
Publications 

11-2019 

An Explicit Finite Volume Numerical Scheme for 2D Elastic Wave An Explicit Finite Volume Numerical Scheme for 2D Elastic Wave 

Propagation Propagation 

Mihhail Berezovski 
Embry-Riddle Aeronautical University, berezovm@erau.edu 

Arkadi Berezovski 
Tallinn University of Technology, arkadi.berezovski@cs.ioc.ee 

Follow this and additional works at: https://commons.erau.edu/publication 

 Part of the Other Mathematics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Berezovski, M., & Berezovski, A. (2019). An Explicit Finite Volume Numerical Scheme for 2D Elastic Wave 
Propagation. Applied Wave Mathematics II, 6(). https://doi.org/10.1007/978-3-030-29951-4_12 

This Book Chapter is brought to you for free and open access by Scholarly Commons. It has been accepted for 
inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please 
contact commons@erau.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/346328414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=commons.erau.edu%2Fpublication%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-030-29951-4_12
mailto:commons@erau.edu


An explicit finite volume numerical scheme for
2D elastic wave propagation

Mihhail Berezovski and Arkadi Berezovski

Abstract The construction of the two-dimensional finite volume numerical scheme

based on the representation of computational cells as thermodynamic systems is pre-

sented explicitly. The main advantage of the scheme is an accurate implementation of

conditions at interfaces and boundaries. It is demonstrated that boundary conditions

influence the wave motion even in the simple case of a homogeneous waveguide.

1 Introduction

Problems in wave propagation in elastic solids can be formulated in terms of hyper-

bolic conservation laws. Due to the great importance of conservation laws (Dafermos,

2010), a lot of numerical methods were applied to their solution: finite difference

methods (Godlewski and Raviart, 1996; Trangenstein, 2009), finite element methods

(Cohen, 2002; Kampanis et al., 2008), discontinuous Galerkin methods (Hesthaven

and Warburton, 2007; Cohen and Pernet, 2017), finite volume methods (LeVeque,

2002; Guinot, 2003), spectral methods (Hesthaven et al., 2007; Gopalakrishnan et al.,

2007) etc. The comprehensive survey of numerical methods for conservation laws is

presented recently (Hesthaven, 2018). Nevertheless, there still exist problems with

interface and boundary conditions in multi-dimensional cases (Gao et al., 2015).

In this paper we are focusing on the construction of a two-dimensional explicit fi-

nite volume numerical scheme with the special attention to the implementation of

boundary conditions.
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1.1 Finite volume methods

Finite volume schemes are powerful numerical methods for solving nonlinear con-

servation laws and related equations. Such methods are locally conservative and

based on cell averages. The numerical solution of systems of hyperbolic conserva-

tion laws is dominated by Riemann-solver-based schemes (Godlewski and Raviart,

1996; Toro, 1997; LeVeque, 2002; Guinot, 2003). The upgrade of the solution in

a given cell is determined by the exchanges (via fluxes) at the interfaces with the

neighbouring cells. The fluxes are computed by solving Riemann problems at the

interfaces between neighboring cells.

Computing an exact solution to the Riemann problem can be a very time-

consuming task because an iterative procedure is needed. Therefore, approximate

Riemann solvers are often preferred because they provide satisfactory solutions while

using faster algorithms. Two broad families of solvers can be distinguished: (i) solvers

where the Riemann problem is simplified (e.g. by linearizing the equations), and (ii)

solvers where simplified relationships are used to solve the exact problem. The first

family of solver includes Roe’s solver (Roe, 1981), where the flux at the location of

the initial discontinuity is calculated via a wave decomposition under the assumption

of a constant Jacobian matrix. The Jacobian matrix is approximated in such a way

that consistency and conservation conditions are satisfied. An entropy fix is needed

when a rarefaction wave extends over the location of the initial discontinuity. From

another side, primitive variable Riemann solvers (Toro, 1997) use a linearization

of the hyperbolic system with a constant Jacobian matrix in combination with the

Rankine–Hugoniot conditions across each wave. This allows a simplified system

of equations to be solved for the unknown variables. The Riemann invariants can

also be used along the characteristics to obtain the simplified system (Lhomme and

Guinot, 2007).

1.2 Higher-order accuracy

However, the cell average of a solution in a cell contains too little information. In order

to obtain higher-order accuracy, neighboring cell averages are used to reconstruct

an approximate polynomial solution in each cell. This reconstruction procedure is

the key step for many high-resolution schemes (Liu et al., 2007). For example, in

the ADER approach (Titarev and Toro, 2002), the numerical flux function is based

on the solution of generalized Riemann problems, where the initial data on both

sides of the element interfaces are no longer piecewise constant. Here the initial

data is piecewise polynomial, in general separated by a jump at the interface. The

fundamental idea behind the generalized Riemann problem solvers is a temporal

Taylor series expansion of the state at the interface, where then time derivatives

are replaced by space derivatives using repeatedly the governing conservation law

in differential form, which is the so-called Cauchy–Kovalewski or Lax–Wendroff

procedure (Dumbser and Käser, 2007).
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1.3 Higher dimensions

When extending the flux-difference schemes to multi-dimensional problems, the

so-called grid aligned finite volume approach or dimensional splitting method is

adopted traditionally using one-dimensional Riemann solvers. However, for multi-

dimensional problem, there is in general no longer a finite number of directions of

informationpropagation. It has been pointed out (Roe, 1986) that the Riemann-solver

is applied in the grid- rather than the flow-direction, which may lead to a misinter-

pretation of the local wave structure of the solution. To overcome the drawbacks

of methods based on dimensional splitting, there have been considerable efforts

to develop so-called genuinely multi-dimensional schemes for solving hyperbolic

conservation laws (Colella, 1990; Billett and Toro, 1997; LeVeque, 2002; Guinot,

2003).

