019b). This suggests 

that the introduction of Middle Woodland style vessels at sites in southeast Wisconsin may 

follow existing inter-regional contact between people in the Wisconsin region and groups to the 

south (Haas 2019b). Archaeological investigations at the Finch, Peterson, and Alberts sites have 

included specific research into the Middle Woodland components of each site (Brazeau et al. 

1980; Haas 2019a, 2019b; Haas et al. 2015; Jeske and Kaufmann 2000; Jeske 2006; Salzer n.d.; 

Watson et al. 2003; WHPD; Wood 1936), while research at the Crab Apple Point site has 

primarily focused on the Late Woodland, Oneota, and historic components at the site (Auten et 

al. 2017; Jeske 2003; Pozza 2016; Schneider et al. 2017; Spector 1975). 

In Illinois, the lower Illinois River Valley is considered a core area of the Hopewell 

Interaction Sphere (Fie 2008). Much of the research into Middle Woodland sites has been 

conducted in this part of Illinois or at mortuary and habitation sites exhibiting highly stylized 

Hopewell artifacts (Charles 2012). Illinois sites from which sherd samples were drawn include 

sites that have been subjected to long-term archaeological investigations such as the Sloan, 

Albany Village, and Kautz sites (Benchley et al. 1979; Benchley and Dudzik 1976; Benchley and 

Gregg 1975; Geraci 2016; Herold 1971; Schenian 1983; Wenner 1960). In addition, sherds were 

also obtained from sites known only from data produced by the Illinois Predictive Model 

Surveys conducted by UWM; these include the Blythe and DeWitte/Liphardt Habitation sites 

(Benchley and Billeck 1977; Fowler and Dudzik 1973; IIAPS). 

My thesis research included both attribute-based analysis and petrographic analysis. The 

initial attribute-based ceramic analysis of the selected sherds identified temper and paste 
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characterization, grain size and texture, and the paste core cross-sections. I also recorded metric 

and morphological data, including rim, lip, neck, and shoulder form, rim profile, orifice shape, 

surface finish, and decorative treatments. The data from this analysis were inventoried using a 

digital database for future access. 

To conduct the petrographic analysis, thin sections of sherds from the selected sites in 

southeastern Wisconsin and northern Illinois were processed and analyzed for paste composition 

and identification of minerals. The thin sections were prepared by National Petrographic 

Services, Inc. James Stoltman’s (1989) point counting technique was used to collect qualitative 

and quantitative data on grain sizes and minerals in the pastes analyzed. All other equipment and 

supplies necessary to complete the project were provided by the UWM ARL. Upon completion 

of this thesis, ceramic thin sections will be accessioned into the ARL’s permanent collections. 

Data sets and thin sections will be made available for additional analyses by other researchers. 

Petrographic analysis is used to “obtain an unbiased estimate of the constituents of a 

sample” (Stoltman 1989). Point counting and mineral identification have been used by other 

scholars to identify the possible interaction of people between sites (Chivis 2016; Schneider 

2015). In his analysis of Middle Woodland ceramics from western Michigan and northwestern 

Indiana, Chivis (2016:12) acknowledges the need to include a visual attribute-based analysis in 

addition to the petrographic analysis as the “visual styles have extensive distributions because 

highly visible decorative traits are easily copied and shared among far-flung peoples.” While the 

samples selected for this analysis were all chosen based on the visual attributes of Middle 

Woodland decoration, the petrographic analysis can help to identify similarities in the recipes 

used to make the clay paste eventually used to construct the vessels. The quantitative data set 

was collected by counting the number of points across the sample in thin section and classifying 
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each point as matrix, silt, sand, or temper. The qualitative data was collected based on the 

classification of each point and the additional classification of sand and temper inclusions based 

on size grade and the temper type. Finally, the points that represented identifiable minerals in the 

paste were also counted and classified by mineral type. The quantitative and qualitative 

components of petrographic analysis, both identifying and inventorying the temper and minerals 

within a sample, can be used to compare the vessels “with their presumed source areas, assess 

the cultural affinities of newly recognized or uncertain ceramic types, or analyze the paste 

variation that may exist between different functional categories within or between archaeological 

assemblages” (Stoltman 1989:158). To do this, a ternary diagram application was used to 

visualize and present the compositional data. 

This thesis is organized as follows. Chapter 2 provides background information on 

Middle Woodland occupations in southeast Wisconsin and northern Illinois, the specific Middle 

Woodland sites from Wisconsin and Illinois used in this analysis, and the use of petrographic 

analysis in archaeological research. Chapter 3 presents the methods used in this analysis to select 

samples from each site and to conduct morphological, metric, mineralogical, compositional, and 

statistical analyses. Chapter 4 presents the results of the analysis by individual samples and 

summarizes the regional comparisons between the Wisconsin and Illinois sites. Chapter 5 

reviews the results from the analysis, evaluates the homogeneity between samples across the 

sites and regions, and suggests additional research opportunities to expand upon this analysis. 
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CHAPTER 2: BACKGROUND 

Introduction 

Across the North American mid-continent, the Middle Woodland period is dated between 

200 BC and AD 500. Three important traits are used to define this spatial and temporal period: 

“the construction of conical burial mounds; evidence of plant cultivation; and pottery decorated 

by pressing tools such as notched bone or cord-wrapped sticks into the wet, unfired clay” 

(Stevenson et al. 1997:157). The Middle Woodland period throughout the midcontinent is often 

identified with and compared to the Hopewell culture in Illinois and Ohio. The term Hopewell 

has been used to describe a phase of the Middle Woodland period characterized by riverine-

based regional integration visible through the earthworks and exotic artifacts deposited in 

funerary contexts (Abrams 2009). There are two primary centers of the Hopewell phase: Ohio 

Hopewell in southeastern Ohio and Havana-Hopewell in the lower Illinois River valley. 

Connections between Middle Woodland groups and influence from Hopewell centers to other 

Middle Woodland sites have been contextualized through the Hopewell Interaction Sphere 

(Caldwell 1964; Struever 1964). Trade of exotic materials originating from Appalachia, the 

Upper Mississippi Valley, the Great Lakes, Yellowstone, and the Gulf and Atlantic coasts 

(Seeman 1977; Struever 1964, 1965) have been used as evidence for the Interaction Sphere. 

Because of early interpretations, the Hopewell phenomenon was defined as a singular 

interregional term by archaeologists rather than local cultural contexts (Chivis 2016). 

Boundaries have been used to contextualize regional traditions within the Middle 

Woodland period. The Havana tradition is the regional boundary which encompasses the sites in 

this study. The Havana tradition is “largely co-extensive with the Prairie Peninsula” (Brown 

1964:120), ranging from “northeastern Oklahoma and western Missouri eastward to include the 
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Illinois River system… as far south as the mouth of the Kaskaskia River, as far north as the Red 

Cedar River in Wisconsin” Struever (1964:91). Brown (1964) extends the boundary of the 

Havana tradition east to include parts of northwestern Indiana and southwestern Michigan, with 

some evidence of the Havana tradition extending into the Saginaw Bay area. 

Pottery, other artifact types, and mortuary practices characteristic of the Hopewell phase 

are identified in major river valleys across several regional traditions during the Middle 

Woodland period. In the Illinois Valley. Struever (1964) categorizes the Hopewell phase of the 

Havana tradition based on the fully developed Hopewell pottery series. Brown (1964) further 

argues that pottery diagnostic of the Hopewell phase is often a minority type in Illinois sites 

compared to other Havana style, utilitarian, vessels. However, pottery exhibiting Hopewell 

decorative styles have a wider regional distribution expanding across the various regional Middle 

Woodland traditions. Struever (1965:211) suggests that the Hopewell phase does not represent 

“local expressions of a homogenous culture.” Instead, the stylistic variability and the differences 

in distribution may represent differing cultural systems rather than a pan-regional “Hopewellian 

mortuary complex” (Struever 1964:88).  

In Illinois, most Middle Woodland sites are identified based on research conducted at 

mortuary mound groups and large village sites (Yingst 1990). Along the Illinois River, Middle 

Woodland sites can be sorted into separate types including regional centers, base camps, small 

seasonal camps, and mortuary sites (Benchley et al. 1979). Many of these mortuary sites include 

elaborate burial mounds. Both mortuary and habitation sites contain exotic and stylized 

Hopewell artifacts (Brose and Greber 1979; Charles 2012; Charles and Buikstra 2006). Research 

into demographic and biological variability in the lower Illinois Valley has been conducted by 

Asch (1976), Buikstra (1976), and Charles (1992). This research indicates the transitional nature 
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of the Middle Woodland period, where populations increased, and the localization of subsistence 

intensified between the Early Woodland and early Late Woodland periods (Charles 1992).The 

lower Illinois River Valley has historically been a focus of Middle Woodland research because it 

is considered one of the core areas of the Hopewell Interaction Sphere (Fie 2008). 

Most Middle Woodland sites in Wisconsin are multi-component and are not solely 

associated with that period (Goldstein 1992:158; Jeske 2006:299). In southern Wisconsin, the 

Middle Woodland period is divided between southwest and southeast Wisconsin. In the 

southwest, the Trempealeau (circa AD 100-200) and Millville (circa AD 200-500) phases are 

used to categorize Middle Woodland components. Sites in southeastern Wisconsin contain less 

elaborate grave goods and mound construction, which has caused archaeologists to separate the 

southeastern part of the state from the Trempealeau and Millville phases and call the Middle 

Woodland components in this part of the state the Waukesha phase (Goldstein 1984; Haas 

2019b; Jeske 2006; Salzer n.d). 

The Waukesha Focus was originally attributed to sites in Waukesha County with burial 

mounds and artifacts similar to Hopewellian sites in the northern Illinois River valley (Bennett 

1952; McKern 1942; Salzer n.d.). In Salzer’s (n.d.:4) unpublished manuscript “The Waukesha 

Focus: Hopewell in Southeastern Wisconsin”, he suggests the extension of the Waukesha Focus 

taxonomy to “include all Middle Woodland manifestations in the southeastern Wisconsin-

northeastern Illinois area” (Salzer n.d.) He makes this suggestion to account for “the 

technological patterns of southeastern Wisconsin during the Middle Woodland period when a 

series of strong stylistic concepts from the central and northern Illinois valley become apparent” 

(Salzer n.d.:279). Salzer did not attempt to map the limits of his expanded Focus so the location 

of the southern boundary of the proposed taxon is unclear. An additional problem with Salzer’s 
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designation of the Waukesha Focus is the suggested variability in settlements. Salzer notes 

common pottery types, identified at the Highsmith Site, including Kegonsa Stamped, Shorewood 

Cord Roughened, Dane Cord Marked, Highsmith Plain, and Cooper’s Shores Collared. 

Additional exotic ceramics styles (Salzer n.d.:283) are also present at sites with Waukesha Focus 

components including Havana Zoned, Havana Plain, Havana Cordmarked, Naples Stamped, 

Steuben Punctated, Sisters Creek Punctate, and Classic Hopewell. 

All sites in this analysis were selected because of the presence of Middle Woodland 

pottery types. Additionally, all are within the geographic extent of Havana-Hopewell related 

Middle Woodland occupations. The Wisconsin sites are all situated within southeast Wisconsin 

within the conventional limits of the Waukesha Focus. However, the Illinois site sample is 

distributed more widely. The Sloan and Blythe sites are located farthest south and are situated 

along the Mississippi River in central Illinois. The Albany Village and DeWitte/Liphardt 

Habitation sites are also situated near the Mississippi River but are located in northwest Illinois. 

The Kautz site is the only site in the sample that can be said to be located in northeast Illinois and 

thus situated within Salzer’s proposed expanded southern boundary of the Waukesha Focus. 

Southeast Wisconsin Sites Selected for Petrographic Analysis 

Peterson (47WK199) 

The Peterson site (47WK199) is located in Waukesha County, Wisconsin (Figure 2.1). 

The site was initially identified by Increase Lapham in 1855, and a map of the site location along 

the Fox River is included in his book, Antiquities of Wisconsin. At that time, Lapham called the 

Fox River the Pishtaka River to “distinguish it from the numerous other rivers of the same name” 

(Lapham 1855:23). In 1902, the Wisconsin Archeological Society measured the mounds at the 
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site and Lafayette Ellarson excavated the largest conical mound at the site. Ellarson discovered a 

burial chamber in the mound, which included human remains, two stone pipes, and “fragments 

of rouletted pottery” (Wood 1936:219). At this time, the land was owned by Henry E. Nicolai. In 

1923, Charles E. Brown documented the site as “Nicolai Mounds” and synthesized the 

Wisconsin Archeological Society measurements and Ellarson’s excavations in an issue of The 

Wisconsin Archeologist. 
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Figure 2.1 Location of the Peterson site in Waukesha Co., Wisconsin 
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Further excavation of the site occurred after Mr. Henry J. Peterson partially unearthed a 

burial while grading a portion of his land. Mr. Peterson notified the Milwaukee Public Museum 

(MPM) and invited staff to investigate the site (Wood 1936:215). E.F. Wood and 

W.C. McKern arrived after much of the mound had been removed. The archaeologists relied on 

observers’ information to document the stratigraphy of the mound. A rectilinear burial pit was at 

the base of the mound with a charcoal and ash layer above it. Another intrusive burial was in the 

mound, “placed after the mound was built” (Wood 1936:216). According to Wood, the burial at 

the base of the mound contained a minimum of seventeen individuals, including “seven adult 

males, three adult females, two sub-adults and four infants or children of indeterminate sex” 

(Wood 1936:217). The only artifacts documented in the burial were fifteen shell beads, “placed 

about the neck of one individual” (Wood 1936:219). Wood suggests that this site may be a 

component of a new “Wisconsin focus of the Central Basin phase” (Wood 1936:219). He also 

notes that there are several specimens from Waukesha County in the MPM collections that seem 

to represent this cultural phase, including the pipes and fragments of rouletted pottery from the 

mound excavated by Ellarson in 1902 (Wood 1936). According to the Archaeological Site 

Inventory (ASI), the artifacts are housed at the MPM. 

Between 1977 and 1980, the Peterson village site was surveyed, and test excavations 

were conducted by the Great Lakes Archaeological Research Center (GLARC). Surface 

collection recovered cultural material indicative of Middle Woodland and Late Woodland 

occupations (Brazeau et al. 1980:83). The presence of both Middle and Late Woodland 

diagnostic artifacts recovered from test excavations indicate that the site was occupied during 

these periods. The site was listed in the National Register of Historic Places (NHRP) in 1982. In 

2001, a compliance project along the south bank of the Fox River required archaeological 
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investigations by GLARC (Wisconsin Historic Preservation Database [WHPD]). Mechanical 

stripping of a gravel field road using a backhoe resulted in the identification of 150 subsurface 

features. Forty-four of the features were identified as prehistoric features including pits, post-

molds, a hearth, and a possible house basin. Lithic, ground stone, copper, and ceramic artifacts 

were recovered from the features. According to a summary of the Peterson site investigations, 

the Middle Woodland ceramic types at the site include Steuben Punctated, Havana Plain, and 

unclassified Middle Woodland. Late Woodland ceramic types include Madison Cord Impressed, 

Madison Plain, Weaver Plain, and Point Sauble Collared (Haas 2017). In 2012, the site was 

monitored during the installation of utilities. The ASI form indicates no prehistoric cultural 

material was recovered and cultural features were disturbed at the time of this monitoring 

(WHPD). No formal report has been published on the compliance work conducted at the 

Peterson site.  

The samples used in the present analysis come from both the 1980 and 2001 excavation 

projects. Two samples, a Hopewell-like incised sherd (2019001) and a Steuben Punctated sherd 

(2019007), come from the 1980 excavations. There is little detail about the context of these 

artifacts. More information is available for the samples recovered during the 2001 excavation. 

Two Steuben Punctated samples (2019002 and 2019003) were recovered from the same pit 

feature, Feature 53. Another Steuben Punctated sample (2019004) came from a pottery 

concentration within Feature 77, identified as a possible post mold. A Shorewood Cord 

Roughened sample (2019005) was recovered from Feature 107, a basin-shaped pit. The last 

sample from the site, part of a Kegonsa Stamped vessel (2019006), was excavated and brought to 

the lab in bulk as part of a soil matrix sample from Feature 97, a diffuse oval shaped pit. 
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Finch (47JE902) 

The Finch site (47JE902) is in Jefferson County in southeastern Wisconsin (Figure 2.2). 

The site occupies “a locally prominent hill and a small terrace adjacent to a spring fed pond east 

of Lake Koshkonong and the Rock River drainage” (Haas 2019b:69). Initially the site was 

reported as a historic cemetery location; however, only a small portion of the historic cemetery 

was located and excavations recovered dense prehistoric artifact concentrations (Haas 2019a, 

2019b; Haas et al. 2015). 

Between 1999 and 2002, GLARC conducted an archaeological survey project along the 

proposed alternate routes of the STH 26 reconstruction. This large-scale project investigated 

possible sites in Dodge, Jefferson, and Rock counties. The Finch site was one of the Jefferson 

County sites within the boundaries of the project. Based on the recovery of chipped stone and 

pottery fragments during the Phase I survey, Phase II evaluation was conducted to determine if 

the site was eligible for listing on the NRHP. The Phase II evaluation identified an intensive 

Middle Woodland occupation, as well as Early and Late Woodland components. Based on these 

results, the site was recommended to be listed on the NRHP, and if the STH 26 reconstruction 

could not avoid the site, a data mitigation plan was suggested (Watson et al. 2003). 

The highway reconstruction project was unable to avoid impacting the site and data 

recovery was necessary. The Phase III mitigation was begun in 2009 and continued through 

2012. Approximately 1,200 square meters were excavated at the site, over 100,000 artifacts were 

recovered, and 153 cultural features were identified (Haas 2019b:72). The diagnostic material 

culture from the site indicates multi-component settlement including Early and Late Paleoindian, 

Early, Middle, and Late Archaic, and Early, Middle, and Late Woodland components. 
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Figure 2.2 Location of the Finch site in Jefferson Co., Wisconsin. 
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The Middle Woodland component of the site was recognized by the presence of Snyders 

and Steuben hafted bifaces, ceramic vessels including Havana ware, Naples Stamped, Sister 

Creeks Punctated, Kegonsa Stamped, Shorewood Cord Roughened, and Hopewell-related 

pottery. Additionally, some transitional wares including Deer Creek Incised and Douglass Net 

Marked are included in the assemblage. Middle Woodland activity areas included a domestic 

living space that included feature types such as a temporary housing structure, cooking pits, 

multi-functional pits, and a hearth. Another Middle Woodland activity area is suggested to 

represent animal resource processing due to the presence of cooking pits or hearths, and multi-

functional pits and a high density of lithic tools (Haas 2019b). 

In a recent analysis of the Finch site in southeast Wisconsin (Haas 2019b; Haas and 

Picard 2019), the Middle Woodland vessels were classified according to Salzer’s typological 

categories including Rock Ware, Havana Ware, Seed Jar, and Hopewell-Related. The Rock Ware 

types include the Kegonsa Stamped and Shorewood Cord Roughened styles, a category 

diagnostic of the Waukesha phase (Haas 2019b; Salzer n.d.). The Havana Ware types include 

Havana Plain, Havana Zoned, Naples Stamped, and Sister Creeks Punctated. Only one example 

of both the Seed Jar and Hopewell Related categories were recovered from the Finch site. 

Radiocarbon dates from Kegonsa Stamped and Shorewood Cord Roughened vessels at the Finch 

site were the first direct dates acquired for the Rock Ware category (Haas 2019b). These dates 

fall within the range of the Havana culture and other Illinois and Wisconsin Middle Woodland 

phases including North Bay, Nokomis, and Steuben. Additionally, the Middle Woodland dates 

from the Finch site also overlap accepted dates of 500 BC to AD 100 (Stevenson et al. 1997:155) 

for Early Woodland occupations in southern Wisconsin. 
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Lithic analysis suggests that both Early Woodland and Middle Woodland inhabitants of 

the Finch site used locally available Galena chert as well as non-local material sourced from 

southern and southwestern locations including west-central Illinois and southeastern Iowa. 

Investigations into grave goods and foodways also suggest that groups in southeastern Wisconsin 

did not adapt Havana-Hopewell cultural influences as fully as southwestern Wisconsin and other 

areas (Benchley et al. 1997; Haas 2019b; Salzer nd; Stevenson et al. 1997). Haas (2019b:356) 

uses this information to suggest that the Middle Woodland occupations in southeastern 

Wisconsin may not have been “embedded within a broader Havana-Hopewellian regional or 

symbolic community,” and populations of Havana-Hopewell people may not have physically 

migrated into the area. Instead, it is suggested that the existing Early Woodland populations 

likely already had persistent inter-regional contact with southern groups. This challenges 

previous interpretations that Middle Woodland populations in southeastern Wisconsin were 

indicative of southern Havana-Hopewell populations migrating into southeastern Wisconsin 

(Haas 2019b). 

As the Finch site was most recently documented in both a UWM-CRM ROI (Haas 

2019a) and Haas’s dissertation (2019b), the ceramics from this site were already well organized 

and sherds were refit, identified and assigned specific vessel numbers. The excavation area for 

the Finch site was very large. To facilitate descriptions and analysis, the site area was arbitrarily 

divided into five regions. The samples selected for this analysis were recovered from three of 

these regions: Region B, Region C, and Region D. Region B is situated in the central-north 

portion of the site, Region C is in the central portion of the site, and Region D is directly south of 

Region C in the central portion of the site. The individual sherds used for this analysis were 
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recovered from unit contexts, while other sherds from the same vessels may have been recovered 

from other contexts throughout the site. 

Vessel 2002 is Havana Zoned. The sherd (2019008) used in this analysis from that vessel 

was recovered from level 3 of Unit 301 in Region D. However, other sherds from this vessel 

were recovered from Feature 114, a cooking pit, in Unit 325 of Region D. Vessel 2004 is Naples 

Stamped. The sherd (2019009) used in this analysis from that vessel was recovered from level 4 

of Unit 231 in Region C. Vessel 2008 is Kegonsa Stamped. The sherd (2019010) used in this 

analysis from that vessel was recovered in level 4 of Unit 356 in Region B. Vessel 2020 is 

Naples Stamped. The sherd (2019011) used in this analysis from that vessel was recovered from 

level 8 of Unit 172 in Region D.  Vessel 2038 is Shorewood Cord Roughened. The sherd 

(2019012) used in this analysis from that vessel was recovered from level 6 of Unit 61 in Region 

D. Vessel 3034 is Hopewell-related. The sherd (2019013) used in this analysis from that vessel 

was recovered from level 6 of Unit 266 in Region D. 

