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Abstract
Variation in movement across time and space fundamentally shapes the abundance 
and distribution of populations. Although a variety of approaches model structured 
population dynamics, they are limited to specific types of spatially structured pop-
ulations and lack a unifying framework. Here, we propose a unified network-based 
framework sufficiently novel in its flexibility to capture a wide variety of spati-
otemporal processes including metapopulations and a range of migratory patterns. 
It can accommodate different kinds of age structures, forms of population growth, 
dispersal, nomadism and migration, and alternative life-history strategies. Our ob-
jective was to link three general elements common to all spatially structured popu-
lations (space, time and movement) under a single mathematical framework. To do 
this, we adopt a network modeling approach. The spatial structure of a population 
is represented by a weighted and directed network. Each node and each edge has 
a set of attributes which vary through time. The dynamics of our network-based 
population is modeled with discrete time steps. Using both theoretical and real-
world examples, we show how common elements recur across species with dispa-
rate movement strategies and how they can be combined under a unified 
mathematical framework. We illustrate how metapopulations, various migratory 
patterns, and nomadism can be represented with this modeling approach. We also 
apply our network-based framework to four organisms spanning a wide range of 
life histories, movement patterns, and carrying capacities. General computer code 
to implement our framework is provided, which can be applied to almost any spa-
tially structured population. This framework contributes to our theoretical under-
standing of population dynamics and has practical management applications, 
including understanding the impact of perturbations on population size, distribu-
tion, and movement patterns. By working within a common framework, there is 
less chance that comparative analyses are colored by model details rather than 
general principles.
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1  | INTRODUCTION

Understanding the processes shaping species distribution and abun-
dance involves integrating three general elements that are character-
istic of all populations: space, time, and movement (Brown, Mehlman, 
& Stevens, 1995; Gadgil, 1971; Leirs et al., 1997; MacArthur, 1972; 
Newton, 2010; Tilman & Kareiva, 1997). First, local conditions in 
space limit and regulate population growth (Pianka, 1970) and variable 
spatial conditions result in variation in species demographic rates and 
abundance (Tilman & Kareiva, 1997). Second, population abundance 
varies over time, whether expressed as seasonality (Leirs et al., 1997), 
stochastic variation (Brown et al., 1995), or time-dependent variation 
in demographic processes (Newton, 2010). Third, given that most or-
ganisms are mobile to some degree, movement influences and inter-
acts with spatiotemporal changes in local conditions (Kubisch, Holt, 
Poethke, & Fronhofer, 2014).

Mathematical models have contributed to understanding the pro-
cesses driving spatiotemporal population dynamics (Brown, 1984; 
Collins & Glenn, 1991; Gaston & Lawton, 1990; Keeling, Wilson, & 
Pacala, 2000; Kerr, Neuhauser, Bohannan, & Dean, 2006; Kneitel & 
Miller, 2003). Mathematical approaches to simulate these processes in-
clude metapopulation models (Hanski & Hanski, 1999; Lamy, Gimenez, 
Pointier, Jarne, & David, 2013; Peterman et al. 2013), migratory net-
work (Erickson, Thogmartin, Russell, Diffendorfer, & Szymanski, 2014; 
Mattsson et al., 2012; Taylor & Norris, 2010; Wiederholt et al., 2013), 
and dispersal (Rudnick et al., 2012; Kubisch et al. 2014) models. Each 
of these models has fundamentally different structure, so it can be chal-
lenging to synthesize results across spatial or temporal scales, or modify 
models to meet the specifications of different ecological systems.

Our objective was to link the three general elements common to 
all spatially structured populations (space, time, and movement) under 
a single mathematical framework that is flexible enough to capture a 
wide variety of spatiotemporal dynamics and movement strategies. To 
do this, we adopt a network modeling approach. Network models orig-
inated in the mathematical field of graph theory and have been subse-
quently adapted to a wide variety of biological fields such as disease 
dynamics, molecular biology, landscape ecology, and conservation 
biology (Minor & Urban, 2008; Proulx, Promislow, & Phillips, 2005; 
Urban, Minor, Treml, & Schick, 2009). With their flexible structure, 
network models have been successfully used to study both connectiv-
ity and patch importance in metapopulations (Minor & Urban, 2007, 
2008; Urban & Keitt, 2001) and migratory networks (Bauer & Klaassen, 
2013; Iwamura et al., 2013; Nicol, Fuller, Iwamura, & Chades, 2015; 
Taylor & Norris, 2010; Wiederholt et al., 2013), but are not generally 
suitable to populations that exist on a continuous landscape.

In this study, we first describe the general elements of the network 
and show how these elements can be represented mathematically. 
Using both theoretical and real-world examples, we then demonstrate 

how, with straightforward modifications to the basic model structure, 
most, if not all, spatiotemporal population scenarios involving spatially 
structured populations can be represented using this approach. This in-
cludes metapopulations as well as various forms of migration including 
nomadism, partial, stepping-stone, and complete migration. Our frame-
work is also flexible enough to include carryover effects, and density 
dependence, and can accommodate various types of life histories, net-
work sizes, and carrying capacities. It can also be used to investigate in-
terspecific interactions and environmental perturbations. Rather than 
replacing any existing theory, our work shows how common elements 
recur across species with disparate movement strategies and how they 
can be combined under a unified mathematical framework. We are not 
proposing that our approach can handle spatiotemporal features that 
current models cannot. Our intent is to present a common language 
and modeling structure so that it is straightforward to model spatial, 
temporal, and movement processes in any type of population. A com-
mon framework makes it easier to compare different types of popula-
tions and study interactions between populations.

2  | MODEL DEVELOPMENT

2.1 | Terminology

Network models consist of a set of nodes connected by edges. In the 
context of populations, nodes represent habitats that can have unique 
“local” attributes, such as habitat size, habitat quality, and density de-
pendence. These attributes not only affect dynamics within that node 
but potentially other nodes in the network through the movement of in-
dividuals between nodes. In addition to unique attributes within a node, 
nodes can also be classified into sets that share attributes. For example, 
there may be a set of breeding nodes in which individuals can reproduce 
and a set of nonbreeding nodes in which individuals only survive or die.

Edges connect nodes and represent the potential for movement 
at each time step. They are the elements in the model that define 
the spatial structure of the system. In addition to connecting nodes, 
edges can be self-loops where individuals remain in a node from one 
time step to another. Edges can be weighted, which means they are 
associated with specific attributes. For example, there could be a 
cost (decreased survival) to move along an edge that is associated 
with a specific attribute of the edge (e.g., length or distance). Edges 
can also be directed, indicating a direction of movement between 
nodes, or undirected, meaning that movement can occur in both 
directions.

