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ABSTRACT 

TOXICOLOGICAL EFFECTS OF ANTIMICROBIALS (TRICLOSAN AND TRICLOCARBAN) AND CYANOPEPTIDES 
(ANABAENOPEPTINS AND CYANOPEPTOLINS) IN THE NEMATODE C. ELEGANS 

by 

Kade A. Lenz 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Associate Professor Todd R. Miller 

 

 Environmental contaminants are increasingly detected in surface water, soil, and sediment. 

There is a concern that environmental contaminants, such as cyanpeptides and antimicrobials, pose 

potential harm to environmental and public health. It is important that scientists evaluate the potential 

impacts that cyanopeptides and antimicrobials may have on the environment and public health in order 

to guide stakeholders in determining appropriate policies and regulations. Here we investigated the 

toxicological effects of two types of commonly detected environmental contaminants, antimicrobials 

(triclosan and triclocarban) and cyanopeptides (anabaenopeptins and cyanopeptolins), using the model 

organism Caenorhabditis elegans (C. elegans). Chapter 1 introduces the model organism C. elegans and 

proposes the use of this nematode model for environmental toxicology studies. Acute lethality and 

sublethal toxicity of cyanopeptides (anabaenopeptins and cyanopeptolins) and antimicrobials (triclosan 

and triclocarban) are identified using C. elegans in Chapters 2 and 3. The examined toxicity endpoints 

included reproduction, hatching time, growth rate, lifespan, age-related vulval integrity, germline 

toxicity, and stress response. In Chapter 4, we examined the potential mechanism of toxicity of the 

antimicrobials, triclosan and triclocarban. In Chapter 5, we identify the toxicological effects of 

degradation products produced by triclosan and triclocarban after these chemicals enter the 

environment. The research presented here demonstrates that cyanopeptides (anabaenoptpins and 

cyanopeptolins) and antimicrobials (triclosan and triclocarban) pose potential harm to the environment 
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and establishes endpoints for future toxicological studies in the model organism C. elegans. These 

findings will provide insight into the toxicological effects and mechanism(s) of toxicity that will add to 

our knowledge of the effects of these environmental contaminants, as well as provide scientific 

evidence to policy-makers and regulatory agencies for the creation and amendment of environmental 

regulation policies.  
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“No one is born hating another person because of the color of his skin,  

or his background, or his religion. People must learn to hate,  

and if they can learn to hate, they can be taught to love, for love  

comes more naturally to the human heart than its opposite.” 

 

-Nelson Madela, “Long Walk to Freedom” 
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CHAPTER 1: 

General Introduction 

Introduction 

The ongoing development of science and technology creates a continuous synthesizing of new 

chemicals used for industrial production and human life (NRC, 2015; Kovac, 2015). Assessment of these 

new chemicals and environmental contaminants for potential toxicity is an urgent and ongoing issue 

(Gao et al., 2015). In recent years, much attention has been focused on environmental contaminants, 

such as cyanopeptides and antimicrobials, as there has been a call for regulations on the use and 

detection of chemicals and environmental contaminants (FDA, 2016). Given the need for information 

regarding the toxicological effects of cyanopeptides and antimicrobials, we examined the toxicological 

effects of these environmental contaminants, cyanopeptides and antimicrobials, using the invertebrate 

model Caenorhabditis elegans (C. elegans). 

 
This study examines the toxicological effects of antimicrobials (triclosan and triclocarban) and 

cyanopeptides (anabaenopeptins and cyanopeptolins) in the model organism C. elegans. First, we 

established defined endpoints to study the toxicological effects of antimicrobials (triclosan and 

triclocarban) and cyanopeptides (anabaenopeptins and cyanopeptolins) (Ch. 2 and 3). The examined 

toxicity endpoints included reproduction, hatching time, growth rate, lifespan, age-related vulval 

integrity, germline toxicity, and stress response. Second, we studied the mechanism of toxicity of the 

antimicrobials, triclosan (TCS) and triclocarban (TCC), using genetic analysis with a series of worm 

mutants and gene expression in wildtype worms (Ch. 4). This study assessed the role of the insulin-like 

growth factor pathway, an important pathway involved in development and longevity, in the TCS- and 

TCC-induced toxicity. Third, we identified the toxicological effects of TCS and TCC degradation products 

(Ch. 5). This study employed the methods established in the previous chapters to examine the 
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toxicological effects of the degradation products of TCS and TCC compared to the parent compounds. 

The proposed research examined the toxicological effects of widely detected environmental 

contaminants, cyanopeptides and antimicrobials, and established endpoints for future toxicological 

studies in the invertebrate model C. elegans. These findings provide insight into the toxicological effects 

and mechanism(s) of toxicity that will add to our knowledge of the effects these environmental 

contaminants have on the environment and human health. Furthermore, better understanding of the 

connection between contaminants and diseases can help inform future environmental regulation 

policies. 

Background 

Scientists have gained extensive knowledge in biology and toxicology using in vivo and in vitro 

models (Barre-Sinoussi and Montagutelli, 2015). The expectation of toxicity testing is that the 

information obtained from a specific animal model will apply to a variety of biological systems (Krewaski 

et al., 2010). Traditional toxicology used mammalian models as the “gold standard” because of the 

similar development processes, organ systems, and signaling pathways of those found in humans. 

However, mammalian models are not perfect, as human trials sometimes fail to predict outcomes in the 

general population (Hunt, 2017).  

Drawbacks of using mammalian and fish models are that these models are expensive and time-

consuming to perform (Planchart et al., 2017). Additionally, the use of only one rodent model has been 

shown to predict specific toxicity in humans only 50% of the time (Hunt, 2017), but higher predictivity is 

achieved with the use of multiple species (Krewski et al., 2010). In vitro assays using immortal cell lines 

can provide a model that can more accurately predict human-specific metabolism and mechanism of 

toxicity than mammalian studies. However, this data does not reflect a response at the organismal level 

and is associated with high rates of false-positives and false-negatives, depending on the assay (Pamies 

and Hartung, 2017; Hunt, 2017). A solution to the problems of cost, time, accuracy, and predictability 
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may be to find an alternative model that is maintained using in vitro methods while providing 

researchers with organismal level data, such as an invertebrate model (Nass and Hamsa, 2007; Tralau et 

al., 2012).  

The use of less expensive and time-consuming models can provide the opportunity to create a 

pipeline of toxicity testing to identify high-risk compounds faster (Xiong et al., 2017; Rovida et al., 2015). 

Invertebrate models, such as the free-living nematode C. elegans, found in soil and freshwater 

environments, may offer excellent alternatives that provide data from molecular, organismal, and 

populations levels (Hoss and Williams, 2009; Hagerbaumer et al., 2015). Toxicity screens with 

invertebrate models, such as C. elegans, can provide a bridge between in vitro and mammalian in vivo 

testing by flagging chemicals with the most potential harm and require further study (Hunt, 2017).  

History of C. elegans in Research  

Nematodes, such as Caenorhabditis elegans (C. elegans), are free-living organisms living in soil, 

aquatic environments, that play an important role in nutrient cycling and in maintaining environmental 

quality (Leung et al., 2008). These features make nematodes a good model organism for ecotoxicology 

studies (Hoss and Weltie, 2007). The first toxicological study using the nematode Rhabditis elegans as 

the test organism was published in 1924 (Honda et al., 1924). Since 1924, a variety of nematode species 

have been used for studying toxicants and environmental issues, such as C. elegans, Monhystera 

disjuncta, Plectus acuminatus, Panagrellus redivivus. Of these species, C. elegans are the most 

commonly used nematode for in vivo studies (Hägerbäumer et al., 2015). 

C. elegans emerged as the nematode species of choice following the publication of the seminal 

genetics paper by Sydney Brenner in 1974. Since 1974, hundreds of studies have been conducted on C. 

elegans, generating extensive knowledge on the anatomy, life cycle, behavior, and genetics of these 

worms (Hägerbäumer et al., 2015). This knowledge provides a variety of genetic tools (e.g., gene 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/freshwater-environment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/freshwater-environment
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib22
https://www.ncbi.nlm.nih.gov/pubmed/?term=H%26%23x000e4%3Bgerb%26%23x000e4%3Bumer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25861113
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expression, highly conserved signaling pathways, and mutant strains) and endpoints (e.g., development, 

reproduction, lifespan, locomotion, and behavior) to leverage for in vivo toxicity testing (Leung et al., 

2008; Corsi, 2006).  

In 1988, Williams and Dusenbery published a paper using the nematode C. elegans as a 

predictive animal model to study the toxicity of eight different heavy metal salts. The study reported 

similar acute lethality, measured as lethal concentration (LC50), of the metal salts in C. elegans compared 

to those observed in rodents (Williams and Dusenbery, 1988). Another study in 2004 examining the 

acute lethality for 15 organophosphates in C. elegans, mice, and rats reported comparable results 

between the organisms (Cole et al., 2004). Furthermore, a recent study used the model organism C. 

elegans to screen over 900 chemicals in the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ 

Phase I and Phase II libraries (Boyd et al., 2016). The study reported similar results in chemical activity in 

developmental toxicity assays in C. elegans and zebrafish, as well as the ability of this data to predict 

developmental toxicity in rats and rabbits with accuracy (Boyd et al., 2016).   

Researchers and regulatory agencies are beginning to shift from observational studies to 

mechanistic studies that utilize alternative, non-mammalian species with the ability to accurately predict 

outcomes in humans (Krewski et al., 2010). Currently, the development and validation for alternative 

predictive toxicology tools is a priority for the Center for Food Safety and Applied Nutrition (CFSAN, 

2015; Fitzpatrick and Sprando, 2019). To date, toxicological studies using nematodes have been 

conducted to examine chemical stressors, such as endocrine disruptors, pharmaceuticals and personal 

care products, humic substances, polychlorinated biphenyls, phthalates, metal ions, nanoparticles, 

pesticides, algal toxins, and complex chemical mixtures (Hägerbäumer et al., 2015; Lenz et al., 2017; 

Lenz et al., 2018). Research in C. elegans continues to be conducted because of the ability to collect data 

at several organizational levels (e.g., molecular, organs, whole organism, and population) in a short 

period of time (Silverman et al., 2010).  
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Toxicity screening with C. elegans 

In biological research, C. elegans have been recognized as an excellent model because of the 

availability of genetic tools, well-understood biology, transparent bodies, conserved molecular and 

cellular pathways and ease of culture maintenance or breeding (Hoss and Weltie, 2007; Leung et al. 

2008; Haegerbaeumer et al., 2018). C. elegans have many genes and signaling pathways that are 

homologous to mammals - approximately 80% of the identified genes in C. elegans have homologues to 

genes in humans (Leung et al., 2008). These features make this worm a powerful model organism for 

modelling, drug discovery, and toxicity assessments (Xiong et al., 2017).  

Molecular Studies in C. elegans 

The 1990s and early 2000s was a time where large scale efforts were aimed at understanding 

the function of the genome in several vertebrate and invertebrate species (Burdett and van den Heuvel, 

2004; Hillier et al., 2005). During this time, the C. elegans community collected data on the function, 

regulation, interaction, and expression of the entire genome of this nematode, identifying highly 

conserved biological processes found in nematodes and humans (Harris et al., 2004; Corsi et al., 2015; 

Grove et al., 2018). This fundamental research increased the likelihood that C. elegans would be utilized 

to investigate a never-ending list of biological problems (Corsi, 2006; Corsi et al., 2015). Through the 

years, many researchers have successfully crossed over to using C. elegans as their model organism of 

choice making this model organism an important tool in biological and toxicological research (Boulin and 

Hobert, 2013; Tejeda-Benitez and Olivero-Verbel, 2016).  

Gene expression 

A variety of molecular methods have been leveraged to study the molecular response of C. 

elegans to environmental toxicants (Hagerbaumer et al., 2015). There are several examples of C. elegans 

as the model organism for the investigation of the effects of chemicals on the genome using 
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transcriptomic, metabolomic, and proteomic techniques (Sturzenbaum et al., 2012; Kim et al., 2015). 

These molecular techniques can be applied for the identification of novel genes involved in 

homeostatsis, detoxification, and the unraveling of the mechanism(s) of toxicity via the utilization of 

molecular techniques and phenotypic responses (Dexter et al., 2012; Leung et al., 2008). In toxicology, 

several studies have utilized molecular techniques (e.g., microarrays and qPCR) to examine the effects 

the effects of toxicants on gene expression and their interactions with other genes (Hagerbaumer et al., 

2015; Alexander-Dann et al., 2018).  

Researchers have used established molecular tools, such as microarray and qPCR analysis, to 

examine the expression and mechanism(s) of toxicity-specific stress responsive genes (Alexander-Dann 

et al., 2018). These studies are used to identify the involvement of defense pathways (e.g., protection 

against oxidative stress), ion homeostasis, xenobiotic metabolism, hormone regulation, development, 

and aging (Corsi, 2006). Studies have also been conducted to profile the gene expression of C. elegans 

exposed to ethanol, atrazine, polychlorinated biphenyls, endocrine disrupting chemicals, and polycyclic 

aromatic hydrocarbons that have been profiled (Custodia et al., 2001; Kwon et al., 2004; Menzel et al., 

2007; Reichert and Menzel, 2005).  

Green fluorescent protein (GFP) 

 In the 1960s, the green fluorescence of Aequorea light organs was initially described and led to 

the isolation and characterization of the two jellyfish proteins responsible for the bioluminescence, a 

calcium binding protein (aequorin) and a green fluorescent protein (GFP) by Osamu Shimomura 

(Shimomura, 2008). Following Shimomura’s work, Doug Prasher cloned Aequorea aequorin in the 1980s 

and later led collaborations with Martin Chalfie and Roger Tsien (Zimmer, 2009; Chalfie, 2010; Tsien, 

2010). Chalfie expressed GFP in E. coli and C. elegans, while Tsien developed several fluorescent proteins 

for use in scientific research (Zimmer, 2009). In 2008, Chalfie, Tsien, and Shimomura received the Nobel 
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Prize in Chemistry for their decades of work discovering and developing GFP, one of the most useful 

research tools in modern science and medicine (Shimomura, 2008; Chalfie, 2010; Tsien, 2010).  

Nowadays, GFP is employed in scientific research to examine different biological functions, 

including tagging genes for elucidating their expression and localization profiles, monitoring protein 

trafficking, cell compartmentalization, transformation, virus infection and virus-induced gene silencing, 

and acting as a biosensor (Rakosy-Tican et al., 2007). Furthermore, fluorescent proteins can also be used 

to study developmental processes, screen for mutants affecting cell development and function, isolate 

cells, and characterize protein interactions in vivo (Chalfie et al. 1994; Boulin et al. 2006; Feinberg et al. 

2008). The fusing of GFP with specific genes permits the visualization of gene expression in vivo via 

transgenic strains and genome-wide screens (Conte et al., 2015; Leung et al., 2008). Determining when 

and where genes are expressed is often key to determining their function (Hunt-Newbury et al., 2007). 

RNAi screens 

The discovery of RNA interference (RNAi) mechanisms in C. elegans by Fire and colleagues 

(1998) allowed for the rapid assessment of gene function via genome-wide screens (Agrawal et al., 

2003; Kim and Sun, 2007). Fire’s work sequencing the nematode genome led to the creation of a publicly 

available RNAi library that covers approximately 90% of the genes of C. elegans (Leung et al., 2008; 

Conte et al., 2015). The RNAi exposure and genome-wide screens contributed to the discoveries of 

mechanisms of mitochondrial involvement in oxidative stress, programmed cell death, aging, and axon 

guidance (Boulin et al., 2012; Hagerbaumer et al., 2015; Corsi et al., 2015).  

Genome-wide RNAi screen, occurring in both wildtype and knock out mutants, typically assess a 

variety of parameters at the same time, such as viability, feeding, development, and locomotion, to 

facilitate the interpretation of the screening results (Koopman et al., 2016). The combining of gene 

silencing (RNAi) or gene knockout (mutant strains) methods with phenotypic effect screening allows for 
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the verification of the functions of genes (Aagaard and Rossi, 2007; Maine, 2008; Perrimon et al., 2010). 

Specifically, the use of transgenic strains, the fusing of GFP with genes, permits the microscopic 

monitoring of gene expression in vivo providing a view of the molecular response in specific tissues 

(Conte et al., 2015; Leung et al., 2008). This provides valuable data on the function of genomics that can 

be leveraged for a variety of scientific research, such as toxicology and pharmaceutical development 

(Dolphin and Hope, 2006). 

Interactome mapping 

The mapping of interactions between biomolecules can be useful in understanding their roles 

and functions, and can be applied to toxicology research (Figeys, 2008). The interest in mapping protein-

protein interactions has been reported in several organisms, including C. elegans (Mahdavi and Lin, 

2007; Eisenhaber et al., 2013). Investigation in C. elegans has mapped interactions at the individual scale 

of biological processes (e.g., vulval development, proteasome, germline, DNA damage response, and 

dauer formation) and at higher levels of interconnectivity between signaling pathways and the whole 

proteome (Boy et al., 2012). A study of proteome-scale interaction maps of yeast and C. elegans found 

that 20% of the C. elegans genome has detectable orthologs in yeast (Figeys, 2008). Interactome 

mapping methods are applicable not only to the species of interest, but also for other multicellular 

species (Rao et al., 2014). Attempts have been made to model the function and dynamics of interactome 

networks via the integration of various functional genomic approaches, such as expression profiling and 

genome-wide phenotypic profiling generated through the use of gene knock-outs or RNA interference 

experiments (Przytycka et al., 2010; Vidal et al., 2011). Information from these studies may be used for 

applications such as toxicity studies and design of therapeutic drugs (Sun et al., 2012; Boyd et al., 2015). 
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Studying the Individual Organism 

C. elegans have a number of distinct features that make them an advantageous alternative 

animal model (Corsi, 2006; Leung et al., 2008). C. elegans are simple multicellular organisms that contain 

approximately 1,000 somatic cells and 302 neurons as adults (Corsi, 2006; Corsi et al., 2015). These 

worms have short lifespans that allow for rapid experimentation of individual generations or multiple 

generations (Hoss and Williams, 2009). Additionally, the easy culturing, transparent body, and short 

generation cycle of C. elegans offer advantages for toxicity screening (Leung et al., 2008; Hunt, 2017). 

These advantages and the previous wealth of knowledge provide a variety of endpoints (e.g., mortality, 

growth, reproduction, and behavior) that can be utilized for in vivo testing (Krewski et al., 2010).    

Development 

 The life cycle of C. elegans has several stages (i.e., in utero, ex utero, larval, and adult) (Corsi, 

2006). In uterine development is initiated by a sperm fertilizing an oocyte to form an embryo. 

Embryogenesis of the worm is initiated in utero and completed ex utero, signaled by the hatching of an 

L1-staged worm consisting of 558 cells (McGovern et al., 2007; Pickett and Kornfield, 2013). In the 

presence of food, L1-staged larval worms proceed through four stages of development (L1-L4), 

punctuated by molts, the shedding of the worm’s cuticle to allow for increasing body growth (Lazetic 

and Fay, 2017). During the larval period, a number of blast cells divide, some of which allow for the 

germline and sexually dimorphic features (e.g., hermaphrodite vulva and male tail) to develop so the 

animal is able to reproduce when it reaches young adulthood (three days of age). (Corsi et al., 2015; 

Kipreos and van den Heuvel, 2019). 

Reproduction 

Once C. elegans reach young adulthood (aged 3 days) the hermaphroditic worm has the ability 

to reproduce (Chasnov, 2013). Hermaphroditic adults have the ability to produce between 200 and 300 

https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib22
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progeny and store 10-15 eggs in the uterus (Arur, 2017). The eggs go through 2-3 hours of in utero 

development prior to the expulsion of one to two eggs through the opening of the vulva (Hart, 2006). 

The egg-laying behaviors, anatomy, and circuitry components of C. elegans are well understood 

(Schafer, 2005; Collins et al. 2016). Egg-laying events occur approximately every 20 minutes, last for 1-2 

minutes, and require proper function of egg-laying muscles (8 uterine muscles and 8 vulval muscles) and 

neurons (e.g., hermaphrodite-specific motorneurons and ventral nerve cord) (Hart, 2006; Collins et al. 

2016). This knowledge of the reproduction of worms can be used to make observations regarding a 

chemical’s potential reproductive toxicity via the use of a variety of endpoints at the molecular and 

organismal levels, such as transgenic and mutant strains, gene expression, total progeny number, and 

vulval integrity.  

Endocrine system 

 In toxicology, researchers examine the effects of compounds on the endocrine system. In C. 

elegans, the effects of chemicals on nematodes can only be unequivocally explained as endocrine 

disruption if the underlying mechanism is identified (Hoss and Weltie, 2007). To achieve this, 

researchers use our extensive knowledge of hormonal regulation (e.g., hormone metabolism and 

synthesis, hormone receptors, and signaling pathways) that controls processes, such as molting, 

reproduction, and cellular metabolism and homeostasis in C. elegans (Antebi et al., 2006; Hashmi et al., 

2013). Nematodes possess a high number of nuclear receptor genes, 270 genes in C. elegans compared 

to 50 genes in humans, that play important roles regulating sterol metabolism, in utero and ex utero 

development, molting, reproduction, sex determination, and aging (Brozova et al., 2006; Antebi et al., 

2006; Manger and Antebi, 2008). Gene expression studies can also be used to determine which NR 

genes exhibit increased or decreased activity following an exposure, which allows for additional studies 

to be conducted using transgenic strains with a green fluorescent marker to observe cellular events 

occurring in live animals and mutant strains to determine the mode-of-action (Leung et al., 2008).   
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Aging and Lifespan 

C. elegans are self-fertilizing hermaphrodites that have a temperature sensitive lifespan, or 

aging process (Pickett et al., 2013; Xiao et al., 2013). The aging process was not originally considered an 

actively regulated process; however a major breakthrough in C. elegans changed our understanding of 

the aging process (Tissenbaum, 2015; Uno and Nishida, 2016). Researchers discovered the novel 

lifespan-regulating genetic pathway, the insulin/insulin-like growth factor-1 (IGF) signaling pathway 

(Cheng et al., 2005; Kenyon et al., 2011; Altintas et al., 2016). From this research, we know that the IGF 

signaling pathway is highly conserved in many species, being found in organisms from yeast to humans 

(van Heemst, 2010). The molecular mechanisms regulating the aging process have garnered a lot of 

attention in recent decades because of the association of aging and many chronic diseases, such as type 

2 diabetes, heart disease, and cancer (Kennedy et al., 2014; Altintas et al., 2016; Tidwell et al., 2017). We 

know that the aging processes is influenced by genetic and environmental factors, including chemical 

exposure, xenobiotic metabolism, gene expression, protein translation, and stress response (Uno and 

Nishida, 2016).  

This knowledge of factors influencing aging and the genes involved in the signaling pathway 

allow researchers to exploit the C. elegans model to preform toxicity assays (Hunt, 2017). The utilization 

of a lifespan assay allows for a large number of worms to be screened and provide researchers with the 

ability to make observations regarding accumulation of adipose tissue, vulval integrity, and behavior 

(e.g., locomotion and feeding) (Leiser et al., 2016; Park et al., 2017). Researchers also have the ability to 

exploit known genetic tools to elucidate that mechanism of toxicity using mutants and transgenic worms 

along with methods to elucidate gene expression (Bitto et al., 2015; Leung et al., 2015).   

 

 



12 
 

Studying the Impact on a Population 

Researchers can measure population effects for a single generation as well as across 

generations, due to a large number of progeny and short lifespans of C. elegans (Muschiol et al., 2009). 

The well-understood biology and genetics of the worm can be exploited to observe the effects of 

chemicals on the life course, from egg to death (Corsi, 2006; Gray and Cutter, 2014). This data can then 

be used for toxicokinetic-toxicodynamic (TKTD) modeling and dynamic energy budgets (DEB modeling) 

approaches to gain knowledge on the effects of chemical exposures on population dynamics (Ashauer, 

2010; Groh et al., 2015; Gergs et al., 2016). Dynamic models are increasingly used because of their 

ability to provide information for toxicity predictions of single-chemical and chemical mixtures, such as 

threshold influx rate for toxicity, maximum duration without toxicity, detoxification rate, and no-effect 

concentration (Sanchez-Bayo, 2009; Tan and Wang, 2012; Dawson et al., 2014). To date, TKTD and DEB 

models have been created for nanomaterials, metals, fluoranthene, and uranium using data from 

studies using C. elegans as the model organism (Jager et al., 2014; Margerit et al., 2016; Yang et al., 

2017). Moreover, the TBTK/TD approach has been applied to metal toxicity studies using Daphnia 

magna (Tan and Wang, 2012). Although further experimental efforts are needed to confirm these 

models, these models allow for a more ecologically relevant interpretation of toxicity data for individual 

chemical exposures, as well as mixtures (Hagerbaumer et al., 2015; Zhang et al., 2018).  

C. elegans - toxicology research and public health policy 

Nematode research has been used for decades and has been increasingly used in recent years to 

find alternative model organisms to reduce the use of mammals in chemical safety testing, risk 

assessment, and regulatory decision-making (Norberg-King et al., 2018). The National Institute of Health 

has requested proposals for studies examining the aging processes and age-related diseases using the 

model organism model C. elegans (NIH, 2016). Furthermore, the National Toxicology Program 
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Interagency Center for the Evaluation of Alternative Toxicological Methods Interagency Coordinating 

Committee is developing a list of approved alternative toxicological testing methods and creating a 

framework for the scientific validation of these alternative methods (Schechtman, 2002; NTP, 2019a). In 

addition, the U.S. Environmental Protection Agency is exploring invertebrate models for toxicity testing 

as part of the 21st Century Act (Krewski et al., 2015; EPA, 2018). These changes have resulted in recent 

local, national, and international meetings with dedicated sessions on alternative animal models, such as 

C. elegans, for public health research and initiatives (Scanlan et al., 2018).  

The Food and Drug Administration (FDA) created a document and program that supports the 

integration of alternative toxicology methods for use in regulatory safety and risk assessments, called 

the Predictive Toxicology Roadmap (FDA, 2019). Recently, a large-scale assessment of the 

developmental effects of Phase I and Phase II chemicals in the ToxCast library were shown to cause 

developmental effects in C. elegans that accurately predicts, on the basis of average value of sensitivity 

and specificity of the assay, known developmental toxicity in rats and rabbits (Boyd et al., 2016). 

Moreover, last year, the European Food Safety Administration and the European Chemicals Agency 

(ECHA) published their new guidance on how to identify substances for endocrine disrupting properties, 

using 5 level systems that include the use of invertebrate models (Andersson et al., 2018). The new 

guidance uses existing data and epidemiological studies (level 1) and in vitro assays (level 2) to aid in 

informed decision-making for studies falling into levels 3-5, in vivo studies. Level 3 studies are used to 

flag chemicals that pose an adverse risk to environmental and public health using invertebrate and 

vertebrate models. Chemicals flagged in level 3 are further investigated in levels 4 and 5 in vivo studies, 

providing data for use in creating public health policies (Andersson et al., 2018).  

Regulatory agencies in the US, Canada, and Europe are using invertebrate models, such as C. 

elegans, to aid in the investigations of chemicals found in our environmental and consumer products 

(Krewski et al., 2010). Small non-mammalian animals provide information on the toxicological effects of 
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chemicals on development, the nervous and digestive systems, metabolics, tissue-to-tissue signaling, 

reproduction, and aging (Planchart et al., 2016; NTP, 2019a; NTP, 2019b). Many pathways involved in 

organismal, endocrine function, and neural development are highly conserved in invertebrates and 

mammals (Leung et al., 2008). Once validated, in vivo assays using such phylogenetically lower species 

can support new methods for risk assessment that can be used by regulatory agencies (Krewski et al., 

2010; FDA, 2019; NTP, 2019a).  

Promising avenues for toxicity testing in C. elegans 

C. elegans were first used as a predictive toxicology model in 1988 for an acute lethality assay 

(Williams and Dusenberry, 1988). Since then, numerous studies have used this model organism to 

examine toxicants for their effects at molecular, organismal, and population levels using a variety of 

sophisticated techniques (Choi, 2008; Hunt 2017). These techniques have been used to profile potential 

toxicants, including endocrine disruptors, ethanol, humic substances, polychlorinated biphenyls, 

phthalate, bacterial toxins, metal ions and nanoparticles, and complex chemical mixtures in 

contaminated sediments (Hagerbaumer et al., 2015). This model organism is a promising tool for the 

testing of emerging contaminants, designed therapeutics, and chemicals used in personal care and 

consumer products (Corsi et al., 2015).  

Cyanopeptides 

Over the past decade, the occurrence of cyanbacterial blooms have increased in frequency and 

magnitude worldwide and pose a potential threat to environmental and public health, as well as local 

economies (Pick, 2016; Wilkinson et al., 2018; Kimambo et al., 2019). These blooms can produce highly 

toxic secondary metabolites (cyanopeptides) known as cyanotoxins that have been in drinking water 

and food sources at concentrations reaching mg/L, posing a significant public health risk (Gkelis et al., 

2015; Kurmayer et al., 2016). In recent years, the detection of cyanotoxins in drinking water and food 
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sources has resulted in the shutting down of drinking water facilities in Oregon and Ohio, as well as 

fisheries in North and Central America (Michalak, 2016; MDH, 2017). As a result, increased occurrences 

of cyanobacterial blooms may increase the challenge of maintaining safe drinking water, food, and 

recreational aquatic environments (Murphy et al., 2012; Miller et al., 2017). 

