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ABSTRACT

Smoothed Quantiles for Claim Frequency
Models, with Applications to Risk

Measurement
by

Ponmalar Ratnam
The University of Wisconsin-Milwaukee, 2020

Under the Supervision of Professor Vytaras Brazauskas

Statistical models for the claim severity and claim frequency variables are routinely con-

structed and utilized by actuaries. Typical applications of such models include identifica-

tion of optimal deductibles for selected loss elimination ratios, pricing of contract layers,

determining credibility factors, risk and economic capital measures, and evaluation of

effects of inflation, market trends and other quantities arising in insurance. While the

actuarial literature on the severity models is extensive and rapidly growing, that for the

claim frequency models lags behind. One of the reasons for such a gap is that various

actuarial metrics do not possess “nice” statistical properties for the discrete models whilst

their counterparts for the continuous models do. The objectives of this dissertation to

addressing the issue described above are the following:

1. Generalize the definitions of “smoothed quantiles” for samples and populations of

claim counts to vectors of smoothed quantiles. This is motivated by the fact that

multiple quantiles are needed for better understanding of insurance risks.

2. Investigate large- and small-sample properties of smoothed quantile estimators for

vectors, when the underlying claim count distribution has finite support.

3. Extend the definition of smoothed quantiles for discrete distributions with infinite

support, and study asymptotic and finite-sample properties of the associated esti-

mators.

4. Illustrate the appropriateness and flexibility of such tools in solving risk measure-

ment problems.
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Smoothed quantiles are defined using the theory of fractional or imaginary order

statistics, which was originated by Stigler (1977). To prove consistency and asymptotic

normality of sample estimators of smoothed quantiles, we utilize the results of Wang and

Hutson (2011) and generalize them to vectors of smoothed quantiles. Further, we thor-

oughly investigate extensions of this methodology to discrete populations with infinite

support (e.g., Poisson and zero-inflated Poisson distributions). Furthermore, large- and

small-sample properties of the newly designed estimators are investigated theoretically

and through Monte Carlo simulations. Finally, applications of smoothed quantiles to risk

measurement (e.g., estimation of distortion risk measures such as value-at-risk, condi-

tional tail expectation, and proportional hazards transform) are discussed and illustrated

using actual insurance data.
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Chapter 1

Introduction

Insurance is a centuries-old data-driven industry with the main cash in-flow being pre-

miums and main cash out-flow being claim payments. For any country, the insurance

industry is of great importance because it is a form of economic remediation. It provides

a means of reducing financial loss due to the consequences of risks by spreading or pool-

ing the risk over a large number of policyholders, which results in large and complicated

data sets. Actuarial science focuses on building and analyzing statistical and mathemat-

ical models for the financial sector data, with the objective to describe the process by

which money flows in and out of an organization. It comprises diverse quantitative tools

that help one make financial sense of the future in the insurance industry. These models

help companies make vital decisions on risk measurement, reserve analysis, provisions for

future liabilities, as well as contract pricing and pension planning.

Statistical models for the claim severity and claim frequency variables are routinely

constructed and utilized by actuaries. Typical applications of such models include iden-

tification of optimal deductibles for selected loss elimination ratios, pricing of contract

layers, determining credibility factors, risk and economic capital measures, and evalua-

tion of effects of inflation, market trends and other quantities arising in insurance. The
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actuarial literature on the claim frequency models is not as extensive as that for the claim

severity models. This is due to the fact that statistical properties of various actuarial

measures are relatively easy to prove for the continuous models but not for the discrete

models.

1.1 Literature Review

Many attempts have been made in the actuarial literature to find the “best” (or at

least in some sense better than existing ones) probabilistic model for the distribution

of claim count data. Most of these models are parametric. For example: the Gener-

alized Geometric and Negative Binomial distributions studied by Gossiaux and Lemaire

(1981), Willmot (1987), and Besson (1992); the Poisson-Inverse Gaussian distribution dis-

cussed by Willmot (1987), Besson (1992), and Tremblay (1992); the Generalized Poisson-

Pascal distribution was proposed by Consul (1989) and Islam and Consul (1992); and the

Poisson-Goncharov distribution presented by Denuit (1997). Also, Yip and Yau (2005)

and Boucher et al . (2007) have emphasized the use of parametric distributions other

than Poisson to accommodate features of insurance count data that are inconsistent with

the Poisson distribution assumption. In particular, these authors employed the negative

binomial, zero-inflated and hurdle distributions. In this dissertation, we will develop new

methodological tools that will be applicable to all of the distributions mentioned above.

Our discussions and illustrations, however, will focus on two broad classes of discrete

distributions, (a, b, 0) and (a, b, 1). These classes include the traditional discrete distribu-

tions such as binomial, Poisson, and negative binomial, their truncated and zero-inflated

variants, as well as other discrete distributions. A short description of the two classes is

provided in Chapter 2, and further details are available in Klugman et al . (2012, Chapter

6).
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There is a large literature on risk measures, their estimation methods, hypothesis test-

ing and risk-based decision making when the underlying loss variable is continuous (see,

for example, Jones and Zitikis, 2003, 2005, 2007; Albrecht, 2004; Brazauskas and Kaiser,

2004; Tapiero, 2004; Kaiser and Brazauskas, 2006; Brazauskas et al ., 2007, 2008; Furman

et al ., 2017; Samanthi et al ., 2017). When the loss variable is discrete or mixed, however,

the definition of risk measures has to be broadened. See a comprehensive study by Acerbi

and Tasche (2002) dedicated to two most popular risk measures: value-at-risk (VaR) and

conditional value-at-risk (CVaR). The broadened definitions of those risk measures come

at the expense of technically trickier statistical inference. While there were attempts to

develop statistical inferential tools for VaR and CVaR based on count variables (see Göb,

2011), much more work needs to be done for these and other risk measures. The tech-

niques presented in this dissertation will help alleviate the existing challenges and will

facilitate a straighforward transition from the risk measurement literature of continuous

loss variables to that of discrete.

1.2 Actuarial Applications

Discrete probability distributions play an important role in many different types of insur-

ance problems. For example, to design insurance products that are financially manageable

and can be priced competitively the insurance company needs to build models for the to-

tal payments. The building blocks of such models are random variables that describe the

number of claims (N) and the amounts (Xj’s) of those claims. Then they are combined

into the aggregate loss (SN) as follows:

SN =
N∑
j=1

Xj,

3



where N = 0, 1, 2, . . . and S0 = 0. There are two interpretations of this model – the

collective risk model and the individual risk model – which are used for different insurance

contracts and result in different modeling approaches.

The individual risk model is used to aggregate the losses (or payments) from a fixed

number of contracts. A typical business situation where this model is used is a group life

or health insurance policy that covers a group of N = n employees. Each employee can

have different coverage (e.g., life insurance benefit as a multiple of salary) and different

levels of loss probabilities which, for example, depend on employee’s age and health status.

In summary, under the individual risk model, N is not random and the main source of

uncertainty of total payments is the random amounts of losses.

A more accurate and flexible model (and with a much wider scope of applicability)

can be constructed by modeling the distribution of N and the distribution of the Xj’s

separately. This is how the collective risk model is built. Klugman et al . (2012, p. 139)

list seven distinct advantages for such a modeling approach. Here we quote three which

emphasize the role of the claim count variable:

(i) The expected number of claims changes as the number of insured policies

changes. Growth in the volume of business needs to be accounted for in forecasting

the number of claims in future years based on past years’ data.

(ii) The impact on claims frequencies of changing deductibles is better understood.

(iii) The shape of the distribution of S depends on the shapes of both distributions

of N and X. The understanding of the relative shapes is useful when modifying

policy details. For example, if the severity distribution has a much heavier tail

than the frequency distribution, the shape of the tail of the distribution of aggre-

gate losses will be determined by the severity distribution and will be relatively

insensitive to the choice of frequency distribution.

In addition to playing a significant role in modeling the aggregate losses for most

4



insurance contracts, the claim count distributions are frequently used in designing bonus-

malus systems in automobile insurance. Here is a brief introduction into how claim counts

appear in those systems.

The auto insurance markets are very competitive and the companies constantly com-

pete for the best drivers available in the market. The first step in identifying the quality

of a driver (e.g., good, average, bad) is regression-type modeling that helps to group the

customers with similar risk characteristics. All policyholders belonging to the same class

pay the same premium. To limit possible discriminatory practices, state regulators do not

allow classification based on factors that are beyond the person’s control (e.g., gender,

age). Also, a number of important factors (e.g., alcohol consumption habits, swiftnesses

of reflexes) are nearly impossible to measure. Naturally, the initial pricing system is im-

perfect, but it gets corrected over time by combining preliminary classification rates with

individual experience. The combining of the two components is achieved by employing

credibility theory, which defines the credibility premium as a convex combination of the

observed experience and a priori rating (also known as “manual rate”):

Credibility Premium = Z ×Observed Experience + (1− Z)×Manual Rate,

where the weight Z, 0 ≤ Z ≤ 1, is called the credibility factor. The observed experience

in the above formula can be average loss amount or number of claims, or aggregate loss.

In other words, it has a lot of flexibility. Moreover, credibility theory allows insurance

companies to design rating systems that penalize drivers responsible for one or more

accidents by charging them extra premium (also known as “maluses”) and rewarding

claim-free drivers by giving them discounts (also known as “bonuses”). Such systems

are called “no-claim discounts”, “experience rating”, “merit rating”, or “bonus-malus”

5



systems. Interestingly, most of the bonus-malus systems used by the insurance companies

around the world rely on claim counts, not the claim amounts, as the base for discounts

and penalties. To learn more about risk classification, credibility and bonus-malus sys-

tems, we may refer the reader to a comprehesive book by Denuit et al . (2007). The same

book, on pages xxi-xxii, provides an explanation why bonus-malus systems use only

claim counts:

“The vast majority of bonus-malus systems in force around the world penalize the

number of at-fault accidents reported to the company, and not their amounts. A

severe accident involving bodily injuries is penalized in the same way as a fender-

bender. The reason to base motor risk classification on just claim frequencies is

the long delay to access the cost of bodily injury and other severe claims. Not

incorporating claim sizes in bonus-malus systems and a priori risk classification

requires an (implicit) assumption of independence between the random variables

‘number of claims’ and ‘cost of a claim’, as well as the belief that the latter does

not depend on the driver’s characteristics. This means that the actuarial practice

considers that the cost of an accident is, for the most part, beyond the control

of a driver: a cautious driver reduces the number of accidents, but for the most

part cannot control the cost of these accidents (which is largely independent of the

mistake that caused it).”

1.3 Statistical Problems

In pricing, reserving and other actuarial applications policyholder’s risk profile is sum-

marized using various metrics such as net premiums or risk measures. Many of those

metrics can be defined in terms of distribution quantiles. The classical definition of

quantile function is

QY (u) = F−1
Y (u) = inf{y : FY (y) ≥ u}, for 0 ≤ u ≤ 1, (1.1)

6



where FY (y) denotes the cumulative distribution function, cdf, of the loss random vari-

able Y . If random variable Y is continuous (and thus its cdf), then QY (u) satisfies

FY (QY (u)) = P
[
Y ≤ QY (u)

]
= u. (1.2)

For discrete random variables, however, taking infimum in (1.1) is important as there

is no guarantee there exists such y that satisfies (1.2). Hence, the quantile function may

have jumps. To see this, consider a Poisson distribution with parameter λ = 5, denoted

P (λ = 5). We have:

Table 1.1: The first nine values of P (λ = 5) cumulative distribution function.

y 0 1 2 3 4 5 6 7 8

P
[
Y ≤ y

]
0.0067 0.0404 0.1247 0.2650 0.4405 0.6160 0.7622 0.8666 0.9319

Now, if we are interested in finding a 20% value-at-risk (which is the 80th percentile),

then there is no value of loss y for which P
[
Y ≤ y

]
= 0.80. Thus we have to choose

the smallest value for the loss that gives at least a 0.80 probability that the reserve

is sufficient. In this illustration, the 20% value-at-risk measure is 7, but such quantile

function discontinuities may result in pricing irregularities.

The sample estimator of the classical quantile function (1.1) is

Q̂n(u) = F̂−1
n (u) = inf

{
y : F̂n(y) ≥ u

}
= y[nu]+1:n, (1.3)

where F̂n(y) is the empirical cdf, y1:n ≤ y2:n ≤ · · · ≤ yn:n are the order statistics from

the sample y1, . . . , yn, and [·] denotes the greatest integer part. As discussed earlier, the

coarseness of discrete data, however, makes the classical estimator (1.3) inappropriate

when the product nu results in non-integer values. One way to handle this problem is

to interpolate between two order statistics with indices closest to nu, as it is done by
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Klugman et al . (2012, Section 13.1):

Q̂KPW(u) = (1− δ) yj:n + δ yj+1:n = yj:n + δ (yj+1:n − yj:n), (1.4)

where j = [(n+ 1)u], δ = (n+ 1)u− j, and 0 < u < 1.

To highlight the differences between the estimators defined by (1.3) and (1.4), in

Table 1.2 we provide values of Q̂n(u) and Q̂KPW(u), with u = 0.25, 0.50, 0.75, for four

sets of binary data. We see from the table that while the triplets of Q̂n and Q̂KPW

estimates slightly differ for sets A and D, they are identical for B and C. The insufficient

differentation between the methods happens because data smoothing in (1.4) is based on

only two data points.

Table 1.2: Values of Q̂n(u) and Q̂KPW(u) for binary data sets of size 5.

Quantile Level Data Set A Data Set B Data Set C Data Set D
Estimator u

{
0, 0, 0, 0, 1

} {
0, 0, 0, 1, 1

} {
0, 0, 1, 1, 1

} {
0, 1, 1, 1, 1

}
Q̂n(u) 0.25 0 0 0 1

0.50 0 0 1 1

0.75 0 1 1 1

Q̂KPW(u) 0.25 0 0 0 0.5

0.50 0 0 1 1

0.75 0.5 1 1 1

Parzen (1992, 2004) proposed a smoothing technique that uses all data of the sample,

and constructed mid-distribution and mid-quantile functions. Further, Ma et al . (2011)

derived the asymptotic properties of the sample quantile estimator based on the mid-

distribution function. This work motivated Wang and Hutson (2011) to design a new

and improved smooth quantile function for discrete data. It is based on the theory of

fractional order statistics, which was initiated by Stigler (1977), and takes a similar form

as the kernel quantile estimator of Harrell and Davis (1982).

In this dissertation, we will follow and generalize the methodology proposed by Wang
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and Hutson (2011). As a preview, let us compare their estimator, denoted by Q̂WH,

with Q̂n and Q̂KPW. For data sets A, B, C, D, Table 1.3 summarizes the calculation of

Q̂WH(0.25), Q̂WH(0.50), and Q̂WH(0.75). Note the smooth transition of quantile estimates

as u changes from 0.25 to 0.75. Moreover, the estimates are distinct and react mildly to

the gradual changes in data composition.

Table 1.3: Values of Q̂WH(u) for binary data sets of size 5.

Quantile Level Data Set A Data Set B Data Set C Data Set D
Estimator u

{
0, 0, 0, 0, 1

} {
0, 0, 0, 1, 1

} {
0, 0, 1, 1, 1

} {
0, 1, 1, 1, 1

}
Q̂WH(u) 0.25 0.0178 0.0885 0.2338 0.4861

0.50 0.1424 0.3735 0.6265 0.8576

0.75 0.5139 0.7662 0.9115 0.9822

1.4 Plan of the Thesis

The main objective of this dissertation is to propose and thoroughly investigate a new

methodology to smooth quantile funtions for discrete claim count distributions. We pro-

vide definitions of smoothed quantile functions for discrete data samples and populations,

investigate large- and small- sample properties of the estimators, and apply them to risk

measurement exercises. The dissertation is organized in the following manner.