2.2 | Model description

In our model, the spatial structure of a population is represented by 
a weighted and directed network, consisting of n nodes. Each node 

K E Y W O R D S

connectivity, dispersal, metapopulations, migration, models, networks
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has a set of attributes which vary through time; for node i at time  
t, these attributes are denoted by the vector αi,t (node characteristics 
can include demographic processes such as survival and reproduction, 
as well as representing class and age transitions). Similarly, edges have 
a set of attributes; for the edge between nodes i and j, the attributes 
at time t are denoted by the vector βij,t.

To describe the dynamics of our network-based population, we de-
velop a model with discrete time steps. In a single time step, we update 
a node’s population size based on demographic information within the 
node, and simulate movement along the edges, which could represent 
migration, dispersal, or residency (i.e., self-loops). Thus, within one time 
period, we include both within-node dynamics (i.e., survival and repro-
duction) and between-node dynamics (i.e., movement and migration).

At time t, we denote the population size of node j after movement 
as Nj,t. Thus, for all j ∈ {1,…,n}, the population size of a node at time 
t + 1 is described by the sum of all individuals that moved to node j, 
or remained at node j, after demographic processes have taken place 
between times t and t + 1:

where fi,t is the function for updating population size at node i given by

pij,t is the transition probability function that specifies the propor-
tion of individuals moving along an edge,

and sij,t is the edge survival probability function,

The product in Equation 1, which we denote as Mij,t,

gives the total number of individuals traveling along the edge from 
node i to j at time t. Model variables and functions are summarized 
in Table 1. Note that the model equations given in Equation 1 can be 
written in matrix form (see Appendix S1).

The function fi,t of Equation 2 updates the population at node i and 
describes the population size of node i at time t before movement. It 
depends on the total number of individuals that arrived at the node 
at time t, Ni,t, and node characteristics represented by the vector αi,t. 
Note that if one is interested in the population size of node j after de-
mographic updates but before movement (instead of after movement, 
as in Equation 1), then keeping track of fj,t over time (instead of Nj,t) will 
provide this information.

The proportional movement function, pij,t, of Equation 3 gives the 
proportion of the node’s occupants that will move along the edge from 
node i to j at time t. In terms of the network, pij,t represents the weight 
associated with the edge connecting node i to node j. If pij,t is zero, 
then there is no edge connecting nodes i and j at time t. The function 
pij,t depends on the population at the starting node, Ni,t, node char-
acteristics, αi,t, and edge characteristics, βij,t. Density dependence will 
most likely be expressed in terms of the starting node’s population size 
after demographic updates, that is fi,t. More complex dependencies 
may also be included, such as delayed density dependence or carry 
over effects. We require that for all i ∈ {1,…,n}, the proportion of node 
i’s individuals that use each outgoing edge at a given time step sums 
to either 0 or 1. The sum is 1 if node i has at least one outgoing edge, 
which could be a self-loop, at a given time step. The sum is 0 if a node 
has no outgoing edges; this implies that the node is temporarily un-
occupied at that time (e.g., breeding habitats during the nonbreeding 
season in a migratory species). As the transition probability pij,t is time 
dependent, the probability of moving from node i to node j in a given 
time step, or season, is not necessarily the same probability of moving 
from node i to node j in a different time step, or season.

(1)Nj,t+1 =

n∑
i=1

sij,t ⋅pij,t ⋅ fi,t

(2)fi,t ≡ f(Ni,t,�i,t),

(3)pij,t ≡ p(Ni,t,�i,t,�ij,t),

(4)sij,t ≡ s(Ni,t,�i,t,�ij,t).

(5)Mij,t = sij,t ⋅pij,t ⋅ fi,t,

Ni,t Population size of node i at time t after movement to (or residency in) the 
node

αi,t Vector of node i’s characteristics at time t, such as carrying capacity, intrinsic 
growth rate, and habitat quality. Characteristics may depend on time (e.g., 
breeding season, nonbreeding season)

βij,t Vector of characteristics for the directed edge that connects node i to node j 
at time t. Characteristics may include number of stopover sites, which may 
depend on time (e.g., fall migration, spring migration)

fi,t ≡ f(Ni,t, αi,t) Function that represents the population size of node i at time t before movement 
to other nodes or residency in the same node. The function accounts for node 
population dynamics such as survival and reproduction. It depends on 
population size of node i and node characteristics

pij,t ≡ p(Ni,t, αi,t, βij,t) Function to determine the proportion of node i’s occupants that take 
movement pathway ij; depends on population size and characteristics of the 
starting node, as well as characteristics of the edge. For example, it may be a 
function of the starting node’s population before movement, fi,t

sij,t ≡ s(Ni,t, αi,t, βij,t) Function for the probability that individuals survive movement pathway ij 
depends on population size and characteristics of the starting node and edge 
characteristics. For example, it may be a function of the number of individu-
als moving along the edge, pij,t ∙ fi,t

Mij,t = sij,t pij,t fi,t The total number of individuals traveling along the edge from node i to j at time t

TABLE  1 Model variables and functions
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The function sij,t of Equation 4 is the probability that individuals 
moving along the edge from node i to node j will survive during time 
step t. This survival probability can be a function of the population 
at the starting node, Ni,t, characteristics of the starting node αi,t, as 
well as edge characteristics, βij,t, which may include the proportion of 
individuals moving along edge ij at time t, pij,t. Edge characteristics may 
also include processes such harvest rates, as seen in fall migration for 
waterfowl. As with Equation 3, density-dependent survival will most 
likely be expressed in terms of the node’s population size after demo-
graphic updates, fi,t.

If the population being modeled has multiple classes, then 
Equation 1 can be used for different age classes or stages. For in-
stance, suppose both adults (A) and juveniles (J) are tracked. At each 
time step and for each node i, Equation 1 is solved for both NA

i,j
 and 

N
J

i,j
. In this case, the functions sij,t, pij,t and fi,t may depend on both N

A
i,j
 

and NJ

i,j
 and class-specific node and edge characteristics. For exam-

ple, Ranunculus nodiflorus, Anas acuta (northern pintail), and Cervus 
canadensis (elk) are populations that are modeled with multiple classes 
(see Results section).

Each time step can represent any length of time, for example, one 
season or 1 year. Furthermore, the length of the time step can vary 
within a given model; time steps do not need to be equal in length. 
The length of the time step is determined by the life history and major 
stages of the annual cycle of a species. For example, for a typical North 
American migratory bird that reproduces after spring migration, the 
first time step could represent the period from the start of the breed-
ing season (immediately after spring migration) to the end of the fall 
migration and the second time step could represent the period from 
the start of the winter season (after fall migration) to the end of spring 
migration. Parameters need adjustment to reflect the underlying 
biological meaning for any modification in time step structure (e.g., 
survival should be adjusted to represent the survival over the entire 
duration of the time step).