The most commonly known cyanopeptide is microcystin (MC); however there are more than 

600 identified cyanopeptides (Gkelis et al., 2015). MC occurs in waterbodies found in temperate 

climates and is known to pose a risk to environmental and human health (Chorus and Fastner, 2001). For 

this reason, the World Health Organization set guideline values for detectable MC in drinking and 

recreational water, as well as proposed implementation measures for monitoring and control of MCs 

(WHO, 2008). Additionally, other cyanopeptides (e.g., microginins, cyanopeptolins, anabaenopeptins, 

anabaenopeptilides, microvirdins, and nostophycins) are commonly detected in the environment; 

however little is known about the potential risk many of these peptides may pose to the public and 

environment. (Welker and Von Dohren, 2006).  

Recent studies have found that cyanopeptolins and anabaenopeptins are often produced with 

MCs and in some cases are detected at equal or higher concentrations than MCs (Beversdorf et al., 

2017, 2018; Janssen, 2019; Larsen et al., 2019). For example, anabaenopetin-B and –F were measured at 

6.56 μg/L combined in Lake Koshkonong, Wisconsin, while total microcystin was measured at an average 

concentration of 0.65 µg/L (Beversdorf et al., 2017). Furthermore, the concentration of 

anabaenopeptins in blooms have been reported to exceed 1000 μg/L in freshwater bodies in Greece 

(Gkelis et al., 2015). The toxicological effects of most cyanopeptides are unknown, leaving them 

unregulated and without published provisional guideline values for drinking water and recreational 

environments (Larsen et al., 2019). This lack of knowledge requires immediate attention as 

cyanobacterial blooms and cyanopeptide detection increase in frequency.  
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Antimicrobials 

 Antimicrobials, such as triclosan (TCS) and triclocarban (TCC), are used in numerous personal 

care products, consumer products, and medical devices (i.e., cosmetics, food packaging, plastics, 

children’s toys, clothing, building materials, textiles, and medical devices) (Halden, 2014). TCS and TCC 

enter the environment through wastewater containing personal care products (i.e., soaps, toothpaste, 

hair care products, and cosmetics) that are washed down our drains every day (Pycke et al., 2014). The 

frequent use and ubiquitous detection of TCS and TCC have raised concerns regarding the toxicological 

effects these chemicals have on human health and the environment (Halden, 2016). These growing 

concerns have led to numerous in vivo, in vitro, and epidemiological studies on TCS and TCC, such as 

their degradation products, bioaccumulation in aquatic plants and animals, partitioning into blood and 

breast milk, contribution to antibiotic resistance, and increased allergen sensitivity (Halden et al., 2017).  

 In the fall of 2016, the FDA banned 19 chemicals (e.g., TCS, TCC, other halogenated aromatics, 

and methylbenzethonium chloride) from antibacterial soaps (FDA, 2016). This bold step forward was the 

result of decades of research and pressure from the scientific community and general public to regulate 

these chemicals. While these chemicals are no longer used in soaps, there are a wide variety of other 

products in which these chemicals are commonly used (Halden, 2014). Furthermore, the ban postponed 

a final ruling on chemicals that there was little toxicology data for at the time, such as benzalkonium 

chloride, benzethonium chloride, and chloroxylenol (FDA, 2017). 

 Following this ruling by the FDA, a group of more than 200 scientists and medical professionals 

released a statement calling for further restrictions on the use of antimicrobials, as well as addressed 

gaps in our knowledge regarding the adverse effects of exposure to two antimicrobials, triclosan (TCS) 

and triclocarban (TCC) (Halden et al., 2017). Their statement summarized decades of research and raised 

concerns regarding the long-term health and ecological impacts of antimicrobials and the need for 
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greater transparency during product development and toxicity testing before a chemical is used in a 

commercial product (Halden et al., 2017).  

A way in which early toxicity testing can be performed early in the production of chemicals and 

products is through the use of a high-throughput animal model, such as an invertebrate model. The use 

of C. elegans, or another invertebrate model, can provide a quick screen for new chemicals moving 

forward. Faster screening platforms will allow researchers, regulatory agencies, and companies the 

ability to flag chemicals that pose a potential risk to environmental and human health earlier in the 

process. This will allow concerns to be addressed before toxic and environmentally persist enter our 

environment.  

Conclusion  

The unique features of invertebrates make these organisms excellent animal models in 

toxicological research. The available methods, well-understood biology, and extensive genetic 

information makes the nematode C. elegans an excellent model to screen potential toxicants and study 

the role of specific gene(s) in toxicological processes and gene-environment interactions. C. elegans-

based assays do not have the same costs as in vivo vertebrate models and allow for the testing of 

hypotheses with an intact organism. Thus, C. elegans-based assays provide an excellent complement to 

in vitro and in vivo models. The use of an invertebrate model will allow for faster screening of chemicals 

that will allow for appropriate stakeholders to address concerns earlier in the risk assessment process. 

Ideally, this will eliminate the use of high risk chemicals and limit their introduction into to the 

environment. 
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CHAPTER 2:  

Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the 

nematode Caenorhabditis elegans 

 

Abstract 

Cyanobacterial blooms represent a significant risk to environmental and human health due to 

their production of toxic secondary metabolites, cyanopeptides. Anabaenopeptins and cyanopeptolins 

are cyanopeptides increasingly detected in surface waters at concentrations exceeding regulatory 

toxicity levels for other cyanotoxins such as microcystins. Yet their toxicity to aquatic organisms are not 

well understood. Here we assessed the toxicological effects of three anabaenopeptins (AP-A, AP-B, and 

AP-F) and three cyanopeptolins (CYP-1007, CYP-1020, and CYP-1041) to a model organism the nematode 

Caenorhabditis elegans. Examined toxicity endpoints included reproduction, hatching time, growth rate, 

lifespan, and age-related vulval integrity. Microcystin RR (MC-RR) and microginin 690 were also included 

in the study for comparisons. At an identical mass concentration (10 μg/L, corresponding to a molar 

concentration ranging 0.01–0.014 μM depending on the specific peptide), anabaenopeptins (APs) 

showed the greatest toxicity among all cyanopeptides tested. APs decreased worm reproduction by 

23%–34% and shortened worm lifespan by 5 days (a 30% reduction) compared to the controls. APs also 

induced a remarkable age-related vulval integrity defect (Avid phenotype) in the worm, where over 95% 

of exposed worms developed the phenotype, compared to a less than 15% in control worms. CYPs 

showed similar toxicity as MC-RR, and Microginin 690 was the least toxic. These findings suggest that 

APs and CYPs may pose significant health risks to aquatic organisms. More toxicological studies of these 

cyanopeptides using different species across different trophic levels are needed to gain a thorough 

understanding of their potential impact on ecological systems and human health. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/algal-bloom
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-health
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Introduction 

Cyanobacterial blooms have increased in frequency and magnitude across the globe over the 

past decade (Pick, 2016). These blooms have the potential to wreck havoc on environmental and public 

health, as well as local economies (Wilkinson et al., 2018) as they can produce highly toxic secondary 

metabolites (cyanopeptides) known as cyanotoxins. Cyanotoxins have been detected in drinking water 

and food sources at concentrations up to mg/L (Gkelis et al., 2015, Kurmayer et al., 2016), posing a 

significant risk to the public's health. In August 2014, an algal bloom contaminated the drinking water of 

Toledo, Ohio forced nearly half a million people to drink bottled water for three days (MDH, 2017). A 

bloom of Pseudo-nitzschia containing the neurotoxin domoic acid occurred off the west coast, shutting 

down fisheries from Baja California in Mexico up to Alaska in 2015 (Michalak, 2016). More recently in 

May 2018, Salem in Oregon shut down drinking water for kids because of algal toxin contamination 

caused by algae blooms in Detroit Reservoir (Michalak, 2016). As a result, the maintenance of safe 

drinking water and recreational aquatic environments may become more challenging with the increased 

occurrences of cyanobacterial blooms (Murphy et al., 2012, Miller et al., 2017). 

Cyanotoxins can be classified as peptides or alkaloids based on their chemical structures. They 

may also be classified as hepatoxins, neurotoxins, or dematotoxins based on their mechanisms of toxic 

action in vertebrates, especially mammals (Ferrao-Filho and Kozlowsky-Suzuki, 2011). Peptides are the 

largest group of cyanotoxins and there have been more than 600 cyanobacterial peptides described to 

date (Gkelis et al., 2015). Microcystins (MCs) are among the first discovered and described 

cyanopeptides, occurring abundantly in waterbodies in temperate climates, and can pose significant 

health risks to livestock, wildlife, fishes, and humans (Chorus and Fastner, 2001). The WHO has proposed 

implementation measures for monitoring and control of MCs and determined guideline values for 

drinking and recreational waters (WHO, 2008). Other commonly found bioactive peptides include 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/algal-bloom
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib44
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https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib59
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/secondary-metabolite
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https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib19
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib26
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/alga
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib33
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fishery
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib31
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/contamination
https://www.sciencedirect.com/science/article/pii/S0045653518317314?via%3Dihub#bib31
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Figure 2.1. Structures of the cyanopeptides studied. 
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microginins, cyanopeptolins, anabaenopeptins, anabaenopeptilides, microvirdins, and nostophycins 

(Welker and Von Dohren, 2006). Anabaenopetins (APs) and cyanopeptolins (CYPs) are cyclic 

nonribosomal oligopeptides produced by a broad range of cyanobacterial species. APs are characterized 

by a ring of five amino acid residues including a conserved lysine. CYPs have a six amino acid residue ring 

structure, a conserved 3-amino-6-hydroxy-2-piperidone (AHP) residue and a side chain with variable 

length (Fig. 2.1). More than 100 different APs and CYPs have been reported (Chilipala et al., 2012, 

Cerasino et al., 2017), and they are commonly detected along with MCs. A recent study has found that 

AP concentrations in blooms can exceed 1000 μg/L in freshwater bodies in Greece (Gkelis et al., 2015). 

Cyanopeptides induce toxicity to animals and humans through diverse mechanisms, ranging 

from hepatotoxic and cytotoxic effects to the inhibition of protein synthesis. MCs are the most 

commonly observed cyanobacterial liver toxins globally (Miller et al., 2017). They covalently bind to and 

inhibit protein phosphatase type 1 or 2A in liver cells and may also inhibit other proteins and enzymes. 

MCs are among the most extensively studied algal toxins due to their high toxicity. They have been 

suspected as the culprit of numerous animal and human poisonings across the globe (Backer et al., 

2013, Weirich and Miller, 2014, Trevino-Garrison et al., 2015). Adverse effects from ingestions of MCs 

have been observed in various aquatic organisms. Ingestion of MC-producing cyanobacteria resulted in 

lethal poisoning in Daphnia galeata, at an intake of 10.2 ng of MC per 1 mg body weight (Rohrlack et al., 

2005). Long-term low dose exposure to MCs in Daphnia magna resulted in accumulation of the 

cyanotoxin in the organism and the phosphatase enzyme activity was also inhibited (Chen et al., 2005). 

Accumulation of MC-LR in a gastropod pulmonate Lymnaea stagnalis following aqueous exposure, 

accompanied by a strong decrease in egg production in adult organisms was also reported (Gérard et al., 

2005). Toxicity of MCs to several fish species have also been reported, and observed effects ranged from 

mortality to developmental abnormalities, depending on the cyanotoxin concentrations (Zanchett and 

Oliveira-Filho, 2013). 
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In contrast, studies on ecological toxicity of APs and CYPs are scarce. Both APs and CYPs are 

known inhibitors of serine proteases and protein phosphatases (Spoof et al., 2016, Gademann and 

Portmann, 2008, Gademann et al., 2010), which are enzymes responsible for the regulation of several 

vital physiological and metabolic processes. Most of these bioactive peptides have been labelled as non-

toxic, although the full effect of these peptides individually or in mixtures to the environmental biota is 

largely unknown (Miller et al., 2017). A recent study discovered that CYP-1020 induced neurotoxicity in a 

zebrafish model and inhibited human kallikrein and trypsin in the low pico- to nano-molar range 

(Gademann et al., 2010, Faltermann et al., 2014). CYP-1020 also showed a similar LC50 (8.8 μM) against 

fairy shrimp (Thamnocephalus platyurus) with MC-LR (10.8 μM) (Gademann et al., 2010). Thus, these 

previously considered “non-toxic” cyanopeptides may represent emerging cyanotoxins, whose toxicity 

effects to aquatic organisms warrant immediate attention. 

In this study, we investigated the toxicity effects of three APs (AP-A, AP-B, and AP-F) and three 

CYPs (CYP-1007, CYP-1020, and CYP-1041) to a model organism the nematode C. elegans. MC-RR and 

microginin-690 were also included in the study for comparisons. The former belongs to the group of 

MCs with known high toxicity potency and the later is much less toxic based on existing literature 

(Zanchett and Oliveira-Filho, 2013). C. elegans is a free-living nematode found in soil and freshwater 

environments (Hoss and Williams, 2009). It is an excellent model organism in toxicology due to the 

availability of genetic tools, well-understood biology, transparent body, conserved molecular and 

cellular pathways with humans, and ease of culture in the laboratory (Leung et al., 2008, 

Haegerbaeumer et al., 2018). It has been used for toxicity assessment for a broad range of chemical 

contaminants at environmentally relevant concentrations including metals (Wu et al., 2012), engineered 

nanoparticles (Zhang et al., 2011), and organic pollutants (Zhou et al., 2016). Here we assessed the 

toxicity effects of these cyanotoxins to the worm using endpoints of hatching rate, growth rate, 

reproduction, lifespan, and vulval integrity. We selected a concentration of 10 μg/L, which is a WHO 
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recommended guideline for microcystins for recreational water (WHO, 2003), for our study. Our goal is 

to illustrate the toxicity effects of these understudied cyanopeptides at a regulatory level that has been 

established for well-studied cyanotoxins. We expect findings from this study will help reveal the baseline 

toxicity of these APs and CYPs and inform future studies for further understanding of their 

environmental and human health impact and development of necessary guidelines to protect human 

and ecosystem health. 

Materials and methods 

Chemicals 

The cyanotoxins, anabaenopeptin A (AP-A) (>95% purity), anabaenopeptin B (AP-B) (>95% 

purity), anabaenopeptin F (AP-F) (>95% purity), cyanopeptolin 1007 (CYP-1007) (>95% purity), 

cyanopeptolin 1020 (CYP-1020) (>95% purity), cyanopeptolin 1041 (CYP-1041) (>95% purity), and 

microginin 690 (>95% purity) were purchased from MARBIONC (Wilmington, NC, USA). Microcystin RR 

(MC-RR) (>90% purity) was purchased from Sigma-Aldrich (Milwaukee, WI, USA). Stock solutions 

(10,000 μg/L) were prepared by suspending the cyanotoxins in methanol (MeOH). K-medium (51 mM 

NaCl, 32 mM KCl, pH 6.8) was used as the diluent to create the exposure concentration (10 μg/L) used 

for all sub-lethal exposure assays. The final MeOH concentration in all working solutions was 0.1%. 

C. elegans strain 

The C. elegans strain N2 Bristol (wildtype) was obtained from the Caenorhabditis Genetics 

Center (University of Minnesota, St. Paul, MN). Wildtype nematodes were maintained following a 

standard protocol: maintained on nematode growth medium (NGM) agar plates seeded with E. coli 

OP50 and stored at 20 °C (Stiernagle, 2006). Age-synchronized worm populations were used for all sub-

lethal assays. The generation of an age-synchronized population was achieved by collecting eggs from 
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gravid adult C. elegans and bleaching with 1% NaClO and 0.013M NaOH solution (Donkin and Williams, 

1995). 

Reproduction 

Reproduction tests were performed using age-synchronized L4-stage nematodes. L4 worms 

were placed on OP50 seeded NGM plates which have been amended with 150 μL of K-medium (negative 

control), MeOH (vehicle control), or 10 μg/L of cyanotoxins (APs, CYPs, MC-RR, or microginin 690). NGM 

plate preparation for exposures was previously described by Lenz et al. (2017). One L4-stage worm was 

added to each plate and kept at 20 °C for the duration of the exposure (approximately six days in total). 

Six worms (6 plates) were used for each test concentration. For each plate, the parent worm was 

transferred to a fresh plate every other day (2–3 total transfers over approximately six days), and the 

number of progeny (eggs and larval worms) was recorded. Following the reproductive cycle, the average 

number of progeny per worm was calculated by adding the number of progeny from all plates of an 

exposure concentration. 

Hatching time and growth 

The experimental method for hatching time, the time from egg disposition to hatching 

(Muschiol et al., 2009), has been previously described by Lenz et al. (2017). Eggs from age-synchronized 

3-day old worms were collected and prepared using a standard protocol (Donkin and Williams, 1995). 

Approximately 300 eggs were placed on an OP50 plate amended with 300 μL of K-medium (negative 

control), MeOH (vehicle control), or 10 μg/L of cyanotoxin (APs, CYPs, MC-RR, or microginin 690). The 

number of eggs hatched was recorded every 3 h until all eggs hatched. The hatched larval worms were 

then examined for growth. 
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To assess growth, the size (body length) of worms were measured at 18, 24, 48, and 72 h of 

upon egg collection during the developmental process (L1-L4). The body length of the worm was defined 

as the length from the opening of the mouth (anterior end) to the tip of the tail (posterior end) (Morck 

and Pilon, 2006). Growth of the wildtype worm has been extensively described in the literature (Byerly 

et al., 1976). Worm images were taken for each exposure condition in the above described time points 

using a Nikon AZ100 microscope and NIS-Elements BR 3.2 software. Images were analyzed using Zen 

2011 software (Carl Zeiss Microscopy) to obtain length measurements of all worms. Approximately 100 

worms were measured at each time point for each exposure condition. The average body length was 

then calculated. 

Lifespan and vulval integrity 

Lifespan experiments followed a standard protocol, using NGM plates seeded with OP50 and 

0.2 mM 5-fluoro 2-deoxyuridine (FUdR) to inhibit progeny production (Pluskota et al., 2009). Plates were 

amended with 150 μL of K-medium (negative control), MeOH (vehicle control), or 10 μg/L of 

cyanotoxins. Fifty worms were placed on each plate, and two plates were used for each exposure 

(totaling 100 worms per exposure per replicate). Every other day, the worms were examined, and the 

dead ones were removed from the plate and the number of death was recorded. Death was defined as 

failure to respond to an external stimulus, a gentle tapping of the anterior and posterior ends with a 

platinum picker. Worms that burrowed in the agar or crawled off the plates were excluded from the 

data recording. This process continued till all the worms died, which is usually around 2.5–3.5 weeks 

from the beginning of exposure, depending on the exposure conditions. 

The worms were examined for age-related vulval integrity defects (Avid) during lifespan 

experiments, according to the criteria described by Leiser et al. (2016). Avid is characterized by a loss of 

integrity of the vulva occurring in post-mitotic hermaphrodites and is classified into three types based 
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on the severity of the defects. Avid I is defined as the presence of a herniated vulva. Avid II is defined as 

the presence of the tearing or rupturing of the herniated vulva with visible excretion of material. Avid III 

is defined as the exploded vulva, indicated by the presence of muscle and intestines outside the body. 

The phenotype typically starts to appear when the worms are 8–9 days old. Worm images were taken 

every other day during the lifespan experiments using a Nikon AZ100 microscope and NIS-Elements BR 

3.2 software. Upon the death of the worms, they were scored for the above-described Avid phenotypes 

and the overall frequency of the phenotypes (Avid I, II, and III combined) was calculated. 

Data analysis 

All sub-lethal assays were repeated two times. One-way analysis of variance (ANOVA) followed 

by pairwise multiple comparisons (Holm-Sidak method) were performed for comparisons between 

individual cyanotoxins in terms of impact on reproduction, growth, and vulval integrity. Lifespan data 

were analyzed using Kaplan-Meier survival analysis and a log-rank test was used for the estimation of 

mean lifespan (IBM SPSS Statistics, Armonk, NY). The average hatching time (with 95% confidence 

intervals) under different exposure conditions was calculated and compared using ANOVA analysis (IBM 

SPSS Statistics, Armonk, NY). 

Results 

Impact on reproduction 

APs, CYPs, and MC-RR all showed significant adverse impact on worm reproduction (Fig. 2). 

Worms exposed to the three APs at 10 μg/L (0.012 μM) had an average brood size ranging from 133 ± 11 

to 114 ± 11, significantly lower than the brood size of 172.1 ± 10 in controls (Fig. 2.2A, one-way AONVA, 

p < 0.001). This represents a decrease of 23%–34% from the control. Worms exposed to the three CYPs 

at 10 μg/L (0.01 μM) had an average brood size of 133 ± 20 to 113 ± 10, significantly lower than the  
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Figure 2.2. Impact of cyanopeptides (10 μg/L) on C. elegans reproduction.  

 

(A) Anabaenopeptins (AP-A, AP-B, and AP-F). (B) Cyanopeptolins (CYP-1007, CYP-1020, and CYP-1041). 

Error bars represent standard deviation (n = 12, two independent experiments). “*” indicates a 

significant difference from controls (one-way ANOVA, p < 0.001). 
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Figure 2.3. Impact of cyanopeptides (10 μg/L) on C. elegans hatching time.  

 

(A) Anabaenopeptins (AP-A, AP-B, and AP-F) and microginin 690; (B) cyanopeptolins (CYP-1007, CYP-

1020, and CYP-1041) and MC-RR. (C) Average hatching time and percent difference compared to 

controls. “*” indicates a significant difference from controls (one-way ANOVA, p < 0.05). 
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controls (Fig. 2.2B, one-way AONVA, p < 0.001). Worms exposed to MC-RR (10 μg/L, 0.01 μM) had a 

brood size of 123 ± 12 (29% decrease from the control), and worms exposed to microginin 690 (10 μg/L, 

0.014 μM) had a brood size of 149 ± 11 (13% decrease from the control). Further multiple comparisons 

(Holm-Sidak method) indicated that at an identical mass concentration 10 μg/L, MC-RR had similar 

impact on the worm's brood size as APs or CYPs, whereas microginin 690 had significantly lower impact 

than APs or CYPs (p < 0.05). 

Impact on worm hatching and growth 

We examined the effects of APs and CYPs on embryogenesis, the time from fertilization to egg 

hatching, using the endpoint hatching time (Lenz et al., 2017). Typically, ex utero development of the 

worm from egg to hatching takes ∼9–10 h under 20 °C (Altun and Hall, 2018). As can be seen from 

Fig. 2.3A, by the time of 12 h, over 90% of control eggs or eggs exposed to Microginin 690 (10 μg/L, 

0.014 μM) had hatched, whereas less than 50% of eggs exposed to the three APs (10 μg/L, 0.012 μM) 

had hatched, indicating a substantial delay in hatching. The calculated average hatching time for the 

control eggs was 10.1 h (95% CI: 9.9, 10.3), and for the APs-exposed worms were 11.7 (95% CI: 11.4, 

12.1) to 12.1 (95% CI: 11.8, 12.4) h (Fig. 2.3C), showing an approximate 2 h delay in hatching. Similarly, 

the three CYPs (10 μg/L, 0.01 μM) delayed the worm's hatching, but to a less extent than APs. Compared 

to over 90% of hatching at 12 h in control eggs, eggs exposed to CYPs had a 60–70% of hatching rate at 

12 h (Fig. 2.3B). The average hatching time of eggs exposed to CYPs were 10.9 (95% CI: 10.6, 11.3) to 

11.5 (95% CI: 11.1, 11.8) h. MC-RR or Microginin 690 exposed eggs showed similar hatching time as 

control worms (Fig. 2.3C). 

The hatched larval worms were further examined through the developmental process (L1-L4) to 

determine if exposure to these cyanotoxins have an impact on the worm's growth during development. 

As shown in Fig. 2.4A and B, exposure to APs or CYPs caused growth delay of the worms as indicated by  
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Figure 2.4. Impact of cyanopeptides (10 μg/L) on C. elegans growth rate.  

 

 (A) Anabaenopeptins (AP-A, AP-B, and AP-F) and microginin 690; (B) cyanopeptolins (CYP-1007, CYP-

1020, and CYP-1041) and MC-RR. (C) Percent difference compared to controls. “*” indicates a significant 

difference from controls at each time point (one-way ANOVA, p < 0.05). 
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Figure 2.5. Impact of cyanopeptides (10 μg/L) on C. elegans lifespan.  

 

(A) Anabaenopeptins (AP-A, AP-B, and AP-F) and microginin 690; (B) cyanopeptolins (CYP-1007, CYP-

1020, and CYP-1041) and MC-RR; (C) average lifespan and percent difference compared to controls. “*” 

indicates a significant difference from controls (log-rank test, p < 0.05). 
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decreased body length in exposed worms than control worms at each time point (one-way ANOVA, 

p < 0.05). For example, at 24 h, the average body length of larval worms exposed to APs was decreased 

by 12.3%–15% compared to the controls. This decrease in body length seemed to be ameliorated as the 

development progresses. At 48 h, the difference in body length between AP-exposed and control worms 

was 7%–9.4%. At 72 h, when the worms reached young adult stage, the AP-exposed worms were 6.7%–

7.5% smaller in body size (length) than the controls (Fig. 2.4C). At an identical mass concentration of 

10 μg/L, CYPs had a similar impact on the worm growth as APs (Fig. 2.4C). MC-RR and microginin 690 

had less effect on the worm growth, indicated by a decrease in body length by 7.8% and 5.1%, 

respectively, at 24 h. At 72 h, this difference was 3.1% and 2.8%, respectively. 

Impact on lifespan 

Both APs and CYPs substantially decreased the average lifespan of the worm (Fig. 2.5A and B). 

Worms exposed to three APs (10 μg/L, 0.012 μM) had a mean lifespan around 11 days (95% CI: 11, 11.5) 

as compared to 16 days (95% CI: 15.7, 16.4) of control worms, corresponding to a 30% decrease from 

the control. Worms exposed to three CYPs (10 μg/L, 0.01 μM) had a mean lifespan around 13 days (95% 

CI: 12.7, 13.6), corresponding to an 18% decrease from the control. MC-RR and microginin 690 

decreased the average lifespan by 1.7 days and 2.2 days, corresponding to 11% and 14% decrease from 

the control, respectively (Fig. 2.5C). 

Impact on vulval integrity 

Following exposure to all cyanotoxins, worms showed an Avid phenotype. Using the 

classification criteria described by Leiser et al. (2016), we found that all three APs (10 μg/L, 0.012 μM) 

induced Avid (I, II, and III collectively) in >95% of the exposed worms compared to less than 10% in 

control worms (Fig. 2.6A–C, one-way ANOVA, p < 0.001). Specifically, Avid I was the dominant  
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Figure 2.6. Impact of cyanopeptides (10 μg/L) on vulval integrity in C. elegans.  

 

(A) Classification of age-related vulval integrity defects (Avid) according to the criteria defined by Leiser 

et al. (2016); (B) representative images of worms showing Avid phenotype upon exposure to different 

cyanopeptides; (C) frequency of Avid phenotype in worms exposed to different cyanopeptides; (D) 

frequency of Avid breakdown by different Avid classification. Error bars represent standard deviation. 

Different letters indicate significant differences (one-way ANOVA, Holm-Sidak comparison, p < 0.05).  
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phenotype, accounting for 50–59.5% within the >95% of incidence (Fig. 2.6D). Exposure to CYPs 

(10 μg/L, 0.01 μM) caused an Avid incidence of 25%, significantly higher than controls (one-way ANONA, 

p < 0.05) but much less than the APs. Microginin 690 (10 μg/L, 0.01 μM) induced Avid at a comparable 

rate (26.5%) to the CYPs, while MC-RR induced Avid to a less extent (14.5%) (Fig. 2.6C). All Avid 

phenotypes occurred after the worm's development and reproductive lifespan were completed, which 

was about 8–9 days of the age for the worms. 

Discussion 

APs and CYPs are increasingly detected in freshwater cyanobacterial blooms (Gkelis et al., 2015, 

Beversdorf et al., 2017), yet their potential toxicological effects to aquatic systems is largely unknown. 