Alberts (47JE887) 

The Alberts site is part of a complex of sites along the east bank of the Rock River, north 

of the confluence with Johnson Creek, in Jefferson County, Wisconsin (Jeske 2006; Jeske and 

Kaufmann 2000) (Figure 2.3). The complex consists of both a habitation site (47JE903) and a 

mound site (47JE887), which had both a conical and linear mound, and artifacts representing 

Late Archaic, Early, Middle and Late Woodland, and Upper Mississippian components with 

some stratigraphic integrity (Jeske and Kaufmann 2000). The habitation site is primarily a Late 

Woodland occupation located immediately adjacent to the river and marshlands. The mound site 
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is located on a terrace directly north of the habitation site. The two components are separated by 

a small spring-fed stream (Jeske and Kaufmann 2000). 

Richard Slattery conducted excavations at the site complex between 1964 and 1969, 

including a test of the conical mound in 1969 (Jeske and Kaufmann 2000). The habitation 

component is situated on sandy soils that were not heavily cultivated in the twentieth-century. 

Slattery’s excavation in the habitation area recovered features from Early, Middle, and Late 

Woodland periods, as well as a possible Mississippian component (Jeske and Kaufmann 2000). 

When testing the mound component, Slattery excavated 5-x-5-foot squares across the 

conical mound, excavating six squares total. The approximate diameter of the mound was 6 

meters and at the time of excavation, the mound was only 25 cm high. The excavations of the 

mound did not show evidence that it was used for burial as no bones, grave features, or signs of 

mortuary rituals were recovered (Jeske and Kaufmann 2000:92). Artifacts recovered from feature 

contexts during Slattery’s excavations include grit-tempered pottery, a Late Archaic/Early 

Woodland Durst point, Late Woodland Madison ware, Starved Rock Collared and possible 

Langford series rim sherds, a Middle Woodland point, and a Middle Woodland Havana 

Cordmarked vessel. In one of the 5-x-5-foot test units, near the center of the mound, a large 

boulder was placed directly on top of a crushed and burned Havana-style vessel. Jeske (2006) 

suggests that the mound and related features may be associated with a long-established fire and 

water dichotomy, and that the location of the Havana-style vessel, beneath the large rock, and 

near the Early Woodland fire pit was significant. The sample selected for this analysis (2019024) 

was a sherd from the Havana vessel that was underneath the large rock in the mound site 

component. 
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Figure 2.3 Location of the Alberts site in Jefferson Co., Wisconsin. 
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Crab Apple Point (47JE93) 

The Crab Apple Point (CAP) site is in the Lake Koshkonong area approximately 500 feet 

north of the Lake Koshkonong shoreline. Lake Koshkonong is located in Jefferson County, WI, 

and the lake “itself is actually a broad expansion of the Rock River” (Spector 1975:272-274) 

(Figure 2.4). Many archaeological sites have been documented around Lake Koshkonong. In 

1908, Stout and Skavlem noted over 30 sites surrounding the lake during their initial survey 

(Stout and Skavlem 1908). More recent research in the Lake Koshkonong locality has been 

conducted by Hall (1962), Southeast Wisconsin Archaeology Project researchers (Goldstein 

1984) and the Program in Midwest Archaeology (PIMA) at UWM directed by Dr. Robert Jeske 

(2003). 

Archaeological documentation at the CAP site began in 1890 when Stephen Peet 

identified numerous mounds and a cabin used by Le Sellier, a French trader from the early 

nineteenth-century (Schneider et al. 2017:15). Later, Stout and Skavlem (1906) surveyed the site 

and surrounding archaeological sites in the Lake Koshkonong area. Janet Spector (1975) also 

conducted research at the CAP site focusing on the eighteenth-century Ho-Chunk occupations. 

Mr. Jim Bussey, a collector and partial landowner of the site allowed Robert Birmingham to 

study artifacts that had been collected on the plowed surface of the site. The collection contained 

both historic and abundant Oneota material; the Oneota component was “located on top of a 

bluff above the adjacent historic component” (Pozza 2016:21). Jacqueline Pozza (2016) 

completed her Master’s thesis research comparing copper artifacts from four sites in the Lake 

Koshkonong locality, including the Crab Apple Point site. 
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Figure 2.4 Location of the Crab Apple Point site in Jefferson Co., Wisconsin. 
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In 2017, a collection of ceramics from the Crab Apple Point Site (47JE93) was donated to 

the UWM-Anthropology Department by Mr. Bussey. These ceramics were collected from the 

plowed surface of his farm field and therefore only have site-wide provenience information, as 

the stratified provenience has been lost. In Fall 2017, the UWM Anthropology 535 class 

completed an analysis of 657 sherds from the collection. These sherds included fifty-three 

decorated body sherds, seven neck sherds, and 538 rims. Of the sherds in this collection, 91.5% 

were shell tempered, suggesting that most of the pottery was produced during the Oneota cultural 

tradition (Auten et al. 2017). The 37 grit-tempered sherds from this collection include both 

Middle Woodland and Late Woodland types. A sherd from a Shorewood Cord Roughened vessel 

was selected for this petrographic analysis (2019025). 

Northwestern Illinois/Mississippi River Trench Sites Selected for Petrographic 

Analysis 

Sloan (11MC86) 

The Sloan site is a multi-component site in Mercer County, Illinois (Figure 2.5). The 

location of the site is “approximately five miles northeast of New Boston, Illinois and ten miles 

south of Muscatine, Iowa…. The site is situated along the upper and lower portions of a 

Pleistocene terrace in the Mississippi River bottomlands… approximately 200 meters east of the 

Edwards River which enters the Mississippi bottomland just north of the site area” (Benchley et 

al. 1979:3). Three other known Middle Woodland sites are located within ¼ mile of the site 

along the same geological terrace formation (Benchley et al. 1979). 

The Illinois Archaeological Survey (IAS) first recorded the site in 1974 after collecting 

lithic debitage, grit tempered pottery sherds, and a hoe chip during surface survey. In spring 
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1978, IAS conducted the first phase of archaeological survey within the right-of-way of Highway 

Project 1210 for the Illinois Department of Transportation. They identified archaeological 

material within the highway right-of-way. The UWM ARL began working at the site between 

late summer 1978 and spring 1979. This second phase of investigations was used to evaluate the 

site and recover data to determine if the site would be eligible to be included on the NRHP. This 

work was completed in two phases to sample the site within the highway right-of-way, and to 

recover data necessary to better understand the site structure. During this investigation, the site 

was divided into four separate areas: upper terrace, terrace slope, lower terrace, and bottomland. 

Additionally, a large midden was present in the northern portion of the lower terrace slope. Once 

excavated, ten features were identified below the midden (Benchley et al. 1979). 

The material culture present at the site includes Middle Woodland, Late Woodland, and 

Historic European artifacts. The material remains on the upper terrace suggests that it was used 

less in prehistoric times than the lower terrace. Features identified in the upper terrace include 

two storage/refuse pits and one hearth, but there was no evidence of structures in this portion of 

the site. The lower terrace suggests much more prominent use during prehistoric times. Features 

include over 30 storage/refuse pits, the large midden, and scattered post molds that suggest some 

type of structure. The lower terrace also contained a greater number and variety of artifacts 

(Benchley et al. 1979:143). The prehistoric pottery recovered from the site can be assigned to 

Havana and Weaver ware types. The Middle Woodland component of the Sloan Site is primarily 

dated to the later part of the Middle Woodland based on the ceramics recovered from the midden 

(Benchley et al. 1979:108). 
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Figure 2.5 Location of the Sloan site in Mercer Co., Illinois. 
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The eight ceramic samples from the Sloan site that were used in this thesis are from the 

UWM ARL investigations from 1978-1979. The ceramics were recovered in various contexts 

throughout the investigations. A Naples Stamped Cord-Wrapped Stick variety sherd (2019020) 

was recovered on the surface. Two Havana Plain samples (2019014 and 2019016) were 

recovered from Test Pit 31. A Havana Zoned Dentate sherd (2019021) was recovered from Test 

Pit 39. Three samples were recovered from the midden: Hopewell Rocker Stamped (2019018) in 

level 4, Naples Stamped Cord-Wrapped Stick (2019015) in level 5, and an unclassified Havana 

(2019019) in level 6. An additional Hopewell-type sample (2019017) was recovered in Feature 

40, a basin that was located beneath the midden. 

Albany Village/Albany Mound Group (11WT1) 

The Albany site is located in Whiteside County, Illinois (Figure 2.6). Earliest 

investigations at the Albany site began in 1873 when the site was first mapped, and two mounds 

were excavated by W.H. Pratt (Benchley and Gregg 1975). At that time, 81 mounds were 

identified, and early mound investigations were conducted by the Davenport Academy of 

Natural Science in Davenport, Iowa. Several mounds were excavated around the turn of the 

twentieth century. These early excavations did not include detailed descriptions of the cultural 

material, human remains, and mound construction. However, some topographic maps of the 

mounds were created, and a checklist of cultural material was generated (Benchley and Gregg 

1975). 

In 1971, Elaine Bluhm Herold compiled the earlier excavations into a book about the site. 

In this research she created a list of material culture from the site, including common Middle 

Woodland artifacts such as marine shell, sheet mica, and Havana related ceramics (Herold 1971; 
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Benchley and Gregg 1975). Private collections of artifacts from the village area of the Albany 

Site were examined also. These collections contained additional Havana and Hopewell materials 

such as copper awls, lithic tools made from obsidian, Flint Ridge chert and Hixton Silicified 

Sandstone, a ceramic figurine fragment, a Hopewell red-filmed bowl, cut mica, and several types 

of Havana and Canton ware (Benchley and Gregg 1975). Unfortunately, the provenience of these 

materials was not well documented and much of the village site was destroyed by the 

construction of Route 80 in 1930 and the reconstruction of Meredosia Road in 1959 (Benchley 

and Gregg 1975). 
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Figure 2.6 Location of the Albany site in Whiteside Co., Illinois. 



 30  

The checklist of material and Herold’s research was used by archaeologists from UWM 

to make some interpretations of the cultural history of the site. Based on the presence of Black 

Sand Incised and Morton Incised pottery, it is expected that the site contained a later Early 

Woodland period occupation. Early and Middle Havana occupation is represented by ceramic 

types, lithic types, and exotic raw materials. In addition, the Canton ware assemblage represents 

Late Woodland occupation (Benchley and Gregg 1975). Of the 81 mounds originally identified 

at the site, only 36 were located by UWM archaeologists (Benchley and Dudzik 1976).   

In 1975 the UWM ARL was contracted by the Illinois Department of Conservation to 

complete survey of the site area as well as the broader Meredosia Levee and Drainage District 

near Albany, Illinois. This project was established to define the Albany site boundaries as well as 

locate any other archaeological sites within the construction right-of-way (Benchley and Gregg 

1975). During this survey, cultural material from Early, Middle, and Late Woodland periods 

were recovered from the site. Test units were also excavated to further understand the subsurface 

context at the site. The material culture excavated from Test Unit 3 showed evidence of a deep 

midden context, with artifacts accumulated from Early Havana through Weaver periods (300 BC 

– AD 750). While not all parts of the site harbor material evidence throughout this timeframe, it 

can be suggested that there was some continuous occupation within the site area during these 

periods (Benchley and Gregg 1975). The sample selected for this analysis is a Naples Stamped 

rim sherd (2019022) from Level 7 of Test Unit 3, within the midden context. Other ceramics 

from this level include Weaver ware, Havana ware with rocker stamped and punctate 

decorations, and a Steuben Punctated sherd. 
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Illinois Predictive Model Surveys 

During the 1970s, UWM was contracted to develop predictive models for archaeological 

site locations along rivers in Illinois. As part of the project, both the Upper Mississippi River 

Valley and the Rock River Drainage were subjected to pedestrian survey to identify previously 

unrecorded archaeological sites. Because these large-scale surveys identified over 100 sites 

during each project, little detail was provided for the individual sites, including Blythe (11HA40) 

and DeWitte/Liphardt Habitation (11RI57), that are included in the present analysis. For both 

surveys, archaeologists collaborated with local collectors who could provide information about 

parts of the survey area that contained greater concentrations of artifacts. Therefore, more 

specific details about the context of each site was not available and sample sherds have only site-

level provenience. 

Blythe (11HA40) – Upper Mississippi River 

In 1973, a twelve-week reconnaissance project was established within a region of 

“approximately forty river-miles” (Fowler and Dudzik 1973:76) within the Mississippi River 

floodplains and the valley slopes of the tributaries in Henderson and Hancock counties, Illinois 

(Fowler and Dudzik 1973). One of the sites identified in Hancock County was the Blythe site 

(11HA40) (Figure 2.7). 

According to the IAS site catalog, the site was first identified during the UWM survey 

after the archaeologists were directed by local collector Charles Harrison. At that time, the 

westernmost portion of the site was eroding out of a bank along the Mississippi river. Cultural 

material recovered from the site include lithic flakes and an expanding stem point, bone 

fragments, fire-cracked rock, and cordmarked, plain, and cord-impressed pottery. A Havana 
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Cordmarked sherd (sample 2019026) from the Blythe site (11HA40) was selected for this 

analysis. Cultural features were also identified and were located along the eroding bank; both 

features were interpreted as garbage pits (IIAPS). 
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Figure 2.7 Location of the Blythe site in Hancock Co., Illinois. 
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DeWitte/Liphardt Habitation (11RI57) – Rock River 

In 1977, the UWM ARL was contracted by the Illinois Department of Conservation to 

conduct pedestrian survey in the Rock River drainage (Benchley and Billeck 1977). The survey 

area was constrained to the “mouth of the Green River to the south and Hillsdale, Illinois to the 

north” (Benchley and Billeck 1977:1). The DeWitte/Liphardt Habitation site (11RI57) was one 

of the sites surveyed for this project in Rock Island county (Figure 2.8). 

According to the IAS site catalog, the site was initially identified and mapped by 

Newman and Elliott in 1933. It is located on a long sand ridge approximately 200 feet west of 

the Rock River, abutting a slough on the north end. Previously documented artifacts recovered 

from the site include lithic flakes and projectile points, and cordmarked, punctate decorated and 

incised pottery sherds. The earlier catalog sheet notes that “large quantities of mussel shell, 

animal bone, and fire-cracked rock are plowed up” annually. The site is attributed to Early, 

Middle, and Late Woodland occupations (IIAPS). During the 1977 survey, a local collector, Mr. 

Webb, allowed UWM archaeologists to inspect his collection from the site, and it was noted that 

he gave several sherds to UWM. A Hummel Stamped sherd (sample 2019027) from the 

DeWitte/Liphardt Habitation site (11RI57) was selected for this analysis. 
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Figure 2.8 Location of the DeWitte/Liphardt Habitation site in Rock Island Co., Illinois. 
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Northeastern Illinois 

Kautz (11DU46/1) 

The Kautz site is located in DuPage County in northeastern Illinois (Figure 2.9). The site 

is located on a knoll above the floodplain, approximately 200 yards west of the West Branch of 

the DuPage River (Geraci 2016). It was originally identified by Joseph T. Kautz, the landowner 

who had collected artifacts from his farm (Geraci 2016:41). In the 1950s, archaeologists were 

made aware of the site, possibly while conducting a survey of sites along the DuPage River. 

Sanford Gates, David Wenner and Hank Rodemaker contacted the Kautz family to document the 

site (Gates 1983; Geraci 2016). It is suspected that during this time the pig pen area of the site, 

where “the Kautz’s had collected points” was assigned the 11DU5 site number (Geraci 2016; 

Wenner 1960:1-2). David Wenner and a group of volunteers including students from the 

University of Chicago and family members of Gates and Rodemaker returned to the site in 1958 

after the landowner dug two small areas about a foot deep and found additional archaeological 

material in a separate, uncultivated area of the Kautz’s farm (Geraci 2016; Wenner 1960). These 

artifacts included “several dozen large Hopewell sherds and rims” (Wenner 1960:2). The 

archaeologists investigated the two small areas and recovered bone, Late Woodland pottery, and 

a Middle Woodland sherd. Wenner (1960:2) also described the pottery recovered by the 

landowner as being large for the area and having “dentate, zone dentate, beveled rims, notched 

lips (interior)” decorations. 
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Figure 2.9 Location of the Kautz site in DuPage Co., Illinois. 



 38  

Due to the presence of Hopewellian artifacts at the site, Wenner conducted excavations in 

November of 1958. Wenner assigned the site number 11DU46 to track the site and the material 

excavated there. At this time, no formal database of Illinois archaeological sites existed, so the 

site was not formally recorded until after the excavations. When the IAS was established, the site 

was cataloged as part of a statewide database, and the site was assigned number 11DU1 (Geraci 

2016). Excavations were led by Wenner and a crew of volunteers and continued until at least 

July 1960, when the excavation notes stop. During this time, the excavations were organized into 

two separate units. Fifty 5-x-5-foot squares and five 1-x-5-foot squares were excavated in Unit 1 

and six 5-x-5-foot squares were excavated from Unit 2. The excavated squares were removed in 

two stratigraphic levels. The upper level (Level I) was a dark black humus (buried A-horizon) 

that extended approximately six to eight inches below the sod layer (7-10 inches below the 

surface). Below this was a transitional dark grey clay horizon with gravel-sized rocks (Level II) 

above the original brownish-yellow clay and gravel (Bt Horizon) (Geraci 2016:43; Schenian 

1983; Wenner 1960). 

Artifacts recovered from the site include chipped stone tools, debitage, ceramic sherds, 

rough rock, faunal material, as well as some historic material (Geraci 2016; Schenian 1983; 

Wenner 1960). A single sherd of Havana Zoned (sample 2019023) from the Kautz site was 

selected for the thin section analysis. The sherd likely was recovered from excavation square 0E 

15N but original documentation for this square could not be located with the other paperwork 

that is currently housed in the UWM ARL Archives facility (Accession# 1960.2, Object ID# 

1960.2.7). Nonetheless, it is likely that the sampled sherd came from the 0E 15N square in Unit 1 

based on the artifact label (I:0E 15N/I). Maps detailing the distribution of artifacts within each 
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square suggest that artifacts recovered from Square 0E 15N included 18 prehistoric ceramics, 27 

lithics, 6 bones, as well as 8 pieces of historic glass. 

Ceramic Petrography 

Petrography is a specialized technique initially developed by the geological sciences to 

estimate the mineral composition of a rock. To identify this composition, rock samples are sliced 

into thin sections that are affixed to glass microscope slides. Slides are then viewed using a 

variety of microscopy techniques that allow identification of the mineral constituents of a 

sample. These thin cross-sections of the samples provide an “unbiased sample of the composition 

of the rectangular prism from which it is cut” (Chayes 1956). By counting the minerals that make 

up the sample and calculating the percentage of each mineral against the volume of the rock or 

the percentage of individual grains, an analyst can determine the overall composition of the rock 

from which the thin section is taken (Chayes 1956; Stoltman 1989). The percentages from the 

thin section can then be extrapolated to determine these percentages across the whole rock. 

Archaeologists have adapted the method used by geologists to analyze the composition of 

archaeological ceramics. Riederer (2004) identifies three types of information that can be gained 

from conducting thin section analysis. First, the process provides precise and detailed 

information on the mineralogical composition of the temper and natural inclusions in the paste; 

second, it allows the calculation of accurate percentages of temper and inclusions in the paste, as 

well as size distribution; and third, it can be used to estimate baking temperature if the minerals 

have been transformed at high temperatures. 

In Middle Woodland contexts, the trade of exotic materials of the Hopewell Interaction 

Sphere are often studied due to the specific locations of raw material origin. For cultural 
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materials like pottery, the same level of research has not been emphasized. James Stoltman’s 

work is an exception (Stoltman 2015; Stoltman and Mainfort 2002). However, this type of 

research can be useful to understand exchange within a particular region (Fie 2008). 

Archaeologists can use petrographic analysis to look at the more localized cultural contexts and 

identify variations between the recipes of ceramic production that may be characteristic of 

certain groups in a particular region. Through the identification of minerals, petrographic 

analysis can be used to identify the physical movement of pottery between sites or regions. If 

transportation occurs, it is expected that the pottery at one site would contain the same minerals 

as another site (Chivis 2016; Bishop et al. 1982; Schneider 2015). 

The local geology in a region is often important to interpret petrographic analyses. In 

southeast Wisconsin and northeast Illinois, the bedrock geology is primarily made up of 

sedimentary rocks from the Silurian and Ordovician periods of the Paleozoic Era. These may 

include dolomites, shales, some limestone and some sandstone (Wisconsin Department of 

Natural Resources 2011). In the northwest region of Illinois, the Pennsylvanian, Mississippian, 

Silurian, and Ordovician periods of the Paleozoic Era are predominately represented by 

dolomites and limestone, with some Lower Ordovician sandstone also present (Illinois State 

Geological Survey 2005). The bedrock geology of a region may indicate what types of rocks 

were available as tempering agents. 
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CHAPTER 3: METHODS 

Introduction 

This thesis examines the variability in ceramic pastes from Middle Woodland sites in 

Wisconsin and Illinois to identify possible patterns in ceramic production. This chapter discusses 

the methods used to select the samples used in the analysis and collect the initial attribute-based 

information of the samples; conduct petrographic analysis using thin sections to identify temper 

and paste characterization, grain size and texture, and minerals in the samples; use ternary 

diagrams to analyze the data collected for this thesis; and conduct statistical analysis based on 

the compositional data. 

While this study uses a limited sample, the methods described here can be used for 

further analysis of Middle Woodland vessels to build a comparative database of Waukesha phase 

and Havana Hopewell ceramic pastes. The attribute-based ceramic analysis of the selected sherds 

identifies temper and paste characterization, grain size and texture, and paste core cross-sections. 

The analysis also reports a variety of metric and morphological data as detailed below. All data 

from this analysis has been compiled in a digital database for ease of future access. The maps 

throughout this thesis were created using ArcGIS software by Esri (Esri 2020). 