2.3 | Model Features

2.3.1 | Features within a node

Each function in the model can be specified to encompass a variety 
of ecological phenomena relevant to population dynamics. For many 
populations, density dependence is important for modeling node-level 
population dynamics. Here, fi,t, can be specified so that survival or the 
population growth rate vary with the number of individuals entering 
that node or by specifying a node-specific carrying capacity. Many of 
the typical functions used to represent different patterns of density 
dependence are straightforward to incorporate here. For the Ricker 
equation, for example, node characteristics would include the expo-
nential growth rate and carrying capacity: αi,t = (ri,t, Ki,t).

The model also has the flexibility to specify carryover effects, 
which are events or processes that occur in one time period but 
have nonlethal effects on individuals in the following time period 
(Harrison, Blount, Inger, Norris, & Bearhop, 2011; O’Connor, Norris, 
Crossin, & Cooke, 2014). For example, survival or reproduction in 

the node could be affected by the amount of energy reserves indi-
viduals have at the beginning of the breeding season, which can be 
specified as a function of conditions in the node occupied during the 
previous time step. To incorporate carryover effects in the model, a 
function could be specified in which survival or reproduction in the 
node decreases with increasing distance traveled during the most 
recent migration or with the strength of density dependence in the 
previously occupied node (Betini, Griswold, & Norris, 2013; Norris 
& Taylor, 2006).

2.3.2 | Features in the proportional movement  
function

The proportional movement function p determines what propor-
tion of node occupants utilizes each possible edge. For migratory 
animals, a simple assumption for this function is heritability of the 
migratory route (Taylor & Norris, 2010). That is, the same propor-
tion of individuals arriving via a pathway in time t − 1 is directed 
along the same pathway (but in opposite direction) in time t, which 
can be specified as follows:

Note that this proportion function depends on the number of indi-
viduals that moved along edge ji in the previous time step, Mji,t−1 given 
in Equation 5, as well as the total number of individuals that arrived at 
node i at time t, Ni,t.

The model also has the capability to incorporate adaptive path 
switching, capturing the ability of individuals to choose movement 
paths based on the potential fitness payoff. For example, pij,t could 
vary based on the relative per capita growth rate of nodes in the previ-
ous time step (fj,t−1/Nj,t−1) such that pij,t is lower for pathways to nodes 
with lower relative per capita growth rates. The proportion pij,t could 
also vary according to a function combining the cost of migration (e.g., 
inverse of distance) to a specific node and the fitness benefits of that 
node (e.g., fecundity × node-specific survival).

2.3.3 | Features of migration and dispersal survival

The model can be readily modified to include energetic costs of mi-
gration or dispersal. For example, sij,t could be a function of the length 
of a movement pathway, the numbers of individuals using the edge, 
or the number of stopover sites. Such characteristics are described 
by βij,t. These migration and dispersal processes could also include 
density dependence (Morris, 1987, 1989) or carryover effects, such 
that survival is dependent on the density or habitat quality of node i 
prior to departure from the node (Donaldson et al., 2010).

2.3.4 | Specifying the model for particular 
movement strategies

Our modeling framework can be adapted to a variety of mobile or-
ganisms. The distinguishing feature of each population type is the 

(6)pij,t =
Mji,t−1

Ni,t

.
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structure of its network, and how it changes with each time step. Recall 
that the movement proportion function, pij,t, represents the weight of 
the edge (relative flow of individuals) connecting node i to node j at 
time t. Thus, the spatial structure of a population can be described 

by the movement proportion function, p. In particular, if edge ij is not 
used during a time step t, then pij,t is set to zero.

We applied our framework to five commonly recognized types 
of spatially structured populations: metapopulation, seasonal 

F IGURE  1 Our flexible framework 
can be applied to a variety of populations. 
Illustrated are five examples that exhibit 
different types of movement patterns: 
metapopulations, seasonal complete 
migratory populations, seasonal partial 
migratory populations, “stepping-stone” 
migratory populations, and nomadic 
populations. These movement patterns are 
shown using simple four-node networks 
with breeding and nonbreeding sites. The 
number of stationary/migration steps 
vary with each population, and conditions 
on the transition probabilities, pij,t, are 
described for each time step
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complete migration, seasonal partial migration, “stepping-stone” 
migration, and nomadism (Figure 1). We recognize that these strat-
egies are not mutually exclusive; individuals of many species may 
exhibit multiple strategies depending on the temporal and spatial 
scale of investigation (Chapman et al., 2014; Jonzén, Knudsen, Holt, 
& Sæther, 2011), and our modeling framework is flexible enough to 
allow for a single species to be modeled using multiple alternative 
network specifications.

In specifying functions f, p, and s for a movement strategy, it is use-
ful to classify a node as a breeding or nonbreeding node. For this dis-
cussion, we represent the set of all nodes as V. We denote VB ⊆ V as the 
set of breeding nodes and VNB = V − VB as the set of nonbreeding nodes. 
Therefore, node i ∈ VB, refers to a breeding node, i ∈ VNB refers to a 
nonbreeding node, and i ∈ V refers to a node of any type in the network.

2.4 | Spatially structured population types

2.4.1 | Metapopulation

In its most basic form, the modeling framework can represent a 
metapopulation, where fi,t represents reproduction and survival in 
a node. During a time step, the portion of the population that re-
mains in each node is represented by a self-loop in the network 
structure. Thus, if some individuals in node i remain there for the 
next time step, then pii,t is nonzero and sii,t is the resident survival 
rate. In the same time step t, a portion of individuals may disperse 
to other nodes, such that pij,t is nonzero for i ≠ j. Survival during 
dispersal is sij,t. For a typical metapopulation, all nodes are breeding 
nodes (V = VB), and dispersal to other nodes is infrequent. That is, 
the proportion of the population that are residents is usually close 
to one (pii,t ~ 1 for all i), and the proportion of the population that 
disperses to other nodes is close to zero (pij,t ≪ 1 for i ≠ j) for any 
given time step.

There are numerous examples of species that typically occur 
in metapopulations, including Drepanotrema depressissimum (tropi-
cal freshwater snails; Lamy et al., 2013), Tetrax tetrax (little bustards; 
Bretagnolle & Inchausti, 2005), and Lithobates sylvaticus (wood 
frogs; Peterman, Rittenhouse, Earl, & Semlitsch, 2013), although 
species recognized as having a “classic metapopulation” structure 
are rare (Fronhofer, Kubisch, Hilker, Hovestadt, & Poethke, 2012). 
Metapopulations can be modeled many ways using our framework, 
such as making nodes ephemeral by disallowing any survival or re-
production in a node during certain time periods, as in ponds used 
by tropical freshwater snails (Lamy et al., 2013). Source-sink dynamics 
can be modeled by altering node-specific survival and reproduction to 
create sources and sinks. Finally, density-dependent habitat selection 
(Morris, 1987, 1989) could be modeled by making pij,t a function of 
node carrying capacity and population size.