1.4 Discontinuities

While the abovementioned numerical methods have been successfully applied to

the solution of problems with smoothly varying fields, they cannot readily handle

evolving discontinuities like cracks or martensitic phase-transition fronts inside bod-

ies (de Borst, 2008). The reason is the absence of the constitutive information to

specify the velocity of the discontinuity uniquely (Abeyaratne and Knowles, 2006).

In the series of papers (Berezovski and Maugin, 2004, 2005a, 2007; Maugin and

Berezovski, 2009; Berezovski and Maugin, 2010), it is shown how the additional

constitutive information can be extracted from the analysis of the non-equilibrium

interaction between two discrete thermodynamic systems. Moreover, this additional

information has been successfully embedded into a finite volume algorithm for ther-

moelastic wave and front propagation represented in terms of averaged and excess

quantities (Berezovski et al., 2000; Berezovski and Maugin, 2001, 2002; Berezovski

et al., 2003; Berezovski and Maugin, 2005b; Berezovski et al., 2006, 2008; Bere-

zovski, 2011). It should be noted that in the one-dimensional case this algorithm

can be identified with the conservative wave-propagation algorithm (Bale et al.,

2003) for smooth solutions (Berezovski, 2011). This means that the splitting of one-

dimensional fluxes in the transverse directions in the spirit of the wave-propagation

algorithm (LeVeque, 1997) is still possible, but only for smooth solutions.

1.5 The structure of the paper

To obtain the multi-dimensional description of evolving discontinuities we need to

extend the algorithm in terms of averaged an excess quantities onto at least two

dimensions. This is the main aim of the paper, which is devoted to the derivation and

the application of the two-dimensional finite volume numerical scheme for elastic
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wave propagation. The paper is organized as follows. In Section 2 the governing

equations of linear elasticity are presented in the plane strain approximation. Then

the finite volume numerical scheme is deduced in Section 3 on the regular cartesian

grid. The algebraic relations for excess quantities are written down explicitly in

Section 4. Boundary conditions are formulated on the example of the test problem

of wave propagation in an homogeneous waveguide. Results of calculations of the

test problem are presented in Section 5. Conclusions are given in the last Section.

2 Governing equations

Elastic solids are characterized by the Hooke law which can be represented in the

isotropic case in the form of the stress-strain relation (Mase et al., 2009)

σij = λδijεkk + 2µεij, (1)

with the Cauchy stress tensor σij , the strain tensor εij , and the Lamé parameters λ

and µ. In the linear elasticity, a motion is governed by the local balance of linear

momentum at each regular material point (Achenbach, 1973)

ρ
∂vi

∂t
=

∂σij

∂xi
+ fi, (2)

where ρ is the matter density, vi is the particle velocity, t is time, fi is a body force,

and xi are spatial coordinates.

We consider the plane strain situation which means that a body is extremely

thick along one coordinate, say, z, and where all applied forces are uniform in the z

direction. Since all derivatives with respect to z vanish, all fields can be viewed as

functions of x and y alone. In the plane strain case in the absence of body force, the

governing equations for wave motion (2) are reduced to

ρ
∂v1

∂t
=

∂σ11

∂x
+

∂σ12

∂y
, (3)

ρ
∂v2

∂t
=

∂σ21

∂x
+

∂σ22

∂y
. (4)

Stress-strain relations (1) are reformulated accordingly

σ11 = (λ + 2µ)ε11 + λε22, (5)

σ12 = σ21 = 2µε12, (6)

σ22 = (λ + 2µ)ε22 + λε11. (7)

Time derivatives of stress-strain relations (5) – (7) can be represented in terms of

velocities
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∂σ11

∂t
= (λ + 2µ)

∂v1

∂x
+ λ
∂v2

∂y
, (8)

∂σ22

∂t
= λ
∂v1

∂x
+ (λ + 2µ)

∂v2

∂y
, (9)

∂σ12

∂t
=

∂σ21

∂t
= µ

(

∂v1

∂y
+

∂v2

∂x

)

, (10)

because strains and velocities are connected by compatibility conditions

∂ε11

∂t
=

∂v1

∂x
, (11)

∂ε12

∂t
=

1

2

(

∂v1

∂y
+

∂v2

∂x

)

, (12)

∂ε22

∂t
=

∂v2

∂y
. (13)

Equations (8) – (10) together with the balance of linear momentum (3)–(4) form the

closed system of equations, which is convenient for a numerical solution. In what

follows it will be demonstrated how an explicit finite volume numerical scheme can

be constructed which is suitable for the implementation of boundary and interface

conditions in a natural way.

3 Discretization

3.1 Averaged and excess quantities

The first step in the construction of the numerical algorithm is the spatial dis-

cretisation of the computational domain. Let us introduce a Cartesian grid of cells

Cnm = [xn, xn+1] × [ym, ym+1] with interfaces xn = n∆x, ym = m∆y, and time levels

tk = k∆t. For simplicity, the grid size ∆x,∆y and time step ∆t are assumed to be

constant. The values of wanted fields are somehow distributed across the cells.