Thin sections of sherds from selected sites were prepared by National Petrographic 

Service, Inc. at a cost of $23.50 per sample. This cost includes slide preparation, impregnation of 

samples with epoxy, and a slide cover. The samples were analyzed for paste composition and 

identification of minerals by the author. Collections from all the included sites are housed at the 

UWM ARL and permission to conduct the destructive analysis was granted by the ARL. Upon 

completion of this thesis project, ceramic thin sections will be accessioned into the ARL’s 
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permanent collections. Data sets and thin sections will be made available for additional analyses 

by other researchers. 

Sample Selection 

The initial selection strategy was aimed at collecting a robust sample of Waukesha Phase 

pottery types from multiple sites in southeast Wisconsin. The sample was later expanded to 

include examples of Havana Hopewell pottery from multiple sites in northwest Illinois. A single 

sample from northeast Illinois was also included in the analysis. Sample selection was 

constrained by the need to select sherds that were available in the UWM ARL collections and for 

which permission to conduct destructive analysis was granted. 

Upon selection of the samples, an inventory was created in a Microsoft Access database 

to track details for each of the samples. Ceramic attribute and archaeological provenience data 

were collected for each sample and added to the inventory. Each sample was assigned a unique 

sample number which included the year that the sample was selected and a sequential number, 

the sample numbers ranged from 2019001 to 2019027. Identification information included site 

name, site number, lot number, artifact number, unit number, vessel number and Research 

Growth Initiative (RGI) sample number. Not all samples had the same provenience-based 

information, but the inventory was completed to the extent that it could be for each sample (for 

example, not all samples had lot numbers and only those sherds formerly analyzed as part of an 

RGI grant awarded to John Richards and Robert Jeske were identified by those numbers). The 

attribute-based information included documenting the sherd type (rim, body, etc.), vessel form, 

rim stance, rim form, rim width, lip form, surface treatment, temper, paste core, decoration style, 

decoration location, and pottery type. Metric data recorded included orifice diameter, wall 
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thickness, rim width, and weight. Each sherd in this study represents an individual vessel, 

diagnostic of the Middle Woodland period in northern Illinois and southeast Wisconsin. 

Attribute data were collected before submitting sherds to be processed into thin sections 

as this is a destructive process that can destroy part or all of the sherd. The morphological 

analysis compares the attribute data from the samples among the selected sites. Primarily, the 

samples are rim sherds of diagnostic Middle Woodland vessels. In some cases, like three of the 

Finch site samples, body sherds definitely associated with an identified vessel were used to 

reduce destructive processes on rim sherds. Additionally, two body sherds were selected as 

samples from the Sloan site due to the diagnostic decorative style on the exterior of the samples. 

Attribute Data Collection 

Vessel morphology was difficult to determine for some samples because the only extant 

sherd was the piece used for this analysis, and at times the sherds were relatively small. Rim 

sherds in the sample are almost all jar forms but one sample (2019001) from the Peterson site 

comes from a Hopewell-like incised bowl. 

Rim profiles were drawn for each sample and orifice diameters were estimated using a 

graduated circle chart. The diameter is estimated by comparing the rim curvature to the 

concentric circles on the chart. The rim sherds can provide the most information regarding vessel 

shape and size.  

Rim stance is the orientation of the rim to the horizontal plane of the orifice. Direct, 

slightly everted, slightly inverted, everted, and indeterminate rim stances were identified in this 

analysis. Direct rims have a wall thickness that is similar to the thickness of the vessel wall 
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below the neck and follow the contour of the vessel side (Shepard 1956:246). Following Haas 

(2019b), everted and slightly everted rims have an orientation exceeding 90 degrees, and slightly 

inverted stances have an orientation less than 90 degrees. Rims that were too small to determine 

the rim stance were labeled as indeterminate. 

The rim shape classifies changes in wall thickness from the neck to lip of a vessel. Rim 

shapes identified in this analysis include folded, pinched, and unmodified. Folded rims have a 

visible crease on the exterior rim margin where the clay was folded over. Pinched rims become 

less thick towards the lip. Unmodified rims are the same thickness from the neck to the lip (Haas 

2019b). The lip of the vessels also varied between flattened, beveled, and rounded. Flattened lips 

“create a planar surface along the outer rim margin on a direct rim” and “separates the outer and 

inner rim margins” (Haas 2019b; Richards 1992). Rounded lips have a gentle convex separation 

between the exterior and interior surface. Beveled lips create a sloped flattening of the rim 

towards the exterior or interior of the vessel (Haas 2019b). 

The firing and cooling atmospheres of production can be determined by the coloring of 

vessel paste cores (Rice 1987; Rye 1981; Sinopoli 1991). Generally, dark-colored cores represent 

a reduced atmosphere where airflow around the vessel is restricted, and light-colored cores 

represent an oxidized atmosphere where the airflow is unrestricted. Vessels showed some 

variability, including oxidized interior surface and reduced exterior surface, reduced interior 

surface and oxidized exterior surface, and oxidized exterior surface and reduced core. Some 

vessels had uneven core coloring and could not be classified as one of the standard patterns. 

Temper is the aplastic material added to natural clay that modifies the properties of the 

clay paste during production (Rice 1987:406). The samples in this analysis all contain grit, or 
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crushed rock, tempering. Two samples contain a mixture of both grit and grog temper (2019018 

and 2019020). Granite, limestone, and chert were identified in the ceramics. The minerals in both 

the clay matrix and the grit temper were identified during the petrographic analysis. 

The surface finish of both interior and exterior vessel walls was recorded. Smoothed, 

cordmarked, and smoothed-over cordmarked surface treatments were identified in this collection 

of ceramics. 

Decorative elements were recorded and measured using digital calipers to determine 

width and length, or diameter of circular decorative elements, when possible. Types of 

decoration include punctates, bosses, incised lines, cord-wrapped stick impressions, cord 

impressions, and stamping (linear, rocker, dentate, cord-wrapped stick) varieties. 

Additional metric data were also collected for each sample. Because of the destructive 

process of thin sectioning, the metric data were collected before the samples were sent to be 

processed. The weight in grams of samples was recorded for each sample using a digital scale. 

The thickness of the samples was recorded at both the rim and the wall of the samples. These 

measurements were collected using a digital calipers and averages were calculated taking the 

mean of two measurements on either side of the sherd sample. Rim thickness was measured at 

opposite sides at the top of the rims. Wall thickness was generally measured at the furthest points 

from the rim, where the sample was unexfoliated, on both sides of sample. 

Petrographic Analysis 

Ceramic thin section petrography was used to collect data on ceramic paste composition. 

The technique allowed identification of the mineral constituents of the paste as well as estimates 
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of the percentage of sand, silt, and clay present. The methods used in this research are based on 

the work of Stoltman (1989, 1991, 2001, 2015) as well as Schneider (2015). The sherds from 

each site were processed into ceramic thin sections, in which a small piece was cut from the 

original sherd, attached to a microscope slide, and ground to a thickness of 33 microns (National 

Petrographic Service, Inc. 2018) The process of point counting and mineral identification was 

conducted under the direct supervision of Dr. Seth Schneider who has utilized the technique on a 

variety of Illinois and Wisconsin pottery types. 

Prior to sending samples to National Petrographic, each sherd was given an arbitrary 

identification number (2019001 through 2019027) and sherds were then placed in individual 

bags with the corresponding numbers. These numbers were used by National Petrographic to 

track samples. Once a sample was adhered to a microscope slide, the corresponding sample 

number was engraved into the glass.  

After the samples were processed into thin sections and placed on microscopic slides, a 

polarized OMAX Trinocular Infinity Polarizing Microscope M838PL Series with a measuring 

eyepiece was used to observe the paste and mineral inclusions for each sample. To conduct the 

analysis, a 1 mm interval grid was used to collect at least 100 points from each sample. At every 

1 mm point, the grain directly below the eyepiece crosshair was identified for that location. 

These points were recorded under several categories, including matrix, silt, sand, grit temper, 

grog temper, or voids. Any clay minerals (<0.002 mm) that were too small to be identified or 

measured were classified as matrix. Silt particles (0.002-0.0625 mm) were visible but too small 

to be classified as sand or temper. The sand, grit and grog tempers were further divided into size 

grades based on grain size scales. These sizes included fine (0.0625-0.24 mm), medium (0.25-

0.49 mm), coarse (0.5-0.99 mm), very coarse (1.0-1.99 mm), and gravel (≥2.0 mm). In general, 
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sand grains were identified as natural inclusions and differentiated from temper because of the 

relatively round shape and single mineral make-up, while grit temper grains were generally more 

angular in shape and contained multiple minerals (Chivis 2016; Druc 2015; Stoltman 1989, 

1991, 2001, 2011; Schneider 2015). Fowler (1955) identifies crushed rock as the tempering agent 

in Havana ware and crushed limestone and other crushed rock in Hopewell ware. Minerals can 

be identified based on their distinct colors, relief, extinction of light in cross-polarized light, and 

interference signals produced by their crystalline structure (Perkins 1998; Schneider 2015:265-

267).  

Each sample was counted individually, beginning at one edge of the sample and 

traversing back and forth across the x-axis stopping at one-millimeter intervals to observe which 

part of the paste was located below the crosshair on the microscope reticle. For all samples, the 

points were collected with the microscope at the 10x power. To identify specific minerals, or to 

calculate the size of natural or human added inclusions the objective was switched to the 

different magnifications (4x, 20x, etc.) depending on specific cases. It was necessary to keep 

track of which objective was being used to calculate the size of the inclusions, as the calculation 

varied depending on the power. In total, a minimum of 100 points were counted for each sample, 

not including voids. If a sample did not yield at least 100 counts in the first round, the thin 

section was rotated 180 degrees and counted a second time. Based on the size of the samples, 

more than 100 points were often counted, as the points were tracked until the entire plane of the 

cross-section was sampled. The use of this systematic sampling method was employed to 

guarantee that an unbiased and representative sample of ceramic paste was calculated for each 

sherd (Chayes 1954; Stoltman 1989, 1991; Schneider 2015). 
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A chart was used to keep track of each point counted during this process. Anything that 

was too small to be measured was marked as matrix. If an inclusion was silt sized (0.002-0.0625 

mm), it was marked as such. Due to the small size of silt-grain particles, the minerals at this size 

were not always identifiable. If the minerals could be identified on any silt size particles, they 

were tracked on a mineral identification chart. If an inclusion was larger than silt size, its 

coarseness was tracked based on the size, and whether it was naturally occurring or added as grit 

or grog. Naturally occurring inclusions were marked as sand particles and were identified as 

single-mineral inclusions with rounded edges. Added grit inclusions often showed characteristics 

of multiple minerals and more angular edges. This is an indication that that the grit inclusions 

were derived from crushed pieces of stone or conglomerate. Additionally, two samples (2019018 

and 2019020) contained grog inclusions. In both of these samples the grog was in the fine size 

category and marked as added temper. 

Ternary Diagram 

Using the point data, proportions of each sample composition were calculated based on 

the presence of clay, silt, sand and temper. Using these proportions, the body, “the bulk 

composition of a ceramic vessel, including clays, larger natural mineral inclusions in the silt, 

sand, and gravel size ranges, and temper”, (Stoltman 1991:109) and paste, “the aggregate of 

natural minerals, i.e., clays and larger mineral inclusions, to which temper was later added to 

produce the body from which a vessel was made” (Stoltman 1991:109-110), were distinguished 

for each vessel. The point counting data for both the body and paste were documented in tabular 

form. To more easily interpret the data, the proportions were entered into an Excel table and 

incorporated into a ternary diagram using Todd Thompson Software’s TriPlot (v 4.1.2) (obtained 

from http://mypage.iu.edu/~tthomps/programs/html/tnttriplot.htm). 
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The ternary diagram visually displays the amount of variation between samples. The 

poles of the body diagram are labeled: matrix (both clay and silt), temper, and sand (all natural 

mineral inclusions larger than silt). This diagram is used to visually represent the “relative 

volumetric proportions of all mineral inclusions in each vessel, with particular emphasis on 

temper” (Stoltman 1991:111). The paste diagram poles are labeled as: clay, silt, and sand. The 

paste diagram is used to “provide a visual representation of the relative volumetric proportions of 

the silt, sand, and clay in the untampered raw materials from which each vessel was 

manufactured” (Stoltman 1991:111). For both body and paste diagrams, the voids that were 

counted during the analysis were not included (Stoltman 1991; Schneider 2015). Examples of 

ternary diagrams displaying paste and body composition data are provided in Figures 3.1 and 

3.2. 

The ternary diagrams can be used to visualize any clustering in the samples based on 

various factors. The diagrams can display the ratios of both paste and body across all sites in the 

analysis, based on location, either separating Illinois from Wisconsin sites, or further separating 

the sites along the Mississippi River from the more eastern Illinois sites. The diagrams can 

display the comparisons between samples of specific decorative and diagnostic styles, including 

Waukesha types, Havana wares, Hopewell-related wares, and unclassified Havana/Middle 

Woodland. 
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Figure 3.1 Example ternary diagram of ceramic paste composition data (after Schneider 
2015, Figure 6.10). 
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Figure 3.2 Example ternary diagram of ceramic body composition data (after Schneider 
2015, Figure 6.6). 
 

In addition to tracking if inclusions are natural or human-added and the size grade of each 

inclusion, mineral and rock types were also identified and inventoried. This inventory was used 

to “identify those minerals whose presence, absence, or relative abundance would seem to 

warrant special consideration” (Stoltman 1989:149) such as possibly diagnostic inclusions in 

certain ceramic pastes. The qualitative identification of minerals in ceramics is used in 

conjunction with the quantitative proportions of body and paste to more accurately compare 

items between archaeological assemblages, and to identify the type of temper, rather than just the 

size grade and presence of temper (Stoltman 1989, 1991). 
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Statistical Analysis 

Using the R (v 3.6.3) statistical software program (The R Foundation for Statistical 

Computing 2020), the point counting data were subjected to simple statistical regression 

analysis. For the paste compositional analysis, the proportions of clay, silt, and sand were 

subjected to Analysis of Variance (ANOVA) statistical tests to determine the amount of variation 

in the natural pastes between sites. For the body compositional analysis, the proportions of clay, 

sand, and temper were subjected to ANOVA statistical tests to determine the amount of variation 

in the recipes between sites. An isometric log-ratio transformation was used to open the closed 

composition data and move it into Euclidean space, and the regression analysis was used to see if 

the compositions can be predicted by sites. The plotout function creates isoproportion lines and 

90% and 99% confidence intervals for each site. The confidence intervals are represented by 

ellipses around each site point. The ellipses cross the isoproportion line that identifies the 

relationship between each compositional variable in the ternary diagram. Ellipses that cross the 

isoproportion lines indicate no significant difference in the composition between the sites. 

Ellipses that do not cross the isoproportion lines and plot apart indicate significant difference in 

composition between sites. (Seth Schneider 2020, personal communication). This form of 

analysis was chosen as a supplement to the ternary diagrams compiled using the TriPlot 

software. The analysis was applied to refine the compositional differences observed in the 

petrographic data tables and ternary diagrams from the point counting. 
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CHAPTER 4: ANALYSIS AND RESULTS 

Introduction 

Table 4.1 lists basic morphological and metric data for the sample assemblage. 

Additional attribute data may be found in Appendix A. 
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Morphological and Metric Data 

Sample 1 

Sample 1 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a vessel that compares favorably to the Lower Illinois Valley type, Hopewell Incised. The 

type was defined by Griffin (1952) and references the similar Ohio Valley types. Bowls do occur 

in Havana Hopewell assemblages but are relatively rare. The sherd represents about 5% of the 

orifice of a small bowl with a 20 cm orifice diameter and an average wall thickness of 5.8 mm. 

The vessel has a folded rim with a slightly inverted stance and flattened lip (Figure 4.1). Exterior 

and interior surfaces are smoothed. The body is grit-tempered with a uniformly dark paste core. 

Decoration is restricted to the exterior rim margin and consists of parallel, horizontal lines placed 

inferior to the vessel orifice. 

 

 
 

Figure 4.1 Sample 1, Hopewell Incised bowl; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 
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Sample 2 

Sample 2 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Steuben Punctated vessel. Griffin’s (1952) original description of Steuben Punctated 

vessels suggested that they are most common in the central and northern Illinois Valley. 

However, Wolforth (1995) more recently has shown that Steuben Punctated ceramics are found 

in very low frequency in the Central Illinois River Valley. He argues that a “Steuben Microstyle 

zone” exists in the upper Illinois and Des Plaines drainages within northern Illinois and southern 

Wisconsin. Wolforth suggests this distribution reflects a late Middle Woodland, Havana-related 

occupation he terms the Steuben phase. The Sample 2 sherd represents about 5% of the orifice of 

a jar with an 18 cm orifice diameter and an average wall thickness of 6.3 mm. The vessel has a 

folded rim with a slightly everted stance and beveled lip (Figure 4.2). The exterior surface is 

smoothed-over cordmarked and interior surface is smoothed. The paste is grit tempered with an 

oxidized exterior margin and reduced interior margin paste core. Decoration is restricted to the 

exterior rim margin and consists of two rows of punctates placed inferior to the vessel orifice. 
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Figure 4.2 Sample 2, Steuben Punctated jar; left, rim profile shown with interior to right; 
center, sherd exterior; right, sherd interior. 

 

Sample 3 

Sample 3 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Steuben Punctated vessel. The sherd represents about 2.5% of the orifice of a jar with a 

20 cm orifice diameter and an average wall thickness of 7.4 mm. The vessel has a folded rim 

with a direct stance and beveled lip (Figure 4.3). The exterior and interior surfaces are smoothed. 

The paste is grit tempered with an uneven paste core. Decoration is restricted to the exterior rim 

margin and consists of two rows of punctates placed inferior to the vessel orifice. 
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Figure 4.3 Sample 3, Steuben Punctated jar; left, rim profile shown with interior to right; 
center, sherd exterior; right, sherd interior. 

 

Sample 4 

Sample 4 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Steuben Punctated vessel. The sherd represents about 2.5% of the orifice of a jar with a 

30 cm orifice diameter and average wall thickness of 7.4 mm. The vessel has an unmodified rim 

with a slightly everted rim stance and rounded lip (Figure 4.4). The exterior surface is smoothed-

over cordmarked and the interior surface is smoothed. The paste is grit tempered with a reduced 

exterior and oxidized interior paste core. Decoration is restricted to the exterior rim margin and 

consists of two rows of punctates placed inferior to the vessel orifice. 
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Figure 4.4 Sample 4, Steuben Punctated jar; left, rim profile shown with interior to right; 
center, sherd exterior; right, sherd interior. 

 

Sample 5 

Sample 5 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Shorewood Cord Roughened vessel (Baerreis 1952). Shorewood Cord Roughened is one 

of the pottery types classified by Salzer (n.d.).as Rock Ware. These types are considered 

diagnostic of the Waukesha Phase (Haas 2019b). The sherd represents about 5% of the orifice of 

a jar with a 20 cm orifice diameter and an average wall thickness of 7.6 mm. The vessel has a 

folded rim with a direct rim stance and flattened lip (Figure 4.5). The exterior surface is 

cordmarked and the interior surface is smoothed. The paste is grit tempered with an uneven paste 

core. The sample is perforated by a hole that goes through the vessel wall below the rim. 
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Figure 4.5 Sample 5, Shorewood Cord Roughened jar; left, rim profile shown with 
interior to right; center, sherd exterior; right, sherd interior. 

 

Sample 6 

Sample 6 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Kegonsa Stamped vessel (Baerreis 1952). Kegonsa Stamped is another diagnostic 

Waukesha Phase pottery type from the Rock Ware category (Salzer n.d.; Haas 2019b). The sherd 

represents about 7% of the orifice of a jar with a 40 cm orifice diameter and average wall 

thickness of 9.7 mm (Figure 4.6). The vessel has a folded rim with a slightly everted stance and 

rounded lip. The exterior surface is cordmarked and the interior surface is smoothed. The paste is 

grit tempered with an uneven paste core. The vessel lip is slightly notched transverse to the 

vessel orifice due to the application of a rounded dowel. 
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Figure 4.6 Sample 6, Kegonsa Stamped jar; left, rim profile shown with interior to right; 
center, sherd exterior; right, sherd interior. 

 

Sample 7 

Sample 7 was recovered from the Peterson site (47WK199). The sample is a rim sherd 

from a Steuben Punctated vessel. The sherd represents about 3% of the orifice of a jar with a 27 

cm orifice diameter and an average wall thickness of 5.7 mm. The vessel has a pinched rim with 

a direct stance and beveled lip (Figure 4.7). The exterior surface is poorly smoothed-over 

cordmarked and the interior surface is smoothed. The paste is grit tempered with a uniformly 

dark paste core. Decoration is restricted to the exterior rim margin and consists of a row of 

punctates placed inferior to the vessel orifice. 
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Figure 4.7 Sample 7, Steuben Punctated jar; left, rim profile shown with interior to right; 
center, sherd exterior; right, sherd interior. 

 

Sample 8 

Sample 8 is a body sherd from a Havana Zoned (Griffin 1952) vessel. The sherd exhibits 

incised lines that separate plain areas from decorated zones. According to Haas and Picard 

(2019) and Haas (2019b) this sample is part of a conoidal jar (not shown) recovered from the 

Finch site (47JE902). The body sherd was selected for analysis in order to preserve the 

associated rim sherd. The rim sherd represents about 4% of the 30 cm diameter orifice and has an 

average wall thickness of 9.9 mm. The vessel has an unmodified rim with a direct stance and 

flattened lip. The exterior surface is smoothed-over cordmarked and the interior surface is 

smoothed (Haas 2019b; Haas and Picard 2019). The paste is grit-tempered with an uneven paste 

core. The decoration on the exterior of the Sample 8 includes an incised line separating a zone of 

dentate stamps from an undecorated, smooth area (Figure 4.8). 
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Figure 4.8 Sample 8, Havana Zoned body sherd; left, sherd exterior; right, sherd interior. 
 

Sample 9 

Sample 9 was recovered from the Finch site (47JE902). The sample is a body sherd from 

a Naples Stamped vessel. The type is part of the Havana complex, decorated with cord-wrapped 

stick, dentate or ovoid stamps over a plain or cordmarked surface (Griffin 1952). The body sherd 

was selected for analysis in order to preserve the associated rim sherd. The Sample 9 sherd is 

part of a conoidal jar (not shown) with an orifice diameter of 30 cm (about 2.5% of the vessel 

orifice is present) and an average wall thickness of 9.2 mm. The vessel has an unmodified rim 

with a slightly everted stance and flattened lip (Haas 2019b; Haas and Picard 2019). The paste is 

grit tempered and with an evenly oxidized paste core. The decoration on the exterior of the 

Sample 9 sherd includes cord-wrapped stick stamps over partially smoothed-over cordmarking, 

the interior surface is smooth (Figure 4.9). 
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Figure 4.9 Sample 9, Naples Stamped body sherd; left, sherd exterior; right, sherd 
interior. 