In Chapter 2, we illustrate claim count models using (a, b, 0) class and (a, b, 1) class

which is mainly used for zero inflated insurance data.

In Chapter 3, we give an overview of smoothed quantiles for discrete distributions

as well as their asymptotic properties established by Wang and Hutson (2011). Further,

we generalize the methodology to vectors of smoothed quantiles. We provide definition,

establish asymptotic properties and investigate the statistical properties of the estimators

using simulations. The results established in this chapter are valid for discrete distribu-

tions with finite support.

In Chapter 4 as an extension of Chapter 3, we investigate and evaluate the perfor-

9



mance of smoothed quantile functions for discrete distributions with infinite support, both

theoretically and via simulations. We modify the smoothed quantile function by trun-

cating the data support. We focus on the region where major proportion of probability

mass across the whole sample space is covered.

In Chapter 5, applications of smoothed quantiles to risk measurement are demon-

strated using actual insurance data. We evaluate the commonly used distortion risk

measures and report several risk measure estimates of automobile data using this new

methodology.

Finally, in Chapter 6, the conclusions are drawn, and future research venues are

discussed. In particular, we will focus on proving asymptotic properties conjectured in

Chapter 4 and on developing percentile-matching estimators.
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Chapter 2

Claim Frequency Models

2.1 The (a , b, 0) Class

To construct models for insurance claim counts one starts with the so-called (a, b, 0) class

which contains only three distributions – Poisson, binomial, and negative binomial. As

defined by Klugman et al . (2012, Section 6.4), a random variable N belongs to the

(a, b, 0) class if its probability mass function, pmf, satisfies the following recursion:

pk
pk−1

= a+
b

k
, k = 1, 2, 3, . . . , (2.1)

where pk = P
[
N = k

]
and a and b are some real-valued constants. Since the probabilities

must sum to 1, the probability at zero is obtained from the recursive formula (2.1) as

follows:

1 = p0 +
∞∑
k=1

pk = p0 +
∞∑
k=1

(
a+

b

k

)
pk−1 = p0 +

∞∑
k=1

(
k∏

j=1

(
a+

b

j

))
p0,

and therefore

p0 =

(
1 +

∞∑
k=1

k∏
j=1

(
a+

b

j

))−1

. (2.2)
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2.1.1 Poisson Distribution

A random variable NP has a Poisson distribution with parameter λ > 0 if its pmf is given

by

P
[
NP = k

]
=

λk e−λ

k!
, k = 0, 1, 2, . . . .

To summarize this fact, we will write: NP ∼ P (λ). The following verification of (2.1)

and (2.2) shows that P (λ) belongs to the (a, b, 0) class of distributions:

pk
pk−1

=
λk e−λ/k!

λk−1 e−λ/(k − 1)!
=

λ

k
, k = 1, 2, 3, . . . .

Thus, for the Poisson distribution, we have a = 0, b = λ, and

p0 =

(
1 +

∞∑
k=1

k∏
j=1

(
0 +

λ

j

))−1

=

(
1 +

∞∑
k=1

λk

k!

)−1

= e−λ.

Also, since the mean and variance of P (λ) are equal (E
[
NP

]
= Var

[
NP

]
= λ), this

distribution is appropriate for modeling equi-dispersed data.

2.1.2 Binomial Distribution

A random variable NB has a binomial distribution with parameters m ≥ 1 (integer) and

0 < q < 1, denoted as NB ∼ Bin (m, q), if its pmf is given by

P
[
NB = k

]
=

(
m

k

)
qk (1− q)m−k, k = 0, 1, 2, . . . ,m.

The following steps verify (2.1) and (2.2):

pk
pk−1

=

(
m

k

)
qk (1− q)m−k(

m

k − 1

)
qk−1 (1− q)m−(k−1)

= − q

1− q
+
m+ 1

k

q

1− q
, k = 1, 2, . . . ,m.

12



Thus, for the binomial distribution, a = −q/(1− q), b = (m+ 1)q/(1− q), and

p0 =

(
1 +

m∑
k=1

k∏
j=1

(
− q

1− q
+

(m+ 1)q/(1− q)

j

))−1

=

(
1 +

m∑
k=1

(
q

1− q

)k (
m

k

))−1

=
(
1 + (1− q)−m

(
1− (1− q)m

))−1

= (1− q)m.

Also, since the mean of Bin (m, q) is greater than its variance (E
[
NB

]
= mq > mq(1 −

q) = Var
[
NB

]
), this distribution is appropriate for modeling under-dispersed data.

2.1.3 Negative Binomial Distribution

A random variable NNB has a negative binomial distribution with parameters r > 0 and

β > 0, denoted as NNB ∼ NB (r, β), if its pmf is given by

P
[
NNB = k

]
=

(
k + r − 1

k

)(
1

1 + β

)r (
β

1 + β

)k

, k = 0, 1, 2, . . . .

In the special case r = 1, we obtain the geometric distribution with the probability of

success 1/(1 + β). Equations (2.1) and (2.2) are verified as follows:

pk
pk−1

=

(
k + r − 1

k

)(
1

1+β

)r (
β

1+β

)k
(
k + r − 2

k − 1

)(
1

1+β

)r (
β

1+β

)k−1
=

β

1 + β
+
r − 1

k

β

1 + β
, k = 1, 2, 3, . . . .

Thus, for the negative binomial distribution, a = β/(1 + β), b = (r − 1)β/(1 + β), and

p0 =

(
1 +

∞∑
k=1

k∏
j=1

(
β

1 + β
+

(r − 1)β/(1 + β)

j

))−1

=

(
1 +

∞∑
k=1

(
β

1 + β

)k (
k + r − 1

k

))−1

=
(
1 + (1 + β)r

(
1− (1 + β)−r

))−1

= (1 + β)−r.
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Also, since the mean ofNB (r, β) is smaller than its variance (E
[
NNB

]
= rβ < rβ(1+β) =

Var
[
NNB

]
), this distribution is appropriate for modeling over-dispersed data.

2.2 The (a , b, 1) Class

Insurance data usually include a relatively large number of zeros (typical claim count data

sets contain 80% or more zeros; see, e.g., Klugman et al ., 2012, Table 6.2). Zeros occur

when no claims are reported by policyholders during the period under study. Introduction

of deductibles and no claim discounts increases the proportion of zeros and leads to a

small probability of occurrence of a loss (i.e., small pk for k ≥ 1). The scenario when p0

is much larger than pk, k ≥ 1, cannot be properly accommodated by the members of the

(a, b, 0) class.

An adjustment of the probability at zero is done by modifying the (a, b, 0) class as

follows. First, we define a new class – the (a, b, 1) class – which contains random variables

whose pmf satisfies the recursive formula

pk
pk−1

= a+
b

k
, k = 2, 3, 4, . . . . (2.3)

Note that the only difference between (2.1) and (2.3) is that the latter recursion begins

at p1 rather p0. Then, we put an arbitrary amount of probability at zero, say c, and treat

it as a parameter. This results in the following relationships between the probabilities

of zero-modified (or zero-inflated) distribution, denoted by p∗k, and the corresponding

(a, b, 0) distribution, denoted by pk:

p∗k = (1− c)
pk

1− p0
for k = 1, 2, 3, . . . , and p∗0 = c. (2.4)

Note that the zero-inflated model (2.4) can be viewed as a mixture between a zero-
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truncated member of the (a, b, 0) class and a degenerate distribution that places all the

probability at zero. It assigns a probability mass of c to the zeros and a mass of (1− c) to

the counting distribution defined on positive integers. The following relationships between

the means and variances of variables N∗ (from (a, b, 1) class) and N (from (a, b, 0) class)

can be easily justified:

E
[
N∗
]

=
1− c

1− p0
E
[
N
]

and Var
[
N∗
]

=
1− c

1− p0

{
Var

[
N
]
+
c− p0
1− p0

(
E
[
N
])2}

.

(2.5)

Also, when c = 0, zero-modified distributions are defined for k = 1, 2, . . ., and are

called zero-truncated distributions (see Klugman et al ., 2012, Section 6.6). Moreover,

unlike the (a, b, 0) class, the (a, b, 1) class admits more than three standard distributions.

For example, the negative binomial model within this class can be extended by replacing

the condition r > 0 with r > −1 and r ̸= 0. Zero-inflated Poisson (ZIP), zero-inflated

negative binomial (ZINB), and several other zero-inflated distributions had been used for

modeling automobile insurance claims by Yip and Yau (2005).

15



Chapter 3

Smoothed Quantiles

In this chapter, we provide definition, illustrations and asymptotic properties of Q̂WH,

extend them to vectors of quantile estimators, and conclude with a simulation study.

3.1 Smoothed Population Quantiles

3.1.1 Definition and Properties

Following Wang and Hutson (2011), let us consider a discrete random variable Y with

cdf FY and pmf pj = P
[
Y = yj:d

]
, where yj:d is the jth smallest distinct value that Y can

take. Notice that
∑d

j=1 pj = 1 and 1 < d < ∞. Let us denote Fj := FY (yj:d) =
∑j

i=1 pi;

also F0 ≡ 0. Then the smoothed population quantile function for discrete random variable

Y is defined as

QY (u) =
d∑

j=1

[
Bαu,βu(Fj)−Bαu,βu(Fj−1)

]
yj:d =:

d∑
j=1

wj(u) yj:d, (3.1)

where Bαu,βu denotes the cdf of a beta random variable with parameters αu = (d+ 1)u

and βu = (d+1)(1−u). Note that the weights wj(u) are non-negative (because Fj ≥ Fj−1
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and Bαu,βu is an increasing function) and add up to one:

d∑
j=1

wj(u) =
d∑

j=1

[
Bαu,βu(Fj)−Bαu,βu(Fj−1)

]
= Bαu,βu(Fd)−Bαu,βu(F0) = Bαu,βu(1)−Bαu,βu(0) = 1.

Also, the mean and variance of B, the random variable with cdf Bαu,βu used in (3.1),

are given by

E
[
B
]

=
(d+ 1)u

(d+ 1)u+ (d+ 1)(1− u)
= u

and

Var
[
B
]

=

[
(d+ 1)u

][
(d+ 1)(1− u)

][
(d+ 1)u+ (d+ 1)(1− u)

]2[
(d+ 1)u+ (d+ 1)(1− u) + 1

] =
u(1− u)

d+ 2
.

The formulas of E
[
B
]
and Var

[
B
]
suggest that for discrete populations with large num-

ber of possible distinct values (i.e., when d is large), most significant contributions toward

the value of QY (u) will be made by several Fj’s clustered near the level u. This pattern

is quite evident in Figure 3.1, where the density curves of B are plotted for various quan-

tile levels u. On the horizontal axes, the Fj marks were computed for selected binomial

distributions with the probability of “success” q equal to 0.7. Note that the weight wj(u)

is the area under the density curve over the interval [Fj−1;Fj].

Further, Wang and Hutson (2011) established the following three properties of the

smoothed population quantile function defined by (3.1):

(a) QY (u) is a continuous and monotonically increasing function of u over (0, 1).

(b) QY (u) −→ y1:d as u→ 0.

(c) QY (u) −→ yd:d as u→ 1.
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Figure 3.1: The density curves of B used to compute weights wj(u) for quantile levels
u = 0.1, . . . , 0.9. The weight wj(u) corresponds to the area under the curve over [Fj−1;Fj],
where F0 = 0 and F1, . . . , Fd are cdf’s of Bin (m = d − 1, q = 0.7) with m = 1 (top
row), m = 4 (middle row), and m = 8 (bottom row).
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Finally, equation (3.1) is easy to understand – the formula assigns weights to distinct

data points which later get aggregated. However, for computational purposes and theo-

retical investigations, it will be easier to work with the QY (u) formula rewritten in terms

of data spacings:

QY (u) =
d∑

j=1

[
Bαu,βu(Fj)−Bαu,βu(Fj−1)

]
yj:d

= −y1:dBαu,βu(F0) +
d−1∑
j=1

(
yj:d − yj+1:d

)
Bαu,βu(Fj) + yd:dBαu,βu(Fd)

=
d−1∑
j=1

(
yj:d − yj+1:d

)
Bαu,βu(Fj) + yd:d. (3.2)

3.1.2 Illustrations

In this section, we shall provide plots of QY (u) for selected binomial and zero-inflated

binomial (ZIB) distributions. But before we do that let us first simplify equation (3.2)

even further. Notice that for binomial distributions from the class (a, b, 0) or (a, b, 1) we

have: y1:d = 0, yj+1:d − yj:d = 1, and yd:d = d− 1. This reduces (3.2) to

QY (u) = (d− 1)−
d−1∑
j=1

Bαu,βu(Fj). (3.3)

In Figure 3.2, we plot the quantile function QY (u), defined by (3.3), with Fj repre-

senting the cdf of binomial distribution for various q andm = 1, 4, 8. The minor “waves”

visible for m = 8 with q = 0.1 and 0.9 are expected because as d grows the variance of

the weights wj(u), which is equal to u(1−u)/(d+2), decreases and the smoothed quantile

function closer approximates the classical discrete quantile function (1.1).

In Figure 3.3, we plot the quantile function QY (u), defined by (3.3), with Fj repre-

senting the cdf of zero-inflated binomial distribution for m = 20 and various c and q.
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Figure 3.2: The quantile functions of Bin (m, q) distributions with q = 0.1, 0.3, 0.5, 0.7, 0.9 and
m = 1 (top left panel), m = 4 (top right panel), and m = 8 (bottom panel).
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Figure 3.3: The quantile functions of q = 0.1, 0.3, 0.5, 0.7, 0.9 and c = 0.2 (top left panel),
c = 0.5 (top right panel), and c = 0.8 (bottom panel).

The effect of excessive number of zeros on the quantile function is obvious.

3.2 Smoothed Sample Quantiles

In this section, we introduce the sample version of the smoothed population quantile func-

tion, provide a few numerical illustrations, and present the smoothed quantile estimator’s

asymptotic properties.
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3.2.1 Definition

Consider a random sample Y1, Y2, . . . , Yn from an unknown discrete distribution with

cdf FY . Let y1:d < y2:d < · · · < yd:d denote the distinct data values with corresponding

frequencies r1, r2, . . . , rd. Then, the sample pmf is p̂i = ri/n and the empirical cdf at

yj:d is given by F̂j = F̂Y (yj:d) =
∑j

i=1 p̂i = n−1
∑j

i=1 ri. The sample estimator of the

smoothed uth quantile for discrete data is defined by replacing Fj with F̂j in (3.1) (or

equivalently in (3.2)). This leads to

Q̂Y (u) =
d∑

j=1

ŵj(u)yj:d =
d∑

j=1

[
Bαu,βu(F̂j)−Bαu,βu(F̂j−1)

]
yj:d (3.4)

=
d−1∑
j=1

(
yj:d − yj+1:d

)
Bαu,βu(F̂j) + yd:d, (3.5)

where F̂0 = 0 and Bαu,βu denotes the cdf of a beta random variable with parameters

αu = (d+ 1)u and βu = (d+ 1)(1− u).