The main idea in the construction of the algorithm is the consideration of every

computational cell as a thermodynamic system (Muschik and Berezovski, 2004).

Since we cannot expect that such thermodynamic system is in equilibrium, its local

equilibrium state is described by averaged values of field quantities. The use of

cell averages is the standard procedure in the finite-volume methods. What is non-

standard that is the introduction into consideration so-called "excess quantities" in the

spirit of the thermodynamics of discrete systems (Muschik and Berezovski, 2004).

The excess quantities represent the difference between values of true and averaged

quantities (Berezovski et al., 2008):

vi = vi + Vi, σij = σij + Σij . (14)
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Here overbars denote averaged quantities and capital letters relate to excess quantities.

3.2 Integration over the cell

Keeping in mind the representation of field quantities mentioned above, we integrate

the governing equations over the computational cell. The integration of the first

component of the balance of linear momentum reads

∫

∆x

∫

∆y

ρÛv1dxdy =

∫

∆y

(

σr11 − σ
l
11

)

dy +

∫

∆x

(

σt
12 − σ

b
12

)

dx

=

∫

∆y

(

σ11 + Σ
r
11 − σ11 − Σ

l
11

)

dy +

∫

∆x

(

σ12 + Σ
t
12 − σ12 − Σ

b
12

)

dx =

=

∫

∆y

(

Σ
r
11 − Σ

l
11

)

dy +

∫

∆x

(

Σ
t
12 − Σ

b
12

)

dx,

(15)

where upper indices r, l,u, b denote "right side", "left side", "top", and "bottom",

respectively (Fig. 1).

As one can see, the result of the integration is expressed in terms of excess

quantities at the boundaries of the cell. These quantities, however, are not constants

but vary along the corresponding boundary.

3.2.1 Parabolic approximation at cell boundaries

To proceed further, we need to approximate the unknown functions Σr
11
(y),Σl

11
(y)

and Σt
12
(x),Σb

12
(x). Suppose that we know the values Σrt

11
,Σrb

11
at right-top and right-

bottom corners and the value Σrc
11

in the middle point for the right boundaryof the cell

numbered by ”n,m”. Then we can approximate the function Σr
11
(y) by a quadratic

dependence. According to the Simpson rule, we can compute the first integral in

(15)3 as follows:

∫

∆y

Σ
r
11dy = ∆y

(

2

3
Σ
rc
11 +

1

6

(

Σ
rt
11 + Σ

rb
11

)

)

.

The similar procedure can be applied for the calculation of all integrals in (15)3.

Therefore, the integration of the first component of the balance of linear momentum

results in the relationship for each computational cell

∫

∆x

∫

∆y

ρÛv1dxdy ≈
2

3
∆y

(

Σ
rm
11 − Σlm11

)

+

1

6
∆y

(

Σ
rt
11 + Σ

rb
11 − Σlt11 − Σ

lb
11

)

+

+

2

3
∆x

(

Σ
tc
12 − Σ

bc
12

)

+

1

6
∆x

(

Σ
tr
12 + Σ

tl
12 − Σ

br
12 − Σbl12

)

,

(16)
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xn xn+1

ym

ym+1

top

bottom

left right

bl brbc

tl trtc

rt

rb

rc

lt

lb

lc nm

Fig. 1 Notation for a cell

where a combination of two upper indices means the value of the excess quantity

at the corresponding corner or middle point (Fig. 1). Accordingly, for the second

component of the balance of linear momentum we have

∫

∆x

∫

∆y

ρÛv2dxdy =

∫

∆y

(

σr21 − σ
l
21

)

dy +

∫

∆x

(

σt
22 − σ

b
22

)

dx

=

∫

∆y

(

σ21 + Σ
r
21 − σ21 − Σ

l
21

)

dy +

∫

∆x

(

σ22 + Σ
t
22 − σ22 − Σ

b
22

)

dx =

=

∫

∆y

(

Σ
r
21 − Σ

l
21

)

dy +

∫

∆x

(

Σ
t
22 − Σ

b
22

)

dx ≈

≈
2

3
∆y

(

Σ
rc
21 − Σlc21

)

+

1

6
∆y

(

Σ
rt
21 + Σ

rb
21 − Σlt21 − Σ

lb
21

)

+

+

2

3
∆x

(

Σ
tc
22 − Σ

bc
22

)

+

1

6
∆x

(

Σ
tr
22 + Σ

tl
22 − Σ

br
22 − Σbl22

)

.

(17)

Similarly, the integration of time derivatives of stress-strain relations (8)–(10) leads

to
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∫

∆x

∫

∆y

Ûσ11dxdy = (λ + 2µ)

∫

∆y

(

v
r
1 − v

l
1

)

dy + λ

∫

∆x

(

v
t
2 − v

b
2

)

dx =

= (λ + 2µ)

∫

∆y

(

v1 + Vr
1 − v1 − V l

1

)

dy + λ

∫

∆x

(

v2 + V t
2 − v2 − Vb

2

)

dx =

= (λ + 2µ)

∫

∆y

(

Vr
1 − V l

1

)

dy + λ

∫

∆x

(

V t
2 − Vb

2

)

dx ≈

≈
2

3
(λ + 2µ)∆y

(

Vrc
1 − V lc

1

)

+ (λ + 2µ)
1

6
∆y

(

Vrt
1 + Vrb

1 − V lt
1 − V lb

1

)

+

+

2

3
λ∆x

(

V tc
2 − Vbc

2

)

+ λ
1

6
∆x

(

V tr
2 + V tl

2 − Vbr
2 − Vbl

2

)