Here we found that these two groups of cyanopeptides induced significant toxicity effects in a model 

organism the nematode C. elegans at 10 μg/L, a concentration that has been set as regulatory guideline 

for MCs in recreational waters (WHO, 2003). This concentration is also 100 times lower than those 

reported in the environment (Gkelis et al., 2015). At an identical mass concentration of 10 μg/L, APs 

were the most toxic among all the cyanopeptides tested, indicated by reduced reproduction, reduced 

lifespan, delayed hatching, reduced growth, and severe vulval integrity defects in the worm. APs have 

been found to inhibit carboxypeptidase A as well as protein phosphatases but with a ten-fold lower 

potency than MCs (Sano et al., 2001). A recent study reported that an AP-producing cyanobacteria strain 

strongly inhibited the growth of a freshwater amoeba (Urrutia-Cordero et al., 2013). MCs are among the 

most extensively studied cyanotoxins and are known for their hepatotoxicity (Faltermann et al., 2014), 

reproductive toxicity (Chen et al., 2016), potential neurotoxicity (Hu et al., 2016), and possible 

carcinogenicity (Zegura B, 2016). The current WHO guideline for MCs is 1 μg/L for drinking water (WHO, 

2008) and 10 μg/L for recreational water (WHO, 2003). The fact that these three APs tested in the 

current study showed greater toxicity effects than MC-RR in the worm at the regulatory concentrations 
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demonstrates that these cyanopeptides may pose high risks to ecosystem and human health. Our 

findings strongly suggest the need for more systematic understanding of the potential ecotoxicity of 

these cyanopeptides. 

CYPs have been frequently detected in co-occurrence with MCs during blooms and are often 

considered as non-toxic in general (Neumann et al., 2000, Beversdorf et al., 2017). They are mainly 

known for their inhibition of serine proteases like chymotrypsin or trypsin. For example, CYP 1020 

showed potent inhibitory activity to crustacean and mammalian serine proteases (Gademann et al., 

2010). However, the uptake mechanism, molecular effects and mode of action of these cyanopeptides 

to fish and mammals remains elusive. A recent study by Faltermann et al. (2014) evaluated the 

molecular effects and mode of actions of CYP1020 in zebrafish embryos using transcriptomics. The 

authors found that the most clearly affected pathways were those related to DNA damage recognition 

and repair, circadian rhythm and response to light. This suggests that CYP 1020 may act on DNA and has 

neurotoxic activity. Here we found three CYPs (CYP 1007, 1020, and 1041) showed comparable toxicity 

to MC-RR to the worm, indicated by reduced reproduction, reduced lifespan, and increased vulval 

integrity defects. While the exact modes of action leading to these toxicity outcomes in the worm is 

unclear, our findings demonstrate that these CYPs can pose significant risks to aquatic organisms. 

Microginins are linear nonribosomal cyanopeptides that are also commonly found in co-

occurrence with MCs (Carneiro et al., 2012). Numerous Microginin congeners have been isolated from 

several cyanobacteria genera since it was first reported over two decades ago (Stewart et al., 2018). 

They usually contain 4-6 residues including one or more tyrosine at the C-terminus and the 

characteristic N-terminal side chain, 3-amino-2-hydroxy decanoic acid (Fig. 2.1). Microginins are 

renowned inhibitors of the angiotensin-converting enzyme (ACE) and may serve as candidates for the 

discovery of novel antihypertensive agents (Carneiro et al., 2012). It is generally believed that toxicity of 
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microginins are much lower than that of MCs (Zanchett and Oliveira-Filho, 2013). Our findings seem to 

agree with this as we found that miroginin 690 was the least toxic among all the cyanopeptides 

examined, including MC-RR. 

C. elegans serves as a good model to illustrate how chemical exposures by ingestion, of both 

food and water, may pose a hazard to the health of an organism from embryogenesis to death (Page 

and Johnstone, 2007, O'Reilly et al., 2014). The worm has a cuticle that makes absorption of toxins 

difficult, thus the exposure occurs primarily through ingestion (Hunt, 2017). We first examined how 

these cyanopeptides may affect the reproduction of the worm. We found that at a concentration as low 

as 10 μg/L, both APs and CYPs significantly decreased the worm's reproduction as indicated by 

decreased numbers of progeny (Fig. 2.2). This change in the number of progeny and the ability of eggs to 

take up nutrients can cause downstream effects that may affect embryogenesis and growth, and impact 

the overall healthspan (Gardner et al., 2013). In C. elegans, embryogenesis, from fertilization to egg 

hatching, takes approximately 12–13 h  at 20 °C, and consists of both utero (2–3 h) and ex utero (9–10 h) 

development (Harlow et al., 2016). This makes hatching time a convenient measure to study the 

potential impact of chemicals on the worm's developmental processes, such as cell fate specification, 

tissue formation, and morphogenesis (Harlow et al., 2016). We found that both APs and CYPs 

significantly delayed hatching of the worm (Fig. 2.3), suggesting the impact of these cyanopeptides on 

the worm's developmental processes. The long-term effect of this delayed hatching to the worm's 

overall health is not known yet and warrants further investigations. Further research is also needed to 

understand how these cyanopeptides impact the embryonic development processes that leads to 

delayed hatching. 

Following the delayed hatching, we also found that both groups of cyanopeptides reduced the 

worm's growth rate as indicated by reduced body length at different larval stages. Upon hatching, 
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C. elegans progresses through four distinct larval stages (L1-L4) and reach adulthood at approximately 3 

days (72 h) of age (Uppaluri and Brangwynne, 2015). We observed decreased body length of the worms 

exposed to cyanopeptides at 18, 24, 48, and 72 h (Fig. 2.4). The body size of C. elegans is genetically 

regulated and interference of gene expression in pathways involved in stage-specific development in the 

worm can result in “heterochronic” growth abnormalities (Zaidel-Bar et al., 2010, Monslave et al., 2011). 

Previous research suggests that there are at least three different genetic pathways that determine the 

worm's body length: 1) a spectrin pathway involving the unc-70, sma-1, and spc-1; 2) a calcineurin 

pathway involving tax-6 and cnb-1; and 3) a transforming growth factor-b (TGF-B) pathway involving 

sma-2, sma-3, sma-4, lon-1, kin-29, and dbl-1 (Morck and Pilon, 2006). Additionally, the absence of food 

can halt development. This, however, is not likely to be the reason for the observed growth impact in 

our study as the worms were fed throughout the exposure duration. Our future studies will examine the 

impact of these cyanotoxins on these three pathways involved in larval development to elucidate the 

potential mechanisms of toxicity leading to the decrease in body size. Furthermore, the long-term health 

implication of this decrease in body size also calls for further investigations. 

Similar to reproduction and hatching time, all APs and CYPs significantly decreased the average 

lifespan of the worm (Fig. 2.5). Lifespan is regulated by complex interactions involving stochastic events, 

genetics, environment, and other nongenetic factors (Uno and Nishida, 2016). An important regulatory 

pathway affecting longevity, as well as healthspan and aging in the worm, is the insulin/insulin-like 

growth factor 1 (IGF-1) signaling pathway (Gao et al., 2017). IGF signaling is controlled by the activation 

of daf-2 (IGFR) that initiates a signaling cascade involving age-1 (phosphoinositide 3-kinase), pdk-1 

(phosphoinositide-dependent protein kinase-1) and akt-1/2 (protein kinase B) (Murphy et al., 2003, 

Murphy, 2013). Activation of this signaling cascade results in the phosphorylation of daf-16 and inhibits 

its relocation into the nucleus (Ogg et al., 1997). IGF signaling plays a vital role in prenatal growth, 

fertility, regulating fat storage and blood glucose, stress response, and aging in the worm (Laviola et al., 
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2008, Zhang and Liu, 2014). Overactivation of IGF signaling is associated with accelerated aging and 

increased mortality in the worm (Fadini et al., 2010). The significant reduction of lifespan, together with 

the reduced reproduction and growth induced by these APs and CYPs may suggest that the IGF-

mediately pathway is involved in causing these effects. Our next step is to examine the impact of these 

cyanotoxins on the activity of the IGF signaling pathway using mutant strains and gene expressions. 

A remarkable finding from our study is that APs induced severe vulval integrity defects (Avid) in 

adult worms during the aging process (Fig. 2.6). The Avid phenotype in aging C. elegans has been long 

observed yet only clearly described and studied by Leiser et al. (2016) recently. The researchers 

examined the phenotype in the context of several genetic and environmental conditions that are known 

to modify worm longevity and concluded that Avid is a definitive cause of healthspan loss that is 

associated with early death. The phenotype is easily identifiable and can therefore be a robust marker of 

worm healthspan. We found that the extremely high incidence of Avid in worms exposed to APs 

corresponded well with the most significantly shortened lifespan (reduction by 30% compared to 

controls) induced by these cyanopeptides. Leiser et al. (2016) suggested that the worm's reproductive 

system (germline) is an important modulator of Avid as they found the loss of oocyte development is 

associated with increased Avid. The researchers also proposed two hypotheses for this association. One 

is that accumulation of excess, unutilized yolk caused by loss of oocyte development leads to leakage of 

body fluids and organs through the vulva. Another hypothesis considers Avid as a result from 

accumulation of nutrients related to the worm's reproduction. Because the metabolism of food and 

nutrients in post-mitotic C. elegans is largely geared toward the production of 150–300 viable eggs per 

adult hermaphrodites, a decrease in the number of eggs or the ability of the eggs to absorb nutrients 

could lead to excess nutrients in the adult worm. In the present study, we observed that the three APs 

significantly reduced the worm's reproduction (number of eggs), which may potentially contribute to 

the development of Avid phenotype in the adult worms at a later stage. 
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Another interesting aspect of Avid phenotype is the potential link between this worm-specific 

phenotype to mammalian health. Leiser et al. (2016) suggested that Avid in the worm may be a 

phenotype analogous to obesity in higher organisms. Such a hypothesis is intriguing, considering that 

the yolk in the worm is analogous to visceral fat in mammals, which is known to lead to numerous 

health problems (Seidell et al., 1990). While the potential link between Avid and obesity is yet to be 

proven, it has the potential to connect a worm-specific phenotype directly to mammalian health, which 

will have great implication for our understanding of the potential health impacts of these cyanotoxins on 

humans. Our future studies will examine the potential link between Avid and obesity by comparing fat 

accumulation, fat metabolism, systemic iron overload, and ferritin levels (Hyun et al., 2016, Wang et al., 

2016) in controls and worms exhibiting the avid phenotype. 

Conclusions 

The increasing detection of cyanopeptides such as APs and CYPs co-occurring with highly toxic 

MCs in freshwater systems calls for immediate attention to understand their potential ecological and 

human health impacts. To the best of our knowledge, this is the first study that has examined the 

toxicological effects of APs and CYPs at an environmentally and regulatorily relevant concentration 

(10 μg/L) to a model organism from organismal levels. We found that three APs (AP-A, AP-B, and AP-F) 

and three CYPs (CYP-1007, CYP-1020, and CYP-1041) induced significant toxicity effects to the worm at 

concentrations 100 times lower than those found in the environment. These toxicity effects include 

reduced reproduction, delayed hatching, decreased growth rate, shortened lifespan, as well as severe 

aging-related vulval integrity detects. At an identical mass concentration of 10 μg/L, APs were the most 

toxic, followed by CYPs, which showed comparable toxicity to MC-RR, and Microginin 690 was the least 

toxic. These findings demonstrate that these APs and CYPs may pose significant health risks to aquatic 

organisms, and more toxicological studies of these cyanopeptides using different species across 
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different trophic levels are needed to gain a thorough understanding of their potential impact on the 

ecological system. Future studies should also aim to understand whether these observed toxicity in the 

organismal level in the worm can be related to the known protease inhibition properties of these 

cyanopeptides. Given the frequent co-occurrence of these APs and CYPs with MCs as well as their 

comparable or even greater toxicity than MCs, potential recreational and drinking water guidelines 

should consider taking into account these cyanopeptides as well. 
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CHAPTER 3:  

Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode 

Caenorhabditis elegans 

 

Abstract 

The broad application of triclosan (TCS) and triclocarban (TCC) as antimicrobials in household 

and personal care products has led to the concerns regarding their human health risk and environmental 

impact. Although many studies have examined the toxicological effects of these compounds to a wide 

range of aquatic organisms from algae to fish, their potential toxicity to an important model organism 

the nematode Caenorhabditis elegans has never been systematically investigated. Here we assessed the 

toxicological effects of TCS and TCC in C. elegans using endpoints from organismal to molecular levels, 

including lethality, reproduction, lifespan, hatching, germline toxicity, and oxidative stress. L4 stage or 

young adult worms were exposed to TCS or TCC and examined using above-mentioned endpoints. Both 

TCS and TCC showed acute toxicity to C. elegans, with 24-h LC50s of 3.65 (95% CI: 3.15, 4.3) mg/L and 

0.91 (95% CI: 0.47, 1.53) mg/L, respectively. TCS at 0.1–2 mg/L and TCC at 0.01–0.5 mg/L, respectively, 

induced concentration dependent reduction in the worm's reproduction, lifespan, and delay in hatching. 

Using a DAF-16:GFP transgenic strain, we found both compounds induced oxidative stress in the worm, 

indicated by the relocalization of DAF-16:GFP from cytoplasm to the nucleus upon exposure. Germline 

toxicity of the two compounds was also demonstrated using a xol-1:GFP transgenic strain. These 

findings suggest that TCS and TCC induce systemic toxic effects in C. elegans. Further studies are needed 

to elucidate the potential mechanisms of toxicity of these antimicrobials in the model organism, 

especially their potential endocrine disruption effects. 
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Introduction 

Triclosan (TCS) and triclocarban (TCC) are broad-spectrum antimicrobial agents used in 

numerous personal care, veterinary, industrial and household products (Dann and Hontela, 2011). The 

two main sources of TCS and TCC release into the environment are discharge of wastewater effluent 

into surface waters and land application of biosolids containing residues of the antimicrobials (Dhillon 

et al., 2015). Human exposure to TCS and TCC through direct contact with daily consumer products or 

consumption of contaminated water and food has led to their detection in human milk, plasma, and 

urine (Dhillon et al., 2015). TCS and TCC are among the top 10 most commonly detected organic 

wastewater compounds in terms of frequency and concentration (Halden and Paull, 2005). Literature 

shows that concentrations of these antimicrobials in natural aquatic environment typically range from 

below the detection limit to maxima of 2.3 μg/L for TCS and 0.25 μg/L for TCC in U.S. surface waters 

(Chalew and Halden, 2009). TCS concentrations in freshwater sediments range from 800 to 

53,000 μg/kg, and TCC in estuarine sediments range from 1700–24,000 μg/kg (Chalew and Halden, 

2009). 

The main heath concerns to the ecosystem and humans induced by TCS and TCC contamination 

in the environment include antibiotic resistance, ecotoxicity, and potential endocrine-disrupting effects 

(Higgins et al., 2011). As microbial resistance has become an increasingly serious public health problem, 

the continued use of antimicrobials such as TCS and TCC may exacerbate this problem. Although these 

antimicrobials are not acutely toxic or carcinogenic in mammalian toxicity studies, their structural 

similarity with estrogenic or androgenic endocrine-disrupting compounds (EDCs) (such as PCBs, PBDEs, 

BPA, and dioxins) leads to the suspect that they may act as endocrine disruptors (Haggard et al., 2016). 

Many studies have shown that TCS has the ability to disrupt endocrine function in a variety of species 

including fish, amphibian, and mammals (Dann and Hontela, 2011). These studies have collectively 
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shown that TCS has estrogenic and/or androgenic activity at environmentally relevant concentrations. 

For example, TCS exposure has been found to induce changes in fin length and sex ratios of medaka fish, 

demonstrating a weak androgenic effect (Foran et al., 2000). A later study by Ishibashi et al. (2004) 

found that TCS induced vitellogenin production in male medaka, suggesting estrogenic activity. Studies 

on the endocrine disruption potential of TCC are scarce compared to TCS. Several researchers have 

reported that TCC showed no endocrine activity when tested alone but enhanced estrogenic or 

androgenic activities following co-exposure with estrogen or dihydrotestosterone, potentially 

representing a new type of endocrine disruptor (Chen et al., 2008, Tarnow et al., 2013). 

For ecotoxicity, acute toxicity of TCS and TCC has been studied in invertebrates, fish, 

amphibians, algae, and plants (Brausch and Rand, 2011). Studies on TCC have been much limited as 

compared to TCS, although TCC is usually found more toxic than TCS to aquatic invertebrates and fish for 

both short and long-term exposures (Chalew and Halden, 2009). Different environmental species exhibit 

great variations in their susceptibility to TCS and TCC, with toxicity threshold values spanning more than 

six orders of magnitude in concentration. Threshold concentrations for acute toxicity in fish were 

between 260 and 440 μg/L for TCS and 49–180 μg/L for TCC, and for chronic effects were 34–290 μg/L 

for TCS and 5 μg/L for TCC (Ishibashi et al., 2004, Tatarazako et al., 2004). In crustacean, acute toxicity 

threshold values ranged 185–390 μg/L for TCS and 1.9–40 μg/L for TCC, and chronic toxicity was 

observed at concentrations as low as 6–182 μg/L for TCS and 0.06–4.7 μg/L for TCC (Tatarazako et al., 

2004). Algae appears to be the most sensitive species to TCS and TCC toxicity, with toxicity effects 

observed at parts-per-billion levels ranging 0.2–2.8 μg/L for TCS and 10–30 μg/L for TCC (Brausch and 

Rand, 2011). The high sensitivity of algae to TCS toxicity is likely due to the similarity in lipid synthesis 

process between algae and bacteria, which is the target for TCS antibacterial properties. The potential 

mechanisms of toxicity for TCS to aquatic organisms have not been well defined, but may include non-

specific narcosis in some species and specific actions in others (Lyndall et al., 2010). These specific 
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mechanisms include inhibition of the type II fatty acid synthesis enzyme system, membrane 

destabilization, and uncoupling of oxidative phosphorylation (Franz et al., 2008). Unfortunately, the 

mechanism of toxicity for TCC remains largely unknown. 

In contrast to the abundant literature regarding TCS and TCC toxicity on aquatic biota, studies of 

their toxicity to terrestrial organisms are limited. TCS has been reported to inhibit plant growth and soil 

respiration, with EC50s ranging 57–108 mg/kg (Liu et al., 2009). TCS has also been found to disturb 

nitrogen cycle in some soils at concentrations below 10 mg/kg (Waller and Kookana, 2009). An 

ecological risk assessment of TCS in terrestrial environment performed by Reiss et al. (2009) found 

satisfactory margins of safety for terrestrial organisms including earthworms, plants, and soil 

microorganisms exposed to TCS in soils amended with sewage sludge, and birds and mammals exposed 

indirectly through the consumption of earthworms and fish. However, the small number of studies 

available for the risk assessment calls for further investigations of the potential impact of TCS and TCC 

on terrestrial organisms. 

C. elegans is a free-living nematode in soil environments, yet its natural habitat is comparable to 

the habitat of freshwater nematodes (Hoss and Weltje, 2007), making it suitable for chemical exposures 

in both soil and aqueous medium. It is a representative species in the nematode phylum with great 

ecological relevance. It is also an excellent model organism for toxicological studies due to its well-

understood biology, genetic amenability, high conservation with human biology and disease pathways, 

and ease of culture in the laboratory (Leung et al., 2008). However, there has been no systematical 

studies on toxicological effects of TCS and TCC to this nematode species except one with inconclusive 

findings on the toxicity of these compounds on C. elegans growth and fecundity (Inokuchi et al., 2014). 

Here we investigated the toxicological effects of TCS and TCC to C. elegans using a series of endpoints 

from organismal to molecular levels. Overt endpoints including lethality, reproduction, lifespan, and 
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hatching time were examined to gain a basic understanding of their general toxicity to this model 

organism. Transgenic strains targeting oxidative stress response and germline toxicity were then used to 

assess toxicity at molecular levels. Findings from this study are expected to help fill the knowledge gap 

regarding the toxic effects of these antimicrobials to an ecologically relevant model organism. They will 

also provide the foundation for future mechanistic investigations in this model organism to further 

understand the environmental and human health implications of these antimicrobial chemicals. 

Materials and methods 

Chemicals 

Triclosan and triclocarban were purchased from Sigma-Aldrich (St. Louis, MO). Stock solutions 

(1000 mg/L) were prepared by dissolving the compounds in dimethyl sulfoxide (DMSO). All chemical 

concentrations used for sub-lethal exposure studies were selected based on lethal concentrations 

(LC50s). All dilutions used K-medium (51 mM NaCl, 32 mM KCl). TCS exposure concentrations were 0.1–

5 mg/L, and TCC exposure concentrations were 0.01–5 mg/L. The final DMSO concentration in working 

solutions was <0.5%. 

C. elegans strains 

All C. elegans strains used in this study were obtained from the Caenorhabditis Genetics Center 

(University of Minnesota, St. Paul, MN). These include N2 Bristol (wildtype), TJ356 (daf-16p:daf-

16a/b:GFP), and TY2431 (xol-1:GFP). All strains were maintained at 20 °C on nematode growth medium 

(NGM) agar plates seeded with E. coli OP50 following standard protocols (Stiernagle, 2006). Eggs were 

collected by bleaching gravid adult C. elegans with a bleaching solution of 1% NaClO and 0.013M NaOH 

to generate age-synchronized worm populations for all experiments described thereafter (Donkin and 

Williams, 1995). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/oxidative-stress
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-health
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib6
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nematode
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib38
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib11
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib11


68 
 

Lethality 

To assay lethality, age synchronized young adult (3-day old) nematodes were placed in 24-well 

plates containing 1 mL of K-medium (control), TCS (1–5 mg/L), or TCC (0.05–5 mg/L) solutions. Each test 

concentration contained three wells and each well contained ten worms. The exposure lasted for 24 h 

and the worms were not fed during the exposure. Following 24-h exposure, mortality of the worms was 

examined under a dissecting microscope. LC50s were calculated using logistic regression in the 

SigmaPlot program (Systat Software, Inc, San Jose, CA). The experiment was independently repeated 

three times for lethality test and the tests described thereafter unless stated otherwise. 

Reproduction and lifespan 

Reproduction tests were performed using age synchronized L4-stage nematodes on OP50 

seeded NGM plates. Because TCS or TCC inhibits the growth of OP50, they were not added into NGM 

media or mixed with OP50 broth; instead, an aliquot (150 μL) of the chemical solution was added on the 

surface of OP50 plates and was spread evenly using a sterilized glass rod. This approach for introducing 

chemicals to the exposure system was also used in the subsequent experiments on lifespan, hatching 

time, and germline toxicity. The concentrations used for TCS were 0.1, 1, and 2 mg/L, and for TCC were 

0.01, 0.1, and 0.5 mg/L. One L4-stage worm was added to each plate and each exposure concentration 

contained six plates. The exposure was conducted at 20 °C and continued from L4 stage to the end of 

reproduction period (approximately 4–6 days in total). For each plate, following the start of exposure, 

the parent worm was transferred to a fresh exposure plate every other day and the number of progeny 

(eggs and larval worms) in the original plate was counted. At the end of exposure, the number of 

progeny from all plates were added for each exposure concentration, and the average number of 

progeny was calculated. 
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Lifespan experiment followed the protocol as described previously (Pluskota et al., 2009). 

Briefly, L4 stage worms were placed on NGM plates seeded with OP50, which has been amended with 

0.2 mM 5-fluoro 2-deoxyuridine (FUdR) to prohibit progeny production during lifespan experiment. 

Similar to the reproduction experiments, 150 μL of K-medium (control), TCS (0.1, 0.5, 1, and 2 mg/L), or 

TCC (0.01, 0.05, 0.1, and 0.5 mg/L) were spread evenly over the surface of the plates. 100 worms were 

placed on each plate and each exposure concentration contained three plates (300 worms for each 

concentration). Plates were kept at 20 °C and the number of worms that were alive was recorded each 

day. Worms were considered dead when they failed to respond to external stimuli by gentle tapping of 

the worm's head with a platinum transfer picker. Dead worms were removed from the plate. Worms 

that crawled off the plates or burrowed under the agar were excluded from the population. This process 

was repeated until all the worms died. Log-rank survival analysis was applied to life-span analysis using 

SPSS 23 software (IBM SPSS Statistics, Armonk, NY). 

Hatching time 

Hatching time is defined as the time from egg deposition to hatch (Muschiol et al., 2009). To 

assay hatching time, eggs from age-synchronized 3-day nematodes were collected as previously 

described (Donkin and Williams, 1995). Eggs were centrifuged and washed with K-medium twice, and 

were placed on OP50 plates amended with 150 μL of K-medium (control), TCS (0.1 0.5, 1, and 2 mg/L), 

or TCC (0.01, 0.05, 0.1, and 0.5 mg/L). Approximately 100 eggs were placed on each plate and each 

exposure concentration contained three plates. The number of eggs hatched were recorded every hour 

until all eggs hatched. 
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Stress response 

A transgenic strain, TJ356 [daf-16p:daf-16a/b:GFP + rol-6], which stably expresses a DAF-16:GFP 

fusion protein, was used to assess the stress response in the worm induced by TCS or TCC exposure. 

DAF-16 is the sole C. elegans homologue of the Forkhead-box Class O (FOXO) transcription factor in 

mammals, and its activity is regulated by cellular stress signals especially oxidative stress (Hesp et al., 

2015). Under normal growth conditions, DAF-16 is inactivated and is primarily located in the cytoplasm; 

when activated by oxidative or thermal stress, it is translocalized to the nucleus where it regulates gene 

expressions including antioxidant genes, chaperones, and metabolic genes to increase stress tolerance 

(Baumeister et al., 2006). Such DAF-16:GFP relocalization can be visualized by fluorescence microscopy. 

To test DAF-16 relocalization, L4-stage nematodes were exposed to 1 mL of K-medium (control), TCS (0.1 

and 1 mg/L), or TCC (0.01 and 0.1 mg/L) in a 24-well plate for 4 h and were transferred to fresh NGM 

plates to recover for 30 min. A heat-shock treatment (4-h exposure at 34 °C) was used as positive 

control. Upon recovery, worms were placed on agar pad on glass slides and immobilized with 0.1% 

tricaine and 0.5% levamisole. Worms were imaged on a Zeiss Axio ZV16 fluorescence microscope (Carl 

Zeiss Microscopy, LLC. Thornwood, NY). Sixty worms were imaged for each exposure concentration and 

the frequency of GFP relocalization was calculated. 

Germline toxicity 

Germline toxicity test was conducted using a xol:GFP (TY2431) transgenic strain. The principle of 

using this transgenic strain to assess germline toxicity has been described in detail by Allard et al. (2013). 

The worm has a rare proportion of male progeny (XO, <0.2%) that naturally occurs in the wild-type 

hermaphroditic (XX) population due to a meiotic segregation error of the X-chromosome (Hodgkin et al., 

1979). Disruption of meiosis (germline toxicity) frequently leads to increased aneuploidy and errors in X-

chromosome, which usually correlates with a “high incidence of males” phenotype (Allard et al., 2013). 
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The xol-1:GFP transgenic strain uses a male-specific promotor (xol-1) to drive expression of GFP, which 

allows a quick identification of male embryos by the appearance of “green eggs” within the worm's 

hermaphrodite uterus. The appearance of “green eggs” can thus be used as an indicator of toxicity to 

the C. elegans germline system. 

To assay germline toxicity, L4-stage worms were placed on OP50 plates with 150 μL of K-

medium (control), TCS (0.1 and 1 mg/L), or TCC (0.01 and 0.1 mg/L) evenly spread over the surface. The 

exposure lasted for 24 h. Upon exposure, worms were removed from the exposure plates and washed 

with K-medium twice. The worms were then examined under fluorescent microscope using the method 

described in the previous section for appearance of GFP-positive eggs. Fifty worms were examined for 

each exposure concentration and the experiment was repeated three times. A total of 150 worms were 

observed for each exposure concentration or control. The frequency of “green eggs” phenotype was 

calculated. The number of “green eggs” were also counted and recorded. Nocodazole, a known 

antimitotic agent in mammalian model, was used as positive control (Allard et al., 2013). A 

concentration of 100 μM nocodazole was used in the experiment. 

Data analysis 

All experiments were independently repeated for three times. LC50s were calculated using 

Sigmaplot software (Systat Software Inc. USA). Comparison of differences among multiple groups of 

exposure conditions was performed by one-way analysis of variance (ANOVA). Lifespan was analyzed 

using Kaplan Meier survival analysis to estimate the mean lifespan (IBM SPSS Statistics, Armonk, NY). 

The log-rank test was used to compare the survival function between the control and exposure groups. 
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Figure 3.1. Acute lethal toxicity of triclosan (TCS) and triclocarban (TCC) to C. elegans.  

 

(A) TCS, 24-h LC50 = 3.65 mg/L (95% CI: 3.15, 4.3); (B) TCC, 24-h LC50 = 0.91 mg/L (95% CI: 0.47, 1.53). 

