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Abstract
Variation	in	movement	across	time	and	space	fundamentally	shapes	the	abundance	
and	distribution	of	populations.	Although	a	variety	of	approaches	model	structured	
population	dynamics,	they	are	limited	to	specific	types	of	spatially	structured	pop-
ulations	and	lack	a	unifying	framework.	Here,	we	propose	a	unified	network-	based	
framework	 sufficiently	 novel	 in	 its	 flexibility	 to	 capture	 a	wide	 variety	 of	 spati-
otemporal	processes	including	metapopulations	and	a	range	of	migratory	patterns.	
It	can	accommodate	different	kinds	of	age	structures,	forms	of	population	growth,	
dispersal,	nomadism	and	migration,	and	alternative	life-	history	strategies.	Our	ob-
jective	was	to	link	three	general	elements	common	to	all	spatially	structured	popu-
lations	(space,	time	and	movement)	under	a	single	mathematical	framework.	To	do	
this,	we	adopt	a	network	modeling	approach.	The	spatial	structure	of	a	population	
is	represented	by	a	weighted	and	directed	network.	Each	node	and	each	edge	has	
a	set	of	attributes	which	vary	through	time.	The	dynamics	of	our	network-	based	
population	 is	modeled	with	discrete	 time	 steps.	Using	both	 theoretical	 and	 real-	
world	examples,	we	show	how	common	elements	recur	across	species	with	dispa-
rate	 movement	 strategies	 and	 how	 they	 can	 be	 combined	 under	 a	 unified	
mathematical	 framework.	We	 illustrate	 how	metapopulations,	 various	migratory	
patterns,	and	nomadism	can	be	represented	with	this	modeling	approach.	We	also	
apply	our	network-	based	framework	to	four	organisms	spanning	a	wide	range	of	
life	histories,	movement	patterns,	and	carrying	capacities.	General	computer	code	
to	implement	our	framework	is	provided,	which	can	be	applied	to	almost	any	spa-
tially	structured	population.	This	framework	contributes	to	our	theoretical	under-
standing	 of	 population	 dynamics	 and	 has	 practical	 management	 applications,	
including	understanding	the	 impact	of	perturbations	on	population	size,	distribu-
tion,	 and	movement	patterns.	By	working	within	 a	 common	 framework,	 there	 is	
less	 chance	 that	 comparative	 analyses	 are	 colored	 by	model	 details	 rather	 than	
general	principles.
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1  | INTRODUCTION

Understanding	the	processes	shaping	species	distribution	and	abun-
dance	involves	integrating	three	general	elements	that	are	character-
istic	of	all	populations:	space,	time,	and	movement	(Brown,	Mehlman,	
&	Stevens,	1995;	Gadgil,	1971;	Leirs	et	al.,	1997;	MacArthur,	1972;	
Newton,	 2010;	 Tilman	 &	 Kareiva,	 1997).	 First,	 local	 conditions	 in	
space	limit	and	regulate	population	growth	(Pianka,	1970)	and	variable	
spatial	conditions	result	in	variation	in	species	demographic	rates	and	
abundance	(Tilman	&	Kareiva,	1997).	Second,	population	abundance	
varies	over	time,	whether	expressed	as	seasonality	(Leirs	et	al.,	1997),	
stochastic	variation	(Brown	et	al.,	1995),	or	time-	dependent	variation	
in	demographic	processes	(Newton,	2010).	Third,	given	that	most	or-
ganisms	are	mobile	to	some	degree,	movement	influences	and	inter-
acts	with	 spatiotemporal	 changes	 in	 local	 conditions	 (Kubisch,	Holt,	
Poethke,	&	Fronhofer,	2014).

Mathematical	models	have	contributed	to	understanding	the	pro-
cesses	 driving	 spatiotemporal	 population	 dynamics	 (Brown,	 1984;	
Collins	 &	 Glenn,	 1991;	 Gaston	 &	 Lawton,	 1990;	 Keeling,	Wilson,	 &	
Pacala,	 2000;	 Kerr,	 Neuhauser,	 Bohannan,	 &	Dean,	 2006;	 Kneitel	 &	
Miller,	2003).	Mathematical	approaches	to	simulate	these	processes	in-
clude	metapopulation	models	(Hanski	&	Hanski,	1999;	Lamy,	Gimenez,	
Pointier,	Jarne,	&	David,	2013;	Peterman	et	al.	2013),	migratory	net-
work	(Erickson,	Thogmartin,	Russell,	Diffendorfer,	&	Szymanski,	2014;	
Mattsson	et	al.,	2012;	Taylor	&	Norris,	2010;	Wiederholt	et	al.,	2013),	
and	dispersal	(Rudnick	et	al.,	2012;	Kubisch	et	al.	2014)	models.	Each	
of	these	models	has	fundamentally	different	structure,	so	it	can	be	chal-
lenging	to	synthesize	results	across	spatial	or	temporal	scales,	or	modify	
models	to	meet	the	specifications	of	different	ecological	systems.

Our	objective	was	to	link	the	three	general	elements	common	to	
all	spatially	structured	populations	(space,	time,	and	movement)	under	
a	single	mathematical	framework	that	is	flexible	enough	to	capture	a	
wide	variety	of	spatiotemporal	dynamics	and	movement	strategies.	To	
do	this,	we	adopt	a	network	modeling	approach.	Network	models	orig-
inated	in	the	mathematical	field	of	graph	theory	and	have	been	subse-
quently	adapted	to	a	wide	variety	of	biological	fields	such	as	disease	
dynamics,	 molecular	 biology,	 landscape	 ecology,	 and	 conservation	
biology	 (Minor	&	Urban,	 2008;	 Proulx,	 Promislow,	&	 Phillips,	 2005;	
Urban,	Minor,	 Treml,	 &	 Schick,	 2009).	With	 their	 flexible	 structure,	
network	models	have	been	successfully	used	to	study	both	connectiv-
ity	and	patch	importance	in	metapopulations	(Minor	&	Urban,	2007,	
2008;	Urban	&	Keitt,	2001)	and	migratory	networks	(Bauer	&	Klaassen,	
2013;	 Iwamura	et	al.,	2013;	Nicol,	Fuller,	 Iwamura,	&	Chades,	2015;	
Taylor	&	Norris,	2010;	Wiederholt	et	al.,	2013),	but	are	not	generally	
suitable	to	populations	that	exist	on	a	continuous	landscape.

In	this	study,	we	first	describe	the	general	elements	of	the	network	
and	 show	 how	 these	 elements	 can	 be	 represented	 mathematically.	
Using	both	theoretical	and	real-	world	examples,	we	then	demonstrate	

how,	with	straightforward	modifications	to	the	basic	model	structure,	
most,	if	not	all,	spatiotemporal	population	scenarios	involving	spatially	
structured	populations	can	be	represented	using	this	approach.	This	in-
cludes	metapopulations	as	well	as	various	forms	of	migration	including	
nomadism,	partial,	stepping-	stone,	and	complete	migration.	Our	frame-
work	is	also	flexible	enough	to	include	carryover	effects,	and	density	
dependence,	and	can	accommodate	various	types	of	life	histories,	net-
work	sizes,	and	carrying	capacities.	It	can	also	be	used	to	investigate	in-
terspecific	interactions	and	environmental	perturbations.	Rather	than	
replacing	any	existing	theory,	our	work	shows	how	common	elements	
recur	across	species	with	disparate	movement	strategies	and	how	they	
can	be	combined	under	a	unified	mathematical	framework.	We	are	not	
proposing	that	our	approach	can	handle	spatiotemporal	features	that	
current	models	cannot.	Our	 intent	 is	 to	present	a	common	 language	
and	modeling	structure	so	that	 it	 is	straightforward	to	model	spatial,	
temporal,	and	movement	processes	in	any	type	of	population.	A	com-
mon	framework	makes	it	easier	to	compare	different	types	of	popula-
tions	and	study	interactions	between	populations.

2  | MODEL DEVELOPMENT

2.1 | Terminology

Network	models	consist	of	a	set	of	nodes	connected	by	edges.	In	the	
context	of	populations,	nodes	represent	habitats	that	can	have	unique	
“local”	attributes,	such	as	habitat	size,	habitat	quality,	and	density	de-
pendence.	These	attributes	not	only	affect	dynamics	within	that	node	
but	potentially	other	nodes	in	the	network	through	the	movement	of	in-
dividuals	between	nodes.	In	addition	to	unique	attributes	within	a	node,	
nodes	can	also	be	classified	into	sets	that	share	attributes.	For	example,	
there	may	be	a	set	of	breeding	nodes	in	which	individuals	can	reproduce	
and	a	set	of	nonbreeding	nodes	in	which	individuals	only	survive	or	die.

Edges	connect	nodes	and	represent	the	potential	for	movement	
at	each	time	step.	They	are	 the	elements	 in	 the	model	 that	define	
the	spatial	structure	of	the	system.	In	addition	to	connecting	nodes,	
edges	can	be	self-	loops	where	individuals	remain	in	a	node	from	one	
time	step	to	another.	Edges	can	be	weighted,	which	means	they	are	
associated	with	 specific	 attributes.	 For	 example,	 there	 could	 be	 a	
cost	 (decreased	survival)	 to	move	along	an	edge	that	 is	associated	
with	a	specific	attribute	of	the	edge	(e.g.,	length	or	distance).	Edges	
can	 also	 be	 directed,	 indicating	 a	 direction	 of	movement	 between	
nodes,	 or	 undirected,	 meaning	 that	 movement	 can	 occur	 in	 both	
directions.