2.4.2 | Seasonal complete migration

For a seasonal, complete migratory pattern, the network is bipartite and 
consists of two disjoint sets of breeding nodes, VB, and nonbreeding 

nodes, VNB. No direct movement occurs between breeding nodes nor 
between nonbreeding nodes. That is, individuals only move from a 
breeding node to a nonbreeding node or from a nonbreeding node 
to a breeding node. Neotropical migrants such as Hylocichla mustelina 
(wood thrush; Stanley et al., 2015) and Setophaga ruticilla (American 
redstarts; Norris et al., 2006) exhibit this type of migration, moving 
from breeding sites in the United States and Canada to overwintering 
grounds in Central America and the Caribbean.

In the example of a seasonal complete migration network depicted 
in Figure 1, the first time step begins during the breeding season and 
ends with completion of migration to the nonbreeding nodes (pij,1 is 
nonzero only if i ∈ VB and j ∈ VNB). The second time step begins during 
the nonbreeding season and ends with subsequent migration back to 
the breeding nodes (pij,2 is nonzero only if i ∈ VNB and j ∈ VB). There are 
no year-round residents and no movement between breeding habitats 
nor between nonbreeding habitats.

2.4.3 | Partial migration

For a seasonal, partial migratory pattern, year-round residents and 
migratory individuals occur in one or more nodes. Species such as 
Tadarida brasiliensis mexicana (Mexican free-tailed bats) display this 
type of migration, where the majority of males and some females re-
main on the nonbreeding grounds year-round (Federico et al., 2008; 
McCracken & Gassel, 1997). As another example, some subpopula-
tions of Cervus canadensis (elk) stay in the breeding grounds at all times 
and forgo migration to overwintering grounds (Middleton et al., 2013).

In our example of a partial migration network (Figure 1), the first 
time step begins with the entire population in breeding nodes during 
the breeding season. The time step ends after a portion of the popu-
lation migrates to the nonbreeding nodes (i.e., pij,1 is nonzero for some 
i ∈ VB and j ∈ VNB). The second time step begins in the nonbreeding 
season and ends with the migratory individuals moving back to the 
breeding nodes (i.e., pij,2 is nonzero for some i ∈ VNB and j ∈ VB). Partial 
migration is modeled by a self-loop (i.e., pii,t > 0 for some i ∈ V) for 
those breeding areas and nonbreeding areas where some individuals 
remain as year-round residents.

2.4.4 | Stepping-stone migration

Our framework can also be applied to more complex migratory pat-
terns. In this example, we illustrate a “stepping-stone” migration 
system. In this pattern, individuals travel through a series of nodes, 
one by one throughout their annual cycle. Many migratory bird spe-
cies follow a stepping-stone pattern, as individuals stop to refuel at 
staging areas between breeding and nonbreeding grounds (Buler & 
Dawson, 2014). Some insect species also display this migratory pat-
tern with Danaus plexippus (monarch butterfly) as a well-known exam-
ple (Chapman et al., 2014; Prysby & Oberhauser, 2004).

For the example stepping-stone network illustrated in Figure 1, 
there is directed movement between successive breeding nodes fol-
lowed by movement to a nonbreeding node within one annual cycle. 
Only one edge is used per time step. That is, migration only occurs 
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from one habitat to one other habitat. Consequently, edge transition 
probabilities are either zero or one. The first time step begins with all 
individuals occurring in node 1 for their first breeding season of the 
year and ends upon completion of migration to node 2 (p12,1 = 1). The 
second time step begins with all surviving individuals initiating their 
second breeding season in node 2 and ends upon completion of migra-
tion to breeding node 3 (p23,2 = 1). All surviving individuals breed for 
the third time step in node 3 and then migrate to nonbreeding node 
4 (p34,3 = 1). The last time step begins with all surviving individuals in 
nonbreeding node 4 and ends with completion of migration to breed-
ing node 1 (p41,4 = 1).

2.4.5 | Nomadism

For nomadism, movement to any site during any time step is permit-
ted. Nomadism differs from migration in that although the movements 
do correspond with environmental fluctuations, interannual variabil-
ity is inconsistent and thus the timing of nomadic movements varies 
from year to year. Whereas metapopulations are characterized by rare 
movements (i.e., pij,t ~ 0 for i ≠ j), nomadic individuals are more likely 
to move between nodes multiple times per year. Nomadic species are 
animals that rely on food sources that are extremely ephemeral, ex-
emplified by desert dwellers (e.g., Polytelis alexandrae (princess parrot); 
Jonzén et al., 2011; Cottee-Jones, Matthews, & Whittaker, 2016).

In the example nomadic network (Figure 1), all nodes are breeding 
nodes (V = VB). Unlike seasonal and stepping-stone migration, none of 
the time-specific edge transition probabilities pij,t are set to 0 or 1 un-
less so determined by the resource levels available in each node during 
each season and year. This can be modeled stochastically or by letting 
pij,t be a function of the population size at node i as well as character-
istics and population sizes of other nodes.

3  | RESULTS

We illustrated above how our modeling framework can be adapted to a 
wide variety of mobile organisms using theoretical examples. We now 
demonstrate how our framework can be formally implemented by ap-
plying it to four example species showing a wide range of life histo-
ries, movement patterns, and carrying capacities. Our examples include 
a plant (Ranunculus nodiflorus) modeled as a metapopulation, a bird 
(Anas acuta) exhibiting seasonal complete migration, a mammal (Cervus 
canadensis) comprising a partial seasonal migratory population, and an 
insect (Danaus plexippus) that has as a stepping-stone movement pat-
tern. Table 2 gives a summary of the four models. Figure 2 illustrates 
their network structure. Details are provided here on how the four 
models were parameterized. A full description of each model, as well 
as additional model results, can be found in Appendix S2. General R 
code (version 3.2.1) was created for the general network framework of 
Equation 1 and then adapted for each of the four examples. The code 
as well as files with model parameters can be found in Sample et al. 
(2017).