Error bars indicate standard errors of the means based on three independent replicate experiments (n = 

3).  
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Results and discussion 

Effects of TCS and TCC on C. elegans mortality, reproduction, hatching, and lifespan 

We found both TCS and TCC induced acute lethal toxicity to C. elegans. 24-h LC50s for the two 

compounds were 3.65 (95% CI: 3.15, 4.3) and 0.91 (95% CI: 0.47, 1.53) mg/L, respectively (Fig. 3.1). To 

the best of our knowledge, this is the first report of the acute lethal toxicity of these two antimicrobials 

in this model organism. These acute LC50 values are in general one order of magnitude greater than 

those found in fish and aquatic invertebrates (Dann and Hontela, 2011), indicating that C. elegans may 

not be as sensitive to TCS and TCC toxicity as those aquatic species. Toxicity data of TCS and TCC on 

terrestrial species have been very limited. Several recent studies have examined TCS toxicity on the 

earthworm (Eisenia fetida). Using filter paper contact test, the authors reported 48-h LC50s of TCS 

ranging 0.004–0.008 mg/cm2 (Gillis et al., 2017). Because the filter paper test does not translate well 

into effective concentrations in liquid medium, it is difficult to compare the TCS toxicity between 

C. elegans and earthworms. Another study found that the 14-d LC50 of TCS to the earthworm was 

greater than the highest concentration tested, 1026 mg/kg soil dry weight (V. Wuthrich, Report 262956, 

RCC, Umweltchemie, Itingen, Switzerland, unpublished data). Based on a comprehensive review on 

existing toxicity data of triclosan to a broad range of terrestrial organisms, Reiss et al. (2009) concluded 

that the sensitivity of terrestrial organisms to triclosan is substantially lower than the sensitivity of 

aquatic species. Our findings seem to agree with this statement. We found TCC was more toxic than TCS 

to the nematode, indicated by its significantly lower LC50 values, which is consistent with previous 

findings on aquatic invertebrates and fish (Brausch and Rand, 2011). 

Both TCS and TCC caused concentration dependent impact on C. elegans reproduction at 

concentrations one to two orders of magnitude lower than those causing acute lethality toxicity. For 

TCS, concentrations of 0.1 and 2 mg/L caused reduction of the worm brood size from 153 (±11) in the  
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Figure 3.2. Impact of TCS or TCC exposure on C. elegans reproduction.  

 

(A) TCS, (B) TCC. Error bars indicate standard errors of the mean based on three independent replicate 

experiments (n = 3). Different letters indicate significant differences according to Tukey's HSD test in 

conjunction with ANOVA analysis (p < 0.05). 
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control to 132 (±9) and 102 (±12), respectively, representing a 13.7% and a 33.9% reduction from the 

control (Fig. 3.2A). TCC showed similar effect on C. elegans reproduction, but at much lower 

concentrations. At concentrations as low as 0.01 mg/L, TCC induced a 23.7% decrease in brood size from 

the control (Fig. 3.2B). These findings were different from those reported by Inokuchi et al. (2014), 

where the estimated LOECs (lowest observed effect concentration) to C. elegans reproduction were 

0.11 mg/L for TCC and >6.25 mg/L for TCS. Unfortunately, as the experimental method as well as the 

data were not described in sufficient detail in the Inokuchi et al. (2014) study, possible reasons for such 

discrepancy in observed reproduction toxicity could not be deduced. Similar effects of these 

antimicrobials on reproductive system have been reported in a marine invertebrate the monogonont 

rotifer (Brachionus koreanus) (Han et al., 2016). The researchers reported LC50s of 0.393 mg/L for TCS 

and 0.388 mg/L for TCC in the rotifer, and both compounds at 0.2 mg/L reduced the fecundity of the 

organism. Impact of these compounds on the reproduction of environmental organisms may have a 

deleterious effect on their lifecycle and potentially affect the ecosystem. While most of the existing 

literature on toxicity effects of these antimicrobial compounds (including those used in risk assessment) 

are based on acute lethal toxicity, more studies are needed to understand their potential impact on 

sublethal effects such as reproduction to improve the hazard and risk assessment of these compounds. 

TCS and TCC also affected C. elegans egg hatching. TCS at concentrations ranging 0.1–2 mg/L 

delayed C. elegans hatching at a concentration-dependent manner (Fig. 3.3A). For the control, all eggs 

hatched by 9 h under 20 °C; at the lowest concentration of 0.1 mg/L of TCS, all eggs hatched by 11 h, 

with a 2 h delay in hatching. For the highest TCS of 2 mg/L, hatching was delayed by 5.7 h. Similar results 

were observed for TCC. At the lowest concentration of 0.01 mg/L, hatching was delayed by 2 h; and at 

the highest concentration of 0.5 mg/L, hatching was delayed by 5 h (Fig. 3B). Interestingly, although 

significant delay in hatching was observed, all hatched larvae developed into normal adults within 2–3 

days. C. elegans development and the underlying genetic mechanisms controlling it have been well  
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Figure 3.3. C. elegans hatching time under different TCS or TCC exposure.  

 

(A) TCS, (B) TCC. Under control conditions, all worm eggs hatched by 9 h; 0.1–2 mg/L TCS caused a 

hatching delay by 2–5.7 h and 0.01–0.5 mg/L TCC induced a hatching delay by 2–5 h. 300 worm eggs 

were tracked for hatching at each exposure concentration.  
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described (Priess, 2005). Embryogenesis, from fertilization to egg hatching, takes approximately 13–

14 h at 20 °C, during which numerous developmental processes occur, leading to cell fate specification, 

tissue formation, and morphogenesis (Harlow et al., 2016). The embryogenesis consists of in utero 

development (∼150 min at 22 °C) and ex utero development (9 h at 22 °C), with the later referring to 

from egg laying to hatching (Altun and Hall, 2006). Therefore, scoring hatching time (from eggs laid to 

hatching) is a convenient way to assess the success of these developmental processes. We observed 

delayed hatching of the embryonic C. elegans, suggesting that developmental processes were impacted 

by TCS or TCC exposure. TCS and TCC have been reported to affect the development of embryonic 

zebrafish. Oliveira et al. (2009) reported a delayed hatching of zebrafish embryos accompanied by spine 

malformations and pericardial edema upon exposure to 0.5 mg/L TCS, and exposure to 0.9 mg/L of TCS 

caused considerable delay on the otolith formation and body pigmentation. Although all larval worms 

from delayed hatching developed into normal adults, any delayed or transgenerational effects from the 

hatching delay warrant further investigation. Our future study will track the worms from delayed 

hatching to the next two generations by examining the fecundity and development to investigate the 

potential transgenerational effects. 

Similar to reproduction, both TCS and TCC reduced C. elegans lifespan in a concentration 

dependent manner. At concentrations ranging 0.5–2 mg/L, TCS reduced the average lifespan by 1.3–4.8 

days (Fig. 3.4A). Similarly, TCC at concentrations of 0.05–0.5 mg/L caused a lifespan reduction by 1.3–5 

days (Fig. 3.4B). Animal lifespan is a result of complex interactions between genetic, environmental, and 

other stochastic factors (Uno and Nishida, 2016) and can provide valuable insights into the entire life 

cycle affected by environmental chemicals. C. elegans lifespan has been widely used as an endpoint for 

chemical toxicity testing including heavy metals and mycotoxins (Wang et al., 2010, Yang et al., 2015), 

although the exact mechanism(s) regarding how chemicals impact the worm's lifespan remains 

unknown.  
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Figure 3.4. Impact of TCS or TCC exposure on C. elegans lifespan.  

 

(A) TCS, (B) TCC, (C) mean lifespan under different exposure conditions from Kaplan Meier survival 

analysis. “*” denotes significant differences from control mean lifespan based on log-rank test (p < 

0.001). 300 worms were tracked for survival at each exposure concentration.  



79 
 

An important regulatory pathway affecting aging and longevity in C. elegans is the signaling 

pathway through the insulin/insulin-like growth factor 1 (IGF-1) receptor, one of the best-characterized 

genetic regulatory networks in the worm. Modulation of insulin/IGF-1 signaling in C. elegans is the 

central determinant of the endocrine control of stress response and aging (Baumeister et al., 2006). The 

signaling pathway contains two key upstream components, DAF-2 and AGE-1, and three important 

downstream regulatory transcription factors, DAF-16/FOXO, HSF-1 (heat shock transcription factor 1), 

and SKN-1 in regulating aging and lifespan (Altintas et al., 2016). The pathway signals through a series of 

well-organized sequential events, depending on environmental conditions. Under favorable conditions, 

the insulin/IGF-1 pathway is activated and the worm undergoes normal development and lifespan; 

under unfavorable conditions, the insulin/IGF-1 pathway is down-regulated and leads to the activation 

of DAF-16/FOXO through promoting its translocation from the cytoplasm to the nucleus, where it turns 

on the expression of genes that promote longevity (Altintas et al., 2016). We observed that exposure to 

TCS or TCC led to reduced lifespan together with activation of DAF-16/FOXO (discussed in detail in the 

following section), which seems to be contradictory to what has been described for the insulin/IGF-1 

pathway. It remains elusive whether the insulin/IGF-1 signaling pathway is involved in the impact of TCS 

or TCC on C. elegans lifespan, or the observed impact on lifespan and oxidative stress response are 

caused by completely independent mechanisms. To help elucidate this, we are currently examining the 

impact of these antimicrobials on the worm's lifespan in certain mutant strains targeting several key 

upstream or downstream components of the regulatory pathway including daf-2, age-1, daf-16, and 

skn-1. 

Impact of TCS and TCC on C. elegans stress response 

C. elegans is a powerful model for the study of stress response as the worm has conserved 

stress-response pathways mediated by DAF-16/FOXO with vertebrates including mammals (Hesp et al.,  
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Figure 3.5. Impact of TCS or TCC exposure C. elegans oxidative stress response in the DAF-16:GFP 

transgenic strain. 

 

(A) control worm, (B) positive control - heat shock treatment, (C) worm exposed to 0.1 mg/L TCS, (D) 

worm exposed to 0.01 mg/L TCC, (E) frequency of DAF-16:GFP relocalization from cytoplasm to the 

nucleus in control or exposed worms. 60 worms were examined under each exposure concentration. 

Error bars indicate standard errors of the means from three independent experiments (n = 3). “*” 

indicates significant difference from the control (p < 0.05). 
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2015). The DAF-16:GFP transgenic strain has been successfully used for assessing impact of 

environmental chemicals including engineered nanoparticles on C. elegans stress response (Mohan 

et al., 2010). We observed clear DAF-16:GFP relocalization from cytoplasm to nucleus within the worms 

exposed to TCS or TCC. As shown in Fig. 3.5(A–D), DAF-16:GFP was primarily localized in cytoplasm in the 

control worms, but was relocalized to the nuclei of cells under heat shock treatment or TCS/TCC 

exposure. The frequency of such DAF-16:GFP relocalization was greater than 95% in heat shock treated 

worms, but was less than 15% in control worms. TCS at 0.1 and 1 mg/L induced DAF-16:GFP 

relocalization in 65.4 (±12)% and 72.7 (±15)% of the worms examined, respectively (Fig. 3.5E). TCC at 

concentrations of 0.01 and 0.1 mg/L induced such redistribution in 74 (±16)% and 67.8 (±11)% of the 

worms examined, respectively (Fig. 3.5E). These findings indicate that both TCS and TCC induced stress 

response in the worms. 

This stress response may be linked to the observed toxicity effects such as reduced reproduction 

and lifespan induced by these antimicrobials. TCS and TCC have been reported to cause lifespan 

reduction and reproductive impairment through oxidative stress (generation of reactive oxygen species, 

ROS) and transcriptional regulation of detoxification, antioxidant, and heat shock proteins in a 

monogonot rotifer (Han et al., 2016). The authors found growth retardation and reduced fecundity in 

the rotifer in parallel with time-dependent increases in ROS production and GST enzymatic activity upon 

exposure to TCS or TCC. In addition, transcriptional levels of detoxification proteins (e.g., CYPs), 

antioxidant protiens (e.g., GST, SOD, CAT), and heat shock proteins were modulated in response to TCS 

or TCC exposure. Impact of TCS on fecundity, antioxidant system, and oxidative stress-mediated gene 

expression has also been reported in a marine copepod (Park et al., 2017). In this study, we found 

reduced lifespan and reproduction in parallel with increased stress response indicated by DAF-16:GFP 

relocalization. In C. elegans, DAF-16 is a major downstream target of the worm's insulin/IGF-1 pathway 

as well as a master transcriptional factor regulating the transcription of a broad range of genes involved 
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in stress response, dauer formation, and longevity (Hesp et al., 2015). Our next step is to elucidate what 

are the downstream genes affected by DAF-16 activation in TCS or TCC exposed worms. Murphy et al. 

(2003) suggested that DAF-16/FOXO, once translocalized to the nucleus, upregulates genes involved in 

stress response and cell survival and downregulates developmental genes. The authors also found that 

many DAF-16 target genes encoded proteins predicted to protect cells from oxidative and other types of 

stress. Our future studies will examine expression patterns of the potential target genes of the DAF-

16/FOXO pathway, including those involved in antioxidant system such as sod-3, gst-4, ctl-1, ctl-4, and 

those involved vitellogenesis (reproduction) such as vit-2, vit-5, etc., in TCS or TCC exposed worms, to 

gain a mechanistic understanding of the impact of these compounds on C. elegans stress response. 

Germline toxicity of TCS and TCC 

We employed a xol:GFP transgenic strain to assess germline toxicity induced by TCS or TCC in 

the nematode. Following a 24-h exposure, we observed GFP+ embryos in TCS or TCC exposed worms 

(Fig. 3.6(A–D)). The occurrence of GFP+ embryos was less than 15% in the control worms examined, and 

within the very few control worms that showed GFP+ embryos, the number of “green eggs” within each 

worm was less than 2. In contrast, the appearance of GFP+ embryos occurred in 35 (±12)% and 55 

(±10)% of the worms exposed to 1 mg/L TCS and 0.1 mg/L TCC, respectively (Fig. 6E). Furthermore, the 

number of GFP+ embryos within those TCS or TCC exposed worms ranged between 2 and 8, significantly 

greater than those in control worms. Worms exposed to 100 μM nocodazole (positive control) also 

showed significantly higher incidence (40%) of GFP+ embryos than the control worms (12%) (Fig. 3.6B). 

Another notable observation was that in negative control worms and TCS (0.1 or 1 mg/L) exposed 

worms, the embryos within worm uterus showed normal oval shape; whereas in the positive control 

(nocodazole treatment) and TCC exposed worms, GFP positive embryos showed abnormal shape, 

suggesting reduced viability of the embryos under these exposure conditions. This is not surprising given  
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Figure 3.6. Impact of TCS or TCC exposure on C. elegans germline toxicity in the xol-1:GFP transgenic 

strain.  

 

(A) negative control, (B) positive control - worm exposed to 100 μM nocodazole, (C) worm exposed to 1 

mg/L TCS, (D) worms exposed to 0.1 mg/L TCC, (E) frequency of appearance of GFP positive male 

embryos in worm uterus. 50 worms were examined under each exposure concentration. Error bars 

indicate standard errors of the means from three independent experiments (n=3). “*” indicates 

significant difference from the control (p < 0.05). GFP positive embryos were marked with asterisk.  
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that nocodazole is a known antimitotic agent and a correlation between increased GFP + embryos with 

decreased embryo viability in nocodazole treated worms has been reported previously (Allard et al., 

2013). Furthermore, decreased embryo viability in TCC exposed worms is consistent with its greater 

toxicity on the worm's reproduction as compared to TCS. 

Both TCS and TCC induced significant germline toxicity to C. elegans, and TCC showed greater 

toxicity potency than TCS as the effects were seen at much lower concentrations. C. elegans germline 

development consists of three phases: specification, growth, and maintenance. Corresponding to life 

stage, germline specification occurs during the embryogenesis and early L1 stage; germline proliferation 

and differentiation occur during L1-L3 stage; and germline proliferation and gametogenesis occur during 

L4 and young adult stages – spermatogenesis occurs during the L4 stage and oogenesis during the adult 

stage (Hubbard and Greenstein, 2005). We started the exposure at L4 stage and the exposure continued 

for 24 h; therefore, effects observed from such exposure conditions capture aneuploidies originating 

from the disruption of any mitotic and meiotic events during germline proliferation and gametogenesis. 

Allard et al. (2013) has shown that a C. elegans screening strategy based on this transgenic strain is 

predictive of mammalian reproduction toxicity with an accuracy approaching 70% after examining and 

assessing data from over 47 compounds. The authors demonstrate that such a screening strategy can 

provide a quick and reliable tool to elucidate the impact of environmental chemicals on germline 

function in this model organism, and potentially predict mammalian reproductive toxicity. Findings from 

the current study are the first report that TCS and TCC induce germline toxicity in C. elegans. This 

germline toxicity agrees well with the decreased brood size induced by these antimicrobials in the 

worm. 

Whether this germline toxicity together with the impact on reproduction and lifespan indicates 

potential endocrine disruption effects of TCS or TCC in the worm remains an open question. A key 

https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib1
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/gametogenesis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spermatogenesis
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib24
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib1
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environmental concern of TCS and TCC is their potential endocrine disrupting effects. The majority of 

existing in vivo studies suggest that TCS has estrogenic activity although there are conflicting in vitro 

studies regarding its estrogenic and anti-estrogenic activity (Haggard et al., 2016). TCC, on the other 

hand, has been reported to enhance endogenous hormone activity such as testosterone (Chen et al., 

2008). However, the exact mechanisms of these observed endocrine effects induced by these 

antimicrobials remain largely unknown. C. elegans provides an excellent model system for research on 

and assessment of endocrine disruption by environmental chemicals. The comprehensive knowledge of 

the genome of the worm allows for molecular, genetic, and biochemical analyses for endocrine signaling 

pathways. A combination of tests from different organizational levels, such as genome, proteome, 

organ, organism and population level, is necessary to assess endocrine disruption in order to understand 

its potential modes of action and ecological relevance (Hoss and Weltje, 2007). Therefore, responses 

from both genomic and organismal levels upon exposure to TCS or TCC in the worm are needed to 

understand these antimicrobials’ endocrine disruption effects. We have identified effects from 

molecular level (oxidative stress and germline toxicity) and organismal/population level (reproduction 

and lifespan) in the worm which may be related to endocrine disruption by these antimicrobials. Future 

studies should focus on genomic and proteomic responses to these compounds in the worm with an aim 

to gain a complete understanding of their potential endocrine disruption effects and related ecological 

significance. 

Conclusion 

TCS and TCC induced significant toxic effects to a model organism the nematode C. elegans from 

apical endpoints to molecular level responses. Lethal toxicity occurred at mg/L levels and sublethal 

toxicity occurred at μg/L levels, suggesting the potential risk of these compounds to the environment. 

Although TCS and TCC have been recently banned from consumer antiseptic wash products by FDA 

https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib16
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/testosterone
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib8
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib8
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/proteome
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib23
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/proteomics
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nematode
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/antiseptics
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(Food and Drug Administration), this rule only applies to “consumer wash products” (FDA, 2016). That is, 

they are continually used in other groups of products such as consumer hand sanitizers or wipes, or 

antibacterial products used in health care settings. Together with their environmental persistence and 

bioaccumulation tendency, the potential environmental risks of these compounds should not be 

neglected. To the best of our knowledge, this is the first study that has systemically examined the 

toxicity effects of TCS and TCC in a model organism the nematode C. elegans. Our findings also suggest 

that future studies are needed to further understand the underlying mechanisms of the observed 

toxicity induced by these antimicrobials in this model organism, especially their potential endocrine 

disruption effects. Future studies should also use lower concentrations to look at effects at 

molecular/genetic levels and transgenerational effects. Finally, more toxicological studies on TCC is 

warranted given its greater toxicity potency than TCS yet very limited literature available. 
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CHAPTER 4:  

The role of IGF in TCS- and TCC-induced toxicity in the model C. elegans 

 

Abstract 

Triclosan (TCS) and triclocarban (TCC) are known endocrine disruptors commonly used in 

personal care products, plastics, textiles, and medical devices. TCS and TCC are ubiquitously found in the 

environment and have been detected in tissues and fluids of many organisms. Exposure to TCS and TCC 

is associated with reproductive and developmental toxicity, increased obesity risk, infertility, and 

development and proliferation of cancer cells. In our previous study, TCS and TCC caused extended 

hatching time, decreased reproduction and longevity, and the translocation of daf-16, a transcription 

factor, influenced by IGF signaling in C. elegans. However, little is known about the effects of TCS and 

TCC on IGF signaling or if the IGF signaling pathway plays a role in TCS and TCC toxicity. Here we 

examined the potential role of IGF signaling in TCS- and TCC-induced toxicity in C. elegans via genetic 

analysis with a series of worm mutants and gene expression in wildtype worms. Our study found that 

TCS and TCC significantly increased the expression of genes involved in IGF signaling and vitellogenesis. 

The genetic analysis of IGF-mediated toxicity using mutant strains found that the loss-of-function of daf-

18 was associated with increased toxicity, while the loss or reduction of activity of IGF genes, especially 

age-1, pdk-1, and akt-1 were associated with decreased toxicity of TCS and TCC. Increased expression of 

IGF signaling genes was associated with increased acute toxicity, decreased reproduction and lifespan, 

and increased frequency of an age-related vulval integrity defect (Avid phenotype) in the worm. These 

findings suggest that IGF plays a role in TCS and TCC-induced toxicity. However, only TCC increased the 

expression of daf-2, the IGF receptor. It is not clear how TCS increases the activity of IGF signaling genes 

downstream of daf-2. Additional research is needed to determine how TCS-induced toxicity affects the 
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functioning of the IGF pathway by bypassing the IGF receptor, daf-2, as well as the role of IGF and 

vitellogenesis in the development of avid phenotypes.  

Introduction 

Since their introduction in the mid-20th century, triclosan (TCS) and triclocarban (TCC) are 

commonly used antimicrobials found in numerous personal care, consumer products, and medical 

devices (i.e., cosmetics, food packaging, plastics, children’s toys, clothing, building materials, textiles, 

and medical devices) (Halden, 2014). TCS and TCC enter the environment through wastewater 

containing personal care products (i.e., soaps, toothpaste, hair care products, and cosmetics) that are 

washed down our drains every day (Pycke et al., 2014). The frequent use and ubiquitous detection of 

TCS and TCC have raised concerns regarding the toxicological effects these chemicals have on human 

health and the environment (Halden, 2016). These growing concerns have led to numerous in vivo, in 

vitro, and epidemiological studies on TCS and TCC, such as their degradation products, bioaccumulation 

in aquatic plants and animals, partitioning into blood and breast milk, contribution to antibiotic 

resistance, and increased allergen sensitivity (Halden et al., 2017). 

Many studies have shown that TCS and TCC have the ability to bioaccumulate and disrupt 

endocrine function in a variety of species, including amphibians, fish, and mammals (Dann and Hontela, 

2011; Halden et al., 2017). Exposure to TCS and TCC can occur through the absorption, consumption, 

inhalation and the ingestion of contaminated food, water, particulate matter, soil, sediment, and 

municipal sludge (Pyke et al., 2014; Olaniyan et al., 2016). Annually, approximately 57 000 ± 233 000 and 

140 000 ± 211 000 kg/yr of TCS and TCC, respectively, are applied on U.S. land and crops via the use of 

sewage sludge, which leads to the absorption of these compounds into crops and their entrance into our 

waterways via run-off (Halden, 2014; Healy et al., 2017). In freshwater sediment, concentrations of TCS 

and TCC can reach up to 53,000 μg/kg and 24,000 μg/kg, respectively (Miller et al., 2008; Chalew & 

Halden, 2009). While TCS and TCC are lipophilic compounds that are likely to settle out of water (Log 
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Kow of 4.8 and 4.9, respectively), both TCS and TCC have been detected in freshwater samples across 

the globe (Coogan & La Point, 2008).  

Because of the widespread detection of TCS and TCC, many toxicological studies have been 

conducted in algae, crustaceans, and fish at environmentally relevant concentrations (Hinther et al., 

2011; Tamura et al., 2013; Xu et al., 2015; Halden et al., 2017). These studies have reported that TCS and 

TCC exhibit acute and sublethal toxicity in aquatic macrobiota at concentrations ranging from 1.4 μg/L to 

3,000 μg/L and 0.2 to 440 μg/L, respectively (Chalew & Halden, 2009; von der Ohe et al., 2012; Dan & 

Hontela, 2011; Rochester et al., 2017). The most widely reported classification of the sublethal effect of 

TCS and TCC is endocrine disruption (Alfhili and Lee, 2019; Thambirajah et al., 2019). Endocrine 

disruption is defined as the interference of the endocrine system of an organism by a chemical that 

leads to a variety of possible adverse effects on development, interference of reproduction, changes in 

muscle mass, and increased cancer risk that can be mediated through several pathways (i.e., sex 

hormones, insulin and insulin-like signaling, growth hormones, stress hormones, etc) (Vandenberg et al., 

2012; US EPA, 2017). TCS and TCC have been reported to exhibit endocrine disrupting effects in aquatic 

organisms, rodents, and humans (Dan & Hontela, 2011; Rochester et al., 2017). In aquatic and 

mammalian organisms, TCS is reported to interfere with hormone activity and metabolism, behavior, 

development, and reproduction at environmentally relevant concentrations (Chalew & Halden, 2009; 

Fair et al., 2009; Fritsch et al., 2013, Geiß et al., 2016; Guidice & Young, 2010; Coogan & La Point, 2008; 

Dan & Hontela, 2011; Rochester et al., 2017).  

More recently, the potential endocrine disrupting effects of TCS and TCC have been studied in 

invertebrates, such as insects, nematodes, and rotifers. A study from 2017 found the potential 

endocrine disrupting effects of TCS in the invertebrate Chironomus riparius. Martinez de Paz and 

colleagues found that a 24 hour exposure of TCS ranging from 10 to 1,000 μg/L altered the endocrine-

related ecdysteroid activity in insect larvae (Martinez de Paz et al., 2017). Another study using Daphnia 
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magna reported that TCS was reproductively toxic (Orvos et al., 2002). In the monogonont rotifer 

(Brachionus koreanus) TCS and TCC was acutely toxic (393.1 and 388.1 μg/L, respectively), decreased 

growth rate and reproduction, and altered the transcriptional regulation of genes controlling oxidative 

stress (Han et al., 2016). Moreover, studies of TCS and TCC in the nematode Caenorhabditis elegans (C. 

elegans) have found that TCS and TCC exposure was associated with developmental and reproductive 

toxicity, decreased longevity, lipid accumulation, and altered activity of genes involved in the worm’s 

stress response (Lenz et al., 2017; Garcia-Espineira et al., 2018). These findings in C. elegans shed light 

on the potential involvement of the highly conserved insulin-like growth factor (IGF) signaling pathway 

in TCS- and TCC-induced toxicity. The involvement of IGF in TCS- and TCC-induced toxicity would provide 

an explanation for the observed lipid accumulation, decreased longevity, and increased daf-16 

activation reported by previous studies in C. elegans, as well as similar findings in other organisms (Lenz 

et al., 2017; Garcia-Espineira et al., 2018). 

IGF signaling is a highly conserved endocrine signaling pathway found in organisms from yeast to 

humans that is well studied in C. elegans (Ogawa et al., 2008; Fontana et al., 2010). In the worm, IGF 

signaling is the “central determinant of endocrine control” of several processes, such as aging, 

reproduction, stress response, and development (Baumeister et al., 2006). Studies in C. elegans, a free-

living nematode found in soil and freshwater environments (Hoss & Weltie, 2007), have revealed the 

mechanistics of IGF signaling (Hunt, 2017). IGF signaling is initiated by the activation of daf-2 (IGF 

receptor-1) via ligand (i.e., insulin and insulin-like peptides) engagement with daf-2 (Fig. 4.1). The 

activation of daf-2 triggers a signaling cascade involving activation of age-1 (phosphoinositide 3-kinase) 

allowing for the conversion of phosphoinositide-3,4-P2 (pip2) to phosphoinositide-3,4,5-P3 (pip3). The 

increase in pip3 activates pdk-1 (phosphoinositide-dependent protein kinase-1), leading to the 

phosphorylation of akt-1/2 (protein kinase B). The phosphorylation/activation of akt-1/2 then results in 

the phosphorylation of daf-16 (Forkhead box class O), which inhibits its relocation into the nucleus  
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Figure 4.1. Insulin-like growth factor signaling in C. elegans.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The binding of insulin-like peptides activates daf-2 which in turn activates age-1 (phosphoinositide 3-

kinase). Age-1 catalyzes the generation of PIP3 (phosphatidylinositol-3,4,5-trisphosphate) and activates 

pdk-1 (phosphoinositide-dependent protein kinase-1) and akt-1/2 (protein kinase B). The activations of 

this signaling cascade promotes the phosphorylation of daf-16 (indicated by circles with a “P”) and 

inhibits its relocation into the nucleus. daf-18 (PTEN; phosphatase and tensin homolog) reduces age-1 

activity by converting PIP3 to PIP2 (phosphatidylinositol 4,5-bisphosphate) (Murphy & Hu, 2005).  
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(Murphy & Hu, 2005). The phosphorylation of daf-16 prevents its activation, which is necessary for 

responding to the presence of a stressor, such as TCS and TCC.  

