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ABSTRACT 

Researcher: Jennifer M. Edwards 

Title: STUDENT ENGAGEMENT IN AVIATION MOOCS: IDENTIFYING 
SUBGROUPS AND THEIR DIFFERENCES 

 
Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2020 

The purpose of this study was to expand the current understanding of learner engagement 

in aviation-related Massive Open Online Courses (MOOCs) through cluster analysis. 

MOOCs, regarded for their low- or no-cost educational content, often attract thousands of 

students who are free to engage with the provided content to the extent of their choosing. 

As online training for pilots, flight attendants, mechanics, and small unmanned aerial 

system operators continues to expand, understanding how learners engage in optional 

aviation-focused, online course material may help inform course design and instruction in 

the aviation industry. In this study, Moore’s theory of transactional distance, which posits 

psychological or communicative distance can impede learning and success, was used as a 

descriptive framework for analysis. Archived learning analytics datasets from two 2018 

iterations of the same small unmanned aerial systems MOOC were cluster-analyzed (N = 

1,032 and N = 4,037). The enrolled students included individuals worldwide; some were 

affiliated with the host institution, but most were not. The data sets were cluster analyzed 

separately to categorize participants into common subpopulations based on discussion 

post pages viewed and posts written, video pages viewed, and quiz grades. Subgroup 

differences were examined in days of activity and record of completion. Pre- and post-

course survey data provided additional variables for analysis of subgroup differences in 
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demographics (age, geographic location, education level, employment in the aviation 

industry) and learning goals. Analysis of engagement variables revealed three 

significantly different subgroups for each MOOC. Engagement patterns were similar 

between MOOCs for the most and least engaged groups, but differences were noted in 

the middle groups; MOOC 1’s middle group had a broader interest in optional content 

(both in discussions and videos); whereas MOOC 2’s middle group had a narrower 

interest in optional discussions. Mandatory items (Mandatory Discussion or Quizzes) 

were the best predictors in classifying subgroups for both MOOCs. Significant 

associations were found between subgroups and education levels, days of activity, and 

total quiz scores. This study addressed two known problems: a lack of information on 

student engagement in aviation-related MOOCs, and more broadly, a growing imperative 

to examine learners who utilize MOOCs but do not complete them. This study served as 

an important first step for course developers and instructors who aim to meet the diverse 

needs of the aviation-education community.  
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CHAPTER I 

INTRODUCTION  

With the proliferation of technology and Internet connectivity over the last two 

decades, the landscape of online education has changed and continues to change rapidly 

(Broadbent & Poon, 2015). Considered the fastest-growing sector of higher education 

today, online education is comprised of degree and non-degree programs, hybrid 

university courses, and corporate, computer-based training (Protopsaltis & Baum, 2019). 

The concept of online education, with its host of related terms (e.g., e-learning, 

distributed learning, distance learning), is defined as education delivered through 

computer and Internet technology, “where the teacher and students are physically 

separated” (Kentnor, 2015, p. 22).  

Online education is widely applied in formats that are synchronous or 

asynchronous and can be instructor-led, peer-driven, or self-contained (Keengwe et al., 

2014). A conventional online course experience consists of admission, a limited 

enrollment credit-or certificate course, online compulsory discussion boards, videos, and 

graded assignments/exams. Students typically work on a set schedule and receive 

instructor feedback on assignments and online discussion boards (Keengwe et al., 2014). 

While this conventional design remains prominent, a different format, the Massive Open 

Online Course (MOOC), has broadened the education landscape since it emerged in the 

fall of 2011.  

Unlike a traditional online course, a MOOC is a course with few enrollment 

criteria. Also, while a traditional course might have twenty to thirty paying, credit and 
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degree-seeking students, MOOCs are massive in size, sometimes hosting several 

thousand non-paying, non-credit seeking students at once (Pappano, 2012).  

The first MOOC, launched by Stanford University professors Sebastian Thrun 

and Peter Norvig, offered anyone with an Internet connection the chance to audit an 

introductory artificial intelligence course online (Grimmelmann, 2014). What started as 

an experiment for Stanford’s professors attracted over 160,000 students and eventually 

inspired the development of platforms Udacity and Coursera. Soon after, Harvard and 

Massachusetts Institute of Technology (MIT) founded the non-profit platform edX 

(Grimmelmann, 2014). In a short time, MOOCs, with their absence of prerequisites or 

applications, and their free, online video lectures, peer-graded assignments, and lightly 

monitored discussion boards, transformed higher education for the masses (Pappano, 

2012).  

Today, MOOC platform corporations are partnered with universities worldwide. 

Those platforms can be either for-profit or non-profit, and most offer both paid courses 

(certificates, with some degrees) as well as free courses. MOOC platforms of note are 

Coursera (37 million users), Goodwill’s job training MOOC, called GFCCGlobal (31 

million users), edX (18 million users), and Udacity (10 million users) (Busteed, 2019). 

Not surprisingly, these MOOCs and their masses of eager students have been researched 

in domains such as motivation and behavior, collaborative learning, educational 

technology, learner engagement, and self-regulated learning (Gašević et al., 2014).  

While an obvious benefit of a MOOC is its ability to reach learners, regardless of 

their means or location, the MOOC’s potential to impact professional development has 

been a recent focus of various industries and researchers (Dodson et al., 2015; Milligan & 
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Littlejohn, 2014; Pappano, 2012). Some argue MOOCs offer a potential cost benefit to 

users and employers (Dodson et al., 2015; Nielson, 2014). Assuming organizations use 

existing MOOCs instead of formal, in-house, or purchased online training, the 

organizations could save in the cost of materials, instructors, licenses, and learning 

management systems (LMS) (Dodson et al., 2015). Additionally, organizations can target 

education to a particular person and role by selecting different MOOCs for different 

employees. Corporations, along with aspiring and established professionals, have 

demonstrated a desire for efficient training and means to collaborate for the advancement 

of knowledge in a specific domain (Milligan & Littlejohn, 2014). 

In the field of aviation, traditional education and training modalities with a flight 

student and instructor who are face-to-face continue to dominate time and resources for 

initial entry training programs (Prather, 2007). Nevertheless, collegiate aviation programs 

have integrated online education opportunities just as their non-aviation university 

counterparts have, in keeping with the demand for flexible higher education (Mott et al., 

2019). Universities with bachelor’s degrees that can be earned along with Air Transport 

Pilot (ATP) certificates now offer a myriad of online courses for both flight and non-

flight students (Prather, 2007). This increased online presence, coupled with momentum 

from research promoting hiring preferences for recent graduates of Aviation 

Accreditation Board International (AABI) accredited programs (Smith et al., 2016), 

underscore the relevance and prominence of such institutions in the aviation field.  

The field of aviation education has experienced a recent increase in attention 

surrounding the roles and strategies degree and certificate-granting institutions will serve 

in filling the need for more aviation professionals in the industry (Lutte & Lovelace, 



20 

 

2016). While traditional online for-credit courses supportive of the aviation 

professional’s education have been a mainstay for years (Newcomer et al., 2014; Prather, 

2006), institutions that care about continuing a positive growth trend and fostering their 

missions of education may offer MOOCs in order to reach many more learners in the 

industry (Iacuzio, 2015).  

Additionally, these institutions may consider the possibility that positive 

experiences in aviation MOOCs may inspire future aviation professionals to seek 

enrollment in for-credit courses within their degree programs. While most universities 

provide MOOCs primarily to extend reach and access to education, a common, secondary 

institutional goal is that of expanding the university brand for increased recruitment and 

enrollment in tuition-earning programs (Hollands & Tirthali, 2014). Thus, to “bind 

learners” to a “brand rather than charge them for educational experience” (McAuley et 

al., 2010, p. 33) is considered a worthy return on investment (ROI) for some universities. 

MOOC-focused research has included themes of engagement, learner success, 

motivations, attitudes, learning strategies, social interaction, and learning resources 

(Gašević et al., 2014). Researchers have been guided by an array of well-established 

theories of behavior, motivation, and learning, such as planned behavior (Ajzen, 1991), 

self-determination (Deci, 1971), goal-setting (Locke & Latham, 1994), self-regulated 

learning (Zimmerman, 1990), social learning (Bandura 1969), constructivism (Piaget, 

1971), and connectivism (Siemens, 2005). For the proposed study, Moore’s (1973) theory 

of transactional distance, which posits psychological or communicative distance can 

impede learning and success, was used as a descriptive framework. In Moore’s theory, 

factors of dialogue (e.g., frequency and quality), structure (e.g., course rigidity or 
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flexibility), and learner autonomy (e.g., the extent to which a learner feels independence 

in the course) are considered to be critical dimensions for optimal learning (Falloon, 

2011). If students feel reduced transactional distance, it is plausible that engagement will 

be higher, and outcomes such as persistence, performance, and positive experiences 

should be as well.  

While a comprehensive application of Moore’s theory would be ideal, this study 

utilized only portions of Moore’s theory as a descriptive framework. Variables related to 

the frequency facet of Moore’s dialogue factor (e.g., frequency interactions of students 

with each other and with the content) were used. Although considered inferior to quality, 

frequency of interaction, as an indicator of engagement in a course, is readily available, 

and has been used with data mining techniques for early warning systems and immediate 

course developer feedback (MacFadyen & Dawson, 2010).  In MOOC research, 

traditional methods of data collection (e.g., surveys, structured interviews, grades) are 

common. While qualitative approaches for comprehensive, theoretical explication (for 

Moore’s theory this would involve quality of interaction) are common, quantitative 

approaches aimed at more expedient feedback, or unsupervised data exploration, are 

gaining attention within the fields of learning analytics and educational data mining 

(Gašević et al., 2014).  

Learning analytics involves the “measurement, collection, analysis and reporting 

of data about learners and their contexts, for purposes of understanding and optimizing 

learning and the environments in which it occurs” (Siemens, 2013, p. 1382). Using this 

approach, researchers analyze navigation patterns, including what features or tools users 

click on and how long they watch a video or stay on a particular task (Siemens, 2013). 



22 

 

The learning analytics approach is considered ideal for research due to its less obtrusive, 

more dynamic nature, as well as its ability to reduce the bias of self-selection, compared 

to survey methods (Gašević et al., 2014). 

Statement of the Problem 

The aviation industry is currently facing a need to adapt to growth and resulting 

pilot shortages as well as to regulatory changes and constraints on budgets and time 

(Boeing, 2019; Federal Aviation Administration, 2017). As evidenced by an industry-

wide shift to include more computer-based or distance training (Kearns, 2009; 

Raisinghani et al., 2009) and the relevance of AABI-accredited programs (Smith et al., 

2016), online education delivered by these institutions will be a focus for years to come. 

To date, little is known about learners in aviation-related MOOCs. A considerable 

number of learners may be outsiders to the industry, who are considering entry. To 

improve and tailor education to the existing and prospective aviation community, 

additional knowledge must be collected about MOOC participants with respect to 

engagement in the open online environment.  

Furthermore, in the broader MOOC research community, there has been a call for 

increased utilization of learning analytics to enable instructors, course developers, and 

instructional designers to better support the learning process (Gašević et al., 2014; 

Johnson et al., 2012; Vieira et al., 2018). More research is needed in contexts where 

success is not considered to be binary (e.g., certificate earned versus not earned). 

Researchers have been urged to make efforts to more appropriately “deconstruct 

disengagement” (Kizilcec et al., 2013, p. 170) as recent MOOC research has highlighted 

the need to consider goals and needs of these learners who utilize MOOCs but do not 
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complete them (Breslow et al., 2013; Ferguson & Clow, 2015; Ramesh et al., 2018). An 

increased understanding of engagement and disengagement, by way of learning analytics, 

is necessary to enable MOOC designers to add value where users need it most.  

Purpose Statement 

 The purpose of the present study was to expand the current understanding of 

aviation-related MOOCs by determining and examining subpopulations of learners based 

on common engagement behaviors in the course. A better understanding of the learners 

may also reveal the extent to which variables of behavior selected for this study are 

theoretically relevant in overcoming transactional distance (e.g., psychological and 

communications gaps between instructors and learners), which is common in online 

learning (Moore, 1973). Additionally, the present study fills a gap in research in its 

person-centered approach that maximizes the rich data available in learning analytics 

datasets. A person-centered approach is critical for advancing knowledge on MOOC 

users because it detects and forms groups of students with common behaviors within the 

course, without assuming, as in a variable centered approach, that one set of parameters 

will be sufficient to describe the population. Although less parsimonious than a variable-

centered approach, a person-centered approach offers more specificity in how the results 

describe the subjects (Howard & Hoffman, 2018). An increased understanding of the 

characteristics and engagement patterns of these groups is an important first step for 
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course developers and instructors who aim to meet the diverse needs of the current and 

prospective aviation education community.  

Research Questions 

 RQ 1. Based on engagement in course discussions, videos, and assessments, what 

distinct subgroups of students exist in an aviation-related MOOC?  

 RQ 2. Based on demographics, days of participation in the course, and 

achievement, what are the differences among engagement subgroups?  

 Due to the exploratory and data-driven nature of this study, no hypotheses were 

made concerning subgroups and the characteristics of these subgroups. While the lack of 

hypotheses is characteristic of an inductive approach (Lodico et al., 2010), the study 

examined variables and archived survey questions deemed relevant based upon existing 

theories and knowledge. It was a secondary aim of this study to provide new knowledge 

for future hypothesis generation and testing (Kell & Oliver, 2004).  

Significance of the Study 

 Currently, little is known about aviation-related MOOCs and respective learners, 

despite the aviation industry’s apparent increasing involvement in online education 

(Niemczyk, 2017; Lappas & Kourousis, 2016). The present study aimed to contribute 

needed empirical data on learner engagement to broaden what is known about this unique 

education domain, which must sustain and increase knowledge for aviation professionals 

and enthusiasts. As is typical with action research, generalizability may be limited due to 

the scope of the data and transferability. The extent to which results can be applied 

elsewhere will depend upon practitioner assessments in other domains (Dick, 2014). 

Thus, if findings are deemed transferable by practitioners in other aviation education 
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domains, then understanding how learners engage in optional aviation-focused online 

course material may inform course design in the aviation industry as online training for 

pilots, flight attendants, mechanics, and small unmanned aerial system operators 

continues to expand. It may also aid developers in better design and marketing to increase 

the interest of those outside the aviation industry who may be considering entry into the 

industry.  

 Through the use of learning analytics, employed for developing actionable 

insights, the processes and results from this study may be instrumental in encouraging 

course designers and instructors to make more use of the vast amount of information at 

their disposal (Siemens, 2013). The results of the present study may be useful for 

identifying at-risk students and for guiding instructional designers who intend to add 

instructional support (James et al., 2018). Theoretically, the results of the present study 

may shed light on how a reduction of transactional distance, via increased dialogue and 

frequency of interaction, may indicate students feel more connected and thus more 

willing to persist. It may also show how factors of structure and autonomy in a course are 

related to engagement respective to mandatory and optional content. Finally, 

demonstrating the utility of learning analytics may reduce what is referred to as the 

“research and practice gap” that is said to exist when a researcher is far removed from an 

end-user (or instructor) (Siemens, 2012, p. 5). Thus, the methodology used here may 

allow others to achieve new insights on how to translate analytic research into practice 

and enable instructors to scale these methods to their own course data.  
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Delimitations 

 Data utilized involved only a single, aviation-related course topic, rather than all 

available aviation-related course topics. Engagement analysis focused on count measures 

rather than other temporal measures such as time on task or sequence in which course 

material was accessed. Archived data selected included only quantitative measures, rather 

than qualitative content such as quality of discussion content. Additionally, only data 

recorded during the two-week time period when the MOOC was “live” were analyzed. 

Finally, archived data were primarily from adult learners instead of all types of learners.  

 Delimitations related to theory include the use of engagement as a construct 

following a narrow conceptual definition consistent with the field of learning analytics 

and MOOC research (Bonafini et al., 2017; Huang et al., 2014; Kahan et al., 2017). Since 

the construct of engagement varies widely by discipline and context, a brief background 

of common definitions is necessary to clarify a narrow definition that will delimit the 

proposed study. In traditional education terminology, student engagement is a broad 

construct with overlapping cognitive and behavioral dimensions. Definitions vary, but 

many include descriptions of psychological investment, self-regulation, goal-setting, and 

persistence (Sinatra et al., 2015).  