3.1 | Ranunculus nodiflorus (metapopulation)

To illustrate the application of our framework to a metapopulation, we 
modeled Ranunculus nodiflorus (buttercup family), which is a rare and 
endangered annual plant that occurs in Spain, Portugal, and France 
(Noël, Machon, & Robert, 2013). The plant grows only in ponds, re-
produces by selfing (Kircher, Ferdy, Andalo, Colas, & Moret, 2003), 
produces seeds during April and May, and then dies soon after repro-
duction (Noël et al., 2013). Seeds float and disperse along water cor-
ridors that arise during flooding connecting adjacent ponds, and thus, 
they operate as a typical metapopulation (Kircher et al., 2003; Noël 

TABLE  2 Model summary for species-specific example populations

Attribute Ranunculus nodiflorus Anas acuta Cervus canadensis Danaus plexippus

Movement system Metapopulation Seasonal complete 
migration

Seasonal partial migration Stepping-stone migration

Number of nodes 8 3 breeding, 2 nonbreeding 3 3 breeding, 1 
nonbreeding

Number of time steps 
in cycle

3 3 2 7

Recruitment Locally density-dependent Locally density dependent Locally density dependent Locally density 
dependent

Survival Constant Node and edge specific, 
locally density dependent

Node-specific, locally 
density dependent

Node and edge specific

Movement 
probabilities

Constant Edge specific, logistic 
density-dependent 
function for some in 
spring

Edge specific Edge specific

Special features Age structure Sex specific, age structure, 
harvest

Age structure, female only Multiple generations 
within annual cycle

Carrying capacity 800 5,500,000 3600 Unknown

Key reference Noël et al. (2013) Mattsson et al. (2012) Middleton et al. (2013) Flockhart et al. (2015)
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et al., 2013). Some seeds germinate in autumn and others germinate 
in spring. We model the system as an age-structured metapopulation 
with eight nodes based on a representative chain of ponds (Figure 2a). 
The two age classes are as follows: seeds, denoted by a superscript S, 
and plants, denoted by a superscript P. We track both classes through 
three times steps, or seasons, within an annual cycle: summer, au-
tumn/winter, and spring.

The nodal update function (Equation 2) for seeds, fS
i,t
≡ f(NS

i,t
,NP

i,t
,�i,t) 

is given by 

Seed survival rates, sS
i,t
= 0.7, are constant across seasons and 

identical across nodes, Ri,t is the reproductive rate of plants producing 
seeds and equal to 11.5 in the summer and zero otherwise, and Ti,t 
represents the germination rate or transition rate of seeds to plants, 
which is zero in the summer, 0.569 in the autumn/winter, and 0.995 
in the spring. The nodal update function for plants, fP

i,t
≡ f(NS

i,t
,NP

i,t
,�i,t),  

is given by

We assume that, at each node, no plants survive the summer 
after they produce seeds (sP

i,t
= 0) and that all plants survive in the 

fS
i,t
= sS

i,t
⋅NS

i,t

⏟⏟⏟

seeds that

survive

+ Ri,t ⋅N
P

i,t

⏟⏟⏟

new seeds

fromplants

− Ti,t ⋅s
S

i,t
⋅NS

i,t

⏟⏞⏞⏞⏟⏞⏞⏞⏟

seeds that transitition

to plants

fP
i,t
= sP

i,t
⋅NP

i,t

⏟⏟⏟

plants that

survive

+ Ψi,t ⋅Ti,t ⋅s
S

i,t
⋅NS

i,t

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

seeds that successfully

transitition to plants

F IGURE  2 Our modeling framework is 
applied to four example species showing 
a wide range of life histories, movement 
patterns, and carrying capacities. The 
network structure and edge transition 
probabilities for each population are shown, 
where DD indicates a density-dependent 
transition probability. (a) Ranunculus 
nodiflorus is modeled as a metapopulation 
with eight nodes, three seasons, and 
two age classes (seeds and plants). Seed 
and plant transition probabilities differ. 
As plants do not disperse, the network 
is disconnected and all plants remain in 
their node. (b) Anas acuta (northern pintail) 
exhibits seasonal complete migration. The 
population is modeled with three breeding 
nodes and two nonbreeding nodes in three 
seasons. There and two classes, females 
and males, with two age classes for each 
sex, juveniles and adult. Edge transition 
probabilities are the same for all classes. 
(c) Cervus canadensis (elk) comprises a 
partial seasonal migratory population 
with three nodes and two seasons. The 
female population is modeled with two 
age classes, adults and juveniles. The two 
classes have the same constant transition 
probabilities, but different density-
dependent transition probabilities. (d) 
Danaus plexippus (monarch butterfly) has 
a stepping-stone movement pattern. The 
population is modeled using one class, four 
nodes and seven seasons. See Appendix S2 
and Sample et al. (2017) for model details, 
outcomes, parameterization, and computer 
code for each species
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autumn/winter and spring seasons (sP
i,t
= 1). The second term is the 

product of seeds that survive, sS
i,t
NS
i,t
, the seed germination rate, Ti,t,  

and the density-dependent postgermination survival rate Ψi,t is 
given by

Ki = 100 is the carrying capacity at node i and the maximum germi-
nation rate, ψi,t, is 0.34 in the autumn/winter and 1 in the spring. Thus, 
the vector of node characteristics is �i,t = (sS

i,t
,sP
i,t
,Ti,t,Ri,t,Ki,ψi,t) repre-

senting all node-specific parameters. We assume edge transition prob-
abilities (Equation 3) are not season dependent and that seeds remain 
at the node 90% of the time and disperse to any adjacent node with 
equal probability. Plants do not move between nodes so that pij,t = 1 if 
i = j and 0 otherwise (Figure 2a). We further assume an edge survival 
probability of 1 for every edge and at every time step (Equation 4).

In the model, ponds containing the plant in an initial 1999 study 
(Kircher et al., 2003) were assigned a small initial population of 10 in 
the beginning of the summer. Initial seed population was set to 0. After 
9 years, the small initial population of plants disperse to all ponds in 
the network and sustain a small, but persistent population (Figure 3a). 
Table 3 shows equilibrium population values for each season and each 
class. Table 4 presents the equilibrium population distribution in each 
of the ponds, which depends on the season.

3.2 | Anas acuta (complete migration)

The northern pintail is an example of a population that performs sea-
sonal complete migration. The northern pintail is widely distributed 
in wetland regions; it breeds in the northern areas of North America, 
Europe, and Asia and winters close to the equator. Some individu-
als use a stopover site during spring migration. We illustrate how 

Ψi,t = ψi,t exp

(
−
NP
i,t
+ Ti,t ⋅s

S
i,t
⋅NS

i,t

Ki

)

F IGURE  3 We demonstrate that our model can be applied to a variety of populations. We show simulated population dynamics for all four 
species example species by running the code provided in Sample et al. (2017). (a) After 9 years, the small initial population of plants (Ranunculus 
nodiflorus) disperses to all ponds in the network and sustain a persistent population. (b) The pintail model converged to a steady-state solution 
after 66 years, with a breeding population of 5.98 million, which is comparable to the results found by Mattsson et al. (2012) in the absence of 
harvest. Note that there are more males than female and no juveniles in the beginning of the breeding season. (c) After 16 years, the elk model 
reached a steady state. (d) The monarch model converged to a steady state after 4 years

(a) (b)

(c) (d)



502  |     SAMPLE et al.

the sex-specific and age-structured model for the North American 
population presented in Mattsson et al. (2012) can be translated to 
our network framework. Reproduction, winter survival, and one of 
the movement probabilities are density dependent, and the model ac-
counts for birds killed by hunters each fall, making one of the edge 
survival probabilities density dependent (Figure 2b).