2.2 | Model description

In	our	model,	the	spatial	structure	of	a	population	is	represented	by	
a	weighted	and	directed	network,	consisting	of	n	nodes.	Each	node	

K E Y W O R D S
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has	 a	 set	 of	 attributes	which	 vary	 through	 time;	 for	 node	 i	 at	 time	 
t,	these	attributes	are	denoted	by	the	vector	αi,t	(node	characteristics	
can	include	demographic	processes	such	as	survival	and	reproduction,	
as	well	as	representing	class	and	age	transitions).	Similarly,	edges	have	
a	set	of	attributes;	for	the	edge	between	nodes	i	and	j,	the	attributes	
at	time	t	are	denoted	by	the	vector	βij,t.

To	describe	the	dynamics	of	our	network-	based	population,	we	de-
velop	a	model	with	discrete	time	steps.	In	a	single	time	step,	we	update	
a	node’s	population	size	based	on	demographic	information	within	the	
node,	and	simulate	movement	along	the	edges,	which	could	represent	
migration,	dispersal,	or	residency	(i.e.,	self-	loops).	Thus,	within	one	time	
period,	we	include	both	within-	node	dynamics	(i.e.,	survival	and	repro-
duction)	and	between-	node	dynamics	(i.e.,	movement	and	migration).

At	time	t,	we	denote	the	population	size	of	node	j	after	movement	
as	Nj,t.	Thus,	 for	all	 j ∈ {1,…,n},	 the	population	size	of	a	node	at	 time	
t +	1	is	described	by	the	sum	of	all	 individuals	that	moved	to	node	 j,	
or	remained	at	node	j,	after	demographic	processes	have	taken	place	
between	times	t	and	t + 1:

where fi,t	is	the	function	for	updating	population	size	at	node	i	given	by

pij,t	 is	the	transition probability	function	that	specifies	the	propor-
tion	of	individuals	moving	along	an	edge,

and	sij,t	is	the	edge survival probability	function,

The	product	in	Equation	1,	which	we	denote	as	Mij,t,

gives	the	total	number	of	individuals	traveling	along	the	edge	from	
node	 i	 to	 j	at	 time	 t.	Model	variables	and	functions	are	summarized	
in	Table	1.	Note	that	the	model	equations	given	in	Equation	1	can	be	
written	in	matrix	form	(see	Appendix	S1).

The	function	fi,t	of	Equation	2	updates	the	population	at	node	i	and	
describes	the	population	size	of	node	i	at	time	t	before	movement.	It	
depends	on	the	total	number	of	 individuals	that	arrived	at	the	node	
at	time	t, Ni,t,	and	node	characteristics	represented	by	the	vector	αi,t. 
Note	that	if	one	is	interested	in	the	population	size	of	node	j	after	de-
mographic	updates	but	before	movement	(instead	of	after	movement,	
as	in	Equation	1),	then	keeping	track	of	fj,t	over	time	(instead	of	Nj,t)	will	
provide	this	information.

The	proportional	movement	function,	pij,t,	of	Equation	3	gives	the	
proportion	of	the	node’s	occupants	that	will	move	along	the	edge	from	
node	i	to	j	at	time	t.	In	terms	of	the	network,	pij,t	represents	the	weight 
associated	with	 the	edge	connecting	node	 i	 to	node	 j.	 If	pij,t	 is	 zero,	
then	there	is	no	edge	connecting	nodes	i	and	j	at	time	t.	The	function	
pij,t	depends	on	 the	population	at	 the	starting	node,	Ni,t,	node	char-
acteristics,	αi,t,	and	edge	characteristics,	βij,t.	Density	dependence	will	
most	likely	be	expressed	in	terms	of	the	starting	node’s	population	size	
after	 demographic	 updates,	 that	 is	 fi,t.	More	 complex	 dependencies	
may	also	be	 included,	 such	as	delayed	density	dependence	or	 carry	
over	effects.	We	require	that	for	all	i ∈	{1,…,n},	the	proportion	of	node	
i’s	individuals	that	use	each	outgoing	edge	at	a	given	time	step	sums	
to	either	0	or	1.	The	sum	is	1	if	node	i	has	at	least	one	outgoing	edge,	
which	could	be	a	self-	loop,	at	a	given	time	step.	The	sum	is	0	if	a	node	
has	no	outgoing	edges;	this	 implies	that	the	node	is	temporarily	un-
occupied	at	that	time	(e.g.,	breeding	habitats	during	the	nonbreeding	
season	in	a	migratory	species).	As	the	transition	probability	pij,t	is	time	
dependent,	the	probability	of	moving	from	node	i	to	node	j	in	a	given	
time	step,	or	season,	is	not	necessarily	the	same	probability	of	moving	
from	node	i	to	node	j	in	a	different	time	step,	or	season.

(1)Nj,t+1 =

n∑
i=1

sij,t ⋅pij,t ⋅ fi,t

(2)fi,t ≡ f(Ni,t,�i,t),

(3)pij,t ≡ p(Ni,t,�i,t,�ij,t),

(4)sij,t ≡ s(Ni,t,�i,t,�ij,t).

(5)Mij,t = sij,t ⋅pij,t ⋅ fi,t,

Ni,t Population	size	of	node	i	at	time	t	after	movement	to	(or	residency	in)	the	
node

αi,t Vector	of	node	i’s	characteristics	at	time	t,	such	as	carrying	capacity,	intrinsic	
growth	rate,	and	habitat	quality.	Characteristics	may	depend	on	time	(e.g.,	
breeding	season,	nonbreeding	season)

βij,t Vector	of	characteristics	for	the	directed	edge	that	connects	node	i	to	node	j 
at	time	t.	Characteristics	may	include	number	of	stopover	sites,	which	may	
depend	on	time	(e.g.,	fall	migration,	spring	migration)

fi,t	≡	f(Ni,t,	αi,t) Function	that	represents	the	population	size	of	node	i	at	time	t	before	movement	
to	other	nodes	or	residency	in	the	same	node.	The	function	accounts	for	node	
population	dynamics	such	as	survival	and	reproduction.	It	depends	on	
population	size	of	node	i	and	node	characteristics

pij,t	≡	p(Ni,t,	αi,t,	βij,t) Function	to	determine	the	proportion	of	node	i’s	occupants	that	take	
movement	pathway	ij;	depends	on	population	size	and	characteristics	of	the	
starting	node,	as	well	as	characteristics	of	the	edge.	For	example,	it	may	be	a	
function	of	the	starting	node’s	population	before	movement,	fi,t

sij,t	≡	s(Ni,t,	αi,t,	βij,t) Function	for	the	probability	that	individuals	survive	movement	pathway	ij 
depends	on	population	size	and	characteristics	of	the	starting	node	and	edge	
characteristics.	For	example,	it	may	be	a	function	of	the	number	of	individu-
als	moving	along	the	edge,	pij,t ∙ fi,t

Mij,t = sij,t pij,t fi,t The	total	number	of	individuals	traveling	along	the	edge	from	node	i	to	j	at	time	t

TABLE  1 Model	variables	and	functions
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The	 function	 sij,t	 of	Equation	4	 is	 the	probability	 that	 individuals	
moving	along	the	edge	from	node	i	to	node	j	will	survive	during	time	
step	 t.	This	 survival	 probability	 can	be	 a	 function	of	 the	population	
at	 the	 starting	node,	Ni,t,	 characteristics	of	 the	 starting	node	αi,t,	 as	
well	as	edge	characteristics,	βij,t,	which	may	include	the	proportion	of	
individuals	moving	along	edge	ij	at	time	t,	pij,t.	Edge	characteristics	may	
also	include	processes	such	harvest	rates,	as	seen	in	fall	migration	for	
waterfowl.	As	with	Equation	3,	density-	dependent	survival	will	most	
likely	be	expressed	in	terms	of	the	node’s	population	size	after	demo-
graphic	updates,	fi,t.

If	 the	 population	 being	 modeled	 has	 multiple	 classes,	 then	
Equation	1	 can	 be	 used	 for	 different	 age	 classes	 or	 stages.	 For	 in-
stance,	suppose	both	adults	(A)	and	juveniles	(J)	are	tracked.	At	each	
time	step	and	for	each	node	 i,	Equation	1	 is	solved	for	both	NA

i,j
	and	

N
J

i,j
.	In	this	case,	the	functions	sij,t, pij,t	and	fi,t	may	depend	on	both	N

A
i,j
 

and	NJ

i,j
	 and	 class-	specific	 node	 and	 edge	 characteristics.	 For	 exam-

ple,	 Ranunculus nodiflorus,	Anas acuta	 (northern	 pintail),	 and	 Cervus 
canadensis	(elk)	are	populations	that	are	modeled	with	multiple	classes	
(see	Results	section).