 For the cognitive dimension, student engagement is centered on involvement with 

activities and conditions that are assumed to be conducive to deep learning or higher-

order processing activity (Sinatra et al., 2015). While the behavioral dimension overlaps 

slightly with the cognitive dimension and has strong ties to achievement, the behavioral 

dimension is centered on involvement in academic tasks, attention, and information 

seeking. Despite its strong ties to achievement, behavioral engagement does not 
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necessarily imply strong cognitive or metacognitive activity, which is critical for deep 

learning (Sinatra et al., 2015). For the present study, it was assumed that the construct of 

engagement represents the behavioral dimension of engagement. Thus, the use of the 

term “engagement” and the operationalizations of the number of discussion posts, the 

amount of video watched, or assessment scores may not represent or imply deep learning 

or cognitive engagement. Instead, engagement represents behavioral or participative 

engagement. Operationalization of engagement by measuring active participation in 

learning activities can be accomplished via direct observation of types and durations of 

activity (Chapman, 2003) or by analyzing data traces captured by an LMS (Ferguson & 

Clow, 2015; Kizilcec et al., 2013). These operationalizations are supported by definitions 

of engagement that speak to “students’ cognitive investment in” and “active participation 

in… their learning” (Zepke & Leach, 2010, p. 168). Thus, in the present study, 

engagement is narrowly defined as active participation in learning activities. It was 

assumed that the operationalizations represented active participation in the MOOC course 

learning activities. Because characterizations of behavioral engagement often implicitly 

or explicitly include motivation in terms of why students expend effort and persist 

(Sinatra et al., 2015), the study also included student learning goals and participation 

intent, which were assumed to represent the motivational aspect of the behavioral 

engagement.  

Limitations and Assumptions 

Limitations. While the study offers unique contributions to the aviation and 

broader education community, some limitations must be acknowledged. First, the 

archival nature of the data limited what pre- and post-course survey questions were 
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included in the analysis. Targeting motivations and reasons for disengagement may be 

better accomplished by asking learners why they completed certain portions of the course 

and not others, or by including more nuanced questions regarding learning goals at the 

outset or as the course progressed (Yuan & Powell, 2013). The lack of detail available 

from the post-course survey limited this research to a pre-course survey response on 

intent and measures of behavior from course activity.  

 Also related to the archival nature of the data is the limitation of the type of 

learning analytic data available for analysis. The Canvas LMS does not provide fine-

grained detail for video watching within the course. Ideally, research would make use of 

trace data such as which students watched a video, and how long each student watched 

the video. Due to constraints of the Canvas LMS, video engagement data for the study 

was limited to a proxy of video engagement: each student’s number of page views for 

each video. 

 Another limitation was the low response rate of pre- and post-course surveys and 

the resulting effect of constrained analysis. Since a greater portion of the learners who 

completed pre- and post-course survey also completed the course, a selection bias was 

present. Thus, without complete pre-course surveys, this bias was not fully addressed. 

While selection bias is common to MOOC research, it must be acknowledged, and care 

must be taken in generalizing (Hodge, 2016).  

Other limitations involved the exploratory use of clustering in the data analysis 

phase. Because the analysis may not result in meaningful clusters, the results may be 

difficult to interpret (Antonenko et al., 2012). This was mitigated by choosing the most 
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appropriate algorithm for the variables used, by appropriate validity analyses, and by 

comparison of results with previous research in the literature.   

The scope of research was restricted to data from one-course topic, one platform, 

one location, and one year-long period. As a result, the generalizability of the study 

results was a limitation; however, as suggested by the recommendations for future 

research and the practical implications, some results may transfer to other aviation 

education settings.  

 The MOOCs selected for the study were on the subject of small, unmanned aerial 

systems (sUAS). The MOOCs lasted two weeks; both were held in 2018, and covered 

topics on the safe integration of sUAS into the national airspace system (NAS), 

cybersecurity, privacy, and data protection. Even though generalizability is limited, the 

sUAS course topic, as well as the time frame, during a time when aviation education was 

growing rapidly, offered data sets with a rich context for this “first” look into aviation-

focused MOOCs. While generalizability across the aviation education domain is 

desirable, it was not the goal in this initial study. The study may serve as the basis for 

future research, which could establish the extent of generalizability within the broader 

aviation domain.  

Assumptions. Several assumptions (topical, theoretical, methodological, and 

statistical) were made during the development and execution of this study. These served 

to inform this study. Three topical and methodological assumptions will be described 

here, while several statistical assumptions will be described in Chapter III.  

 The first assumption (topic-specific) was that MOOC enrollment is showing 

steady growth and will continue to be relevant in the education community (Chuang & 
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Ho, 2016). The second assumption (theoretical) was that although this study did not 

assess quality or meaningfulness of dialogue, frequency is a valuable, albeit incomplete, 

indicator that students may be actively engaging in integrating new information into 

existing knowledge structures (Garrison, 1993). The third assumption (methodological) 

was that MOOC participants answered honestly in their pre- and post-course surveys, 

since these were voluntary surveys that were not shared with classmates.  

 
Definitions of Terms  

Asynchronous Discussion Discussions that do not happen at the same or 

preset time, pertaining to the online discussion 

board where students or instructors make 

posts and reply to other student posts on 

specified topics or questions. 

Comment A message used to reply to a post in an online 

discussion board thread (Wong, Pursel, 

Divinsky, & Jansen, 2015). 

Engagement Student interactivity with typical course 

content features: assessments, assignments, 

discussion boards, and videos (Kizilcec et al., 

2013). 
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Extrinsic Motivation A characterization or driver of behavior that is 

tied to some purpose beyond the task or to a 

separable outcome (e.g., certification or pay) 

(Ryan & Deci, 2000). 

Intrinsic Motivation A characterization or driver of behavior when 

innate needs are satisfied. This type of 

motivation involves behavior that occurs 

because a person derives pleasure or 

satisfaction from an activity (Ryan & Deci, 

2000). 

Learner-Content Interaction “The process of intellectually interacting with 

content that results in changes in the learner's 

understanding, the learner's perspective, or the 

cognitive structures of the learner's mind” 

(Moore, 1989, p. 2). 

Learner-Learner Interaction Interaction that is synchronous or 

asynchronous and can occur with or without 

“real-time presence of an instructor" (Moore, 

1989, p. 4). 
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Learner-Instructor Interaction Learner and instructor as experiences shared 

by the instructor, such as providing 

resolutions to misunderstandings, 

elaborations, simplifications, analogies, and 

supplemental readings. 

Learning Analytics “Measurement, collection, optimizing 

learning and the environments in which it 

occurs” (Siemens, 2013, p. 1382). 

Learning Management System Web-based system used to distribute and 

provide access to course materials, resources, 

and assignments. This system also provides a 

forum for discussions and a method of 

tracking assignments, grades, feedback, and 

extent of student usage of materials. 

Massive Open Online Course  Commonly called “MOOC.” Online course 

characterized by open and often free access, 

with nearly unlimited enrollment. 

Online Learning Learning enabled by computer or 

communication technology connected to the 

internet (Anderson, 2008).  
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Post A message for replying to a thread in an 

online discussion board (Wong, et al., 2015). 

Social Presence A construct explored as a contributor to social 

climate and learning in classroom; “the degree 

to which a person is perceived as a “real 

person” in mediated communication” 

(Gunawardena, 1995, p. 151). 

Thread Area in online discussion board, created for 

initiating a new discussion.  

 

List of Acronyms 

AABI Aviation Accreditation Board International 

BIC Bayesian Information Criterion 

FAA Federal Aviation Administration 

LMS Learning Management System 

MOOC Massive Open Online Course 

NAS National Airspace System  

SDT Social Determination Theory 

UAS Unmanned Aerial Systems 

sUAS Small Unmanned Aerial Systems 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

 

 In addition to examining the characteristics of learners in an aviation focused 

MOOC, this study used learning analytics and the descriptive framework of Moore’s 

(1973) theory of transactional distance to better understand student interactions and 

behaviors during the MOOC. In this section, existing research on personal factors of 

MOOC learners, including their motivation and engagement in MOOCs, will be 

reviewed. Next, course design factors will be reviewed. Finally, the theoretical 

framework, along with additional theories prevalent in the literature will be explained. 

The additional theories of motivation, social constructs, and interaction in online 

education will be reviewed to provide a background for motivation components of 

engagement. Although there is much MOOC research framed upon learning theory, the 

theoretical scope of this study will be limited to motivation and interaction.  

Aviation MOOC Research 

 Little is currently known about students who enroll in aviation-focused MOOCS. 

A recent experimental study (Velázquez, 2017) utilized a flipped classroom combined 

with an aviation MOOC in order to compare final exam scores of MOOC participants in 

the flipped course format with non-MOOC participants in the traditional course format. 

In a flipped classroom, lecture-type activities and homework are flipped in terms of what 

material is covered in class and what is covered out of class. Usually, pre-recorded 

lectures are viewed outside of class and then homework and active discussion comprise 

the in-class time. In this case, the Aviation 101 MOOC was used to flip the classroom and 
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served as the out-of-class portion of the course for the experimental group, while 

traditional design of classroom lectures and out-of-class homework were sustained for the 

control group. This study demonstrated that students in an undergraduate aviation course, 

Private Pilot Theory, who took a MOOC entitled, Aviation 101, achieved higher final 

exam scores than their traditional classroom counterparts in the control group. Because 

the Velázquez (2017) sample was limited to 52 students and had a combined effect of a 

traditional and a MOOC course, a more focused study including all MOOC participants 

in one MOOC, as opposed to just a portion of them, is necessary to better understand 

aviation MOOC students.  

 While research is scarce on aviation MOOC learners, research on the non-aviation 

MOOC community is abundant and growing (Gašević et al., 2014; Milligan & Littlejohn, 

2014; Zhu et al., 2018). Growth of MOOCs and online education in general have helped 

to drive recent advances in LMSs and the features those systems offer in the way of 

learning analytics (Siemens, 2013). The market of MOOC education has evolved over 

time, and not surprisingly, universities have also refined their business models for their 

mission and market (McAuley et al., 2010). Some have increased their offering of 

MOOCs to expand the university brand for recruitment. This increase is noteworthy for 

aviation-related MOOCs which are potentially attracting learners who are not already in 

the aviation field. Research to date has included characteristics of MOOC participants in 

terms of motivation, enrollment, and engagement (Watted & Barak, 2018). Since MOOC 

platforms offer education in a form similar to traditional online education, many research 

themes from the online learning mode are similar and will, thus, be included in the 

review of relevant literature. 
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Characteristics of MOOC Participants 

 The process of determining who participates in MOOCs is fairly straightforward 

because of the capabilities of the platforms used as LMSs. Most platforms gather 

demographic data such as age, gender, education level, and location during registration or 

pre-course surveys, but the extent to which developers and instructors use this data varies 

widely (Vieira et al., 2018). Self-reported data often includes geographic location, but 

due to low response rates and a desire to compare sources of information, researchers 

have also used Internet protocol (IP) addresses to derive approximate physical locations 

(Christiansen et al., 2013). Most demographic analyses reveal MOOC participants 

already have high levels of education, are employed, and are predominantly male 

(Christensen et al., 2013; Chuang & Ho, 2016).  

 After four years in the MOOC industry, Massachusetts Institute of Technology 

(MIT) and Harvard released an edX demographic analysis of survey data from users of 

290 courses. Those data revealed a median age of 29 and a 2:1 male-to-female ratio 

(Chuang & Ho, 2016). A study by Zhenghao et al. (2015) that included multiple 

platforms reported similar demographic data. Approximately 80% of MOOC completers 

had at least a bachelor’s degree prior to the MOOC; almost 60% were employed full-

time, and 60% were from developed countries. Demographic reports to date have 

highlighted the presence of underserved students (e.g., low income, non-white students) 

(Stich & Reeves, 2017), and some contend the reports have exposed a well-educated and 

high socioeconomic group of learners who start MOOCs and then quit them (Zhenghao et 

al., 2015). Despite this negative characterization, other self-reported data to be discussed 
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in the next section offer a more complete, and arguably promising, picture of MOOC 

users (Zhenghao et al., 2015).  

Motivation Factors in MOOCs  

 While MOOCs typically have low completion rates (below 10%), many students 

per class complete major portions of the courses (Khalil & Ebner, 2014). The range of 

engagement in the large scale common to a MOOC is evident in Tamburri’s (2012) data 

from one machine-learning course where 104,000 students were enrolled. In that MOOC, 

“46,000 submitted at least one assignment, 20,000 completed a substantial portion of the 

course, and 13,000, or 12.5% passed (Khalil & Ebner, 2014, p. 1237). Considering such 

high numbers, and the prevalence of learners who may have goals other than a 

completion certificate, it is necessary to take a more detailed look at these non-completers 

(Khalili & Ebner, 2014; Tamburri, 2012). Even non-completers are of interest to the 

institutions developing MOOCs, because just like completers, they have the potential to 

return for more courses based on their personal goals or needs. Within the literature, 

motivation to enroll and motivation to engage are two broad lines of inquiry pursued for 

an increased understanding of these learners. 

Enrollment. In addition to basic demographics, researchers have profiled users 

by their self-reported motivation factors. The finding that MOOC participants care about 

both career and educational benefits is widespread. Zhenghao et al. (2015) found that 

52% of Coursera survey respondents (classified as “Career Builders”) reported their 

primary goal was to improve their current job or find a new one. Of that group, 87% 
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reported they achieved a career benefit. In the study including several platforms, 72% of 

MOOC completers reported career benefits, and 61% reported educational benefits. 

 In addition to career and education benefits, some argue another motivation factor 

in MOOCs is personal. Christiansen et al. (2013) describe how, along with career 

advancement, many people report enrolling out of curiosity. While the factors described 

thus far are the most common, several other enrollment motivation factors are noted in 

the literature, such as the general desire to grow in knowledge, to have fun, to connect 

with others, or to overcome financial or physical (location) challenges (Christiansen et 

al., 2013; Warusavitarana et al., 2014). 

Engagement. In addition to investigating why people enroll in MOOCs, much 

motivation research is aimed at determining why and how students vary in their 

engagement in the MOOC (Watted & Barack, 2018). Kizilcec et al. (2013) profiled 

MOOC participants via cluster analysis, revealing four distinct engagement patterns as 

shown in Table 1, with labels: Completing, Auditing, Disengaging, and Sampling. As the 

table depicts, these researchers examined discussion board posts, videos watched, and 

assessments completed in search of patterns of participation. Examining these variables 

using cluster analysis and temporal aspects of the course components allowed them to 

determine when certain types of students were dropping out and what facets of the course 

appeared important to these non-completers. Results for the group labeled Auditing 

spurred a call for more research to consider carefully the needs of learners who may not 

desire to complete the entire course. Suggestions include considering possible course 
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adjustments to the timeline of content accessibility and adjustments to employment of 

quizzes. 

 
Table 1 

MOOC Participant Engagement Patterns  
 

Cluster Name Description 

Completing 

 
Learners who completed the majority of the assessments offered in the 
class. Though these participants varied in how well they performed on 
the assessment, they all at least attempted the assignments. 
 

Auditing 

Learners who did assessments infrequently if at all and engaged instead 
by watching video lectures. Students in this cluster followed the course 
for the majority of its duration. No students in this cluster obtained 
course credit. 
 

Disengaging 

Learners who did assessments at the beginning of the course but then 
have a marked decrease in engagement (their engagement patterns look 
like Completing at the beginning of the course but then the student 
either disappears from the course entirely or sparsely watches video 
lectures). The moments at which the learners disengage differ, but it is 
generally in the first third of the class. 
 

Sampling 

Learners who watched video lectures for only one or two assessment 
periods (generally learners in this category watch just a single video). 
Though many learners “sample” at the beginning of the course, there are 
many others that briefly explore the material when the class is already 
fully underway. 
 
 

Note. Adapted from "Deconstructing disengagement: analyzing learner subpopulations in 
massive open online courses," by R.F. Kizilcec, C. Piech, E. Schneider. (2013, p. 172). 
Proceedings of the third international conference on learning analytics and knowledge 
(pp. 170-179). 
 

 Another study focused on profiling engagement of MOOC users (Milligan, 

Littlejohn, & Margaryan, 2013) classified participants as Active, Lurking, or Passive in 

participation. While this qualitative study relied on interviews of only twenty-nine 

participants, results revealed that mediators of engagement were whether or not students 
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had previously participated in a MOOC and confidence. Additionally, the study revealed 

nearly all students classified as Lurking reported being content with their level of 

participation. This contentment of lurkers in Milligan et al.’s (2013) study, along with the 

presence of Auditing and Sampling clusters in Kizilcec et al.’s (2013) study confirm the 

need for considerations of student success beyond grades.  

 In a traditional class, grades are an understandable focus, but in a MOOC, grades 

are less of a focus. It is possible then to define “success” as interaction with peers on a 

common desired content or to define a level of success as learning one concept of many 

taught in the MOOC (Pursel et al., 2016). Examining the needs of those whose success 

definitions may not have included grades can be difficult, however, as many outside 

factors are assumed to affect completion or engagement as well. Kizilcec et al. (2013) 

discovered some learners indicated that they did not complete a course due to personal 

commitments, work conflict, or workload, and thus recommended MOOC designers 

consider adjusting the pace.  

 Kizilcec et al. (2013) proposed consideration of a positive feedback loop in the 

social context, a phenomenon they hypothesized to be influential in high levels of 

engagement in the Completing group. If such could be fostered for learners who are 

initially engaged and assessment-oriented, but then are disengaged, persistence may 

improve. Leach and Hadi (2017), in their study on learner engagement, drew similar 

attention to the need to evaluate groups who fall short of completion. They argued for 

consideration of micro-learning, which denotes “smaller portions of learning” or 

“flexibility for learners to choose what and when to learn” (Leach & Hadi, 2017, p. 149). 