,

(18)

for the first normal component of the stress tensor,

∫

∆x

∫

∆y

Ûσ12dxdy =
µ

2

∫

∆y

(

v
r
2 − v

l
2

)

dy +
µ

2

∫

∆x

(

v
t
1 − v

b
1

)

dx =

=

µ

2

∫

∆y

(

v2 + Vr
2 − v2 − V l

2

)

dy +
µ

2

∫

∆x

(

v1 + V t
1 − v1 − Vb

1

)

dx =

=

µ

2

∫

∆y

(

Vr
2 − V l

2

)

dy +
µ

2

∫

∆x

(

V t
1 − Vb

1

)

dx ≈

≈
µ

3
∆y

(

Vrc
2 − V lc

2

)

+

µ

12
∆y

(

Vrt
2 + Vrd

2 − V lt
2 − V lb

2

)

+

+

µ

3
∆x

(

V tc
1 − Vbc

1

)

+

µ

12
∆x

(

V tr
1 + V tl

1 − Vbr
1 − Vbl

1

)

,

(19)

for the shear stress, and

∫

∆x

∫

∆y

Ûσ22dxdy = λ

∫

∆y

(

v
r
1 − v

l
1

)

dy + (λ + 2µ)

∫

∆x

(

v
t
2 − v

b
2

)

dx =

= λ

∫

∆y

(

v1 + Vr
1 − v1 − V l

1

)

dy + (λ + 2µ)

∫

∆x

(

v2 + V t
2 − v2 − Vb

2

)

dx =

= λ

∫

∆y

(

Vr
1 − V l

1

)

dy + (λ + 2µ)

∫

∆x

(

V t
2 − Vb

2

)

dx ≈

≈
2

3
λ∆y

(

Vrc
1 − V lc

1

)

+ λ
1

6
∆y

(

Vrt
1 + Vrb

1 − V lt
1 − V lb

1

)

+

+

2

3
(λ + 2µ)∆x

(

V tc
2 − Vbc

2

)

+ (λ + 2µ)
1

6
∆x

(

V tr
2 + V tl

2 − Vbr
2 − Vbl

2

)

,

(20)

for the second normal component of the stress tensor, respectively.

Defining averaged values for velocities and stresses

vi =
1

∆x∆y

∫

∆x

∫

∆y

vidxdy, σij =
1

∆x∆y

∫

∆x

∫

∆y

σijdxdy, (21)

we are ready to formulate a numerical scheme in terms of averaged and excess

quantities.
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3.3 Numerical scheme

The numerical scheme follows from the standard approximation of time derivatives

Ûf ≈
f k+1 − f k

∆t
∀ f , (22)

which, accounting for Eqs. (16) and (17), results in

(ρv1)
k+1 − (ρv1)

k
=

2

3

∆t

∆x

(

Σ
rc
11 − Σlc11

)

+

1

6

∆t

∆x

(

Σ
rt
11 + Σ

rb
11 − Σlt11 − Σ

lb
11

)

+

+

2

3

∆t

∆y

(

Σ
tc
12 − Σ

bc
12

)

+

1

6

∆t

∆y

(

Σ
tr
12 + Σ

tl
12 − Σ

br
12 − Σbl12

)

,

(23)

(ρv2)
k+1 − (ρv2)

k
=

2

3

∆t

∆x

(

Σ
rc
21 − Σlc21

)

+

1

6

∆t

∆x

(

Σ
rt
21 + Σ

rb
21 − Σlt21 − Σ

lb
21

)

+

+

2

3

∆t

∆y

(

Σ
tc
22 − Σ

bc
22

)

+

1

6

∆t

∆y

(

Σ
tr
22 + Σ

tl
22 − Σ

br
22 − Σbl22

)

,

(24)

for the averaged velocities for each cell n,m. Here all the quantities in the right hand

side are given at time step k and the matter density ρ is assumed to be constant inside

each computational cell.

Similarly, for averaged stress components in each cell n,m we have

(σ11)
k+1 − (σ11)

k
= (λ + 2µ)

2

3

∆t

∆x

(

Vrc
1 − V lc

1

)

+

+ (λ + 2µ)
1

6

∆t

∆x

(

Vrt
1 + Vrb

1 − V lt
1 − V lb

1

)

+ λ
2

3

∆t

∆y

(

V tc
2 − Vbc

2

)

+

+ λ
1

6

∆t

∆y

(

V tr
2 + V tl

2 − Vbr
2 − Vbl

2

)

,

(25)

(σ22)
k+1 − (σ22)

k
= λ

2

3

∆t

∆x

(

Vrc
1 − V lc

1

)

+ λ
1

6

∆t

∆x

(

Vrt
1 + Vrb

1 − V lt
1 − V lb

1

)

+

+ (λ + 2µ)
2

3

∆t

∆y

(

V tc
2 − Vbc

2

)

+ (λ + 2µ)
1

6

∆t

∆y

(

V tr
2 + V tl

2 − Vbr
2 − Vbl

2

)

,

(26)

(σ12)
k+1 − (σ12)

k
=

1

3
µ
∆t

∆x

(

Vrc
2 − V lc

2

)

+

1

12
µ
∆t

∆x

(

Vrt
2 + Vrb

2 − V lt
2 − V lb

2

)

+

+

1

3
µ
∆t

∆y

(

V tc
1 − Vbc

1

)

+

1

12
µ
∆t

∆y

(

V tr
1 + V tl

1 − Vbr
1 − Vbl

1

)

.