 

Sample 10 

Sample 10 was recovered from the Finch site (47JE902). The sample is a rim sherd from 

a Kegonsa Stamped vessel (Baerreis 1952). The sample represents about 10% of the orifice of a 

globular jar with a 20 cm orifice diameter and an average wall thickness of 8.6 mm. The vessel 

has an unmodified rim with a direct stance and rounded lip (Figure 4.10). The exterior surface is 

cordmarked and the interior surface is smooth. The paste is grit tempered with an uneven paste 

core. Decorations include exterior bosses on the rim, which appear as punctates on the interior, 

as well as tooled notches along the interior lip margin. 
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Figure 4.10 Sample 10, Kegonsa Stamped jar; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior (profile after Haas 2019b, Appendix D). 

 

Sample 11 

Sample 11 is a body sherd from a Naples Stamped vessel (Griffin 1952) recovered from 

the Finch site (47JE902). The body sherd (Figure 4.11) was selected for analysis in order to 

preserve the associated rim sherd. The sherd is part of a conoidal jar (not shown). About 10% of 

the 30 cm diameter orifice is present. Average wall thickness is 9.6 mm. The vessel has a folded 

rim with a direct stance and flattened lip (Haas 2019b; Haas and Picard 2019). The exterior 

surface of Sample 11 is cordmarked and the interior surface is smoothed. The sherd is grit 

tempered with a uniformly oxidized paste core. Decoration includes linear stamps on the exterior 

surface. 
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Figure 4.11 Sample 11, Naples Stamped body sherd; left, sherd exterior; right, sherd 
interior. 

 

Sample 12 

Sample 12 is a rim sherd from a Shorewood Cord Roughened vessel recovered from the 

Finch site (47JE902). The sample represents <5% of the orifice of a conoidal jar with a 22 cm 

orifice diameter with an average wall thickness of 9.3 mm. The vessel has a folded rim with a 

direct stance and flattened lip (Figure 4.12). The exterior surface is cordmarked and the interior 

surface is smoothed. The paste is grit tempered with a uniformly dark paste core. The sample is 

undecorated. 
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Figure 4.12 Sample 12, Shorewood Cord Roughened jar; left, rim profile shown with 
interior to right; center, sherd exterior; right, sherd interior (profile after Haas 2019b, 
Appendix D). 

 

Sample 13 

Sample 13 is a rim sherd from a Hopewell-Related subconoidal jar recovered from the 

Finch site (47JE902). The Sample 13 sherd represents <5% of a 16 cm diameter vessel, but 

additional sherds from the same vessel represent approximately 20% of the orifice. The vessel 

has an average wall thickness of 6.9 mm (Haas 2019b; Haas and Picard 2019). The vessel has a 

folded rim with an everted stance and rounded lip. Exterior and interior surfaces are smoothed. 

The paste is grit-tempered with a uniformly oxidized paste core. Decoration on the vessel (not 

shown) includes trailed lines, where “the upper rim area features a triangle formed in four 
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parallel line” as well as “plain tool notching on the interior lip margin that extends across the lip 

surface to the front of the vessel” (Haas and Picard 2019:280) (Figure 4.13). 

 

 
 

Figure 4.13 Sample 13, Hopewell-related jar; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior (profile after Haas 2019b, Appendix D). 

 

Sample 14 

Sample 14 is a rim sherd from a vessel identified as Havana Plain (Griffin 1952). The 

sample was recovered from the Sloan site (11MC86). Havana Plain vessels have a smoothed 

surface that may be decorated with rim bosses. The Sample 14 sherd represents about 1% of the 

orifice of a jar with an approximate orifice diameter of 11 cm and average wall thickness of 6.7 

mm. The vessel has an unmodified rim with an indeterminate stance and rounded lip (Figure 

4.14). Exterior and interior surfaces are smoothed. The interior surface is slipped black as is 

evident in the thin section image shown in Figure 4.15. The paste is grit tempered with a 

uniformly dark paste core. Decoration includes a boss on the exterior rim margin. 
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Figure 4.14 Sample 14, Havana Plain jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

 
 

Figure 4.15 Thin section image of black interior slip on Havana Plain sample 14 (Cross-
Polarized Light, 4X).  

 

Sample 15 

Sample 15 is a sherd that compares favorably to the Havana Ware type, Naples Stamped 

(Griffin 1952). The sample was recovered from the Sloan site (11MC86). The sherd represents 
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about 5% of the orifice of a jar with a 30 cm orifice diameter and an average wall thickness of 

12.5 mm. The vessel has an unmodified rim with a direct stance and beveled interior rim margin 

(Figure 4.16). Exterior and interior surfaces are smoothed. The paste is tempered with a 

combination of limestone, grit, and grog with an oxidized exterior surface and a reduced core. 

Decoration includes cord-wrapped stick stamping on the exterior rim margin directly below the 

lip, and hemispherical bosses that appear to encircle the vessel orifice, located approximately 3 

cm below the vessel lip. The bosses were produced by impressing a tool from the interior of the 

vessel, thus leaving a deep circular punctate on the interior rim margin. A single cord-impressed 

line is present also, extending from the vessel lip on the exterior rim margin to intersect with the 

horizontal row of bosses. 

 
 

Figure 4.16 Sample 15, Naples Stamped jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 
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Sample 16 

Sample 16 is a rim sherd from a Havana Plain vessel (Griffin 1952). The sample was 

recovered from the Sloan site (11MC86). The sherd represents about 3.5% of the orifice of a jar 

with a 17 cm orifice diameter and an average wall thickness of 6.7 mm. The vessel has a folded 

rim with an indeterminate stance and beveled lip (Figure 4.17). Exterior and interior surfaces are 

smoothed. The paste is grit-tempered with a uniformly dark paste core. Decoration includes a 

boss on the exterior rim margin. 

 

 
 

Figure 4.17 Sample 16, Havana Plain jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

Sample 17 

Sample 17 is a rim sherd from a vessel favorable to a Hopewell Ware vessel (Griffin 

1952). The sample was recovered from the Sloan site (11MC86). Crosshatching on the exterior 

rim margin directly below the lip is typically distinctive of the Hopewell style defined by Griffin 
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(1952). The sherd represents about 3.5% of the orifice of a jar with a 25 cm orifice diameter and 

an average wall thickness of 5.3 mm. The vessel has an unmodified rim with a slightly inverted 

stance and flattened lip (Figure 4.18). The exterior surface is smoothed-over cordmarked and the 

interior surface is smoothed. The paste is grit tempered with a uniformly dark paste core. 

Decoration is restricted to the exterior rim margin and consists of finely cross-hatched incised 

lines placed inferior to the vessel orifice. Unlike other Hopewell rims, the Sample 17 sherd does 

not bear punctates directly below the cross-hatched decoration. 

 

 
 

Figure 4.18 Sample 17, Hopewell Ware jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

Sample 18 

Sample 18 is body sherd from a Hopewell Zoned Stamped vessel (Griffin 1952). The 

sample was recovered from the Sloan site (11MC86). The type is defined by curvilinear lines 

that separate areas of stamp impressions from smoothed areas (Griffin 1952). The Sample 18 
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sherd has an average wall thickness of 6 mm. The vessel form and rim details could not be 

determined because the body sherd was the only known piece of the vessel recovered. Exterior 

and interior surfaces are smoothed. The paste is grit, limestone, and grog-tempered with a 

uniformly dark paste core. Decoration includes an incised horizontal line separating a horizontal 

band of rocker-stamping from a smoothed surface area below (Figure 4.19). 

 

 
 

Figure 4.19 Sample 18, Hopewell Zoned Stamped body sherd; left, sherd exterior; right, 
sherd interior. 

 

Sample 19 

Sample 19 is a rim sherd from an unclassified Havana Hopewell vessel (Griffin 1952). 

The sample was recovered from the Sloan site (11MC86). The sample was identified as 

reminiscent of Hopewell pottery due to the row of punctates separating the diagonally incised 

upper rim band (Benchley et al. 1979). The sherd represents about 6% of the orifice of a jar with 
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a 35 cm orifice diameter and an average wall thickness of 8.1 mm. The vessel has an unmodified 

rim with a slightly everted stance and beveled lip (Figure 4.20). The exterior surface is 

smoothed-over cordmarked and the interior is smoothed. The paste is grit-tempered with an 

uneven paste core. Decoration includes a band of diagonally oriented incised lines on the exterior 

rim margin directly below the vessel lip. Four vertical, partially smoothed over cord-impressions 

extend from the band of incising to about 4 cm below the vessel lip. A horizontal band of 

punctates encircle the vessel directly below the band of incising and a zone of dentate stamping 

is present below the punctates. A circular perforation, drilled from the vessel exterior, is present 

within the zone of dentate stamping. The vessel interior is undecorated. 

 

 
 

Figure 4.20 Sample 19, Unclassified Havana Ware jar rim; left, rim profile shown with 
interior to right; center, sherd exterior; right, sherd interior. 

 

Sample 20 

Sample 20 is a rim sherd from a Naples Stamped vessel (Griffin 1952). The sample was 

recovered from the Sloan site (11MC86). The sherd represents about 3% of the orifice of a jar 

with a 20 cm orifice diameter and an average wall thickness of 9.3 mm. The vessel has an 
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unmodified rim with a slightly inverted stance and beveled lip (Figure 4.21). The exterior surface 

is cordmarked and the interior surface is smoothed. The paste is grit and grog-tempered with 

oxidized exterior margins and a reduced paste core. Decoration includes diagonal cord-wrapped 

stick stamping on the exterior rim margin placed inferior to the vessel orifice. 

 

 
 

Figure 4.21 Sample 20, Naples Stamped jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

Sample 21 

Sample 21 is a body sherd from a Havana Zoned vessel (Griffin 1952). The sample was 

recovered from the Sloan site (11MC86). The average wall thickness is 8.7 mm. The vessel form 

and rim details could not be determined because the body sherd was the only piece of the vessel 

recovered. The interior and exterior surfaces are smoothed. The sherd exhibits exterior 
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decorations including an incised groove separating a zone of dentate stamping from a smoothed 

zone (Figure 4.22).  

 

 
 

Figure 4.22 Sample 21, Hopewell Zoned Stamped body sherd; left, sherd exterior; right, 
sherd interior. 

 

Sample 22 

Sample 22 is a rim sherd from a Naples Stamped vessel (Griffin 1952). The sample was 

recovered from the Albany Village site (11WT1). The sherd represents about 4% of a jar with a 

12 cm orifice diameter and an average wall thickness of 7.3 mm. The vessel has an unmodified 

rim with a slightly inverted stance and beveled lip (Figure 4.23). Exterior and interior surfaces 

are smoothed. The paste is grit-tempered with a uniformly dark paste core. Decorations include 

dentate stamping on the exterior rim margin, a row of bosses below the dentate stamping, and a 

single row of dentate stamps below the bosses. 
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Figure 4.23 Sample 22, Naples Stamped jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

Sample 23 

Sample 23 is a rim sherd from a Havana Zoned vessel (Griffin 1952). The sample was 

recovered from the Kautz site (11DU46). The sherd represents about 7% of the orifice of a jar 

with a 21 cm orifice diameter and an average wall thickness of 9.9 mm. The vessel has an 

unmodified rim with a direct stance and flattened lip (Figure 4.24). Exterior and interior surfaces 

are smoothed. The paste is grit tempered with a uniformly dark paste core. Decoration includes a 

horizontal band of parallel, diagonally-oriented lines of dentate stamping, extending about 4 cm 

from just below the vessel lip on the exterior rim margin. Below the band of dentates is a 

smoothed zone bordered by a horizontal incised line. Additional dentate stamping is present 

below this line. The vessel interior is undecorated except for cord-wrapped stick stamping on the 

interior rim margin. 
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Figure 4.24 Sample 23, Havana Zoned jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 
 

Sample 24 

Sample 24 is a rim sherd from a vessel that compares favorably to the Havana Ware type, 

Havana Cordmarked (Baerreis 1952; Griffin 1952:104; Jeske and Kaufmann 2000:85). The 

sample was recovered from the Alberts site (47JE887). The sherd represents about 9% of the 

orifice of a jar with a 17 cm orifice diameter and an average wall thickness of 7.8 mm. The 

vessel has an unmodified rim with a slightly everted stance and beveled lip (Figure 4.25). The 

exterior is cordmarked and the interior is partially exfoliated. The paste is grit-tempered with a 

uniformly oxidized paste core. Decoration includes a boss on the exterior rim margin as well as 

cord-wrapped stick stamping on the interior lip margin. 
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Figure 4.25 Sample 24, Havana Cordmarked jar rim; left, rim profile shown with interior 
to right; center, sherd exterior; right, sherd interior. 

 

Sample 25 

Sample 25 is a rim sherd from a Shorewood Cord Roughened vessel (Baerreis 1952). The 

sample was recovered from the Crab Apple Point site (47JE93). The sherd represents about 3% 

of the orifice of a jar with an 18 cm orifice diameter and an average wall thickness of 8.8 mm. 

The vessel has an unmodified rim with a direct stance and rounded lip (Figure 4.26). The exterior 

surface is cordmarked and the interior surface is smoothed. The paste is grit-tempered with an 

uneven paste core. A boss below the rim is the only decorative element on the sherd. 
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Figure 4.26 Sample 25, Shorewood Cord Roughened jar rim; left, rim profile shown with 
interior to right; center, sherd exterior; right, sherd interior. 

 

Sample 26 

Sample 26 is a rim sherd from a Havana Cordmarked vessel (Griffin 1952). The sample 

was recovered from the Blythe site (11HA40). The Havana Cordmarked style is more commonly 

recovered from sites in the Lower Illinois Valley and Mississippi Valley, while Havana Plain 

styles are more common in the central Illinois Valley (Griffin 1952). The sherd represents about 

8% of the orifice of a jar with a 25 cm orifice diameter and average wall thickness of 8.1 mm. 

The vessel has a pinched rim with an everted stance and rounded lip (Figure 4.27). The exterior 
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surface is cordmarked and the interior surface is smoothed. The paste is grit-tempered with an 

uneven paste core. Decoration includes a row of bosses on the exterior lower rim margin. 

 

 
 

Figure 4.27 Sample 26, Havana Cordmarked jar rim; left, rim profile shown with interior 
to right; center, sherd exterior; right, sherd interior. 

 

Sample 27 

Sample 27 is a rim sherd of Hummel Stamped (Griffin 1952). The sample was recovered 

from the DeWitte/Liphardt Habitation site (11RI57). The style is a variation of Naples Stamped, 

where the vertical rows of stamping pendant to the lip are curved rather than straight (Griffin 



 82  

1952). The sherd represents about 8% of the orifice of a jar with a 20 cm orifice diameter and an 

average wall thickness of 6.9 mm. The vessel has an unmodified rim with a slightly inverted 

stance and flattened lip (Figure 4.28). Exterior and interior surfaces are smoothed. The paste is 

grit-tempered with a uniformly dark paste core. Decoration is restricted to the exterior rim 

margin and consists of curved dentate stamps perpendicular to the rim. 

 

 
 

Figure 4.28 Sample 27, Hummel Stamped jar rim; left, rim profile shown with interior to 
right; center, sherd exterior; right, sherd interior. 

 

Petrographic Analysis: Mineralogy 

Both quantitative and qualitative data were collected on the mineralogical constituents of 

the pastes. Each identifiable mineral was counted on each sample where it was present. 

Additionally, a list of each mineral as present or absent was created for each sample. Minerals 

were generally identified in two larger categories, silicate-minerals and non-silicate minerals. 
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Silicate minerals include amphiboles: hornblende, micas: biotite, muscovite, and sericite; 

quartzes: quartz, as well as the metamorphosed versions quartzite and myrmekite, myrmekite 

with the addition of plagioclase; and feldspars: plagioclase feldspar (p-feldspar), potassium 

feldspar (k-feldspar), and microcline. Non-silicate minerals include carbonates: calcite; 

phosphates: apatite; and oxides: the opaque minerals (Perkins 1998). Table 4.2 displays the 

percentage of the minerals identified in each sample from this analysis. 

Hornblende is an amphibole mineral identifiable by the pleochroism in Plane-Polarized 

Light (PPL) of various shades of yellow to green to brown. The mineral has cleavages at 56 and 

124 degrees and extinction in Cross-Polarized Light (XPL) symmetrical to the cleavages 

(Perkins 1998). 

The minerals in the mica group exhibit a perfect basal cleavage. Biotite is identifiable by 

the brownish to green pleochroism in PPL. Additionally, in XPL extinction occurs at ninety-

degrees, or parallel. Often, the extinction exhibits a birds-eye appearance. Muscovite is usually 

colorless in PPL and may also show bird’s eye extinction with more vivid colors in XPL. Sericite 

is a variety of muscovite visible as silky, narrow inclusions, often identified with plagioclase and 

quartz (Faithfull 1998; Perkins 1998) 

The minerals identified in the quartz group include quartz, quartzite, and myrmekite. 

Quartz is colorless in PPL and easily recognized in XPL by the undulatory extinction and 

coloring, which usually ranges from white to dark gray or black in extinction. Quartzite is 

metamorphosed quartz, which appears similar to quartz in both PPL and XPL, but the grains of 

quartzite exhibit an interlocking structure. Myrmekite is the worm-like casts of quartz often 
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located in plagioclase crystals. In both PPL and XPL, the small inclusions appear similar to 

quartz grains (Perkins 1998). 

Minerals in the feldspar group were identified as plagioclase feldspar, potassium-feldspar 

(k-feldspar), and microcline. Plagioclase feldspar is colorless without pleochroism in PPL. In 

XPL, plagioclase is white to gray with parallel twinning. K-feldspar is similar to plagioclase 

feldspar, however in XPL the twinning is simple, “carlsbad” twinning with half the mineral grain 

in extinction, while the other half remains illuminated (Nelson 2019). Microcline exhibits a 

combination of twinning in XPL which appears as a cross-hatched or “tartan” twinning (Perkins 

1998; Strekeisen 2018a). 

The non-silicate groups of minerals identified in this analysis include oxides, carbonates, 

and phosphates. Apatite is a phosphate mineral that is colorless in PPL and moderate relief, in 

XPL it exhibits parallel extinction and coloring ranging from white to gray. Calcite is a carbonate 

mineral that is colorless in PPL. Calcite appears similar to the feldspar group minerals in XPL; 

however, the lamellar twinning is parallel to the rhombohedral cleavage of the mineral (Perkins 

1998; Strekeisen 2018b). The last group of minerals are the oxide groups, which are represented 

by the opaque minerals. These minerals do not pass light in either PPL or XPL (Perkins 1998). 
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TABLE 4.2 PERCENTAGE OF MINERALS IDENTIFIED IN EACH SAMPLE 
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Sample 1 

In Sample 1, nine individual minerals were identified. These minerals include silicate 

mineral groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate 

mineral groups including carbonates and oxides. Four points were identified as the amphibole 

hornblende. In the mica group, thirteen were biotite and seven were sericite. In the quartz 

mineral group, thirteen were quartz and four were myrmekite. In the feldspar group, fourteen 

were plagioclase feldspar, and two were k-feldspar. In the non-silicate mineral groups, twelve 

points were calcite and ten were opaque minerals. Figure 4.29 shows minerals identified in PPL 

and Figure 4.30 shows minerals identified in XPL from the thin section. 
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Figure 4.29 Thin section image of Sample 1 (Plane Polarized Light, 4X).  
 

 
 

Figure 4.30 Thin section image of Sample 1 (Cross Polarized Light, 4X).  
 

Sample 2 

In Sample 2, eleven individual minerals were identified. These minerals include silicate 

mineral groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate 

mineral groups including phosphates, carbonates, and oxides. Four points were identified as 

hornblende in the amphibole group. In the mica group, eighteen points were biotite and nine 

were sericite. In the quartz mineral group, twenty were quartz, four were quartzite, and five were 

myrmekite. In the feldspar group, five were plagioclase feldspar, and one was microcline. In the 
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non-silicate mineral groups, four points were apatite, fourteen were calcite, and twelve were 

opaque minerals. Figure 4.31 shows minerals identified in PPL and Figure 4.32 shows minerals 

identified in XPL from the thin section. 

 

 
 

Figure 4.31 Thin section image of Sample 2 (Plane Polarized Light, 4X).  
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Figure 4.32 Thin section image of Sample 2 (Cross Polarized Light, 4X). 
 

Sample 3 

In Sample 3, eight individual minerals were identified. These minerals include those in 

the silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate 

groups including carbonates and oxides. Nine points were identified as hornblende in the 

amphibole group. In the mica group, twenty-seven points were biotite and four were sericite. In 

the quartz mineral group, seven were quartz and five were myrmekite. In the feldspar group, 

twenty-three were plagioclase feldspar. Seventeen points were calcite in the carbonate group. 
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Thirteen points were opaque minerals. Figure 4.33 shows minerals identified in PPL and Figure 

4.34 shows minerals identified in XPL from the thin section. 

 

 
 

Figure 4.33 Thin section image of Sample 3 (Plane Polarized Light, 4X).  
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Figure 4.34 Thin section image of Sample 3 (Cross Polarized Light, 4X).  
 

Sample 4 

In Sample 4, eight individual minerals were identified. These minerals include those in 

the silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups including 

phosphates, carbonates, and oxides. In the mica group, twenty-five points were biotite and two 

were sericite. In the quartz mineral group, nine were quartz and three were myrmekite. In the 

feldspar group, twenty-nine points were plagioclase feldspar and three were microcline. In the 

non-silicate mineral groups, nineteen points were calcite and ten were opaque minerals. Figure 
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4.35 shows minerals identified in PPL and Figure 4.36 shows minerals identified in XPL from 

the thin section. 

 

 
 

Figure 4.35 Thin section image of Sample 4 (Plane Polarized Light, 4X).  
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Figure 4.36 Thin section image of Sample 4 (Cross Polarized Light, 4X).  
 