In calls for future research, these studies hypothesized positive benefits of encouragement 
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from reputation systems, display of participation levels, or other social and community-

oriented features (Kizilcec et al., 2013; Leach & Hadi, 2017). Additionally, both urged 

increased research on intent and supportive designs to raise engagement of learners who 

take courses for intellectual stimulation rather than a certificate.  

 In other MOOC-focused cluster research, Anderson et al., (2014) found five 

subpopulations in styles of engagement with lectures, assignments, and videos: Viewers, 

Solvers, All-Rounders, Collectors, and Bystanders. Viewers were known for watching 

lectures and handing in almost no assignments. Solvers were known for handing in 

assignments but watching almost no lectures. All-Rounders were known for balancing 

both lecture and assignment categories. Collectors were known for their effort to 

download lecture videos but not hand in many assignments. The final group, Bystanders, 

represented those who registered but did not participate. Reinforcing the call to consider 

students who are not traditionally engaged, the authors pointed out that even though most 

students earned a grade of zero, the finding that Viewers spent a non-trivial amount of 

time watching lectures demonstrated many students were invested in the course even if 

they did not complete it. Echoing others, Anderson et al. (2014) argued that focusing on 

students “dropping out” of a MOOC or at the other extreme, “completing” an online 

course yielded superficial distinctions that may be “based on the assumption that there is 

a single notion of completion” (p. 688).  

 Other authors have used methodologies of clustering for understanding MOOC 

engagement with a focus on technology use. Kovanović et al., (2019) report research on 

student differences in this domain have adopted K-means clustering, hierarchical 

clustering, and model-based clustering, with interpretations guided by an assortment of 



42 

 

relevant theories. Since analysis procedures, as well as course context, are known to 

impact study findings, it is not surprising to observe wide variation in number of profiles 

and characteristics within the profiles in these studies.  

 Although many studies report three profiles, the challenge to determine a 

generalizable profile is distinctly noted as variables can differ drastically between courses 

(Kovanović et al., 2019; Milligan et a., 2013; Pursel et al., 2016). Even in studies where 

methodology is more controlled, researchers have struggled to find consistent numbers of 

profiles among courses. Ferguson et al. (2015) identified a range of differing number of 

profiles even when course context was similar. Only very broad clusters of Sampling and 

Completing were robust throughout all courses they studied and matched up with two of 

Kizilcec et al.’s (2013) four clusters.  

 The important implication from these studies is that researchers cannot assume a 

clustering approach in one learning context will be validated in another context. 

Additionally, Ferguson et al. (2015) admit their use of the k-means clustering technique 

may not have been the best methodology due to the challenge of determining how many 

clusters to extract. A hierarchical clustering approach was suggested as potentially more 

effective. The hierarchical clustering method has been successfully employed for 

determining learner profiles in MOOCs (Cobo et al., 2011; del Valle & Duffy, 2009; 

Kovanović et al., 2019; Tseng et al., 2016; Wise et al., 2013). 

In summary, motivation factors in MOOCs, with respect to enrollment and 

engagement, are considered to be personal factors and have been the focus of much 

MOOC research to date. With respect to engagement in MOOCs, profile research using 

hierarchical clustering methods offers promising ways of better understanding 
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subpopulations of students based on key variables. In addition to personal factors, other 

course-specific design factors are integral to understanding MOOC behavior as well. 

Several course design factors will be explained in the following section, then a theoretical 

framework and justification for the variables selected for analysis will conclude the 

chapter. 

Course Design Factors 

Models: cMOOC and xMOOC. MOOCs can be considered one of two main 

formats, cMOOC or xMOOC, which differ in both style and theoretical underpinnings. 

The first type, cMOOC, is built upon connectivist principles and aims to foster learning 

through experiences that are networked, open, and decentralized. The cMOOC’s 

connectivist and emergent learning principles, based upon Siemens’ (2005) connectivism 

learning theory, decreases the focus on the educator as the central source of information, 

and instead focuses more on learners who construct knowledge through social or 

relational negotiation with course material (Anders, 2015). cMOOCs are known for 

flexible course structure with instructors who serve as facilitators (Anders, 2015). This 

style of MOOC boasts self-organized patterns of collaboration in learning through social 

media accounts or blogs, with postings, videos, and other collaborative content 

aggregated by hashtags into shared content that can be referenced by all participants 

(Anders, 2015).  

 A more prevalent model referred to simply as “MOOC” in this study is the 

xMOOC. An xMOOC is based upon cognitive-behaviorist or instructivist principles of 

pedagogy, whereby content-based training or instruction is offered on an LMS, which 

usually hosts video lectures, integrated quizzes, readings, practice work, and a final exam 
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(Anders, 2015). xMOOCs were originally content-based and prescriptive in nature, with 

learning paths pre-charted in formalized bodies of knowledge. However, over the years, 

social and collaborative theories and techniques have been applied to enhance the 

learning process and complement the instructivist pedagogy (Anders, 2015). Although 

criticized for being rooted in pedagogies and methods of large-scale lecturing, which 

some argue offer little support for learner understanding, the xMOOCs offer a structure 

that can be important for inexperienced learners (Anders, 2015). This structure contrasts 

with what some consider an overwhelming information flow and lack of structure in the 

cMOOC and offers a format that is conducive to a broadening agenda of both universities 

and users. 

Cost and Credentials    

 When MOOCs emerged, their original format was a cost-free model with an 

altruistic aim to extend open and high-quality education globally (Hollands & Tirthali, 

2014). Considering the soaring cost of higher education, this goal seemed worthy of such 

efforts (Bulfin et al., 2014), and some thought it might “democratize” education 

(Hollands & Tirthali, 2014, p. 7). Over time, however, the idea of bringing high-quality, 

cost-free education to potentially underserved populations became less pronounced, as 

demographic data showed that most MOOC participants were already well-educated and 

well-employed learners (Stich & Reeves, 2017). As the typical MOOC population was of 

high socioeconomic background, with interests in niche education qualifications or 
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advanced degrees, the MOOC model was adjusted for this market (Hollands & Tirthali, 

2014).  

 As such, cost-based, certificate-granting MOOCs emerged, with the marketing 

message that learners could use these to enhance their career training portfolio 

(Friedman, 2016). An example of a post-degree certificate option is a MOOC certificate 

on agile project management which costs $562 and involves five courses (Schaffhauser, 

2019). Such a course serves as an expedient, and some would deem necessary, 

professional development option for a program manager who is already established in the 

workforce (Schaffhauser, 2019). Recently, credential options have expanded 

dramatically, and cost-free MOOCs often act as gateway courses to cost-based MOOCs 

and cheaper master’s degrees. One example of this is MIT’s MITx MicroMasters in 

Supply Chain Management, which involves five required MOOCs, graded assignments, 

and a capstone exam. Certificates are granted for each MOOC and build credit toward 

what is dubbed a MicroMasters degree (EdX, 2016). Learners in this mode get a chance 

to try out the program before deciding, and the cost-savings of completing a portion (up 

to a semester’s worth) of the master’s degree in the MOOC format before finishing with a 

traditional format is attractive to many (Friedman, 2016). Indeed, this newer strategy for 

MOOCs as career advancers or gateways to degree programs has caught on with several 

universities worldwide.  

 An example is Georgia Tech’s edX-hosted Master of Science degree in Analytics 

which costs $9,900 and takes one to three years to complete. Such a price tag is relatively 

inexpensive when one considers the residential version of this program costs $36,000 (in-

state) or $49,000 (out-of-state) (McKenzie, 2018). Georgia Tech (2019) reports there is 
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no difference in how the degree is reported on the diploma as there is no reference to the 

online nature of the less expensive version. However, as one might expect, differences do 

exist in amount of support and options available between the two. The online version has 

fewer options, with only the most popular electives offered, while the more expensive 

version, termed the “premium tuition program” offers boot camps, dedicated placement 

professionals, and other features not available to the online cohort. 

 Although course design characteristics of cost and credentials vary, both have 

emerged as consistent factors related to motivation for enrollment (Christiansen et al., 

2013; Zhenghao et al., 2015). Nevertheless, continued research across the industry, as 

well as within institutions, is required as the market evolves. Additionally, other course-

design factors are important to consider in order to shed light on motivation factors 

related to engagement and completion (Watted & Barak, 2018). These course design 

factors include discussion boards, video content, and support to learners. As the 

following sections will describe, each factor has been examined using various 

operationalizations, specific to different modes of analysis and course designs. 

Discussion Board Role   

 In traditional online classrooms, the discussion boards have played a prominent 

role in fostering interactions between students, teachers, and content (Dailey-Hebert, 

2015). Discussion boards often consist of guided topics, where students make a primary 

post about a topic related to the week’s module content and respond constructively with a 

specified number of peer replies. Most online courses have asynchronous discussion 

boards where students can pace themselves throughout the week, making contributions 

within the constraints of the module’s scheduled requirements, but not at a precise, 
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common time. Sometimes the required number of posts are simply due by the end of the 

module, but structured timeframes and rubrics can be employed to encourage a pattern of 

interactive conversation, rather than cursory and last-minute transmissions (Woods & 

Bliss, 2016). While adherence to etiquette (netiquette) of online discussions is necessary 

to bridge the physical distance inherent in the online classroom and keep the discussion 

moving in a productive direction, the widespread acceptance for the role of an online 

discussion rests in its unique role to promote content knowledge, writing, and critical 

thinking skills all from the luxury and relative safety of a personal workspace (Aloni & 

Harrington, 2018).  

Discussion board benefits and challenges. Benefits of discussion boards in 

online learning span topics of student comfort, connectedness, improved writing, critical 

thinking, and course satisfaction. Indeed, the satisfaction users report with discussion 

boards includes increased comfort with participation. Specifically, users report that they 

appreciate feeling less awkward and having more time to think, reflect, and research 

answers (Woods & Bliss, 2016).  They also note the asynchronous format allows more 

time for many viewpoints to be considered (Dailey-Hebert, 2015; Hill et al., 2009; Sun et 

al., 2008). Additionally, the asynchronous discussion board has been shown to foster 

deeper comprehension and critical thinking (Aloni & Harrington, 2018; Hawkes, 2006) 

and to draw in students who project introverted personalities or low self-confidence in 

traditional classroom settings (Chen & Caropreso, 2004; Xie, 2013). 

 Although not all online courses use discussion board rubrics, it is notable that 

those that are structured with rubric or guidance as to format, frequency, and timing have 

demonstrated some positive effects (de Brito Neto, 2017; Woods & Bliss, 2016). This is 
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important, because often reported challenges to discussion boards include confusion over 

purpose or instructor expectations and difficulty tracking long discussion threads (Aloni 

& Harrington, 2018). Rubrics or mechanics criteria have been shown to influence 

meaningful discourse of interpretation of content through analysis, synthesis, and creating 

inferences (Woods & Bliss, 2016) and to promote higher grades (de Brito Neto, 2017). 

Rubric guidance can move students past another common challenge to low-structure 

discussion boards, low-quality postings. With adequate rubrics, students can be guided to 

produce more than surface-level expositions of personal ideas, since rubrics often aim to 

elicit discussion posts substantiated with scholarly sources and relevant applications (Gao 

et al., 2013). 

Discussion board operationalizations in the literature. Online discussion 

boards are a common focus in studies of MOOC engagement and interaction. Through 

various operationalizations, such as discussion board content quality, quantity, and 

temporal aspects such as timing throughout the module or course, researchers have aimed 

to better understand how to foster engagement and how engagement affects course 

outcomes (Cheung, 2014; Clow, 2013; Tang et al., 2018). To be sure, choices of variables 

and methods depend on research goals and resources. From theoretical validation to 

intervention to better understanding behavior, researchers have declared a myriad of 

operationalizations useful and have employed both mixed and quantitative methods of 

analysis.  

 Mixed methods for quality of postings. In mixed qualitative and quantitative 

approaches aimed at content quality, engagement has been operationalized with various 

content analysis frameworks. For example, one framework focuses on the learning 
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process of distance learners in five categories: 1) level of learner participation, 2) pattern 

of interaction in terms of direct or indirect interpretation, 3) social comments present in 

the discussion post, 4) evidence of cognitive skill, such as deep analysis versus shallow 

repeating, and 5) meta-cognitive skill (evidence that one is evaluating and managing his 

or her own thoughts) (Cohen et al., 2019). Content analyses can also include categories 

not directly linked to a specific theoretical framework. Examples include coding a 

discussion post using other content categories, such as: content is specific to the topic 

(Cohen et al., 2019) or to technical or logistical aspects of the course (Wise et al., 2017), 

content reflects giving/seeking clarification on a topic (Gütl et al.,  2014), or content 

contains agreement/disagreement or positive/negative sentiments (Ramesh et al., 2013; 

Wen et al., 2014).  

 Investigating content, in search of specific higher-order thinking behaviors, 

provides a challenge for MOOC research because rule-based algorithms needed for such 

large-scale data are not compatible with the aim of research (Wang et al., 2015). As such, 

much content analysis research must be accomplished via hand-coding, which is costly in 

both time and effort (Chandrasekaran et al., 2015). Occasionally, a proxy for quality is 

employed by utilizing the number of up-votes a post receives compared to the average 

number of votes for any contribution in a thread (Huang et al., 2014). Up or down votes 

are features provided in the discussion board of some LMSs and offer students a chance 

to up- or down-vote any other post in the thread. This feature is sometimes accompanied 

by a reputation score which is computed automatically using a sum of square roots of 

votes and represents quantity and quality (Huang et al., 2014). While limitations of 

inference accompany use of peer voting as a proxy for quality of course, it is a practical 
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option some researchers consider. In sum, while hand-coding is necessary and some 

would consider worthwhile for theoretical development and validation, it may be 

impractical for monitoring and intervention goals of practitioners (Wang et al., 2015). 

Although automatic extraction of discussion structure for better insight on student 

discussions is a desired goal for some in the learning analytics community, unsupervised 

machine learning to this end requires topic modeling and qualitative evaluation of 

clusters, the benefits of which are still being explored (Ezen-Can et al., 2015). If one 

requires more feasible variables for operationalizing engagement, count measures and 

temporal measures are often employed. 

 Quantitative methods for quantity and time. In quantitative approaches, 

summed discussion board measures (number of posts, number of replies, number of 

positive or negative votes, and number of thread views) as well as summed page or video 

views have been used to better understand engagement and course outcomes (Crossley et 

al., 2016). Frequency of posting has been shown to predict higher grades (Wang et al., 

2015), higher completion rates (Crossley et al., 2016), and higher course satisfaction 

(Tawfik et al., 2017). More active participants, some spurred on by earning virtual badges 

for non-grade related achievements (like authoring strong posts or reading certain 

amounts of posts) are known to excel in both assignments and quizzes (Anderson et al., 

2014; Engle et al., 2015).  

 Temporal considerations are also important to researchers (Tang et al., 2018). 

Citing low interaction, poor feedback, and poor communication, researchers agree that 

MOOCs are often challenged in the area of student-student and student-instructor 

communication (Hone & El Said, 2016). Thus, other methods of analysis have been 
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employed to delve deeper into discussion board engagement in MOOCs. Moving past 

simple quantitative measures (number of posts and views), some have examined patterns 

of discussion board engagement. Tang et al. (2018) found increased performance for 

those who maintain activity in the discussion board over the entire course and noted 47% 

of learners were in a group that was seldom engaging, 36.2% were in a group that was 

gradually disengaging, and 16.5% of the learners were in a group that was persistently 

engaging. Key findings by Tang et al. (2018) were that discussion forum participation 

was important for better performance and that a constant trajectory of regular 

participation outperformed initial high participation or last-minute high participation in 

the several weeks before the exam.   

 Other more advanced considerations of the temporal dimension of discussion 

boards involve time-on-task measures, such as total time spent writing or reading a 

discussion message (Kovanović et al., 2019). Although time on task has been a desired 

source of information for those who are probing facets of cognitive engagement and 

effort, it can pose challenges in its need for manual estimation during extraction from the 

LMS and in its effect on generalizability (Kovanović et al., 2015; Kovanović et al., 

2019). 

 As grades are not the only positive outcome of interest, engagement researchers 

have also examined highly active users for positive or negative effects on other less-

engaged students (Huang et al., 2014; Wong et al., 2015). Huang et al. (2014) examined 

what they called “superposters” or “students who post most frequently on the forum, and 

typically disproportionately more often than their peers” (p. 117). The aim in this 

investigation was to determine whether or not these prolific posters were posting quality 
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content and what, if any, effect they had on the engagement of the group. The researchers 

wanted to know if they would drown out other activity, flood the discussion board with 

low-quality posts, or alienate the rest of the class. Not surprisingly, Huang et al. (2014) 

found “superposters” wrote longer than average posts and achieved above-average 

performance and above-average enrollment in other courses.  