The IGF receptor is a homodimeric, disulphife-linked receptor tyrosine kinase consisting of four 

binding sites (1, 1΄, 2 and 2΄) (Surinya et al., 2007; Xu et al., 2018). Interactions between the IGF receptor 

and ligand occur in a bivalent manner and cross-link two α-subunits, engaging site 1 and then forming a 

cross-link to site 2’ (Surinya et al., 2007; Xu et al., 2018). IGF-1 and IGF-2, IGF receptor ligands, have one 

flat surface with aromatic and aliphatic residues (De Meyts et al., 2013; Andersen et al., 2017). Due to 

the receptor-ligand interactions of IGF, it is possible that other aromatic compounds can bind to the IGF 

recptor and mimic IGF ligands, such as IGF-1 and IGF-2 (Allard and Duan, 2018). Two studies have shown 

that the aromatic compounds, benzo-α-pyrene (BαP) and Evans blue (EB), have the ability to interfere 

with normal IGF singalling (Beery et al., 2001; Fadiel et al., 2013). BαP reduced the expression of IGF-1, 

an IGF ligand, and weakened the substrate–ligand binding interaction with the IGF receptor (Fadiel et 

al., 2013). Evans blue (EB), a polysulfonated aromatic compound, activated the IGF receptor and 

mimicked the effect of IGF by phosphorylating the IGF receptor (daf-2). The phosphorylation of the IGF 

receptor (daf-2) resulted in the activation of phosphatidylinositol 3-kinase (age-1), phosphoinositide-

dependent protein kinase-1 (pdk-1), and protein kinase B (akt-1/2) cascade of IGF signaling (Fig. 4.1) 

(Beery et al., 2001).  

TCS and TCC have been shown to cause lipid accumulation, decrease longevity and 

reproduction, and increase daf-16 activation in C. elegans (Lenz et al., 2017; Garcia-Espineira et al., 

2018). Studies in C. elegans have shown that daf-16 is involved in IGF signaling (Murphy & Hu, 2005). In 

addition, the modulation of IGF is essential for the regulation of development, aging, lipid synthesis, and 

stress response (Baumeister et al., 2006). Both TCS and TCC are well-known endocrine disruptors that 

impact a variety of hormones (i.e., estrogen, testosterone, and thyroid hormones); however there is 

very little information on the effects of TCS and TCC on IGF signaling (Halden et al., 2017). We 
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hypothesized that these antimicrobials may elicit toxicity in the worm through impacting the IGF 

pathway. Given the lack of information regarding if the IGF signaling pathway is involved in TCS- and 

TCC-induced toxicity in other animal models and humans, it is reasonable to start examining such 

question using a simple yet biologically and ecologically relevant model C elegans. Here we assessed the 

role of IGF signaling pathway in TCS- and TCC-induced toxicity using the model organism the nematode 

C. elegans. We examined the potential involvement of IGF signaling in TCS- and TCC-induced toxicity 

using genetic analysis with a series of worm mutants and gene expression. Findings from this study will 

provide a foundation for the examination of the role of IGF in toxic exposures. This study will address 

the current knowledge gaps and bring to light the potential endocrine disrupting effect of these widely 

used antimicrobials.  

Methods and Materials 

Chemicals 

TCS (≥97% purity) and TCC (≥98.0% purity) were purchased from Sigma-Aldrich (St. Louis, MO). 

Stock solutions (1,000 mg/L dissolved in dimethyl sulfoxide) were used to create all the exposure 

concentrations with K-medium (51 mM NaCl, 32 mM KCl, pH 6.8) as the diluent. TCS exposure 

concentrations were 0.01 to 10 mg/L TCC exposure concentrations were 0.001 to 10 mg/L. All sub-lethal 

concentrations were the same as our previous study (Lenz et al., 2017). The final DMSO concentration 

was <1% for acute lethality and < 0.5% for sub-lethal exposures.  

C. elegans strains 

All C. elegans strains were obtained from the Caenorhabditis Genetics Center (University of 

Minnesota, St. Paul, MN). The strains used for the study of lethality, reproduction, and lifespan are N2 

Bristol (wildtype); CB1375 [daf-18(e1375)]; CY399 [sqt-1(sc13) age-1(mg109); pdk-1(mg261)]; CY400 

[sqt-1(sc13) age-1(mg109) II; akt-1(mg247)]; DR26 [daf-16(m26)]; DR1309 [daf-16(m26); daf-2(e1370)]; 

https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib6
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DR1408 [daf-16(m26); age-1(m333)]; DR1572 [daf-2(e1368)]; GR1310 [akt-1(mg144)]; GR1318 [pdk-

1(mg142)]; JT9609 [pdk-1(sa680)]; RB2621 [ist-1(ok2706)]; RB712 [daf-18(ok480)]; RB759 [akt-

1(ok525)]; TJ1052 [age-1(hx546)]; VC204 [akt-2(ok393)]. All nematodes were maintained on nematode 

growth medium agar plates seeded with E. coli OP50. The E. coli OP50 was maintained at 20°C 

(Stiernagle, 2006). Age-synchronized populations were obtained for acute lethality and sub-lethal assays 

through the collection of eggs from gravid adult C. elegans. The cleaning of eggs was done by bleaching 

with 1% NaClO and 0.013M NaOH solution and followed by a K-medium wash (Donkin & Williams, 

1995).  

Lethality 

Lethality assays were previously described by Lenz and colleagues (2017). Young adult, age-

synchronized worms (aged 3 days) were placed in 24-well plates containing 1 mL of exposure solutions 

made with K-medium. Each exposure consisted of 3 wells containing 10 worms each with an exposure 

time lasting 24 hours. The exposures consisted of K-medium (negative control), TCS (0.01 to 10 mg/L), or 

TCC (0.001 mg/L to 10 mg/L) and excluded any feeding agent. After 24 hours, the mortality was scored 

using a dissecting microscope. The LC50s were calculated using logistic regression of exposure and 

percent mortality using SigmaPlot (Systat Software, Inc., San Jose, CA).  

Reproduction 

Age-synchronized worms, aged 2 days (L4-staged), were placed on OP50 seeded NGM plates 

amended with 150 μL of K-medium (negative control), TCS (0.1 and 1 mg/L), or TCC (0.01 mg/L and 0.1 

mg/L). NGM exposure plate preparation for exposures was previously described by Lenz and colleagues 

(2017). Each plate contained one L4-staged worm that was stored at 20 °C for the duration of the 

exposure. Every other day the parent worm was transferred to a fresh plate (a total of 2-3 transfers over 

approximately 6 days) and the number of progeny (eggs and larval worms) was recorded. The average 
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number of progeny was calculated by adding the number of progeny from all plates per worm (a total of 

3-4 plates per worm) for all exposures. 

Lifespan and vulval integrity 

Lifespan experiments followed the standard protocol, exposing L4-staged worms on NGM plates 

seeded with OP50 and 0.2 mM 5-fluoro 2-deoxyuridine (FUdR) to inhibit progeny production (Pluskota 

et al., 2009). Similar to reproduction, plates seeded with OP50 and FUdR were amended with 150 μL of 

K-medium (negative control), TCS (0.1 and 1 mg/L), or TCC (0.01 mg/L and 0.1 mg/L). Two plates 

containing 50 worms each were used for each exposure (100 total worms per exposure per replicate). 

Every other day, dead worms, defined as the failed response to an external stimulus applied to the 

anterior and posterior ends with a platinum picker, were removed and counted per exposure plate and 

the total number of dead worms per plate was recorded. At the time of death, the presence of an age-

related vulval integrity defect (Avid phenotype), the loss of integrity of the vulva occurring in post-

mitotic hermaphrodites (Leiser et al., 2016), were examined upon the death of nematodes (Lenz et al., 

2018). Any burrowed worms were excluded from totals.  

RNA Isolation 

Age-synchronized L4 worms were washed with K-medium and exposed for 24 hours on NGM 

plates amended with 300 μL of K-medium (negative control), TCS (0.1 and 1 mg/L), or TCC (0.01 mg/L 

and 0.1 mg/L). All exposures were stored at 20°C for 24 hours. Exposed worms were washed with M9 

media (KH2PO4, Na2HPO4, NaCl, 1 M MgSO4, and nuclease-free H2O) 2-3 times to remove any residual 

OP50 before 800 μL of TRI reagent (Sigma Aldrich, USA) was added per 0.1 g of worms for RNA isolation. 

RNA isolation was conducting using the methods described by He (2011). RNA was isolated from worms 

using freeze-thaw methods consisting of 30 sec of vortexing, freezing in dry ice and methanol, and thaw 

in a 37°C water bath for a total of 6 times. Following the freeze-thaw of sample, 2 mL of chloroform was 
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added to each sample and mixed for 15 sec. Samples containing chloroform were left at room 

temperature for 3 minutes to allow phase separation followed by centrifugation for 15 min at 12,000 x g 

at 4°C. In a fresh tube, the top aqueous phase containing RNA was mixed with 400-500 μl of isopropanol 

and centrifuged at 12,000 x g at 4°C for 10 min. The remaining RNA pellet was washed with ice cold 75% 

ethanol and centrifuged a final time at 4,000 rpm at 4°C for 5 min. All ethanol was removed and 

evaporated before adding 25 μl of nuclease-free H2O to resuspend the RNA prior to DNase treatment 

(He, 2011). DNase treatment was conducted according to DNA-free DNA Removal Kit (Invitrogen, USA) 

using 1 μl of rDNase I with up to 10 μg of RNA in a 50 μl reaction. All RNA was stored at -80°C.  

cDNA synthesis and qPCR 

Complimentary DNA (cDNA) was synthesized using 1 μg of RNA (DNase treated) in a 20 μl 

reaction according to qScript cDNA synthesis kit (Quanta Biosciences, USA). Our qPCR methods were 

modified from those reported by Kumar and colleagues (2015). The qPCR reactions were performed as 

20 μl reactions containing 1 μl of cDNA (10 ng) using PowerUp SYBR Green PCR Master Mix (Applied 

Biosystems, USA) and 10 μM of each primer organized in a 96-well format. The thermo-cycling 

conditions performed by the Roche LightCycler 480 (Roche, USA) included a one cycle of denaturation at 

95°C for 2 min, followed by 40 cycles of denaturing at 95°C for 15 sec and annealing/extension at 60°C 

for 1 min. Actin-1 (act-1), housekeeping gene, was used to normalize Ct values of the 21 genes of 

interest (Table 4.1). The 21 genes were selected based on their involvement in insulin-like growth factor 

(IGF) signaling, lifespan, development, and bacterial response. Four main categories of genes were used 

for this study: IGF signaling (e.g., daf-2, ist-1, age-1, daf-18, pdk-1, akt-1, akt-2, and daf-16), 

development and longevity (e.g., let-363, daf-15, rsks-1, sgk-1, and skn-1), development (e.g., vit-2, vit-5, 

vit-6, lin-42, and daf-12), and bacterial response (e.g., clec-60, lys-7, and pgp-5). The relative gene 

expression was determined using the ΔΔCt method (Kumar et al., 2015).  
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Table 4.1. List of target genes for gene expression.  

 

All transcripts tested were broken into four groups: insulin-like growth factor signaling, development 

and longevity, development, and bacterial response. Gene code indicates the name of respective genes 

found in C. elegans. The protein products indicate the specific protein name commonly used with 

vertebrates.  
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Data analysis 

All assays were repeated three times. One-way analysis of variance was performed for the 

comparison of differences between individual TCS and TCC exposures compared to controls. Lifespan 

was analyzed using Kaplan-Meier survival analysis, estimation of the mean lifespan, and log-rank test, 

comparison of the survival function between individual exposures and between strains. Data analysis 

was conducted using IBM SPSS Statistics (Armonk, NY).  

Results 

Impact of TCS and TCC on lethality  

In C. elegans, IGF signaling plays a vital role in development, reproduction, longevity, and stress 

response. We have previously observed that TCS and TCC had a negative impact on the worm’s 

development, reproduction and longevity, which leads us to ask that if these antimicrobials elicit such 

toxicity through impacting IGF signaling pathway (Lenz et al., 2017). IGF signaling is initiated by the 

activation of daf-2 (IGF receptor-1) via ligand engagement with daf-2 (Fig. 4.1). The activation of daf-2 

triggers a signaling cascade involving age-1 (phosphoinositide 3-kinase), pdk-1 (phosphoinositide-

dependent protein kinase-1), phosphorylation of akt-1/2 (protein kinase B), which result in the 

phosphorylation of daf-16 (Forkhead box class O) (Murphy & Hu, 2005). To examine the effects of TCS 

and TCC on IGF signaling, we conducted a genetic analysis using mutant strains to determine their role 

of IGF in the observed TCS- and TCC-induced toxicity.  

First, we examined the acute lethal toxicity in wildtype C. elegans. In wildtype worms, TCS and 

TCC exposure induced acute lethal toxicity with 24 hour LC50s of 3.7 (95% CI: 3.2, 4.3) and 0.9 (95% CI: 

0.5, 1.5) (Lenz et al., 2017). Next, we examined the acute lethal toxicity using C. elegans with mutants is 

genes involved in IGF signaling (e.g., daf-2, ist-1, age-1, daf-18, pdk-1, akt-1, akt-2, and daf-16). The IGF 

mutants had functional changes in one or more of the genes involved in IGF signaling to determine the  
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Figure 4.2. Lethality in IGF mutants.  

 

(A) TCS. (B) TCC. A dashed line indicates the LC50 calculated for wildtype worms. Error bars indicate 95% 

confidence intervals. The LC50 of TCS and TCC in wildtype worms is 3.7 (95% CI: 3.2, 4.3) and 0.9 (95% 

CI: 0.5, 1.5), respectively. The lethality of TCS and TCC varied by mutant. 
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Table 4.2. LC50s of TCS and TCC in IGF mutants.  

 

The acute lethality of TCS and TCC was found to vary by mutant and exposure to TCS and TCC. The LC50 

of TCS and TCC in wildtype worms is 3.7 (95% CI: 3.2, 4.3) and 0.9 (95% CI: 0.5, 1.5), respectively. Both 

TCS and TCC were the most toxic in daf-18(ok480) worms with LC50 of 0.2 (0.1, 0.4) and 0.008 (0.005, 

0.01), respectively. TCS was found to be less toxic in pdk-1(sa680), daf-16(m26); daf-2(e1370), sqt-

1(sc13) age-1(mg109); pdk-1(mg261), and sqt-1(sc13) age-1(mg109) II; akt-1(mg247) worms. TCC was 

found to be less toxic in daf-2(e1368), age-1(hx546), akt-2(ok393), sqt-1(sc13) age-1(mg109); pdk-

1(mg261), and sqt-1(sc13) age-1(mg109) II; akt-1(mg247) worms.  
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role each gene played in the observed TCS- and TCC-induced toxicity. Single gene mutants allow for 

observations of the role of specific gene in TCS- and TCC-induced toxicity, while mutants allows for 

observations of genes intercactions (Fig. 4.2 and Table 4.2).  

In the IGF mutants, increased acute lethal toxicity of both TCS and TCC were observed in daf-

18(ok480), akt-1(ok525), akt-1(mg144), and daf-16(m26) worms. The LC50 of TCS in daf-18(ok480), akt-

1(ok525), akt-1(mg144), and daf-16(m26) worms ranged from 0.2 to 1.7 mg/L, while the LC50 of TCC 

ranged from 0.008 to 0.7 mg/L in the worms (Table 4.2). Other mutant strains exhibited increased acute 

toxicity when exposed to TCS or TCC. TCS also increased the acute toxicity (LC50s ranging from 0.7 to 2.6 

mg/L) of daf-2(e1368), ist-1(ok2706), age-1(hx546), pdk-1(mg142), akt-2(ok393), and daf-16(m26); age-

1(m333) worms, while TCC was more acutely toxic (LC50s ranging from 0.2 to 0.7 mg/L) in daf-

18(e1375), pdk-1(sa680), akt-1(ok525), and daf-16(m26); daf-2(e1370) worms comparable to wildtype 

worms (Fig. 4.2 and Table 4.2).  

Impact of TCS and TCC on reproduction 

Both TCS and TCC were found to show reproductive toxicity in C. elegans. In wildtype worms, a 

TCS (1mg/L) decreased the total number of progeny up to 33.4% (Fig. 4.3 and Table 4.3); while TCC (0.1 

mg/L) decreased the total number of progeny by up to 38.1% (Fig. 4.4 and Table 4.3). This is consistent 

with our previous study that TCC exposure was more reproductively toxic than TCS in wildtype worms 

(Lenz et al., 2017). However, reproductive toxicity of TCS and TCC varied in the mutant strains (Table 3). 

TCC was more reproductively toxic than TCS in daf-2(e1368), daf-18(ok480), pdk-1(mg142), akt-

1(mg144), akt-2(ok393), daf-16(m26), and daf-16(m26); daf-2(e1370) worms. Meanwhile, TCS and TCC 

had similar trends in reproductive toxicity in ist-1(ok2706), age-1(hx546), daf-18(e1375), pdk-1(sa680), 

akt-1(ok525), daf-16(m26); age-1(m333), sqt-1(sc13) age-1(mg109) II; akt-1(mg247), and sqt-1(sc13) 

age-1(mg109); pdk-1(mg261) worms (Table 4.3).  
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Figure 4.3. Impact TCS on reproduction in IGF mutants.  

 

(A) daf-2, age-1, and daf-16 mutants. (B) pdk-1 and akt-1/2 mutants. (C) ist-1, daf-18, age-1/pdk-1, and 

age-1/akt-1 mutants. Error bars represent standard error. “*” indicates significant difference from 

controls (p<0.05). A 0.1 mg/L and 1 mg/L exposure of TCS decreased the total number of progeny by 
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25.6% and 33.4%, respectively, compared to controls 183.0 (95% CI: 177.3, 189.8). TCS was less 

reproductively toxic in daf-2(e1368), age-1(hx546), daf-18(e1375), pdk-1(sa680), pdk-1(mg142), akt-

1(ok525), akt-1(mg144), akt-2(ok393), daf-16(m26), daf-16(m26); age-1(m333), daf-16(m26); daf-

2(e1370), sqt-1(sc13) age-1(mg109); pdk-1(mg261), and sqt-1(sc13) age-1(mg109) II; akt-1(mg247) 

worms compared to wildtype worms. TCS exhibited the most reproductive toxicity in daf-18(ok480) 

worms. 
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Figure 4.4. Impact of TCC on reproduction in IGF mutants.  

 

(A) daf-2, age-1, and daf-16 mutants. (B) pdk-1 and akt-1/2 mutants. (C) ist-1, daf-18, age-1/pdk-1, and 

age-1/akt-1 mutants. Error bars represent standard error.  “*” indicates significant difference from 

controls (p<0.05). A 0.01 mg/L and 0.1 mg/L exposure of TCC decreased the total number of progeny by 
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32.0% and 38.1%, respectively, compared to controls 183.0 (95% CI: 177.3, 189.8). TCC was less 

reproductively toxic in age-1(hx546), daf-18(e1375), pdk-1(sa680), pdk-1(mg142), akt-1(ok525), akt-

2(ok393), daf-16(m26); age-1(m333), sqt-1(sc13) age-1(mg109); pdk-1(mg261), and sqt-1(sc13) age-

1(mg109) II; akt-1(mg247) worms compared to wildtype worms. TCC exhibited the most reproductive 

toxicity in daf-18(ok480) worms. 

  



111 
 

Table 4.3. Mean number of progeny of IGF mutants.  

 

“*” indicates significant difference from controls (p<0.05). Both TCS and TCC had significant decreased 

reproductive toxicity in daf-18(e1375), pdk-1(sa680), sqt-1(sc13) age-1(mg109); pdk-1(mg261), and sqt-

1(sc13) age-1(mg109) II; akt-1(mg247) compared to wildtype worms. Both TCS and TCC were the most 

toxic in daf-18(ok480) worms.  
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The largest decrease in progeny number by both TCS and TCC was observed in daf-18(ok480) 

worms. TCS (1 mg/L) and TCC (0.1 mg/L) decreased the progeny number of daf-18(ok480) worms by 40% 

and 53%, respectively, compared to the 33% and 38% respective decrease in progeny number of 

wildtype worms (Table 4.3). However, TCS and TCC decreased the total number of progeny in daf-

18(e1375) worms by <11%. This difference is due to the fact daf-18(ok480) has no detectable levels of 

the DAF-18/PTEN protein that is associated with increased mortaility and avid development (Ogg & 

Ruvkun, 1998; Fukuyama et al., 2006; Brisbin et al., 2009). In addition, both TCS and TCC had the least 

observed effect on progeny number in sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-

1(mg109) II; akt-1(mg247) worms, causing a <7% decrease in progeny number compared to controls 

(Table 4.3). This suggests that the mutations affecting IGF signaling in these strains may provide 

protection against the reproductive effects of TCS and TCC.  

Impact of TCS and TCC on lifespan and vulval integrity 

In addition to the acute lethality and reproductive toxicity of TCS and TCC, both compounds 

have been shown to decrease the lifespan of wildtype C. elegans. TCS and TCC decreased the lifespan of 

C. elegans by >15% compared to control worms [17.2 (95% CI: 17.0, 17.3)] (Tables 4.4 and 4.5). In 

mutant strains, the effects of TCS and TCC varied. However, both TCS and TCC were observed to be less 

toxic in ist-1(ok2706), akt-1(ok525), akt-1(mg144), akt-2(ok393), daf-16(m26), daf-16(m26); age-

1(m333), and daf-16(m26); daf-2(e1370) worms (Table 4.4 and 4.5). Furthermore, TCS caused a <10% 

decrease in lifespan of age-1(hx546), daf-18(ok480) and akt-2(ok393) worms (Table 4.4), while TCC 

caused a <10% decrease in lifespan in daf-16(m26), daf-16(m26); age-1(m333), daf-16(m26); daf-

2(e1370), and sqt-1(sc13) age-1(mg109); pdk-1(mg261) worms (Table 4.5).  

In ist-1(ok2706), daf-18(ok480), daf-18(e1375), and akt-1(mg144) control worms, an average 

lifespan of 11.8 to 14.4 days was observed compared to 17.2 (95% CI: 17.0, 17.3) for wildtype controls.  



113 
 

Table 4.4. Impact of TCS on lifespan in IGF mutants.  

 

“*” indicates significant difference from controls (p<0.05). TCS decreased the lifespan of wildtype C. 

elegans by up to 15% compared to controls [17.2 (95% CI: 17.0, 17.3)]. TCS decreased the lifespan of 

wildtype C. elegans by <16% compared to controls [17.2 (95% CI: 17.0, 17.3)]. TCC decreased the 

average lifespan of ist-1(ok2706), age-1(hx546), and akt-2(ok393) by <10%, compared to controls. 
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Table 4.5. Impact of TCC on lifespan in IGF mutants.  

 

“*” indicates significant difference from controls (p<0.05). TCC decreased the lifespan of wildtype C. 

elegans by <16% compared to controls [17.2 (95% CI: 17.0, 17.3)]. TCC decreased the average lifespan of 

akt-2(ok393), daf-16(m26), and sqt-1(sc13) age-1(mg109); pdk-1(mg261) by ≤10%, compared to 

controls.
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Table 4.6. Impact of TCS and TCC on avid phenotypes in IGF mutants.  

 

“*” indicates significant difference from controls (p<0.05). Vulval integrity defects were observed 

through the presence of “vulval protrusions” that were categorized as one of three Avid types, 

previously described by Leiser and colleagues (2016). TCS and TCC increased frequency of Avid 

phenotype in ist-1(ok2706), age-1(hx546), daf-18(ok480), daf-18(e1375), akt-1(ok525), akt-1(mg144), 

pdk-1(mg142), daf-16(m26), daf-16(m26); daf-2(e1370) worms. Vulval integrity defects were the highest 

(≥45%) at the highest concetration in ist-1(ok2706), daf-18(ok480), daf-18(e1375), and akt-1(mg144) 

worms, which was associated with a significant decrease in mean lifespan (Table 4 and 5).  



116 
 

This decrease in lifespan was accompanied by a >20% frequency in an avid (age-related vulval integrity 

defect) phenotype, 2-4 days prior to death (Table 4.6). Both TCS and TCC caused an increased frequency 

of the avid phenotype in ist-1(ok2706), daf-18(ok480), daf-18(e1375), and akt-1(mg144) worms. TCS 

exposure (1 mg/L) induced an avid phenotype in 65% of ist-1(ok2706), which is the highest observed 

frequency of this phenotype by TCS. The highest frequency of the avid phenotype in worms exposed to 

TCC (0.1 mg/L) was 68% in daf-18(e1375) worms, followed by 61% in daf-18(ok480) and 60.3% in ist-

1(ok2706) worms (Table 4.6). The high frequency of avid phenotype observed in daf-18(ok480) and daf-

18(e1375) worms was accompanied by a 17.4% to 23.7% decrease in lifespan by TCS and TCC (Tables 4.4 

and 4.5). Additionally, TCC decreased the lifespan of ist-1(ok2706) worms by 13.3% (Table 4.5), while 

TCS did not significantly decrease the lifespan of ist-1(ok2706) worms (Table 4.4). 

Impact of TCS and TCC on gene expression 

In addition to the use of mutant C. elegan strains, we performed qPCR to determine how TCS 

and TCC exposure impact the expression of specific genes. The selection of the genes were based on the 

observations from the lethality, reproduction, lifespan and vulval integrity assays. The selected genes 

were classified based on four main categories based on the genes function: IGF signaling (e.g., daf-2, ist-

1, age-1, daf-18, pdk-1, akt-1, akt-2, and daf-16), development and longevity (e.g., let-363, daf-15, rsks-

1, sgk-1, and skn-1), development (e.g., vit-2, vit-5, vit-6, lin-42, and daf-12), and bacterial response 

(e.g., clec-60, lys-7, and pgp-5) (Table 4.1). 

IGF signaling 

In a previous study, TCS and TCC exposure decreased reproduction and lifespan, while increased 

the activation of daf-16, or the relocation of daf-16 into the nucleus of cells (Lenz et al., 2017). The 

activation of daf-16 is dependent on the expression of IGF signaling genes, such as daf-2, age-1, pdk-1, 

and akt-1/2. In this study, we examined the expression of genes involved in IGF signaling and found that  
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Figure 4.5. Expression of IGF genes exposed to TCS and TCC.  

 

(A) TCS. (B) TCC. Error bars represent standard error.  “*” indicates significant difference from controls 

(p<0.05). Both TCS and TCC exposure lead to an increase in the expression of age-1, pdk-1, akt-1, and 

akt-2. TCC exposure increased the expression of IGF genes to more of an extant than TCS. TCC exposure 

significantly increased the expression of daf-2, ist-1 and daf-16, while significantly decreasing the 

expression of daf-18.  
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both TCS and TCC exposure lead to an increase in the expression of age-1, pdk-1, akt-1, and akt-2 (Fig. 

4.5). TCC exposure also increased the expression of these four genes (age-1, pdk-1, akt-1, and akt-2) by 

a greater extent than TCS. At 0.1 mg/L, TCC exposure increased age-1, pdk-1, akt-1, and akt-2 by 3.0, 

2.3, 5.2, and 3.9 fold, respectively. In contrast, the lower concentration of TCS had a greater effect on 

gene expression than the higher concentration. At 0.1 mg/L, TCS increased age-1, pdk-1, akt-1, and akt-

2 expression by 2.9, 2.7, 3.6, and 2.8 fold, respectively. Additionally, both TCS and TCC exposure 

decreased the expression of daf-18, but TCS exposure decreased daf-18 expression by less of an extent 

(<2 fold decrease) compared TCC (>3 fold decrease). The deceased expression of daf-18 with TCC 

exposure was associated with an increased expression of daf-2, which is a consistent relationship of daf-

2 and daf-18 (Liu et al., 2014). The increased expression of daf-2, as well as ist-1 and daf-16, was only 

observed with exposure to TCC. The expression of daf-2, ist-1, and daf-16 were increased by 3.1, 2.2, 

and 3.8 fold, respectively, when exposed to TCC at 0.1 mg/L (Fig. 4.5). Both TCS and TCC increased the 

expression of genes downstream of the IGF receptor (daf-2); however only TCC increased the expression 

of daf-2. 

Development and longevity 

 TCS was found to increase the expression of genes involved in IGF signalling (e.g., age-1, pdk-1, 

akt-1, and akt-2), but TCS did not increase the expression of daf-2, the IGF receptor (Fig. 4.5). Due to the 

increased expression of pdk-1 and akt-1/2, we examined the expression of genes downstream of pdk-1 

and akt-1/2 that do not influence daf-16 expression, such as sgk-1 and skn-1 in our study (Murphy & Hu, 

2005). In addition, we considered the possibility that the expression of akt-1/2 may be influenced by the 

target of rapamycin (TOR; let-363), a member of phosphatidylinositol kinase-related kinase family and 

raptor (daf-15), a binding partner of TOR (Jia et al., 2004). The modulation of daf-15 and let-363 

expression are associated with decreased lifespan and fat accumulation, which may provide insight in 

the development of avids in certain mutants (Table 4.6) (Jia et al., 2004). Lastly, rsks-1 works in parallel  
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Figure 4.6. Expression of genes controlling development and longevity exposed to TCS and TCC.  

 

(A) TCS. (B) TCC. Error bars represent standard error.  “*” indicates significant difference from controls 

(p<0.05). Both TCS and TCC significantly decreased the expression of rsks-1, but TCC decreased the 

expression by a greater extent than TCS. TCC exposure significantly increased expression of daf-15 and 

sgk-1, while significantly decreasing the expression of let-363.  
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with IGF and is involved in growth and reproduction (Korta et al., 2012). The examination of let-363, 

rsks-1, sgk-1, daf-15, and skn-1 allow for the determination of the role of IGF in TCS- and TCC-induced 

toxicity.  