Each	time	step	can	represent	any	length	of	time,	for	example,	one	
season	or	1	year.	Furthermore,	 the	 length	of	 the	 time	step	can	vary	
within	a	given	model;	 time	steps	do	not	need	to	be	equal	 in	 length.	
The	length	of	the	time	step	is	determined	by	the	life	history	and	major	
stages	of	the	annual	cycle	of	a	species.	For	example,	for	a	typical	North	
American	migratory	bird	 that	 reproduces	after	 spring	migration,	 the	
first	time	step	could	represent	the	period	from	the	start	of	the	breed-
ing	season	(immediately	after	spring	migration)	to	the	end	of	the	fall	
migration	and	the	second	time	step	could	represent	the	period	from	
the	start	of	the	winter	season	(after	fall	migration)	to	the	end	of	spring	
migration.	 Parameters	 need	 adjustment	 to	 reflect	 the	 underlying	
biological	meaning	 for	 any	modification	 in	 time	 step	 structure	 (e.g.,	
survival	should	be	adjusted	to	represent	the	survival	over	the	entire	
duration	of	the	time	step).

2.3 | Model Features

2.3.1 | Features within a node

Each	function	in	the	model	can	be	specified	to	encompass	a	variety	
of	ecological	phenomena	relevant	to	population	dynamics.	For	many	
populations,	density	dependence	is	important	for	modeling	node-	level	
population	dynamics.	Here,	fi,t,	can	be	specified	so	that	survival	or	the	
population	growth	rate	vary	with	the	number	of	individuals	entering	
that	node	or	by	specifying	a	node-	specific	carrying	capacity.	Many	of	
the	typical	functions	used	to	represent	different	patterns	of	density	
dependence	are	straightforward	to	 incorporate	here.	For	the	Ricker	
equation,	for	example,	node	characteristics	would	include	the	expo-
nential	growth	rate	and	carrying	capacity:	αi,t	=	(ri,t,	Ki,t).

The	model	 also	 has	 the	 flexibility	 to	 specify	 carryover	 effects,	
which	 are	 events	 or	 processes	 that	 occur	 in	 one	 time	 period	 but	
have	nonlethal	 effects	 on	 individuals	 in	 the	 following	 time	period	
(Harrison,	Blount,	Inger,	Norris,	&	Bearhop,	2011;	O’Connor,	Norris,	
Crossin,	&	Cooke,	2014).	 For	example,	 survival	 or	 reproduction	 in	

the	node	could	be	affected	by	the	amount	of	energy	reserves	indi-
viduals	have	at	the	beginning	of	the	breeding	season,	which	can	be	
specified	as	a	function	of	conditions	in	the	node	occupied	during	the	
previous	time	step.	To	incorporate	carryover	effects	in	the	model,	a	
function	could	be	specified	in	which	survival	or	reproduction	in	the	
node	decreases	with	 increasing	distance	 traveled	during	 the	most	
recent	migration	or	with	the	strength	of	density	dependence	in	the	
previously	occupied	node	(Betini,	Griswold,	&	Norris,	2013;	Norris	
&	Taylor,	2006).

2.3.2 | Features in the proportional movement  
function

The	 proportional	 movement	 function	 p	 determines	 what	 propor-
tion	of	node	occupants	utilizes	each	possible	edge.	For	migratory	
animals,	a	simple	assumption	for	this	function	is	heritability	of	the	
migratory	route	(Taylor	&	Norris,	2010).	That	is,	the	same	propor-
tion	 of	 individuals	 arriving	 via	 a	 pathway	 in	 time	 t −	1	 is	 directed	
along	the	same	pathway	(but	in	opposite	direction)	in	time	t,	which	
can	be	specified	as	follows:

Note	that	this	proportion	function	depends	on	the	number	of	indi-
viduals	that	moved	along	edge	ji	in	the	previous	time	step,	Mji,t−1	given	
in	Equation	5,	as	well	as	the	total	number	of	individuals	that	arrived	at	
node	i	at	time	t, Ni,t.

The	model	 also	 has	 the	 capability	 to	 incorporate	 adaptive	 path	
switching,	 capturing	 the	 ability	 of	 individuals	 to	 choose	 movement	
paths	 based	 on	 the	 potential	 fitness	 payoff.	 For	 example,	pij,t	 could	
vary	based	on	the	relative	per	capita	growth	rate	of	nodes	in	the	previ-
ous	time	step	(fj,t−1/Nj,t−1)	such	that	pij,t	is	lower	for	pathways	to	nodes	
with	lower	relative	per	capita	growth	rates.	The	proportion	pij,t	could	
also	vary	according	to	a	function	combining	the	cost	of	migration	(e.g.,	
inverse	of	distance)	to	a	specific	node	and	the	fitness	benefits	of	that	
node	(e.g.,	fecundity	×	node-	specific	survival).

2.3.3 | Features of migration and dispersal survival

The	model	can	be	readily	modified	to	include	energetic	costs	of	mi-
gration	or	dispersal.	For	example,	sij,t	could	be	a	function	of	the	length	
of	a	movement	pathway,	the	numbers	of	individuals	using	the	edge,	
or	the	number	of	stopover	sites.	Such	characteristics	are	described	
by	βij,t.	These	migration	and	dispersal	processes	could	also	 include	
density	dependence	(Morris,	1987,	1989)	or	carryover	effects,	such	
that	survival	is	dependent	on	the	density	or	habitat	quality	of	node	i 
prior	to	departure	from	the	node	(Donaldson	et	al.,	2010).

2.3.4 | Specifying the model for particular 
movement strategies

Our	modeling	 framework	can	be	adapted	to	a	variety	of	mobile	or-
ganisms.	 The	 distinguishing	 feature	 of	 each	 population	 type	 is	 the	

(6)pij,t =
Mji,t−1

Ni,t

.
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structure	of	its	network,	and	how	it	changes	with	each	time	step.	Recall	
that	the	movement	proportion	function,	pij,t,	represents	the	weight	of	
the	edge	(relative	flow	of	individuals)	connecting	node	 i	to	node	 j	at	
time	 t.	 Thus,	 the	 spatial	 structure	of	 a	population	 can	be	described	

by	the	movement	proportion	function,	p.	In	particular,	if	edge	ij	is	not	
used	during	a	time	step	t,	then	pij,t	is	set	to	zero.

We	applied	our	framework	to	five	commonly	recognized	types	
of	 spatially	 structured	 populations:	 metapopulation,	 seasonal	

F IGURE  1 Our	flexible	framework	
can	be	applied	to	a	variety	of	populations.	
Illustrated	are	five	examples	that	exhibit	
different	types	of	movement	patterns:	
metapopulations,	seasonal	complete	
migratory	populations,	seasonal	partial	
migratory	populations,	“stepping-	stone”	
migratory	populations,	and	nomadic	
populations.	These	movement	patterns	are	
shown	using	simple	four-	node	networks	
with	breeding	and	nonbreeding	sites.	The	
number	of	stationary/migration	steps	
vary	with	each	population,	and	conditions	
on	the	transition	probabilities,	pij,t,	are	
described	for	each	time	step
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complete	 migration,	 seasonal	 partial	 migration,	 “stepping-	stone”	
migration,	and	nomadism	(Figure	1).	We	recognize	that	these	strat-
egies	 are	 not	mutually	 exclusive;	 individuals	 of	many	 species	may	
exhibit	multiple	 strategies	 depending	 on	 the	 temporal	 and	 spatial	
scale	of	investigation	(Chapman	et	al.,	2014;	Jonzén,	Knudsen,	Holt,	
&	Sæther,	2011),	and	our	modeling	framework	is	flexible	enough	to	
allow	for	a	single	species	to	be	modeled	using	multiple	alternative	
network	specifications.

In	specifying	functions	f,	p,	and	s	for	a	movement	strategy,	it	is	use-
ful	to	classify	a	node	as	a	breeding	or	nonbreeding	node.	For	this	dis-
cussion,	we	represent	the	set	of	all	nodes	as	V.	We	denote	VB ⊆ V	as	the	
set	of	breeding	nodes	and	VNB = V −	VB	as	the	set	of	nonbreeding	nodes.	
Therefore,	node	 i ∈ VB,	 refers	 to	a	breeding	node,	 i ∈ VNB	 refers	 to	a	
nonbreeding	node,	and	i ∈ V	refers	to	a	node	of	any	type	in	the	network.

2.4 | Spatially structured population types

2.4.1 | Metapopulation

In	 its	 most	 basic	 form,	 the	 modeling	 framework	 can	 represent	 a	
metapopulation,	where	 fi,t	 represents	 reproduction	and	survival	 in	
a	node.	During	a	time	step,	 the	portion	of	 the	population	that	re-
mains	 in	 each	 node	 is	 represented	 by	 a	 self-	loop	 in	 the	 network	
structure.	Thus,	 if	 some	 individuals	 in	node	 i	 remain	 there	 for	 the	
next	time	step,	then	pii,t	 is	nonzero	and	sii,t	 is	the	resident	survival	
rate.	In	the	same	time	step	t,	a	portion	of	individuals	may	disperse	
to	 other	 nodes,	 such	 that	pij,t	 is	 nonzero	 for	 i ≠ j.	 Survival	 during	
dispersal	is	sij,t.	For	a	typical	metapopulation,	all	nodes	are	breeding	
nodes	(V = VB),	and	dispersal	to	other	nodes	 is	 infrequent.	That	 is,	
the	proportion	of	the	population	that	are	residents	is	usually	close	
to	one	(pii,t	~	1	for	all	 i),	and	the	proportion	of	the	population	that	
disperses	to	other	nodes	 is	close	to	zero	(pij,t ≪	1	for	 i ≠	j)	 for	any	
given	time	step.