(27)

Numerical scheme (23)–(27) is written down in terms of excess quantities. Therefore,

the necessary step is to determine values of excess quantities. Numerical scheme

(23)–(27) uses the values of excess quantities at the middle points of cell boundaries.
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It is reasonable to identify these values with the values of average excess quantities

(i.e., Vrc
1
= V

r

1, etc).

4 Determination of excess quantities

4.1 Averaged excess quantities

4.1.1 Normal components

Averaged values of excess quantities are determined exactly by means of jump

relations at boundaries between computational cells, which express the continuity of

true stresses and velocities (Berezovski et al., 2008)

[[

σij + Σij

]]

= 0, [[vi + Vi]] = 0. (28)

In terms of normal components these jump relations for each time step result in

(σ11)n−1m +

(

Σ
r

11

)

n−1m
= (σ11)nm +

(

Σ
l

11

)

nm
, (29)

(σ22)nm−1 +

(

Σ
t

22

)

nm−1
= (σ22)nm +

(

Σ
b

22

)

nm
, (30)

for stresses and

(v1)n−1m +

(

V
r

1

)

n−1m
= (v1)nm +

(

V
l

1

)

nm
, (31)

(v2)nm−1 +

(

V
t

2

)

nm−1
= (v2)nm +

(

V
b

2

)

nm
, (32)

for velocities. In both cases we have only two equations for four averaged excess

quantities. The closure of these systems of equations is achieved by means of condi-

tions of the conservation of "Riemann invariants" for excess quantities (Berezovski,

2011)
(

ρcpV
l

1

)

nm
+

(

Σ
l

11

)

nm
= 0, (33)

(

ρcpV
r

1

)

n−1m
−
(

Σ
r

11

)

n−1m
= 0, (34)

(

ρcpV
b

2

)

nm
+

(

Σ
b

22

)

nm
= 0, (35)

(

ρcpV
t

2

)

nm−1
−
(

Σ
t

22

)

nm−1
= 0, (36)

which leads to closed systems of equations for averaged excess velocities

(σ11)n−1m +

(

ρcpV
r

1

)

n−1m
= (σ11)nm −

(

ρcpV
l

1

)

nm
, (37)
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(v1)n−1m +

(

V
r

1

)

n−1m
= (v1)nm +

(

V
l

1

)

nm
, (38)

and

(σ22)nm−1 +

(

ρcpV
t

2

)

nm−1
= (σ22)nm −

(

ρcpV
b

2

)

nm
, (39)

(v2)nm−1 +

(

V
t

2

)

nm−1
= (v2)nm +

(

V
b

2

)

nm
. (40)

Both systems of equations (37)–(38) and (39)–(40) have explicit exact solutions. The

solution of the first system of equations reads

(

V
r

1

)

n−1m
=

(σ11)nm − (σ11)n−1m +
(

ρcp
)

nm
[(v1)nm − (v1)n−1m]

[
(

ρcp
)

n−1m
+

(

ρcp
)

nm
]

, (41)

and

(

V
l

1

)

nm
=

(σ11)nm − (σ11)n−1m −
(

ρcp
)

n−1m
[(v1)nm − (v1)n−1m]

[
(

ρcp
)

n−1m
+

(

ρcp
)

nm
]

. (42)

Corresponding excess values of normal components of the stress tensor follow from

the conservation of Riemann invariants
(

Σ
l

11

)

nm
= −

(

ρcpV
l

1

)

nm
, (43)

(

Σ
r

11

)

n−1m
=

(

ρcpV
r

1

)

n−1m
. (44)

Accordingly, the solution of the second system of equations (39)–(40) has the form

(

V
t

2

)

nm−1
=

(σ22)nm − (σ22)nm−1 +
(

ρcp
)

nm
[(v2)nm − (v2)nm−1]

[
(

ρcp
)

nm−1
+

(

ρcp
)

nm
]

, (45)

(

V
b

2

)

nm
=

(σ22)nm − (σ22)nm−1 −
(

ρcp
)

nm−1
[(v2)nm − (v2)nm−1]

[
(

ρcp
)

nm−1
+

(

ρcp
)

nm
]

, (46)

with excess values of normal components of the stress tensor

(

Σ
b

22

)

nm
= −

(

ρcpV
b

2

)

nm
, (47)

(

Σ
t

22

)

nm−1
=

(

ρcpV
t

2

)

nm−1
. (48)

4.1.2 Shear components

The values of excess quantities for shear components of the stress tensor are still

determined by means of jump relations at boundaries between computational cells

(28). In terms of shear components these jump relations result in
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(σ21)n−1m +

(

Σ
r

21

)

n−1m
= (σ21)nm +

(

Σ
l

21

)

nm
, (49)

(σ12)nm−1 +

(

Σ
t

12

)

nm−1
= (σ12)nm +

(

Σ
b

12

)

nm
, (50)

for stresses and

(v1)nm−1 +

(

V
t

1

)

nm−1
= (v1)nm +

(

V
b

1

)

nm
, (51)

(v2)n−1m +

(

V
r

2

)

n−1m
= (v2)nm +

(

V
l

2

)

nm
, (52)

for correspondingvelocities. The closure of systems of equations is again achieved by

means of conditions of the conservation of "Riemann invariants" for corresponding

excess quantities
(

Σ
b

12

)

nm
= −

(

ρcsV
b

1

)

nm
, (53)