The model consists of a network of five nodes with a set of 
three breeding nodes, Alaska (AK), Prairie Pothole (PR), and Northern 
Unsurveyed (NU), enumerated 1–3, and a set of two wintering nodes, 
California (CA) and Gulf Coast (GC), enumerated 4 and 5. The PR node 
also serves as a stopover site during spring migration. Thus, we divide 
the annual cycle into three time steps: breeding/fall, winter/spring, 
and spring stopover. Time steps vary in length, depending on the 
season. The population is modeled using two classes, females (F) and 
males (M), with two age classes for each sex, juveniles (J) and adults 
(A). The main reason to group the individuals in four different catego-
ries is differential node and edge survival rates. Let NA∙

i,t
 be the number 

of adult males or females and NJ∙

i,t
 be the number of juvenile males or 

females in node i at time t, where the superscript indicates the sex 
class: ∙∈{M,F}. We define the vector Ni,t =

(
NAF

i,t
,NAM

i,t
,N

JF

i,t
,N

JM

i,t

)
, whose 

elements consist of the population sizes for the four classes at node 
i and time t.

The function (Equation 2) that represents adult survival and transi-
tions into the adult stage for each node i at time step t, fA∙

i,t
≡ f(Ni,t,�i,t),  

is given by 

Ti,t represents the transition from juveniles to adults, which is 1 
in the winter/spring season and 0 otherwise. Adult node-specific sur-
vival, sA∙

i,t
, is constant during the breeding/fall season (0.81 for females 

and 0.98 for males) and stopover step (1 for both sexes). In the winter 
(i.e., posthunting), it depends on density and other node characteris-
tics (eqn 3 of Mattsson et al. (2012)). The nodal update function for ju-
veniles, fJ∙

i,t
≡ f(Ni,t,�i,t), exclusively represents the addition of offspring 

in node i at time t,

where Ri,t is the reproduction rate, which is nonzero during the breed-
ing/fall season and depends on total nodal population size and other 
node characteristics (eqn 2 of Mattsson et al. (2012)). Edge transi-
tion probabilities (Equation 3) do not depend on the sex or age class, 
pA∙
ij,t

= p
J∙

ij,t
≡ p(Ni,t,�i,t,�ij,t) and are constant except during the spring 

stopover step when the probability is density dependent when the 
origin node is PR (Figure 2b). In this case,

where 

Edge survival probabilities (Equation 4), sA∙
ij,t

≡ s(�ij,t) and s
J∙

ij,t
≡ s(�ij,t) 

are constant and only sex dependent during fall migration when hunt-
ing takes place. Given the above parameterization, the vector of node 
characteristics is �i,t = (sF

i,t
,sM
i,t
,Pi ,aik,δik,ψ

max
i

,bi0,bi1,s
F
imin

,sF
imax

,sM
imin

,sM
imax

) 
for k∈{0,1,2} and the vector of edge characteristics is given by 
�ij,t =

(
sA
ij,t
,s
J

ij,t
,KAM

ij,t
,KAF

ij,t
,K

JM

ij,t
,K

JF

ij,t
,ψij

)
.

The model has an initial population of N
AF

0
= N

AM

0
=

[465000,986850,160650,0,0] and zero population for juveniles 
(Mattsson et al., 2012). The model converged to a steady-state solution 
after 66 years, with a breeding population of 5.98 million (Figure 3b), 
which is comparable to the results found by Mattsson et al. (2012) in 
the absence of harvest. Table 5 shows the equilibrium population. 
Equilibrium population distribution (Table 6) demonstrates the relative 
node importance. The highest proportion of the population is located 
in AK, CA, and PR during the breeding/fall, winter/spring, and spring 
stopover seasons, respectively. Pathway importance can be assigned 
by calculating the proportion of migrants using a path. Table 7 presents 
the average annual flux, or proportion of migrants, using each path in 
the pintail model. Here, we see that the path representing migrants who 
remain in AK between the stopover and breeding season and the path 
representing the transition from AK to CA have the highest flux.

3.3 | Cervus canadensis (Partial Migration)

Elk are large mammals that occur across North America. The best-
studied populations occur in, and adjacent to, Yellowstone National 
Park, where the abundance of elk has been monitored for decades 
(Middleton et al., 2013). Elk near Cody, Wyoming comprise a partial 
seasonally migratory population where one group of elk remain resi-
dent year-round in areas east of Yellowstone National Park and an-
other group migrates seasonally from a shared overwintering grounds 
to breeding grounds in Yellowstone National Park (Middleton et al., 
2013). Our model accounts for density-dependent variation in recruit-
ment and survival at the nodes (Figure 2c).

The female elk population is modeled with a network of three 
nodes and two age classes, juveniles (J) and adults (A). Juveniles are 
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+ Ti,t ⋅s
A∙
i,t
⋅N

J∙

i,t
⋅

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

juveniles that transition

to adults and survive

f
J∙

i,t
= Ri,t ⋅s

AF

i,t
⋅NAF

i,t

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

juveniles born to

adult females

pA∙
2j,t

= p
J∙

2j,t
=

⎧
⎪⎨⎪⎩

1−
ψmax

2

1+ e−Yt
, j = 2
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2
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F
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) + δ22P2.

TABLE  3 Equilibrium population of plants and seeds at the 
beginning of each season for Ranunculus nodiflorus

Season Seeds Plants

Summer 4 342

Autumn/Winter 3,942 0

Spring 1,189 75

TABLE  4 Equilibrium population distribution of plants at the 
beginning of each season for Ranunculus nodiflorus

Node Summer Autumn/Winter Spring

Ponds 1 and 8 0.126 0 0.130

Ponds 2 and 7 0.124 0 0.120

Ponds 3–6 0.125 0 0.125
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elk less than 1 year old. Furthermore, we assume the ratio of adult 
females to adult males is 4:1 (Mack & Singer 1993) and the ratio of 
female juveniles to male juveniles is 1.5:1 (Houston 1982). We divide 
the annual cycle into two time steps: winter/spring and summer/fall. 
Nodes 1–3 are labeled Yellowstone, Nonbreeding migratory, and Cody 
year-round.