3.2.2 Numerical Examples

To get a better sense of how the weights ŵj(u) are assigned to particular data points,

in Table 3.1 we revisit Table 2.2 and provide step-by-step calculations of the smoothed

quartiles (i.e., u = 0.25, 0.50, 0.75) for data sets A, B, C, D. We note again the separation

and gradual transition of the smooth estimates as u changes from 0.25 to 0.75. This is

true for all data sets and is in contrast to the estimates based on the standard definition

of discrete quantile function (see Table 2.1).
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Table 3.1: Calculation of smoothed sample quartiles Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) for
data sets A, B, C, D. Here d = 2, αu = (d+ 1)u, and βu = (d+ 1)(1− u).

u j yj:d F̂j Bαu,βu(F̂j)−Bαu,βu(F̂j−1) = ŵj(u) ŵj(u) yj:d
∑j

i=1 ŵi(u) yi:d

Data Set A: {0, 0, 0, 0, 1}
0.25 1 0 0.80 0.9822− 0 = 0.9822 0 0

2 1 1 1− 0.9822 = 0.0178 0.0178 0.0178

0.50 1 0 0.80 0.8576− 0 = 0.8576 0 0

2 1 1 1− 0.8576 = 0.1424 0.1424 0.1424

0.75 1 0 0.80 0.4861− 0 = 0.4861 0 0

2 1 1 1− 0.4861 = 0.5139 0.5139 0.5139

Data Set B: {0, 0, 0, 1, 1}
0.25 1 0 0.60 0.9115− 0 = 0.9115 0 0

2 1 1 1− 0.9115 = 0.0885 0.0885 0.0885

0.50 1 0 0.60 0.6265− 0 = 0.6265 0 0

2 1 1 1− 0.6265 = 0.3735 0.3735 0.3735

0.75 1 0 0.60 0.2338− 0 = 0.2338 0 0

2 1 1 1− 0.2338 = 0.7662 0.7662 0.7662

Data Set C: {0, 0, 1, 1, 1}
0.25 1 0 0.40 0.7662− 0 = 0.7662 0 0

2 1 1 1− 0.7662 = 0.2338 0.2338 0.2338

0.50 1 0 0.40 0.3735− 0 = 0.3735 0 0

2 1 1 1− 0.3735 = 0.6265 0.6265 0.6265

0.75 1 0 0.40 0.0885− 0 = 0.0885 0 0

2 1 1 1− 0.0885 = 0.9115 0.9115 0.9115

Data Set D: {0, 1, 1, 1, 1}
0.25 1 0 0.20 0.5139− 0 = 0.5139 0 0

2 1 1 1− 0.5139 = 0.4861 0.4861 0.4861

0.50 1 0 0.20 0.1424− 0 = 0.1424 0 0

2 1 1 1− 0.1424 = 0.8576 0.8576 0.8576

0.75 1 0 0.20 0.0178− 0 = 0.0178 0 0

2 1 1 1− 0.0178 = 0.9822 0.9822 0.9822

3.2.3 Asymptotic Properties

As described by Serfling (1980, Section 2.3.3), the classical quantile estimator follows an

asymptotically normal distribution if the underlying distribution that generated data is
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smooth at that point. The lack of smoothness may result in estimators that are not

normal. This does happen for discrete distributions (Genton et al ., 2006). However,

the smoothed sample estimator Q̂Y (u), defined by (3.4), which estimates QY (u), defined

by (3.1), is consistent and asymptotically normal. These properties are established in

Theorem 4.1 of Wang and Hutson (2011) and restated below.

Theorem [Wang and Hutson, 2011]

Consider an i.i.d. sample of size n from a discrete distribution FV (·) with finite support

v1:d < v2:d < · · · < vd:d, d <∞. Then as n→ ∞, we have the following results:

(i) Q̂V (u)
P−→ QV (u),

(ii) n1/2
(
Q̂V (u)−QV (u)

)
∼ AN

(
0, σ2

)
,

where σ2 = K2l′Dl, l is a d − 1 vector with j th (1 ≤ j ≤ d − 1) element lj = (vj:d −

vj+1:d)F
d′u−1
j (1 − Fj)

d′(1−u), D is a (d − 1) × (d − 1) matrix with ij th (i ≤ j) element

Dij = Fi(1− Fj) with d
′ = d + 1, and K = Γ(d′)

Γ(d′u)Γ(d′(1−u))
and Fj = FV (vj:d). Given real

data, σ2 can be estimated readily by substituting Fj with F̂j = F̂V (vj:d).

3.3 Vectors of Quantiles

Distribution quantiles play a key role in defining risk measures, finding capital allocation

proportions, and in many other actuarial applications. Usually those problems require

simultaneous estimation of multiple quantiles, as well as subsequent joint statistical in-

ference. Therefore, in this section we generalize the definitions and asymptotic properties

of Section 3.2 to vectors of smoothed quantiles. These new results are then verified and

augmented using finite-sample simulations.
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3.3.1 Definition

Let us consider the same setups as in Sections 3.1.1 and 3.2.1. Using the smoothed uth

quantile for discrete population, given by (3.1), and its sample estimator, given by (3.4),

we now focus on vectors of such quantiles. That is, for 0 < u1 < · · · < ul < 1, the vector

of smoothed population quantiles

(
QY (u1), . . . , QY (ul)

)
(3.6)

with QY (ui) =
∑d

j=1

[
Bαui ,βui

(Fj)− Bαui ,βui
(Fj−1)

]
yj:d for i = 1, . . . , l, will be estimated

by (
Q̂Y (u1), . . . , Q̂Y (ul)

)
(3.7)

with Q̂Y (ui) =
∑d

j=1

[
Bαui ,βui

(F̂j) − Bαui ,βui
(F̂j−1)

]
yj:d for i = 1, . . . , l. Here Bαui ,βui

denotes the cdf of a beta random variable with parameters αui
= (d + 1)ui and βui

=

(d+ 1)(1− ui).

3.3.2 Asymptotic Properties

We will demonstrate that the estimator (3.7) is a consistent estimator of (3.6) and it is

asymptotically normal. These properties are established in the following theorem.

Theorem 3.1. Consider an i.i.d. sample of size n from a discrete distribution FY with

finite support y1:d < y2:d < · · · < yd:d and d < ∞. Then, as n → ∞, the following

statements hold:

(i)
(
Q̂Y (u1), . . . , Q̂Y (ul)

)
P−→

(
QY (u1), . . . , QY (ul)

)
,

(ii)
(
Q̂Y (u1), . . . , Q̂Y (ul)

)
∼ AN

((
QY (u1), . . . , QY (ul)

)
,
1

n
HDH′

)
,

where D :=
[
dij
]
(d−1)×(d−1)

with dij = dji = Fi(1− Fj), i ≤ j, and H :=
[
hij
]
l×(d−1)

with
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hij = (yj:d − yj+1:d) bαui ,βui
(Fj). Here bαui ,βui

denotes the pdf of a beta random variable

with parameters αui
= (d+ 1)ui and βui

= (d+ 1)(1− ui), and Fj = FY (yj:d).

Proof: Firstly, for a multinomial experiment with m possible outcomes, let pj denote

the probability of occurrence of the jth outcome
(∑m

j=1 pj = 1
)
. Based on a sample of

n i.i.d. trials, pj is estimated by the observed relative frequency, say p̂j = rj/n. Now

recall the fact (Serfling, 1980, Section 2.7) that (p̂1, . . . , p̂m−1) is a consistent estimator

of (p1, . . . , pm−1), and it is asymptotically normal:

(
p̂1, . . . , p̂m−1

)
∼ AN

((
p1, . . . , pm−1

)
,
1

n
Σ

)
,

where Σ :=
[
σij
]
(m−1)×(m−1)

with σij = pi(1− pi) if i = j, and = −pipj, if i ̸= j.

Secondly, the data setup considered in this section can be interpreted as the above

described multinomial experiment with pj = Fj−Fj−1 and p̂j = F̂j−F̂j−1 for j = 1, . . . , d.

Note that F0 = F̂0 = 0 and Fd = F̂d = 1. Having the joint asymptotic normality result for

the spacings F̂j − F̂j−1 = p̂j, we can apply the multivariate delta method (Serfling, 1980,

Section 3.3) and derive joint asymptotically normal distribution for
(
F̂1, . . . , F̂d−1

)
. That

is, the inverse transformation of pi’s is Fi =
∑i

j=1 pj, i = 1, . . . , d− 1, and its Jacobian –

matrix J with the ijth entry ∂Fi/∂pj – is the lower triangular matrix with the ijth entry

equal to 1 for i ≤ j and 0 otherwise. Thus,

(
F̂1, . . . , F̂d−1

)
∼ AN

((
F1, . . . , Fd−1

)
,
1

n
D

)
, (3.8)
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where

D = J(d−1)×(d−1)Σ(d−1)×(d−1)J
′
(d−1)×(d−1)

=



1 0 . . . 0

1 1 . . . 0

...
...

. . .
...

1 1 . . . 1





p1(1− p1) −p1p2 . . . −p1pd−1

−p2p1 p2(1− p2) . . . −p2pd−1

...
...

. . .
...

−pd−1p1 −pd−1p2 . . . pd−1(1− pd−1)





1 1 . . . 1

0 1 . . . 1

...
...

. . .
...

0 0 . . . 1



=



(∑1
i=1 pi

) (
1−

∑1
i=1 pi

) (∑1
i=1 pi

) (
1−

∑2
i=1 pi

)
. . .

(∑1
i=1 pi

) (
1−

∑d−1
i=1 pi

)
(
1−

∑2
i=1 pi

) (∑1
i=1 pi

) (∑2
i=1 pi

) (
1−

∑2
i=1 pi

)
. . .

(∑2
i=1 pi

) (
1−

∑d−1
i=1 pi

)
...

...
. . .

...(
1−

∑d−1
i=1 pi

) (∑1
i=1 pi

) (
1−

∑d−1
i=1 pi

) (∑2
i=1 pi

)
. . .

(∑d−1
i=1 pi

)(
1−

∑d−1
i=1 pi

)



=



F1(1− F1) F1(1− F2) . . . F1(1− Fd−1)

F1(1− F2) F2(1− F2) . . . F2(1− Fd−1)

...
...

. . .
...

F1(1− Fd−1) F2(1− Fd−1) . . . Fd−1(1− Fd−1)



Thirdly, since the entries of the covariance-variance matrix in (3.8) diminish at the rate

1/n, it follows from the multidimensional Chebyshev’s inequality that
(
F̂1, . . . , F̂d−1

) P→(
F1, . . . , Fd−1

)
. Next, from (3.5) we notice that

Q̂Y (ui) =
d−1∑
j=1

(
yj:d − yj+1:d

)
Bαui ,βui

(F̂j) + yd:d, i = 1, . . . , l,

is a continuous transformation of
(
F̂1, . . . , F̂d−1

)
. Therefore, according to the continuous

mapping theorem (Serfling, 1980, Section 1.7),

(
Q̂Y (u1), . . . , Q̂Y (ul)

)
P−→
(
QY (u1), . . . , QY (ul)

)
,
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which proves part (i) of the theorem.

Finally, to prove part (ii), we apply the multivariate delta method to (3.8). The

Jacobian of transformationsQY (ui) (viewed as functions of F1, . . . , Fd−1) has the following

ijth entry:

hij =
∂QY (ui)

∂Fj

=
∂

∂Fj

[
d−1∑
j=1

(
yj:d − yj+1:d

)
Bαui ,βui

(Fj) + yd:d

]

= (yj:d − yj+1:d) bαui ,βui
(Fj),

where Bαui ,βui
and bαui ,βui

are the cdf and pdf, respectively, of a beta random variable

with parameters αui
= (d+ 1)ui and βui

= (d+ 1)(1− ui). This completes the proof. �

Note that the formulas and results established in Theorem 4.1 of Wang and Hutson

(2011), which we presented in Section 3.2.3, can be readily inferred from Theorem 3.1 by

choosing l = 1.

Next, in Table 3.2 we provide values of asymptotic means, covariance-variance (×n)

and correlation matrices of smoothed quartile estimators for selected binomial and zero-

inflated binomial (ZIB) distributions. Several conclusions emerge from the table. Let us

start with the Bernoulli case and prove that correlations among all quartile estimators

are exactly 1. For Bernoulli, d = 2 and thus the matrix D has one entry: F1(1 − F1).

For three quartiles (u1 = 0.25, u2 = 0.50, u3 = 0.75), the matrix H has three entries:(
bαu1 ,βu1

(F1), bαu2 ,βu2
(F1), bαu3 ,βu3

(F1)
)′
. Denoting bi = bαui ,βui

(F1), we have

HDH′ = (b1, b2, b3)
′[F1(1− F1)

]
(b1, b2, b3) = F1(1− F1)


b21 b1b2 b1b3

b2b1 b22 b2b3

b3b1 b3b2 b23

 (3.9)

And the ijth entry of the correlation matrix is F1(1−F1)bibj
(
F1(1− F1)b

2
iF1(1− F1)b

2
j

)−1/2
=
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1. Farther, what is noticeable, and intuitively makes sense, is that asymptotic correla-

tions are stronger between estimators of quartiles that are next to each other versus those

that are further apart. For example, for binomial with m > 1 and ZIB with c < 0.8 distri-

butions, the correlation entry (1, 2) is significantly greater than (1, 3). For ZIB, though,

as the proportion of zeros gets larger, the estimates of quartiles approach zero and all

correlations become almost 1. Also, as is known from large sample theory, under cer-

tain conditions on parameters, binomial distributions can be approximated by a normal

distribution (which is symmetric). This explains why the means of quartiles are almost

equally spaced and correlation entries (1, 2) and (2, 3) are nearly equal for binomial with

m > 1.
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Table 3.2: Asymptotic means, covariance-variance (×n) and correlation matrices of

smoothed quartile estimators Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) for binomial and ZIB dis-
tributions

Distribution Means HDH′ Correlations

Bin (m = d− 1, q = 0.7)

m = 1

0.34340.7477

0.9548


0.3262 0.3054 0.0915

0.3054 0.2860 0.0857

0.0915 0.0857 0.0257


1 1 1

1 1 1

1 1 1



m = 4

2.09702.8557

3.5234


1.5100 1.0074 0.5371

1.0074 1.0217 0.7916

0.5371 0.7916 0.9668


 1 0.8110 0.4445

0.8110 1 0.7965

0.4445 0.7965 1



m = 8

4.66375.6615

6.5771


2.8883 1.8954 1.0608

1.8954 2.1927 1.6054

1.0608 1.6054 2.1432


 1 0.7532 0.4264

0.7532 1 0.7406

0.4264 0.7406 1


ZIB (c, m = d− 1 = 8, q = 0.7)

c = 0.2

2.45405.0900

6.3409


30.3375 11.9030 3.9362

11.9030 6.3525 3.0037

3.9362 3.0037 2.8444


 1 0.8574 0.4237

0.8574 1 0.7066

0.4237 0.7066 1



c = 0.5

0.17432.2613

5.4760


1.2535 6.7704 3.2850

6.7704 36.8979 18.5443

3.2850 18.5443 11.3601


 1 0.9955 0.8705

0.9955 1 0.9058

0.8705 0.9058 1



c = 0.8

0.00030.0821

2.0124


0.0000 0.0032 0.0297

0.0032 0.4942 4.6106

0.0297 4.6106 43.5056


 1 0.9994 0.9905

0.9994 1 0.9944

0.9905 0.9944 1



3.3.3 Simulation Study

A Monte Carlo simulation study was conducted to verify and augment the asymptotic

properties proved in Theorem 3.1. The study was performed for the following choices of

simulation parameters:

� Discrete distributions :
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– Binomial, Bin (m = d− 1, q = 0.7): m = 1, 4, 8.

– Zero-inflated binomial, ZIB (c, m = d− 1 = 8, q = 0.7): c = 0.2, 0.5, 0.8.

� Sample size: n = 50, 100, 500.

� Estimated quantiles , (QY (u1), QY (u2), QY (u3)): u1 = 0.25, u2 = 0.50, u3 = 0.75.

From a specified discrete distribution, we generate 100,000 samples of a specified length

n. For each sample we estimate the vector
(
QY (0.25), QY (0.50), QY (0.75)

)
according to

(3.7) and then, based on those 100,000 estimates, compute the averages and variances of

the vector coordinates, as well as sample covariances between the coordinates.