 Less surprising were the findings that “superposters” were not always the fastest 

or most upvoted, and their human-coded discussion board content was rated useful. 

Furthermore, correlation analysis showed high “superposter” activity contributed value to 

the course overall. This high activity showed positive and significant correlations with 

higher overall activity and forum health with respect to volume, upvotes, and orphaned 

threads (Huang et al., 2014). Although no causal effect was claimed, since a latent factor 

such as instructor activity or incentives may have influenced engagement too, the authors 

stressed the key finding was that “superposters” did not suppress activity or drown it out. 

Also, given that MOOC instructors and teaching assistants are far outnumbered, the 

researchers suggested that active students could potentially be used to positively 

influence these collaborative learning environments.  

Video  

 Just as discussion board activity has been operationalized to study engagement, 

video usage has as well and has gained attention over the years (Bonafini, 2017; Guo, 

Kim, & Rubin, 2014; Koedinger et al., 2015). This growth is due in part to more 

accessible learning analytic features in LMSs that capture data on frequency of access, 

playback, and pauses (Siemens, 2013). Video-watching behavior can be classified as 

session-level user characteristics, by way of clickstream data for percentage of video 
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watched or length of a pause during a video (Brinton et al., 2016). Patterns in video 

watching enabled Li et al. (2015) to identify possible time points where students found 

content in the video difficult. Li et al. (2015) examined MOOC video interaction patterns 

in two MOOCs, one course on programming and one on electrical engineering. In this 

study the researchers noted key patterns such as video replay, frequent pause, and long 

pause which allowed them to make several practical recommendations to improve course 

design. In video sessions with high drop-out rates, replays, and pauses, they discovered a 

correlation with difficulty level and recommended side bars with easy re-access points for 

students. For the videos with frequent or long pauses, Li et al. (2015) recommended 

redesigns to reduce information overload, or auxiliary overlays to help students break 

down the complex material (e.g., coding blocks) that was presented right before students 

paused the video. They contend this information may be useful for planning 

interventions.  

 Other researchers have analyzed patterns of playback behavior for relationships 

with performance in video-embedded quizzes (Brinton & Chiang, 2015). Variables in 

Brinton and Chiang’s (2015) study included amount of video played, pausing behavior, 

rate of playback, and jumping or rewinding the video. In this investigation, use of early 

video-watching data allowed prediction of performance within the first few weeks of the 

course. To be sure, studies on video usage do not always indicate strong positive effects 

on course outcomes. In a study comparing the causal relations of assignment activity, 

reading activity, and video activity with performance, Koedinger et al. (2015) found that 

higher assignment activity had a relationship with higher quiz scores. The effect of 

assignment activity on quiz scores was six times stronger than that of individual factors 
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of reading or video activity and more than three times stronger than the impact of 

combined factors of watching and reading (Koedinger et al., 2015).  

 Other areas of research in the domain of MOOC video usage have included 

determining most popular video positions (Kim et al., 2014) and specific patterns in 

plays, skips, and pauses (Sinha et al., 2014). These attempts to better understand 

engagement through video usage are guided in part by the assumptions that video 

watching is voluntary and enhances student autonomy in MOOCs (Bonafini, 2017). 

Considered an essential element of the MOOC format, videos are of interest to 

researchers because they are highly relied upon by students (Bonafini, 2017) and because 

they are known to increase satisfaction and connectedness in realms of student-instructor 

interaction (Dailey-Hebert, 2015).  

 With video production capabilities as advanced as they are, it is not difficult for 

an instructor to make personal videos that include both the professor and presentation 

slides combined, both of which are shown to enhance learning and feelings of 

connectedness (Dailey-Hebert, 2015). The assumption that video-watching reflects 

increased engagement, and the evidence that watching more videos correlates positively 

with completion rates, explains why some researchers use video data to identify points of 

disengagement and trigger support mechanisms that might encourage re-engagement 

(Pursel et al., 2016). 

Pre-course survey. Although not all MOOCs survey students in the beginning of 

the course, some do capture important demographic and motivation data at the outset 

(Bergner et al., 2015; Kizilcec et al., 2013). As described earlier, analysis of this type of 

data commonly characterizes MOOC participants as well-educated and employed 
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learners (Stich & Reeves, 2017). Pursel et al. (2016) found pre-course surveys useful in 

predicting completion as students who indicated intent to watch all course videos or 

indicated their intent was to be active or complete the course were indeed more likely to 

complete the course.  

 While some find prior experience in MOOCs or online learning to be important in 

predicting completion (Milligan et al., 2013), relationships are not always present (Pursel 

et al., 2016). Demographic variables have also been used in examining engagement 

profiles, not just completion. Significant differences have been noted between 

engagement profile and answers to pre-course survey questions on interest, intent, 

professional needs, and prior experience in MOOCs (Kovanović et al., 2019).  

 Engagement profile differences were also found for learners from countries with a 

high human development index (Kizilcec et al., 2013). Understanding how such survey 

items relate to engagement is important because MOOC designers want to know how to 

better support individuals and help them achieve career and education benefits regardless 

of whether or not they earn a certificate (Zhenghao et al., 2015). While this may be best 

discerned via post-course surveys delivered well after the course, at the minimum, pre-

course survey data is useful in revealing some prospective benefits. 

In summary, both personal and course design factors are essential considerations 

in MOOC research. The proposed study aims to examine aviation MOOC students 

through the personal factors of engagement and motivation and course design factors of 

discussion board, assessments, videos, and pre-course surveys. Although relevant 

learning theories have been used to study MOOCs, the proposed theoretical framework 

for this study was limited to motivation and interaction domain as described next. 
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Theoretical Framework  

 In order to better understand learning engagement within an aviation-focused 

MOOC, variables relevant to key motivation and learning theories were examined for 

their relations with engagement metrics. These will be described and justified by a review 

of the theoretical literature. While portions of Moore’s (1973) theory of transactional 

distance serve as the primary descriptive framework, additional theories prevalent in the 

literature are explained to provide a background for motivation components of 

engagement. After Moore’s theory is described, a brief discussion of how self-

determination theory’s (Ryan & Deci, 2000) intrinsic and extrinsic motivation relate to 

study constructs will follow. Finally, construct relevance will be demonstrated through 

the theoretical lenses of social context (Deci et al., 1991), social goals (Wentzel, 1999), 

and social presence (Gunawardena, 1995). Although not primary to the framework in this 

study, the theories shown in Table 2 are important for understanding the student 

engagement literature. 
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Table 2 

Summary of Relevant Theories in Student Engagement Literature 
 

Self-Determined 
Motivation                
 
Self-Determination 
Theory (SDT)                         
Intrinsic vs. 
Extrinsic 
Motivation 

・Posits better learning when students are interested in learning, 
value the education, and are confident in their own abilities.  

・Intrinsically motivated behavior—when pleasure or satisfaction 
is achieved from performance causing willing (versus forced) 
engagement in activities without the requirement of material 
rewards. An intrinsically motivated activity is fully endorsed by the 
student.                                                                                                                                                                                                 

・Extrinsically motivated behaviors are tied to some outside reward 
or consequence. Many of these outside rewards are not thought to 
be self-determined, but some can be (e.g., for an academic 
certificate or degree: a student shows both when she loves the 
course content and needs the course to get better at her job). 

Social Context                                 
Social Goals 

・Feelings of competence and relatedness (necessary for self-
determined action) can be bolstered by positive feedback and 
interaction from peers or an instructor. 

・Can center around goals like being seen as successful, 
dependable, or responsible.                 

・Social goals may include gaining approval from others, 
cooperating with others, and fostering friendships. 

Social Presence 
Theory 

・Posits that students can overcome the lack of non-verbal cues by 
projecting their identities and engaging in quality interactions.  

・Can be affected by frequency, type, and quality of interactions 
between instructors and students, and can increase student 
satisfaction, perceived learning, and retention. 

Social Presence 
Definition 

“A student's sense of being in and belonging in a course and the 
ability to interact with other students and an instructor” (Picciano, 
2002, p. 22).                                                  

Note. Self-Determined Motivation, SDT (Ames, 1992; Deci, Vallerand, Pelletier, & Ryan, 1991; 
Miltiadou & Savenye, 2003); Social Context and Social Goals (Deci et al., 1991;Wentzel, 1999); 
Social Presence Theory (Gunawardena, 1995); Social Presence Definition (Picciano, 2002), Social 
presence research (Shelton, Hung & Lowenthal, 2017). 
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Moore’s theory of transactional distance. Interest in the construct of student 

engagement has been sustained over the years, and much of it has been framed and 

refined by Moore’s (1973) theory of transactional distance. Moore’s theory defines 

“transactional distance” as the “psychological and communications space” (Moore, 1997, 

p. 22) between instructors and learners that is common in distance-learning scenarios. In 

this context, such psychological or communicative gaps are posited to affect engagement 

and impede learning. It is argued that decreasing transactional distance helps to overcome 

physical distance and positively influences learning. To manage transactional distance, 

Moore (1997) asserts one must consider factors of dialogue (e.g., frequency and quality), 

structure (e.g., course rigidity or flexibility), and learner autonomy (e.g., the extent to 

which a learner feels independence in the course) (Falloon, 2011). Moore (1997) defines 

interaction in the three main categories: learner-instructor, learner-learner, and learner-

content. A fourth mediating category, learner-interface was proposed later by Hillman, 

Willis, and Gunawardena (1994).  

 With respect to distinguishing the types of interaction subsumed in the dialogue 

construct, Moore (1989) sought to bring clarity to a field of research, which until then, he 

argued, had been muddled by many different definitions. To present clearer constructs, 

Moore described interaction between learner and instructor as experiences shared by the 

instructor, such as providing resolutions to misunderstandings, elaborations, 

simplifications, analogies, and supplemental readings. He asserted learner-to-learner 

interaction can be synchronous or asynchronous and can occur with or without “real-time 

presence of an instructor" (Moore, 1989, p. 4). Finally, he defined “interaction” between 

learner and content as “the process of intellectually interacting with content that results in 
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changes in the learner's understanding, the learner's perspective, or the cognitive 

structures of the learner's mind” (Moore, 1989, p. 2). Research under this typology offers 

empirical support for the construct of interactions being related to positive learning 

(Picciano, 2002), course outcomes (Zimmerman, 2012), perceptions of higher course 

quality (Abrami et al., 2011), satisfaction (Dennen et al., 2007), retention (Hone & El 

Said, 2016), and determination of at-risk students (Shelton et al., 2017).  

 Theoretical assumptions for this study. Theoretically, it was assumed that 

increased engagement in discussion boards and videos decrease transactional distance 

and increase feelings of social connectedness, consistent with Moore’s (1997) theory of 

transactional distance. Based on previous research in this domain, an increase in 

engagement and reduction in transactional distance was assumed to be related to 

increased persistence, performance, and positive experience in the course (Falloon, 

2011). Additionally, it was assumed that frequent and meaningful dialogue in the 

discussion board, while often limited in a MOOC, is an important ideal to strive for in the 

pursuit of maximizing learning. Although this study did not assess quality or 

meaningfulness of dialogue, it assumed that frequency is a valuable, albeit incomplete, 

indicator that students may be actively engaging in integrating new information into 

existing knowledge structures (Garrison, 1993). In Figure 1 the components of Moore’s 

theory are depicted as a framework for the proposed study variables. 
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Figure 1. Theoretical framework using Moore’s theory of transactional distance.  

  

Self-Determined Motivation. Also critical to understanding student learning and 

engagement are the theories explaining motivation, which are well established in 

education literature (Ames, 1992; Deci et al., 1991). In pursuit of a better understanding 

as to why students engage and persist in academic settings, researchers have used theories 

that incorporate intrinsic versus extrinsic motivation and goals (Miltiadou & Savenye, 

2003). Along these lines, self-determination theory (SDT) posits other factors either 

facilitate or forestall learning and development (Ryan & Deci, 2000). Intrinsic motivation 

is present when innate needs for competence, autonomy, and relatedness are satisfied. 

That type of motivation involves behavior that occurs because a person derives pleasure 
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or satisfaction from an activity. An intrinsically motivated person is not constrained by 

obligation or rewards.  

 In contrast, extrinsic motivation is present in contexts that involve pressure and 

control, which reduce one’s feelings of autonomy and connectedness (Ryan & Deci, 

2000). Extrinsic motivation characterizes behavior that is tied to some purpose beyond 

the task, or to a separable outcome, such as a certification or pay (Ryan & Deci, 2000). In 

early applications of self-determination theory, extrinsic motivation was assumed to 

conflict with the characterization of being self-determined. However, in more recent 

research, the two, in certain forms, are able to complement each other. For instance, a 

MOOC learner could exhibit intrinsic motivation in her love or passion for the subject 

and material of the course she is taking, but she could also exhibit an extrinsic motivation 

to take the course because she knows she needs the knowledge for her everyday job. In 

this case, an extrinsic motivation (work-necessity) is self-endorsed and, thus, becomes 

additive to her volition to engage (Ryan & Deci, 2000).  

Social context. Another important construct in the discourse of self-determined 

motivation is social context. One of SDT’s main hypotheses is that social contexts can 

facilitate how competent, related, and autonomous a person feels and can lead to self-

determined action (Deci et al., 1991). In the social context, feelings of competence and 

relatedness can be bolstered by positive feedback and interaction from peers or an 

instructor (Deci et al., 1991). With respect to group work, feelings of autonomy can be 
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bolstered when a learner has choice of group or feels workloads within the group are 

equitable.  

Social goals. The social realities of online course designs are evident in the 

prevalent use of discussion board, group projects, peer review, and peer grading. As such, 

one must consider theories that address social goals and social motivations. Wentzel 

(1999) is often cited for her research addressing social motivation in academic settings. In 

this domain, goals include being seen as successful, dependable, or responsible. Other 

social goals include gaining approval from others, cooperating with others, and fostering 

friendships (Wentzel, 1999). As noted by Xiong et al. (2015), the MOOC environment 

must also consider social motivation to include “students’ feelings of relatedness with 

peers” (p. 26).  

Social presence. Using much of the same language, researchers have utilized the 

construct of “social presence” as described by Gunawardena (1995) to study participants 

in text-based learning environments. Social presence theory posits that students can 

overcome the lack of non-verbal cues by projecting their identities and engaging in 

quality interactions (Gunawardena, 1995). Picciano (2002) defines “social presence” as 

“a student's sense of being in and belonging in a course and the ability to interact with 

other students and an instructor” (p. 22). Notably, Picciano (2002) distinguishes between 

two facets, interaction and sense of belonging, and argues they may affect student 

outcomes independently. Interaction, such as posting in a discussion board, may indicate 

a degree of presence, but interaction does not necessarily mean an individual feels like 

part of the group. Social presence can be affected by frequency, type, and quality of 



63 

 

interactions between instructors and students, and can increase student satisfaction, 

perceived learning, and retention (Shelton et al., 2017).  

Summary of Framework and Variables  

 Guided by theory and previous research, key variables were selected for 

determining learning engagement subgroups in an aviation-focused MOOC as well as for 

determining how these engagement subgroups differ on key demographic and pre-course 

survey data. First, variables of engagement, as depicted in Table 3, were linked with 

supporting theories and research. Those variables were used in the cluster analysis to 

form subgroups of engagement. Next, variables to characterize the determined subgroups 

of engagement were linked with justification from relevant research and were then used 

to further understand the characteristics of the determined engagement subgroups. 

Variables of engagement. Moore’s theory of transactional distance, where 

distance in interactions are posited to create psychological or communicative gaps and 

impede learning, provided a framework for the focus on engagement as a function of 

interactions. To manage transactional distance, Moore (1997) asserts one must consider 

factors of dialogue (e.g., frequency and quality), structure (e.g., course rigidity or 

flexibility), and learner autonomy (e.g., the extent to which a learner feels independence 

in the course) (Falloon, 2011). Consistent with Moore’s theory, and specifically his three 

types of interaction, low distance and high interaction are reported to yield positive 

achievement effects in distance education (Bernard et al., 2009). Moore’s theory is a 

useful framework for this study and for its empirical support in the literature, as such 

interactions are related to positive learning (Picciano, 2002), course outcomes 

(Zimmerman, 2012), perceptions of higher course quality (Abrami et al., 2011), 
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satisfaction (Dennen et al., 2007), retention (Hone & El Said, 2016), and determination of 

at-risk students (Shelton et al., 2017).  