TCS and TCC caused varying effects on the expression of let-363, rsks-1, sgk-1, daf-15, and skn-1 

(Fig. 4.6). TCC exposure (0.1 mg/L) was also associated with decreased let-363 and rsks-1 expression by 

4.7 and 7.2 fold respectively, while increasing daf-15 and sgk-1 expression by 3.7 and 2.0 fold, 

respectively (Fig. 4.6B). TCC exposure (0.1 mg/L) also decreased rsks-1 by 7.2 fold, while TCS (1 mg/L) 

decreased rsks-1 expression by less of an extant (2.6 fold) (Fig. 4.6). Unlike TCC, TCS didn’t significantly 

impact the expression of let-363, daf-15, and sgk-1. TCS and TCC did not significantly impact the 

expression of skn-1 at the observed concentrations.  

Development 

TCS and TCC cause delayed hatching, germline toxicity, and decreased reproduction in C. 

elegans (Lenz et al., 2017). In addition, our analysis of TCS and TCC exposure in IGF mutants resulted in 

decreased reproduction, decreased lifespan, and the development of avids, an age-related vulval 

integrity defect. The avid phenotype is regulated by the germline and hypothesized to be the result of 

reproduction causing the vulva to be a site of weakness that is exacerbated by the failure to shut down 

the production of yolk, protein, and fat (Leiser et al., 2016). Lipid redistribution, intestinal atrophy, and 

yolk synthesis are influenced by IGF signaling and vitellogenesis, as well as other genes involved in 

development (Ezcurra et al., 2018; Sornda et al., 2019). Therefore, we examined the impact of TCS and 

TCC exposure on the expression of vitellogenin (vit-2, -5, and -6), period protein homolog (lin-42), 

nuclear hormone receptor (daf-12) during early adulthood.  

We found that in contrast to the gene expression associated with development and longevity 

genes controlling only development were impacted more by TCS compared to TCC (Fig. 4.7). TCC  
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Figure 4.7. Expression of developmental genes exposed to TCS and TCC.   

 

(A) TCS. (B) TCC. “*” indicates significant difference from controls (p<0.05). Error bars represent 

standard error.  TCS significantly increased the expression of three vit genes (2, 5, and 6) and daf-12, 

while TCC only significantly increased the expression of vit-2. Both TCS and TCC significantly decreased 

the expression of lin-42. 
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Figure 4.8. Expression of bacterial response genes exposed to TCS and TCC.  

 

(A) TCS. (B) TCC. Error bars represent standard error.  “*” indicates significant difference from controls 

(p<0.05). TCS significantly decreased the expression of pgp-5, while TCC significantly increased the 

expression of clec-60.  
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exposure (0.1 mg/L) was associated with increased vit-2 expression by 2.9 fold and decreased daf-12 

and lin-42 expression by 2.0 and 6.9 fold, respectively. TCC exposure did not significantly impact the 

expression of vit-5 and vit-6. In contrast, TCS exposure increased vit-2, vit-5, vit-6, and daf-12 expression 

by 2.9, 4.8, 4.6, and 3.3 fold, respectively, at 1 mg/L. TCS also decreased the expression of lin-42 by 3.2 

fold at 1 mg/L (Fig. 4.7). Both TCS and TCC increased the expression of vit-2, by approximately 3 fold. 

Increased expression of vit-2 is associated with increased intestinal lipid content (Ezcurra et al., 2018). 

Bacterial response 

Lastly, TCS and TCC are used for their antimicrobial properties and there is concern that 

antimicrobials might induce antibiotic resistance or disrupt human microbial communities (Carey & 

McNamara, 2014). There was so much concern that in 2016 the Food and Drug Administration banned 

the use of of TCS and TCC in specific household products (FDA, 2016). A recent study found that TCS and 

TCC increased gut bacterial genes in mice and were associated with TCS resistance, stress response, and 

antibiotic resistance (Gao et al., 2017). In addition, a study of TCS and TCC exposure in infants found an 

association of increased presence of Proteobacteria species with TCS and TCC exposure (Ribado et al., 

2017). Thus, we examined the effects of TCS and TCC on the bacterial response genes in C. elegans.  

The examination of C-type Lectin (clec-60), lysozyme-like protein-7 (lys-7), and p-GlycoProtein-5 

(pgp-5) found that TCS and TCC had different effects on these three genes. TCS exposure (1 mg/L) 

decreased the expression of pgp-5 by 5.4 fold, but did not significantly decrease the expression of clec-

60 and lys-7 (Fig. 4.8A). In contrast, TCC exposure (0.1 mg/L) increased the expression of clec-60 by 3.8 

fold at 0.1 mg/L and 4.9 fold (Fig. 4.8B). TCC exposure did not significantly impact the expression lys-7 

and pgp-5. TCS and TCC had a varying affect on genes involved in bacterial response. Only TCC increased 

the expression of one of the bacterial response genes, clec-60. 
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Discussion  

TCS and TCC are commonly used and widely detected in the environment and biological 

samples. Exposure to TCS and TCC have been associated with numerous adverse outcomes in wildlife 

and humans, such as developmental and reproductive toxicity, endocrine disruption, inhibition of 

muscle function, increased allergy sensitivity, and antibiotic resistance (Braoudaki and Hilton, 2004; 

Yazdankah et al., 2006; Chen et al., 2008; Cherednichenko et al., 2012; Savage et al., 2012; ECHA, 2015; 

EC, 2016). Several in vitro, in vivo, and epidemiological studies have found that endocrine disrupting 

abilities of these compounds include reduced production and/or metabolism of various hormones (i.e., 

testosterone, luteinizing hormone, follicle stimulating hormone, and estrogen), as well as the interacting 

with hormone receptors (Ahn et al., 2008; James et al., 2010; Huang et al., 2014; Henry and Fair, 2013; 

Kumar et al., 2009; Gee et al., 2008; Chen et al., 2008; Duleba et al., 2011; Stoker et al., 2010). More 

recently, the potential endocrine disrupting effects of TCS and TCC have been explored in invertebrates, 

such as insects, rotifers, and nematodes (Orvos et al., 2002; Han et al., 2016; Lenz et al., 2017; Martinez 

de Paz et al., 2017; Garcia-Espineira et al., 2018). In C. elegans, TCS and TCS have been reported to cause 

developmental and reproductive toxicity, decreased longevity, lipid accumulation, and the increased 

activation of daf-16/FOXO (Lenz et al., 2017; Garcia-Espineira et al., 2018). As the modulation of 

insulin/IGF signaling pathway is considered the central determinant of the worm’s endocrine control of 

stress response and aging (Baumeister et al., 2006). We hypothesized that these antimicrobials may 

elicit toxicity in the worm through impacting the IGF pathway. 

Impact of TCS and TCC on gene expression 

In C. elegans, IGF signaling is controlled by the activation of daf-2 that initiates a signaling 

cascade involving age-1 (phosphoinositide 3-kinase), pdk-1 (phosphoinositide-dependent protein kinase-

1) and akt-1/2 (protein kinase B) (Fig. 1).  The activation of this signaling cascade results in the 

phosphorylation of daf-16 and inhibits its relocation into the nucleus (Murphy & Hu, 2005). Our study 
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examined the expression of IGF genes in young adult worms (aged 3 days) and found that TCC exposure 

significantly increased daf-2 expression by 3.1 fold at 0.1 mg/L, but not at 0.01 mg/L. In contrast, TCS did 

not increase the expression of daf-2 (Figure 4.5). Both TCS and TCC were associated with increased 

expression of age-1, pdk-1, akt-1, and akt-2 by >2 fold (Fig. 4.5). This increased expression of IGF genes 

downstream of daf-2 by TCS and TCC suggests that these compounds may elicit toxicity through 

impacting the IGF signaling pathway. The activation of daf-2, increased expression of daf-2, by TCC is 

confirmed by the decreased expression of daf-18 (>3 fold decrease) (Fig. 4.5B), as daf-2 and daf-18 have 

a negative regulatory relationship (Coogan & La Point, 2008). However, TCS does not exhibit the same 

negative regulatory relationship between daf-2 and daf-18 (Fig. 4.5A). TCS may not be inducing toxicity 

via daf-2, rather TCS may utilize its lipophilic properties (Log Kow 4.8) to bypass daf-2 and initiate the 

IGF signaling cascade via genes downstream of daf-2 (Coogan & La Point, 2008). TCC may also be able to 

bypass daf-2, which may explain the discrepancy between the the observed expression of daf-2, pdk-1, 

and akt-1/2 (Fig. 4.5B). It is also possible that TCS may weaken the substrate-ligand interaction with the 

IGF receptor, such as what is exhibited by BαP (Fadiel et al., 2013). Additional research is needed to 

determine how TCS increases the expression of genes downstream of daf-2.  

The increased expression of age-1, pdk-1, akt-1, and akt-2 is consistent with the findings of 

increased daf-2 expression and decreased daf-18 expression, but these observations are not consistent 

with increased expression of daf-16 (Ogg et al. 1998; Pierce et al., 2001; Palmitessa & Benovic, 2010; Liu 

et al., 2014). This increased daf-16 expression by TCC exposure is accompanied by the decreased 

expression of let-363 (target of rapamycin homolog) and rsks-1 (ribosomal protein S6 kinase beta). The 

TORC1/Raptor (let-363/daf-15) complex is partially dependent upon the daf-16 activity (Sun et al., 

2017), which may explain the decreased let-363 expression and increased daf-15 expression (Figure 3B). 

However, the fact that the increased expression of daf-16 is accompanied by the increased expression of  

 



126 
 

Table 4.7. Summary of sublethal endpoints in IGF mutants exposed to TCS 

 

The involvement of IGF signalling in TCS-induced toxicity was examined in IGF mutant strains. Four 

endpoints were examined in C. elegans, such as 24 hour lethality, reproduction, lifespan, and an age-

related vulval integrity defect, Avid. The above table is a summary of the data collected for each IGF 

mutant that was exposed to TCS. The summary was catergorized as increased, decreased, or similar 

toxicity compared to observations in wildtype worms exposed to TCS. Similar is defined as similar 

toxicity to wildtype worms exposed to TCS. Increased is increased toxicity compared to wildtype worms 

exposed to TCS. Decreased is defined as decreased toxicity compared to wildtype worms exposed to 

TCS.   
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Table 4.8. Summary of sublethal endpoints in IGF mutants exposed to TCC 

 
The involvement of IGF signalling in TCC-induced toxicity was examined in IGF mutant strains. Four 

endpoints were examined in C. elegans, such as 24 hour lethality, reproduction, lifespan, and an age-

related vulval integrity defect, Avid. The above table is a summary of the data collected for each IGF 

mutant that was exposed to TCC. The summary was catergorized as increased, decreased, or similar 

toxicity compared to observations in wildtype worms exposed to TCC. Similar is defined as similar 

toxicity to wildtype worms exposed to TCC. Increased is increased toxicity compared to wildtype worms 

exposed to TCC. Decreased is defined as decreased toxicity compared to wildtype worms exposed to 

TCC.   
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daf-2, age-1, pdk-1, akt-1, and akt-2 suggests that there are other genes and/or pathways influencing 

daf-16 expression. Two explanations for the observed increased daf-16 expression are (1) ist-1 is 

influencing daf-16 activity by acting in parallel to age-1 or (2) daf-16 activity is caused by other signaling 

pathways (i.e., germline signaling, JNK, and AMPK) (Murphy & Hu, 2005).  

Toxicity in mutant strains 

We examined the role of IGF signaling in the observed TCS- and TCC-induced toxicity. The IGF 

signaling pathway, or insulin-like growth pathway, has an important role in endocrine function due to its 

regulation of several processes, such as aging, reproduction, stress response, and development (Murphy 

& Hu, 2005; Baumeister et al., 2006; Anisimov & Bartke, 2013). Studies in C. elegans found that TCS and 

TCC exposure were associated with developmental and reproductive toxicity, decreased longevity, lipid 

accumulation, and altered activity of genes involved in the worm’s stress response (Lenz et al., 2017; 

Garcia-Espineira et al., 2018). This suggests the potential involvement of IGF signaling in the observed 

toxicity. Thus, we performed the genetic analysis of TCS- and TCC-induced toxicity using IGF mutants. 

The results showed TCS and TCC had varying effects on lethality, reproduction, lifespan, and avid 

phenotype that were dependent upon the gene mutation (Table 4.7 and 4.8).  

Impact of TCS and TCC in IGF mutants 

Increased lethality was a more accurate indicator of the effects of TCS and TCC exposure on avid 

phenotype than reproduction and lifespan. For example, the functional loss of daf-2 and age-1 exhibited 

a protective effect in daf-2(e1368), age-1(hx546), and daf-16(m26); age-1(m333) worms exposed to TCC 

(Tables 4.2 and 4.6). However, daf-2(e1368) worms were more sensitive to TCS (LC50 0.7 mg/L) than 

wildtype worms (LC50 3.7 mg/L) (Table 4.2). Meanwhile, a functional loss of pdk-1 was protective in pdk-

1(sa680) worms exposed to TCS (Tables 4.2 and 4.6), as well as a functional loss of daf-2 in daf-16(m26); 

daf-2(e1370) worms (Table 4.2). This suggests that TCS- and TCC-induced acute toxicity is potentially 

mediated by genes upstream of daf-16, which is supported by the increased acute toxicity seen in 
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worms with the loss-of-function of daf-16 in daf-16(m26) worms (Table 4.2), as well as supported by the 

changes in the expression of age-1, pdk-1, and akt-1/2 by both TCS and TCC (Fig. 4.5). However, the 

involvement of IGF genes in the observed toxicity varies between TCS and TCC exposure.  

Impact of TCS and TCC on age-1, pdk-1, and akt-1 

The involvement of age-1, pdk-1, and akt-1 in TCS- and TCC-induced toxicity seen by the 

significantly increased gene expression is further supported by the decreased toxicity of both TCS and 

TCC in sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-1(mg109) II; akt-1(mg247) worms. 

Both TCS and TCC were less toxic in sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-

1(mg109) II; akt-1(mg247) worms, indicated by decreased acute lethality, reproductive toxicity, and avid 

phenotypes. The LC50s of TCS in sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-1(mg109) 

II; akt-1(mg247) worms were 5.8 (95% CI: 5.3, 6.3) and 6.6 (95% CI: 5.9, 7.2), respectively, compared to 

3.7 (95% CI: 3.2, 4.3) in wildtype worms. Meanwhile, the LC50s of TCC in sqt-1(sc13) age-1(mg109); pdk-

1(mg261) and sqt-1(sc13) age-1(mg109) II; akt-1(mg247) worms were 2.5 (95% CI: 2.0, 3.1) and 8.9 (95% 

CI: 7.8, 9.6), respectively, compared to 0.9 (95% CI: 0.5, 1.5) in wildtype worms (Table 4.2). The 

significance of these findings in sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-1(mg109) 

II; akt-1(mg247) worms is due to the genetics of these two mutants.  

The pairing of age-1(mg109), constitutive dauer arrest (daf-C) phenotype, with a suppressor of 

daf-C, pdk-1(mg261) or akt-1(mg247), gain-of-function of phosphoinositide-dependent serine/threonine 

kinases, pdk-1 and akt-1, are known to only partially restore IGF signaling (Gami et al., 2006). This is due 

to the fact that sqt-1(sc13) age-1(mg109); pdk-1(mg261) worms require functional akt-1, while sqt-

1(sc13) age-1(mg109); akt-1(mg247) worms require functional pdk-1 (Gami et al., 2006). The 

requirement of functional pdk-1 and akt-1 by these worms to restore IGF functioning and reproductive 

development may explain our data in two ways. First, the mg247 and mg261 alleles only partially 

restores phospholipid signaling in age-1(mg109) worms (Gami et al., 2006), preventing the 
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overactivation of IGF and allowing daf-16 to activate and respond the stressors, TCS and TCC. This is 

supported by the decreased toxicity observed in akt-1(mg247) and pdk-1(mg261) worms, which are 

known to not affect lifespan and stress resistance (Gottlieb & Ruvkun, 1994; Gems et al., 1998; Wolkow 

et al., 2002). Second, TCS- and TCC-induced toxicity may act through a specific akt-1 allele. Gami and 

colleagues (2006) reported that sqt-1(sc13) age-1(mg109); akt-1(mg227) worms only require akt-1 for 

reproductive development and pdk-1 activity was dispensable, but sqt-1(sc13) age-1(mg109); akt-

1(mg247) require the presence of pdk-1 for reproductive development. Further examination is needed 

to determine if the toxicity of TCS and TCC is dependent on the relationship of akt-1 and pdk-1 or is akt-

1 allele-dependent, as there are 40 identified akt-1 alleles known to suppress daf-C (Gami et al., 2006).  

Impact of TCS and TCC on daf-18 

The findings from sqt-1(sc13) age-1(mg109); pdk-1(mg261) and sqt-1(sc13) age-1(mg109); akt-

1(mg247) worms are also supported by the increased acute toxicity, decreased lifespan, and avid 

phenotypes of daf-18(ok480) worms. TCS and TCC were most toxic in daf-18(ok480) worms, a strain 

with the severe loss-of-function of daf-18 (Fukuyama et al., 2006), which in wildtype worms counteracts 

age-1 activation through the dephosphorylation of pip3 (Figure 1). The daf-18(ok480) worms were 

associated with increased acute lethality, reproductive toxicity, and avid phenotype. The LC50 of TCS 

and TCC was 0.2 (95% CI: 0.1, 0.4) and 0.008 (95% CI: 0.005, 0.01) in daf-18(ok480) worms compared to 

3.7 (95% CI: 3.2, 4.3) and 0.9 (95% CI: 0.5, 1.5) in wildtype worms, respectively (Table 2). Additionally, 

TCC exposure was associated with increased acute lethality in daf-18(e1375) worms [0.2 (95% CI: 0.1, 

0.3)], a reduction-of-function strain (Ogg & Ruvkun, 1998). The increased acute lethal toxicity observed 

in daf-18(ok480) and daf-18(e1375) worms suggests that potential increased expression of daf-2. This is 

confirmed by the the fact daf-2 and daf-18 have a negative regulatory relationship, meaning the 

decreased expression of daf-18 is associated with increased expression of daf-2 (Liu et al., 2014).  

 



131 
 

Development of an age-related vulval integrity defect (Avid) 

In addition to increased acute lethality, the ok480 allele of daf-18 is reported to cause a mitotic 

germline arrest defect, associated with increased mortality that was previously reported in this mutant 

(Fukuyama et al., 2006). In our study, we observed an increased frequency of avid phenotype in post-

reproductive daf-18(e1375) and daf-18(ok480) worms exposed to TCS and TCC, as well as controls (Table 

4.6). Both TCS and TCC were associated with increased frequency of avids in ist-1(ok2706), age-

1(hx546), daf-18(ok480), pdk-1(mg142), akt-1(ok525), akt-1(mg144), akt-2(ok393), daf-16(m26), and 

daf-16(m26); age-1(m333) worms. Furthermore, an increased frequency of avids occurred in ist-

1(ok2706), daf-18(ok480), daf-18(e1375), and akt-1(mg144) controls, at >20% in control worms (Table 

4.6). This increased frequency of avids in controls was associated with a significantly decreased lifespan 

(average lifespan ranging from 11.8 to 14.4 days) compared to wildtype controls [17.2 days (CI 95%: 

17.0, 17.3)] (Tables 4.4 and 4.5). The development of an avid phenotype is previously reported in the 

literature for both daf-18 mutants, daf-18(ok480) and daf-18(e1375), at rates up to 80% (Ogg & Ruvkun, 

1998; Fukuyama et al., 2006). We observed an increased frequency of avids in daf-18(ok480) and daf-

18(e1375) worms reaching 68% compared to <10% in wildtype worms (Table 4.6). Ogg and colleagues 

(1998) also reported an avid phenotype in wildtype worms with inhibited daf-18 activity, suggesting the 

importance of daf-18 activity in the regulation of healthspan.  

Avid phenotypes are known to be modulated by the germline and are associated with decreased 

lifespan and a loss of oocyte production, but not sperm production (Leiser et al., 2016). Leiser and 

colleagues (2016) hypothesize that avids are the result of reproduction causing the vulva to be a site of 

weakness that is exacerbated by the failure to shut down the production of yolk, protein, and fat. In our 

study, we found that mutants with decreased longevity in controls were associated with increased 

frequency of an avid phenotype and decreased reproduction. These increased avid phenotypes occurred 

at higher rates in ist-1(ok2706), daf-18(ok480), and daf-18(e1375) controls (Table 4.6) and was 
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associated with a significantly decreased lifespan (average lifespan ranging from 11.8 to 14.4 days) 

compared to wildtype controls [17.2 days (CI 95%: 17.0, 17.3)] (Table 4 and 5). In daf-18(ok480) worms, 

TCS and TCC decreased reproduction by >50% compared to controls (Table 4.3). This decrease in 

reproduction was associated with a high frequency of vulval integrity defect in worms (Table 4.6) and 

decreased lifespan (Table 4.4). However, this effect was not seen in worms with the loss of functional 

daf-2, age-1, pdk-1, akt-1/2, and daf-16. This is supported by the fact that under normal conditions daf-

18 regulates the germline checkpoint that opposes the proliferation and growth-promoting activities of 

age-1 and akt-1 (Paradis & Ruvkun, 1998), and suggests the potential involvement of IGF activity in the 

development of avid phenotypes.  

It is hypothesized that the overactivation of IGF causes the development of an avid phenotype 

and decreased lifespan. Ezcurra and colleagues (2018) found that lipid redistribution, intestinal atrophy, 

and yolk synthesis was daf-2 and daf-16 dependent, supporting our hypothesis. Additionally, the 

inhibition of yolk proteins production by vit-5/6 was associated with decreased intestinal lipid content, 

while the inhibition of yolk protein production by vit-2 was associated with increased intestinal lipid 

content (Ezcurra et al., 2018). We found that in young adult, wildtype worms (aged 3 days) exposed for 

24-hours both TCS and TCC increased the expression of vit-2, while TCS also increased the expression of 

vit-5 and vit-6 (Fig. 4.7). We did not examine the expression of vit genes in the mutants with increased 

frequency of avid phenotype. However, increased levels of vit mRNA in early adulthood worms in low 

fertility daf-2(e1370) hermaphrodites has been reported (DePina et al., 2011). We hypothesize that the 

overactivation of IGF and increased expression of specific vit genes may be contributing to increased 

yolk proteins production and intestinal lipid content that may promote the development of an avid 

phenotype. If this is the case, this would support the hypothesis that the avid phenotype is analogous to 

obesity in higher organisms (Leiser et al., 2016), which is an adverse outcome associated with the 

overactivation of IGF, decreased lifespan, and decreased reproduction but not sperm production (Seidell 
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et al., 1990; Berryman et al., 2013; Lewitt et al., 2014). Additional research is needed to determine the 

role of IGF and vitellogenesis in the development of an avid phenotype.  

Conclusions 

TCS and TCC are known endocrine disruptors that have been associated with increased obesity 

risk, reduced birthweight, infertility, decreased lifespan, and development and proliferation of cancer 

cells (Halden et al., 2017). Previous research showed that TCS and TCC decreased lifespan and 

reproduction, as well as increased daf-16 activity, suggesting the involvement of IGF in TCS- and TCC-

induced toxicity. To the best of our knowledge this is the first study to examine the effects of TCS and 

TCC on the IGF signaling pathway. We found that TCS- and TCC-induced toxicity was suppressed by loss-

of-function mutants and increased in mutants with overactivated IGF, which was supported by gene 

expression data. The data collected supports the role of IGF signaling in TCS- and TCC-induced toxicity; 

however it is not clear if TCS and TCC activate this signaling cascade through daf-2. The lipophilic nature 

of both TCS and TCC may allow for the bypass of daf-2. Additional research is needed to determine how 

TCS and TCC alter the expression of IGF, as well as role of IGF and vitellogenesis in the development of 

avids. 
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CHAPTER 5:  

The toxicological effects of TCS, TCC, and their degradation products in the nematode C. elegans 

 

Abstract 

Triclosan (TCS) and triclocarban (TCC) are antimicrobials that enter the environment everyday 

through the use of personal care, consumer, and medical products. Once in the environment, TCS and 

TCC are exposed to solar ultraviolet (UV) radiation that can degrade these compounds and result in the 

formation of toxic and carcinogenic products, such as dioxins, furans, chlorophenols, and anilines. These 

compounds have been widely detected in the environment including surface water, soil, and sediment. 

In 2017, The Florence Statement on TCS and TCC highlighted the need to evaluate the safety of TCS, TCC, 

and their transformation products throughout the entire product life cycle, including environmental 

release. Here we assessed the potential toxicological effects of TCS, TCC, and their photodegradation 

products to a model organism the nematode Caenorhabditis elegans (C. elegans). We examined the 

toxicological effects of parent and UV exposed TCS and TCC using organismal and molecular endpoints, 

including lethality, reproduction, hatching time, growth rate, and lifespan. TCS and TCC were toxic at low 

mg/L levels, and TCC was more toxic than TCS. The UV exposure of TCS and TCC resulted in increased 

toxicity of both compounds. The 24 hour lethality of 168 hours of UV exposure to TCS and TCC 

decreased from 3.65 mg/L to 0.81 mg/L and 0.91 mg/L to 0.04 mg/L, respectively. At sublethal 

concentrations, TCS and TCC exposure decreased the total number of offspring produced by worms. 

Furthermore, UV exposure of TCS (0.1 mg/L) and TCC (0.01 mg/L) decreased reproduction in the worms, 

indicated by a decreased brood size per worm from 29% to 46% and 32% to 55%, respectively. UV 

exposed TCS (0.1 mg/L) and TCC (0.01 mg/L) delayed hatching and decreased the growth rate of larval 

worms. Additionally, Lifespan was decreased on average by 3.7 days for parent TCS (0.1 mg/L) and TCC 
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(0.01 mg/L) and 5.1 and 4.5 days, days by UV exposed TCS (0.1 mg/L) and TCC (0.01 mg/L). These 

findings suggest that TCS and TCC may pose significant health risks to aquatic organisms. Our next steps 

are to characterize the degradation products that were formed during the UV exposure and understand 

the underlying mechanism(s) of observed reproductive toxic effects of TCS, TCC, and their degradation 

products. 

Introduction 

Triclosan [5‐chloro‐2‐(2,4‐dichlorophenoxy)phenol; TCS] and triclocarban [trichlorocarbanilide, 

3-(4-chlorophenyl)- 1-(3,4-dichlorphenyl)urea; TCC] are antimicrobial agents used in >2,000 personal 

care and consumer products that are washed down the drain and end up in the environment every day 

(Aranami et al., 2007; Halden et al., 2017).  TCS and TCC are introduced into aquatic environments 

through aquaculture, agriculture, animal husbandry, pharmaceutical companies, wastewater and 

sewage treatment plants, hospitals, and household discharge (Kanama et al., 2018). Once in the 

environment, TCS and TCC persist in the environment for decades, with half-lives of 60 days in water, 

120 days in soil, and 540 days in sediment (Halden & Paull, 2005). Furthermore, the long-term 

preservation of TCS and TCC has been shown in sediment cores dating back to 1964, when TCS was 

patented (Singer et al., 2002; Miller et al., 2008; Cantwell et al., 2010; Bedoux et al., 2012; Anger et al., 

2013; Kerrigan et al., 2015). In boisolids-amended soils, TCS and TCC have shown to persist for extended 

period of time while exhibiting very slow or no measurable degradation due to their chemical stability 

and pH resistance. (Walters et al., 2010; Langdon et al., 2012; Halden, 2016).  

The environmental persistence of TCS and TCC is attributed to their chemical properties. TCS 

and TCC have similar water solubility, ranging from 1.97-4.6 and 0.65-1.55, respectively, and partitioning 

coefficients (4.8 and 4.9, respectively) similar to bisphenol A (BPA), polychlorinated biphenyls (PCBs), 

and dioxins (Halden, 2014; Dhillon et al., 2015). In 1993, TCS was labelled as a pre-dioxin by the US 
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Environmental Protection Agency (EPA) due to its chemical properties and transformation into known 

toxic and carcinogenic compounds (Halden, 2014). TCS and TCC are the source of toxic and carcinogenic 

products (i.e., dioxins, furans, chlorophenols, and anilines) that can be formed during the manufacturing 

process, aerobic biodegradation, photolysis, methylation, and chlorination (Fiss et al., 2007; Buth et al., 

2010; Ding et al., 2013). TCS is known to contain detectable levels of 2,3,7,8-tetrachlorodibenzop-dioxin 

and 2,3,7,8-tetrachlorodibenzofuran during the production products, levels varying based on the quality 

of production technology (Menoutis and Parisi, 2002; Zheng et al., 2008; IARC, 2012; UNEP, 2013). 

Similarly, toxic byproducts are detected in TCC following production, such as 4-chloroaniline and 3,4-

dichloroaniline, as well as as well as tetrachlorinated TCC (Eissa et al., 2012; Halden, 2014).  