The results are summarized in Table 3.3, where the column n = ∞ corresponds to the

asymptotic vectors and covariance-variance matrix entries which were derived in Section

3.3.2 and are included here as reference point. Overall, the table reveals that the sample

estimates are very similar to the true quantities, including all entries of the covariance-

variance matrices. Also, the convergence rate is fairly fast for binomial distributions,

with samples as small as n = 50 practically matching the n = ∞ case, but requires much

larger samples for ZIB distributions with c ≥ 0.5.
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Table 3.3: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) for selected binomial and ZIB models.

n = 50 n = 100 n = 500 n = ∞

Bin (m = 1, q = 0.7)

m̂eans (0.35, 0.75, 0.95) (0.35, 0.75, 0.95) (0.34, 0.75, 0.95) (0.343, 0.748, 0.955)

ĤDH′

0.33 0.30 0.09

0.30 0.28 0.09

0.09 0.09 0.03


0.33 0.30 0.09

0.30 0.28 0.09

0.09 0.09 0.03


0.33 0.31 0.09

0.31 0.29 0.09

0.09 0.09 0.03


0.326 0.305 0.092

0.305 0.286 0.086

0.092 0.086 0.026


Bin (m = 4, q = 0.7)

m̂eans (2.10, 2.85, 3.51) (2.10, 2.86, 3.52) (2.10, 2.86, 3.52) (2.097, 2.856, 3.523)

ĤDH′

1.50 1.00 0.54

1.00 1.04 0.79

0.54 0.79 0.95


1.51 1.01 0.55

1.01 1.03 0.79

0.55 0.79 0.96


1.51 1.01 0.54

1.01 1.03 0.80

0.54 0.80 0.97


1.510 1.007 0.537

1.007 1.022 0.792

0.537 0.792 0.967


Bin (m = 8, q = 0.7)

m̂eans (4.67, 5.66, 6.57) (4.67, 5.66, 6.57) (4.66, 5.66, 6.58) (4.664, 5.662, 6.577)

ĤDH′

2.86 1.90 1.07

1.90 2.17 1.62

1.07 1.62 2.12


2.88 1.90 1.07

1.90 2.17 1.61

1.07 1.61 2.13


2.89 1.90 1.06

1.90 2.19 1.61

1.06 1.61 2.14


2.888 1.895 1.061

1.895 2.193 1.605

1.061 1.605 2.143


ZIB (c = 0.2, m = 8, q = 0.7)

m̂eans (2.50, 5.04, 6.32) (2.48, 5.07, 6.33) (2.46, 5.08, 6.34) (2.454, 5.090, 6.341)

ĤDH′

27.31 11.82 3.89

11.82 7.06 3.17

3.89 3.17 2.85


28.69 11.84 3.91

11.84 6.70 3.09

3.91 3.09 2.85


29.98 11.89 3.93

11.89 6.42 3.02

3.93 3.02 2.85


30.338 11.903 3.936

11.903 6.352 3.004

3.936 3.004 2.844


ZIB (c = 0.5, m = 8, q = 0.7)

m̂eans (0.23, 2.30, 5.39) (0.20, 2.28, 5.44) (0.18, 2.26, 5.47) (0.174, 2.261, 5.476)

ĤDH′

2.12 7.62 3.65

7.62 32.81 18.11

3.65 18.11 12.77


1.66 7.18 3.45

7.18 34.48 18.26

3.45 18.26 12.05


1.33 6.86 3.32

6.86 36.41 18.52

3.32 18.52 11.53


1.253 6.770 3.285

6.770 36.898 18.544

3.285 18.544 11.360


ZIB (c = 0.8, m = 8, q = 0.7)

m̂eans (0.00, 0.13, 2.04) (0.00, 0.11, 2.03) (0.00, 0.09, 2.02) (0.000, 0.082, 2.012)

ĤDH′

0.00 0.02 0.08

0.02 1.05 5.62

0.08 5.62 38.30


0.00 0.01 0.05

0.01 0.76 5.17

0.05 5.17 40.77


0.00 0.00 0.03

0.00 0.54 4.72

0.03 4.72 42.90


0.000 0.003 0.030

0.003 0.494 4.611

0.030 4.611 43.506


Note: The entries for n < ∞ are the averages and sample covariances of estimated quartiles.

Results are based on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.
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Chapter 4

Methodological Extensions

The smoothed quantile function (3.1), its properties, and probabilistic behavior of its

estimator are valid for discrete distributions with finite support, i.e., when d < ∞. For

discrete distributions with infinite support, such as Poisson, negative binomial or their

zero-inflated versions, d = ∞. Since such distributions are essential for modeling claim

frequency, we need to extend the results of Chapter 3 to the case d = ∞. Thus, in this

chapter we first investigate the proposal of Wang and Hutson (2011) on how to deal with

such distributions, then make a new proposal and evaluate its performance, theoretically

and via simulations.

4.1 Approximate Weights and Quantiles

For discrete distributions with infinitely countable support, Wang and Hutson (2011)

argued that d can be viewed as a smoothing parameter which may be chosen arbitrarily

(say, d∗). Thus, QY (u) formula can be approximated by replacing the weights wj(u),

which are based on a beta random variable B, with those based on a normal distribution:

Q∗(u) =
d∗∑
j=1

[
Φ
(
(Fj − µu)/σu

)
− Φ

(
(Fj−1 − µu)/σu

)]
yj:d∗ =:

d∗∑
j=1

w∗
j(u) yj:d∗ , (4.1)

33



where Φ is the cdf of the standard normal distribution, µu = E
[
B
]
= u and σ2

u =

Var
[
B
]
= u(1 − u)/(d∗ + 2). Equivalently, (4.1) can be rewritten in terms of data

spacings:

Q∗(u) =
d∗∑
j=1

[
Φ
(
(Fj − µu)/σu

)
− Φ

(
(Fj−1 − µu)/σu

)]
yj:d∗ = − y1:d∗ Φ

(
−µu

σu

)

+
d∗−1∑
j=1

(
yj:d∗ − yj+1:d∗

)
Φ

(
Fj − µu

σu

)
+ yd∗:d∗ Φ

(
Fd∗ − µu

σu

)
. (4.2)

Moreover, noticing that for standard discrete distributions from the class (a, b, 0) or

(a, b, 1) we have y1:d∗ = 0, yj+1:d∗ − yj:d∗ = 1, and yd∗:d∗ = d∗ − 1, the formula (4.2)

can be further reduced to

Q∗(u) = (d∗ − 1)Φ

(
Fd∗ − µu

σu

)
−

d∗−1∑
j=1

Φ

(
Fj − µu

σu

)
. (4.3)

It was also mentioned that a reasonable choice of d∗ could be the number of data points

which occupy a major proportion of probability mass across the whole sample space, but

no details provided.

In Figure 4.1, the density curves of N (µu , σ
2
u) are plotted for various quantile levels u.

On the horizontal axes, the Fj marks were computed for Poisson distribution with λ = 5

and selected values of d∗. Of course, in theory d∗ should be large, but note that even for

d∗ = 10 the Fj’s for j > 8 are tightly clustered near 1, which makes the corresponding

weights w∗
j(u) practically equal to 0. In Figure 4.2, we plot the quantile function QY (u),

defined by (3.1), with Fj representing the cdf of Poisson distribution for various choices

of parameter λ, and truncated at d. In the left panel, each curve is overlaid with its

normal distribution based approximation (4.1), with d∗ = d = 100. The approximation

works very well except for extreme right tail (e.g., u ≥ 0.90), where it diverges from
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Figure 4.1: The density curves of N (µu , σ
2
u) used to compute weights w∗

j(u) for quantile
levels u = 0.1, . . . , 0.9. The weight w∗

j(u) corresponds to the area under the curve over

[Fj−1;Fj], where F0 = 0 and F1, F2, . . . are cdf’s of P (λ = 5) with d∗ = 10 (top row)
and d∗ = 25 (bottom row).
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Figure 4.2: The quantile functions of P (λ) distributions. Left panel : λ = 1, 5, 10, 25 and
d = 100. The overlaid dotted curves are Q∗(u) approximations with d∗ = 100. Right
panel : λ = 1 and d = 5, 10, 25, 100. The dotted step line corresponds to the classical
discrete quantile function.

QY (u). This might have been anticipated from careful examination of the right column

of Figure 4.1. There, the density curves are relatively high but the intervals [Fj−1;Fj]

are extremely narrow, which yields small weights (almost zero). Then, such weights

multiplied by not-too-large yj:d’s make neglible contributions toward QY (u) resulting in

undervaluation of the right tail of the function. Also, the waves of the quantile function

(see discussions of Figures 3.2 and 3.3) are now clearly visible for λ = 1 (left panel) and

especially for d = 100 (right panel). Overall, it seems that normally-distributed weights

provide no advantage over the formulas based on beta-distributed weights. Therefore,

from now on we will focus on the original formulation of the QY (u) formula, i.e., with

“beta” weights. Next, to better understand the effects of d on population and sample

evaluations of QY (u), we performed a simulation study for selected Poisson models, P (λ),

and several choices of d. The study design is similar to the one of Section 3.3.3. The

results are summarized in Table 4.1, where the means and covariance-variance matrices

of Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) are reported for various sample sizes n. While at this
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moment we do not know what is supposed to happen to those estimators as n→ ∞, let’s

see what are the parameters of the asymptotic distribution of Theorem 3.1 (truncated at

the same d as the sample estimators). The parameter values are provided in Table 4.2,

where we see that they are quite close to the simulated values for n = 104. However,

there are significant differences between the theoretical and simulated values for smaller

n. We also notice a relationship between the choice of d and λ. These observations will

be more rigorously examined in Section 4.2.
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Table 4.1: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) for selected Poisson models, P (λ), and several
d’s.

λ d n = 102 n = 103 n = 104

1 20 m̂eans (0.13, 0.89, 1.60) (0.11, 0.90, 1.60) (0.11, 0.90, 1.60)

ĤDH′

0.84 0.79 0.68

0.79 1.10 1.07

0.68 1.07 3.14


0.71 0.79 0.70

0.79 0.94 1.02

0.70 1.02 3.39


0.69 0.78 0.70

0.78 0.90 1.00

0.70 1.00 3.38


100 m̂eans (0.03, 0.97, 1.59) (0.01, 0.99, 1.63) (0.01, 1.00, 1.64)

ĤDH′

0.62 0.10 0.61

0.10 0.48 0.63

0.61 0.63 8.07


0.04 0.02 0.30

0.02 0.03 0.24

0.30 0.24 13.01


0.02 0.02 0.25

0.02 0.01 0.19

0.25 0.19 13.68


10 20 m̂eans (7.72, 9.85, 12.15) (7.71, 9.84, 12.15) (7.71, 9.84, 12.15)

ĤDH′

12.75 9.36 6.32

9.36 12.84 10.93

6.32 10.93 17.34


12.85 9.33 6.15

9.33 12.77 10.79

6.15 10.79 17.29


12.81 9.38 6.22

9.38 12.87 10.89

6.22 10.89 17.35


100 m̂eans (7.78, 9.84, 12.05) (7.78, 9.84, 12.06) (7.78, 9.85, 12.06)

ĤDH′

14.56 9.10 6.22

9.10 14.53 10.59

6.22 10.59 19.39


14.61 8.76 5.76

8.76 13.47 9.78

5.76 9.78 18.27


14.62 8.76 5.78

8.76 13.25 9.67

5.78 9.67 17.86


Note: The entries are the averages and sample covariances of estimated quartiles. Results are based

on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.

Table 4.2: Asymptotic means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂Y (0.25), Q̂Y (0.50), Q̂Y (0.75) for selected Poisson distributions, P (λ).

λ = 1 λ = 10

d = 20 d = 100 d = 20 d = 100

means (0.11, 0.90, 1.60) (0.01, 1.00, 1.64) (7.71, 9.84, 12.15) (7.78, 9.85, 12.06)

HDH′

0.69 0.78 0.70

0.78 0.91 1.01

0.70 1.01 3.40


0.02 0.02 0.25

0.02 0.01 0.18

0.25 0.18 13.84


12.83 9.37 6.22

9.37 12.89 10.91

6.22 10.91 17.41


14.64 8.73 5.76

8.73 13.20 9.66

5.76 9.66 17.87


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4.2 Truncated Weights and Quantiles

The observations made from the simulation study of Section 4.1 prompt us to look into the

choice of d more carefully. In particular, for a discrete distribution with infinite support

one has to choose not only d but, more importantly, the minimum and maximum distinct

points, y1:d and yd:d. Of course, for samples this is not a problem because observed data

will always have finite support. Thus, in this section we propose to use QY (u) formulas

with y1:d, yd:d, and d estimated from data. Properties of such estimators are investigated

theoretically as well as via simulations.

4.2.1 Estimation

Suppose we observe a random sample Y1, . . . , Yn of i.i.d. discrete non-negative random

variables with cdf F , mean E[Y ] <∞ and variance Var[Y ] <∞. A major proportion of

probability mass across the whole sample space will be covered by the following intervals:

[
L̂k; Ûk

]
:=

[
Y − k

√
S2; Y + k

√
S2
]
, (4.4)

where Y = n−1
∑n

i=1 Yi and S2 = (n − 1)−1
∑n

i=1

(
Yi − Y

)2
, and k ≥ 2 is a chosen

constant. Since Y
P→ E[Y ] and S2 P→ Var[Y ], intervals

[
L̂k; Ûk

]
converge in probability

to [
Lk; Uk

]
:=

[
E[Y ]− k

√
Var[Y ]; E[Y ] + k

√
Var[Y ]

]
. (4.5)

According to Chebyshev’s inequality, the probability that Y will fall in interval (4.5)

is at least 1−1/k2. Saw et al . (1984) modified this inequality to accommodate estimated

intervals such as (4.4). Their inequality was recently simplified by Kaban (2011):

P
{∣∣Y − Y

∣∣ ≤ k
√
S2
}

≥ 1− 1

n+ 1

[
n+ 1

n

(
n− 1

k2
+ 1

)]
, (4.6)
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Table 4.3: Probability bounds based on Chebyshev’s and Kaban’s inequalities for selected
k and n.

k Kaban’s inequality (4.6) Chebyshev’s
n = 10 n = 25 n = 50 n = 75 n = 100 inequality

2 0.727 0.731 0.745 0.750 0.743 0.750

3 0.818 0.885 0.882 0.882 0.881 0.889

4 0.909 0.923 0.922 0.934 0.931 0.938

5 0.909 0.923 0.941 0.947 0.950 0.960

7 0.909 0.962 0.961 0.974 0.970 0.980

10 0.909 0.962 0.980 0.987 0.980 0.990

where [·] denotes the greatest integer part.

In Table 4.3, we compute several probability bounds based on Chebyshev’s inequality

and on Kaban’s inequality (4.6). Clearly, when n > 50 the two bounds are practically

equal for most values of k. Also, for k > 5 improvements in the coverage probability are

very small and perhaps not worth pursuing in practice, but this issue will be explored in

detail in Sections 4.2.2 and 4.2.3.

Based on probability bound values provided in Table 4.3, we now have clear under-

standing about what k in (4.4) and (4.5) will result in a “major” proportion of probability

mass coverage. Thus, for k ≥ 1, we propose the following sample and population defini-

tions for d, y1:d, and yd:d:

Sample: d̂k = ŷd̂k:d̂k − ŷ1:d̂k + 1, ŷ1:d̂k = max
{
0,
[
L̂k

]}
, ŷd̂k:d̂k =

[
Ûk

]
+ 1,

(4.7)

Population: dk = ydk:dk − y1:dk + 1, y1:dk = max
{
0,
[
Lk

]}
, ydk:dk =

[
Uk

]
+ 1,

(4.8)

where [·] denotes the greatest integer part, and L̂k, Ûk and Lk, Uk are defined in (4.4)

and (4.5), respectively. Note that ŷ1:d̂k and ŷd̂k:d̂k are not necessarily observed distinct
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minimum and maximum of the sample. Likewise, y1:dk and ydk:dk are not necessarily

distinct minimum and maximum of the population. By imposing these upper and lower

bounds on possible values of data – in a sample and population – we defined a truncated

sample and a truncated population.