There	 are	 numerous	 examples	 of	 species	 that	 typically	 occur	
in	 metapopulations,	 including	 Drepanotrema depressissimum	 (tropi-
cal	 freshwater	snails;	Lamy	et	al.,	2013), Tetrax tetrax	 (little	bustards;	
Bretagnolle	 &	 Inchausti,	 2005),	 and	 Lithobates sylvaticus	 (wood	
frogs;	 Peterman,	 Rittenhouse,	 Earl,	 &	 Semlitsch,	 2013),	 although	
species	 recognized	 as	 having	 a	 “classic	 metapopulation”	 structure	
are	 rare	 (Fronhofer,	 Kubisch,	 Hilker,	 Hovestadt,	 &	 Poethke,	 2012).	
Metapopulations	 can	 be	modeled	many	ways	 using	 our	 framework,	
such	 as	making	 nodes	 ephemeral	 by	 disallowing	 any	 survival	 or	 re-
production	 in	 a	 node	during	 certain	 time	periods,	 as	 in	 ponds	 used	
by	tropical	freshwater	snails	(Lamy	et	al.,	2013).	Source-	sink	dynamics	
can	be	modeled	by	altering	node-	specific	survival	and	reproduction	to	
create	sources	and	sinks.	Finally,	density-	dependent	habitat	selection	
(Morris,	1987,	1989)	could	be	modeled	by	making	pij,t	 a	 function	of	
node	carrying	capacity	and	population	size.

2.4.2 | Seasonal complete migration

For	a	seasonal,	complete	migratory	pattern,	the	network	is	bipartite	and	
consists	of	two	disjoint	sets	of	breeding	nodes,	VB,	and	nonbreeding	

nodes,	VNB.	No	direct	movement	occurs	between	breeding	nodes	nor	
between	 nonbreeding	 nodes.	 That	 is,	 individuals	 only	move	 from	 a	
breeding	node	 to	a	nonbreeding	node	or	 from	a	nonbreeding	node	
to	a	breeding	node.	Neotropical	migrants	such	as	Hylocichla mustelina 
(wood	thrush;	Stanley	et	al.,	2015)	and	Setophaga ruticilla	 (American	
redstarts;	Norris	 et	al.,	 2006)	 exhibit	 this	 type	of	migration,	moving	
from	breeding	sites	in	the	United	States	and	Canada	to	overwintering	
grounds	in	Central	America	and	the	Caribbean.

In	the	example	of	a	seasonal	complete	migration	network	depicted	
in	Figure	1,	the	first	time	step	begins	during	the	breeding	season	and	
ends	with	completion	of	migration	to	the	nonbreeding	nodes	 (pij,1	 is	
nonzero	only	if	i ∈ VB	and	j ∈ VNB).	The	second	time	step	begins	during	
the	nonbreeding	season	and	ends	with	subsequent	migration	back	to	
the	breeding	nodes	(pij,2	is	nonzero	only	if	i ∈ VNB	and	j ∈ VB).	There	are	
no	year-	round	residents	and	no	movement	between	breeding	habitats	
nor	between	nonbreeding	habitats.

2.4.3 | Partial migration

For	 a	 seasonal,	 partial	 migratory	 pattern,	 year-	round	 residents	 and	
migratory	 individuals	 occur	 in	 one	 or	more	 nodes.	 Species	 such	 as	
Tadarida brasiliensis mexicana	 (Mexican	 free-	tailed	 bats)	 display	 this	
type	of	migration,	where	the	majority	of	males	and	some	females	re-
main	on	the	nonbreeding	grounds	year-	round	(Federico	et	al.,	2008;	
McCracken	&	Gassel,	1997).	As	another	example,	 some	subpopula-
tions	of	Cervus canadensis	(elk)	stay	in	the	breeding	grounds	at	all	times	
and	forgo	migration	to	overwintering	grounds	(Middleton	et	al.,	2013).

In	our	example	of	a	partial	migration	network	(Figure	1),	the	first	
time	step	begins	with	the	entire	population	in	breeding	nodes	during	
the	breeding	season.	The	time	step	ends	after	a	portion	of	the	popu-
lation	migrates	to	the	nonbreeding	nodes	(i.e.,	pij,1	is	nonzero	for	some	
i ∈ VB	and	 j ∈ VNB).	The	second	time	step	begins	 in	the	nonbreeding	
season	and	ends	with	 the	migratory	 individuals	moving	back	 to	 the	
breeding	nodes	(i.e.,	pij,2	is	nonzero	for	some	i ∈ VNB	and	j ∈ VB).	Partial	
migration	 is	modeled	 by	 a	 self-	loop	 (i.e.,	pii,t	>	0	 for	 some	 i ∈ V)	 for	
those	breeding	areas	and	nonbreeding	areas	where	some	individuals	
remain	as	year-	round	residents.

2.4.4 | Stepping- stone migration

Our	framework	can	also	be	applied	to	more	complex	migratory	pat-
terns.	 In	 this	 example,	 we	 illustrate	 a	 “stepping-	stone”	 migration	
system.	 In	 this	pattern,	 individuals	 travel	 through	a	series	of	nodes,	
one	by	one	throughout	their	annual	cycle.	Many	migratory	bird	spe-
cies	follow	a	stepping-	stone	pattern,	as	 individuals	stop	to	refuel	at	
staging	 areas	 between	breeding	 and	 nonbreeding	 grounds	 (Buler	&	
Dawson,	2014).	Some	insect	species	also	display	this	migratory	pat-
tern	with	Danaus plexippus	(monarch	butterfly)	as	a	well-	known	exam-
ple	(Chapman	et	al.,	2014;	Prysby	&	Oberhauser,	2004).

For	 the	 example	 stepping-	stone	 network	 illustrated	 in	 Figure	1,	
there	is	directed	movement	between	successive	breeding	nodes	fol-
lowed	by	movement	to	a	nonbreeding	node	within	one	annual	cycle.	
Only	one	edge	 is	used	per	 time	step.	That	 is,	migration	only	occurs	
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from	one	habitat	to	one	other	habitat.	Consequently,	edge	transition	
probabilities	are	either	zero	or	one.	The	first	time	step	begins	with	all	
individuals	occurring	 in	node	1	for	their	first	breeding	season	of	the	
year	and	ends	upon	completion	of	migration	to	node	2	(p12,1	=	1).	The	
second	time	step	begins	with	all	 surviving	 individuals	 initiating	their	
second	breeding	season	in	node	2	and	ends	upon	completion	of	migra-
tion	to	breeding	node	3	(p23,2	=	1).	All	surviving	individuals	breed	for	
the	third	time	step	in	node	3	and	then	migrate	to	nonbreeding	node	
4	(p34,3	=	1).	The	last	time	step	begins	with	all	surviving	individuals	in	
nonbreeding	node	4	and	ends	with	completion	of	migration	to	breed-
ing	node	1	(p41,4	=	1).

2.4.5 | Nomadism

For	nomadism,	movement	to	any	site	during	any	time	step	is	permit-
ted.	Nomadism	differs	from	migration	in	that	although	the	movements	
do	correspond	with	environmental	fluctuations,	 interannual	variabil-
ity	is	inconsistent	and	thus	the	timing	of	nomadic	movements	varies	
from	year	to	year.	Whereas	metapopulations	are	characterized	by	rare	
movements	(i.e.,	pij,t ~	0	for	 i ≠	j),	nomadic	individuals	are	more	likely	
to	move	between	nodes	multiple	times	per	year.	Nomadic	species	are	
animals	that	rely	on	food	sources	that	are	extremely	ephemeral,	ex-
emplified	by	desert	dwellers	(e.g.,	Polytelis alexandrae	(princess	parrot);	
Jonzén	et	al.,	2011;	Cottee-	Jones,	Matthews,	&	Whittaker,	2016).

In	the	example	nomadic	network	(Figure	1),	all	nodes	are	breeding	
nodes	(V = VB).	Unlike	seasonal	and	stepping-	stone	migration,	none	of	
the	time-	specific	edge	transition	probabilities	pij,t	are	set	to	0	or	1	un-
less	so	determined	by	the	resource	levels	available	in	each	node	during	
each	season	and	year.	This	can	be	modeled	stochastically	or	by	letting	
pij,t	be	a	function	of	the	population	size	at	node	i	as	well	as	character-
istics	and	population	sizes	of	other	nodes.

3  | RESULTS

We	illustrated	above	how	our	modeling	framework	can	be	adapted	to	a	
wide	variety	of	mobile	organisms	using	theoretical	examples.	We	now	
demonstrate	how	our	framework	can	be	formally	implemented	by	ap-
plying	 it	 to	 four	example	species	 showing	a	wide	 range	of	 life	histo-
ries,	movement	patterns,	and	carrying	capacities.	Our	examples	include	
a	 plant	 (Ranunculus nodiflorus)	 modeled	 as	 a	 metapopulation,	 a	 bird	
(Anas acuta)	exhibiting	seasonal	complete	migration,	a	mammal	(Cervus 
canadensis)	comprising	a	partial	seasonal	migratory	population,	and	an	
insect	(Danaus plexippus)	that	has	as	a	stepping-	stone	movement	pat-
tern.	Table	2	gives	a	summary	of	the	four	models.	Figure	2	illustrates	
their	 network	 structure.	 Details	 are	 provided	 here	 on	 how	 the	 four	
models	were	parameterized.	A	full	description	of	each	model,	as	well	
as	additional	model	 results,	 can	be	 found	 in	Appendix	S2.	General	R	
code	(version	3.2.1)	was	created	for	the	general	network	framework	of	
Equation	1	and	then	adapted	for	each	of	the	four	examples.	The	code	
as	well	 as	 files	with	model	parameters	can	be	 found	 in	Sample	et	al.	
(2017).