Sample 5 

In Sample 5, eight individual minerals were identified. These minerals include those in 

the silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate 

groups including carbonates and oxides. Three points were identified as hornblende in the 

amphibole group. In the mica group, seven points were biotite and thirteen were sericite. In the 

quartz mineral group, fifteen were quartz and one was myrmekite. In the feldspar group, seven 

points were plagioclase feldspar and three were microcline. In the carbonate group, fifteen points 
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were calcite. Two points were opaque minerals in the oxide group. Figure 4.37 shows minerals 

identified in PPL and Figure 4.38 shows minerals identified in XPL from the thin section. 

 

 
 

Figure 4.37 Thin section image of Sample 5 (Plane Polarized Light, 4X).  
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Figure 4.38 Thin section image of Sample 5 (Cross Polarized Light, 4X).  
 

Sample 6 

In Sample 6, seven individual minerals were identified. These minerals include those in 

the silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate 

groups including carbonates and oxides. Five points were identified as hornblende in the 

amphibole group. In the mica group, thirty-eight points were biotite. In the quartz mineral group, 

twelve were quartz and twenty-two were myrmekite. In the feldspar group, twenty-five points 

were plagioclase feldspar. In the carbonate group, twenty-two points were calcite. Twenty-two 
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points were opaque minerals in the oxide group. Figure 4.39 shows minerals identified in PPL 

and Figure 4.40 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.39 Thin section image of Sample 6 (Plane Polarized Light, 4X).  
 



 97  

 
 

Figure 4.40 Thin section image of Sample 6 (Cross Polarized Light, 4X).  
 

Sample 7 

In Sample 7, eight individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

including carbonates and oxides. Two points were identified as hornblende in the amphibole 

group. In the mica group, twenty-two points were biotite and twenty-one were sericite. In the 

quartz mineral group, nineteen were quartz and two were myrmekite. In the feldspar group, eight 

points were plagioclase feldspar. In the carbonate group, eighteen points were calcite. Twenty-
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three points were opaque minerals in the oxide group. Figure 4.41 shows minerals identified in 

PPL and Figure 4.42 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.41 Thin section image of Sample 7 (Plane Polarized Light, 4X).  
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Figure 4.42 Thin section image of Sample 7 (Cross Polarized Light, 4X).  
 

Sample 8 

In Sample 8, ten individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

including carbonates and oxides. One point was identified as hornblende in the amphibole group. 

In the mica group, twenty-seven points were biotite and eleven were sericite. In the quartz 

mineral group, twenty-one were quartz and one was myrmekite. In the feldspar group, sixteen 

points were plagioclase feldspar, one was k-feldspar, and four were microcline. In the carbonate 

group, thirty points were calcite. Nine points were opaque minerals in the oxide group. Figure 
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4.43 shows minerals identified in PPL and Figure 4.44 shows minerals identified in XPL from 

the thin section. 

 
 

Figure 4.43 Thin section image of Sample 8 (Plane Polarized Light, 4X).  
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Figure 4.44 Thin section image of Sample 8 (Cross Polarized Light, 4X). 
 

Sample 9 

In Sample 9, eight individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, fifteen points were biotite. In the quartz mineral group, 

twenty-one were quartz and five were myrmekite. In the feldspar group, four points were 

plagioclase feldspar, six were k-feldspar, and eight were microcline. In the carbonate group, 

twelve points were calcite. Nine points were opaque minerals in the oxide group. Figure 4.45 
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shows minerals identified in PPL and Figure 4.46 shows minerals identified in XPL from the thin 

section. 

 

 
 

Figure 4.45 Thin section image of Sample 9 (Plane Polarized Light, 4X).  
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Figure 4.46 Thin section image of Sample 9 (Cross Polarized Light, 4X). 
 

Sample 10 

In Sample 10, eight individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Seven points were identified as hornblende in the amphibole 

group. In the mica group, sixteen points were biotite. In the quartz mineral group, twelve were 

quartz and three were quartzite. In the feldspar group, twenty-four points were plagioclase 

feldspar and one was k-feldspar. In the carbonate group, eight points were calcite. Twelve points 
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were opaque minerals in the oxide group. Figure 4.47 shows minerals identified in PPL and 

Figure 4.48 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.47 Thin section image of Sample 10 (Plane Polarized Light, 4X).  
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Figure 4.48 Thin section image of Sample 10 (Plane Polarized Light, 4X).  
 

Sample 11 

In Sample 11, six individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Three points were identified as hornblende in the amphibole 

group. In the mica group, eight points were biotite. In the quartz mineral group, eighteen were 

quartz. In the feldspar group, six points were plagioclase feldspar. In the carbonate group, ten 

points were calcite. Eight points were opaque minerals in the oxide group. Figure 4.49 shows 
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minerals identified in PPL and Figure 4.50 shows minerals identified in XPL from the thin 

section. 

 

 
 

Figure 4.49 Thin section image of Sample 11 (Plane Polarized Light, 4X).  
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Figure 4.50 Thin section image of Sample 11 (Cross Polarized Light, 4X).  
 

Sample 12 

In Sample 12, nine individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Four points were identified as hornblende in the amphibole group. 

In the mica group, nine points were biotite. In the quartz mineral group, thirty-nine were quartz 

and one was myrmekite. In the feldspar group, sixteen points were plagioclase feldspar, seven 

were k-feldspar, and one was microcline. In the carbonate group, eight points were calcite. Eight 
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points were opaque minerals in the oxide group. Figure 4.51 shows minerals identified in PPL 

and Figure 4.52 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.51 Thin section image of Sample 12 (Plane Polarized Light, 4X).  
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Figure 4.52 Thin section image of Sample 12 (Cross Polarized Light, 4X).  
 

Sample 13 

In Sample 13, six individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Three points were identified as hornblende in the amphibole 

group. In the mica group, six points were biotite. In the quartz mineral group, twenty-six were 

quartz. In the feldspar group, seven points were plagioclase feldspar. In the carbonate group, 

three points were calcite. Five points were opaque minerals in the oxide group. Figure 4.53 
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shows minerals identified in PPL and Figure 4.54 shows minerals identified in XPL from the thin 

section. 

 

 
 

Figure 4.53 Thin section image of Sample 13 (Plane Polarized Light, 4X).  
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Figure 4.54 Thin section image of Sample 13 (Cross Polarized Light, 4X).  
 

Sample 14 

In Sample 14, nine individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as carbonates in the non-silicate 

groups. In the mica group, ten points were biotite and two were sericite. In the quartz mineral 

group, twelve were quartz, four were quartzite, and two were myrmekite. In the feldspar group, 

two points were plagioclase feldspar, three were k-feldspar, and three were microcline. In the 

carbonate group, five points were calcite. Figure 4.55 shows minerals identified in PPL and 

Figure 4.56 shows minerals identified in XPL from the thin section. 
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Figure 4.55 Thin section image of Sample 14 (Plane Polarized Light, 4X).  
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Figure 4.56 Thin section image of Sample 14 (Cross Polarized Light, 4X).  
 

Sample 15 

In Sample 15, eight individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as carbonates in the 

non-silicate groups. Two points were identified as hornblende in the amphibole group. In the 

mica group, six points were biotite and seven were sericite. In the quartz mineral group, nineteen 

were quartz. In the feldspar group, two points were plagioclase feldspar, one was k-feldspar, and 

one was microcline. In the carbonate group, seven points were calcite. Figure 4.57 shows 
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minerals identified in PPL and Figure 4.58 shows minerals identified in XPL from the thin 

section. 

 

 
 

Figure 4.57 Thin section image of Sample 15 (Plane Polarized Light, 4X). 
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Figure 4.58 Thin section image of Sample 15 (Cross Polarized Light, 4X). 
 

Sample 16 

In Sample 16, nine individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, nine points were biotite and three points were sericite. 

In the quartz mineral group, twelve were quartz and two were myrmekite. In the feldspar group, 

five points were plagioclase feldspar, one was k-feldspar, and two were microcline. In the 

carbonate group, six points were calcite. One point was an opaque mineral in the oxide group. 
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Figure 4.59 shows minerals identified in PPL and Figure 4.60 shows minerals identified in XPL 

from the thin section. 

 

 
 

Figure 4.59 Thin section image of Sample 16 (Plane Polarized Light, 4X).  
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Figure 4.60 Thin section image of Sample 16 (Cross Polarized Light, 4X).  
 

Sample 17 

In Sample 17, seven individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as carbonates in the non-silicate 

groups. In the mica group, nine points were biotite and nine points were sericite. In the quartz 

mineral group, fourteen were quartz and two were myrmekite. In the feldspar group, six points 

were plagioclase feldspar and three were k-feldspar. In the carbonate group, six points were 

calcite. Figure 4.61 shows minerals identified in PPL and Figure 4.62 shows minerals identified 

in XPL from the thin section. 
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Figure 4.61 Thin section image of Sample 17 (Plane Polarized Light, 4X).  
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Figure 4.62 Thin section image of Sample 17 (Cross Polarized Light, 4X).  
 

Sample 18 

In Sample 18, ten individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, six points were biotite, one point was muscovite, and 

one point was sericite. In the quartz mineral group, thirty were quartz, one was quartzite, and one 

was myrmekite. In the feldspar group, eleven points were plagioclase feldspar and one was 

microcline. In the carbonate group, one point was calcite. Two points were opaque minerals in 
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the oxide group. Figure 4.63 shows minerals identified in PPL and Figure 4.64 shows minerals 

identified in XPL from the thin section. 

 
 

Figure 4.63 Thin section image of Sample 18 (Plane Polarized Light, 4X).  
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Figure 4.64 Thin section image of Sample 18 (Cross Polarized Light, 4X).  
 

Sample 19 

In Sample 19, eight individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, twenty-seven points were biotite and sixteen points 

were sericite. In the quartz mineral group, forty-four were quartz. In the feldspar group, eighteen 

points were plagioclase feldspar, one was k-feldspar, and four were microcline. In the carbonate 

group, twenty-three points were calcite. Eight points were opaque minerals in the oxide group. 
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Figure 4.65 shows minerals identified in PPL and Figure 4.66 shows minerals identified in XPL 

from the thin section. 

 

 
 

Figure 4.65 Thin section image of Sample 19 (Plane Polarized Light, 4X).  
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Figure 4.66 Thin section image of Sample 19 (Cross Polarized Light, 4X).  
 

Sample 20 

In Sample 20, eight individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, eighteen points were biotite and sixteen points were 

sericite. In the quartz mineral group, twenty-nine were quartz and one was myrmekite. In the 

feldspar group, thirteen points were plagioclase feldspar and three were microcline. In the 

carbonate group, seventeen points were calcite. Seven points were opaque minerals in the oxide 
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group. Figure 4.67 shows minerals identified in PPL and Figure 4.68 shows minerals identified 

in XPL from the thin section. 

 
 

Figure 4.67 Thin section image of Sample 20 (Plane Polarized Light, 4X). 
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Figure 4.68 Thin section image of Sample 20 (Cross Polarized Light, 4X). 
 

Sample 21 

In Sample 21, ten individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, fourteen points were biotite and seven points were 

sericite. In the quartz mineral group, twelve were quartz, three were quartzite and three were 

myrmekite. In the feldspar group, four points were plagioclase feldspar, three were k-feldspar, 

and two were microcline. In the carbonate group, six points were calcite. Three points were 
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opaque minerals in the oxide group. Figure 4.69 shows minerals identified in PPL and Figure 

4.70 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.69 Thin section image of Sample 21 (Plane Polarized Light, 4X).  
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Figure 4.70 Thin section image of Sample 21 (Cross Polarized Light, 4X).  
 

Sample 22 

In Sample 22, nine individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, twenty-one points were biotite and twelve points were 

sericite. In the quartz mineral group, twenty-four were quartz and four were myrmekite. In the 

feldspar group, twelve points were plagioclase feldspar, six were k-feldspar, and one was 

microcline. In the carbonate group, nine points were calcite. Two points were opaque minerals in 
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the oxide group. Figure 4.71 shows minerals identified in PPL and Figure 4.72 shows minerals 

identified in XPL from the thin section. 

 
 

Figure 4.71 Thin section image of Sample 22 (Plane Polarized Light, 4X).  
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Figure 4.72 Thin section image of Sample 22 (Cross Polarized Light, 4X).  
 

Sample 23 

In Sample 23, nine individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Ten points were identified as hornblende in the amphibole group. 

In the mica group, nineteen points were biotite and four points were sericite. In the quartz 

mineral group, eight were quartz and three were myrmekite. In the feldspar group, fifteen points 

were plagioclase feldspar and two were k-feldspar. In the carbonate group, thirteen points were 
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calcite. Ten points were opaque minerals in the oxide group. Figure 4.73 shows minerals 

identified in PPL and Figure 4.74 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.73 Thin section image of Sample 23 (Plane Polarized Light, 4X).  
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Figure 4.74 Thin section image of Sample 23 (Cross Polarized Light, 4X).  
 

Sample 24 

In Sample 24, nine individual mineral types were identified. These include those in the 

silicate groups such as amphiboles, micas, quartzes, and feldspars, as well as non-silicate groups 

such as carbonates and oxides. Two points were identified as hornblende in the amphibole group. 

In the mica group, nine points were biotite and two points were sericite. In the quartz mineral 

group, eight were quartz, two were quartzite, and three were myrmekite. In the feldspar group, 

six points were identified as plagioclase feldspar. In the carbonate group, nine points were 



 132  

calcite. Six points were opaque minerals in the oxide group. Figure 4.75 shows minerals 

identified in PPL and Figure 4.76 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.75 Thin section image of Sample 24 (Plane Polarized Light, 4X). 
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Figure 4.76 Thin section image of Sample 24 (Cross Polarized Light, 4X). 
 

Sample 25 

In Sample 25, nine individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, nine points were biotite and four points were sericite. 

In the quartz mineral group, six were quartz, one was quartzite, and three were myrmekite. In the 

feldspar group, three points were identified as plagioclase feldspar and two were k-feldspar. In 

the carbonate group, six points were calcite. Six points were opaque minerals in the oxide group. 



 134  

Figure 4.77 shows minerals identified in PPL and Figure 4.78 shows minerals identified in XPL 

from the thin section. 

 

 
 

Figure 4.77 Thin section image of Sample 25 (Plane Polarized Light, 4X).  
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Figure 4.78 Thin section image of Sample 25 (Cross Polarized Light, 4X).  
 

Sample 26 

In Sample 26, seven individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, six points were biotite. In the quartz mineral group, 

eleven were quartz and three were quartzite. In the feldspar group, two points were identified as 

plagioclase feldspar and two were k-feldspar. In the carbonate group, three points were calcite. 

One point was an opaque mineral in the oxide group. Figure 4.79 shows minerals identified in 

PPL and Figure 4.80 shows minerals identified in XPL from the thin section. 
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Figure 4.79 Thin section image of Sample 26 (Plane Polarized Light, 4X).  
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Figure 4.80 Thin section image of Sample 26 (Cross Polarized Light, 4X).  
 

Sample 27 

In Sample 27, ten individual mineral types were identified. These include those in the 

silicate groups such as micas, quartzes, and feldspars, as well as non-silicate groups such as 

carbonates and oxides. In the mica group, twenty-six points were biotite and fourteen were 

sericite. In the quartz mineral group, twenty were quartz, three were quartzite, and three were 

myrmekite. In the feldspar group, six points were identified as plagioclase feldspar, two were k-

feldspar, and two were microcline. In the carbonate group, fifteen points were calcite. Three 
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points were opaque minerals in the oxide group. Figure 4.81 shows minerals identified in PPL 

and Figure 4.82 shows minerals identified in XPL from the thin section. 

 
 

Figure 4.81 Thin section image of Sample 27 (Plane Polarized Light, 4X).  
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Figure 4.82 Thin section image of Sample 27 (Cross Polarized Light, 4X).  
 

Petrographic Analysis: Body Composition 

The paste of a vessel is the combination of the clay, the sand, and the silt. These naturally 

occurring ingredients constitute the clay used to construct ceramic vessels, excluding the human-

added temper. In the petrographic analysis, the number of clay, silt, and sand particles were 

counted and the percentage of each was calculated for each sample. Additionally, a sand-size 

index was calculated to attempt to characterize regional clay types.  

The body of a vessel is the combination of the natural clay, the sand, and the added 

temper. These ingredients constitute the recipe of the ceramic paste used for construction. In the 



 140  

petrographic analysis, the sand and temper were counted, and the silt and matrix counts were 

combined to calculate the clay.  

For the grains identified as sand and temper, a sand-size index and temper-size index was 

calculated using an ordinal scale based on the measurement of maximum grain diameter under 

the microscope: fine (0.00625-0.249 mm), medium (0.25-0.499 mm), coarse, (0.5-0.99 mm), 

very coarse (1.0-1.99 mm), and gravel (>2.0 mm). The fine grains were then assigned a value of 

1, medium grains = 2, coarse grains = 3, very coarse grains = 4, and gravel = 5. The calculation 

requires multiplication of all grains in each class by the weighted value for that size grade, and 

then adding the totals together and dividing by total grains for all size classes combined to 

calculate a mean size-index for each sample (Stoltman 1991, 1999, 2001, 2009, 2011). Table 4.3 

exhibits the compositional data of temper, sand, clay, and silt counts, percentages, and the sand-

size and temper-size indices. 
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TABLE 4.3 BODY AND PASTE COUNTS, PERCENTAGES, AND SIZE INDICES 
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Sample 1 

The points identified in the clay, silt, and sand categories were used to calculate the paste 

composition of the sample. Petrographic analysis on Sample 1 identified a total of eighty-five 

points in the natural paste categories. Sixty-eight of the points were clay, twelve were silt, and 

five were sand. The overall percentages of the paste category are represented as 80.0% clay, 

14.1% silt, and 5.9% sand (Figure 4.83). The sand particles were only classed in the fine-grain 

size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 104 points were counted on Sample 1. Of these, 80 were 

clay, nineteen were temper, and five were sand. The overall percentages of the body categories 

are 76.9% clay, 18.3% temper, and 4.8% sand (Figure 4.84). All temper particles were fine-size 

grit pieces. The temper-size index is 1.0. 
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Figure 4.83 Ternary diagram of Sample 1 paste composition. 
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Figure 4.84 Ternary diagram of Sample 1 body composition. 
 

Sample 2 

Petrographic analysis on Sample 2 identified a total of 184 points in the natural paste 

categories. Of these, 144 were clay, thirty-one were silt, and nine were sand. The overall 

percentages of the paste category are represented as 78.3% clay, 16.8% silt, and 4.9% sand 

(Figure 4.85). The sand particles were only classed in the fine-grain size category; therefore, the 

sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 205 points were counted on Sample 2. Of these, 175 were 
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clay, twenty-one were temper, and nine were sand. The overall percentages of the body 

categories are 85.4% clay, 10.2 % temper, and 4.4% sand (Figure 4.86). All temper particles 

were grit pieces. Three grit pieces were classed in the medium-grain size category, and eighteen 

were classed in the fine-grain size category. The temper-size index is calculated at 1.14. 

 

 
 

Figure 4.85 Ternary diagram of Sample 2 paste composition. 
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Figure 4.86 Ternary diagram of Sample 2 body composition. 
 

Sample 3 

Petrographic analysis on Sample 3 identified 136 points in the natural paste categories. 

Of these, 126 were clay, nine were silt, and one was sand. The overall percentages of the paste 

category are represented as 92.7% clay, 6.6% silt, and 0.7% sand (Figure 4.87). The sand particle 

was classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 151 points were counted on Sample 3. Of these, 135 were 

clay, fifteen were temper, and one was sand. The overall percentages of the body categories are 
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89.4% clay, 9.9% temper, and 0.7% sand (Figure 4.88). All temper particles were grit pieces. 

Two grit pieces were classed in the medium-grain size category, and thirteen were classed in the 

fine-grain size category. The temper-size index is calculated at 1.13. 

 

 
 

Figure 4.87 Ternary diagrams of Sample 3 paste composition. 
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Figure 4.88 Ternary diagrams of Sample 3 body composition. 
 

Sample 4 

Petrographic analysis on Sample 4 identified 243 points in the natural paste categories. 

Of these, 226 were clay, thirteen were silt, and four were sand. The overall percentages of the 

paste category are represented as 93.0% clay, 5.3% silt, and 1.7% sand (Figure 4.89). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 263 points were counted on Sample 4. Of these, 239 were 

clay, twenty were temper, and four were sand. The overall percentages of the body categories are 
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90.9% clay, 7.6% temper, and 1.5% sand (Figure 4.90). All temper particles were grit pieces. 

One grit piece was classed in the medium-grain size category, and nineteen were classed in the 

fine-grain size category. The temper-size index is calculated at 1.05. 

 

 
 

Figure 4.89 Ternary diagram of Sample 4 paste composition. 
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Figure 4.90 Ternary diagram of Sample 4 body composition. 
 

Sample 5 

Petrographic analysis on Sample 5 identified 147 points in the natural paste categories. 

Of these, 107 were clay, thirty-nine were silt, and one was sand. The overall percentages of the 

paste category are represented as 72.8% clay, 26.5% silt, and 0.7% sand (Figure 4.91). The sand 

particle was classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 168 points were counted on Sample 5. Of these, 146 were 

clay, twenty-one were temper, and one was sand. The overall percentages of the body categories 
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are 86.9% clay, 12.5% temper, and 0.6% sand (Figure 4.92). All temper particles were grit 

pieces. One grit piece was classed in the medium-grain size category, and twenty were classed in 

the fine-grain size category. The temper-size index is calculated at 1.05. 

 

 
 

Figure 4.91 Ternary diagram of Sample 5 paste composition. 
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Figure 4.92 Ternary diagram of Sample 5 body composition. 
 

Sample 6 

Petrographic analysis on Sample 6 identified 158 points in the natural paste categories. 

Of these, 146 were clay, ten were silt, and two were sand. The overall percentages of the paste 

category are represented as 92.4% clay, 6.3% silt, and 1.3% sand (Figure 4.93). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 187 points were counted on Sample 6. Of these, 156 were 

clay, twenty-nine were temper, and two were sand. The overall percentages of the body 
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categories are 83.4% clay, 15.5% temper, and 1.1% sand (Figure 4.94). All temper particles were 

grit pieces. Six grit pieces were classed in the medium-grain size category, and twenty-three 

were classed in the fine-grain size category. The temper-size index is calculated at 1.21. 