 The variables in this study relate primarily to the dialogue construct of Moore’s 

theory as the study design was based on an archived dataset, limiting the variability 

necessary to examine structure and autonomy. Nevertheless, assumptions as to the 

course’s flexible structure (same for all MOOC participants) and high autonomy (all 

MOOC participants could choose what portions to participate in) were made. Using the 

dialogue construct, this study operationalized Moore’s three types of interaction to data 

available within the LMS. Moore’s learner-learner interaction construct is aligned with 

variables that relate to the discussion board data traces, and Moore’s learner-content 

interaction is aligned with variables that relate to video and assessment data traces. While 

very limited, Moore’s third category of interaction, learner-instructor interaction, is 

aligned with video data traces for video content, which includes instructors presenting 

course material. These engagement variables, described in Table 3, were used in the 

clustering algorithm to determine what type of engagement subgroups were present in an 

aviation-focused MOOC. The remaining analyses aimed to characterize those 

engagement clusters further.  
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Table 3  

Engagement Variables for Subgroup Formation 
 

 
 
 

Discussion engagement 

 
 
Posts viewed 
 
Posts written 

 
Moore's (1997) Theory: Learner-
Learner Interaction; Social context 
(Deci et al., 1991) Social goals 
(Wentzel, 1999; Xiong et al., 2015); 
Social presence (Gunawardena, 1995; 
Picciano, 2002; Shelton et al., 2017) 
 

 
 
 

Video engagement 

 
 
 
Video pages viewed  

 
Moore’s (1997) Theory: Learner-
Content Interaction and Learner-
Instructor Interaction; Social 
presence (Gunawardena, 1995; 
Picciano, 2002; Shelton et al., 2017) 
 

 
 

Assessment engagement 

 
 
Quizzes submitted 
 

 
Moore's (1997) Theory: Learner-
Content Interaction; Self-Determined 
Motivation (Deci et al., 1991 
 

 

Attributes or Variables for Characterizing Engagement Subgroups. As 

depicted in the right half of Table 4, variables drawn from pre-course survey data and 

performance and trace data within the LMS were used to further characterize the 

subgroups of engagement. Age, geographic location, and education level are common 

variables used in research on MOOC populations (Pursel et al., 2016). While age is often 

somewhat linearly associated with completion and performance, it has been found to 

taper off at a certain point (Pursel et al., 2016).  
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Table 4 

Research Questions and Variables  
 

RQ 1: Cluster Analysis 
Variables for determining engagement subgroups 

RQ 2: ANOVA, Chi-Square Analysis 
Variables (attributes) for 
characterizing engagement subgroups 

Discussion 
engagement 

Discussion board views 

Demographics 

Age 

Posts written Location 

Video  
engagement Video page views Education level 

Assessment 
engagement Quizzes submitted Employment in 

aviation industry  

  Intent 

  Participation Days of activity 
  

Achievement 
Total quiz score 

  Record of 
completion 

 

 Geographic location is examined based on its empirical relevance to factors in this 

study (Liu et al., 2016). Evidence is found in studies where completion and certification 

in MOOCs have been shown to be higher for non-American students (Nesterko et al., 

2013) and where amount of content covered and time spent were found to be significantly 

predicted by country of origin (Guo & Reinecke, 2014). While some research focuses on 

fine indices of geographic origin, such as how developed student origin countries are 

(Kizilcec et al., 2013) or Hofstede’s or other cultural dimensions (Liu et al., 2016), this 

study utilized a simple geographic variable consistent with the scope and aim of this 

research. Analysis of group attributes in the second research question requires only either 

the country or continent of origin. Continent of origin was collected in the pre-course 
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welcome survey, and country of origin was collected in the post-course demographic 

survey. When origin data were missing from the pre-course survey but available in the 

post-course survey, country data were coded by continent, consistent with common 

practices in MOOC research (Nesterko et al., 2013).  

 Education level, employment, and intent are key variables in MOOC research as 

well. Most MOOC enrollers and completers are found to be highly educated and 

employed (Stich & Reeves, 2017), but the inclusion of a pre-course survey item capturing 

whether or not the student is employed in the aviation industry could provide more 

information than a simple employment question. A final demographic variable, intent (for 

participation), taken from the pre-course survey, represented the user’s intent and 

motivation. The question and answer choices are shown in Figure 2. 

 

 

Figure 2. Pre-course survey intent for participation question.  
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 Both the employment and intent variables relate to the self-determination theory 

factors of intrinsic and extrinsic motivation (Deci et al., 1991) and are useful for 

contextualizing MOOC engagement motivation broadly in the domain of professional 

learning (Milligan & Littlejohn, 2014) and specifically in the domain of aviation 

professional learning (Lappas & Kourousis, 2016).  

 The final two constructs used to form variables for characterizing the determined 

engagement subgroups were participation and achievement. Participation was measured 

in days of activity throughout the duration of the course. This variable has been used in 

MOOC research consistently with varied findings. Kovanović et al. (2016) found a social 

cluster which included students with the most days active in the course, while Hone and 

El Said (2016) noted that most students were active for only the first half of the entire 

course. In a different study, Kahan et al. (2017) found that four out of seven engagement 

clusters were all very similar in their number of days active yet were markedly different 

from the remaining groups. As a basic characterization of participation, this variable was 

calculated from the difference in days between course start and last date of activity prior 

to or on the course end date.  

 Two achievement variables, final grade and record of completion were included 

as well. These variables are metrics commonly used in education engagement research 

(Kahan et al., 2017) and were employed to further characterize the determined 

engagement groups. Use of these variables meets the call by other researchers to include 

variables that provide more evidence of MOOC achievement and interaction, beyond the 

superficial completion certificate (Anderson et al., 2014).  
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Research Gaps 

 This dissertation aimed to examine student engagement in aviation-related 

MOOCs through the lens of learning analytics. In design of the study, multiple gaps in 

the existing literature were identified: 

• Prior to this study, little information on student engagement in aviation-related 

MOOC was available. Only one study (Velázquez, 2017) on a small (N = 52) 

flipped classroom that used an aviation MOOC to augment a course had been 

conducted.  

• In the general domain of MOOCs, existing engagement research lacks 

information on middle groups of students who engage in MOOCs but do not 

complete them. A call to further “deconstruct disengagement” has been made 

(Kizilcec et al., 2013, p. 170).  

• A key step in learning analytics is “closing the loop” by feeding an intervention 

back to learners (Clow, 2012, p. 134). To date, no aviation-MOOC data have 

been analyzed to feed back interventions to students. This study aims to fill that 

gap locally (for the host institution) as its person-centered approach allowed for 

the detection and formation of groups of students with common behaviors 

within the course, without assuming, as in a variable centered approach, that one 

set of parameters would be sufficient to describe the population.  

• This study aimed to reduce what is referred to as the “research and practice gap” 

said to exist when a researcher is far removed from an end-user (or instructor) 

(Siemens, 2012, p. 5). While systems that make use of learning analytics data 

have been employed to provide expedient feedback to users (e.g., Purdue’s 
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system to alert students when they are on or off-track) more actionable insights 

on expedient methodologies involving learning analytics are needed for 

instructors of MOOCs or other online courses. The use of simple quantitative 

metrics available in the LMS, with little coding and no qualitative analysis, may 

provide an example of a methodology that is feasible to scale to other course 

types and data. 

Summary 

 The relevant literature on personal factors of MOOC learners, motivation and 

engagement in MOOCs, and critical online course design factors were reviewed. 

Additionally, the theoretical framework of Moore’s theory of transactional distance, 

where distance in interactions are posited to create psychological or communicative gaps 

and impede learning, provided a framework for the focus on engagement as a function of 

interactions.  This theory, along with additional motivation and interaction theories 

prevalent in the literature were explained. The studies and theories covered here guided 

selection of key variables for determining learning engagement subgroups in an aviation-

focused MOOC as well as for determining how these engagement subgroups differ on 

key demographic and pre-course survey data. Chapter III will include the methodology 

and provide further detail on how the engagement variables were analyzed. 
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CHAPTER III 

METHODOLOGY 

 This study used archival course data from two iterations of one aviation-focused 

MOOC. The aviation-focused MOOC was hosted by an Aviation Accreditation Board 

International (AABI)-accredited university in the southeast United States on the Canvas 

Network LMS by Instructure. The MOOC was advertised via Twitter, Facebook, and the 

university website. It had no prerequisites or cost and offered only a record of 

completion. The aviation-focused MOOC covered topics for small unmanned aerial 

systems (sUAS) including safe integration of sUAS into the national airspace system 

(NAS) with private, commercial, and public applications. It also covered topics on UASs 

cybersecurity, privacy, and data protection. The course contained two modules with 

discussion boards, videos, course readings, and quizzes at the end of each module. In 

order to have earned a record of completion, a student needed to have reviewed all main 

content pages with readings and recorded lectures, posted in specified key topic 

discussions, and have scored at least 80 points on module quizzes. 

Research Approach 

This study took a quantitative, person-centered approach, through cluster analysis, 

to better understand behaviors of emergent subpopulations (Howard & Hoffman, 2018). 

This approach aimed to categorize MOOC participants into common subpopulations 

based on substantive variables and then examined the extent to which these 

subpopulations were related to other demographic and course variables. This approach 

differs from variable-centered approaches as explained by Morin, Gagne, and Bujacz 

(2016): 
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Variable-centered approaches… assume that all individuals from a sample are 

 drawn from a single population for which a single set of “averaged” parameters 

 can be estimated. In contrast, person-centered approaches... relax this assumption 

 and consider the possibility that the sample might include multiple subpopulations 

 characterized by different sets of parameters. (p. 8) 

 Cluster analysis was selected as the method of analysis due to its demonstrated 

effectiveness in prior engagement and learning analytics research (Anderson et al., 2014; 

Cobo et al., 2011; del Valle & Duffy, 2009; Ferguson & Clow, 2015; Huberty et al., 

2005; Howard et al., 2018; Kizilcec et al., 2013; Kovanović et al., 2019; Tseng et al., 

2016; Wise et al., 2013). As an exploratory method, cluster analysis has proven useful for 

data mining and organizing large data sets in domains beyond the education field, such as 

in fields of bioinformatics, industrial engineering, and marketing (Antonenko et al., 

2012). Clustering is noted as useful when categories within the data are not known in 

advance, and the methodology is effective at grouping students and their actions (Baker 

& Inventado, 2014). For online learning environments, clustering is regarded as an 

advantageous method due to its ability to provide insights utilizing large amounts of 

click-stream data collected automatically, rather than self-reported data which requires an 

overt collection method that could compromise the student’s learning process 

(Antonenko et al., 2012). 

Design and Procedures   

 As summarized in Figure 3, in order to answer the first research question: “What 

distinct subgroups of students exist in an aviation-related MOOC, based on engagement 

in course discussions, videos, and assessments?” a quantitative approach using a 
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clustering algorithm was employed to assign learners into different clusters. The second 

research question, “What are the differences between engagement subgroups based on 

demographics, days of participation, and course achievement?” was answered by a series 

of statistical procedures (Analysis of Variance (ANOVA), and Chi-Square analysis). 

 

 

Figure 3. Research design.  

 

Hierarchical and non-hierarchical clustering. Clustering is a process that 

divides a population into a number of groups that have similarity among specified traits 

(Kaushik, 2016). Common in education research, cluster analysis is used for data 

exploration to determine meaningful clusters based on given variables to test hypotheses 

regarding cluster structure and to confirm previously reported cluster results (Huberty et 

al., 2005). Hierarchical clustering is one of many different kinds of clustering algorithms. 

Agglomerative hierarchical clustering starts at the bottom of the hierarchy, with every 
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observation as a separate cluster, then repeatedly identifies clusters that are closest 

together and merges them until all the clusters are merged together at the top. 

Agglomerative clustering is known as the bottom-up method. Hierarchical clustering can 

be accomplished in reverse direction also, in what is called divisive hierarchical 

clustering, where separate clusters are built from a single starting cluster in a top-down 

manner. Either method results in a dendogram or hierarchical tree as the final output 

which visually shows the hierarchical relationship between the clusters (Battaglia et al., 

2015).  

 Although non-hierarchical algorithms (e.g., k-means) are often used when the data 

set is large, they are recommended for use in cases where there is a theoretical rationale 

for predicting the number of clusters (Antonenko et al., 2012). The hierarchical clustering 

method was selected based on the lack of a theoretical rationale for predicting the number 

of clusters and based on strong recommendation from Ferguson et al. (2015). 

Hierarchical clustering has been conducted successfully in education profile research as 

well (Wise et al., 2013; Kovanović et al., 2019). Noted weaknesses for cluster analysis in 

education research are reported by Antonenko et al. (2012): “(a) clustering algorithms 

will sometimes find structure in a dataset, even where none exists; and (b) results are 

sensitive to the algorithm used. It is not uncommon to obtain completely different results 

depending on the method chosen” (p. 395). These weaknesses can be mitigated when 

researchers use the most appropriate algorithm respective to variable type, when cluster 

validity analyses are conducted by examining group means across clusters, when clusters 

are compared or aligned with other similar examples in the literature (Antonenko et al., 
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2012), and when split-samples yield cluster solutions similar in size and characteristics to 

the final solution obtained with the full sample (Hair, et al., 2015). 

Apparatus and Materials.  

 An archived dataset of two MOOC courses was obtained from the course platform 

host, Instructure. Each course contained one file for all survey questions, one file for 

grades, and one file for every activity in the Canvas course module areas and help areas. 

Clickstream data and Canvas application programming interface (API) data were 

accessed to retrieve data on key variables.  

Population/Sample 

 The population of this study was comprised of learners in aviation-related 

MOOCs. The sample was comprised of two groups of learners who enrolled in an 

aviation-focused MOOC, Small Unmanned Aerial Systems, during two iterations offered 

in 2018. The decision to select a sample that was active during only one year and in one 

course topic of sUAS offered data sets with a controlled (in terms of format and duration) 

yet rich context for this “first” look into aviation-focused MOOCs.  Registrations for the 

sUAS MOOC were higher than any other aviation-related MOOC, which ensured a large 

sample could be analyzed. Analysis was initially conducted on the most recent MOOC, 

which was the smaller of the two MOOCs. This group included learners from a MOOC 

offered from November 19, 2018, to December 2, 2018, and consisted of 1,032 students. 

Next, analysis was conducted on the second, larger MOOC that was offered January 22, 

2018, to February 4, 2018, and consisted of 4,037 students. Artificial numbering 

(“MOOC 1” and “MOOC 2”) labeled and ordered the MOOCs by increasing size. The 

students enrolled in these courses included individuals worldwide; some were affiliated 
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with the host institution, but most were not. Cluster analysis sample size guidelines, 

similar to those of linear regression, set forth an acceptable range of 10 to 20 cases for 

each variable (Wise et al., 2013). Five clustering variables require 50 to 100 cases. Thus, 

the archived dataset (N= 4,000) exceeded the minimum range for the analysis proposed. 

Treatment of the Data 

 Data were extracted from the Canvas Network LMS activity log and de-identified. 

Data cleaning was conducted to omit data that was not useful to the study such as entries 

beyond the dates of the course or entries with errors. Next, data for the following learner 

engagement variables were collected and associated with an appropriate individual 

identifier: discussion posts viewed and written, videos pages viewed, assessment 

submitted. Similarly, pertinent data from pre-course and post-course surveys were 

collected and associated with an appropriate individual identifier. Finally, data were 

transformed into aggregated variables for analysis (Hung, Rice, & Saba, 2012) in IBM 

Statistical Package for Social Sciences (SPSS) (SPSS, 2019) Premium GradPack 26 for 

Windows. Prior to the clustering process, variables shown in Table 5 were standardized 

in scale. Due to the size of the data set and nature of the variables, a two-step hierarchical 

clustering was employed. The two-step method is useful for a large data set, as it can 

handle continuous or nominal data. Limitations of the two-step method include sensitivity 

to order effects, thus order of cases must be randomized (Antonenko et al., 2012). 
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Table 5 

Variable Details for Determining Engagement Subgroups (RQ 1) 
 

Variable Name Details 

Mandatory Discussion 
Views and Posts 

Planning Considerations                                                           
National Airspace System (NAS) 

Optional Discussion 
Views and Posts 

Introduction                                                                                         
Ask the Expert - Miscellaneous                                                         
Ask the Expert - Operations                                                             
Ask the Expert - Systems                                                                   
Ask the Expert - Regulations 

Video Page Views                       
Webinar 1 AUVSI Trusted Operator Program (TOP)                                                           
Webinar 2 Canberra Unmanned Aerial Vehicles                                 
Webinar 3 Systems Engineering 

Quiz Attempts Module 1 Quiz                                                                             
Module 2 Quiz 

Note. AUVSI = Association for Unmanned Vehicle Systems International (AUVSI, 2019). 