3.1 | Ranunculus nodiflorus (metapopulation)

To	illustrate	the	application	of	our	framework	to	a	metapopulation,	we	
modeled	Ranunculus nodiflorus	(buttercup	family),	which	is	a	rare	and	
endangered	annual	plant	 that	occurs	 in	Spain,	Portugal,	 and	France	
(Noël,	Machon,	&	Robert,	2013).	The	plant	grows	only	 in	ponds,	re-
produces	by	 selfing	 (Kircher,	 Ferdy,	Andalo,	Colas,	&	Moret,	 2003),	
produces	seeds	during	April	and	May,	and	then	dies	soon	after	repro-
duction	(Noël	et	al.,	2013).	Seeds	float	and	disperse	along	water	cor-
ridors	that	arise	during	flooding	connecting	adjacent	ponds,	and	thus,	
they	operate	as	a	 typical	metapopulation	 (Kircher	et	al.,	2003;	Noël	

TABLE  2 Model	summary	for	species-	specific	example	populations

Attribute Ranunculus nodiflorus Anas acuta Cervus canadensis Danaus plexippus

Movement	system Metapopulation Seasonal	complete	
migration

Seasonal	partial	migration Stepping-	stone	migration

Number	of	nodes 8 3	breeding,	2	nonbreeding 3 3	breeding,	1	
nonbreeding

Number	of	time	steps	
in	cycle

3 3 2 7

Recruitment Locally	density-	dependent Locally	density	dependent Locally	density	dependent Locally	density	
dependent

Survival Constant Node	and	edge	specific,	
locally	density	dependent

Node-	specific,	locally	
density	dependent

Node	and	edge	specific

Movement	
probabilities

Constant Edge	specific,	logistic	
density-	dependent	
function	for	some	in	
spring

Edge	specific Edge	specific

Special	features Age	structure Sex	specific,	age	structure,	
harvest

Age	structure,	female	only Multiple	generations	
within	annual	cycle

Carrying	capacity 800 5,500,000 3600 Unknown

Key	reference Noël	et	al.	(2013) Mattsson	et	al.	(2012) Middleton	et	al.	(2013) Flockhart	et	al.	(2015)
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et	al.,	2013).	Some	seeds	germinate	in	autumn	and	others	germinate	
in	spring.	We	model	the	system	as	an	age-	structured	metapopulation	
with	eight	nodes	based	on	a	representative	chain	of	ponds	(Figure	2a).	
The	two	age	classes	are	as	follows:	seeds,	denoted	by	a	superscript	S,	
and	plants,	denoted	by	a	superscript	P.	We	track	both	classes	through	
three	 times	 steps,	 or	 seasons,	within	 an	 annual	 cycle:	 summer,	 au-
tumn/winter,	and	spring.

The	nodal	update	function	(Equation	2)	for	seeds,	fS
i,t
≡ f(NS

i,t
,NP

i,t
,�i,t) 

is	given	by	

Seed	 survival	 rates,	 sS
i,t
= 0.7,	 are	 constant	 across	 seasons	 and	

identical	across	nodes,	Ri,t	is	the	reproductive	rate	of	plants	producing	
seeds	and	equal	 to	11.5	 in	 the	summer	and	zero	otherwise,	and	Ti,t 
represents	the	germination	rate	or	transition	rate	of	seeds	to	plants,	
which	is	zero	in	the	summer,	0.569	in	the	autumn/winter,	and	0.995	
in	the	spring.	The	nodal	update	function	for	plants,	fP

i,t
≡ f(NS

i,t
,NP

i,t
,�i,t),	 

is	given	by

We	 assume	 that,	 at	 each	 node,	 no	 plants	 survive	 the	 summer	
after	they	produce	seeds	(sP

i,t
= 0)	and	that	all	plants	survive	in	the	

fS
i,t
= sS

i,t
⋅NS

i,t

⏟⏟⏟

seeds that

survive

+ Ri,t ⋅N
P
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fP
i,t
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F IGURE  2 Our	modeling	framework	is	
applied	to	four	example	species	showing	
a	wide	range	of	life	histories,	movement	
patterns,	and	carrying	capacities.	The	
network	structure	and	edge	transition	
probabilities	for	each	population	are	shown,	
where	DD	indicates	a	density-	dependent	
transition	probability.	(a)	Ranunculus 
nodiflorus	is	modeled	as	a	metapopulation	
with	eight	nodes,	three	seasons,	and	
two	age	classes	(seeds	and	plants).	Seed	
and	plant	transition	probabilities	differ.	
As	plants	do	not	disperse,	the	network	
is	disconnected	and	all	plants	remain	in	
their	node.	(b)	Anas acuta	(northern	pintail)	
exhibits	seasonal	complete	migration.	The	
population	is	modeled	with	three	breeding	
nodes	and	two	nonbreeding	nodes	in	three	
seasons.	There	and	two	classes,	females	
and	males,	with	two	age	classes	for	each	
sex,	juveniles	and	adult.	Edge	transition	
probabilities	are	the	same	for	all	classes.	
(c)	Cervus canadensis	(elk)	comprises	a	
partial	seasonal	migratory	population	
with	three	nodes	and	two	seasons.	The	
female	population	is	modeled	with	two	
age	classes,	adults	and	juveniles.	The	two	
classes	have	the	same	constant	transition	
probabilities,	but	different	density-	
dependent	transition	probabilities.	(d)	
Danaus plexippus	(monarch	butterfly)	has	
a	stepping-	stone	movement	pattern.	The	
population	is	modeled	using	one	class,	four	
nodes	and	seven	seasons.	See	Appendix	S2	
and	Sample	et	al.	(2017)	for	model	details,	
outcomes,	parameterization,	and	computer	
code	for	each	species
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autumn/winter	and	spring	seasons	(sP
i,t
= 1).	The	second	term	is	the	

product	of	seeds	that	survive,	sS
i,t
NS
i,t
,	the	seed	germination	rate,	Ti,t,	 

and	 the	 density-	dependent	 postgermination	 survival	 rate	 Ψi,t	 is	
given	by

Ki	=	100	is	the	carrying	capacity	at	node	i	and	the	maximum	germi-
nation	rate,	ψi,t,	is	0.34	in	the	autumn/winter	and	1	in	the	spring.	Thus,	
the	vector	 of	 node	 characteristics	 is	�i,t = (sS

i,t
,sP
i,t
,Ti,t,Ri,t,Ki,ψi,t) repre-

senting	all	node-	specific	parameters.	We	assume	edge	transition	prob-
abilities	(Equation	3)	are	not	season	dependent	and	that	seeds	remain	
at	the	node	90%	of	the	time	and	disperse	to	any	adjacent	node	with	
equal	probability.	Plants	do	not	move	between	nodes	so	that	pij,t	=	1	if	
i = j	and	0	otherwise	(Figure	2a).	We	further	assume	an	edge	survival	
probability	of	1	for	every	edge	and	at	every	time	step	(Equation	4).

In	the	model,	ponds	containing	the	plant	in	an	initial	1999	study	
(Kircher	et	al.,	2003)	were	assigned	a	small	initial	population	of	10	in	
the	beginning	of	the	summer.	Initial	seed	population	was	set	to	0.	After	
9	years,	the	small	 initial	population	of	plants	disperse	to	all	ponds	in	
the	network	and	sustain	a	small,	but	persistent	population	(Figure	3a).	
Table	3	shows	equilibrium	population	values	for	each	season	and	each	
class.	Table	4	presents	the	equilibrium	population	distribution	in	each	
of	the	ponds,	which	depends	on	the	season.

3.2 | Anas acuta (complete migration)

The	northern	pintail	is	an	example	of	a	population	that	performs	sea-
sonal	 complete	migration.	The	northern	pintail	 is	widely	distributed	
in	wetland	regions;	it	breeds	in	the	northern	areas	of	North	America,	
Europe,	 and	Asia	 and	winters	 close	 to	 the	 equator.	 Some	 individu-
als	 use	 a	 stopover	 site	 during	 spring	 migration.	 We	 illustrate	 how	

Ψi,t = ψi,t exp

(
−
NP
i,t
+ Ti,t ⋅s

S
i,t
⋅NS

i,t

Ki

)

F IGURE  3 We	demonstrate	that	our	model	can	be	applied	to	a	variety	of	populations.	We	show	simulated	population	dynamics	for	all	four	
species	example	species	by	running	the	code	provided	in	Sample	et	al.	(2017).	(a)	After	9	years,	the	small	initial	population	of	plants	(Ranunculus 
nodiflorus)	disperses	to	all	ponds	in	the	network	and	sustain	a	persistent	population.	(b)	The	pintail	model	converged	to	a	steady-	state	solution	
after	66	years,	with	a	breeding	population	of	5.98	million,	which	is	comparable	to	the	results	found	by	Mattsson	et	al.	(2012)	in	the	absence	of	
harvest.	Note	that	there	are	more	males	than	female	and	no	juveniles	in	the	beginning	of	the	breeding	season.	(c)	After	16	years,	the	elk	model	
reached	a	steady	state.	(d)	The	monarch	model	converged	to	a	steady	state	after	4	years

(a) (b)

(c) (d)
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the	 sex-	specific	 and	 age-	structured	 model	 for	 the	 North	 American	
population	presented	 in	Mattsson	et	al.	 (2012)	 can	be	 translated	 to	
our	 network	 framework.	 Reproduction,	 winter	 survival,	 and	 one	 of	
the	movement	probabilities	are	density	dependent,	and	the	model	ac-
counts	 for	birds	killed	by	hunters	each	fall,	making	one	of	 the	edge	
survival	probabilities	density	dependent	(Figure	2b).