Under this setting of truncated samples and populations, the definitions of cdf’s

F̂j(k) = F̂Y (ŷj:d̂k) and Fj(k) = FY (yj:dk) are the same as before (see Sections 3.1 and 3.2),

but the boundary cases are not necessarily equal to 0 and 1, i.e., F̂0(k) ≥ 0, F0(k) ≥ 0

and F̂d̂k(k)
≤ 1, Fdk(k) ≤ 1. The truncated sample cdf F̂ ∗

j(k) is related to the standard

(non-truncated) sample cdf F̂j(k) as follows:

F̂ ∗
j(k) = P̂

{
Y ≤ ŷj:d̂k

∣∣∣ ŷ0:d̂k < Y ≤ ŷd̂k:d̂k

}
=

F̂j(k) − F̂0(k)

F̂d̂k(k)
− F̂0(k)

(4.9)

This shows that F̂ ∗
j(k) can be almost equal to F̂j(k), when F̂0(k) ≈ 0 and F̂d̂k(k)

≈ 1. The

equivalent relationship also holds for the population cdf’s F ∗
j(k) and Fj(k):

F ∗
j(k) = P

{
Y ≤ yj:dk

∣∣∣ y0:dk < Y ≤ ydk:dk

}
=

Fj(k) − F0(k)

Fdk(k) − F0(k)

(4.10)

Using equation (4.9) in conjunction with (3.4), we define the smoothed uth quantile for

(truncated) discrete sample as follows:

Q̂(k)
∗ (u) =

d̂k∑
j=1

ŵ
(k)
j(u)ŷj:d̂k =

d̂k∑
j=1

[
Bα̂u,β̂u

(F̂ ∗
j(k))−Bα̂u,β̂u

(F̂ ∗
j(k)−1)

]
ŷj:d̂k , (4.11)

where Bα̂u,β̂u
denotes the beta variable cdf with parameters α̂u = (d̂k + 1)u and β̂u =

(d̂k + 1)(1 − u). Likewise, using (4.10), we define the smoothed uth quantile for the
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truncated discrete population:

Q(k)
∗ (u) =

dk∑
j=1

w
(k)
j(u)yj:dk =

dk∑
j=1

[
Bαu,βu(F

∗
j(k))−Bαu,βu(F

∗
j(k)−1)

]
yj:dk , (4.12)

where Bαu,βu denotes the beta variable cdf with parameters αu = (dk + 1)u and βu =

(dk + 1)(1− u).

Note that both quantile functions, Q̂
(k)
∗ and Q

(k)
∗ , are directly related to their non-

truncated versions, Q̂
(k)
Y and Q

(k)
Y , respectively. Indeed, focusing on Q

(k)
∗ , we see that it

can be interpreted as the inverse function of a smoothed version of F ∗ which is related to

a similarly smoothed version of FY through (4.10). Inverting (4.10) for smoothed F ∗ and

FY leads to the following formula relating Q
(k)
∗ to Q

(k)
Y (which is the inverse of smoothed

FY ):

Q(k)
∗ (u) = Q

(k)
Y

(
F0(k) + u

(
Fdk(k) − F0(k)

))
. (4.13)

It is clear from (4.13) that F0(k) ≈ 0 and Fdk(k) ≈ 1 implies Q
(k)
∗ (u) ≈ Q

(k)
Y (u). This point

is further illustrated in Figure 4.3, where the quantile functionsQ
(k)
Y

(
F0(k) + u

(
Fdk(k) − F0(k)

))
of the Poisson distribution P (λ), with λ = 1, 2, 5, and 10, are plotted. The smooth curves

are constructed using data truncation intervals E[Y ] ± k
√
Var[Y ]. As we can see from

the figure, the curves with k = 1, 2 are truncated too severely and thus fail to cover most

of the pmf support. On the other hand, for k ≥ 3 the smooth curves capture both tails

of the probability distribution fairly well.

4.2.2 Asymptotic Properties

Let us continue with the setup of Section 4.2.1, and for 0 < u1 < · · · < ul < 1 define the

vector of smoothed sample quantiles

(
Q̂(k)

∗ (u1), . . . , Q̂
(k)
∗ (ul)

)
, (4.14)
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Figure 4.3: The quantile function Q
(k)
Y (u) of P (λ) distributions for data truncation in-

tervals E[Y ] ± k
√
Var[Y ]. Top panel : λ = 1 (left), λ = 2 (right). Bottom panel : λ = 5

(left), λ = 10 (right). The dotted step line corresponds to the classical discrete quantile
function.
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where each Q̂
(k)
∗ (ui) is given by (4.11). We conjecture that the vector of smoothed sample

quantiles, given by (4.14), is asymptotically normal and a consistent estimator of the

vector of smoothed population quantiles

(
Q(k)

∗ (u1), . . . , Q
(k)
∗ (ul)

)
, (4.15)

where each Q
(k)
∗ (ui) is given by (4.12). These properties are summarized in the following

conjecture.

Conjecture 4.1. Consider an i.i.d. sample of size n from a discrete distribution FY

with infinite support y1:d < y2:d < y3:d < · · · and d = ∞. Suppose a truncated version of

the sample, y1:dk < y2:dk < · · · < ydk:dk with dk < ∞, is constructed. Then, as n → ∞,

the following statements hold:

(i)
(
Q̂

(k)
∗ (u1), . . . , Q̂

(k)
∗ (ul)

)
P−→

(
Q

(k)
∗ (u1), . . . , Q

(k)
∗ (ul)

)
,

(ii)
(
Q̂(k)

∗ (u1), . . . , Q̂
(k)
∗ (ul)

)
∼ AN

((
Q(k)

∗ (u1), . . . , Q
(k)
∗ (ul)

)
,
1

n
HDH′

)
,

where D :=
[
dij
]
(dk−1)×(dk−1)

with dij = dji = F ∗
i(k)(1 − F ∗

j(k)), i(k) ≤ j(k), and H :=[
hij
]
l×(dk−1)

with hij = (yj:dk − yj+1:dk) bαui ,βui
(F ∗

j(k)). Here bαui ,βui
denotes the pdf of

a beta random variable with parameters αui
= (dk + 1)ui and βui

= (dk + 1)(1 − ui),

and F ∗
j(k) = P

{
Y ≤ yj:dk

∣∣∣ y0:dk < Y ≤ ydk:dk

}
=
(
FY (yj:dk) − FY (y0:dk)

)/(
FY (ydk:dk) −

FY (y0:dk)
)
.

4.2.3 Simulation Study

Here we use simulations to cross-check the asymptotic properties specified in Conjecture

4.1. The study was performed for the following choices of distributions and simulation

parameters:

� Discrete distributions :
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– Poisson, P (λ): λ = 1, 10.

– Zero-inflated Poisson, ZIP (c, λ = 10): c = 0.2, 0.8.

� Sample size: n = 50, 100, 500.

� Truncation intervals , E[Y ]± k
√
Var[Y ]: k = 1 : 5, 10.

� Estimated quantiles , (QY (u1), QY (u2), QY (u3)): u1 = 0.25, u2 = 0.50, u3 = 0.75.

From a specified discrete distribution, we generate 100,000 samples of a specified length

n. For each sample we estimate the vector
(
QY (0.25), QY (0.50), QY (0.75)

)
according to

(4.14) and then, based on those 100,000 estimates, compute the averages and variances

of the vector coordinates, as well as sample covariances between the coordinates.

The simulation results are summarized in Tables 4.4-4.7, where the column n = ∞

corresponds to the asymptotic vectors and covariance-variance matrix entries which were

specified in Conjecture 4.1 and are included here as reference point. We note right away

that for k = 1, 2 the simulated and conjectured results differ from the other (more stable)

cases. This outcome could be inferred from the graphs of Figure 4.3, where it is clear

that Q̂
(1)
Y (u) and Q̂

(2)
Y (u) missed the tails of the distribution. For k ≥ 3, the sample

estimates are fairly close to the conjectured asymptotic quantities, including the entries

of the covariance-variance matrices. They are also fairly similar across different k’s. The

convergence seems to be fast for λ = 10 and slower for λ = 1. For the zero-inflated

distribution with c = 0.2, the convergence rates of simulated quantities are fast. In

addition, for c = 0.8, there is a clear pattern: estimator means and most entries of the

covariance-variance matrix converge to 0 (as they should because 80% of data are 0’s),

but the variance of Q̂
(k)
Y (0.75) is large and keeps getting larger as k increases. Overall,

the new approach based on truncated samples produces more stable results and faster
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convergence than the original approach of choosing arbitrarily large d (see Tables 4.1-

4.2). In summary, our recommendation is to construct data truncation bounds using

k = 3, 4, 5.
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Table 4.4: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂
(k)
Y (0.25), Q̂

(k)
Y (0.50), Q̂

(k)
Y (0.75) for k = 1 : 5, 10 and P(λ = 1).

n = 50 n = 100 n = 500 n = ∞

k = 1

m̂eans (0.25, 0.81, 1.56) (0.24, 0.80, 1.56) (0.23, 0.80, 1.55) (0.247, 0.864, 1.731)

ĤDH′

0.43 0.70 0.68

0.70 1.38 1.74

0.68 1.74 2.99


0.43 0.74 0.79

0.74 1.57 2.20

0.79 2.20 4.11


0.47 0.99 1.46

0.99 2.71 5.15

1.46 5.15 11.69


0.440 0.661 0.478

0.661 1.151 1.115

0.478 1.115 1.748


k = 2

m̂eans (0.25, 0.86, 1.70) (0.24, 0.85, 1.70) (0.24, 0.85, 1.70) (0.232, 0.860, 1.731)

ĤDH′

0.48 0.69 0.53

0.69 1.25 1.34

0.53 1.34 2.32


0.46 0.68 0.52

0.68 1.27 1.39

0.52 1.39 2.46


0.44 0.67 0.48

0.67 1.40 1.69

0.48 1.69 3.18


0.494 0.730 0.536

0.730 1.247 1.257

0.536 1.257 2.196


k = 3

m̂eans (0.24, 0.86, 1.72) (0.23, 0.86, 1.72) (0.23, 0.86, 1.71) (0.219, 0.856, 1.709)

ĤDH′

0.53 0.72 0.50

0.72 1.26 1.25

0.50 1.25 2.12


0.51 0.72 0.48

0.72 1.26 1.24

0.48 1.24 2.13


0.50 0.70 0.42

0.70 1.27 1.23

0.41 1.23 2.03


0.539 0.777 0.553

0.777 1.281 1.277

0.553 1.277 2.300


k = 4

m̂eans (0.23, 0.86, 1.70) (0.22, 0.86, 1.70) 0.21, 0.86, 1.70) (0.206, 0.855, 1.689)

ĤDH′

0.58 0.76 0.50

0.76 1.29 1.24

0.50 1.24 2.10


0.56 0.76 0.49

0.76 1.28 1.23

0.49 1.23 2.11


0.55 0.74 0.43

0.74 1.28 1.20

0.43 1.20 1.95


0.578 0.812 0.563

0.812 1.291 1.267

0.563 1.267 2.338


k = 5

m̂eans (0.22, 0.85, 1.68) (0.21, 0.86, 1.68) (0.20, 0.86, 1.68) (0.200, 0.856, 1.672)

ĤDH′

0.63 0.79 0.51

0.79 1.31 1.24

0.51 1.24 2.14


0.60 0.79 0.50

0.79 1.29 1.23

0.50 1.23 2.15


0.59 0.78 0.46

0.78 1.30 1.21

0.46 1.21 2.04


0.611 0.839 0.572

0.839 1.287 1.250

0.572 1.252 2.377


k = 10

m̂eans (0.19, 0.86, 1.63) (0.17, 0.86, 1.63) (0.16, 0.87, 1.63) (0.152, 0.871, 1.625)

ĤDH′

0.79 0.84 0.55

0.84 1.32 1.21

0.55 1.21 2.39


0.75 0.84 0.55

0.84 1.26 1.19

0.55 1.19 2.46


0.71 0.86 0.55

0.86 1.21 1.19

0.55 1.19 2.53


0.704 0.879 0.632

0.879 1.161 1.150

0.632 1.150 2.704


Note: The entries for n < ∞ are the averages and sample covariances of estimated quartiles.

Results are based on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.
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Table 4.5: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂
(k)
Y (0.25), Q̂

(k)
Y (0.50), Q̂

(k)
Y (0.75) for k = 1 : 5, 10 and P(λ = 10).

n = 50 n = 100 n = 500 n = ∞

k = 1

m̂eans (7.58, 9.49, 11.40) (7.56, 9.48, 11.41) (7.54, 9.50, 11.46) (7.695, 9.850, 12.161)

ĤDH′

13.29 10.82 8.35

10.82 13.68 13.04

8.35 13.04 17.40


13.75 11.18 8.79

11.18 14.09 13.64

8.79 13.64 18.39


16.26 13.52 12.03

13.52 17.30 18.91

12.03 18.91 27.62


6.768 5.447 2.811

5.447 8.259 5.903

2.811 5.903 8.092


k = 2

m̂eans (7.67, 9.80, 12.05) (7.66, 9.79, 12.04) (7.65, 9.78, 12.05) (7.689, 9.848, 12.176)

ĤDH′

12.38 9.61 6.92

9.61 12.95 11.92

6.92 11.92 18.35


12.47 9.67 7.00

9.67 13.06 12.03

7.00 12.03 18.47


12.56 9.58 6.68

9.58 12.87 11.64

6.68 11.64 18.00


12.053 8.985 5.774

8.985 12.082 10.166

5.774 10.166 15.603


k = 3

m̂eans (7.73, 9.85, 12.13) (7.72, 9.84, 12.13) (7.71, 9.84, 12.13) (7.712, 9.844, 12.145)

ĤDH′

12.66 9.35 6.40

9.35 12.84 10.91

6.40 10.91 17.25


12.76 9.41 6.48

9.41 12.95 11.03

6.48 11.03 17.45


12.85 9.36 6.25

9.36 12.89 10.88

6.25 10.88 17.43


12.865 9.339 6.166

9.339 12.908 10.826

6.166 10.826 17.327


k = 4

m̂eans (7.74, 9.85, 12.13) (7.73, 9.84, 12.13) (7.72, 9.84, 12.13) (7.721, 9.842, 12.132)

ĤDH′

12.90 9.32 6.30

9.32 12.97 10.76

6.30 10.76 17.26


12.98 9.37 6.37

9.37 13.05 10.84

6.37 10.84 17.37


13.05 9.33 6.16

9.33 12.98 10.70

6.16 10.70 17.33


13.057 9.355 6.192

9.355 13.105 10.873

6.192 10.873 17.635


k = 5

m̂eans (7.75, 9.85, 12.11) (7.74, 9.84, 12.12) (7.73, 9.84, 12.12) (7.727, 9.841, 12.121)

ĤDH′

13.03 9.30 6.29

9.30 13.11 10.75

6.29 10.75 17.43


13.12 9.35 6.36

9.35 13.19 10.82

6.36 10.82 17.54


13.19 9.31 6.15

9.31 13.12 10.66

6.15 10.66 17.47


13.206 9.343 6.185

9.343 13.244 10.854

6.185 10.854 17.797


k = 10

m̂eans (7.76, 9.84, 12.08) (7.76, 9.84, 12.08) (7.75, 9.84, 12.09) (7.747, 9.838, 12.090)

ĤDH′

13.55 9.21 6.25

9.21 13.61 10.67

6.25 10.67 18.09


13.63 9.26 6.32

9.26 13.69 10.74

6.32 10.74 18.20


13.72 9.22 6.09

9.22 13.61 10.56

6.09 10.56 18.11


13.790 9.270 6.149

9.270 13.730 10.736

6.149 10.736 18.382


Note: The entries for n < ∞ are the averages and sample covariances of estimated quartiles.