(

Σ
t

12

)

nm−1
=

(

ρcsV
t

1

)

nm−1
, (54)

(

Σ
l

21

)

nm
= −

(

ρcsV
l

2

)

nm
, (55)

(

Σ
r

21

)

n−1m
=

(

ρcsV
r

2

)

n−1m
. (56)

Explicit exact solutions for excess quantities of shear components are still exist in

the form

(

V
r

2

)

n−1m
=

(σ21)nm − (σ21)n−1m + (ρcs)nm [(v2)nm − (v2)n−1m]

[(ρcs)n−1m + (ρcs)nm]
, (57)

(

V
l

2

)

nm
=

(σ21)nm − (σ21)n−1m − (ρcs)n−1m [(v2)nm − (v2)n−1m]

[(ρcs)n−1m + (ρcs)nm]
, (58)

and

(

V
t

1

)

nm−1
=

(σ12)nm − (σ12)nm−1 + (ρcs)nm [(v1)nm − (v1)nm−1]

[(ρcs)nm−1 + (ρcs)nm]
, (59)

(

V
b

1

)

nm
=

(σ12)nm − (σ12)nm−1 − (ρcs)nm−1 [(v1)nm − (v1)nm−1]

[(ρcs)nm−1 + (ρcs)nm]
. (60)

Values of averaged excess quantities for shear components of the stress tensor follow

from the conservation of Riemann invariants mentioned above. Now all averaged ex-

cess quantities are determined. It remains to calculate the values of excess quantities

at the corners of computational cells.
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4.2 Excess quantities at vertices

Suppose that values of velocity (V tr
1
)nm at upper right corner of the cell numbered

(n,m) is known.

bl br

tl tr
rt

rb

lt

lb

Cell
(n-1,m)

Cell
(n+1,m)

Cell
(n,m)

Cell
(n-1,m+1)

Cell
(n,m+1)

Cell
(n+1,m+1)

Cell
(n+1,m-1)

Cell
(n,m-1)

Cell
(n-1,m-1)

Fig. 2 Notation for neighbouring cells

It should be noted that each corner of the computational cell Cnm = [xn, xn+1] ×

[ym, ym+1] can be considered as the central point of one of the corresponding four

virtual cells Cn±1/2m±1/2 = [xn±1/2, xn+1±1/2] × [ym±1/2, ym+1±1/2]. In the first ap-

proximation, the value of every field quantity at corners of computational cells can

be represented as the simple average of the corresponding values in neighbouring

cells (see the notation in Fig. 2). This means that the value of the horizontal excess

velocity at the right upper corner (Vrt
1
)nm is calculated by the expression

(v1)nm +(V
rt
1 )nm =

1

4

(

(v1)nm +

(

V
r

1

)

nm
+ (v1)n,m+1 +

(

V
r

1

)

nm+1
+

+ (v1)n+1m +

(

V
l

1

)

n+1m
+ (v1)n+1,m+1 +

(

V
l

1

)

n+1m+1

)

,

(61)

which results in

(Vrt
1 )nm =

1

4

(

−3 (v1)nm +

(

V
r

1

)

nm
+ (v1)n, m+1 +

(

V
r

1

)

nm+1
+

+ (v1)n+1m +

(

V
l

1

)

n+1m
+ (v1)n+1,m+1 +

(

V
l

1

)

n+1m+1

)

.

(62)
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It is clear that due to symmetry of averaging the value of another velocity component

(V tr
1
)nm is the same

(V tr
1 )nm = (Vrt

1 )nm. (63)

Similarly, for (Vrb
1

)nm we have

(Vrb
1 )nm =

1

4

(

−3 (v1)nm +

(

V
r

1

)

nm
+ (v1)n, m−1 +

(

V
r

1

)

nm−1
+

+ (v1)n+1m +

(

V
l

1

)

n+1m
+ (v1)n+1, m−1 +

(

V
l

1

)

n+1m−1

)

,

(64)

with

(Vbr
1 )nm = (Vrb

1 )nm. (65)

Remaining values of excess velocities at corners of computational cells are deter-

mined in the same way. Namely,

(V lt
1 )nm =

1

4

(

−3 (v1)nm +

(

V
l

1

)

nm
+ (v1)n, m+1 +

(

V
l

1

)

nm+1
+

+ (v1)n−1m +

(

V
r

1

)

n−1m
+ (v1)n−1, m+1 +

(

V
r

1

)

n−1m+1

)

,

(66)

(V lb
1 )nm =

1

4

(

−3 (v1)nm +

(

V
l

1

)

nm
+ (v1)n,m−1 +

(

V
l

1

)

nm−1
+

(v1)n−1m +

(

V
r

1

)

n−1m
+ (v1)n−1, m−1 +

(

V
r

1

)

n−1m−1

)

.