The	 model	 consists	 of	 a	 network	 of	 five	 nodes	 with	 a	 set	 of	
three	breeding	nodes,	Alaska	(AK),	Prairie	Pothole	(PR),	and	Northern	
Unsurveyed	(NU),	enumerated	1–3,	and	a	set	of	two	wintering	nodes,	
California	(CA)	and	Gulf	Coast	(GC),	enumerated	4	and	5.	The	PR	node	
also	serves	as	a	stopover	site	during	spring	migration.	Thus,	we	divide	
the	 annual	 cycle	 into	 three	 time	 steps:	 breeding/fall,	winter/spring,	
and	 spring	 stopover.	 Time	 steps	 vary	 in	 length,	 depending	 on	 the	
season.	The	population	is	modeled	using	two	classes,	females	(F)	and	
males	(M),	with	two	age	classes	for	each	sex,	juveniles	(J)	and	adults	
(A).	The	main	reason	to	group	the	individuals	in	four	different	catego-
ries	is	differential	node	and	edge	survival	rates.	Let	NA∙

i,t
	be	the	number	

of	adult	males	or	females	and	NJ∙

i,t
	be	the	number	of	juvenile	males	or	

females	 in	node	 i	 at	 time	 t,	where	 the	 superscript	 indicates	 the	 sex	
class:	∙∈{M,F}.	We	define	the	vector	Ni,t =

(
NAF

i,t
,NAM

i,t
,N

JF

i,t
,N

JM

i,t

)
,	whose	

elements	consist	of	the	population	sizes	for	the	four	classes	at	node	
i	and	time	t.

The	function	(Equation	2)	that	represents	adult	survival	and	transi-
tions	into	the	adult	stage	for	each	node	i	at	time	step	t,	fA∙

i,t
≡ f(Ni,t,�i,t),	 

is	given	by	

Ti,t	 represents	 the	 transition	 from	 juveniles	 to	 adults,	which	 is	1	
in	the	winter/spring	season	and	0	otherwise.	Adult	node-	specific	sur-
vival,	sA∙

i,t
,	is	constant	during	the	breeding/fall	season	(0.81	for	females	

and	0.98	for	males)	and	stopover	step	(1	for	both	sexes).	In	the	winter	
(i.e.,	posthunting),	it	depends	on	density	and	other	node	characteris-
tics	(eqn	3	of	Mattsson	et	al.	(2012)).	The	nodal	update	function	for	ju-
veniles,	fJ∙

i,t
≡ f(Ni,t,�i,t),	exclusively	represents	the	addition	of	offspring	

in	node	i	at	time	t,

where Ri,t	is	the	reproduction	rate,	which	is	nonzero	during	the	breed-
ing/fall	season	and	depends	on	total	nodal	population	size	and	other	
node	 characteristics	 (eqn	 2	 of	Mattsson	 et	al.	 (2012)).	 Edge	 transi-
tion	probabilities	(Equation	3)	do	not	depend	on	the	sex	or	age	class,	
pA∙
ij,t

= p
J∙

ij,t
≡ p(Ni,t,�i,t,�ij,t)	 and	 are	 constant	 except	 during	 the	 spring	

stopover	 step	when	 the	probability	 is	 density	 dependent	when	 the	
origin	node	is	PR	(Figure	2b).	In	this	case,

where 

Edge	survival	probabilities	(Equation	4),	sA∙
ij,t

≡ s(�ij,t)	and	s
J∙

ij,t
≡ s(�ij,t) 

are	constant	and	only	sex	dependent	during	fall	migration	when	hunt-
ing	takes	place.	Given	the	above	parameterization,	the	vector	of	node	
characteristics	 is	 �i,t = (sF

i,t
,sM
i,t
,Pi ,aik,δik,ψ

max
i

,bi0,bi1,s
F
imin

,sF
imax

,sM
imin

,sM
imax

) 
for	 k∈{0,1,2}	 and	 the	 vector	 of	 edge	 characteristics	 is	 given	 by	
�ij,t =

(
sA
ij,t
,s
J

ij,t
,KAM

ij,t
,KAF

ij,t
,K

JM

ij,t
,K

JF

ij,t
,ψij

)
.

The	 model	 has	 an	 initial	 population	 of	 N
AF

0
= N

AM

0
=

[465000,986850,160650,0,0]	 and	 zero	 population	 for	 juveniles	
(Mattsson	et	al.,	2012).	The	model	converged	to	a	steady-	state	solution	
after	 66	years,	with	 a	 breeding	 population	 of	 5.98	million	 (Figure	3b),	
which	 is	comparable	to	the	results	found	by	Mattsson	et	al.	 (2012)	 in	
the	 absence	 of	 harvest.	 Table	5	 shows	 the	 equilibrium	 population.	
Equilibrium	population	distribution	 (Table	6)	demonstrates	the	relative	
node	 importance.	The	highest	proportion	of	the	population	 is	 located	
in	AK,	CA,	 and	PR	during	 the	breeding/fall,	winter/spring,	 and	 spring	
stopover	 seasons,	 respectively.	 Pathway	 importance	 can	 be	 assigned	
by	calculating	the	proportion	of	migrants	using	a	path.	Table	7	presents	
the	average	annual	flux,	or	proportion	of	migrants,	using	each	path	in	
the	pintail	model.	Here,	we	see	that	the	path	representing	migrants	who	
remain	in	AK	between	the	stopover	and	breeding	season	and	the	path	
representing	the	transition	from	AK	to	CA	have	the	highest	flux.

3.3 | Cervus canadensis (Partial Migration)

Elk	 are	 large	mammals	 that	 occur	 across	North	America.	 The	 best-	
studied	populations	occur	 in,	and	adjacent	 to,	Yellowstone	National	
Park,	where	 the	 abundance	of	 elk	has	been	monitored	 for	decades	
(Middleton	et	al.,	2013).	Elk	near	Cody,	Wyoming	comprise	a	partial	
seasonally	migratory	population	where	one	group	of	elk	remain	resi-
dent	year-	round	in	areas	east	of	Yellowstone	National	Park	and	an-
other	group	migrates	seasonally	from	a	shared	overwintering	grounds	
to	breeding	grounds	 in	Yellowstone	National	Park	 (Middleton	et	al.,	
2013).	Our	model	accounts	for	density-	dependent	variation	in	recruit-
ment	and	survival	at	the	nodes	(Figure	2c).

The	 female	 elk	 population	 is	 modeled	with	 a	 network	 of	 three	
nodes	and	two	age	classes,	 juveniles	 (J)	and	adults	 (A).	Juveniles	are	

fA∙
i,t

= sA∙
i,t
⋅NA∙

i,t

⏟⏟⏟

adults that

survive

+ Ti,t ⋅s
A∙
i,t
⋅N

J∙

i,t
⋅

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

juveniles that transition

to adults and survive

f
J∙

i,t
= Ri,t ⋅s

AF

i,t
⋅NAF

i,t

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

juveniles born to

adult females

pA∙
2j,t

= p
J∙

2j,t
=

⎧
⎪⎨⎪⎩

1−
ψmax

2

1+ e−Yt
, j = 2

ψ2j ⋅ψ
max

2

1+ e−Yt
, j ≠ 2

Yt = δ20 + δ21(N
F

2,t
+ NM

2,t
) + δ22P2.

TABLE  3 Equilibrium	population	of	plants	and	seeds	at	the	
beginning	of	each	season	for	Ranunculus nodiflorus

Season Seeds Plants

Summer 4 342

Autumn/Winter 3,942 0

Spring 1,189 75

TABLE  4 Equilibrium	population	distribution	of	plants	at	the	
beginning	of	each	season	for	Ranunculus nodiflorus

Node Summer Autumn/Winter Spring

Ponds	1	and	8 0.126 0 0.130

Ponds	2	and	7 0.124 0 0.120

Ponds	3–6 0.125 0 0.125



     |  503SAMPLE Et AL.

elk	 less	 than	1	year	 old.	 Furthermore,	we	 assume	 the	 ratio	 of	 adult	
females	to	adult	males	 is	4:1	 (Mack	&	Singer	1993)	and	the	ratio	of	
female	juveniles	to	male	juveniles	is	1.5:1	(Houston	1982).	We	divide	
the	annual	cycle	into	two	time	steps:	winter/spring	and	summer/fall.	
Nodes	1–3	are	labeled	Yellowstone,	Nonbreeding	migratory,	and	Cody	
year-	round.