 

RQ 1. The first research question “Based on engagement in course discussions, 

videos, and assessments, what distinct subgroups of students exist in an aviation-related 

MOOC?” was explored through two-step cluster analysis in SPSS. The procedure for 

two-step clustering first required variables to be standardized to Z scores. The 

hierarchical algorithm used to divide the pre-clusters into subgroups was the distance 

measure, Log-likelihood, which determines cluster distance or similarity. Although often 

the Log-likelihood measure is advised for analyzing both continuous or categorical 

variables or when allowing the number of clusters to be determined automatically, the 

Euclidian distance, normally employed when specifying fixed number of clusters, did not 

yield an interpretable solution. Some iterations of cluster analysis returned unclear 
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subgroups or two cluster results that were and were not interpretable given the aims of 

this research to learn more about the students who did not complete the course. Thus, 

some cluster solutions using auto-cluster were not retained, and one of the variables was 

removed. The five final clustering variables were: Mandatory Discussion Posts, Optional 

Discussion Views, Video Page Views (Webinar 1 Views), Quiz 1 Attempts, and Quiz 2 

Attempts. Several analyses were conducted with data sorted in different orders since the 

cluster analysis is sensitive to case order. Since auto-clustering yielded two-cluster 

solutions that were not interpretable based upon the “conceptual aspects” of the research 

question (Hair et al., 2015, p. 448), which aimed to uncover more about non-completers, 

a closer examination of Schwarz’s Bayesian Information Criterion (BIC) was conducted 

as the initial step in exploratory clustering. Although SPSS two-step in auto-clustering 

mode uses a combination of lowest BIC and highest ratio of distance measures in 

selecting its optimal solution, that solution may not agree with a cluster-by-cluster rule of 

thumb assessment which involves selecting cluster solutions that display relatively lower 

BICs and higher ratio of distance measures (Garson, 2012).  Figures 4 and 5 below, show 

that both MOOC’s auto-cluster results yielded lowest BICs at cluster solutions beyond 

that of a 2-cluster solution and that both demonstrated marginal drops in BIC between 3 

and 5 clusters (MOOC 1: 2-cluster BIC = 4.191, 3 cluster BIC= 1.667, 4-cluster BIC = 

1.474, 5 cluster BIC = 1.285 and MOOC 2: 2-cluster BIC = 4.418, 3 cluster BIC= 1.143, 

4-cluster BIC = 1.3295, 5-cluster BIC = 1.643). The ratio of loglikelihood distance 

measures were highest for both MOOCs in the 2 cluster solution (at 4.191 and 4.418 

respectively), but since that 2-cluster solution was rejected, the next three ratios of 

loglikelihood distance measures were examined (MOOC 1: 3 cluster = 1.667, 4-cluster = 
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1.474, 5 cluster = 1.285 and MOOC 2: 3 cluster = 1.143, 4-cluster = 1.3295, 5-cluster = 

1.643). The next highest was noted in the 3-cluster solution for MOOC 1 and the 5-

cluster solution for MOOC 2, but minimal differences were shown between the 3, 4, and 

5 cluster solutions.     

 

 

Figure 4. MOOC 1’s BIC values for different cluster solutions. 
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Figure 5. MOOC 2’s BIC values for different cluster solutions.  

 

Thus, both MOOCs were examined with the fixed cluster setting at 3,4, and 5 clusters 

after determining the evidence of minimal differences in distance and after considering 

the argument that lower BIC alone was “not worth the increased complexity (diminution 

of parsimony)” (Garson, 2012, p.81). The final cluster solution was determined by 

selecting the solution that came as close as possible to optimal quality criterion of 

silhouette (cohesion and separation) > 0.6 and ratio of sizes (largest cluster to smallest 

cluster) < 3, while still being interpretable in that it provided more than just a two-cluster 

solution of completers and non-completers. For MOOC 1, the 4- and 5-cluster solutions 

were discarded due to sub-optimal quality criterion. The 4-cluster solution had a “fair” .4 

silhouette measure (optimal would be >6) and a large ratio of 25.7 (optimal would be <3). 

The 5-cluster had a “good” silhouette of .6 but was also discarded due to its high ratio of 

102.33. MOOC 1’s optimal cluster solution was thus obtained using Log-likelihood and a 
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specified fixed 3-cluster setting. The 3-cluster solution had acceptable quality criterion 

with the “good” silhouette measure of .6 and a ratio of sizes (largest cluster to smallest 

cluster) of 3.0.  For MOOC 2, the 4- and 5-cluster solutions were also discarded due to 

sub-optimal quality criterion. The 4-cluster solution had a “good” silhouette of .7 but had 

a high ratio of 23.33. The 5-cluster solution also had a “good” silhouette of .8 but had a 

high ratio of 24.86. Just as with MOOC 1, MOOC 2’s optimal cluster solution was 

obtained using Log-likelihood and a specified fixed 3-cluster setting. The 3-cluster 

solution had acceptable quality criterion with a “fair” silhouette measure of .5 and a ratio 

of sizes of 2.90. Had the results of auto-cluster, 2-cluster solutions been retained, fine-

grained information on non-completers would not have been achieved. As stated 

previously, one of the calls for more research in this domain focused on learning more 

about non-completers (Khalili & Ebner, 2014; Tamburri, 2012). To support such 

exploratory clustering methodology, one must consider other distance measures specific 

to different clustering programs: “The researcher is encouraged to explore alternative 

cluster solutions obtained when using different distance measures in an effort to best 

represent the underlying data patterns” (Hair et al., 2015, p. 432). 

  Quality assessment. Quality was assessed with examination of the silhouette 

coefficient and ratio of sizes of largest cluster to smallest cluster. Additionally, cluster 

quality was assessed with five one-way ANOVAs using cluster assignment as the single 

independent variable and the five continuous clustering variables as the dependent 

variable. The five continuous clustering variables were: Mandatory Discussion Posts, 

Optional Discussion Views, Webinar 1 Views, Quiz 1 Attempts, and Quiz 2 Attempts.  
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  Examination of cluster differences. To examine differences of clusters across all 

variables, descriptive statistics of clusters on days of activity, on RQ1 clustering 

engagement variables, and on RQ2 survey attributes were calculated.  

 Reliability and validity of clusters. Since clustering algorithms are known to 

produce clusters even when no natural groups exist, it was critical to validate cluster 

solutions for meaningfulness. Prior to validation, reliability must be assessed by 

examining the stability of cluster solutions by applying multiple algorithms and 

comparing results or by splitting a sample and comparing cluster solutions (Balijepally, 

Mangalaraj, & Iyengar, 2011). Reliability was assessed through comparison of the two 

MOOC classes. Validity was assessed through a check on external validity by 

comparison of alignment and number and attributes of clusters with what is already 

established in the literature. Cluster structure verification was conducted by examination 

of group means across clusters (Antonenko et al., 2012) to confirm significant variation 

between clusters. Finally, cluster validation was completed by splitting the sample in half 

to evaluate whether or not solutions were similar in size and characteristics to the final 

solution obtained with the full sample (Hair et al., 2015). Split files did in fact accurately 

represent the final three cluster solution, with only minor difference identified. 

RQ 2. The second research question, “Based on demographics, days of 

participation, and course achievement, what are the differences between engagement 

subgroups?” was explored through ANOVA and Chi-Square analysis. Analysis for RQ2 

was conducted to characterize the determined engagement subgroups (clusters) from RQ 

1 across the attributes in Table 6.  
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Table 6 

Attributes of Engagement Subgroups (RQ 2) 
 

Attribute  Type Categories Source 

Age categorical 
 
13-18, 19-24, 25-34, 35-44, 
45-54, 55-64, 65+  

Pre-course 
Survey 

Geographic 
location  categorical 

Asia/Pacific, Europe,                     
Latin America,                   
Middle East/North Africa, 
North America,                     
Sub-Saharan Africa  

Pre-course 
Survey 

Education level categorical drop-in, passive, active, 
observer 

Pre-course 
Survey 

Employment in 
aviation industry  categorical yes or no Post-course 

Survey 

Intent (to 
participate) categorical drop-in, passive, active, 

observer 
Pre-course 
Survey 

Days of activity continuous 0 to 14 Canvas LMS 

Total quiz score continuous 0 to 200 Canvas LMS 

Record of 
completion categorical yes or no Canvas LMS 

 

 Differences in cluster membership for the categorical variables (age (year bins), 

geographic area, education, employment, intent, record of completion) were evaluated 

with five separate Chi-Square tests of independence. Cluster membership served as the 

independent variable, while age, geographic area, education, employment, intent, and 

record of completion served as the dependent variables. Differences in cluster 

membership and the continuous variable days of activity, calculated by taking the 

difference in days between course start and last date of activity prior to or on the course 

end date, was examined using ANOVA. Cluster membership served as the independent 
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variable, and days of activity served as the dependent variable. Differences in cluster 

membership for the continuous variable of final grade were examined with ANOVA 

preceded by Levene’s test or with Kruskal-Wallis test, if assumptions for ANOVA are 

not met.  

 Assumptions for ANOVA. 

1. Experimental errors are normally distributed – or sample sizes are sufficient N ≥ 

25. 

2. Equal variances between treatments – Levene’s. 

3. Samples are independent. 

 Assumptions for chi-square independence test (McHugh, 2013). 

1. Data is in frequencies, counts, or counts of cases, not percentages or transformed 

data. 

2. Categories or levels of the variable are mutually exclusive. A subject can fit into 

only one category. 

3. Each subject can contribute to data in only one cell in the X2.. 

4. Study groups are independent. 

5. There are two variables, both measured as categories, usually nominal. 

6. Value of cell meets specified expectations / sample size equals at least the number 

of cells multiplied by 5.  

Ethical Considerations 

Approval for this study was obtained through Embry-Riddle Aeronautical 

University’s Institutional Review Board (IRB) and from the Canvas Network platform 

host, Instructure (See Appendix A). This study met the research requirements set forth by 
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the Canvas Network. Canvas Network and Instructure adhere to legal privacy and 

acceptable use policies (Instructure, 2018a,b) to which all students in the dataset provided 

consent when they enrolled in the MOOC. Existing data from pre-course surveys also 

comprised this data set. Pre-course surveys were voluntary in nature, and data were 

collected with consent within the Canvas Network platform. Data security was handled in 

accordance with best practices for electronic data (University of California, 2019).  

Summary 

 This study took a quantitative, person-centered approach, through cluster analysis, 

to better understand behaviors of emergent subpopulations. This approach utilized two-

step cluster analysis to categorize MOOC participants into common subpopulations based 

on substantive variables and then examined the extent to which these subpopulations 

were related to other demographic and course variables.  The hierarchical clustering 

method was selected based on the lack of a theoretical rationale for predicting the number 

of clusters and based on strong recommendation in other engagement research (Ferguson 

et al., 2015). This chapter described the population, sample, and data analysis procedures 

for selecting cluster solutions and assessing quality, reliability, and validity. The next 

chapter will report the results of these analyses.  
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CHAPTER IV 

RESULTS 

 As described, variables of engagement in discussions, videos, and assessments 

were proposed based on literature and theory for use in clustering. For the first research 

question, clustering was conducted to determine if subpopulations of MOOC students 

existed. For the second research question, ANOVAs and Chi-Square analyses were 

conducted to examine cluster differences across key attributes. The two MOOCs were 

analyzed separately, in order of size, with the smaller one first.  

Data Preparation  

 For the first MOOC analyzed, there were 1,032 cases (students who registered for 

the course), of which 532 students had course content activity (one day or greater). These 

532 cases were initially retained for analysis. For the second MOOC analyzed, there were 

4,037 cases (students who registered for the course), of which 1,796 had course content 

activity (one day or greater). These 1,796 cases were initially retained for analysis. Data 

to be used in the cluster analysis had no missing values. All variables were simple counts. 

By design, the LMS assigns nothing to a person that never clicks on a video or makes a 

discussion post. During data cleaning, zeros were filled in for these data points where the 

LMS recorded no click or post. 

 Initial correlation analysis (Pearson’s two-tailed) was conducted on the candidate 

clustering variables (Discussion Posts/Views, Video Views, Quiz Attempts) to determine 

if the variables were suitable for use in cluster analysis. Cluster analysis can be 

performed on correlated data, but it is recommended that high correlations, above .8, be 

considered for removal or retention based on theoretical or empirical necessity of the 
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variable and whether or not another variable, or a composite, can more parsimoniously 

represent the data (Hair et al., 2015; Sambandam, 2003). In this case, a remedy for highly 

correlated variables is to simply delete a highly correlated variable and retain one that is 

most practically useful. Table 7 explains the transformation from initial proposed 

variables to a more parsimonious set of variables. Some variables were reduced due to 

multicollinearity issues. Previous literature and slight differences in MOOC content also 

influenced final variable selection. 

Table 7  

Variable Reduction Detail 
 

Initial Variable Names / Details Final Variable Name / Changes 
 

Mandatory Discussion Views / Posts       
Planning Considerations                                   
National Airspace System (NAS) 

 

Mandatory Discussion Posts     
Variables reduced to only posts.   

Optional Discussion Views and Posts  
 

Introduction                                                        
Ask the Expert - Miscellaneous                              
Ask the Expert - Operations                                   
Ask the Expert - Systems                                      
Ask the Expert - Regulations  

Optional Discussion Views     
 

Variables were reduced to only views. This 
new variable was consistent with other studies 
(Khalil & Ebner, 2014; Kovanovic, 2017). 
One additional optional discussion was 
included for the first (smaller) MOOC (the 
discussion on the Trusted Operator Program). 
This discussion was not available for 
inclusion in the second MOOC. Ask the 
Expert Operations - Europe version was 
added for the second, larger MOOC. This was 
not available for the smaller MOOC. 

Video Page Views     
 

Webinar 1 AUVSI Trusted Operator Program 
Webinar 2 Canberra UAVs 
Webinar 3 Systems Engineering            

Webinar 1 or Webinar Views      
 

Variables were reduced to only Webinar 1 
views for first (smaller) MOOC, and to the 
only webinar variable possible in the second 
(larger) MOOC, a single page that held links 
to all webinars. The variable counts included 
the actual webinar link views and recorded 
webinar link views. 

Quiz Attempts          Quiz 1 Attempts 
 Quiz 2 Attempts 
 

Note. AUVSI = Association for Unmanned Vehicle Systems International (AUVSI, 2019). 
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For the final variables, correlations and VIFs were examined for suitability in cluster 

analysis. For the first MOOC, final correlations were acceptable as all were low to 

moderate, and VIFs (shown in Table 8) were all acceptable (below 10), ranging from 

1.028 to 3.255. 

 

Table 8 

Coefficients for Clustering Variables in MOOC 1  
 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients     

Collinearity 
Statistics 

  B 
Std. 

Error Beta t Sig. Tolerance VIF 
Constant 72.326 1.271  56.883 0.000   
Mand. Disc. Posts 29.019 2.239 0.304 12.963 0.000 0.307 3.255 
Opt. Disc. Views 33.993 1.952 0.384 17.412 0.000 0.348 2.874 
Webinar Views 1.487 1.988 0.010 0.748 0.455 0.973 1.028 
Quiz 1 Attempts 5.661 2.617 0.032 2.163 0.031 0.780 1.283 
Quiz 2 Attempts 36.308 2.555 0.339 14.208 0.000 0.298 3.356 

 

 Examination for multivariate outliers with Mahalanobis showed an unacceptably 

high maximum Mahalanobis distance. The value recommended for outlier removal was 

20.52 based on degrees of freedom or five predictors in the model (Hadi, 1992). Outliers 

were removed by selecting cases with p values below .001 (p values of the right tail of 

the Mahalanobis distance variable), which were calculated using accumulative 

distribution function for Chi-Square. Table 9 shows residuals for the remaining 457 

cases. A Mahalanobis distance (25.929) as close to the recommended level as possible 

was achieved. According to Hair et al., (2015) “outliers may be only an undersampling of 

divergent groups that, when discarded, introduce bias in the estimation of structure” (p. 

437). Further removal of outliers to achieve smaller Mahalanobis distance was not 
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conducted as it was deemed detrimental to the quality of the model in both average 

silhouette value and ratio of sizes value. 

 

Table 9 

Residuals for Clustering Variables in MOOC 1  
 

  Minimum Maximum   Mean St. Dev.       N 
Predicted Value 1.21 304.38 59.17 80.344 457 
Std. Predicted Value -0.721 3.052 0.000 1.000 457 
Std. Error of Predicted Value 1.446 5.647 2.423 1.106 457 
Adjusted Predicted Value 1.22 309.18 59.26 80.531 457 
Residual -104.380 80.942 0.000 23.111 457 
Std. Residual -4.492 3.483 0.000 0.995 457 
Stud. Residual -4.594 3.495 -0.002 1.006 457 
Deleted Residual -109.184 81.481 -0.089 23.668 457 
Stud. Deleted Residual -4.700 3.539 -0.002 1.014 457 
Mahal. Distance 0.767 25.929 4.989 5.773 457 
Cook's Distance 0.000 0.162 0.004 0.015 457 
Centered Leverage Value 0.002 0.057 0.011 0.013 457 

 

  

For the second MOOC, a correlation check on the final clustering variables 

showed variables were acceptable for cluster analysis, as all were low to moderate. 

Examination for multivariate outliers with Mahalanobis yielded an unacceptably high 

maximum Mahalanobis distance, and outliers were removed using the same technique as 

was used in the first data set. After outliers were removed, 1691 cases remained. 

Maximum VIF was acceptable at 2.324, as shown in Table 10. 
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Table 10 

Coefficients for Clustering Variables in MOOC 2  
 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients     

Collinearity 
Statistics 

  B 
Std. 