Results are based on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.

48



Table 4.6: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂
(k)
Y (0.25), Q̂

(k)
Y (0.50), Q̂

(k)
Y (0.75) for k = 1 : 5, 10 and selected ZIP models.

n = 50 n = 100 n = 500 n = ∞

ZIP (c = 0.2, λ = 10), k = 1

m̂eans (5.09, 8.42, 10.75) (4.84, 8.44, 10.76) (4.72, 8.43, 10.74) (4.979, 8.809, 11.482)

ĤDH′

76.25 31.38 19.91

31.38 28.88 21.60

19.91 21.60 25.05


113.31 34.28 23.54

34.28 25.72 20.78

23.54 20.78 25.34


206.33 51.17 40.78

51.17 30.23 28.79

40.78 28.79 38.16


13.670 4.739 1.812

4.739 8.974 4.950

1.812 4.950 7.057


ZIP (c = 0.2, λ = 10), k = 2

m̂eans (4.12, 8.71, 11.47) (4.08, 8.73, 11.48) (4.04, 8.75, 11.48) (4.072, 8.780, 11.525)

ĤDH′

113.10 40.74 20.07

40.74 26.40 17.30

20.07 17.30 21.78


123.96 40.94 20.92

40.94 24.96 16.95

20.92 16.95 21.76


136.30 41.72 21.96

41.72 24.20 16.92

21.96 16.92 22.06


137.548 40.395 20.548

40.395 22.840 15.500

20.548 15.500 20.416


ZIP (c = 0.2, λ = 10), k = 3

m̂eans (4.18, 8.75, 11.49) (4.16, 8.78, 11.50) (4.14, 8.79, 11.50) (4.139, 8.798, 11.505)

ĤDH′

124.70 40.23 20.52

40.23 25.05 16.33

20.52 16.33 21.29


139.55 40.71 21.56

40.71 23.72 15.95

21.56 15.95 21.21


156.50 41.76 22.65

41.76 22.99 15.77

22.65 15.77 21.30


161.278 41.856 22.349

41.856 22.741 15.641

22.349 15.641 21.402


ZIP (c = 0.2, λ = 10), k = 4

m̂eans (4.21, 8.77, 11.47) (4.20, 8.79, 11.48) (4.20, 8.80, 11.49) (4.203, 8.808, 11.490)

ĤDH′

135.39 40.40 21.17

40.40 24.60 16.09

21.17 16.09 21.59


153.43 41.18 22.41

41.18 23.39 15.73

22.41 15.73 21.51


174.60 42.69 23.75

42.69 22.80 15.58

23.75 15.58 21.60


181.814 43.007 23.459

43.007 22.630 15.477

23.459 15.477 21.699


ZIP (c = 0.2, λ = 10), k = 5

m̂eans (4.24, 8.78, 11.46) (4.24, 8.80, 11.47) (4.25, 8.81, 11.48) (4.262, 8.815, 11.478)

ĤDH′

144.49 40.63 21.69

40.63 24.35 15.92

21.69 15.92 21.85


165.44 41.71 23.09

41.71 23.25 15.58

23.09 15.58 21.76


190.44 43.63 24.65

43.63 22.76 15.45

24.65 15.45 21.86


199.881 44.135 24.388

44.135 22.638 15.359

24.388 15.359 21.943


ZIP (c = 0.2, λ = 10), k = 10

m̂eans (4.33, 8.80, 11.44) (4.38, 8.81, 11.44) (4.46, 8.82, 11.45) (4.487, 8.828, 11.451)

ĤDH′

175.60 41.87 23.25

41.87 24.12 15.48

23.25 15.48 22.72


207.58 44.09 25.22

44.09 23.35 15.22

25.22 15.22 22.62


246.07 47.25 27.44

47.25 23.04 15.15

27.44 15.15 22.78


260.238 48.091 27.266

48.091 22.937 15.069

27.266 15.069 22.813


Note: The entries for n < ∞ are the averages and sample covariances of estimated quartiles.

Results are based on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.
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Table 4.7: Estimated means and covariance-variance (×n) matrices of smoothed quartile

estimators Q̂
(k)
Y (0.25), Q̂

(k)
Y (0.50), Q̂

(k)
Y (0.75) for k = 1 : 5, 10 and selected ZIP models.

n = 50 n = 100 n = 500 n = ∞

ZIP (c = 0.8, λ = 10), k = 1

m̂eans (0.00, 0.01, 0.35) (0.00, 0.00, 0.26) (0.00, 0.00, 0.18) (0.000, 0.005, 2.092)

ĤDH′

0.00 0.00 0.00

0.00 0.03 0.50

0.00 0.50 14.94


0.00 0.00 0.00

0.00 0.00 0.16

0.00 0.16 9.86


0.00 0.00 0.00

0.00 0.00 0.03

0.00 0.03 5.74


0.000 0.000 0.000

0.000 0.006 0.612

0.000 0.612 59.62


ZIP (c = 0.8, λ = 10), k = 2

m̂eans (0.00, 0.03, 1.65) (0.00, 0.03, 1.65) (0.00, 0.01, 1.46) (0.000, 0.022, 2.642)

ĤDH′

0.00 0.00 0.02

0.00 0.56 6.79

0.02 6.79 131.84


0.00 0.00 0.01

0.00 0.19 4.31

0.01 4.31 133.53


0.00 0.00 0.00

0.00 0.05 2.38

0.00 2.38 135.41


0.000 0.000 0.001

0.000 0.078 3.035

0.001 3.035 120.506


ZIP (c = 0.8, λ = 10), k = 3

m̂eans (0.00, 0.045, 2.69) (0.00, 0.03, 2.54) (0.00, 0.02, 2.41) (0.000, 0.017, 2.593)

ĤDH′

0.00 0.00 0.00

0.00 0.39 5.59

0.00 5.59 147.78


0.00 0.00 0.00

0.00 0.14 3.96

0.00 3.96 159.42


0.00 0.00 0.00

0.00 0.05 2.69

0.00 2.69 169.49


0.000 0.000 0.001

0.000 0.058 3.023

0.001 3.023 160.369


ZIP (c = 0.8, λ = 10), k = 4

m̂eans (0.00, 0.02, 2.63) (0.00, 0.01, 2.49) (0.00, 0.01, 2.36) (0.000, 0.007, 2.362)

ĤDH′

0.00 0.00 0.00

0.00 0.20 3.52

0.00 3.52 140.96


0.00 0.00 0.00

0.00 0.05 2.10

0.00 2.10 148.96


0.00 0.00 0.00

0.00 0.01 1.19

0.00 1.19 154.01


0.000 0.000 0.000

0.000 0.011 1.186

0.000 1.186 154.009


ZIP (c = 0.8, λ = 10), k = 5

m̂eans (0.00, 0.01, 2.47) (0.00, 0.01, 2.31) (0.00, 0.00, 2.15) (0.000, 0.002, 2.094)

ĤDH′

0.00 0.00 0.00

0.00 0.11 2.41

0.00 2.41 149.12


0.00 0.00 0.00

0.00 0.02 1.21

0.00 1.21 156.85


0.00 0.00 0.00

0.00 0.00 0.54

0.00 0.54 160.20


0.000 0.000 0.000

0.000 0.000 0.567

0.000 0.567 188.483


ZIP (c = 0.8, λ = 10), k = 10

m̂eans (0.00, 0.00, 2.00) (0.00, 0.00, 1.75) (0.00, 0.00, 1.48) (0.000, 0.000, 1.399)

ĤDH′

0.00 0.00 0.00

0.00 0.02 0.54

0.00 0.54 179.04


0.00 0.00 0.00

0.00 0.00 0.11

0.00 0.11 186.96


0.00 0.00 0.00

0.00 0.00 0.01

0.00 0.01 180.08


0.000 0.000 0.000

0.000 0.000 0.006

0.000 0.006 198.653


Note: The entries for n < ∞ are the averages and sample covariances of estimated quartiles.

Results are based on 100,000 simulated samples. Standard errors of these entries are ≤ 0.003.
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Chapter 5

Risk Measurement

In this chapter, we use the newly developed methodology to evaluate the riskiness of

the automobile accident data, which is taken from Klugman et al . (2012, Table 6.2).

In Section 5.1, we introduce a class of commonly used risk measures – distortion risk

measures – and provide three examples. Then, in Section 5.2, we estimate the smoothed

quantile function for the given data set and evaluate a few selected risk measures.

5.1 Risk Measures

For the purposes of risk estimation, it is worth noting that many risk measures used in

the current practice can be defined as the expectation of loss with respect to distorted

probabilities. Specifically, for a random variable X ≥ 0 with cdf F , a risk measure R is

defined as

R[F ] =

∫ ∞

0

g(1− F (x)) dx, (5.1)

where the distortion function g(·) is an increasing function with g(0) = 0 and g(1) = 1.

In addition, if g is differentiable, then integration by parts in (5.1) leads to

R[F ] =

∫ 1

0

F−1(u)ψ(u) du, (5.2)
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where ψ(u) = g′(1−u) and F−1 is the quantile function of variable X. Now if in (5.2) we

replace F−1 with its (empirical or parametric) estimator, then we will have an estimator

of R[F ]. For instance, the empirical estimator R[F̂n] is derived by replacing F with its

empirical counterpart F̂n. This estimator belongs to the class of L-statistics, asymptotic

properties of which are well established. The following are examples of commonly used

distortion risk measures .

Example 5.1 [VaR, value-at-risk]

The VaR measure on a portfolio of risks (i.e., potential losses) is the maximum loss

one might expect over a given period of time, at a given level of confidence (say, β). In

mathematical terms, this measure is defined as the (1−β)-level quantile of the distribution

function F :

VaRβ[F ] = F−1(1− β). (5.3)

VaR can be expressed as (5.1) by choosing g(u) = 0 for 0 ≤ u < β, and = 1 for β ≤ u ≤ 1.

This risk measure, however, has some axiomatic flaws – it is not coherent as it does not

satisfy the sub-additivity property (see Artzner et al ., 1999). �

Example 5.2 [cte, conditional tail expectation]

The cte measure (also known as Tail-VaR or expected shortfall) is the conditional ex-

pectation of a loss variable given that it exceeds a specified quantile, VaRβ. It measures

the expected maximum loss in the 100β% worst cases, over a given period of time:

cteβ[F ] =
1

β

∫ 1

1−β

F−1(u) du. (5.4)

cte is a coherent risk measure, and it can be expressed as (5.2) by choosing ψ(u) = 0

for 0 ≤ u ≤ 1− β, and = 1/β for 1− β < u ≤ 1. �

Example 5.3 [pht, proportional hazards transform]

52



The name of the pht measure is motivated by the fact that the hazard function of the

distorted distribution is proportional to the hazard function of F . The measure is defined

as

phtr[F ] = r

∫ 1

0

F−1(u)(1− u)r−1 du, (5.5)

where constant r (0 < r ≤ 1) represents the degree of distortion. Note that small r

corresponds to high distortion, and phtr[F ] for r = 1 is the expected value of X. pht is

a coherent risk measure, and it can be expressed as (5.2) by choosing ψ(u) = r(1−u)r−1.

�

5.2 Numerical Example

The automobile accident data represent the risk profile of 9,461 insurance policies; the

data set is provided in Table 5.1. As can be seen from the table, more than 80% of policies

reported no accident, which is very typical for an insurance portfolio, and less than 20%

reported at least one claim. As one would expect, when the number of accidents increases,

the number of policies decreases. Moreover, only one policy reported 7 accidents and none

had 8 or more.

Table 5.1: Automobile Data: The number of accidents under the policy.

Number of accidents 0 1 2 3 4 5 6 7 ≥ 8 Total
Number of policies 7,840 1,317 239 42 14 4 4 1 0 9,461

Since the data set has eight distinct data points, we can estimate its smoothed quantile

function using (3.4) or (3.5), with d = 8 and y1:d = 0, y2:d = 1, . . . , yd:d = 7. The smoothed

quantile function Q̂(u) and the classical discrete quantile function F̂−1
n are depicted in

Figure 5.1. The additional curves plotted there represent the product Q̂(u)ψ(u), with

ψ(u) taken from Examples 5.2-5.3.

The smoothed quantile function is continuous and thus the product Q̂(u)ψ(u) is well-
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Figure 5.1: The classical and smoothed quantile functions for Automobile Data. The
other curves represent the smoothed quantile function multiplied by the risk measure
weights ψ(u). Left panel : cteβ[F̂ ] with β = 0.05, 0.10, 0.20. Right panel : phtr[F̂ ] with
r = 0.25, 0.50, 0.75.

defined and can be integrated using basic numerical procedures (e.g., trapezoidal rule).

The risk measure value is simply the area under the corresponding curve, either (5.4) or

(5.5). In Table 5.2, we report several risk measure estimates for Automobile Data.

Table 5.2: Selected risk measure estimates for Automobile Data.

V̂aRβ[F̂ ] ĉteβ[F̂ ] p̂htr[F̂ ]
β = 0.05 β = 0.10 β = 0.20 β = 0.05 β = 0.10 β = 0.20 r = 0.25 r = 0.50 r = 0.75
2.286 1.216 0.527 3.997 2.822 1.818 2.401 1.361 0.731

This risk measurement exercise illustrates and quantifes the obvious: the deeper one

goes into the distribution tail (i.e., when β gets smaller for VaRβ and cteβ or r gets

smaller for phtr), the riskier it gets. In practice, the choice of the risk measure and

associated tail parameters (β and r) would be determined from the risk appetite state-

ment of the company. (Under the current insurance industry regulations, company’s risk

appetite has to be specified by the top company executives and approved by the board

of directors.) To help with that determination, one should assess uncertainty of the risk

measure estimates. Using the available results established in this dissertation (Theorem
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3.1), we can specify a joint asymptotically normal distribution of the VaRβ estimates:

(
V̂aR0.05[F̂ ], V̂aR0.10[F̂ ], V̂aR0.20[F̂ ]

)
∼ AN

((
2.286, 1.216, 0.527

)
,

1

9,461
ĤDH′

)
,

where

ĤDH′ =


51.783 16.232 3.459

16.232 7.276 2.684

3.459 2.684 1.960

 .
Now it follows that (approximate) 95% confidence intervals for the three VaR measures

are:

VaR0.05[F ] : 2.286± 1.96

√
51.783

9461
= 2.286± 0.145; or [2.141; 2.431].

VaR0.10[F ] : 1.216± 1.96

√
7.276

9461
= 1.216± 0.054; or [1.162; 1.270].

VaR0.20[F ] : 0.527± 1.96

√
1.960

9461
= 0.527± 0.028; or [0.499; 0.555].

Finally, note that evaluation of cteβ, β = 1, or phtr, r = 1, yields the mean of

smoothed data. It is equal to 0.415 and is almost twice as large as the “regular” mean

(computed directly from the data in Table 5.1), which is equal 0.214. This discrepancy

could be anticipated from Figure 5.1, because the smoothed quantile function is almost

uniformly above the classical quantile function.
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Chapter 6

Final Remarks

6.1 Summary

In this dissertation, we have studied smoothing of quantiles for discrete distributions,

with both finite and countable supports. Properties of sample quantile estimators were

investigated theoretically as well as via simulations. Definitions, properties and illus-

trations of smoothed quantile functions were provided. These functions have also been

applied to risk measurement exercises.

The first main contribution of the dissertation is introduction and development of the

vectors of smoothed quantile estimators. We established the asymptotic properties for

the vector of smoothed quantile estimators and investigated their small-sample properties

using Monte Carlo simulations. The simulation study revealed convergence of sample

estimates to the true quantities as the sample size increased.