Transformation of TCS and TCC can occur during wastewater and drinking water treatment and 

in the environment (Lazano et al., 2013). Both TCS and TCC are degraded via methylation and 

dechlorination, respectively, during sewage conveyance and treatment and anaerobic conditions (Pycke 

et al., 2014). Once in the environment, TCS and TCC can be degraded further into different 

polychlorinated compounds. TCC undergoes aerobic biodegradation and photodegradation into 3,4-

dichloroaniline, 4-chloroaniline and 4-chlorocatechol (Miller et al., 2010; Ding et al., 2013; Mulla et al., 

2016). TCS is converted to 2,8-dibenzodichloro-p-dioxin (2,8-DCDD) during heating and combustion 

(Kanetoshi et al., 1988) and when exposed to natural sunlight (Latch et al., 2003; Aranami and Readman, 

2007; Alvarez-Rivera et al., 2016). Furthermore, the chlorinated derivatives of TCS, such as DCDD, can 

transform into tri- and tetra-chlorinated dibenzo-p-dioxins with continued exposure to sunlight (Buth et 

al., 2009; Buth et al., 2010). TCS can also be methylated, glycosylated and glucuronidated (James et al., 

2012; Weatherly et al., 2017). 

In recent years, several studies have been conducted on the toxicological effects of TCS and TCC. 

However, little is known about the safety of TCS and TCC transformation products throughout the entire 

product life cycle of the chemicals (e.g., manufacture, long-term use, disposal, and environmental 
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release), leading to the publication and signing of a consensus, known as The Florence Statement on TCS 

and TCC, signed by over 200 experts (Halden et al., 2017). TCS and TCC are detected in a wide variety of 

matrices worldwide, including blood, urine, breast milk, aquatic organisms, various crops, sediments, 

and soils (Aranami et al., 2007). Several studies have demonstrated the occurrence and fate of these 

contaminants across the globe have recently been detected in house dust, ocean water, and the water 

loop of spacecraft (Allmyr et al. 2008; Halden et al., 2014). During wastewater treatment, TCS and TCC 

accumulate in sewage sludge, 30–70% and 70-90%, respectively, and the remaining TCS and TCC is 

discharged from the wastetwater treatment plant into the receiving stream where they partition into 

sediment and/or bioaccumulate in biota (Pycke et al., 2014). Once in the environment, TCS and TCC are 

photooxidized and photolysed to form additional degradation products, some of which are toxic and 

carcinogenic (Lehutso et al., 2017). Photooxidation occurs when the oxygen radicals disrupt covalent 

bonds where the oxygen radicals are produced from the interaction of UV with organic matter (Suarez 

et al., 2007; Buth et al., 2010; Weatherly et al., 2017). Photolysis is direct absorption of light by TCC/TCS 

at wavelengths that disrupt covalent bonds (Trouts et al., 2015; Weatherly et al., 2017). A few studies 

have examined the photofate of TCS and TCC using both artificial UV light and natural sunlight (Cawley 

et al., 2009; Guerard et al., 2009; Wenk et al., 2011; Wenk et al., 2012; Ding et al., 2013; Ding et al., 

2014). These studies have only examined the acute toxicity of photodegradated TCS and TCC, but not 

the sublethal toxicity of these degradation products in mixture.  

In contrast to the abundant literature on parent TCS and TCC, there is little toxicological 

information available on the toxicity of the environmental degradation products of TCS and TCC, as 

mixtures. Given this lack of knowledge regarding the toxicity of the environmental degradation 

products, an excellent starting point would be to screen for the potential toxicity using an ecological 

relevant model, Caenorhabditis elegans (C. elegans) (Leung et al., 2008). C. elegans is a free-living 

nematode found in soil, sediment, and freshwater, environments where TCS and TCC have been 
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detected. Nematodes are  a suitable model organism for toxicological studies because of the availability 

of genetic tools, well-understood biology, transparent bodies, conserved molecular and cellular 

pathways and ease of culture maintenance or breeding (Hoss and Weltie, 2007; Leung et al. 2008; 

Haegerbaeumer et al., 2018). Here, we compared the toxicological effects of TCS, TCC, and their 

environmental degradation products using a model organism the nematode C. elegans. We examined 

the toxicological effects of TCS, TCC, and their environmental degradation products using organismal 

and molecular endpoints, including lethality, hatching rate, growth rate, reproduction, and lifespan. 

Findings from this study will provide a foundation for the examination of the potential impact of the 

degradation of TCS and TCC on their toxicity. This will address current knowledge gaps and provide an 

understanding of the environmental and human health implications of the environmental degradation 

products of TCS and TCC.  

Methods 

Chemicals 

TCS (≥97% purity) and TCC (≥98.0% purity) were purchased from Sigma-Aldrich (St. Louis, MO). 

Stock solutions (1,000 mg/L dissolved in dimethyl sulfoxide) were used to create all the exposure 

concentrations with K-medium (51 mM NaCl, 32 mM KCl, pH 6.8) as the diluent. TCS exposure 

concentrations were 0.01 to 10 mg/L. TCC exposure concentrations were 0.001 to 10 mg/L. All sub-lethal 

concentrations were the same as our previous study (Lenz et al., 2017). The final DMSO concentration 

was <1% for acute lethality and < 0.5% for sub-lethal exposures.  

Strains 

All C. elegans strains used in this study, the N2 Bristol (wildtype), were obtained from the 

Caenorhabditis Genetics Center (University of Minnesota, St. Paul, MN). All nematodes were maintained 

on nematode growth medium agar plates seeded with E. coli OP50 maintained at 20°C (Stiernagle, 

https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib6
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2006). Age-synchronized populations were obtained for acute lethality and sub-lethal assays through 

the collection of eggs from gravid adult C. elegans. The cleaning of eggs was done by bleaching with 1% 

NaClO and 0.013M NaOH solution and followed by a K-medium wash (Donkin & Williams, 1995).  

UV Exposure 

UV exposures were conducted to determine if the degradation of TCS and TCC by ultraviolet 

(UV) radiation impacted the toxilogical effects observed in C. elegans. We conducted our UV exposures 

using a Blak-Ray UV Benchtop Lamp (Ultra-Violet Products Ltd, Upland, CA) to expose TCS and TCC using 

UVA (365 nm), the wavelength that accounts for approximately 95% of the UV radiation reaching Earth’s 

surface (WHO, 2019). UV exposures were conducted for 24, 72, 120, 168 hours for both TCS and TCC. As 

a control, a second set of exposures of TCS and TCC were exposed at room temperature on the lab 

bench top for 24, 72, 120, and 168 hours. The UV and ambient exposures were reported as “UV” and 

“parent” TCS and TCC. Furthermore, comparisons with data from the literature refer to TCS and TCC 

toxicity exposures that are not exposure to room temperature or UV. This data is referred to as 

“unexposed” TCS and TCC. All acute toxicity assays used exposed TCS and TCC at all 4 times points, while 

sublethal assays use TCS and TCC exposed for 168 hours.  

Lethality 

Lethality assays were previously described by Lenz and colleagues (2017). Young adult, age-

synchronized worms (aged 3 days) were placed in 24-well plates containing 1 mL of exposure solutions 

made with K-medium. Each exposure consisted of 3 wells containing 10 worms each with an exposure 

time lasting 24 hours. The exposures consisted of K-medium (negative control), TCS (0.01 to 10 mg/L), or 

TCC (0.001 mg/L to 10 mg/L) and excluded any feeding agent. After 24 hours, the mortality was scored 

using a dissecting microscope. The LC50s were calculated using logistic regression of exposure and 

percent mortality using SigmaPlot (Systat Software, Inc., San Jose, CA).  
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Reproduction 

Age-synchronized worms, aged 2 days (L4-staged), were placed on OP50 seeded NGM plates 

amended with 150 μL of K-medium (negative control), TCS (0.1 and 1 mg/L), or TCC (0.01 mg/L and 0.1 

mg/L). NGM exposure plate preparation for exposures was previously described by Lenz and colleagues 

(2017). Each plate contained one L4-staged worm that was stored at 20°C for the duration of the 

exposure. Every other day the parent worm was transferred to a fresh plate (a total of 2-3 transfers over 

approximately 6 days) and the number of progeny (eggs and larval worms) was recorded. The average 

number of progeny was calculated by adding the number of progeny from all plates per worm (a total of 

3-4 plates per worm) for all exposures. 

Hatching and growth rate 

The experimental methods for hatching time, the time from egg disposition to hatching 

(Muschiol et al., 2009), and growth rate, the size (body length) of worms, have been previously 

described by Lenz et al. (2018). For the hatching time assay, eggs from age-synchronized young adult 

worms (aged 3 days) were collected and prepared using a standard protocol (Donkin and Williams, 

1995). Approximately 300 eggs were placed on an OP50 plate amended with 300 mL of K-medium 

(negative control), TCS (0.1 and 1 mg/L), and TCC (0.01 and 0.1 mg/L). Every 3 hours, the total number of 

hatched eggs, L1 staged worms, were recorded. Following the hatching of all worms, the larval worms 

were examined for growth.  

For the growth assay, the body length, length from the opening of the mouth (anterior end) to 

the tip of the tail (posterior end) (Morck and Pilon, 2006), of larval worms were measured at 4 time 

points (18, 24, 48, and 72 hours) during the four larval stages (L1-L4) of development for C. elegans. 

Byerly (1976) has extensively described the growth of wildtype worms. Images of the worms were taken 

on NGM plates for each exposure condition using a Nikon AZ100 microscope and NIS-Elements BR 3.2 
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software and analyzed for body length measurement of all worms using Zen 2011 software (Carl Zeiss 

Microscopy). Approximately 100 worms were measured at each time point for each exposure condition 

and the average body length was calculated.  

Lifespan 

Lifespan experiments followed the standard protocol, exposing L4-staged worms on NGM plates 

seeded with OP50 and 0.2 mM 5-fluoro 2-deoxyuridine (FUdR) to inhibit progeny production (Pluskota 

et al., 2009). Similar to reproduction, plates seeded with OP50 and FUdR were amended with 150 μL of 

K-medium (negative control), TCS (0.1 and 1 mg/L), or TCC (0.01 mg/L and 0.1 mg/L). Two plates 

containing 50 worms each were used for each exposure (100 total worms per exposure per replicate). 

Every other day dead worms, defined as the failed response to an external stimulus applied to the 

anterior and posterior ends with a platinum picker, were removed and counted per exposure plate and 

recorded. Any burrowed worms were excluded from totals. This process occurred for approximately 3 

weeks.  

Data analysis 

All assays were repeated three times. One-way analysis of variance was performed for the 

comparison of differences between individual TCS and TCC exposures compared to controls, as well as 

between parent and UV exposed TCS and TCC. Lifespan was analyzed using Kaplan-Meier survival 

analysis, estimation of the mean lifespan, and log-rank test, comparison of survival function between 

individual exposures and between strains. Data analysis conducted using IBM SPSS Statistics (Armonk, 

NY).  
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Figure 5.1. Acute toxicity in young adult wildtype C. elegans following a 24-hour exposure to TCS, TCC, 

and their photodegradation products.  

 

To evaluate the toxicity of these degradation products, we tested the toxicity of TCS and TCC exposed to 

ultraviolet (UV) radiation, specifically UVA (365 nm), for 24, 72, 120, and 168 hours. As a control, parent 

TCS and TCC are exposed at room temperature for 24, 72, 120, and 168 hours. (A) Change in LC50 of TCS 

following room temperature and UV exposures over 168 hours. (B) Change in LC50 of TCC following 

room temperature and UV exposures over 168 hours. (C) Comparison of LC50s of TCS, TCC, and their 
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photodegradation products. The 24 hour lethality of unexposed TCS and TCC is 3.65 mg/L and 0.91 

mg/L, respectively (Lenz et al., 2017). After 168 hours of UV exposure, TCS and TCC increased in toxicity, 

exhibited through a 24 hour lethality of 0.81 mg/L and 0.04 mg/L, respectively. The difference in LC50 of 

worms exposed to UV TCS and TCC compared to parent TCS and TCC was significant (p<0.05).  
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Results 

Impact on 24 hour lethality 

We examined the effect of UV exposure (365 nm) on the 24-hour acute toxicity of TCS and TCC 

in young adult wildtype C. elegans at 4 times points (24, 72, 120, and 168 hours). As a control, parent 

TCS and TCC are exposed at room temperature for 24, 72, 120, and 168 hours. We found that both TCS 

and TCC caused acute toxicity to C. elegans at low mg/L concentrations. TCC is more toxic than TCS, 

which is consistent with our previous study (Lenz et al., 2017). Unexposed TCS and TCC had LC50s of 

3.65 mg/L [95% Confidence Interval (CI): 3.15, 4.3] and 0.91 mg/L [95% CI: 0.47, 1.53] (Lenz et al., 2017). 

After a 24 hour exposure to UVA (365 nm) or ambient exposure (parent TCS and TCC), we found that the 

LC50s of UV and parent TCS and TCC (Fig. 5.1C) were similar to our previously reported LC50s for both 

TCS and TCC (Lenz et al., 2017). The LC50s of parent and UV exposed TCS were 4.27 mg/L (95% CI: 3.68, 

4.89) and 3.49 mg/L (95% CI: 3.13, 3.84), respectively. The LC50s of parent and UV exposed TCC were 

0.94 mg/L (95% CI: 0.74, 1.20) and 0.88 mg/L (95% CI: 0.67, 1.16), respectively. The acute toxicity of both 

TCS and TCC increased with UV exposure (Fig. 5.1). After 168 hours of UV exposure, the acute toxicity of 

TCS and TCC was 0.81 mg/L (95% CI: 0.68, 0.98) and 0.043 mg/L (95% CI: 0.034, 0.055), compared to 

unexposed TCS (LC50 of 3.65 mg/L) and TCC (LC50 of 0.91 mg/L). Furthermore, the parent TCC (LC50 of 

0.58 mg/L) was more toxic than the unexposed TCC (LC50 of 0.91 mg/L), while the acute toxicity of 

parent TCS (LC50 of 3.64 mg/L) was comparable to the unexposed TCS (LC50 of 3.65 mg/L) (Fig. 5.1C). 

The difference in LC50 of worms exposed to UV TCS and TCC compared to parent TCS and TCC was 

significant (p<0.05). 

Impact on reproduction in the worm 

TCS and TCC exhibited significant reproductive toxicity in adult C. elegans at all time points (Fig. 

5.2). Both UV and ambient exposure for 168 hours significantly decreased the brood size of C. elegans  



155 
 

Figure 5.2. Effect of TCS, TCC, and their photodegradation products on the number of progeny per 

wildtype C. elegans.  

 

(A) TCS. (B) TCC. (C) Mean brood size [95% confidence intervals (CI)] and percent difference. “*” 

indicates significant difference from controls (p<0.05). The toxicological effect of TCS, TCC, and their 

photodegradation products on reproduction has been shown to be concentration-dependent (Lenz et 

al., 2017). UV exposed TCS (0.1 mg/L) and TCC (0.01 mg/L) had a greater effect on the brood size of C. 

elegans than parent TCS (0.1 mg/L) and TCC (0.01 mg/L). The difference in brood size of worms exposed 

to UV TCS and TCC compared to parent TCS and TCC was significant (p<0.05).  
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compared to controls. After 168 hours of exposure, UV TCS (0.1 mg/L) and TCC (0.01 mg/L) exhibited 

increased reproductive toxicity compared to parent TCS and TCC (Fig. 5.2, one-way AONVA, p < 0.05). 

Worms exposed to parent TCS and TCC had an average brood size of 142 ± 4 (-28.9%) and 137 ± 5 (-

31.7%), respectively, significantly lower than the controls 200 ± 7 (Fig. 5.2C, one-way AONVA, p < 0.001). 

Worms exposed to UV TCS (0.1 mg/L) and TCC (0.01 mg/L) had an average brood size of 108 ± 4 (-46.1%) 

and 91 ± 6 (-54.7%), respectively, significantly lower than the controls and parent exposures (Fig. 5.2C, 

one-way AONVA, p < 0.001). UV exposed TCS (0.1 mg/L) and TCC (0.01 mg/L) had a greater effect on the 

brood size of C. elegans than parent TCS (0.1 mg/L) and TCC (0.01 mg/L). The difference in brood size of 

worms exposed to UV TCS and TCC compared to parent TCS and TCC was significant (p<0.05). 

Impact on worm hatching and growth 

We examined the effects of TCS, TCC, and their degradation products on embryogenesis, the 

time from fertilization to egg hatching, via the examination of hatching time of C. elegans eggs (Lenz et 

al., 2017). In C. elegans, hatching time, or ex utero development, was defined as time from egg to 

hatching, which takes approximately 9–10 hours at 20 °C (Altun and Hall, 2018). As shown in Figure 3, at 

12 hours, approximately 90% of control eggs were hatched, whereas less than 70% of eggs exposed to 

parent TCS (0.1 mg/L) and TCC (0.01 mg/L) and less than 60% of eggs exposed to UV TCS (0.1 mg/L) and 

TCC (0.01 mg/L) had hatched, indicating a significant delay in hatching. The calculated average hatching 

time of controls was 9.0 hours (95% CI: 8.8, 9.1). The average hatch time of parent and UV TCS was 10.4 

hours (95% CI: 10.1, 10.7) and 12.0 hours (95% CI: 11.7, 12.3), respectively, while the average hatch time 

of parent and UV TCC was 10.8 hours (95% CI: 10.5, 11.0) and 12.1 hours (95% CI: 11.8, 12.4), 

respectively (Fig. 5.3C, one-way AONVA, p < 0.05). These findings indicate that TCS and TCC exposed to 

UVA (365 nm) for 168 hours had a greater impact on hatching time than parent TCS (0.1 mg/L) and TCC 

(0.01 mg/L). UV TCS (0.1 mg/L) and TCC (0.01 mg/L) extended the hatching time by 3 hours compared to  
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Figure 5.3. Effect of TCS, TCC, and their degradation products on the hatching rate of eggs from wildtype 

C. elegans. 

 

(A) TCS. (B) TCC. (C) Average hatching time [95% confidence intervals (CI)] and percent difference 

compared to controls. “*” indicates significant difference from controls (p<0.05). UV exposed TCS (0.1 

mg/L) and TCC (0.01 mg/L) extended the hatching time by 3 hours compared to controls. Parent TCS and 

TCC impacted the hatching rate of eggs by less of an extent than UV exposed TCS (0.1 mg/L) and TCC 
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(0.01 mg/L). The difference in average hatch time of eggs exposed to UV TCS and TCC was significantly 

delayed compared to parent TCS and TCC (p<0.05). 
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Figure 5.4. Effect of TCS, TCC, and their degradation products on the growth rate of larval wildtype C. 

elegans.  

 

(A) TCS. (B) TCC. (C) Percent difference compared to controls. “*” indicates significant difference from 

controls (p<0.05). The parent and UV exposed compounds (TCS and TCC) decreased growth rate by 

>17% at 72 hours. Both UV exposed TCS (0.1 mg/L) and TCC (0.01 mg/L) had a greater impact on the 

growth rate than parent TCS and TCC. The difference in impact was greater between parent TCS and UV 

exposed TCS. The difference in average growth rate of worms exposed to UV TCS was significantly 

decreased compared to parent TCS at 18 hr, 48 hr, and 72 hr (p<0.05). The difference in average growth 

rate of worms exposed to UV TCC was significantly decreased compared to parent TCC at 24 hr (p<0.05).  
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controls (Fig. 5.3, one-way AONVA, p < 0.05). The difference in average hatch time of eggs exposed to 

UV TCS and TCC was significantly delayed compared to parent TCS and TCC (p<0.05). 

Larval worms examined for hatching time were further examined for the potential 

developmental toxicity of TCS, TCC, and their environmental degradation products on the 

developmental process of C. elegans. As shown in Figure 4, exposure to UV and parent TCS and TCC 

caused growth delay of the worms as indicated by decreased body length in exposed worms than 

control worms at each time point (one-way ANOVA, p < 0.05). For example, after 24 hours, parent and 

UV exposed TCS (0.1 mg/L) and TCC (0.01 mg/L) decreased the body length of larval worms by 12.6% to 

17% (Fig. 5.4, one-way ANOVA, p < 0.05). After 24 hours of exposure, parent TCC had a greater impact 

on larval growth rate than UV TCC, while parent and UV TCS have a similar effect on the growth rate of 

worms. After 72 hours, both parent and UV TCS and TCC decreased the body length of larval worms by 

>17% (Fig. 5.4, one-way ANOVA, p < 0.05). After 72 hours, both UV exposed TCS (0.1 mg/L) and TCC 

(0.01 mg/L) had a greater impact on the body length than parent TCS and TCC. Parent and UV TCS (0.1 

mg/L) decreased the growth rate of worms by 17.2% and 21.4%, respectively, compared to controls 

after 72 hours; while parent and UV TCC (0.01 mg/L) decreased growth rate by 18.6% and 19.5%, 

respectively (Fig. 5.4, one-way ANOVA, p < 0.05). The difference in impact was greater between parent 

and UV exposed TCS than with TCC. UV TCS caused the greatest decrease in the growth rate of worms 

(21.4%). The difference in average growth rate of worms exposed to UV TCS was significantly decreased 

compared to parent TCS at 18 hr, 48 hr, and 72 hr (p<0.05). The difference in average growth rate of 

worms exposed to UV TCC was significantly decreased compared to parent TCC at 24 hr (p<0.05). 

Impact on lifespan of the worm 

Both parent and UV exposures, 168 hour exposures, decreased the average lifespan of worms 

(Fig. 5.5). Control worms had an average lifespan of 17 days (95% CI: 16.6, 17.5). Worms exposed to  
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Figure 5.5. Effect of TCS, TCC, and their degradation products on lifespan in wildtype C. elegans. 

 

(A) TCS. (B) TCC. (C) Mean lifespan [95% confidence intervals (CI)] and percent difference compared to 

controls. “*” indicates significant difference from controls (p<0.05). UV exposed TCS (0.1 mg/L) and TCC 

(0.01 mg/L) decreased the average lifespan by at 5.1 and 4.5 days, respectively, compared to controls. 

UV exposed TCS and TCC decreased lifespan by a greater extent than parent TCS (0.1 mg/L) and TCC 

(0.01 mg/L). The difference in average lifespan of worms exposed to UV TCS and TCC compared to 

parent TCS and TCC was significant (p<0.05).  
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parent TCS (0.1 mg/L) and TCC (0.01 mg/L) had a mean lifespan of 14.3 days (95% CI: 13.8, 14.7) and 

14.4 days (95% CI: 13.9, 14.9), respectively, corresponding to a 2.7 day decrease in mean lifespan 

compared to controls. Worms exposed to UV TCS (0.1 mg/L) and TCC (0.01 mg/L) had a mean lifespan of 

12.0 (11.6, 12.3) and 12.5 (12.0, 12.9), respectively. UV TCS and TCC decreased the mean lifespan by 5.1 

and 4.5 days, respectively, compared to controls. Furthermore, UV exposed TCS and TCC were more 

decreased the mean lifespan by a greater extent than parent TCS and TCC, indicated by a 2.4 days and 

1.8 days decrease between UV and parent exposures (Fig. 5.5). The difference in average lifespan of 

worms exposed to UV TCS and TCC compared to parent TCS and TCC was significant (p<0.05). 

Discussion 

TCS and TCC are known as a source of toxic and carcinogenic degradation products (Pycke et al., 

2014). However, there is limited research on the environmental and public health implications of 

exposure to TCS, TCC, and their degradation products, despite the fact TCS and TCC are halogenated 

aromatic hydrocarbons with similar chemical properties as known toxic and carcinogenic compounds 

(i.e., polychlorinated biphenyls, dioxins, furans, hexachlorophene, polybrominated diphenyl ethers, and 

bisphenol A) (Halden, 2014; Dhillon et al., 2015). This lack of information on the long-term effects of 

exposure to TCS, TCC, and their transformation products led to the recommendations made in The 

Florence Statement on TCS and TCC of 2017, a consensus signed by over 200 experts around the globe. 

One of the main recommendations was the need for the evaluation of the safety of TCS and TCC 

transformation products from manufacturing to environmental release (Halden et al., 2017). Here we 

assessed the effects of TCS and TCC degradation on toxicity and found that the degradation of TCS and 

TCC by UV and at room temperature (without UV) increases the toxicity of TCS and TCC over 168 hours. 

We found that UV exposed TCS and TCC were completely degraded when exposed to UVA (365 nm) for 

168 hours. Based on the literature, TCS and TCC are degraded by UV into dioxins, furans, and 
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chloroanilines (Cawley et al., 2009; Guerard et al., 2009; Wenk et al., 2011; Wenk et al., 2012; Ding et al., 

2013; Ding et al., 2014). 

Aranami and Readman (2017) found that TCS was substantially photodegraded in freshwater 

and sea water under light conditions compared to pure water and dark conditions. The half-life of TCS in 

freshwater and sea water are ∼8 days and ∼4 days, respectively. Dioxins were detected in both 

freshwater and sea water after 3 days of irradiation (Aranami and Readman, 2007). Furthermore, TCS 

exposure at 254 and 365 nm transformed TCS by 90 to 98% and 78 to 90%, respectively (Son et al., 

2007). Son and colleagues (2007) detected intermediate transformation products chlorophenol, 

dichlorophenol and phenol intermediates in all experiments, while the intermediate transformation 

products dibenzodichloro-p-dioxin and dibenzo-p-dioxin where only detected in experiments using 365 

nm exposure (Son et al., 2007). Additionally, this study found that 75% of TCS was transformed within 

20 minutes of UVA exposure, compared to 82% of TCS by a TiO2 photocatalysis (Son et al., 2009). TCS 

was degraded by UVA exposure in the presence of the radical scavenger 2-propanol, but the 

degradation was significantly reduced (Son et al., 2009). This suggests that the transformation of TCS 

occurs via radicals (photooxidation), which further degrade the intermediates into environmentally 

persistent polychlorodibenzo-p-dioxins (PCDDs) (i.e., 1,2,8-trichlorodibenzo-p-dioxin, 1,2,3,8-

tetrachlorodibenzo-p-dioxin, and 2,3,7-trichlorodibenzo-p-dioxin) (Son et al., 2009; Yueh and Tukey, 

2016).  

There is limited research on the photofate of TCC compared to TCS, which is degraded by both 

natural sunlight and artificial UV light (Guerard et al., 2009; Ding et al., 2013; Ding et al., 2014). The 

photolytic half-life of TCC exposed to UVA is approximately 24 hours (Guerard et al., 2009) and degraded 

into mono- and di-choroanilines, as well as chloroiso-cyanatobenzene compounds (Ding et al., 2014; 

Trouts and Chin, 2015; Albanese et al., 2017). The degradation of TCC occurs indirectly via side chain 

reactions of photosensitizers (e.g., dissolved organic matter (DOM)) with reactive photo-generated 
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species (Trouts and Chin, 2015). The most ubitiquous photosensitizer in sunlit surface water is DOM, 

generating reactive oxygen species (ROS) and non-ROS transients when irradiated (Trouts and Chin, 

2015; Zhang et al., 2016). A 2017 study found that chlorinated anilines and isocyanates were produced 

by the indirect photolysis of TCC in the presence of DOM (Albanese et al., 2017). Furthermore, the 

toxicity of degradation products formed by direct photolysis and indirect photolysis of TCC in the 

presence of DOM had LC50 values of 2.67 ± 0.6 μM and 0.032 ± 0.015 μM, respectively in Daphnia 

magna. The LC50 of parent TCC in D. magna was 0.087 ± 0.3 μM. The degradation products formed by 

the indirect photolysis of TCC was significantly more toxic than parent TCC and the degradation products 

formed by direct photolysis (Trouts and Chin, 2015).  

The nematode C. elegans is an ecologically relevant model to examine the effects of chemical 

exposures via ingestion, of both food and water, that pose a potential hazard to the health of organism 

through the entire life cycle, embryogenesis to death (Page and Johnstone, 2007, O'Reilly et al., 2014). 

Studies in this worm model examine exposure via ingestion because of the presence of a cuticle that 

makes absorption of toxins difficult (Hunt, 2017). We found that increased durations of UVA exposure, 

approximately 95% of UV that reaches the Earth (WHO, 2019), were associated with increased acute 

lethality (Fig. 5.1). The increased acute toxicity of UV TCS and TCC was associated with increased toxicity 

in reproduction, development, and lifespan. In C. elegans, TCS and TCC exhibit toxicity in a 

concentration-dependent manner. UV exposed TCS and TCC decreased brood size by 46% and 55%, 

respectively, compared to controls (Fig. 5.2). These findings are comparable to the effect of the highest 

concentration of unexposed TCC (0.5 mg/L) was reported in our previous study, a 50% decrease in brood 

size compared to controls (Lenz et al., 2017). This decrease in number of progeny can cause downstream 

effects on embryogenesis and growth (Gardner et al., 2013).   