 

 
 

Figure 4.93 Ternary diagram of Sample 6 paste composition 
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Figure 4.94 Ternary diagram of Sample 6 body composition. 
 

Sample 7 

Petrographic analysis on sample 7 identified a total of 188 points in the natural paste 

categories. Of these, 153 were clay, thirty-five were silt, and no natural particles were identified 

in the sand-size category. The overall percentages of the paste category are represented as 81.4% 

clay and 18.6% silt (Figure 4.95). As there were no minerals in the sand-size category, the sand-

size index was not calculated. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 223 points were counted on Sample 7. Of these, 188 were 
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clay and thirty-five were temper. The overall percentages of the body categories are 84.3% clay 

and 15.7% temper (Figure 4.96). All temper particles were grit pieces. Nine grit pieces were 

classed in the medium-grain size category, and twenty-six were classed in the fine-grain size 

category. The temper-size index is calculated at 1.26. 

 

 
 

Figure 4.95 Ternary diagram of Sample 7 paste composition. 
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Figure 4.96 Ternary diagram of Sample 7 body composition. 
 

Sample 8 

Petrographic analysis on Sample 8 identified 184 points in the natural paste categories. 

Of these, 153 were clay, thirty were silt, and one was sand. The overall percentages of the paste 

category are represented as 83.2% clay, 16.3% silt, and 0.5% sand (Figure 4.97). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 215 points were counted on Sample 8. Of these, 183 were 

clay, thirty-one were temper, and one was sand. The overall percentages of the body categories 
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are 85.1% clay, 14.4% temper, and 0.5% sand (Figure 4.98). All temper particles were grit 

pieces. Four grit pieces were classed in the medium-grain size category, and twenty-seven were 

classed in the fine-grain size category. The temper-size index is calculated at 1.13. 

 

 
 

Figure 4.97 Ternary diagram of Sample 8 paste composition. 
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Figure 4.98 Ternary diagram of Sample 8 body composition. 
 

Sample 9 

Petrographic analysis on Sample 9 identified 236 points in the natural paste categories. 

Of these, 197 were clay, thirty-four were silt, and five were sand. The overall percentages of the 

paste category are represented as 83.5% clay, 14.4% silt, and 2.1% sand (Figure 4.99). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 266 points were counted on Sample 9. Of these, 231 were 

clay, thirty were temper, and five were sand. The overall percentages of the body categories are 
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86.8% clay, 11.3% temper, and 1.9% sand (Figure 4.100). All temper particles were grit pieces. 

Two grit pieces were classed in the medium-grain size category, and twenty-eight were classed 

in the fine-grain size category. The temper-size index is calculated at 1.07. 

 

 
 

Figure 4.99 Ternary diagram of Sample 9 paste composition. 
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Figure 4.100 Ternary diagram of Sample 9 body composition. 
 

Sample 10 

Petrographic analysis on Sample 10 identified 180 points in the natural paste categories. 

Of these, 155 were clay, twenty-five were silt, and no natural particles were in the sand-size 

category. The overall percentages of the paste category are represented as 86.1% clay and 13.9% 

silt (Figure 4.101). As there were no minerals in the sand-size category, the sand-size index was 

not calculated. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 193 points were counted on Sample 10. Of these, 180 were 
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clay and thirteen were temper. The overall percentages of the body categories are 93.3% clay and 

6.7% temper (Figure 4.102). All temper particles were grit pieces. Three grit pieces were classed 

in the medium-grain size category, and ten were classed in the fine-grain size category. The 

temper-size index is calculated at 1.23. 

 

 
 

Figure 4.101 Ternary diagram of Sample 10 paste composition. 
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Figure 4.102 Ternary diagram of Sample 10 body composition. 
 

Sample 11 

Petrographic analysis on Sample 11 identified 146 points in the natural paste categories. 

Of these, 102 were clay, forty-one were silt, and three were sand. The overall percentages of the 

paste category are represented as 69.9% clay, 28.1% silt, and 2.0% sand (Figure 4.103). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 160 points were counted on Sample 11. Of these, 143 were 

clay, fourteen were temper, and three were sand. The overall percentages of the body categories 
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are 89.4% clay, 8.8% temper, and 1.9% sand (Figure 4.104). All temper particles were grit 

pieces. Three grit pieces were classed in the coarse-grain size category, two were classed in the 

medium-grain size category, and nine were classed in the fine-grain size category. The temper-

size index is calculated at 1.29. 

 

 
 

Figure 4.103 Ternary diagram of Sample 11 paste composition. 
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Figure 4.104 Ternary diagram of Sample 11 body composition. 
 

Sample 12 

Petrographic analysis on Sample 12 identified 225 points in the natural paste categories. 

Of these, 163 were clay, fifty-eight were silt, and four were sand. The overall percentages of the 

paste category are represented as 72.4% clay, 25.8% silt, and 1.8% sand (Figure 4.105). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 240 points were counted on Sample 12. Of these, 221 were 
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clay, fifteen were temper, and four were sand. The overall percentages of the body categories are 

92.1% clay, 6.2% temper, and 1.7% sand (Figure 4.106). All temper particles were grit pieces. 

One grit piece was classed in the coarse-grain size category, two were classed in the medium-

grain size category, and twelve were classed in the fine-grain size category. The temper-size 

index is calculated at 1.19. 

 

 
 

Figure 4.105 Ternary diagram of Sample 12 paste composition. 
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Figure 4.106 Ternary diagram of Sample 12 body composition. 
 

Sample 13 

Petrographic analysis on Sample 13 identified 203 points in the natural paste categories. 

Of these, 171 were clay, thirty-one were silt, and one were sand. The overall percentages of the 

paste category are represented as 84.2% clay, 15.3% silt, and 0.5% sand (Figure 4.107). The sand 

particle was classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 212 points were counted on Sample 13. Of these, 202 were 
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clay, nine were temper, and one was sand. The overall percentages of the body categories are 

95.3% clay, 4.2% temper, and 0.5% sand (Figure 4.108). All temper particles were grit pieces. 

One grit piece was classed in the medium-grain size category, and eight were classed in the fine-

grain size category. The temper-size index is calculated at 1.11. 

 

 
 

Figure 4.107 Ternary diagram of Sample 13 paste composition. 
 



 168  

 
 

Figure 4.108 Ternary diagram of Sample 13 body composition. 
 

Sample 14 

Petrographic analysis on Sample 14 identified 108 points in the natural paste categories. 

Of these, 88 were clay, fifteen were silt, and five were sand. The overall percentages of the paste 

category are represented as 81.5% clay, 13.9% silt, and 4.6% sand (Figure 4.109). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 119 points were counted on Sample 14. Of these, 103 were 

clay, eleven were temper, and five were sand. The overall percentages of the body categories are 
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86.6% clay, 9.2% temper, and 4.2% sand (Figure 4.110). All temper particles were grit pieces. 

Two grit pieces were classed in the medium-grain size category, and nine were classed in the 

fine-grain size category. The temper-size index is calculated at 1.18. 

 

 
 

Figure 4.109 Ternary diagram of Sample 14 paste composition. 
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Figure 4.110 Ternary diagram of Sample 14 body composition. 
 

Sample 15 

Petrographic analysis on Sample 15 identified 288 points in the natural paste categories. 

Of these, 275 were clay, eleven were silt, and two were sand. The overall percentages of the 

paste category are represented as 95.5% clay, 3.8% silt, and 0.7% sand (Figure 4.111). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 299 points were counted on Sample 15. Of these, 286 were 

clay, eleven were temper, and two were sand. The overall percentages of the body categories are 
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95.7% clay, 3.7% temper, and 0.7% sand (Figure 4.112). Although grog was identified in the 

paste at a macro-level, all temper particles that were counted in the petrographic analysis were 

grit pieces. One grit piece was classed in the medium-grain size category, and ten were classed in 

the fine-grain size category. The temper-size index is calculated at 1.09. 

 

 
 

Figure 4.111 Ternary diagram of Sample 15 paste composition. 
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Figure 4.112 Ternary diagram of Sample 15 body composition. 
 

Sample 16 

Petrographic analysis on Sample 16 identified 130 points in the natural paste categories. 

Of these, 107 were clay, twenty were silt, and three were sand. The overall percentages of the 

paste category are represented as 82.3% clay, 15.4% silt, and 2.3% sand (Figure 4.113). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 140 points were counted on Sample 16. Of these, 127 were 

clay, ten were temper, and three were sand. The overall percentages of the body categories are 



 173  

90.7% clay, 7.1% temper, and 2.1% sand (Figure 4.114). All temper particles were fine-size grit 

pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.113 Ternary diagram of Sample 16 paste composition. 
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Figure 4.114 Ternary diagram of Sample 16 body composition. 
 

Sample 17 

Petrographic analysis on Sample 17 identified 86 points in the natural paste categories. 

Of these, 77 were clay, seven were silt, and two were sand. The overall percentages of the paste 

category are represented as 89.5% clay, 8.1% silt, and 2.3% sand (Figure 4.115). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 102 points were counted on Sample 17. Of these, eighty-

four were clay, sixteen were temper, and two were sand. The overall percentages of the body 
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categories are 82.4% clay, 15.7% temper, and 1.9% sand (Figure 4.116). All temper particles 

were grit pieces. Two grit pieces were classed in the medium-grain size category, and fourteen 

were classed in the fine-grain size category. The temper-size index is calculated at 1.13. 

 

 
 

Figure 4.115 Ternary diagram of Sample 17 paste composition. 
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Figure 4.116 Ternary diagram of Sample 17 body composition. 
 

Sample 18 

Petrographic analysis on Sample 18 identified 209 points in the natural paste categories. 

Of these, 165 were clay, thirty-nine were silt, and five were sand. The overall percentages of the 

paste category are represented as 78.9% clay, 18.7% silt, and 2.4% sand (Figure 4.117). Two 

sand particles were classed in the medium-grain size category and three sand particles were 

classed in the fine-grain size category; therefore, the sand-size index is 1.8. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 221 points were counted on Sample 18. Of these, 204 were 
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clay, twelve were temper, and five were sand. The overall percentages of the body categories are 

92.3% clay, 5.4% temper, and 2.3% sand (Figure 4.118). Two temper particles were grog pieces, 

ten temper particles were grit pieces. The grog pieces were classed in the fine-grain size 

category, one grit piece was classed in the medium-grain size category, and nine were classed in 

the fine-grain size category. The temper-size index is calculated at 1.3. 

 

 
 

Figure 4.117 Ternary diagram of Sample 18 paste composition. 
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Figure 4.118 Ternary diagram of Sample 18 body composition. 
 

Sample 19 

Petrographic analysis on Sample 19 identified 231 points in the natural paste categories. 

Of these, 190 were clay, thirty-five were silt, and six were sand. The overall percentages of the 

paste category are represented as 82.3% clay, 15.2% silt, and 2.6% sand (Figure 4.119). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 265 points were counted on Sample 19. Of these, 225 were 

clay, thirty-four were temper, and six were sand. The overall percentages of the body categories 
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are 84.9% clay, 12.8% temper, and 2.3% sand (Figure 4.120). All temper particles were fine-size 

grit pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.119 Ternary diagram of Sample 19 paste composition. 
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Figure 4.120 Ternary diagram of Sample 19 body composition. 
 

Sample 20 

Petrographic analysis on Sample 20 identified 251 points in the natural paste categories. 

Of these, 235 were clay, eleven were silt, and five were sand. The overall percentages of the 

paste category are represented as 93.6% clay, 4.4% silt, and 2.0% sand (Figure 4.121). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 283 points were counted on Sample 20. Of these, 246 were 

clay, thirty-two were temper, and five were sand. The overall percentages of the body categories 
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are 86.9% clay, 11.3% temper, and 1.8% sand (Figure 4.122). Three temper particles were grog 

pieces, twenty-nine temper particles were grit pieces. The grog pieces were classed in the fine-

grain size category, two grit pieces were classed in the medium-grain size category, and twenty-

seven were classed in the fine-grain size category. The temper-size index is calculated at 1.17. 

 

 
 

Figure 4.121 Ternary diagram of Sample 20 paste composition. 
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Figure 4.122 Ternary diagram of Sample 20 body composition. 
 

Sample 21 

Petrographic analysis on Sample 21 identified 235 points in the natural paste categories. 

Of these, 227 were clay, six were silt, and two were sand. The overall percentages of the paste 

category are represented as 96.6% clay, 2.6% silt, and 0.9% sand (Figure 4.123). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 249 points were counted on Sample 21. Of these, 233 were 

clay, fourteen were temper, and two were sand. The overall percentages of the body categories 
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are 93.6% clay, 5.6% temper, and 0.8% sand (Figure 4.124). All temper particles were fine-size 

grit pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.123 Ternary diagram of Sample 21 paste composition. 
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Figure 4.124 Ternary diagram of Sample 21 body composition. 
 

Sample 22 

Petrographic analysis on Sample 22 identified 162 points in the natural paste categories. 

Of these, 135 were clay, twenty were silt, and seven were sand. The overall percentages of the 

paste category are represented as 83.3% clay, 12.3% silt, and 4.3% sand (Figure 4.125). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 177 points were counted on Sample 22. Of these, 155 were 

clay, fifteen were temper, and seven were sand. The overall percentages of the body categories 
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are 87.6% clay, 8.5% temper, and 3.9% sand (Figure 4.126). All temper particles were grit 

pieces. One grit piece was classed in the medium-grain size category, and fourteen were classed 

in the fine-grain size category. The temper-size index is calculated at 1.07. 

 

 
 

Figure 4.125 Ternary diagram of Sample 22 paste composition. 
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Figure 4.126 Ternary diagram of Sample 22 body composition. 
 

Sample 23 

Petrographic analysis on Sample 23 identified 131 points in the natural paste categories. 

Of these, 123 were clay, eight were silt, and no natural particles were in the sand-sized category. 

The overall percentages of the paste category are represented as 93.9% clay and 6.1% silt (Figure 

4.127). As there were no minerals in the sand-size category, the sand-size index was not 

calculated. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 154 points were counted on Sample 23. Of these, 131 were 
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clay and twenty-three were temper. The overall percentages of the body categories are 85.1% 

clay and 14.9% temper (Figure 4.128). All temper particles were grit pieces. Six grit pieces were 

classed in the medium-grain size category, and seventeen were classed in the fine-grain size 

category. The temper-size index is calculated at 1.26. 

 

 
 

Figure 4.127 Ternary diagram of Sample 23 paste composition. 
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Figure 4.128 Ternary diagram of Sample 23 body composition. 
 

Sample 24 

Petrographic analysis on Sample 24 identified 316 points in the natural paste categories. 

Of these, 246 were clay, sixty-six were silt, and four were sand. The overall percentages of the 

paste category are represented as 77.8% clay, 20.9% silt, and 1.3% sand (Figure 4.129). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 330 points were counted on Sample 24. Of these, 312 were 

clay, fourteen were temper, and four were sand. The overall percentages of the body categories 
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are 94.5% clay, 4.2% temper, and 1.2% sand (Figure 4.130). All temper particles were grit 

pieces. Two grit pieces were classed in the medium-grain size category, and twelve were classed 

in the fine-grain size category. The temper-size index is calculated at 1.14. 

 

 
 

Figure 4.129 Ternary diagram of Sample 24 paste composition. 
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Figure 4.130 Ternary diagram of Sample 24 body composition. 
 

Sample 25 

Petrographic analysis on Sample 25 identified 111 points in the natural paste categories. 

Of these, ninety-three were clay, fifteen were silt, and three were sand. The overall percentages 

of the paste category are represented as 83.8% clay, 13.5% silt, and 2.7% sand (Figure 4.131). 

One sand particle was classed in the medium-grain size category and two sand particles were 

classed in the fine-grain size category; therefore, the sand-size index is 1.67. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 118 points were counted on Sample 25. Of these, 108 were 
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clay, seven were temper, and three were sand. The overall percentages of the body categories are 

91.5% clay, 5.9% temper, and 2.5% sand (Figure 4.132). All temper particles were grit pieces. 

All temper particles were fine-size grit pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.131 Ternary diagram of Sample 25 paste composition. 
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Figure 4.132 Ternary diagram of Sample 25 body composition. 
 

Sample 26 

Petrographic analysis on Sample 26 identified 190 points in the natural paste categories. 

Of these, 130 were clay, fifty-four were silt, and six were sand. The overall percentages of the 

paste category are represented as 68.4% clay, 28.4% silt, and 3.2% sand (Figure 4.133). One 

sand particle was classed in the medium-grain size category and three sand particles were classed 

in the fine-grain size category; therefore, the sand-size index is 1.33. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 195 points were counted on Sample 26. Of these, 184 were 
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clay, five were temper, and six were sand. The overall percentages of the body categories are 

94.4% clay, 2.6% temper, and 3.0% sand (Figure 4.134). All temper particles were grit pieces. 

All temper particles were fine-size grit pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.133 Ternary diagram of Sample 26 paste composition. 
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Figure 4.134 Ternary diagram of Sample 26 body composition. 
 

Sample 27 

Petrographic analysis on Sample 27 identified 174 points in the natural paste categories. 

Of these, 156 were clay, fourteen were silt, and four were sand. The overall percentages of the 

paste category are represented as 89.7% clay, 8.0% silt, and 2.3% sand (Figure 4.135). The sand 

particles were classed in the fine-grain size category; therefore, the sand-size index is 1.0. 

The total number of points counted on the sample were used to calculate the body 

composition of the sample. A total of 205 points were counted on Sample 27. Of these, 170 were 

clay, thirty-one were temper, and four were sand. The overall percentages of the body categories 
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are 82.9% clay, 15.1% temper, and 2.0% sand (Figure 4.136). All temper particles were grit 

pieces. All temper particles were fine-size grit pieces. The temper-size index is 1.0. 

 

 
 

Figure 4.135 Ternary diagram of Sample 27 paste composition. 
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Figure 4.136 Ternary diagram of Sample 27 body composition. 
 

Regional Comparisons 

Morphology 

The samples from southeastern Wisconsin can be classified as three categories of Middle 

Woodland pottery types. Rock Ware types, including Shorewood Cord Roughened and Kegonsa 

Stamped were defined by Baerreis (1952) but are considered diagnostic of the Waukesha phase 

(Haas 2019b; Haas and Picard 2019; Salzer n.d.). The Havana Ware types were defined by 

Griffin (1952), and include Havana Zoned, Naples Stamped, and Steuben Punctated. Hopewell 

Ware, which is usually identified by limestone tempering and relatively thinner vessel walls than 
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other Middle Woodland types was also defined by Griffin (1952). The two vessels that were 

classified in the Hopewell Ware category include a Hopewell-like incised vessel and an 

unclassified Hopewell Ware vessel. 

Five samples represented two types of Rock Ware vessels in the southeastern Wisconsin 

collection of this analysis. These types include Kegonsa Stamped and Shorewood Cord 

Roughened. All these samples exhibited cordmarked surface treatment. These samples were also 

tempered with grit. All samples were identified as jars, with samples 2019010 and 2019012 from 

the Finch site being further identified as globular and conoidal shaped respectively.  

The Kegonsa Stamped samples contained decorative treatments including tool 

impressions on the lip of the vessel. Bosses, which can be identified as bumps on the exterior of 

the vessel and punctates on the interior of the vessel, are also present on these vessels. The 

bosses are predominately located below the rim of the sherds. Sample 2019006 has rounded 

dowel tool impressions on the lip of the vessel. Sample 2019010 has bosses on the exterior and 

tooled notches along the interior of the lip. 

The Shorewood Cord Roughened samples also exhibited some decorative treatments. 

Sample 2019005 is perforated by a hole that goes through the vessel wall below the rim. Sample 

2019025 was decorated with a boss. Sample 2019012 was also classified as Shorewood Cord 

Roughened but did not contain any decorative treatment. 

Eight samples representing three types of Havana ware were identified at the southeastern 

Wisconsin sites. These include Havana Zoned, Steuben Punctated, Naples Stamped, and Havana 

Cordmarked. All samples were tempered with grit. All samples represent jar shaped vessels, with 

2019008 and 2019009 being further classified as conoidal jars. 
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The Havana Zoned sample (2019008) came from the Finch site. The surface treatment of 

this vessel is smoothed-over cordmarked. The decorative technique on the exterior of the sample 

includes incised lines, which section-off the zone of dentate-stamped decoration. The rim of the 

vessel also has dentate stamping directly below the exterior lip, separated from the plain, 

undecorated area by an incised line directly below the stamping. 

Samples 2019002, 2019003, 2019004, and 2019007 all represent Steuben Punctated 

decorated vessels. All four Steuben Punctate vessels were recovered from the Peterson site 

(47WK199). Three have smoothed-over cordmarked surface treatment, and one (2019007) has 

smoothed surface treatment. According to Griffin (1952), Steuben Punctated vessels are most 

commonly located in the central and northern Illinois Valley. These vessels are decorated with 

rows of small hemi-conical punctates on the exterior of the vessels directly below the lip. 

The Naples Stamped samples were both body sherds selected from the Finch site. They 

both have cordmarked surface treatment. Sample 2019009 has been decorated with cord-

wrapped stick stamping, while sample 2019011 has been decorated with plain, linear tool 

stamping. 

Sample 2019024 represents a Havana Cordmarked vessel from the Alberts site. The 

vessel has a beveled lip. Decorations include cord-wrapped stick stamping on the interior lip and 

bosses on the exterior below the rim. 

Two samples of Hopewell-Related ware are included in the southeastern Wisconsin 

collection. These include a Hopewell-like incised bowl from the Peterson site, and a Hopewell-

related subconoidal jar from the Finch site. The Hopewell-related wares have thinner rims and 

walls on average compared to the other ware types. However, the small sample size of each ware 
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type could influence these averages. Both samples are grit tempered and were decorated. The 

bowl is decorated with incised lines on the exterior rim oriented parallel to the lip of the vessel. 

The jar is decorated with thin trailed lines, where “the upper rim area features a triangle formed 

of four parallel lines” (Haas and Picard 2019:280). Haas and Picard (2019:280) also note that the 

paste is more compact than other Middle Woodland vessels in the Finch assemblage. 

Of the twelve samples selected from the Illinois sites, ten are classified as Havana Ware. 