Error Beta t Sig. Tolerance VIF 
Constant 5.478 0.171  31.961 0.000   
Mand. Disc. Posts 1.045 0.117 0.293 8.895 0.000 0.43 2.324 
Opt. Disc. Views 0.137 0.026 0.121 5.386 0.000 0.921 1.086 
Webinar Views 0.137 0.102 0.035 1.341 0.180 0.674 1.485 
Quiz 1 Attempts 0.382 0.093 0.105 4.112 0.000 0.718 1.393 
Quiz 2 Attempts 0.333 0.177 0.061 1.877 0.061 0.442 2.261 

  

 Maximum Mahalanobis distance, shown in Table 11, was 32.942. While this was 

above the critical value recommended for outlier removal based on degrees of freedom or 

five predictors in the model (20.52) (Hadi, 1994), additional iterations to achieve 

acceptable critical value did not improve, but rather worsened the quality of model in 

both average silhouette value and ratio of sizes value. To avoid the “bias in estimation of 

structure” (Hair et al., 2015, p. 437) caused by further removal of outliers, only two 

iterations of outlier removal were conducted (as opposed to six iterations and a reduced N 

of 1625 it would have required to achieve a Mahalanobis distance of less than or equal to 

the recommended 20.52).  
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Table 11 

Residuals for Clustering Variables in MOOC 2 
 

  
Minimum Maximum   Mean St. Dev. N 

Predicted Value 5.478 13.919 8.365 1.7988 1691 
Std. Predicted Value -1.605 3.087 0.000 1.000 1691 
Std. Error of Predicted Value 0.102 0.488 0.193 0.070 1691 
Adjusted Predicted Value 5.459 13.988 8.366 1.8002 1691 
Residual -11.0855 8.3848 0.0000 3.4377 1691 
Std. Residual -3.220 2.435 0.000 0.999 1691 
Stud. Residual -3.228 2.438 0.000 1.000 1691 
Deleted Residual -11.1444 8.4031 -0.0008 3.4496 1691 
Stud. Deleted Residual -3.237 2.442 0.000 1.001 1691 
Mahal. Distance 0.494 32.942 4.997 4.932 1691 
Cook's Distance 0.000 0.016 0.001 0.001 1691 
Centered Leverage Value 0.000 0.019 0.003 0.003 1691 

 

MOOC Demographics    

Demographics for age (Table 12), education (Table 13), and geographic location 

(Table 14) on survey respondents in both MOOCS are shown below. 

 

Table 12 

MOOC Demographics for Age 
 

  

MOOC 1 
Responders     

N = 296 

MOOC 2 
Responders 
N = 1015 

  Freq. % Freq.  %  
13-18 23 7.8% 101 10.0% 
19-24 27 9.1% 78 7.7% 
25-34 87 29.4% 152 15.0% 
35-44 68 23.0% 177 17.4% 
45-54 50 16.9% 206 20.3% 
55-64 34 11.5% 192 18.9% 
65+ 7 2.4% 109 10.7% 

N 296   1015   
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Table 13 

MOOC Demographics for Education 
 

  

MOOC 1 
Responders     

N = 297 

MOOC 2 
Responders 
N = 1083 

  Freq. % Freq.  %  
None of these 9 3.0% 22 2.0% 
HS or College Prep 28 9.4% 148 13.7% 
Some College  51 17.2% 193 17.8% 
Completed 2-yr College 41 13.8% 122 11.3% 
Completed 4-yr College 61 20.5% 280 25.9% 
Some Graduate School 28 9.4% 66 6.1% 
Master's Degree 70 23.6% 215 19.9% 
Ph.D., J.D., or M.D.  9 3.0% 37 3.4% 

N 297   1083   
 

Table 14 
 
MOOC Demographics for Geographic Location 
 

    

MOOC 1 
Responders     

N = 298 

MOOC 2 
Responders   
N = 1081 

    Freq. % Freq.  %  
Asia / Pacific 38 12.8% 48 4.4% 
Europe 25 8.4% 40 3.7% 
Latin America  24 8.1% 73 6.8% 
Middle East / North Africa 12 4.0% 18 1.7% 
North America 169 56.7% 874 80.9% 
Sub-Saharan Africa 30 10.1% 28 2.6% 

  N 298   1081   
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RQ 1: Two-Step Cluster to Determine Subgroups  

 The first RQ was: “Based on engagement in course discussions, videos, and 

assessments, what distinct subgroups of students exist in an aviation-related MOOC?” 

Variables were standardized to Z-scores prior to the analysis. The hierarchical algorithm 

used to divide the pre-clusters into subgroups was the distance measure, Log-likelihood, 

which determines cluster distance or similarity. Although often the Log-likelihood 

measure is advised for analyzing both continuous or categorical variables or when 

allowing the number of clusters to be determined automatically, the Euclidian distance, 

normally employed when specifying fixed number of clusters, did not yield an 

interpretable solution. Some iterations of cluster analysis returned unclear subgroups or 

two cluster results that were not interpretable given the aims of this research to learn 

more about the students who did not complete the course. Thus, cluster solutions using 

auto-cluster were not retained (e.g., solutions with only two groups: completers and non-

completers) and two variables (Mandatory Discussion Views, Optional Discussion Posts) 

were removed. For both MOOCs, the best cluster solution was obtained using Log-

likelihood and a specified fixed 3-cluster setting. The criteria used for best cluster was a 

solution which was as close as possible to silhouette > 0.6, ratio of sizes < 3, and a 

solution that was interpretable in that it provided more than just a two-cluster solution of 

completers and non-completers. 

MOOC 1 cluster results. The final three-cluster solution from the 457 cases in 

the first MOOC yielded a silhouette coefficient, an index of cluster quality, of .6, which 

was annotated in the good range (Norusis, 2012). The ratio of sizes of largest cluster to 

smallest cluster was 3 which is considered on the upper edge of acceptable (Larose, 



94 

 

2015). It is noted that having a higher ratio is not unusual in studies where online 

community participation is a variable (van Osch & Bulgurcu, 2016; Kuk, 2006). The 

expected unequal distribution in participation from online participants documented in the 

literature has been used as a rationale for higher than ideal ratio. As shown in Table 17, 

the suitability of the cluster solution was confirmed with ANOVAs showing the 

clustering variables varied significantly among clusters.  

 Cluster 1. This cluster (N = 222, labeled “Low Engagers” 48.6% of cases) was 

below the mean on Mandatory Discussion Posts and Quiz Attempts, well below the mean 

on Webinar 1 Views, and only slightly below the mean on Optional Discussion Views. 

This cluster had a mean of 3.23± 3.325 days of activity, and no students finished the 

course.  

 Cluster 2. This cluster (N = 74, labeled “Moderate Engagers” 16.2% of cases) 

was below the mean on Mandatory Discussion Posts and Quiz Attempts, well above the 

mean on Webinar Views, and barely above the mean on Optional Discussion Views. This 

cluster had a mean of 4.16± 3.811 days of activity, and no students finished the course. 

 Cluster 3. This cluster (N = 161, labeled “High Engagers” 35.2 % of cases) was 

above the mean on Mandatory Discussion Posts and Quiz Attempts, slightly below the 

mean on Webinar 1 Views, and above the mean on Optional Discussion Views. This 

cluster had a mean of 9.21± 4.294 days of activity. In this cluster, 101 (62.7%) finished 

the course, and 60 (37.4%) did not finish the course. 

 A graphical presentation of each cluster’s size distribution and average Z-scores 

across each clustering variable are shown in Figure 6 and Figure 7. Means of raw values 

of clustering variables are shown in Table 15. Predictor importance order (for 
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determining cluster assignment) in MOOC 1 was Mandatory Discussions, Quiz 1 

Attempts, Quiz 2 Attempt, Webinar 1 Views, Optional Discussion Views.  

 

 

Figure 6. Distribution of MOOC 1 engagement subgroups. 
 

 
Figure 7. Z-scores of clustering variables for MOOC 1 clusters. Z-score means for each cluster 
show how far each cluster was (how many standard deviations) above or below the 
overall sample mean. Zero represents the mean. 
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Table 15 

Descriptive Statistics for MOOC 1 Clusters on Clustering Variables  

    N Mean Median SD Min  Max 

Mandatory 
Discussion 
Posts 

Low Engagers 222 0.04 0.00 0.19 0 1 

Moderate Engagers 74 0.05 0.00 0.23 0 1 

High Engagers 161 2.27 2.00 0.88 1 5 

Optional 
Discussion 
Views 

Low Engagers 222 1.94 1.00 1.81 0 8 

Moderate Engagers 74 3.57 2.00 3.78 0 15 

High Engagers 161 5.16 4.00 3.09 1 18 

Webinar 
Views 

Low Engagers 222 0.00 0.00 0.00 0 0 

Moderate Engagers 74 1.55 1.00 0.91 0 4 

High Engagers 161 0.37 0.00 0.72 0 3 

Quiz 1 
Attempts 

Low Engagers 222 0.02 0.00 0.13 0 1 

Moderate Engagers 74 0.07 0.00 0.30 0 2 

High Engagers 161 1.84 2.00 0.74 0 4 

Quiz 2 
Attempts 

Low Engagers 222 0.00 0.00 0.00 0 0 

Moderate Engagers 74 0.00 0.00 0.00 0 0 

High Engagers 161 1.20 1.00 0.85 0 3 

Note. N = Number of respondents, SD = Standard Deviation, Min = Minimum, Max = Maximum. 
 
 

MOOC 2 Cluster Results. The final three-cluster solution from the 1691 cases 

retained for the second MOOC yielded a silhouette coefficient, an index of cluster 

quality, of .5, which was annotated at the lower bound of the good range (Norusis, 2012). 

The ratio of sizes of largest cluster to smallest cluster was 2.90 which is considered 

acceptable (Larose, 2015). As shown in Table 18, the suitability of the cluster solution 

was confirmed with ANOVAs showing the clustering variables varied significantly 

among clusters. The solution is reported as follows. 

 Cluster 1. This cluster (N = 425, labeled “Low Engagers” 25.1% of cases) was 

well below the mean on Mandatory Discussion Posts, Quiz Attempts, and Webinar 

Views, and was below the mean on Optional Discussion Views. Low Engagers had a 
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mean of 5.664 ± 3.4964 days of activity. This cluster had 100% students who did not 

finish the course. 

 Cluster 2. This cluster (N = 325, labeled “Moderate Engagers” 19.2% of cases) 

was above the mean on Quiz 1 Attempts, well below the mean on Quiz 2 Attempts, 

below the mean on Mandatory Discussion Posts, very close to the mean on Webinar 

Views, and below the mean on Optional Discussion Views. Students in Moderate 

Engagers had a mean of 7.577 ± 3.7977 days of activity. This cluster had 324 (99.7%) 

students who did not complete the course and 1 (.3%) student who completed the course. 

 Cluster 3. This cluster (N = 941, labeled “High Engagers” 55.6 % of cases) was 

above the mean on Quiz 1 Attempts, well above the mean on Quiz 2 Attempts and 

Mandatory Discussion Posts, and above the mean on Webinar Views and Optional 

Discussion Views. Students in this cluster had a mean of 9.858± 3.2915 days of activity. 

In this cluster, 764 (81.2%) students finished the course, and 177(18.8%) students did not 

finish the course. A graphical presentation of each cluster’s size distribution and average 

Z-scores across each clustering variable are shown in Figure 8 and Figure 9.  

 



98 

 

 

Figure 8. Distribution of MOOC 2 engagement subgroups 
 

 

Figure 9. Z-scores of clustering variables for MOOC 2 clusters. Z-score means for each cluster 
show how far each cluster was (how many standard deviations) above or below the overall 
sample mean. Zero represents the mean.  
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Means of raw values of clustering variables are shown in Table 16. Predictor importance 

order (for determining cluster assignment) in MOOC 2 was Quiz 2 Attempts, Mandatory 

Discussion Posts, Quiz 1 Attempts, Webinar Views, and Optional Discussion Views. 

 

Table 16 
 
 

Descriptive Statistics for MOOC 2 Clusters on Clustering Variables  
 

    N Mean Median SD Min  Max 

Mandatory 
Discussion 
Posts 

Low Engagers 425 0.07 0.00 0.25 0 1 
Moderate Engagers 325 0.79 1.00 0.65 0 3 
High Engagers 941 2.18 2.00 0.63 1 5 

Optional 
Discussion 
Views 

Low Engagers 425 2.97 2.00 2.03 0 11 
Moderate Engagers 325 4.01 3.00 3.07 0 19 
High Engagers 941 4.64 3.00 3.88 0 22 

Webinar 
Views 

Low Engagers 425 0.01 0.00 0.10 0 1 
Moderate Engagers 325 0.45 0.00 0.74 0 4 
High Engagers 941 1.36 1.00 0.99 0 5 

Quiz 1 
Attempts 

Low Engagers 425 0.10 0.00 0.30 0 1 
Moderate Engagers 325 1.82 2.00 0.89 0 4 
High Engagers 941 1.83 2.00 0.84 1 5 

Quiz 2 
Attempts 

Low Engagers 425 0.00 0.00 0.00 0 0 

Moderate Engagers 325 0.02 0.00 0.14 0 1 

High Engagers 941 1.23 1.00 0.48 0 3 

Note. N = Number of respondents, SD = Standard Deviation, Min = Minimum, Max = Maximum. 
 

 

MOOC 1 cluster differences on engagement variables. As described 

previously, cluster solution quality was examined by comparing the clusters across the 

engagement variables used to form the cluster solution. A series of five individual 

univariate one-way ANOVAs were conducted on the three subgroups as independent 

variables, one for each of the clustering engagement variables as dependent variables. 
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Since the assumption for homogeneity of variance could not be met, Welch’s test was 

used. Significant differences were found for each variable as shown in Table 17. 

 

Table 17  
 
Characteristics of Three Cluster Subgroups for MOOC 1 
 

  Engagement Subgroups         

ANOVA 

 

Low  
Engagers                                        
N = 222 

Moderate 
Engagers                      
N = 74 

High  
Engagers                        
N = 161 

Dependent 
Variables Mean SD Mean SD Mean SD F                            Fw p 

Mandatory 
Discussion Posts 0.04 0.19 0.05 0.23 2.27 0.88    F(2,454) = 869.229                   

Fw(2,454) = 502.282 
<.001                           
<.001                            

Optional 
Discussion Views 1.94 1.81 3.57 3.78 5.16 3.09    F(2,454) = 67.036                   

Fw(2,454) = 72.106 
<.001                           
<.001                            

Webinar Views * 0.00 0.00 1.55 0.91 0.37 0.72    F(1,233) = 115.968                   
Fw(1,233) = 97.968 

<.001                           
<.001                            

Quiz 1 Attempts 0.02 0.13 0.07 0.30 1.84 0.74    F(2,454) = 786.848                   
Fw(2,454) = 472.897 

<.001                           
<.001                            

Quiz 2 Attempts 0.00 0.00 0.00 0.00 1.20 0.85     

Note. * Webinar ANOVA between Moderate and High clusters only. 
 

 MOOC 1 cluster differences: Mandatory discussion posts. Significant and not-

significant differences were observed between clusters for Mandatory Discussion Posts. 

Moderate Engagers had on average .018 more Mandatory Discussion Posts than Low 

Engagers (p = .812) (not significant). High Engagers had on average 2.213 more 

Mandatory Discussion Posts than Moderate Engagers (p < .001). High Engagers had on 

average 2.231 more Mandatory Discussion Posts than Low Engagers (p < .001). 

 MOOC 1 cluster differences: Optional discussion views. Significant 

differences in Optional Discussion Views were observed between all clusters. Moderate 

Engagers had on average 1.626 more Optional Discussion Views than Low Engagers     
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(p = .002). High Engagers had on average 1.594 more Optional Discussion Views than 

Moderate Engagers (p = .005). High Engagers had on average 3.220 more Optional 

Discussion Views than Low Engagers (p < .001). 

 MOOC 1 cluster differences: Webinar views. Due to zero variance in Low 

Engagers, only the Moderate and High Engager clusters were compared on Webinar 

views with an ANOVA. Significant differences in Webinar Views were found. Moderate 

Engagers had on average 1.18 more Webinar Views than High Engagers (p < .001). 

 MOOC 1 cluster differences: Quiz 1 Attempts. Significant and not-significant 

differences were observed between clusters for Quiz 1 Attempts. Moderate Engagers had 

on average .050 more Quiz 1 Attempts than Low Engagers (p = .363) (not significant). 

High Engagers had on average 1.771 more Quiz 1 Attempts than Moderate Engagers     

(p < .001). High Engagers had on average 1.820 more Quiz 1 Attempts than Low 

Engagers (p < .001). 

 MOOC 1 cluster differences: Quiz 2 Attempts. Since Moderate and Low 

Engagers did not have any variance in Quiz 2 Attempts, the ANOVA could not be 

completed. Only mean was compared. High Engagers: had on average 1.2 more Quiz 2 

Attempts than both Moderate Engagers and Low Engagers. 