The function of Equation 2, fA
i,t
≡ f

(
NA

i,t
,N

J

i,t
,�i,t

)
 represents adult 

survival with rate sA
i,t
 and transitions into the adult group with rate Tt 

for node i at time t and is given by: 

We assume female juveniles transition to adults every summer; 
therefore, Tt = 1 during the summer/fall and zero otherwise. A previ-
ous model by Taper (2002) proposed a density-dependent adult sur-
vival, so we set the seasonal rate to be

Juvenile survival, sJ
i,t
, is constant during the winter/spring season 

and density dependent in the summer/fall season (Singer et al. 1997): 

Above, Ki is the carrying capacity of node i, which we assume to 
be proportional to area (details on parameterization can be found in 
Appendix S2). The function, fJ

i,t
≡ f(NA

i,t
,NJ

i,t
,�i,t), which represents juve-

niles’ survival, recruitment, and transitions out of this group, is given 
by 

where reproduction rates, ri,t, are estimated by the proportion of 
pregnant elk, using a weighted average for all age classes presented 
in Figure 3 of Middleton et al. (2013), and assumes that cows do not 
have twins. Reproduction rate is higher for residents (0.86) than for 
the migratory (0.68) subpopulation, and it only occurs during the sum-
mer/fall time step. The coefficient 0.6 represents the proportion of 
calves that are female. Given the above parameterization, the vector 
of node characteristics is given by �i,t = (s0

t
,rit,K

A
i
,KJ

i ).
Edge transition probabilities, p∙

ij,t
≡ p(N∙

i,t
,�i,t,�ij,t), for juveniles and 

adults are constant during fall migration, but density dependent during 
spring migration (Figure 2c). This density dependence accounts for the 
inheritance of a movement pathway: A resident elk will remain a resi-
dent and a migratory elk will remain migratory (Equation 6). The den-
sity dependence is modeled using 

 

Note that M∙

33,t−1
 is given in Equation 4 and represents the num-

ber of individuals (of the specified class) that were residents in node 
3 in the previous time step. For the winter/spring season, all indi-
viduals in node 2 migrate to node 1, p∙

21,t
= 1 and for the summer/

fall season the resident elk population in node 3 will remain there, 
p∙
33,t

= 1. We assume migration mortality is taken into account at the 
nodes and therefore set edge survival to one: s∙

ij,t
= 1 for all t and all 

i,j∈{1,… ,n}.
The model is simulated with an initial population of 

N
A

0
= [0,1427,2173] at the start of winter and zero calves. The model 

converged to a steady state after 16 years (Figure 3c). The calf:cow 
ratio before breeding in the beginning of summer is 0.31 for the 
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Season Adult female Adult male Juvenile female Juvenile male

Breeding/fall 2,332,055 3,651,902 0 0

Winter/spring 1,696,110 3,213,489 985,778 985,778

Spring stopover 2,332,055 3,651,902 0 0

TABLE  5 Equilibrium population of 
males, females, and juveniles at the 
beginning of the season for Anas acuta

TABLE  6 Equilibrium population distribution at each node at the 
beginning of each season for Anas acuta. The five nodes are Alaska 
(AK), Prairie Pothole (PR), Northern Unsurveyed (NU), California (CA), 
and Gulf Coast (GC)

Node Breeding/Fall Winter/Spring Spring Stopover

AK 0.4187 0 0.3875

PR 0.3003 0 0.6125

NU 0.2810 0 0

CA 0 0.6716 0

GC 0 0.3284 0

TABLE  7 Equilibrium pathway flux, averaged across seasons for 
Anas acuta. Here, pathway flux is the proportion of migrants using a 
pathway and the row indicates the origin node and column is the 
destination node. The five nodes are Alaska (AK), Prairie Pothole 
(PR), Northern Unsurveyed (NU), California (CA), and Gulf Coast (GC)

AK PR NU CA GC

AK 0.129 0 0 0.128 0.013

PR 0.010 0.100 0.094 0.056 0.056

NU 0 0 0 0.040 0.040

CA 0.118 0.100 0 0 0

GC 0.012 0.104 0 0 0
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migratory subpopulation and 0.37 for the resident subpopulation. The 
calf:cow ratio at the beginning of winter is 0.36 in node 2 (migratory 
subpopulation) and 0.40 in node 3 (migratory and residents). These 
results align with observations from the mid-1990s (Middleton et al., 
2013). Table 8 shows the equilibrium population numbers. The equilib-
rium population distribution (Table 9) shows that the highest propor-
tion of the population resides in the year-round node for both seasons, 
indicating that management actions at this location could have a large 
impact. Average pathway flux is shown in Table 10. Here, we see that 
the pathway representing the resident population remaining in the 
year-round node has the highest flux, so management actions aimed 
at the resident population may impact the highest number of animals.

3.4 | Danaus plexippus (stepping-stone migration)

Each autumn, monarch butterflies in eastern North America migrate 
from breeding areas in the northern USA and southern Canada to 
nonbreeding areas in central Mexico. At the end of the 6-month non-
breeding season, monarchs begin to mate and migrate north in March 
to breeding grounds in the southern USA. Remigrating butterflies lay 
eggs and die, whereupon their eggs develop into caterpillars and then 
butterflies, which continue to fly north and recolonize the entire breed-
ing distribution in successive breeding generations until September. 
The last generation of monarchs eclose in a nonreproductive state 
(diapause) and migrate south en masse to the overwintering colonies 
in Mexico. The recolonization over multiple breeding generations 
and return migration to the nonbreeding grounds is represented as a 
stepping-stone migration pattern. We convert the model presented in 
Flockhart, Pichancourt, Norris, and Martin (2015) to our network-based 
model, which accounts for density-dependent recruitment at the nodes 
(Figure 2d).

The female monarch population is modeled using a network of 
four nodes representing regions of eastern North America: Mexico (M), 
South (S), Central (C), and North (N), enumerated 1–4, respectively. 
Mexico is considered a wintering node, and the other three nodes are 
breeding nodes. An annual cycle consists of seven time steps: Winter, 
April, May, June, July, August, and September.