The	 function	 of	 Equation	2,	 fA
i,t
≡ f

(
NA

i,t
,N

J

i,t
,�i,t

)
	 represents	 adult	

survival	with	rate	sA
i,t
	and	transitions	into	the	adult	group	with	rate	Tt 

for	node	i	at	time	t	and	is	given	by:	

We	 assume	 female	 juveniles	 transition	 to	 adults	 every	 summer;	
therefore,	Tt	=	1	during	the	summer/fall	and	zero	otherwise.	A	previ-
ous	model	by	Taper	(2002)	proposed	a	density-	dependent	adult	sur-
vival,	so	we	set	the	seasonal	rate	to	be

Juvenile	survival,	sJ
i,t
,	 is	constant	during	the	winter/spring	season	

and	density	dependent	in	the	summer/fall	season	(Singer	et	al.	1997):	

Above,	Ki	 is	the	carrying	capacity	of	node	 i,	which	we	assume	to	
be	proportional	to	area	(details	on	parameterization	can	be	found	in	
Appendix	S2).	The	function,	fJ

i,t
≡ f(NA

i,t
,NJ

i,t
,�i,t),	which	represents	juve-

niles’	survival,	recruitment,	and	transitions	out	of	this	group,	is	given	
by	

where	 reproduction	 rates,	 ri,t,	 are	 estimated	 by	 the	 proportion	 of	
pregnant	elk,	using	a	weighted	average	for	all	age	classes	presented	
in	Figure	3	of	Middleton	et	al.	(2013),	and	assumes	that	cows	do	not	
have	twins.	Reproduction	rate	 is	higher	for	residents	(0.86)	than	for	
the	migratory	(0.68)	subpopulation,	and	it	only	occurs	during	the	sum-
mer/fall	 time	step.	The	coefficient	0.6	 represents	 the	proportion	of	
calves	that	are	female.	Given	the	above	parameterization,	the	vector	
of	node	characteristics	is	given	by	�i,t = (s0

t
,rit,K

A
i
,KJ

i ).
Edge	transition	probabilities,	p∙

ij,t
≡ p(N∙

i,t
,�i,t,�ij,t),	for	juveniles	and	

adults	are	constant	during	fall	migration,	but	density	dependent	during	
spring	migration	(Figure	2c).	This	density	dependence	accounts	for	the	
inheritance	of	a	movement	pathway:	A	resident	elk	will	remain	a	resi-
dent	and	a	migratory	elk	will	remain	migratory	(Equation	6).	The	den-
sity	dependence	is	modeled	using	

 

Note	that	M∙

33,t−1
	is	given	in	Equation	4	and	represents	the	num-

ber	of	individuals	(of	the	specified	class)	that	were	residents	in	node	
3	 in	 the	previous	 time	step.	For	 the	winter/spring	season,	all	 indi-
viduals	in	node	2	migrate	to	node	1,	p∙

21,t
= 1	and	for	the	summer/

fall	season	the	resident	elk	population	in	node	3	will	remain	there,	
p∙
33,t

= 1.	We	assume	migration	mortality	is	taken	into	account	at	the	
nodes	and	therefore	set	edge	survival	to	one:	s∙

ij,t
= 1	for	all	t	and	all	

i,j∈{1,… ,n}.
The	 model	 is	 simulated	 with	 an	 initial	 population	 of	

N
A

0
= [0,1427,2173]	at	the	start	of	winter	and	zero	calves.	The	model	

converged	 to	 a	 steady	 state	 after	16	years	 (Figure	3c).	The	 calf:cow	
ratio	 before	 breeding	 in	 the	 beginning	 of	 summer	 is	 0.31	 for	 the	

f A
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Season Adult female Adult male Juvenile female Juvenile male

Breeding/fall 2,332,055 3,651,902 0 0

Winter/spring 1,696,110 3,213,489 985,778 985,778

Spring	stopover 2,332,055 3,651,902 0 0

TABLE  5 Equilibrium	population	of	
males,	females,	and	juveniles	at	the	
beginning	of	the	season	for	Anas acuta

TABLE  6 Equilibrium	population	distribution	at	each	node	at	the	
beginning	of	each	season	for	Anas acuta.	The	five	nodes	are	Alaska	
(AK),	Prairie	Pothole	(PR),	Northern	Unsurveyed	(NU),	California	(CA),	
and	Gulf	Coast	(GC)

Node Breeding/Fall Winter/Spring Spring Stopover

AK 0.4187 0 0.3875

PR 0.3003 0 0.6125

NU 0.2810 0 0

CA 0 0.6716 0

GC 0 0.3284 0

TABLE  7 Equilibrium	pathway	flux,	averaged	across	seasons	for	
Anas acuta.	Here,	pathway	flux	is	the	proportion	of	migrants	using	a	
pathway	and	the	row	indicates	the	origin	node	and	column	is	the	
destination	node.	The	five	nodes	are	Alaska	(AK),	Prairie	Pothole	
(PR),	Northern	Unsurveyed	(NU),	California	(CA),	and	Gulf	Coast	(GC)

AK PR NU CA GC

AK 0.129 0 0 0.128 0.013

PR 0.010 0.100 0.094 0.056 0.056

NU 0 0 0 0.040 0.040

CA 0.118 0.100 0 0 0

GC 0.012 0.104 0 0 0
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migratory	subpopulation	and	0.37	for	the	resident	subpopulation.	The	
calf:cow	ratio	at	the	beginning	of	winter	is	0.36	in	node	2	(migratory	
subpopulation)	 and	0.40	 in	 node	3	 (migratory	 and	 residents).	These	
results	align	with	observations	from	the	mid-	1990s	(Middleton	et	al.,	
2013).	Table	8	shows	the	equilibrium	population	numbers.	The	equilib-
rium	population	distribution	(Table	9)	shows	that	the	highest	propor-
tion	of	the	population	resides	in	the	year-	round	node	for	both	seasons,	
indicating	that	management	actions	at	this	location	could	have	a	large	
impact.	Average	pathway	flux	is	shown	in	Table	10.	Here,	we	see	that	
the	 pathway	 representing	 the	 resident	 population	 remaining	 in	 the	
year-	round	node	has	the	highest	flux,	so	management	actions	aimed	
at	the	resident	population	may	impact	the	highest	number	of	animals.

3.4 | Danaus plexippus (stepping- stone migration)

Each	 autumn,	monarch	 butterflies	 in	 eastern	North	America	migrate	
from	 breeding	 areas	 in	 the	 northern	 USA	 and	 southern	 Canada	 to	
nonbreeding	areas	in	central	Mexico.	At	the	end	of	the	6-	month	non-
breeding	season,	monarchs	begin	to	mate	and	migrate	north	in	March	
to	breeding	grounds	 in	the	southern	USA.	Remigrating	butterflies	 lay	
eggs	and	die,	whereupon	their	eggs	develop	into	caterpillars	and	then	
butterflies,	which	continue	to	fly	north	and	recolonize	the	entire	breed-
ing	 distribution	 in	 successive	 breeding	 generations	 until	 September.	
The	 last	 generation	 of	 monarchs	 eclose	 in	 a	 nonreproductive	 state	
(diapause)	and	migrate	south	en	masse	to	the	overwintering	colonies	
in	 Mexico.	 The	 recolonization	 over	 multiple	 breeding	 generations	
and	return	migration	to	the	nonbreeding	grounds	 is	represented	as	a	
stepping-	stone	migration	pattern.	We	convert	the	model	presented	in	
Flockhart,	Pichancourt,	Norris,	and	Martin	(2015)	to	our	network-	based	
model,	which	accounts	for	density-	dependent	recruitment	at	the	nodes	
(Figure	2d).

The	 female	monarch	 population	 is	modeled	 using	 a	 network	 of	
four	nodes	representing	regions	of	eastern	North	America:	Mexico	(M),	
South	 (S),	 Central	 (C),	 and	North	 (N),	 enumerated	1–4,	 respectively.	
Mexico	is	considered	a	wintering	node,	and	the	other	three	nodes	are	
breeding	nodes.	An	annual	cycle	consists	of	seven	time	steps:	Winter,	
April,	May,	June,	July,	August,	and	September.