These types include Havana Cordmarked, Havana Plain, Havana Zoned, Hummel Stamped, 

Naples Stamped, and one unclassified Havana Ware sample. All samples have some form of 

decoration, which will be described in further detail below. All but two samples were identified 

as jars. Sample 2019019 was left indeterminate because it is an unclassified Havana vessel that 

shows some decorative styles similar to Hopewell ware. Sample 2019021 was left indeterminate 

because it as a body sherd, however it has Havana Zoned decorative techniques. It can be 

inferred that the Havana Zoned vessel is a jar form because Havana ware vessel forms are 

primarily jars with nearly vertical walls (Haas 2019b; Griffin 1952). 

The Havana Cordmarked sample (2019026) was selected from the Blythe site. It has 

vertical cordmarking on the exterior surface and a smoothed interior surface. The sample is 

tempered with grit. It is decorated with bosses on the exterior located below the rim. The rim 

stance is everted with a pinched shape. The lip shape is rounded. 

Two samples were identified as Havana Plain. Both samples were selected from the 

Sloan site. They both have smoothed surface treatment and are tempered with grit. The samples 

each have bosses on the exterior below the rim. The samples were too small to determine the rim 
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stance. Sample 2019014 has an unmodified rim with a rounded lip. This sample also has a black 

slip on the interior of the sherd. Sample 2019016 has a folded rim with a beveled lip.  

The Havana Zoned samples both have smoothed surface treatments and grit temper. 

Sample 2019021 is a body sherd from the Sloan site. The sample is decorated with dentate 

stamps that are separated from the smooth, undecorated part of the surface by an incised line. 

Sample 2019023 is a rim sherd selected from the Kautz site. The sample has dentate stamps 

along the rim margin on the exterior surface, there is an undecorated section below these 

dentates, and an incised line separating additional dentate stamps on the body of the vessel below 

the undecorated area. Additionally, the cord-wrapped stick stamping is present on the interior 

rim of the sample. The rim of 2019023 is direct and unmodified, and the lip has been flattened. 

Sample 2019027 is the only Hummel Stamped sample in the collection. The sample was 

selected from the DeWitte/Liphardt Habitation site. Hummel Stamped is similar to Naples 

Stamped, however the dentate stamps are pressed in at a curve, rather than straight rows (Griffin 

1952). The sample has a slightly inverted rim stance, with an unmodified shape and flattened lip. 

The Naples Stamped samples come from both Sloan and Albany Village site. Two 

samples have slightly inverted rims, and sample 2019015 is direct. all three samples have 

unmodified rim shapes with beveled lips. Grit is present in all three tempers and grog has been 

added to the temper of both Sloan samples. Sample 2019015 also has limestone added to the 

temper. This sample is cordmarked and has cord-wrapped stick stamps along the exterior rim of 

the vessel, as well as bosses below the rim. Additionally, a single cord impressed line is present 

on the exterior, nearly vertical down the rim. Sample 2019020 is cordmarked with diagonal cord-

wrapped stick dentate stamping on the exterior rim. Sample 2019022 was recovered from Albany 
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Village. The sample has dentate stamps below the rim, a row of bosses below the stamps, and a 

row of dentate stamps below the bosses. 

One sample was unable to be classified into a specific Havana type category. The sample 

has grit temper. The rim is slightly everted and unmodified, with a beveled lip. The sample has 

several decorative techniques including a perforation that goes though the vessel wall, a series of 

diagonal incised lines along the exterior rim, a row of punctates below the incised lines, and 

stamping similar to Naples Stamped vessels located below the punctates and surrounding the 

perforation. Benchley et al. suggested that the sample is “reminiscent of Hopewell ware that has 

a row of punctates setting off a band near the rim that is diagonally incised” (1976:103). 

Two samples selected from the Sloan site represent Hopewell vessels. Sample 2019017 is 

a crosshatched rim sherd. The sample has smoothed-over cordmarked surface treatment and is 

grit tempered. The crosshatch decorative style is limited to the exterior rim of the vessel. The rim 

is slightly inverted and unmodified and has a flattened lip. Sample 2019018 is a body sherd that 

has rocker stamped decorative techniques. The rocker stamps are present along a single incised 

line on the exterior of the vessel. This sample has grit, limestone, and grog temper. Because this 

is a body sherd, the vessel form and rim morphology could not be determined. 

Mineralogy 

The identification of minerals in thin sections is a qualitative aspect of ceramic 

petrography. Additionally, the counts of minerals were tracked to determine the quantity of each 

identified in the samples. Most minerals were present in the ceramic paste of both southeastern 

Wisconsin and northern Illinois samples, while some were only present in one region. Biotite, 

calcite, p-feldspar, and quartz were identified in all twenty-seven samples. Hornblende, 
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microcline, k-feldspar, quartzite, myrmekite, sericite, and opaque minerals were present in 

samples from both regions. Apatite was only present in one sample from the Peterson site in the 

southeastern Wisconsin region. Muscovite was only present in one sample from the Sloan site in 

the northwestern Illinois region.   

Opaque minerals were present in all samples from southeastern Wisconsin. However, not 

all minerals were identified in all samples from each site. Apatite was present only in one sample 

of the Peterson site. Hornblende was present in all samples except the Crab Apple Point site and 

one sample from the Peterson site. Microcline was present in three samples from each the Finch 

and Peterson site. K-feldspar was present in four Finch site samples, the Crab Apple Point 

sample, and one sample from the Peterson site. Quartzite was present in the Alberts and Crab 

Apple Point samples, as well as one of the Finch and one of the Peterson samples. Myrmekite 

was present in all but three samples from the Finch site. And sericite was present in one Finch 

site sample, six Peterson site samples, and all other southeastern Wisconsin samples. 

K-feldspar and opaque minerals were present in samples from all the sites Illinois. 

However, the Sloan site only had six samples with k-feldspar and five samples with opaque 

minerals. All other minerals were present to varying degrees in the Illinois sites. Hornblende was 

present in the Kautz site sample and one of the Sloan samples. Microcline was present in the 

Albany Village and DeWitte/Liphardt Habitation samples, as well as seven of the Sloan samples. 

Quartzite was present in the Blythe and DeWitte/Liphardt Habitation site as well as three of the 

Sloan site samples. Myrmekite was present in the Albany Village, DeWitte/Liphardt Habitation, 

and Kautz samples, as well as six of the Sloan samples. Sericite was present in all samples 

except the Blythe site sample. 
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In addition to the minerals, conglomerates, chert, and sandstone were also identified in 

some samples. Conglomerates were only present in southeastern Wisconsin site samples, one 

from the Finch site, and one from Peterson. Chert was present in sherds from both southeastern 

Wisconsin and northwestern Illinois sites. In Illinois, chert was present in the Blythe site sample, 

and two of the Sloan site samples. In southeastern Wisconsin, it was present in the Alberts and 

Crab Apple Point samples as well as three of the Finch samples and four of the Peterson samples. 

Sandstone was present in one Sloan site sample and one Peterson site sample. 

Paste and Body Composition 

The paste is the natural clay used to construct ceramic vessels, excluding the human-

added temper. The paste consists of silt, sand, and clay particles. In the petrographic analysis, the 

number of silt, sand, and clay particles were counted for each sample and the percentage of each 

was calculated for the sample paste. 

The sherds from sites in Illinois had a higher average of sand (2.3%) and clay (86.3%) 

and a lower average of silt (11.4%) than the southeastern Wisconsin collection. The sand (1.7%) 

and clay (82.1%) are lower and the silt (16.2%) is higher in the samples from southeastern 

Wisconsin sites than in Illinois. A total of three samples did not have any natural inclusions that 

fell into the sand size-grade category. These samples include the only sample from the Kautz site 

in northeastern Illinois, as well as a single sample from both the Finch and Peterson sites in 

Wisconsin. 

The paste composition data for the individual samples and sites were also plotted on 

ternary diagrams. The diagrams allowed different variables, including morphological and 
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attribute characteristics, to be displayed across the spatial location each sample represents based 

on individual paste characteristics (Figure 4.137). 

 

 
 

Figure 4.137 Ternary diagram of paste composition based on pottery type. The orange 
points represent samples from southeast Wisconsin sites, blue points represent samples 
from Illinois sites. 

 

The following diagrams were created to identify the statistical significance of the paste 

variation between sites in this analysis (Figure 4.138). Each point represents an archaeological 

site. The isoproportion lines run from each corner of the ternary diagram to the center of the 

opposite side. Using the plotout function, this diagram plots the 90% and 99% confidence 
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interval for each point. The ellipses surrounding each site cross the isoproportion lines at the 

90% and 99% confidence interval for each point. All ellipses are shown to overlap, which 

suggest that the relationship between the elements of silt, matrix, and sand, are the same for each 

site, and there is no change in the sub-composition. 

 
 

Figure 4.138 Ternary diagram plotting the estimation of variance of the full vector of the 
linear regression model of paste composition. The 90% and 99% confidence intervals are 
represented by ellipses around each site. 

 

The body is the natural clay, sand, and added temper, which all constitute the recipe of 

paste used for ceramic construction. In the petrographic analysis, the sand and temper were 



 206  

counted, and the silt and matrix particles were combined to calculate the clay. The mean count 

and percentage for each site and region were calculated using these data. 

The sherds from northern Illinois sites have a higher mean percentage of sand (2.08%) 

but a lower mean percentage of temper (9.30%) and clay (87.64%) than the southeastern 

Wisconsin sites. In samples from southeastern Wisconsin, the mean percentage of sand (1.54%) 

is lower while temper (10.11%) and clay (88.35%) are both higher. The lack of natural inclusions 

that fell into the sand size-grade category in the sample at the Kautz site and the individual 

samples from both the Finch and Peterson sites also affected the mean sand percentages in the 

body composition.  

The body composition data for the individual samples and sites were plotted on ternary 

diagrams. The diagrams allowed variables to be displayed across the chart based on the body 

composition characteristics (Figure 4.139). 
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Figure 4.139 Ternary diagram of body composition based on pottery type. The orange 
points represent sherds from southeast Wisconsin sites, blue points represent sherds from 
northern Illinois sites. 

 

The isoproportion ternary diagram in Figure 4.140 identifies the statistical significance of 

the body composition variation between the sites in the study. Each point represents one 

archaeological site. The isoproportion lines run from each corner of the ternary diagram to the 

center of the opposite side. Using the plotout function, this diagram plots the 90% and 99% 

confidence interval for each point. The ellipses surrounding each site cross the isoproportion 

lines at the 90% and 99% confidence interval for each point. All ellipses are shown to overlap, 
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which suggest that the relationship between the elements of temper, matrix, and sand, are the 

same for each site. Thus, there appears to be no change in the sub-composition of the samples. 

 
 

Figure 4.140 Ternary diagram plotting the estimation of variance of the full vector of the 
linear regression model of body composition. The 90% and 99% confidence intervals are 
represented by ellipses around each site.  
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CHAPTER 5: SUMMARY AND CONCLUSION 

Summary 

The results from the ceramic petrographic analysis indicate some variation, as well as 

some similarities, between the stylistic, morphological, and petrographic variables. The 

Waukesha phase Rock Ware pottery types, Kegonsa Stamped and Shorewood Cord Roughened, 

are considered local variants of cognate pottery styles found throughout southern Wisconsin and 

northern Illinois. However, in the present sample, sherds of Kegonsa Stamped and Shorewood 

Cord Roughened were restricted to southeastern Wisconsin recovery locations. Conversely, the 

Havana Ware pottery styles in the sample set were obtained from sites located in both northern 

Illinois and southern Wisconsin. Steuben Punctated ceramics have been suggested to compose a 

northeastern Illinois-southern Wisconsin microstyle (Wolforth 1995). However, the samples 

analyzed in the present study were all obtained from the Peterson site, located in southeastern 

Wisconsin. Havana Zoned, Naples Stamped, and Havana Cordmarked types were obtained from 

both regions. Havana Plain and Hummel Stamped were obtained only from sites in northern 

Illinois. Unclassified and Hopewell-Related pottery was obtained from sites in both regions. The 

vessels exhibiting Hopewell decorative styles were present within both regions. In the sample, 

these vessels are set apart from the other stylistic types by smaller average orifice diameters and 

thinner walls. 

The sample used in this analysis is not representative of all Middle Woodland pottery in 

the research area. The samples selected were restricted to artifacts within the UWM ARL 

collections. In addition, sample size was limited by cost considerations. Therefore, the samples, 

and the analysis, cannot be accepted as fully indicative of the regional distribution of Middle 
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Woodland pottery types and ceramic pastes. Nonetheless, the data do suggest some interesting 

patterns.  

Nearly all sherds in the sample set were tempered with grit. The only samples that 

included grog, or grog and limestone, in addition to grit temper, are from the Sloan site in 

northwestern Illinois. Notably absent are pastes composed primarily of limestone. Nearly all 

minerals were present in samples from both regions, with the exception of apatite and muscovite, 

which were only present in sherds from Wisconsin and Illinois, respectively. 

There is some variation in the paste and body composition of sherds from the two 

regions. Sherds from northern Illinois sites exhibit a greater mean percentage of sand and clay, 

while southeastern Wisconsin sherds have a greater mean percentage of silt in the paste 

composition. The body composition of sherds from northern Illinois sites includes a higher mean 

percentage of sand, while sherds from the southeastern Wisconsin sites have higher percentages 

of temper and clay. However, based on the statistical analysis displaying the isoproportion lines 

at the 90% and 99% confidence interval, the data do not indicate any statistically significant 

difference in either the paste or body compositions between the sites. This suggests that the 

overall clay composition and ceramic paste recipes from the selected samples are similar in both 

regions. While this analysis focused on relatively few samples, that were not evenly distributed 

across sites and pottery types, the samples did exhibit a relatively homogenous paste 

composition. There was no evidence of a preferred paste or recipe that was specific to either 

region. Overall, the mean paste and body compositions for each site overlapped the other sites in 

this analysis.  
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Conclusions 

The first goal of this thesis was to determine the extent to which the samples are similar 

of different. The samples are all representative of Middle Woodland vessels in the region. All 

samples were tempered with grit, while some samples also include grog, or grog and limestone 

tempering. Overall, the paste and body compositions across all samples are relatively 

homogenous. The mineralogical analysis suggests standardization with minor variation in paste 

and recipes likely due to variation on locally available clay and temper sources. Four of the 

identified minerals were present in all samples and represented the highest mean percentage of 

minerals identified in all samples, biotite (19.42%), calcite (14.33%), p-feldspar (12.93%), and 

quartz (25.10%). Opaque minerals (8.28%) were identified in samples from every site, although 

they were not identified in all samples. All other minerals identified in this analysis were present 

in sherds from both regions, except for apatite, which was only identified in a sherd from the 

Peterson site in southeast Wisconsin, and muscovite, which was only identified in a sherd from 

the Sloan site in northwest Illinois. Sericite (7.59%) was identified in nineteen samples and was 

relatively abundant compared to the remaining minerals which ranged between 0.07% to 3.39%. 

The petrographic analysis also identified some variation between the composition of 

samples. The paste composition analysis identified a greater percentage of silt in the southeastern 

Wisconsin samples. The Illinois sample paste composition is higher in sand. The percentage of 

silt in Wisconsin samples is highest at the Alberts site at 20.89%, but none of the average 

percentages fall below 13% silt. However, the sand percentages are highest at the Crab Apple 

Point site and Peterson site, which both have the lowest percentage of silt in the Wisconsin 

samples at 13.51% and 13.59%, respectively. The percentage of silt and sand in the Illinois 

samples vary more than the Wisconsin samples. The Blythe site has the highest average 
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percentage of silt of all sites at 28.42%, and a sand percentage of 3.16%, the clay at the Blythe 

site accounts for the smallest percentage of all samples at only 68.42%. No other site from the 

Illinois region exhibits an average percentage of silt greater than 12.35%, which is average for 

the Albany Village site. The Kautz site samples exhibit the lowest percentage of silt at 6.11%, 

and lack any sand-sized particles. As a result, at the Kautz site clay particles account for about 

93.9% of the paste matrix (Table 5.1). Body composition also exhibits higher percentages of 

temper and lower percentages of sand in the Wisconsin sites in comparison to the Illinois sites. 

In the Wisconsin sample, the Alberts site exhibits the lowest percent of temper at 4.24%. Sherds 

from the Crab Apple Point are also low in temper but have the highest percent of sand in the 

Wisconsin sample. The Blythe site sample has the lowest percent of temper overall at 2.56% 

while the DeWitte/Liphardt Habitation site has the highest percentage of temper overall at 

15.12% (Table 5.2. Consequently, these results suggest that both paste and body composition of 

sherds from the Illinois sites include a greater percentage of sand, while the sherds from the 

Wisconsin sites have a greater average percentage of both temper and silt.  

 
TABLE 5.1 SUMMARY OF PASTE DATA BY SITE 

 

 
 

Site Silt (mean %) Sand (mean %) Clay (mean %)
Northern Illinois 11.408 2.297 86.294

Albany Village (11WT1) 12.346 4.321 83.333
Blythe (11HA40) 28.421 3.158 68.421
DeWitte/Liphardt Habitation (11RI57) 8.046 2.299 89.655
Kautz (11DU46) 6.107 0.000 93.893
Sloan (11MC86) 10.247 2.224 87.529

Southeastern Wisconsin 16.169 1.737 82.094
Alberts (47JE887) 20.886 1.266 77.848
CAP (47JE93) 13.514 2.703 83.784
Finch (47JE902) 18.955 1.165 79.880
Peterson (47WK199) 13.487 2.157 84.356

Grand Total 14.053 1.986 83.961

Mean Percentage of Paste Composition
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TABLE 5.2 SUMMARY OF BODY DATA BY SITE 
 

 
 

Finally, the last goal of this research was to determine if the samples could be separated 

by region using statistical analysis. A statistical analysis was conducted using isoproportion lines 

to plot the 90% and 99% confidence interval for each site. Results suggest that the relative 

proportions of clay, silt, and sand cannot be statistically differentiated between sites. This 

suggests selection of broadly similar clay sources throughout the region. In southeast Wisconsin 

and northeast Illinois, it has proved difficult to identify specific clay sources due to the 

widespread similarity of extensive glacial clay deposits (see Clauter 2012; Hulit 2012; 

Naunapper 2007; Schneider 2015; Watson 1992). This is not the case in the Illinois River valley 

where studies have identified localized clay resources tied to particular site locations (Fie 2008; 

White and O’Brien 1964). Additionally, the statistical analysis using isoproportion lines to plot 

the 90% and 99% confidence interval for each site shows that the relative proportions of clay, 

sand, and temper cannot be differentiated between the sites. This suggests broadly similar temper 

preferences throughout the study region. While minor differences are apparent, likely due to 

variation in locally available temper, potters do not seem to have exhibited a preference for a 

specific raw mineral. The lack of individualized compositions between sites may indicate that 

Site Temper (mean %) Sand (mean %) Clay (mean %)
Northern Illinois 9.300 2.081 87.635

Albany Village (11WT1) 8.475 3.955 87.571
Blythe (11HA40) 2.564 3.077 94.359
DeWitte/Liphardt Habitation (11RI57) 15.122 1.951 82.927
Kautz (11DU46) 14.935 0.000 85.065
Sloan (11MC86) 8.813 1.999 87.713

Southeastern Wisconsin 10.107 1.544 88.349
Alberts (47JE887) 4.242 1.212 94.545
CAP (47JE93) 5.932 2.542 91.525
Finch (47JE902) 8.613 1.060 90.327
Peterson (47WK199) 12.822 1.864 85.314

Grand Total 9.749 1.783 88.032

Mean Percentage of Body Composition
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paste recipes were widely shared throughout the study area. This aligns with Haas’s (2019b) 

suggestion that a persistent relationship was established during Early Woodland times between 

people in southern Wisconsin and northern Illinois and continued through the Middle Woodland 

period. Additionally, these results follow a similar pattern to Clauter’s (2012) research on Late 

Woodland pottery. Clauter identified some patterns, including decorative motif and temper types, 

that follow a divide between sites in eastern Wisconsin and western Wisconsin, while the 

petrographic data did not show statistically significant variation between sites. Finally, 

Schneider’s analysis of Oneota ceramic pastes from various Wisconsin localities led him to 

argue that while clay and temper sources varied locally, “the petrographic data indicate that the 

recipe used by Oneota potters is similar among all the sites and localities” in his study (Schneider 

2015:330). 

Future Research 

Future analysis of Middle Woodland sites in southeastern Wisconsin and northern Illinois 

could be designed to expand upon the preliminary research documented in this thesis. Ideally, 

this would include additional petrographic analysis of Middle Woodland sherds from a more 

representative set of sites in both southern Wisconsin and northern Illinois.  

This additional research could be completed in two primary ways. First, more samples 

could be analyzed from the already selected sites to provide a more statistically representative 

sample of Middle Woodland pottery from these sites. This would be especially beneficial for 

those sites only represented by a single sherd in this study. Second, samples from additional sites 

in the region should be included in the analysis. A larger sample size may identify localized 

variation within the broader regional sample. Further research should include cognate varieties of 
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vessels from both regions, especially within sites that could be within the proposed expanded 

Waukesha phase boundaries. Data on a larger sample of vessels may support the provisional 

results that suggest overall homogeneity within and between sites, or it may identify 

compositional variation masked by sampling error in the present analysis. 

Another opportunity for future research would be to expand the temporal boundaries of 

this research project. In this way, the compositional data of Early Woodland ceramics in the 

region could be added to this database. The addition of Early Woodland vessels could be used to 

further strengthen Haas’s (2019b) argument that the Middle Woodland groups were adapting to 

Havana-Hopewell stylistic influences using existing technological practices. If the paste 

composition of Early Woodland vessels in the region exhibits the same homogeneity identified 

in this analysis, it could potentially indicate that ceramic recipes in southeast Wisconsin did not 

changed dramatically between the Early and Middle Woodland periods, while decorative and 

stylistic changes were occurring. Likewise, variation in ceramic pastes could suggest that the 

recipes used to construct Early Woodland vessels were distinct from the Middle Woodland 

recipes. 

Another opportunity for future research would be the addition of chemical compositional 

analyses. Techniques such as Energy Dispersive X-ray Fluorescence, Wave Dispersive X-ray 

Fluorescence, Inert Neutron Activation, radiography, and other methods have been shown to be 

complementary to ceramic petrography. However, like ceramic petrography, all are destructive 

techniques, and most are somewhat more expensive than the production of ceramic thin sections. 