The second main contribution is extension of smoothed quantiles for discrete distribu-

tions with infinite support. The properties and estimators of smoothed quantile functions

established by Wang and Hutson (2011) are valid for discrete distributions with finite sup-

port. In this dissertation we extensively studied the choice of the count of distinct points d,

the minimum and maximum distinct points, y1:d and yd:d when discrete distributions have
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infinite (countable) support. We proposed the use of sample and population smoothed

quantile estimators using truncated data, based on d, y1:d and yd:d, which were calculated

using Chebychev’s inequality bounds. We conjectured the asymptotic properties of the

new estimators and used simulations to check the conjectured claims.

Finally, we used the newly developed methodology for smoothed quantiles to evaluate

the riskiness of the automobile accident data, and reported several point estimates of

VaR, CTE, and PHT measures. For VaR measures, the 95% confidence intervals were

also constructed.

6.2 Future Work

Most immediate future research stemming from this dissertation will pursue two problems:

(i) proof of Conjecture 4.1; and (ii) development of percentile-matching estimators for

discrete data.

6.2.1 Proof of Conjecture 4.1

While our simulation study of Section 4.2.3 provides guidance on what can be expected

from the new smoothed quantile estimators, a rigorous theoretical study is needed to

establish asymptotic properties of those estimators. The key quantities used in contruc-

tion of estimators (4.7) are sample mean, Y , and variance, S2. Their consistency and

joint asymptotic normality are well known and would carry through to their transforma-

tions such as L̂k = Y − k
√
S2 and Ûk = Y + k

√
S2. The main challenge in proving the

conjecture is that estimators d̂k, ŷ1:d̂k and ŷd̂k:d̂k require taking the greatest integer part

of L̂k and Ûk, which results in discontinuities when the respective limits of L̂k and Ûk,

Lk = E[Y ]−k
√

Var[Y ] and Uk = E[Y ]+k
√

Var[Y ], are integers. This topic and related

theoretical investigations will be pursued in future studies.
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6.2.2 Percentile Matching

In this research line, we will use the smoothed quantile definitions for population and

sample and introduce percentile-matching (PM) estimators for estimating parameters of

discrete distributions. The idea behind this method of estimation is identical to that of

the method of moments – create a system of equations by matching smoothed sample

and model percentiles (instead of moments) and then solve it with respect to unknown

parameters. The same approach has also been employed in designing the method of

trimmed moments, MTM (Brazauskas et al., 2009, and Brazauskas, 2009) and method of

winsorized moments, MWM (Zhao et al ., 2018a,b) estimators for continous distributions.

Given the effectiveness of MTMs and MWMs, we anticipate that PM estimators will be

more robust against model misspecification than the widely used maximum likelihood

estimators. For more details on PM estimation, see Klugman et al . (2012, Section 13.1).
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Appendix A

R code: Asymptotic and Estimated Means and Covariance-Variance

Matrices for Binomial Distribution

#Q_Binomial.R file

#Generates numbers for tables 3.2 and 3.3 for Binomial Distribution

rm(list=ls())

######### Binomial parameters ################################

q=0.7

n=4

##################### initialize variables ###################

v=c(0:n)

d=length(v)

#d=n+1

# v.minus1 and v minus d

v.minus_1=v[2: length(v)]

v.minus_d=v[1: length(v)-1]

seed_set =1;

sample_size =500; n_sim =100000

u=c(1/4 ,1/2 ,3/4)

Q=vector(length=length(u))

Q_cap=matrix(nrow=n_sim ,ncol=length(u))

mean_Q_cap=vector(length=length(u))

tau=matrix(nrow=length(u),ncol=d-1)

tau_theo=matrix(nrow=length(u),ncol=d-1)

Q_var=matrix(nrow=length(u),ncol=length(u))

Q_var_theo=matrix(nrow=length(u),ncol=length(u))

mean_Q_var_sim=matrix(0,nrow=length(u),ncol=length(u))

mean_Q_cap=vector(length=length(u))

#theory:calculate Q, HDH ’ and correlations #######

#F cumultiv distribution function for binomial

F=as.vector(pbinom ((0:n),n,q))

F_minus_d=F[1: length(F)-1]

#D_theo is D in HDH ’for theory
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D_theo=matrix ((1- F_minus_d),nrow=length(F_minus_d),

ncol=length(F_minus_d),

byrow=TRUE)

D_theo=F_minus_d*D_theo

D_theo[lower.tri(D_theo )] <- t(D_theo )[lower.tri(D_theo )]

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

beta_dist_th=pbeta(F,a,b)

limit=beta_dist_th [1]

for (i in 2: length(beta_dist_th ))

{limit[i]= beta_dist_th[i]-beta_dist_th[i-1]}

#calculate smooth quantile

Q[ui]= round(sum(limit*v),5)

#theory variance:tau_theo is same as H in HDH ’

beta_density=dbeta(F_minus_d ,(d+1)*u[ui], (d+1)*(1 -u[ui]))

tau_theo[ui ,]= beta_density *(v.minus_d -v.minus_1)

}

HDH_theo=tau_theo %*% D_theo %*%t(tau_theo)

#correlation matrix

Corr1=cov2cor(HDH_theo)

############### simulation loop starts #################

### binomial simulated data is based on the

### parameters n, q set initially.

###As d=n+1, d is same for theory and simulation

for(j in 1:n_sim ){

seed_set=seed_set +1

set.seed(seed_set)

### generate binomial data

seq1=sort(rbinom(sample_size ,n,q))

fn=ecdf(seq1)

fn_seq1=fn(unique(seq1))

uniq_seq1 <-unique(seq1)

fn_v <-rep(0,d)

### find Fn for missing v in simulation

for (i in 1:d){

for (m in seq_along(uniq_seq1 )){

if(v[i]== uniq_seq1[m]){ fn_v[i]<-fn_seq1[m]}

}

}

#extract non zero fn_v if the first few fn_v are zero

fn_v_mod <-fn_v

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

fn_v_mod <-fn_v[nzero_loc:d]

}

}
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## for missing v,replace its F with F for v-1

while(length(which(fn_v_mod == 0))!=0){

loc <- which(fn_v_mod == 0)

for(m in seq_along(loc))

{loc_zero <-loc[m]

fn_v_mod[loc_zero]<-fn_v_mod[loc_zero -1]}

}

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

app_0 <-rep(0,nzero_loc -1)

fn_v_mod <-c( app_0 ,fn_v_mod)

}

}

fn_v <-fn_v_mod

v_minus_1=v[2:d]

v_minus_d=v[1:d-1]

fn_v_minus_1=fn_v [2: length(fn_v)]

fn_v_minus_d=fn_v [1: length(fn_v)-1]

#loop for different u

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

## calculate Qcap using simulated data

beta_dist=pbeta(fn_v ,a,b)

lim=beta_dist [1]

for (i in 2: length(beta_dist ))

{lim[i]= beta_dist[i]-beta_dist[i-1]}

Q_cap[j,ui]=sum(lim*v)

}

} #simulation loop ends

HDH_cap=cov(Q_cap )* sample_size

mean_Q_cap=colMeans(Q_cap)

############### output ################################

Q_result=rbind(Q,mean_Q_cap)

colnames(Q_result)<-u

Q_result

HDH_theo

HDH_cap

#######################################################
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Appendix B

R code: Asymptotic and Estimated Means and Covariance-Variance

Matrices for ZIB Distribution

#Q_ZIB.R file

#Generates numbers for tables 3.2 and 3.3 for ZIB Distribution

rm(list=ls())

library(VGAM)

######### ZIB parameters ################################

q=0.7

n=8

c=0.8

##################### initialize variables ################

v=c(0:n)

d=length(v)

#d=n+1

v.minus_d=v[2: length(v)]

v.minus_1=v[1: length(v)-1]

p0=pbinom(0,n,q)

pi=(c-p0)/(1-p0)

seed_set =1;

sample_size =100; n_sim =100000

#u=1/15;u=0.5

u=c(1/4 ,1/2 ,3/4)

Q=vector(length=length(u))

Q_cap=matrix(nrow=n_sim ,ncol=length(u))

mean_Q_cap=vector(length=length(u))

tau=matrix(nrow=length(u),ncol=d-1)

tau_theo=matrix(nrow=length(u),ncol=d-1)

Q_var=matrix(nrow=length(u),ncol=length(u))

Q_var_theo=matrix(nrow=length(u),ncol=length(u))

mean_Q_var_sim=matrix(0,nrow=length(u),ncol=length(u))

mean_Q_cap=vector(length=length(u))

#theory:calculate Q, HDH ’ and correlations ######

#F cumultiv distribution function for ZIB
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F=as.vector(pzibinom ((0:n),n,q,pi))

F_minus_d=F[1: length(F)-1]

#D_theo is D in HDH ’for theory

D_theo=matrix ((1- F_minus_d),nrow=length(F_minus_d),

ncol=length(F_minus_d),byrow=TRUE)

D_theo=F_minus_d*D_theo

D_theo[lower.tri(D_theo )] <- t(D_theo )[lower.tri(D_theo )]

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

beta_dist_th=pbeta(F,a,b)

limit=beta_dist_th [1]

#calculate smooth quantile

for (i in 2: length(beta_dist_th ))

{limit[i]= beta_dist_th[i]-beta_dist_th[i-1]}

Q[ui]= round(sum(limit*v),5)

#theory variance:tau_theo is same as H in HDH ’

beta_density=dbeta(F_minus_d ,(d+1)*u[ui], (d+1)*(1 -u[ui]))

tau_theo[ui ,]= beta_density *(v.minus_d -v.minus_1)

}

HDH_theo=tau_theo %*% D_theo %*%t(tau_theo)

#correlation matrix

Corr1=cov2cor(HDH_theo)

############### simulation loop starts #################

### ZIB simulated data is based on the

### parameters n, q set initially.

###As d=n+1, d is same for theory and simulation

for(j in 1:n_sim ){

seed_set=seed_set +1

set.seed(seed_set)

### generate ZIB data

seq1=sort(rzibinom(sample_size ,n,q,pi))

fn=ecdf(seq1)

fn_seq1=fn(unique(seq1))

uniq_seq1 <-unique(seq1)

fn_v <-rep(0,d)

#find Fn for missing v in simulation

for (i in 1:d){

for (m in seq_along(uniq_seq1 )){

if(v[i]== uniq_seq1[m]){ fn_v[i]<-fn_seq1[m]}

}

}

#extract non zero fn_v if the first few fn_v are zero

fn_v_mod <-fn_v

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){
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nzero_loc <-min(which(fn_v != 0))

fn_v_mod <-fn_v[nzero_loc:d]

}

}

## for missing v,replace its F with F for v-1

while(length(which(fn_v_mod == 0))!=0){

loc <- which(fn_v_mod == 0)

for(m in seq_along(loc))

{loc_zero <-loc[m]

fn_v_mod[loc_zero]<-fn_v_mod[loc_zero -1]}

}

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

app_0 <-rep(0,nzero_loc -1)

fn_v_mod <-c( app_0 ,fn_v_mod)

}

}

fn_v <-fn_v_mod

v_minus_1=v[2:d]

v_minus_d=v[1:d-1]

fn_v_minus_1=fn_v [2: length(fn_v)]

fn_v_minus_d=fn_v [1: length(fn_v)-1]

#loop for different u

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

## calculate Qcap using simulated data

beta_dist=pbeta(fn_v ,a,b)

lim=beta_dist [1]

for (i in 2: length(beta_dist ))

{lim[i]= beta_dist[i]-beta_dist[i-1]}

Q_cap[j,ui]=sum(lim*v)

}

}# simulation loop ends

HDH_cap=cov(Q_cap )* sample_size

mean_Q_cap=colMeans(Q_cap)

############### output #############################

result=rbind(Q,mean_Q_cap)

colnames(result)<-u

result

HDH_theo

HDH_cap

#####################################################
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Appendix C

R code: Asymptotic and Estimated Means and Covariance-Variance

Matrices for Poisson Distribution

#Q_Poisson.R file

#Generates numbers for tables 4.1 and 4.2 for Poisson Distribution

rm(list=ls())

######### Poisson parameters ######

lambda =1

##################### initialize variables #############

max_v =19

v=c(0: max_v)

d=length(v)

# v.minus1 and v minus d

v.minus_1=v[2: length(v)]

v.minus_d=v[1: length(v)-1]

seed_set =1;

sample_size =100; n_sim =100000

u=c(1/4 ,1/2 ,3/4)

Q=vector(length=length(u))

Q_cap=matrix(nrow=n_sim ,ncol=length(u))

mean_Q_cap=vector(length=length(u))

tau=matrix(nrow=length(u),ncol=d-1)

tau_theo=matrix(nrow=length(u),ncol=d-1)

Q_var=matrix(nrow=length(u),ncol=length(u))

Q_var_theo=matrix(nrow=length(u),ncol=length(u))

mean_Q_var_sim=matrix(0,nrow=length(u),ncol=length(u))

mean_Q_cap=vector(length=length(u))

#theory:calculate Q, and HDH ’############

#F cumultiv distribution function for Poisson

F=as.vector(ppois(v,lambda ))

F_minus_d=F[1: length(F)-1]

#D_theo is D in HDH ’for theory

69



D_theo=matrix ((1- F_minus_d),nrow=length(F_minus_d),

ncol=length(F_minus_d),byrow=TRUE)

D_theo=F_minus_d*D_theo

D_theo[lower.tri(D_theo )] <- t(D_theo )[lower.tri(D_theo )]

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

beta_dist_th=pbeta(F,a,b)

limit=beta_dist_th [1]

#calculate smooth quantile

for (i in 2: length(beta_dist_th ))

{limit[i]= beta_dist_th[i]-beta_dist_th[i-1]}

Q[ui]= round(sum(limit*v),5)

#theory variance:tau_theo is same as H in HDH ’

beta_density=dbeta(F_minus_d ,(d+1)*u[ui], (d+1)*(1 -u[ui]))

tau_theo[ui ,]= beta_density *(v.minus_d -v.minus_1)

}

HDH_theo=tau_theo %*% D_theo %*%t(tau_theo)

#correlation matrix

Corr1=cov2cor(HDH_theo)

############### simulation loop starts ##################

for(j in 1:n_sim ){

seed_set=seed_set +1

set.seed(seed_set)

### generate poisson data

seq1=sort(rpois(sample_size , lambda ))

fn=ecdf(seq1)

fn_seq1=fn(unique(seq1))

uniq_seq1 <-unique(seq1)

fn_v <-rep(0,d)

### find Fn for missing v in simulation

for (i in 1:d){

for (m in seq_along(uniq_seq1 )){

if(v[i]== uniq_seq1[m]){ fn_v[i]<-fn_seq1[m]}

}

}

fn_v_mod <-fn_v

#extract non zero fn_v if the first few fn_v are zero

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

fn_v_mod <-fn_v[nzero_loc:d]

}

## for missing v,replace its F with F for v-1

while (length(which(fn_v_mod == 0))!=0){

loc <- which(fn_v_mod == 0)

for(m in seq_along(loc))

{loc_zero <-loc[m]

fn_v_mod[loc_zero]<-fn_v_mod[loc_zero -1]}

}
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if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

app_0 <-rep(0,nzero_loc -1)

fn_v_mod <-c( app_0 ,fn_v_mod)

}

fn_v <-fn_v_mod

v_minus_1=v[2:d]

v_minus_d=v[1:d-1]

fn_v_minus_1=fn_v [2: length(fn_v)]

fn_v_minus_d=fn_v [1: length(fn_v)-1]

#loop for different u

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

## calculate Qcap using simulated data

beta_dist=pbeta(fn_v ,a,b)

lim=beta_dist [1]

for (i in 2: length(beta_dist ))