(67)

The same rules of averaging are used for excess stress components. For instance, we

have for (Σrt
11
)nm

(Σrt11)nm =
1

4

(

−3 (σ11)nm +

(

Σ
r

11

)

nm
+ (σ11)n, m+1 +

(

Σ
r

11

)

nm+1
+

+ (σ11)n+1m +

(

Σ
l

11

)

n+1m
+ (σ11)n+1,m+1 +

(

Σ
l

11

)

n+1m+1

)

,

(68)

and, consecutively,

(Σrb11 )nm =
1

4

(

−3 (σ11)nm +

(

Σ
r

11

)

nm
+ (σ11)n,m−1 +

(

Σ
r

11

)

nm−1
+

+ (σ11)n+1m +

(

Σ
l

11

)

n+1m
+ (σ11)n+1,m−1 +

(

Σ
l

11

)

n+1m−1

)

,

(69)
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(Σlt11)nm =
1

4

(

−3 (σ11)nm +

(

Σ
l

11

)

nm
+ (σ11)n, m+1 +

(

Σ
l

11

)

nm+1
+

+ (σ11)n−1m +

(

Σ
r

11

)

n−1m
+ (σ11)n−1,m+1 +

(

Σ
r

11

)

n−1m+1

)

,

(70)

(Σlb11)nm =
1

4

(

−3 (σ11)nm +

(

Σ
l

11

)

nm
+ (σ11)n,m−1 +

(

Σ
l

11

)

nm−1
+

(σ11)n−1m +

(

Σ
r

11

)

n−1m
+ (σ11)n−1, m−1 +

(

Σ
r

11

)

n−1m−1

)

,

(71)

All other excess quantities at corners of computational cells are calculated alge-

braically in the same way. This finalizes the procedure of the determination of excess

quantities. The substitution of the values of excess quantities into numerical scheme

(23)–(27) allows us to perform calculations of two-dimensional problems.

5 Test problem

As an example, a stress pulse propagation in a waveguide depicted in Fig. 3 is

considered. The length of the waveguide is 250 mm, its thickness is 100 mm.

Free boundary

Fixed boundaryPlane pulse
loading

Free boundary

Fig. 3 Boundary conditions

Calculations are performed for Al 6061 alloy characterized by the density 2700

kg/m3, the Young modulus 68.9 GPa, and the Poisson ratio 0.33. This corresponds

to the longitudinal wave velocity 5092 m/s. Choosing the space step equal to 1 mm,

we have the time step 0.196 µs.

To be able to perform the calculation of a particular problem we need to specify

initial and boundary conditions. Initial conditions fix the state of each cell at a chosen

time instant. We suppose that initially the waveguide is at rest, which assumes zero

values for all wanted fields. Boundary conditions should be expressed in terms of

averaged and excess quantities used in the numerical scheme. We expect that the

state of cells adjacent to each boundary is known (at least partly). For the proper

computing, we need to know in advance as many values of averaged and excess

quantities as possible.
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5.1 Upper boundary: stress-free

We start with the stress-free upper boundary conditions. It should be noted that the

implementation of stress-free boundary conditions in the numerical scheme is not

easy task. The main progress in this direction is achieved by the geophysical commu-

nity (Moczo et al., 2014). There the free-surface boundary treatment is performed

within the finite-difference framework because of the efficiency of wave motion sim-

ulation in comparison with finite element or discontinuous Galerkin methods (Gao

et al., 2015).

However, in the proposed numerical procedure all the boundary conditions need to

be formulated in terms of averaged and excess quantities. As we know, jump relations

at boundaries between computational cells express continuity of true stresses and

velocities (28) It follows that at the stress-free upper boundary the value of the normal

stress is zero yielding (for each time step)

(σ22)n +
(

Σ
t

22

)

n
= 0. (72)

A similar relationship holds for the shear stress

(σ12)n +
(

Σ
t

12

)

n
= 0. (73)

Additionally, since values of the normal and shear stresses at the stress-free boundary

are not evolving with time, we have for ∆x = ∆y

λ
((

V
r

1

)

n
−
(

V
l

1

)

n

)

+ (λ + 2µ)
((

V
t

2

)

n
−
(

V
b

2

)

n

)

+

+

λ

4

((

V
rt

1

)

n
+

(

V
rb

1

)

n
−
(

V
lt

1

)

n
−
(

V
lb

1

)

n

)

+

+

(λ + 2µ)

4

((

V
tr

2

)

n
+

(

V
tl

2

)

n
−
(

V
br

2

)

n
−
(

V
bl

2

)

n

)

= 0,

(74)

((

V
r

2

)

n
−
(

V
l

2

)

n

)

+ +

((

V
t

1

)

n
−
(

V
b

1

)

n

)

+

+

1

4

((

V
rt

2

)

n
+

(

V
rb

2

)

n
−
(

V
lt

2

)

n
−
(

V
lb

2

)

n

)

+

1

4

((

V
tr

1

)

n
+

(

V
tl

1

)

n
−
(

V
br

1

)

n
−
(

V
bl

1

)

n

)

= 0.

(75)

Equations (72) – (75) allow us to calculate values of four excess quantities, namely,
(

V
t

1

)

n
,
(

V
t

2

)

n
,
(

Σ
t

12

)

n
, and

(

Σ
t

22

)

n
, at the upper stress-free boundary. Fortunately,

it is sufficient to update the averaged values of all fields at the upper layer of the

computational domain.