The nodal update function of Equation 2, fi,t ≡ f(Ni,t,�i,t) accounts 
for survival and reproduction: 

and the vector of node characteristics is �i,t = (sA
i
,sP
i
,mi). Here, 

E = 268 is the number of eggs per female per month. Adult survival, 
sA
i
, is 0.939 in the winter and 0.308 otherwise, and pupal survival, sP

i
,  

is 0.849 at node i (Flockhart et al., 2015). Larval survival is depend-
ent on egg density per milkweed stem at node i (Flockhart, Martin, 
& Norris, 2012). Edge transition probabilities of Equation 3, pij,t 
vary across seasons but are assumed to be constant, not density 
dependent, each year (Figure 2d). Transition probabilities are de-
rived from Table S3 in Flockhart et al. (2015). The edge survival 
probabilities, sij.t, given in Equation 4 are constant for a given time 
step t. Survival probabilities were derived from an expert elicita-
tion exercise as presented in Flockhart et al. (2015). The model has 
an initial population of N0 = [28250000,0,0]. The model converged 
to a steady-state solution after 4 years (Figure 3d). Table 11 shows 
the equilibrium population numbers at the beginning of each sea-
son. Equilibrium population distribution at the nodes (Table 12) 
shows the relative importance of Mexico and South regions, as 
100% of the population resides in each node during the Winter 
and April season, respectively. During the later months of August 
and September, the population is more evenly split among the oc-
cupied nodes.

fi,t = sA
i
⋅Ni,t

⏟⏟⏟

adults that

survive

+ sA
i
⋅sP

i
⋅sL

i
⋅E ⋅Ni,t

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

eggs that survive and

transition to adults

TABLE  8 Equilibrium population of adult and juvenile females for 
Cervus canadensis at the beginning of each season

Season Juveniles Adults

Winter/Spring 1,318 3,507

Summer/Fall 949 2,968

TABLE  9 Equilibrium population distribution at each node during 
the beginning of each season for Cervus canadensis

Node Winter/Spring Summer/Fall

Yellowstone 0 0.42

Nonbreeding migratory 0.35 0

Cody year-round 0.65 0.58

Node Yellowstone
Nonbreeding  
migratory

Cody 
year-round

Yellowstone 0 0.18 0.03

Nonbreeding migratory 0.18 0 0

Cody year-round 0.03 0 0.59

TABLE  10 Equilibrium pathway flux 
averaged across seasons for Cervus 
canadensis. Here, pathway flux is the 
proportion of migrants using a pathway, 
where the row indicates the origin node 
and column is the destination node

TABLE  11 Equilibrium population numbers at the beginning of 
each season for adult Danaus plexippus

Season Adult monarchs

Winter 104,369,878

April 50,678,510

May 65,711,517

June 86,725,288

July 134,481,626

August 142,239,303

September 128,489,061
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4  | DISCUSSION

We provided a network-based framework that can be applied to 
metapopulations, a wide range of migratory patterns, and other 
spatially structured populations. This is, to our knowledge, the only 
modeling framework that is flexible enough to accommodate dif-
ferent types of spatially structured populations (Esler, 2000; Taylor 
& Hall, 2012). It can be adapted to accommodate different forms 
of class or age structures, various forms of population growth and 
movement, network sizes, and alternative patterns of life-history 
strategy. It can also include carryover effects and density depend-
ence and can model interspecific interactions and environmental 
perturbations. Our modeling approach bridges the gap between 
metapopulations and migratory populations by building upon previ-
ous work of Esler (2000), who posited that metapopulation theory 
can be applied to migratory birds during distinct seasons if the sub-
populations are independent, and Taylor and Hall (2012), who de-
veloped a model explicitly linking a metapopulation model (Levins, 
1970) to migratory species.

The flexibility of our framework stems not only from its ability 
to caricature different types of populations but also because it can 
accommodate varying degrees of model complexity. In the simplest 
scenario, functions sij,t, pij,t, and fi,t are constant. Covariates can be 
added to any of these functions, for example, Ni,t could be included to 
model density-dependent demographics. Furthermore, stochasticity 
can be easily incorporated in the model through simulation where 
parameter values are recursively sampled from user-defined proba-
bility distributions. Last, our framework could be used as a common 
basis for fitting integrated population models to empirical data and 
parameter estimation using Bayesian hierarchical analysis (Schaub & 
Abadi, 2011).

Our common modeling framework is also useful for comparing 
impacts of environmental perturbations among sympatric popula-
tions. As an example, when the Anaxyrus americanus (American toad) 
and Lithobates catesbeianus (bullfrog) coexist in a landscape, the 
population-level effects of anthropogenic stressors (e.g., mercury) on 
amphibian dynamics can be studied under one modeling framework 
(Willson & Hopkins, 2013; Willson, Hopkins, Bergeron, & Todd, 2012). 
Another benefit of using a consistent population modeling approach 
is to study interactions among different populations. Predation by 
Ursus arctos (grizzly bears) and Canis lupus (wolves) on Cervus elaphus 
(Greater Yellowstone elk) (Middleton et al., 2013) could be examined 
under our framework by modeling the three interacting networks. 
Model functions in such interacting networks can depend on the pop-
ulation size and parameters of the interacting species. For instance, 

the nodal update function for elk may depend not only on the elk 
population but also on the population size of wolves and bears at the 
node. This example also illustrates that metapopulations (bears and 
wolves) and migratory populations (elk) can be modeled under one 
unifying framework. In this way, a number of different types of species 
interactions, including competition and mutualisms, could be modeled 
using our framework, allowing for increased understanding of spatially 
structured community dynamics as well.

Our modeling framework provides the opportunity to improve 
understanding of movement ecology by unraveling the underlining 
processes shaping spatiotemporal population dynamics. A common 
demographic framework makes it straightforward to incorporate in-
dividual variation in movement strategies that almost always occur 
within highly mobile species. This can enhance our understanding of 
fitness benefits of different movement strategies (e.g., residency vs. 
partial vs. complete migration) and how such fitness variation influ-
ences the evolution of different movement strategies (McPeek & Holt, 
1992; Morris, Diffendorfer, & Lundberg, 2004; Taylor & Norris, 2007).

Improved understanding of movement processes can in turn 
inform many potential management applications. It can be used, 
for example, to model the impact of habitat loss and changes in 
migratory flow or habitat quality along with other types of pertur-
bations on population size, species persistence, distribution, and 
movement patterns including migration. The network model can 
also be used to quantify the per capita contribution of individual 
edges and nodes to population dynamics (Runge, Runge, & Nichols, 
2006). Network topology measures can be used in these analy-
ses, for example, to examine the robustness of spatial structure to 
perturbations such as node removal (Fortuna, Gomez-Rodriguez, 
& Bascompte, 2006). Such considerations will no doubt prove 
crucial to our ability to anticipate and mediate the rapid pace of 
habitat fragmentation worldwide. By working within a common 
framework, there is less chance that comparative analyses are 
colored by model details rather than general principles. Above all, 
we sincerely hope that by providing a robust template for spatially 
structured population modeling, we encourage further work in this 
rapidly evolving field.
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