The	nodal	update	function	of	Equation	2,	fi,t ≡ f(Ni,t,�i,t)	accounts	
for	survival	and	reproduction:	

and	 the	 vector	 of	 node	 characteristics	 is	 �i,t = (sA
i
,sP
i
,mi).	 Here,	

E = 268	is	the	number	of	eggs	per	female	per	month.	Adult	survival,	
sA
i
,	is	0.939	in	the	winter	and	0.308	otherwise,	and	pupal	survival,	sP

i
,	 

is	0.849	at	node	i	(Flockhart	et	al.,	2015).	Larval	survival	is	depend-
ent	on	egg	density	per	milkweed	stem	at	node	i	(Flockhart,	Martin,	
&	 Norris,	 2012).	 Edge	 transition	 probabilities	 of	 Equation	3,	 pij,t 
vary	across	 seasons	but	are	assumed	 to	be	constant,	not	density	
dependent,	each	year	 (Figure	2d).	Transition	probabilities	are	de-
rived	 from	Table	 S3	 in	 Flockhart	 et	al.	 (2015).	 The	 edge	 survival	
probabilities,	sij.t,	given	in	Equation	4	are	constant	for	a	given	time	
step	 t.	 Survival	probabilities	were	derived	 from	an	expert	elicita-
tion	exercise	as	presented	in	Flockhart	et	al.	(2015).	The	model	has	
an	initial	population	of	N0 = [28250000,0,0].	The	model	converged	
to	a	steady-	state	solution	after	4	years	(Figure	3d).	Table	11	shows	
the	equilibrium	population	numbers	at	the	beginning	of	each	sea-
son.	 Equilibrium	 population	 distribution	 at	 the	 nodes	 (Table	12)	
shows	 the	 relative	 importance	 of	 Mexico	 and	 South	 regions,	 as	
100%	 of	 the	 population	 resides	 in	 each	 node	 during	 the	Winter	
and	April	season,	respectively.	During	the	later	months	of	August	
and	September,	the	population	is	more	evenly	split	among	the	oc-
cupied	nodes.

fi,t = sA
i
⋅Ni,t

⏟⏟⏟

adults that

survive

+ sA
i
⋅sP

i
⋅sL

i
⋅E ⋅Ni,t

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

eggs that survive and

transition to adults

TABLE  8 Equilibrium	population	of	adult	and	juvenile	females	for	
Cervus canadensis	at	the	beginning	of	each	season

Season Juveniles Adults

Winter/Spring 1,318 3,507

Summer/Fall 949 2,968

TABLE  9 Equilibrium	population	distribution	at	each	node	during	
the	beginning	of	each	season	for	Cervus canadensis

Node Winter/Spring Summer/Fall

Yellowstone 0 0.42

Nonbreeding	migratory 0.35 0

Cody	year-	round 0.65 0.58

Node Yellowstone
Nonbreeding  
migratory

Cody 
year- round

Yellowstone 0 0.18 0.03

Nonbreeding	migratory 0.18 0 0

Cody	year-	round 0.03 0 0.59

TABLE  10 Equilibrium	pathway	flux	
averaged	across	seasons	for	Cervus 
canadensis.	Here,	pathway	flux	is	the	
proportion	of	migrants	using	a	pathway,	
where	the	row	indicates	the	origin	node	
and	column	is	the	destination	node

TABLE  11 Equilibrium	population	numbers	at	the	beginning	of	
each	season	for	adult	Danaus plexippus

Season Adult monarchs

Winter 104,369,878

April 50,678,510

May 65,711,517

June 86,725,288

July 134,481,626

August 142,239,303

September 128,489,061
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4  | DISCUSSION

We	 provided	 a	 network-	based	 framework	 that	 can	 be	 applied	 to	
metapopulations,	 a	 wide	 range	 of	 migratory	 patterns,	 and	 other	
spatially	structured	populations.	This	is,	to	our	knowledge,	the	only	
modeling	 framework	 that	 is	 flexible	 enough	 to	 accommodate	 dif-
ferent	types	of	spatially	structured	populations	(Esler,	2000;	Taylor	
&	Hall,	2012).	 It	 can	be	adapted	 to	accommodate	different	 forms	
of	class	or	age	structures,	various	forms	of	population	growth	and	
movement,	 network	 sizes,	 and	 alternative	 patterns	 of	 life-	history	
strategy.	It	can	also	include	carryover	effects	and	density	depend-
ence	 and	 can	 model	 interspecific	 interactions	 and	 environmental	
perturbations.	 Our	 modeling	 approach	 bridges	 the	 gap	 between	
metapopulations	and	migratory	populations	by	building	upon	previ-
ous	work	of	Esler	(2000),	who	posited	that	metapopulation	theory	
can	be	applied	to	migratory	birds	during	distinct	seasons	if	the	sub-
populations	are	independent,	and	Taylor	and	Hall	 (2012),	who	de-
veloped	a	model	explicitly	linking	a	metapopulation	model	(Levins,	
1970)	to	migratory	species.

The	 flexibility	of	our	 framework	 stems	not	only	 from	 its	 ability	
to	caricature	different	types	of	populations	but	also	because	 it	can	
accommodate	varying	degrees	of	model	complexity.	In	the	simplest	
scenario,	 functions	 sij,t, pij,t,	 and	 fi,t	 are	 constant.	Covariates	 can	be	
added	to	any	of	these	functions,	for	example,	Ni,t	could	be	included	to	
model	density-	dependent	demographics.	Furthermore,	stochasticity	
can	 be	 easily	 incorporated	 in	 the	model	 through	 simulation	where	
parameter	values	are	recursively	sampled	from	user-	defined	proba-
bility	distributions.	Last,	our	framework	could	be	used	as	a	common	
basis	for	fitting	integrated	population	models	to	empirical	data	and	
parameter	estimation	using	Bayesian	hierarchical	analysis	(Schaub	&	
Abadi,	2011).

Our	 common	modeling	 framework	 is	 also	 useful	 for	 comparing	
impacts	 of	 environmental	 perturbations	 among	 sympatric	 popula-
tions.	As	an	example,	when	the	Anaxyrus americanus	(American	toad)	
and	 Lithobates catesbeianus	 (bullfrog)	 coexist	 in	 a	 landscape,	 the	
population-	level	effects	of	anthropogenic	stressors	(e.g.,	mercury)	on	
amphibian	dynamics	can	be	studied	under	one	modeling	framework	
(Willson	&	Hopkins,	2013;	Willson,	Hopkins,	Bergeron,	&	Todd,	2012).	
Another	benefit	of	using	a	consistent	population	modeling	approach	
is	 to	 study	 interactions	 among	 different	 populations.	 Predation	 by	
Ursus arctos	(grizzly	bears)	and	Canis lupus	(wolves)	on	Cervus elaphus 
(Greater	Yellowstone	elk)	(Middleton	et	al.,	2013)	could	be	examined	
under	 our	 framework	 by	 modeling	 the	 three	 interacting	 networks.	
Model	functions	in	such	interacting	networks	can	depend	on	the	pop-
ulation	 size	and	parameters	of	 the	 interacting	 species.	For	 instance,	

the	 nodal	 update	 function	 for	 elk	may	 depend	 not	 only	 on	 the	 elk	
population	but	also	on	the	population	size	of	wolves	and	bears	at	the	
node.	This	 example	 also	 illustrates	 that	metapopulations	 (bears	 and	
wolves)	 and	migratory	 populations	 (elk)	 can	 be	modeled	 under	 one	
unifying	framework.	In	this	way,	a	number	of	different	types	of	species	
interactions,	including	competition	and	mutualisms,	could	be	modeled	
using	our	framework,	allowing	for	increased	understanding	of	spatially	
structured	community	dynamics	as	well.

Our	 modeling	 framework	 provides	 the	 opportunity	 to	 improve	
understanding	 of	 movement	 ecology	 by	 unraveling	 the	 underlining	
processes	 shaping	 spatiotemporal	 population	 dynamics.	A	 common	
demographic	framework	makes	 it	straightforward	to	 incorporate	 in-
dividual	 variation	 in	movement	 strategies	 that	 almost	 always	 occur	
within	highly	mobile	species.	This	can	enhance	our	understanding	of	
fitness	benefits	of	different	movement	strategies	 (e.g.,	 residency	vs.	
partial	vs.	complete	migration)	and	how	such	 fitness	variation	 influ-
ences	the	evolution	of	different	movement	strategies	(McPeek	&	Holt,	
1992;	Morris,	Diffendorfer,	&	Lundberg,	2004;	Taylor	&	Norris,	2007).

Improved	 understanding	 of	 movement	 processes	 can	 in	 turn	
inform	many	 potential	management	 applications.	 It	 can	 be	 used,	
for	 example,	 to	model	 the	 impact	 of	 habitat	 loss	 and	 changes	 in	
migratory	flow	or	habitat	quality	along	with	other	types	of	pertur-
bations	 on	 population	 size,	 species	 persistence,	 distribution,	 and	
movement	 patterns	 including	migration.	The	 network	model	 can	
also	be	used	to	quantify	 the	per	capita	contribution	of	 individual	
edges	and	nodes	to	population	dynamics	(Runge,	Runge,	&	Nichols,	
2006).	 Network	 topology	measures	 can	 be	 used	 in	 these	 analy-
ses,	for	example,	to	examine	the	robustness	of	spatial	structure	to	
perturbations	 such	 as	 node	 removal	 (Fortuna,	 Gomez-	Rodriguez,	
&	 Bascompte,	 2006).	 Such	 considerations	 will	 no	 doubt	 prove	
crucial	 to	our	 ability	 to	 anticipate	 and	mediate	 the	 rapid	pace	of	
habitat	 fragmentation	 worldwide.	 By	 working	 within	 a	 common	
framework,	 there	 is	 less	 chance	 that	 comparative	 analyses	 are	
colored	by	model	details	rather	than	general	principles.	Above	all,	
we	sincerely	hope	that	by	providing	a	robust	template	for	spatially	
structured	population	modeling,	we	encourage	further	work	in	this	
rapidly	evolving	field.
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TABLE  12 Equilibrium	population	
distribution	at	each	node	at	the	beginning	
of	each	season	for	Danaus plexippus
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