The similar consideration is valid for the stress-free bottom boundary with the

corresponding transformation of indices.
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5.2 Left boundary: loading

At the loading left boundary the value of the normal stress in each cell and at each

time step is given in advance

(σ11)m +
(

Σ
l

11

)

m
= σ11(t), (76)

where σ11(t) is a known function. A similar relationship holds for the shear stress

(σ12)m +
(

Σ
l

12

)

m
= σ12(t). (77)

Since values of the normal and shear stresses at the loading boundary are evolving

with time, we have additionally for each boundary cell and at each time step

∆x Ûσ11 =
2

3
(λ + 2µ)

[(

V
r

1

)

m
−
(

V
l

1

)

m

]

+

2

3
λ
[(

V
t

2

)

m
−
(

V
b

2

)

m

]

+

+ (λ + 2µ)
1

6

((

V
rt

1

)

m
+

(

V
rb

1

)

m
−
(

V
lt

1

)

m
−
(

V
lb

1

)

m

)

+

+ λ
1

6

((

V
tr

2

)

m
+

(

V
tl

2

)

m
−
(

V
br

2

)

m
−
(

V
bl

2

)

m

)

,

(78)

∆x Ûσ12 =
1

3
µ
[ (

V
r

2

)

m
−
(

V
l

2

)

m

]

+

1

3
µ
[ (

V
t

1

)

m
−
(

V
b

1

)

m

]

+

+

1

12
µ
( (

V
rt

2

)

m
+

(

V
rb

2

)

m
−
(

V
lt

2

)

m
−
(

V
lb

2

)

m

)

+

+

1

12
µ
( (

V
tr

1

)

m
+

(

V
tl

1

)

m
−
(

V
br

1

)

m
−
(

V
bl

1

)

m

)

.

(79)

By means of equations (76) – (79) we can calculate values of four excess quantities,

namely,
(

V
l

1

)

m
,
(

V
l

2

)

m
,
(

Σ
l

1

)

m
, and

(

Σ
l

2

)

m
, at the left boundary. As previously, it

is sufficient to update the averaged values of all fields at the left boundary of the

computational domain.

5.3 Right boundary: fixed

At a fixed right boundary the values of velocities are zero, i.e.,

(vi)m +
(

V
r

i

)

m
= 0, ∀m. (80)

Besides, since values of velocities at the fixed boundary are not evolving with time,

we have ∀m
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((

Σ
r

11

)

m
−
(

Σ
l

11

)

m

)

+

((

Σ
t

12

)

m
−
(

Σ
b

12

)

m

)

+

+

1

4

((

Σ
rt

11

)

m
+

(

Σ
rb

11

)

m
−
(

Σ
lt

11

)

m
−
(

Σ
lb

11

)

m

)

+

+

1

4

((

Σ
tr

12

)

m
+

(

Σ
tl

12

)

m
−
(

Σ
br

12

)

m
−
(

Σ
bl

12

)

m

)

= 0,

(81)

((

Σ
r

21

)

m
−
(

Σ
l

21

)

m

)

+

((

Σ
t

22

)

m
−
(

Σ
b

22

)

m

)

+

+

1

4

((

Σ
rt

21

)

m
+

(

Σ
rb

21

)

m
−
(

Σ
lt

21

)

m
−
(

Σ
lb

21

)

m

)

+

+

1

4

((

Σ
tr

22

)

m
+

(

Σ
tl

22

)

m
−
(

Σ
br

22

)

m
−
(

Σ
bl

22

)

m

)

= 0.

(82)

Relatioships (80) – (82) are served to obtain values of four excess quantities, namely,
(

V
r

1

)

m
,
(

V
r

2

)

m
,
(

Σ
r

11

)

m
, and

(

Σ
r

21

)

m
, at the fixed right boundary. As before, it

is sufficient to update the averaged values of all fields at the right layer of the

computational domain.

5.4 Results of computations

The problem of a pulse propagation in an homogeneous waveguide is solved by means

of wave-propagation algorithm (LeVeque, 1997) and by means of the proposed

numerical scheme. The shape of the plane loading pulse at the left boundary is

prescribed by the dependence σ11(t) = sin
2(πt/80) for the first 80 time steps. After

that the left boundary is stress-free. Calculations were performed for the Courant

number 0.91.

The main attention is focused on the influence of lateral boundaries. The distribu-

tion of longitudinal stress at 220 time steps presented in the Fig. 4 shows a similarity

of results obtained by using the two numerical methods. Here only small difference

is observed on the rear side of the pulse.

However, the distinction in the distribution of the longitudinal stress becomes

more evident after reflection at the fixed right boundary as one can see in Fig. 5. The

main difference in these two approaches is in the implementation of boundary con-

ditions. In the wave-propagation algorithm (LeVeque, 2002), boundary conditions

are satisfied using the additional "ghost cells". In the proposed thermodynamically

consistent scheme, boundary conditions are imposed in terms of excess quantities at

boundaries.
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Fig. 4 Contour plot for the longitudinal stress distribution at 220 time steps. Upper panel corre-

sponds to results of the standard wave-propagation algorithm (LeVeque, 2002), bottom panel shows

outcome of the proposed numerical scheme.

6 Conclusions

The propagation of a pulse in elastic waveguides displays the result of interactions

of distinct modes. Theoretically, only certain first modes are taken into account.

Direct numerical simulation combines all of them by default. However, the imple-

mentation of boundary conditions should be as accurate as possible. In the paper,

such an implementation is proposed in terms of excess quantities taken directly at

boundaries. Simulations were performed by means of wave-propagation algorithm

(LeVeque, 1997) and by means of the proposed numerical scheme. It should be noted

that in the case of plane wave results of calculations obtained by both methods are

identical. For non-plane wave, the distribution of longitudinal stress shows a sim-

ilarity of results obtained by the two numerical methods. However, this similarity

is not complete especially after reflection. The details of fields distribution depend
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Fig. 5 Contour plot for the longitudinal stress distribution at 480 time steps. Upper panel corre-

sponds to results of the standard wave-propagation algorithm (LeVeque, 2002), bottom panel shows

outcome of the proposed numerical scheme.

on the implementation of boundary conditions in the pulse propagation in elastic

waveguides.
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