Thus, large sample sizes would necessitate a major grant and access to a wide range of 

collections. 
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APPENDIX D: COMPOSITION STATISTICAL ANALYSIS DATA 
 

Paste Data 

R version 3.6.3 (2020-02-29) -- "Holding the Windsock" 
Copyright (C) 2020 The R Foundation for Statistical Computing 
Platform: x86_64-apple-darwin15.6.0 (64-bit) 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 
 
> foo<-read.table("Thornton_Paste.txt",header = TRUE) 
Error in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,  :  
  line 1 did not have 5 elements 
> foo<-read.table("Thornton_Paste.txt",header = TRUE) 
> library(boot) 
> library(compositions) 
Loading required package: tensorA 
 
Attaching package: ‘tensorA’ 
 
The following object is masked from ‘package:base’: 
 
    norm 
 
Loading required package: robustbase 
 
Attaching package: ‘robustbase’ 
 
The following object is masked from ‘package:boot’: 
 
    salinity 
 
Loading required package: bayesm 
Welcome to compositions, a package for compositional data analysis. 
Find an intro with "? compositions" 
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Attaching package: ‘compositions’ 
 
The following objects are masked from ‘package:stats’: 
 
    cor, cov, dist, var 
 
The following objects are masked from ‘package:base’: 
 
    %*%, scale, scale.default 
 
> library(energy) 
> library(MASS) 
> library(sp) 
> elem<-[,2:4] 
Error: unexpected '[' in "elem<-[" 
> elem<-foo[,2:4] 
> sites<-foo[,1] 
> elem.ac<-acomp(elem) 
> plot(elem.ac, pch = c(1:9)[sites], col = c(1:9)[sites]) 
> legend(x = "topleft", levels(sites), pch = 20, col = c(1:9), xpd = NA, 
+        yjust = 0) 
> mean(elem.ac) 
   Matrix      Silt      Sand  
0.8538052 0.1209920 0.0252028  
attr(,"class") 
[1] acomp 
> elem.cen<-elem.ac-mean(elem.ac) 
> head(elem.cen) 
[1] 0.2111359 0.2156804 0.5640417 0.4986246 0.2571565 0.5135026 
> plot(elem.cen, pch = c(1:9)[sites], col = c(1:9)[sites]) 
> legend(x = "topleft", levels(sites), pch = 20, col = c(1:9), xpd = NA, 
+        yjust = 0) 
> res<-lm(ilr(elem.cen)~sites) 
> anova(res) 
Analysis of Variance Table 
 
            Df  Pillai approx F num Df den Df Pr(>F) 
(Intercept)  1 0.21287  2.29872      2     17 0.1307 
sites        8 0.61256  0.99339     16     36 0.4843 
Residuals   18                                       
> compcoef<-ilrInv(coef(res),orig=elem.cen) 
> print(compcoef) 
              Matrix    Silt      Sand      
(Intercept)   0.2630165 0.2749674 0.4620161 
sitesAlberts  0.3200446 0.5795930 0.1003624 
sitesBlythe   0.2130399 0.5973311 0.1896289 
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sitesCAP      0.3688908 0.4016150 0.2294943 
sitesDeWitte  0.4761282 0.2884238 0.2354480 
sitesFinch    0.3491790 0.5380533 0.1127677 
sitesKautz    0.5480361 0.2406012 0.2113627 
sitesPeterson 0.4236762 0.3908985 0.1854253 
sitesSloan    0.4854865 0.3089508 0.2055627 
attr(,"class") 
[1] acomp 
> (Albany<-compcoef[1,]) 
   Matrix      Silt      Sand  
0.2630165 0.2749674 0.4620161  
> print(acomp(Albany+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.83333333 0.12345679 0.04320988  
attr(,"class") 
[1] acomp 
> cenmat<-matrix(rep(0,27),nrow = 9) 
> orimat<-cenmat 
> rownames(cenmat)<-levels(sites) 
> `colnames<-`c("Matrix","Silt","Sand") 
Error: unexpected symbol in "`colnames<-`c" 
> colnames(cenmat)<-c("Matrix","Silt","Sand") 
> rownames(orimat)<-rownames(cenmat) 
> colnames(orimat)<-rownames(cenmat) 
Error in dimnames(x) <- dn :  
  length of 'dimnames' [2] not equal to array extent 
> colnames(orimat)<-colnames(cenmat) 
> cenmat[1,]<-Albany 
> orimat[1,],-acomp(Albany+mean(elem.ac)) 
Error: unexpected ',' in "orimat[1,]," 
>  
> orimat[1,]<-acomp(Albany+mean(elem.ac)) 
> (Alberts<-Albany+acomp(compcoef[2,])) 
   Matrix      Silt      Sand  
0.2903504 0.5497096 0.1599400  
attr(,"class") 
[1] acomp 
> print(acomp(Alberts+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.77848101 0.20886076 0.01265823  
attr(,"class") 
[1] acomp 
> cenmat[2,]<-Alberts 
> orimat[2,]<-Alberts 
> (Blythe<-Albany+acomp(compcoef[3,])) 
   Matrix      Silt      Sand  
0.1819896 0.5334566 0.2845538  
attr(,"class") 
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[1] acomp 
> print(acomp(Blythe+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.68421053 0.28421053 0.03157895  
attr(,"class") 
[1] acomp 
> cenmat[3,]<-Blythe 
> orimat[3,]<-Blythe 
> (CAP<-Albany+acomp(compcoef[4,])) 
   Matrix      Silt      Sand  
0.3095019 0.3522685 0.3382296  
attr(,"class") 
[1] acomp 
> print(acomp(CAP+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.83783784 0.13513514 0.02702703  
attr(,"class") 
[1] acomp 
> cenmat[3,]<-CAP 
> cenmat[3,]<-Blythe 
> cenmat[4,]<-CAP 
> orimat[4,]<-CAP 
> (DeWitte<-Albany+acomp(compcoef[5,])) 
   Matrix      Silt      Sand  
0.3996890 0.2531208 0.3471902  
attr(,"class") 
[1] acomp 
> print(acomp(DeWitte+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.89655172 0.08045977 0.02298851  
attr(,"class") 
[1] acomp 
> cenmat[5,]<-DeWitte 
> orimat[5,]<-DeWitte 
> (Finch<-Albany+acomp(compcoef[6,])) 
   Matrix      Silt      Sand  
0.3146412 0.5068636 0.1784951  
attr(,"class") 
[1] acomp 
> print(acomp(Finch+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.80319445 0.18335557 0.01344998  
attr(,"class") 
[1] acomp 
> cenmat[6,]<-Finch 
> orimat[6,]<-Finch 
> (Kautz<-Albany+acomp(compcoef[7,])) 
   Matrix      Silt      Sand  



 246  

0.4680666 0.2148298 0.3171036  
attr(,"class") 
[1] acomp 
> print(acomp(Kautz+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.92162627 0.05994317 0.01843056  
attr(,"class") 
[1] acomp 
> cenmat[7,]<-Kautz 
> orimat[7,]<-Kautz 
> (Peterson<-Albany+acomp(compcoef[8,])) 
   Matrix      Silt      Sand  
0.3658514 0.3528848 0.2812638  
attr(,"class") 
[1] acomp 
> print(acomp(Peterson+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.86252994 0.11789634 0.01957372  
attr(,"class") 
[1] acomp 
> cenmat[8,]<-Peterson 
> orimat[8,]<-Peterson 
> (Sloan<-Albany+acomp(compcoef[9,])) 
   Matrix      Silt      Sand  
0.4150990 0.2761609 0.3087401  
attr(,"class") 
[1] acomp 
> print(acomp(Sloan+mean(elem.ac))) 
    Matrix       Silt       Sand  
0.89587073 0.08446052 0.01966875  
attr(,"class") 
[1] acomp 
> cenmat[9,]<-Sloan 
> orimat[9,]<-Sloan 
> print(cenmat) 
            Matrix      Silt      Sand 
Albany   0.2630165 0.2749674 0.4620161 
Alberts  0.2903504 0.5497096 0.1599400 
Blythe   0.1819896 0.5334566 0.2845538 
CAP      0.3095019 0.3522685 0.3382296 
DeWitte  0.3996890 0.2531208 0.3471902 
Finch    0.3146412 0.5068636 0.1784951 
Kautz    0.4680666 0.2148298 0.3171036 
Peterson 0.3658514 0.3528848 0.2812638 
Sloan    0.4150990 0.2761609 0.3087401 
> print(orimat) 
            Matrix      Silt       Sand 
Albany   0.8333333 0.1234568 0.04320988 
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Alberts  0.2903504 0.5497096 0.15994003 
Blythe   0.1819896 0.5334566 0.28455380 
CAP      0.3095019 0.3522685 0.33822958 
DeWitte  0.3996890 0.2531208 0.34719024 
Finch    0.3146412 0.5068636 0.17849513 
Kautz    0.4680666 0.2148298 0.31710357 
Peterson 0.3658514 0.3528848 0.28126383 
Sloan    0.4150990 0.2761609 0.30874009 
> vaux<-vcov(res) 
> source("vcovout.r") 
> matout<-vcovout(vaux) 
> print(matout) 
[[1]] 
            1           2           3 
1  0.18968418 -0.07369774 -0.11598644 
2 -0.07369774  0.15709802 -0.08340028 
3 -0.11598644 -0.08340028  0.19938671 
 
[[2]] 
           1          2          3 
1  0.3793684 -0.1473955 -0.2319729 
2 -0.1473955  0.3141960 -0.1668006 
3 -0.2319729 -0.1668006  0.3987734 
 
[[3]] 
           1          2          3 
1  0.3793684 -0.1473955 -0.2319729 
2 -0.1473955  0.3141960 -0.1668006 
3 -0.2319729 -0.1668006  0.3987734 
 
[[4]] 
           1          2          3 
1  0.3793684 -0.1473955 -0.2319729 
2 -0.1473955  0.3141960 -0.1668006 
3 -0.2319729 -0.1668006  0.3987734 
 
[[5]] 
           1          2          3 
1  0.3793684 -0.1473955 -0.2319729 
2 -0.1473955  0.3141960 -0.1668006 
3 -0.2319729 -0.1668006  0.3987734 
 
[[6]] 
           1           2           3 
1  0.2212982 -0.08598070 -0.13531751 
2 -0.0859807  0.18328102 -0.09730033 
3 -0.1353175 -0.09730033  0.23261783 
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[[7]] 
           1          2          3 
1  0.3793684 -0.1473955 -0.2319729 
2 -0.1473955  0.3141960 -0.1668006 
3 -0.2319729 -0.1668006  0.3987734 
 
[[8]] 
            1           2          3 
1  0.21678192 -0.08422599 -0.1325559 
2 -0.08422599  0.17954060 -0.0953146 
3 -0.13255593 -0.09531460  0.2278705 
 
[[9]] 
            1           2           3 
1  0.21339470 -0.08290996 -0.13048474 
2 -0.08290996  0.17673527 -0.09382531 
3 -0.13048474 -0.09382531  0.22431005 
 
> source("plotout.r") 
> plotout(cenmat,sites,matout) 
> save.image("~/Library/Mobile 
Documents/com~apple~CloudDocs/Seth/Archaeology/thornton/Working Directory/Thornton 
Petro/Thornton_Paste.RData") 
> 
 

Body Data 

R version 3.6.3 (2020-02-29) -- "Holding the Windsock" 
Copyright (C) 2020 The R Foundation for Statistical Computing 
Platform: x86_64-apple-darwin15.6.0 (64-bit) 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 
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[Workspace loaded from ~/Library/Mobile 
Documents/com~apple~CloudDocs/Seth/Archaeology/thornton/Working Directory/Thornton 
Petro/Thornton_Paste.RData] 
 
> library(boot) 
> library(compositions) 
Loading required package: tensorA 
 
Attaching package: ‘tensorA’ 
 
The following object is masked from ‘package:base’: 
 
    norm 
 
Loading required package: robustbase 
 
Attaching package: ‘robustbase’ 
 
The following object is masked from ‘package:boot’: 
 
    salinity 
 
Loading required package: bayesm 
Welcome to compositions, a package for compositional data analysis. 
Find an intro with "? compositions" 
 
 
Attaching package: ‘compositions’ 
 
The following objects are masked from ‘package:stats’: 
 
    cor, cov, dist, var 
 
The following objects are masked from ‘package:base’: 
 
    %*%, scale, scale.default 
 
> library(energy) 
> library(MASS) 
> library(sp) 
> foo<-read.table("Thornton_Body.txt",header = TRUE) 
> elem<-foo[,2:4] 
> sites<-foo[,1] 
> elem.ac<-acomp(elem) 
> plot(elem.ac,pch=c(1:9)[sites],col=c(1:9)[sites]) 
> legend(x="topleft",levels(sites),pch=20,col=c(1:9),xpd = NA,yjust = 0) 
> mean(elem.ac) 
    Matrix       Sand     Temper  
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0.89049851 0.02276608 0.08673540  
attr(,"class") 
[1] acomp 
> elem.cen<-elem.ac-mean(elem.ac) 
> head(elem.cen) 
[1] 0.1699793 0.2356458 0.4114377 0.3978047 0.3643453 0.2932504 
> plot(elem.cen,pch=c(1:9)[sites],col=c(1:9)[sites]) 
> legend(x="topleft",levels(sites),pch=20,col=c(1:9),xpd = NA,yjust = 0) 
> res<-lm(ilr(elem.cen)~sites) 
> anova(res) 
Analysis of Variance Table 
 
            Df  Pillai approx F num Df den Df Pr(>F) 
(Intercept)  1 0.19229   2.0235      2     17 0.1628 
sites        8 0.75613   1.3677     16     36 0.2125 
Residuals   18                                       
 
> compcoef<-irlInv(coef(res),orig=elem.cen) 
Error in irlInv(coef(res), orig = elem.cen) :  
  could not find function "irlInv" 
> compcoef<-ilrInv(coef(res),orig=elem.cen) 
> print(compcoef) 
              Matrix    Sand      Temper    
(Intercept)   0.2659535 0.4698043 0.2642422 
sitesAlberts  0.5722271 0.1624454 0.2653275 
sitesBlythe   0.4992893 0.3605117 0.1401990 
sitesCAP      0.4376689 0.2692011 0.2931301 
sitesDeWitt   0.2936580 0.1529983 0.5533438 
sitesFinch    0.4545850 0.1311601 0.4142549 
sitesKautz    0.2797760 0.2126405 0.5075835 
sitesPeterson 0.3407793 0.1501779 0.5090428 
sitesSloan    0.4289518 0.1861562 0.3848921 
attr(,"class") 
[1] acomp 
> (Albany<-compcoef[1,]) 
   Matrix      Sand    Temper  
0.2659535 0.4698043 0.2642422  
> print(acomp(Albany+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.87570621 0.03954802 0.08474576  
attr(,"class") 
[1] acomp 
> cenmat<-matrix(rep(0,27),nrow=9) 
> orimat<-cenmat 
> rowsnames(cenmat)<-levels(sites) 
Error in rowsnames(cenmat) <- levels(sites) :  
  could not find function "rowsnames<-" 
> rownames(cenmat)<-levels(sites) 
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> colnames(cenmat)<-c("Matrix","Sand","Temper") 
> rownames(orimat)<-rownames(cenmat) 
> colnames(orimat)<-colnames(cenmat) 
> cenmat[1,]<-Albany 
> orimat[1,]<-acomp(Albany+mean(elem.ac)) 
> (Blythe<-Albany+acomp(compcoef[2,])) 
   Matrix      Sand    Temper  
0.5096404 0.2555725 0.2347870  
attr(,"class") 
[1] acomp 
> (Alberts<-Albany+acomp(compcoef[2,])) 
   Matrix      Sand    Temper  
0.5096404 0.2555725 0.2347870  
attr(,"class") 
[1] acomp 
> print(acomp(Alberts+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.94545455 0.01212121 0.04242424  
attr(,"class") 
[1] acomp 
> cenmat[2,]<-Alberts 
> orimat[2,]<-acomp(Alberts+mean(elem.ac)) 
> (Blythe<-Albany+acomp(compcoef[3,])) 
   Matrix      Sand    Temper  
0.3914685 0.4993156 0.1092159  
attr(,"class") 
[1] acomp 
> print(acomp(Blythe+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.94358974 0.03076923 0.02564103  
attr(,"class") 
[1] acomp 
> cenmat[3,]<-Blythe 
> orimat[3,]<-acomp(Blythe+mean(elem.ac)) 
> (CAP<-Albany+acomp(compcoef[4,])) 
   Matrix      Sand    Temper  
0.3633754 0.3948189 0.2418057  
attr(,"class") 
[1] acomp 
> print(acomp(CAP+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.91525424 0.02542373 0.05932203  
attr(,"class") 
[1] acomp 
> cenmat[4,]<-CAP 
> orimat[4,]<-acomp(CAP+mean(elem.ac)) 
> (DeWitt<-Albany+acomp(compcoef[5,])) 
   Matrix      Sand    Temper  
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0.2636752 0.2426751 0.4936497  
attr(,"class") 
[1] acomp 
> print(acomp(DeWitt+mean(elem.ac))) 
   Matrix      Sand    Temper  
0.8292683 0.0195122 0.1512195  
attr(,"class") 
[1] acomp 
> cenmat[5,]<-DeWitt 
> orimat[5,]<-acomp(DeWitt+mean(elem.ac)) 
> (Finch<-Albany+acomp(compcoef[6,])) 
   Matrix      Sand    Temper  
0.4140619 0.2110392 0.3748989  
attr(,"class") 
[1] acomp 
> print(acomp(Finch+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.90808476 0.01183258 0.08008267  
attr(,"class") 
[1] acomp 
> cenmat[6,]<-Finch 
> orimat[6,]<-acomp(Finch+mean(elem.ac)) 
> (Kautz<-Albany+acomp(compcoef[7,])) 
   Matrix      Sand    Temper  
0.2412443 0.3238947 0.4348610  
attr(,"class") 
[1] acomp 
> print(acomp(Kautz+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.82651675 0.02836962 0.14511363  
attr(,"class") 
[1] acomp 
> cenmat[7,]<-Kautz 
> orimat[7,]<-acomp(Kautz+mean(elem.ac)) 
> (Peterson<-Albany+acomp(compcoef[8,])) 
   Matrix      Sand    Temper  
0.3065019 0.2386037 0.4548944  
attr(,"class") 
[1] acomp 
> print(acomp(Peterson+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.85876744 0.01709128 0.12414128  
attr(,"class") 
[1] acomp 
> cenmat[8,]<-Peterson 
> orimat[8,]<-acomp(Peterson+mean(elem.ac)) 
> (Sloan<-Albany+acomp(compcoef[9,])) 
   Matrix      Sand    Temper  
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0.3762041 0.2884056 0.3353902  
attr(,"class") 
[1] acomp 
> print(acomp(Sloan+mean(elem.ac))) 
    Matrix       Sand     Temper  
0.90380520 0.01771374 0.07848106  
attr(,"class") 
[1] acomp 
> cenmat[9,]<-Sloan 
> orimat[9,]<-acomp(Sloan+mean(elem.ac)) 
> print(cenmat) 
            Matrix      Sand    Temper 
Albany   0.2659535 0.4698043 0.2642422 
Alberts  0.5096404 0.2555725 0.2347870 
Blythe   0.3914685 0.4993156 0.1092159 
CAP      0.3633754 0.3948189 0.2418057 
DeWitt   0.2636752 0.2426751 0.4936497 
Finch    0.4140619 0.2110392 0.3748989 
Kautz    0.2412443 0.3238947 0.4348610 
Peterson 0.3065019 0.2386037 0.4548944 
Sloan    0.3762041 0.2884056 0.3353902 
> print(orimat) 
            Matrix       Sand     Temper 
Albany   0.8757062 0.03954802 0.08474576 
Alberts  0.9454545 0.01212121 0.04242424 
Blythe   0.9435897 0.03076923 0.02564103 
CAP      0.9152542 0.02542373 0.05932203 
DeWitt   0.8292683 0.01951220 0.15121951 
Finch    0.9080848 0.01183258 0.08008267 
Kautz    0.8265168 0.02836962 0.14511363 
Peterson 0.8587674 0.01709128 0.12414128 
Sloan    0.9038052 0.01771374 0.07848106 
> vaux<-vcov(res) 
> source("vcovout.r") 
> matout<-vcovout(vaux) 
> print(matout) 
[[1]] 
             1          2            3 
1  0.118923635 -0.1158467 -0.003076921 
2 -0.115846714  0.2173321 -0.101485358 
3 -0.003076921 -0.1014854  0.104562279 
 
[[2]] 
             1          2            3 
1  0.237847271 -0.2316934 -0.006153842 
2 -0.231693428  0.4346641 -0.202970715 
3 -0.006153842 -0.2029707  0.209124558 
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[[3]] 
             1          2            3 
1  0.237847271 -0.2316934 -0.006153842 
2 -0.231693428  0.4346641 -0.202970715 
3 -0.006153842 -0.2029707  0.209124558 
 
[[4]] 
             1          2            3 
1  0.237847271 -0.2316934 -0.006153842 
2 -0.231693428  0.4346641 -0.202970715 
3 -0.006153842 -0.2029707  0.209124558 
 
[[5]] 
             1          2            3 
1  0.237847271 -0.2316934 -0.006153842 
2 -0.231693428  0.4346641 -0.202970715 
3 -0.006153842 -0.2029707  0.209124558 
 
[[6]] 
             1          2            3 
1  0.138744241 -0.1351545 -0.003589741 
2 -0.135154500  0.2535541 -0.118399584 
3 -0.003589741 -0.1183996  0.121989325 
 
[[7]] 
             1          2            3 
1  0.237847271 -0.2316934 -0.006153842 
2 -0.231693428  0.4346641 -0.202970715 
3 -0.006153842 -0.2029707  0.209124558 
 
[[8]] 
             1          2            3 
1  0.135912726 -0.1323962 -0.003516481 
2 -0.132396245  0.2483795 -0.115983266 
3 -0.003516481 -0.1159833  0.119499747 
 
[[9]] 
             1          2            3 
1  0.133789090 -0.1303276 -0.003461536 
2 -0.130327553  0.2444986 -0.114171027 
3 -0.003461536 -0.1141710  0.117632564 
 
> source("plotout.r") 
> plotout(cenmat,sites,matout) 
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APPENDIX E: TERNARY DIAGRAMS 

Paste Composition 
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Body Composition 
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