Embryogenesis in nematodes is the time from fertilization to egg hatching (Gilbert and 

Sunderland, 2000). In C. elegans, embryogenesis takes 12-13 hours at 20 °C and consists of both utero 
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(2–3 hours) and ex utero (9–10 hours) development (Harlow et al., 2016). Our knowledge of 

embryogenesis in C. elegans provides a convenient measure, hatching time, to study the potential 

impact of chemicals on the worm’s developmental process, such as cell fate specification, tissue 

formation, and morphogenesis (Corsi, 2006; Harlow et al., 2016). We found that UV TCS (0.1 mg/L) and 

TCC (0.01 mg/L) delayed the hatching time by 3 hours compared to controls, while parent TCS and TCC 

delayed the hatch time by 1.5 and 1.8 hours, respectively (Figure 5.3C). Our previous study found that 

TCS (0.1 mg/L) and TCC (0.01 mg/L) delayed the hatch time by 2.0 and 1.9, respectively (Lenz et al., 

2017), which are similar to the delay in hatch time of parent TCS and TCC (Figure 5.3). UV exposure, for 

168 hours, caused a greater effect on embryogenesis than unexposed or parent TCS and TCC. UV TCS 

and TCC exposure resulted in a 1 hour delay in hatch time (Figure 5.3) compared to the unexposed TCS 

and TCC (Lenz et al., 2017). We found that TCS, TCC, and their degradation products significantly delay in 

hatching time of worms, suggesting the developmental toxicity of these compounds and degradation 

products. Currently, the long-term effects of delayed hatching on the worm’s overall health and life 

course are unknown. Additional research is needed to understand the mechanism of toxicity resulting 

delayed hatching. Another study found that imidazole, pyridazine, pyridopyrazine, and 

triazolopyrimidine fungicides exhibit developmental toxicity on C. elegans eggs (Harlow et al., 2016). 

These fungicides are known to disrupt microtubule dyanmics (Rathinasamy & Panda, 2006; Lamberth et 

al., 2012; Lamberth et al., 2013). Additional research is needed to determine the mechanism of toxicity 

of TCS, TCC, and their degradation products that results in delayed egg hatching.  

Following the delayed hatching, we also found that TCS, TCC, and their degradation products 

reduced the worm's growth rate, shown by a reduction in body length compared to controls. After 

hatching, larval worms progress through four distinct larval stages (L1-L4) and reach adulthood at 

approximately 3 days (72 h) of age (Uppaluri and Brangwynne, 2015). We observed decreased body 

length of the worms exposed to TCS, TCC, and their degradation products at 18, 24, 48, and 72 hours 
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(Fig. 5.4). Stage-specific development of C. elegans is regulated by at least three different genetic 

pathways: (1) a spectrin pathway involving the unc-70, sma-1, and spc-1; (2) a calcineurin pathway 

involving tax-6 and cnb-1; and (3) a transforming growth factor-b (TGF-B) pathway involving sma-2, sma-

3, sma-4, lon-1, kin-29, and dbl-1 (Morck and Pilon, 2006). The interference of these pathways can result 

in “heterochronic” growth abnormalities (Zaidel-Bar et al., 2010, Monslave et al., 2011). Additionally, an 

inadequate food source can halt development. We believe this to be ulikely because our worms were 

provided an optimal amount of food and no feeding behaviors associated with starvation were observed 

(Dalliere et al., 2017). Additional research is needed to determine the mechanism(s) of toxicity leading 

to the decrease in body size, as well as the long-term effects of the decrease in body size.  

In addition to the observed developmental and reproductive toxicity, TCS, TCC, and their 

degradation products significantly decreased the average lifespan of C. elegans (Fig. 5.5). In this study, 

we found that TCS and TCC exposed to UVA for 168 hours decreased the average lifespan 5.1 and 4.5 

days, respectively, compared to controls (Fig. 5.5). UV exposed TCS and TCC decreased lifespan by a 

greater extent (5.1 and 4.5 days, respectively) than parent TCS (0.1 mg/L) and TCC (0.01 mg/L), by 2.7 

days (Fig. 5.5). The increased toxicity on C. elegans lifespan indicates the presence of degradation 

products in the parent TCS and TCC solutions. Additional research is needed to determine the specific 

degradation products of all exposure groups. Additionally, aging and lifespan are processes regulated by 

complex interactions of genetics, environment, and other nongenetic factors (Uno and Nishida, 2016). 

Exposure to TCS, TCC, and their degradation products significantly reduced the growth, reproduction, 

and lifespan of worms, suggesting the potential involvement of insulin/insulin-like growth factor (IGF) 

signaling.  

IGF is an important regulatory pathway that plays a vital role in prenatal growth, fertility, 

regulating fat storage and blood glucose, stress response, and aging in the worm (Laviola et al., 2008, 

Zhang and Liu, 2014; Gao et al., 2017). IGF signaling is controlled by the activation of the IGF receptor, 
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daf-2. Once daf-2 is activated by the binding of a substrate, the signaling cascade involving age-1 

(phosphoinositide 3-kinase), pdk-1 (phosphoinositide-dependent protein kinase-1) and akt-1/2 (protein 

kinase B) is initiated resulting in the phosphorylation of daf-16 (Murphy et al., 2003, Murphy, 2013). The 

phosphorylation of daf-16 inhibits this transcription factor’s relocation into the nucleus (Ogg et al., 

1997). The overactivation of IGF signaling is associated with accelerated aging and increased mortality in 

the worm (Fadini et al., 2010). Our next step is to examine the impact of the degradation products of 

TCS and TCC on IGF signaling and compare the results to their parent compounds, discussed in Chapter 

4.  

In a previous study, we reported the finding of the development of a severe vulval integrity 

defect (Avid) in adult worms during the aging process when exposed to a type of cyanopeptides, known 

as anabaenopeptins (Lenz et al., 2018). A study by Leiser (2016) described this Avid phenotype and 

hypothesized that the germline of C. elegans is an important modulator of Avid due to the association of 

increased Avid formation and a loss of oocyte development (Leiser et al., 2016). In our study, we did not 

observe a loss of oocytes following exposure to TCS, TCC, and their degradation products; however, we 

did not observe the presence of an Avid phenotype. This suggests that the development of Avid 

phenotypes may (1) depend upon certain exposures, (2) be influenced by changes in function of the 16 

egg-laying muscles and hermaphrodite-specific neurons (e.g., motorneurons and the ventral nerve 

cord), and (3) require a combination of biological factors (i.e., fat accumulation, fat metabolism, 

systemic iron overload, and ferritin levels) for development of Avids (Seidell et al., 1990; Collins and 

Koelle, 2013; Hyun et al., 2016, Wang et al., 2016). Future studies will examine the mechanism(s) of Avid 

development and the link between specific environmental contamininants and the age-related vulval 

defect.  
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Conclusion 

The UV exposure that occurs in the environment increases the toxicity of TCS and TCC, which 

was observed through a decrease in LC50, reproduction, and lifespan. These findings suggest that TCS 

and TCC may pose significant health risks to aquatic organisms. Our next steps are to characterize the 

degradation products that were formed during the UV exposure and understand the underlying 

mechanism(s) of observed reproductive toxic effects of TCS, TCC, and their degradation products.  
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CHAPTER 6: 

Discussion/Conclusion 

Environmental toxicology, like other branches of science, is an ever-changing field of research 

that is essential for the assessment of new chemicals that are continually introduced to industrial 

production and human life (Connon et al., 2012; Sturla et al., 2014). The assessment of these chemicals 

for potential toxicity is crucial for the determination of safe levels of exposure to humans and presents 

an urgent and ongoing issue (Gou et al., 2015). The scientific community is under pressure to re-

evaluate the use of specific animal models and methods for measuring toxicity (Burden et al., 2015; Gao 

et al., 2018). In recent years, several studies have focused their research on antimicrobials and 

cyanopeptides. Here we investigated the toxicological effects of two types of commonly detected 

environmental contaminants, antimicrobials (triclosan and triclocarban) and cyanopeptides 

(anabaenopeptins and cyanopeptolins), using the model organism Caenorhabditis elegans (C. elegans). 

In our current analysis, we have shown that exposure to environmentally-relevant levels of 

cyanopeptides and antimicrobials affects the health of the worm throughout its life, in utero to death. 

Cyanopeptides 

Cyanobacterial blooms pose a potential threat to environmental and public health, as well as 

local economies, due to the production of highly toxic secondary metabolites (cyanopeptides) (Pick, 

2016; Wilkinson et al., 2018; Kimambo et al., 2019). These cyanopeptides, or cyanotoxins, have been 

detected in drinking water and food sources at concentrations reaching mg/L, posing a significant public 

health risk (Gkelis et al., 2015; Kurmayer et al., 2016). There are more than 600 identified 

cyanopeptides, such as anabaenopeptins, cyanopeptolins, and microcystins (MCs) (Gkelis et al., 2015). 

Some of these cyanopeptides are produced with MCs, most commonly known cyanopeptide, and in 

some cases are detected at equal or higher concentrations than MCs (Beversdorf et al., 2017, 2018; 

Janssen, 2019; Larsen et al., 2019). While the World Health Organization has set guideline values 
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detectable MC in drinking and recreational water, there is little known about the potential risk many of 

these peptides may pose to public and environment (Welker and Von Dohren, 2006; WHO, 2008). 

Growing on research that suggests that cyanopeptides pose a potential threat to environmental 

and public health, our research found that anabaenopeptins (AP-A, AP-B, and AP-F) and cyanopeptolins 

(CYP-1007, CYP-1020, and CYP-1041) induced significant toxicity effects to the worm at concentrations 

100 times lower than those found in the environment. The observed toxic effects include reduced 

reproduction, delayed hatching, decreased growth rate, shortened lifespan, as well as severe aging-

related vulval integrity detects. At an environmentally relevant concentration (10 μg/L) APs were the 

most toxic, followed by CYPs, which showed comparable toxicity to MC-RR. Microginin 690 was the least 

toxic. These findings suggest that APs and CYPs may pose a significant health risk to aquatic organisms. 

Additional toxicological studies are needed to more completely understand the potential impact of 

these cyanopeptides on the environment and human health. Future studies should aim to understand 

whether these observed toxicity in the worm can be related to the known protease inhibition properties 

of these cyanopeptides, as well as whether these toxic effects are observed in other species. 

Furthermore, given the frequent co-occurrence of these APs and CYPs with MCs as well as their 

comparable or even greater toxicity than MCs, potential recreational and drinking water guidelines need 

to account for these cyanopeptides. 

Antimicrobials 

Antimicrobials, such as triclosan (TCS) and triclocarban (TCC), are used in numerous personal 

care products, consumer products, and medical devices (i.e., cosmetics, food packaging, plastics, 

children’s toys, clothing, building materials, textiles, and medical devices) (Halden, 2014). TCS and TCC 

are known endocrine disruptors that are ubiquitously found in the environment and have been detected 

in tissues and fluids of many organisms (Halden and Paull, 2005; Dann and Hontela, 2011; Dhillon et al., 

2015). Exposure to TCS and TCC is associated with reproductive and developmental toxicity, increased 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/protease
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib17
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib9
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib10
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obesity risk, infertility, and development and proliferation of cancer cells (Vandenberg et al., 2012; 

Higgins et al., 2011; Haggard et al., 2016; US EPA, 2017). Due to the growing concern regarding the use 

of antimicrobials by the general public, the FDA banned 19 chemicals chemicals (e.g., TCS, TCC, other 

halogenated aromatics, and methylbenzethonium chloride) from antibacterial soaps in the fall of 2016 

(FDA, 2016). Following this ruling by the FDA, a group of more than 200 scientists and medical 

professionals released a statement, known as The Florence Statement on TCS and TCC (Halden et al., 

2017). This statement called for further restrictions on the use of antimicrobials, as well as addressed 

gaps in our knowledge regarding the adverse effects of exposure to TCS and TCC (Halden et al., 2017).  

In 2017, The Florence Statement on TCS and TCC was published and summarized decades of 

research and raised concerns regarding the long-term health and ecological impacts of antimicrobials 

and the need for greater transparency during product development and toxicity testing before a 

chemical is used in a commercial product (Halden et al., 2017). In addition, the statement highlighted 10 

important points and gaps in our knowledge of TCS and TCC and presented 4 recommendations. The 

research shared here addressed the following recommendations and gaps in our knowledge of these 

two chemicals presented by The Florence Statement on TCS and TCC: (1) examine the reproductive and 

developmental impacts of TCS and TCC; (2) evaluate the safety of TCS, TCC, and their transformation 

products throughout the entire product life cycle, including environmental release; and (3) call the 

international community to limit the production and use of TCS and TCC (Halden et al., 2017).  

Reproductive and developmental toxicity 

TCS and TCC are known endocrine disruptors that were found to cause developmental and 

reproductive toxicity, decreased longevity, lipid accumulation, and altered activity of genes involved in 

the worm’s stress response (Lenz et al., 2017; Garcia-Espineira et al., 2018). In addition, TCS- and TCC-

induced toxicity was further examined via genetic analysis with a series of worm mutants and gene 

expression in wildtype worms. This study found that the loss or reduction of activity of IGF genes in 

https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib21
https://www.sciencedirect.com/science/article/pii/S0269749117318201?via%3Dihub#bib16
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mutant strains, especially age-1, pdk-1, and akt-1, were associated with decreased toxicity of TCS and 

TCC. Furthermore, TCS and TCC increased the expression of genes involved with IGF signaling and 

vitellogenesis. TCC increased the expression of daf-2, the IGF receptor, as well as other IGF genes. 

However, TCS does not increase the activity of daf-2. It is not clear how TCS increases the activity of IGF 

signaling genes downstream of daf-2. It is possible that TCS and TCC could bypass the IGF receptor due 

to their lipophilic properties, while TCC also increases the expression of the IGF receptor. Additional 

research is needed to determine if the lipophilic properties of TCS and TCC allow these chemicals to 

bypass the IGF receptor, daf-2.  

In addition, TCS and TCC increased the expression of vit-2, a vitellogenesis gene. The expression 

of vit-2 has been shown to inhibit yolk protein production resulting in increased intestinal lipid content 

(Ezcurra et al., 2018). Yolk synthesis, lipid redistribution, and intestinal atrophy are daf-2 and daf-16 

dependent processes (Ezcurra et al., 2018). An age-related vulval defect, avid phenotype, is 

hypothesized to be the result of reproduction causing the vulva to be a site of weakness that is 

exacerbated by the failure to shut down the production of yolk, protein, and fat (Leiser et al., 2016). 

Avid phenotypes are associated with the loss of oocyte production and decreased lifespan in C. elegans 

(Leiser et al., 2016). In our study, we found that mutants with decreased longevity in controls were 

associated with increased frequency of an avid phenotype and decreased reproduction. Worms with a 

mutation resulting in the loss of function of IGF signaling genes (e.g., daf-2, age-1, pdk-1, akt-1/2, and 

daf-16) did not develop this avid phenotype. Avids were not observed in wildtype worms exposed to TCS 

and TCC; however exposure to cyanopeptides did yield this development (Ch. 2). Additionally, we found 

that the expression of vit-2 was increased by both TCS and TCC in wildtype worms (Fig. 4.7), but we did 

not examine the expression of vit genes in the mutants with increased frequency of avid phenotype.  

To the best of our knowledge, this is the first study to examine the effects of TCS and TCC on IGF 

signalling. Additional research is needed to determine the role of IGF signalling and the expression of vit 
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genes in the production of avid phenotypes. Future research should examine the expression of vit genes 

in ist-1(ok2706), daf-18(ok480), daf-18(e1375), and akt-1(mg144) control worms, as well as worms 

exposed to environmental contaminants known to induce this avid phenotype. Moreover, it is 

hypothesized that this avid phenotype may be analogous to obesity in higher organisms (Leiser et al., 

2016), which is an adverse outcome associated with the overactivation of IGF, decreased lifespan, and 

decreased reproduction (Seidell et al., 1990; Berryman et al., 2013; Lewitt et al., 2014). Additional 

research is needed to determine if the avid phenotype is analogous to obesity. Future studies are 

needed to examine the molecular effects of TCS and TCC exposure at different ages, elucidate the 

potential mechanism(s) of toxicity resulting in Avid phenotype, and determine the transgenerational 

effects (See Appendix A and B for preliminary data). Additionally, future studies should examine the 

effect of TCS and TCC toxicity based on the exposure window, such as examining the development of 

Avids and gene expression using an exposure window beginning at egg stage. 

Given TCS and TCC increase IGF signaling, it is important to consider more localized effects TCS 

and TCC toxicity may have. It has been well established that IGF receptors in the brain (Lewitt & Boyd, 

2019). IGF signaling is an essential factor for early brain development and healthspan later in life, such 

as reproduction, mental health, and lipid synthesis and storage (Wrigley et al., 2017). During embryonic 

development, IGF expression occurs in the cortex, subventricular zone-olfactory bulb, hippocampus, 

cerebellum, hypothalamus, and spinal cord (O’Kusky & Ye, 2012; Nieto-Estevez et al., 2016). Once born 

and throughout adulthood, IGF expression occurs in the subventricular zone-olfactory bulb, 

hippocampus, cerebellum, and the choroid plexus (Falcao et al., 2012; Zeigler et al., 2015). In addition, 

IGF can act in the brain in an endocrine, paracrine, or autocrine manner (Nieto-Estevez et al., 2016). This 

is to the ability of IGF to (1) pass from the blood to the cerebrospinal fluid through the lipoprotein 

receptor-related protein 2 (LRP2); (2) cross the blood-brain-barrier by binding to the IGF receptor 

present in endothelial cells; and (3) be picked up in the brain either by astrocytes to be transferred to 
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neurons or directly by neurons (Nieto-Estevez et al., 2016; Grey &Thorner, 2017). Additional research is 

needed to determine how TCS and TCC exposure impacts IGF activity in the brain.  

TCS, TCC, and their degradation products 

TCS and TCC enter the environment everyday where these chemicals are exposed to solar 

ultraviolet (UV) radiation that can degrade these compounds and result in the formation of toxic and 

carcinogenic products, such as dioxins, furans, chlorophenols, and anilines (Latch et al., 2003; Aranami 

and Readman, 2007; Buth et al., 2009; Buth et al., 2010; Pycke et al., 2014; Alvarez-Rivera et al., 2016; 

Lehutso et al., 2017). These compounds have been widely detected in the environment, including 

surface water, soil, and sediment (Allmyr et al. 2008; Halden et al., 2014). The examination of the 

environmental risks TCS, TCC, and their degradation products should not be neglected (Lehutso et al., 

2017). Thus, we examined the effects UV exposure has on the toxicity of TCS and TCC using our 

established organismal and molecular endpoints, such as lethality, reproduction, hatching time, growth 

rate, and lifespan. Our findings showed that the TCS and TCC exposed to UV exhibited increased toxicity. 

The 24 hour lethality of 168 hours of UV exposure to TCS and TCC decreased from 3.65 mg/L to 0.81 

mg/L and 0.91 mg/L to 0.04 mg/L, respectively. At sublethal concentrations, TCS and TCC exposed to UV 

increased the sublethal toxicity in C. elegans. This was observed via delayed hatching and decreased 

reproduction and lifespan compared to ambient TCS and TCC exposure. These findings suggest that TCS, 

TCC, and their degradation may pose significant health risks to environmental and public health.  

Our next steps are to characterize the degradation products that were formed during the UV 

exposure and understand the underlying mechanism(s) of observed reproductive toxic effects of TCS, 

TCC, and their degradation products. Preliminary data on the degradation of TCS by UV exposure shows 

that TCS was degraded by UV exposure compared to control (Apendix C). Additional research is needed 

to verify the degradation of both TCS and TCC, as well as characterize their degradation products. This 

knowledge will provide insights into the production of specific byproducts and the toxicity of specific 
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mixtures of these toxic degradation products. Additionally, the established methods of characterization 

by mass spectrometry can be applied to future studies of environmentally persistent pollutants and 

their degradation products to determine the presence of specific molecules in various matrices (e.g., 

such as water, soil, urine, and serum), as well as the quantification and analysis of the total chemical 

exposure in toxicological studies. Quantifying the total chemical exposure in a model organism will 

provide a better understanding of the toxicological effects of the chemical of interest. This information 

will provide additional knowledge regarding the public health implications of exposure to these 

environmentally persistent pollutants and aid in the development of regulations and policies regarding 

the use, disposal, and cleanup of these pollutants. 

Public Health Policy 

Results from environmental toxicology studies, such as this one, can be used by policymakers as 

scientific evidence in support of the creation or amendment of public health policies (Guo et al., 2015). 

In Europe, the European Food Safety Administration (EFSA) and the European Chemicals Agency (ECHA) 

published their new 5 level guidance system for the identification of endocrine disrupting chemicals, 

which included the use of invertebrate models, such as nematodes, for the flagging of toxic chemicals 

and for providing scientific evidence in the creation of public health policies (Andersson et al., 2018). 

The published research presented in Chapter 3 is currently being used to aid in the amendment 

of Environmental Conservation Law (Add §37-0115) in New York State (S1184), co-sponsored by 

Senators Patty Ritchie and James Sanders Jr (Ritchie & Sanders, 2019). This bill calls for the banning of 

certain chemicals, such as TCS, from being manufactured, used, or stored in the state of New York 

(Ritchie & Sanders, 2019). This bill would call for a complete ban of TCS, in New York, which would be 

much more expansive than the FDA ban of 2016 (FDA, 2016; Ritchie & Sanders, 2019). Additional work is 

needed to regulate antimicrobials, such as TCS and TCC. However, the FDA ban of use in soaps and the 

work being done in New York State are examples of the changing times. Furthermore, the inclusion of 
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toxicological research using the model organism C. elegans by New York State, ECHA, and EFSA signifies 

the changing attitudes regarding invertebrate research and its role in the field of toxicology.  

Alternative Model 

Traditionally toxicology studies have employed vertebrate models, such as rodents and fish, to 

assess the potential toxicity of chemicals (Gao et al., 2018). This strategy has been important in 

establishing the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals (UNECE, 

2019). However, the use of vertebrate models is time-consuming, expensive, and raises ethical 

concerns. In recent years, regulatory agencies across the globe have pushed for the exploration of 

alternative animal models for toxicity testing (Krewski et al., 2010). For example, regulatory agencies in 

the United States are developing a list of approved alternative toxicological testing methods and a 

framework known as the Predictive Toxicology Roadmap for the scientific validation integration of these 

alternative toxicology methods (Schechtman, 2002; FDA, 2019; NTP, 2019a). The EFSA and ECHA have 

incorporated the use of invertebrate models for the identification of endocrine disrupting chemicals 

(Andersson et al., 2018). The inclusion of animal models that are less expensive and time-consuming are 

necessary for the screening of the ever-growing list of chemicals and for the advancement of the field of 

toxicology (Boyd et al., 2016).  

Alternative models that are being explored for toxicological studies include nematodes (Hoss 

and Weltie, 2007). Nematodes have been used for decades in research; however, it wasn’t until recently 

that these invertebrates were employed for toxicological research. Nematodes, such as C. elegans, can 

easily be used to screening chemicals, such as antimicrobials, cyanopeptides, and pharmaceuticals (Boyd 

et al., 2016). The available methods, well-understood biology, and extensive genetic information, short 

lifespan, and transparent bodies make C. elegans an excellent model to screen potential toxicants 

(Allard et al., 2013; Hägerbäumer et al., 2015). C. elegans-based assays can provide information on the 

toxicological effects of chemicals on development, the nervous and digestive systems, metabolics, 
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tissue-to-tissue signaling, reproduction, and aging (Planchart et al., 2016; NTP, 2019a; NTP, 2019b). 

Many pathways involved in organismal, endocrine function, and neural development are highly 

conserved in invertebrates and mammals (Leung et al., 2008). However, C. elegans lack many 

mammalian organs (i.e., eyes, lungs, heart, kidney, and liver) and adaptive immunity (Hunt, 2017). This 

means that C. elegans-based assays are an excellent model for studying ingestion, or oral toxicity, but 

not absorption studies, due to the presence of a cuticle (Hunt, 2017). Thus, C.elegans-based assays need 

to be paired with vertebrate models to determine the full extent of a chemical’s toxicological effects on 

an organism. However, C. elegans-based assays provide an excellent complement to in vitro and in vivo 

models that can red flag chemicals that need further examination for toxicological effects (Leung et al., 

2008; Xiong et al., 2017).  

The employment C. elegans-based assays would allow for faster screening of chemicals and 

allow for the appropriate stakeholders to address concerns earlier in the risk assessment process (Xiong 

et al., 2017). This will hopefully minimize or eliminate the use of high risk chemicals and limit their 

introduction into the environment (Krewski et al., 2010). A way in which early toxicity testing can be 

performed early in the production of chemicals and products is through the use of a high-throughput 

animal model, such as an invertebrate model (Szymanski et al., 2012). The use of C. elegans, or another 

invertebrate model, can provide a quick screen for new chemicals moving forward. Faster screening 

platforms will allow researchers, regulatory agencies, and companies the ability to flag chemicals that 

pose a potential risk to environmental and human health earlier in the process (Allard et al., 2013; Boyd 

et al., 2016; Schmeisser et al., 2017). This will allow concerns to be addressed before toxic and 

environmentally persist enter our environment.  

The use of C. elegans as a model organism can be taken a step further via the use of toxicity data 

from C. elegans studies to generate a computational model that can predict chemical toxicity. There are 

numerous toxicology studies using C. elegans as a model organism and a variety of established 



188 
 

endpoints to create a computational model (Sarma et al., 2018). For example, researchers are creating a 

computational model, such as OpenWorm, a model constructed using a variety of biological data to 

simulate biological functions of C. elegans in a 3D environment (Sarma et al., 2018; OpenWorm 

Foundation, 2018). The goal of computational models, such as OpenWorm, is to provide researchers 

with a platform that allows for the integration of rigorously tested simulations with existing theoretical 

or experimental methods (Gleeson et al., 2018; OpenWorm Foundation, 2018; Sarma et al., 2018). 

These methods could be applied to other organisms and assist in our understanding of biology (Sarma et 

al., 2018). 

The future use of a computional model, such as OpenWorm, requires the use of data regarding 

known toxicants, such as antimicrobials and cyanopeptides. Studies like the one presented here would 

provid the much needed data to begin constructing a computational model for the use for studying 

toxicology and risk assessment. Additional work is needed to obtain extensive data on the effects of a 

variety known toxicants in C. elegans to create an accurate computational model. Future studies can use 

the established methods and toxicological endpoints from this study to collect the necessary data.  

Conclusion 

The research presented here addresses gaps in our knowledge of the toxic effects of both 

cyanopeptides and antimicrobials. This study has established several organismal and molecular 

endpoints that can be employed for the investigation of the toxicological effects of chemicals. C. elegans 

can provide a bridge between in vitro assays and mammalian toxicity testing that can speed up the 

chemical screening process. These results will establish a new mechanism of TCS- and TCC-induced 

toxicity and provide valuable information to guide future studies using vertebrate models. This 

information will provide additional knowledge regarding the public health implications of exposure to 

these environmentally pollutants and aid in the development of regulations and policies regarding the 

use, disposal, and cleanup of these pollutants.  
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APPENDIX 

Appendix A: The transgenerational impact of TCS or TCC exposure on C. elegans reproduction, F0 

exposure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) TCS, (B) TCC. Error bars indicate standard errors of the mean based on two independent replicate 

experiments (n = 2). “*” indicates significant differences according to Tukey's HSD test in conjunction 

with ANOVA analysis (p < 0.05). Plate preparations and reproduction tests were proformed using 

methods described by Lenz (2017). F1 generation plates were set up using the progeny of F0 from day 2 

plates, after the number of progeny was recorded (6 worms per exposure with 1 worm per plate). 

Exposure to TCS (1 mg/L) and TCC (0.1 mg/L) occurred for only the F0 generation. Both F0 and F1 
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generations were followed for all of the reproductive cycle and all progeny were recorded ever other 

day. Following the reproductive cycle, the average number of progeny per worm was calculated by 

adding the number of progeny from all plates of an exposure concentration. The same procedures were 

followed for the F2 and F3 generations.   
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Appendix B: The transgenerational impact of TCS or TCC exposure on C. elegans reproduction, 

continually exposure from F0 to F3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) TCS, (B) TCC. Error bars indicate standard errors of the mean based on two independent replicate 

experiments (n = 2). “*” indicates significant differences according to Tukey's HSD test in conjunction 

with ANOVA analysis (p < 0.05). Plate preparations and reproduction tests were proformed using 

methods described by Lenz (2017). F1 generation plates were set up using the progeny of F0 from day 2 

plates, after the number of progeny was recorded (6 worms per exposure with 1 worm per plate). 

Exposure to TCS (1 mg/L) and TCC (0.1 mg/L) occurred for all 4 generations (F0, F1, F2, and F3). Both F0 

and F1 generations were followed for all of the reproductive cycle and all progeny were recorded ever 

other day. Following the reproductive cycle, the average number of progeny per worm was calculated 
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by adding the number of progeny from all plates of an exposure concentration. The same procedures 

were followed for the F2 and F3 generations.   
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Appendix C: Detection of the TCS in UV exposed samples using LC-MS/MS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) TCS Control (B) UV TCS; exposed for 168 hr. TCS was detected in the TCS control, at a mass-to-charge 

ratio of 287, but was not detected in the 168 hr UV exposed TCS sample. Further testing needed to 

detect the degradation of TCS and TCC from all samples. TCS is detected at 287-288 and TCC is detected 

at 308.   
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