{lim[i]= beta_dist[i]-beta_dist[i-1]}

Q_cap[j,ui]=sum(lim*v)

}

} #simulation loop ends

HDH_cap=cov(Q_cap )* sample_size

mean_Q_cap=colMeans(Q_cap)

############### output ################################

Q_result=rbind(Q,mean_Q_cap)

colnames(Q_result)<-u

Q_result

HDH_theo

HDH_cap

########################################################
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Appendix D

R code: Asymptotic and Estimated Means and Covariance-Variance

Matrices for Poisson Distribution Using Truncated Data

#Q_Poi_Chebychev.R file

#Generates numbers for tables 4.4 and 4.5

rm(list=ls())

######### Poisson parameters ################################

library(VGAM)

lambda =1;

##################### initialize variables ###################

k=3

sample_size =500; n_sim =100000

seed_set =1;

ustar=c(1/4 ,1/2 ,3/4)

##################### Apply Chebychev rule to theory ########

M_theory=lambda

S_theory=sqrt(lambda)

#setting Lk(theory_min) Uk(theory_max) as in equation 4.5

theory_min=max(0,floor(M_theory -k*S_theory ))

theory_max=floor(M_theory+k*S_theory )+1

v<-seq(theory_min ,theory_max)

#F cumultiv distribution function for Poisson

F_initial <- as.vector(ppois(v,lambda ))

#Resetting cumulative distribution as in equation 4.10

F<-(F_initial -ppois ((theory_min -1), lambda ))/

(ppois(theory_max ,lambda)-ppois(( theory_min -1), lambda ))

u <- (ustar -ppois(( theory_min -1), lambda ))/

(ppois(theory_max ,lambda)-ppois(( theory_min -1), lambda ))

#setting d as in equation 4.8

d = theory_max -theory_min +1

#v_theory=seq(min(uniq_seq1),max(uniq_seq1 ))

v.minus_1=v[2: length(v)]

v.minus_d=v[1: length(v)-1]
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Q=vector(length=length(u))

Q_cap=matrix(nrow=n_sim ,ncol=length(u))

mean_Q_cap=vector(length=length(u))

tau_theo=matrix(nrow=length(u),ncol=d-1)

Q_var=matrix(nrow=length(u),ncol=length(u))

Q_var_theo=matrix(nrow=length(u),ncol=length(u))

mean_Q_var_sim=matrix(0,nrow=length(u),ncol=length(u))

mean_Q_cap=vector(length=length(u))

### theory:calculate Q, and HDH ’##########################

F_minus_d=F[1: length(F)-1]

#D_theo is D in HDH ’for theory

D_theo=matrix ((1- F_minus_d),nrow=length(F_minus_d),

ncol=length(F_minus_d),byrow=TRUE)

D_theo=F_minus_d*D_theo

D_theo[lower.tri(D_theo )] <- t(D_theo )[lower.tri(D_theo )]

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

beta_dist_th=pbeta(F,a,b)

limit=beta_dist_th [1]

#calculate smooth quantile

for (i in 2: length(beta_dist_th ))

{limit[i]= beta_dist_th[i]-beta_dist_th[i-1]}

Q[ui]= round(sum(limit*v),5)

#theory variance:tau_theo is same as H in HDH ’

beta_density=dbeta(F_minus_d ,(d+1)*u[ui], (d+1)*(1 -u[ui]))

tau_theo[ui ,]= beta_density *(v.minus_d -v.minus_1)

}

HDH_theo=tau_theo %*% D_theo %*%t(tau_theo)

#correlation matrix

Corr1=cov2cor(HDH_theo)

################### simulation loop starts ###############

for(j in 1:n_sim ){

seed_set=seed_set +1

set.seed(seed_set)

### generate poisson data

seq1=sort(rpois(sample_size ,lambda ))

uniq_seq1 <-unique(seq1)

fn1=ecdf(seq1)

fn_seq1=fn1(unique(seq1))

fn_seq2=fn_seq1

uniq_seq2 <-uniq_seq1

d_sample= max(uniq_seq1)-min(uniq_seq1 )+1

fn_v <-rep(0,d_sample)

v_sample=seq(min(uniq_seq1),max(uniq_seq1 ))

#setdiff(v_sample ,uniq_seq1)
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#find Fn for missing v in simulation

for (i in 1: d_sample ){

for (m in seq_along(uniq_seq1 )){

if(v_sample[i]== uniq_seq1[m]){ fn_v[i]<-fn_seq1[m]}

}

}

fn_v_mod <-fn_v

#extract non zero fn_v if the first few fn_v are zero

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

fn_v_mod <-fn_v[nzero_loc:d_sample]

}

}

## for missing v,replace its F with F for v-1

while (length(which(fn_v_mod == 0))!=0){

loc <- which(fn_v_mod == 0)

for(m in seq_along(loc))

{loc_zero <-loc[m]

fn_v_mod[loc_zero]<-fn_v_mod[loc_zero -1]}

}

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

app_0 <-rep(0,nzero_loc -1)

fn_v_mod <-c( app_0 ,fn_v_mod)

}}

fn_v <-fn_v_mod

################# Apply chebhychev to simulation ####################

M=mean(seq1)

S=sd(seq1)

#setting Lkcap(mod_min) Ukcap(mod_max) as in equation 4.4

mod_min=max(0,floor(M-k*S))

mod_max=floor(M+k*S)+1

#Setting dcap(d_sample2) as in equation 4.7

d_sample2=mod_max -mod_min +1

#Tuning v_sample and fnv before resetting

if (min(v_sample) <= mod_min ){

if (mod_min == 0 || mod_min == min(v_sample )) {

f0=0} else{f0=fn_v[which(v_sample == (mod_min -1))]

}

fn_v <- fn_v[min(which(v_sample >= mod_min )): length(fn_v)]

v_sample <- v_sample[min(which(v_sample >= mod_min )): length(v_sample )]

} else {

f0=0

seq2 <- seq(mod_min ,(min(v_sample )-1))

v_sample <-c(seq2 ,v_sample)

fn_v <-c(rep(0,max(seq2)-min(seq2 )+1), fn_v)

74



}

if (max(v_sample) >= mod_max ){

fn_v <- fn_v [1:max(which(v_sample <= mod_max ))]

v_sample <- v_sample [1:max(which(v_sample <= mod_max ))]

}else {

seq2 <- seq(max(v_sample )+1, mod_max)

v_sample <-c(v_sample ,seq2)

fn_v <-c(fn_v ,rep(1,max(seq2)-min(seq2 )+1))

}

#Resetting cumulative distribution as in equation 4.9

fn_v <- (fn_v -f0)/( fn_v[length(fn_v)]-f0)

v_minus_1=v_sample [2: length(v_sample )]

v_minus_d=v_sample [1:( length(v_sample )-1)]

fn_v_minus_1=fn_v [2: length(fn_v)]

fn_v_minus_d=fn_v [1:( length(fn_v )-1)]

#loop for different u

u_sample <- (ustar -f0)/( fn_v[length(fn_v)]-f0)

#print(u_sample)

for (ui in seq_along(u_sample )){

a=( d_sample2 +1)* u_sample[ui]

b=( d_sample2 +1)*(1 - u_sample[ui])

## calculate Qcap using simulated data

beta_dist=pbeta(fn_v ,a,b)

lim=beta_dist [1]

if (length(v_sample) == 1){ Q_cap[j,ui]=lim*v_sample}else {

for (i in 2: length(beta_dist ))

{lim[i]= beta_dist[i]-beta_dist[i-1]}

Q_cap[j,ui]=sum(lim*v_sample )}

} #ui loop ends

} #sim loop ends

HDH_cap=cov(Q_cap )* sample_size

mean_Q_cap=colMeans(Q_cap)

############### output #######################################

Q_result=rbind(Q,mean_Q_cap)

colnames(Q_result)<-ustar

Q_result

HDH_theo

HDH_cap

###############################################################
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Appendix E

R code: Asymptotic and Estimated Means and Covariance-Variance

Matrices for ZIP Distribution Using Truncated Data

#Q_ZIP_Chebychev.R file

#Generates numbers for tables 4.6 and 4.7

rm(list=ls())

######### ZIP parameters ################################

library(VGAM)

lambda =10;

c=0.2

##################### initialize variables ###################

k=2

sample_size =50; n_sim =100000

seed_set =1;

ustar=c(1/4 ,1/2 ,3/4)

##################### Apply Chebychev rule to theory ########

p0=ppois(0,lambda)

#mean of ZIP

M_theory =((1-c)/(1-p0))* lambda

#std dev of ZIP

S_theory=sqrt (((1-c)/(1-p0))*( lambda +((c-p0)/(1-p0))* lambda ^2))

#setting Lk(theory_min) Uk(theory_max) as in equation 4.5

theory_min=max(0,floor(M_theory -k*S_theory ))

theory_max=floor(M_theory+k*S_theory )+1

v<-seq(theory_min ,theory_max)

pi=(c-p0)/(1-p0)

#F cumultiv distribution function for ZIP

F_initial=as.vector(pzipois(v,lambda ,pi))

#Resetting cumulative distribution as in equation 4.10

F<-(F_initial -pzipois ((theory_min -1),lambda ,pi))/

(pzipois(theory_max ,lambda ,pi)-pzipois (( theory_min -1),lambda ,pi))

u <- (ustar -pzipois (( theory_min -1),lambda ,pi))/

(pzipois(theory_max ,lambda ,pi)-pzipois (( theory_min -1),lambda ,pi))

#setting d as in equation 4.8
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d = theory_max -theory_min +1

v.minus_1=v[2: length(v)]

v.minus_d=v[1: length(v)-1]

Q=vector(length=length(u))

Q_cap=matrix(nrow=n_sim ,ncol=length(u))

mean_Q_cap=vector(length=length(u))

tau_theo=matrix(nrow=length(u),ncol=d-1)

Q_var=matrix(nrow=length(u),ncol=length(u))

Q_var_theo=matrix(nrow=length(u),ncol=length(u))

mean_Q_var_sim=matrix(0,nrow=length(u),ncol=length(u))

mean_Q_cap=vector(length=length(u))

### theory:calculate Q, and HDH ’##########################

F_minus_d=F[1: length(F)-1]

#D_theo is D in HDH ’for theory

D_theo=matrix ((1- F_minus_d),nrow=length(F_minus_d),

ncol=length(F_minus_d),byrow=TRUE)

D_theo=F_minus_d*D_theo

D_theo[lower.tri(D_theo )] <- t(D_theo )[lower.tri(D_theo )]

for (ui in seq_along(u)){

a=(d+1)*u[ui]

b=(d+1)*(1 -u[ui])

beta_dist_th=pbeta(F,a,b)

limit=beta_dist_th [1]

#calculate smooth quantile

for (i in 2: length(beta_dist_th ))

{limit[i]= beta_dist_th[i]-beta_dist_th[i-1]}

Q[ui]= round(sum(limit*v),5)

#theory variance:tau_theo is same as H in HDH ’

beta_density=dbeta(F_minus_d ,(d+1)*u[ui], (d+1)*(1 -u[ui]))

tau_theo[ui ,]= beta_density *(v.minus_d -v.minus_1)

}

HDH_theo=tau_theo %*% D_theo %*%t(tau_theo)

#correlation matrix

Corr1=cov2cor(HDH_theo)

################### simulation loop starts ###############

for(j in 1:n_sim ){

#print(c(" simulation",j));

seed_set=seed_set +1

set.seed(seed_set)

### generate zip data

seq1=sort(rzipois(sample_size ,lambda ,pi))

uniq_seq1 <-unique(seq1)

fn1=ecdf(seq1)

fn_seq1=fn1(unique(seq1))

fn_seq2=fn_seq1
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uniq_seq2 <-uniq_seq1

d_sample= max(uniq_seq1)-min(uniq_seq1 )+1

fn_v <-rep(0,d_sample)

v_sample=seq(min(uniq_seq1),max(uniq_seq1 ))

#find Fn for missing v in simulation

for (i in 1: d_sample ){

for (m in seq_along(uniq_seq1 )){

if(v_sample[i]== uniq_seq1[m]){ fn_v[i]<-fn_seq1[m]}

}

}

fn_v_mod <-fn_v

#extract non zero fn_v if the first few fn_v are zero

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

fn_v_mod <-fn_v[nzero_loc:d_sample]

}}

## for missing v,replace its F with F for v-1

while (length(which(fn_v_mod == 0))!=0){

loc <- which(fn_v_mod == 0)

for(m in seq_along(loc))

{loc_zero <-loc[m]

fn_v_mod[loc_zero]<-fn_v_mod[loc_zero -1]}

}

if (length(which(fn_v == 0))!=0){

if (min(which(fn_v == 0))==1){

nzero_loc <-min(which(fn_v != 0))

app_0 <-rep(0,nzero_loc -1)

fn_v_mod <-c( app_0 ,fn_v_mod)

}}

fn_v <-fn_v_mod

################# Apply chebhychev to simulation ####################

M=mean(seq1)

S=sd(seq1)

#setting Lkcap(mod_min) Ukcap(mod_max) as in equation 4.4

mod_min=max(0,floor(M-k*S))

mod_max=floor(M+k*S)+1

#Setting dcap(d_sample2) as in equation 4.7

d_sample2=mod_max -mod_min +1

#Tuning v_sample and fnv before resetting

if (min(v_sample) <= mod_min ){

if (mod_min == 0 || mod_min == min(v_sample ))

{f0=0} else{f0=fn_v[which(v_sample == (mod_min -1))]}

fn_v <- fn_v[min(which(v_sample >= mod_min )): length(fn_v)]

v_sample <- v_sample[min(which(v_sample >= mod_min )): length(v_sample )]

} else {
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f0=0

seq2 <- seq(mod_min ,(min(v_sample )-1))

v_sample <-c(seq2 ,v_sample)

fn_v <-c(rep(0,max(seq2)-min(seq2 )+1), fn_v)

}

if (max(v_sample) >= mod_max ){

fn_v <- fn_v [1:max(which(v_sample <= mod_max ))]

v_sample <- v_sample [1:max(which(v_sample <= mod_max ))]

}else {

seq2 <- seq(max(v_sample )+1, mod_max)

v_sample <-c(v_sample ,seq2)

fn_v <-c(fn_v ,rep(1,max(seq2)-min(seq2 )+1))

}

#Resetting cumulative distribution as in equation 4.9

fn_v <- (fn_v -f0)/( fn_v[length(fn_v)]-f0)

v_minus_1=v_sample [2: length(v_sample )]

v_minus_d=v_sample [1:( length(v_sample )-1)]

fn_v_minus_1=fn_v [2: length(fn_v)]

fn_v_minus_d=fn_v [1:( length(fn_v )-1)]

u_sample <- (ustar -f0)/( fn_v[length(fn_v)]-f0)

u_sample <-replace(u_sample , (u_sample < 0 | u_sample > 1), 0)

#loop for different u

for (ui in seq_along(u_sample )){

a=( d_sample2 +1)* u_sample[ui]

b=( d_sample2 +1)*(1 - u_sample[ui])

## calculate Qcap using simulated data

beta_dist=pbeta(fn_v ,a,b)

lim=beta_dist [1]

if (length(v_sample) == 1){ Q_cap[j,ui]=lim*v_sample}else {

for (i in 2: length(beta_dist ))

{lim[i]= beta_dist[i]-beta_dist[i-1]}

Q_cap[j,ui]=sum(lim*v_sample )}

} #ui loop ends

} #sim loop ends

HDH_cap=cov(Q_cap )* sample_size

mean_Q_cap=colMeans(Q_cap)

############### output ###########################################

Q_result=rbind(Q,mean_Q_cap)

colnames(Q_result)<-ustar

Q_result

Q_result

HDH_theo

HDH_cap

######################################################################
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