MOOC 2 cluster differences on engagement variables. Replicating the 

procedure used on MOOC 1, a series of five individual univariate one-way ANOVAs 

were conducted on the three subgroups as independent variables, one for each of the 

clustering engagement variables as dependent variables. Since the assumption for 

homogeneity of variance could not be met, Welch’s test was used. Significant differences 
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were found for each of the variables in MOOC 2, confirming the quality of the cluster 

solution. These findings are reported in Table 18. 

 

Table 18  

Characteristics of Three Cluster Subgroups for MOOC 2 
 

  Engagement Subgroups         

ANOVA 

 

Low  
Engagers                      
N = 425 

Moderate                        
Engagers                                         
N = 325 

High  
Engagers                        
N = 941 

Dependent 
Variables Mean SD Mean SD Mean SD F                                               

Fw p 

Mandatory 
Discussion Posts 0.07 0.25 0.79 0.65 2.18 0.63    F(2,1688) = 2285.210                     

Fw(2,1688) = 3947.042 
<.001                           
<.001                            

Optional 
Discussion Views 2.97 2.03 4.01 3.07 4.64 3.88    F(2,1688) = 36.595                                  

Fw(2,1688) = 56.808 
<.001                           
<.001                            

Webinar Views 0.01 0.10 0.45 0.74 1.36 0.99    F(2,1688) = 459.925                                 
Fw(2,1688) = 914.258 

<.001                           
<.001                            

Quiz 1 Attempts 0.10 0.30 1.82 0.89 1.83 0.84    F(2,1688) = 477.778                                  
Fw(2,1688) = 1931.774 

<.001                           
<.001                            

Quiz 2 Attempts * 0.00 0.00 0.02 0.14 1.23 0.48    F(1,1264) = 2008.076                                  
Fw(2,1264) = 4873.192 

<.001                           
<.001                            

Note. * Quiz 2 ANOVA between Moderate and High Engagers only. 
 

  

MOOC 2 cluster differences: Mandatory discussion posts. Significant 

differences in Mandatory Discussion Posts were found between all clusters. Moderate 

Engagers had on average .722 more Mandatory Discussion Posts than Low Engagers     

(p < .001). High Engagers had on average 2.119 more Mandatory Discussion Posts than 

Low Engagers (p < .001). High Engagers had on average 1.397 more Mandatory 

Discussion Posts than Moderate Engagers (p < .001). 
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 MOOC 2 cluster differences: Optional discussion views. Significant 

differences in Optional Discussion Views were found between all clusters. Moderate 

Engagers had on average 1.039 more Optional Discussion Views than Low Engagers     

(p < .001). High Engagers had on average 1.672 more Optional Discussion Views than 

Low Engagers (p < .001). High Engagers had on average .633 more Optional Discussion 

Views than Moderate Engagers (p < .001). 

 MOOC 2 cluster differences: Webinar views. Significant differences in 

Webinar Views were found between all clusters. Moderate Engagers had on average .433 

more Webinar Views than Low Engagers (p < .001). High Engagers had on average 

1.350 more Webinar Views than Low Engagers (p < .001). High Engagers had on 

average .907 more Webinar Views than Moderate Engagers (p < .001). 

 MOOC 2 cluster differences: Quiz 1 Attempts. Significant and not-significant 

differences in Quiz 1 Attempts were found between clusters. Moderate Engagers had on 

average 1.722 more Quiz 1 Attempts than Low Engagers (p < .001). High Engagers had 

on average 1.737 more Quiz 1 Attempts than Low Engagers (p < .001). High Engagers 

had on average .015 more Quiz 1 Attempts than Moderate Engagers (p = .963) (not 

significant). 

 MOOC 2 cluster differences: Quiz 2 Attempts. Since Low Engagers did not 

have any variance in Quiz 2 Attempts, only Moderate and High Engagers were analyzed 

in ANOVA. Significant differences in Quiz 2 Attempts between these clusters were 

found. High Engagers had on average 1.21 more Quiz 2 Attempts than Moderate 

Engagers (p < .001). 
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RQ 2: Chi-Square and ANOVA to Characterize Subgroups  

 In answering the first research question, three distinct subgroups of students were 

found across engagement variables for two aviation-related MOOCs. The second 

research question aimed to determine differences among engagement subgroups in 

demographics, days of activity, and achievement. This analysis was conducted using Chi-

Square analysis for categorical data (demographics, record of completion) and ANOVA 

for continuous data (grades, days of activity). 

Missing Data Summary   

 Complete data for days of activity and achievement were available for each 

student; however, incomplete data were found for the variables associated with the 

demographic surveys (Age, Education, Location, Intent, and Employment in Aviation 

Industry). In the smaller MOOC, for all survey items except Employment in Aviation 

Industry, the approximate percentages each cluster was missing were consistent for most 

of the selected post-course survey items (“Low Engagers” were missing 42%, “Moderate 

Engagers” were missing 42%, “High Engagers” were missing 23%). The survey item 

Employment in Aviation Industry contained so much missing data it was dropped from 

Chi-Square analysis; only descriptive statistics were reported. This was due to its 

inclusion on the end of course survey which had an even lower response rate than the 

demographic survey offered at the beginning. For the second, larger MOOC, the 

variables had missing data which varied by cluster and survey item. For variables 

representing attributes Age, Education, and Location, “Low Engagers” were missing 

64%, “Moderate Engagers” were missing 55%, and “High Engagers” were missing 17%. 

For Intent to Participate, Low Engagers were missing 64%, Moderate Engagers were 
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missing 55% and High Engagers were missing 43%. The survey item Employment in 

Aviation Industry had considerable missing data. Low and Moderate Engagers had 99% 

and 96% missing data. High Engagers had only 36% missing data with 37 % of 

respondents answering “yes” and 63% answering “no.”  

 

 

MOOC 1 Missing Data Analysis 

 MOOC 1 non-responders and five clustering variables. To determine if there 

were any known differences between responders and non-responders for the age (pre-

course survey) question, five separate one-way ANOVAs were used to compare group 

(responder versus non-responder) means for each of the five clustering variables in 

MOOC 1: Summative Mandatory Discussion Posts, Optional Discussion Views, Webinar 

1 Views, Quiz 1 Attempts, and Quiz 2 Attempts. Results were split by cluster. No 

significant differences were found between the responders and non-responders to the 

survey question on age for all three clusters. This finding was repeated for the responders 

and non-responders for the education, location, and intent survey items.  

 MOOC 1 non-responders and course completion. In an attempt to further 

examine differences between responders and non-responders, the variable Course 

Completion was examined. Since 100% of the first two clusters (Low Engagers and 

Moderate Engagers) were non-completers, there were no comparison tests run on those 

two clusters. For the third cluster (High Engagers), Chi-Square tests were conducted for 

responders and non-responders against the Course Completion variable. For each type of 

missing variable, no associations were found between those with the missing data and 
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Course Completion. Results are as follows: Missing Age: Χ2(1, N = 161) = .48, p = .488; 

Missing Education: Χ2 (1, N = 161) = .48, p = .488; Missing Location: Χ2 (1, N =161) = 

.89, p = .345); Missing Intent: Χ2(1, N = 161) = .31, p = .580). Although a fuller 

understanding of potential non-response bias caused by students who did not respond 

would assist in interpreting the results of RQ 2 analysis, no further information beyond 

LMS data traces from course activity was available to analyze. For the information 

available in MOOC 1, no significant differences were evident. 

MOOC 2 Missing Data Analysis 

 MOOC 2 non-responders and five clustering variables. To determine if there 

were any known differences between responders and non-responders for the age (pre-

course survey) question in MOOC 2, five separate one-way ANOVAs were used to 

compare group (responder versus non-responder) means for each of the five clustering 

variables: Mandatory Discussion Posts, Optional Discussion Views, Webinar Views, 

Quiz 1 Attempts, and Quiz 2 Attempts). Results were split by cluster.  

 MOOC 2 Missing Age: Low Engagers. No significant differences in five 

clustering variables (Mandatory Discussion Posts, Optional Discussion Views, Webinar 

Views, Quiz 1 Attempts, Quiz 2 Attempts) were found between the responders and non-

responders to the survey question on Age.  

 MOOC 2 Missing Age: Moderate Engagers. There were significant differences 

in means of Mandatory Discussion Posts between those missing age and not missing age. 

Those not missing age had more Mandatory Discussion Posts. Because the assumption of 

homogeneity of variances was not met, Welch’s test was conducted (F(1,323) = 9.386, p 

= .002; Fw(1,323) = 9.283, p = .003.). No significant differences in the remaining four 
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clustering variables (Optional Discussion Views, Webinar Views, Quiz 1 Attempts, Quiz 

2 Attempts) were found between the responders and non-responders to the survey 

question on Age.  

 MOOC 2 Missing Age: High Engagers. There were significant differences in 

means of Mandatory Discussion Posts between those missing Age and not missing Age. 

Those not missing Age had more Mandatory Discussion Posts. Because the assumption 

of homogeneity of variances was not met, Welch’s test was conducted (F(1,939) = 

10.445,  p = .001;Fw(1,939) = 11.991, p = .001). There were significant differences in 

means of Optional Discussion Views between those missing Age and not missing Age. 

Those not missing Age had more Optional Discussion Views (F(1,939) = 6.469, p = 

.011). There were significant differences in means of Quiz 1 Attempts between those 

missing Age and not missing Age. Those missing Age had more Quiz 1 Attempts 

(F(1,939) = 3.818, p = .020). No significant differences in the remaining two clustering 

variables (Webinar Views, Quiz 2 Attempts) were found between the responders and 

non-responders to the survey question on Age.  

 MOOC 2 Missing Education: Low Engagers. No significant differences in five 

clustering variables (Mandatory Discussion Posts, Optional Discussion Views, Webinar 

Views, Quiz 1 Attempts, Quiz 2 Attempts) were found between the responders and non-

responders to the survey question on Education.  

 MOOC 2 Missing Education: Moderate Engagers. There were significant 

differences in means of Mandatory Discussion Posts between those missing Education 

and not missing Education. Those not missing Education had more Mandatory 

Discussion Posts. Because the assumption of homogeneity of variances was not met, 
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Welch’s test was conducted (F(1,323) = 7.144, p = .008; Fw(1,323) = 7.076, p = .008). No 

significant differences in the remaining four clustering variables (Optional Discussion 

Views, Webinar Views, Quiz 1 Attempts, Quiz 2 Attempts) were found between the 

responders and non-responders to the survey question on Education.  

 MOOC 2 Missing Education: High Engagers. There were significant differences 

in means of Mandatory Discussion Posts between those missing Education and not 

missing Education. Those not missing Education had more Mandatory Discussion Posts. 

Because the assumption of homogeneity of variances was not met, Welch’s test was 

conducted(F(1,939) = 11.512, p = .001; Fw(1,939) = 14.439, p = .000). There were 

significant differences in means of Optional Discussion Views between those missing 

Education and not missing Education. Those not missing Education had more Optional 

Discussion Views (F(1,939) = 13.009, p = .000). There were significant differences in 

means of Quiz 1 Attempts between those missing Education and not missing Education. 

Those missing Education had more Quiz 1 attempts. Because of assumption of 

homogeneity of variances was not met, Welch’s test was conducted (F(1,939) = 10.907,  

p = .001; Fw(1,939) = 8.165, p = .005). No significant differences in the remaining two 

clustering variables (Webinar Views, Quiz 2 Attempts) were found between the 

responders and non-responders to the survey question on Education.  

 MOOC 2 Missing Geographic Location: Low Engagers. No significant 

differences in five clustering variables (Mandatory Discussion Posts, Optional Discussion 

Views, Webinar Views, Quiz 1 Attempts, Quiz 2 Attempts) were found between the 

responders and non-responders to the survey question on Geographic Location.  
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 MOOC 2 Missing Geographic Location: Moderate Engagers. There were 

significant differences in means of Mandatory Discussion Posts between those missing 

Geographic Location and not missing Geographic Location. Those not missing Location 

had more Mandatory Discussion Posts. Because the assumption of homogeneity of 

variances was not met, Welch’s test was conducted (F(1,323) = 7.144, p = .008; 

Fw(1,323) = 7.076, p = .008). No significant differences in the remaining four clustering 

variables (Optional Discussion Views, Webinar Views, Quiz 1 Attempts, Quiz 2 

Attempts) were found between the responders and non-responders to the survey question 

on Geographic Location.  

 MOOC 2 Missing Geographic Location: High Engagers. There were significant 

differences in means of Mandatory Discussion Posts between those missing Geographic 

Location and not missing Geographic Location. Those not missing Location had more 

Mandatory Discussion Posts. Because the assumption of homogeneity of variances was 

not met, Welch’s test was conducted (F(1,939) = 11.747, p = .000; Fw(1,939) = 14.400,   

p = .000). There were significant differences in means of Optional Discussion Views 

between those missing Geographic Location and not missing Geographic Location. 

Those not missing Location had more Optional Discussion Views (F(1,939) = 12.925,     

p = .000). There were significant differences in means of Quiz 1 Attempts between those 

missing Geographic Location and not missing Geographic Location. Those missing 

Location had more Quiz 1 Attempts. Because the assumption of homogeneity of 

variances was not met, Welch’s test was conducted (F(1,939) = 13.224, p = .000;  
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Fw(1,939) = 9.447, p = .002). No significant differences in the remaining two clustering 

variables (Webinar Views, Quiz 2 Attempts) were found between the responders and 

non-responders to the survey question on Geographic Location.  

 MOOC 2 Missing Intent to Participate: Low Engagers. No significant 

differences in five clustering variables (Mandatory Discussion Posts, Optional Discussion 

Views, Webinar Views, Quiz 1 Attempts, Quiz 2 Attempts) were found between the 

responders and non-responders to the survey question on Intent to Participate.  

 MOOC 2 Missing Intent to Participate: Moderate Engagers. There were 

significant differences in means of Mandatory Discussion Posts between those missing 

Intent to Participate and not missing Intent to Participate. Those not missing Intent had 

more Mandatory Discussion Posts. Because the assumption of homogeneity of variances 

was not met, Welch’s test was conducted (F(1,323) = 9.386, p = .002; Fw(1,323) = 9.283,       

p = .003). No significant differences in the remaining four clustering variables (Optional 

Discussion Views, Webinar Views, Quiz 1 Attempts, Quiz 2 Attempts) were found 

between the responders and non-responders to the survey question on Intent to 

Participate.  

 MOOC 2 Missing Intent to Participate: High Engagers. There were significant 

differences in means of Mandatory Discussion Posts between those missing Intent to 

Participate and not missing Intent to Participate. Those not missing Intent had more 

Mandatory Discussion Posts. Because the assumption of homogeneity of variances was 

not met, Welch’s test was conducted (F(1,939) = 4.508, p = .034; Fw(1,939) = 4.544,       

p = .033). There were significant differences in means of Optional Discussion Views 

between those missing Intent to Participate and not missing Intent to Participate. Those 
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not missing Intent had more Optional Discussion Views. Because the assumption of 

homogeneity of variances was not met, Welch’s test was conducted (F(1,939) = 15.748,  

p = .000; Fw(1,939) = 16.734, p = .000). There were significant differences in means of 

Quiz 1 Attempts between those missing Intent to Participate and not missing Intent to 

Participate. Those missing Intent had more Quiz 1 attempts (F(1,939) = 6.819, p = .009). 

No significant differences in the remaining two clustering variables (Webinar Views, 

Quiz 2 Attempts) were found between the responders and non-responders to the survey 

question on Intent to Participate.  

 MOOC 2 non-responders and course completion. To further examine 

differences between responders and non-responders, the variable Course Completion was 

examined. Since 100% of Low Engagers were non-completers, there were no comparison 

tests run. In the Moderate Engagers cluster, only one student finished course. This cluster 

failed the assumption of no more than 20% cells should have expected count of less than 

five, thus the likelihood ratio was examined, and no significant differences were found. 

 For the High Engagers cluster, four separate Chi-Square tests were conducted for 

responders and non-responders against the Course Completion variable. Additionally, 

expected and observed counts and residuals were examined. For all four survey items, an 

association was found between responders and non-responders and course completion, as 

summarized in Table 19. For all four variables, responders (those not missing Age, 

Education, Geographic Location, or Intent to Participate) were more likely to have 

completed the course. 
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Table 19  
 
Non-Response Bias: Differences in Course Completion for MOOC 2  
  

Age  Χ2(1, N = 941) = 57.218, p < .001 

Education  Χ2(1, N = 941) = 95.049, p < .001 

Location               Χ2(1, N = 941) = 92.510, p < .001 

Intent  Χ2(1, N = 941) = 18.324, p < .001 

Note. High Engager cluster responders on post-course survey items (age, education, location, and 
intent) were more likely to complete the course. Significance p < .05 

 

 MOOC 2 non-responders and Days of Activity. To further examine differences 

between responders and non-responders, the variable Days of Activity was examined. 

Four separate one-way ANOVA tests were conducted for responders and non-responders 

against the Days of Activity variable. No significant differences in mean Days of Activity 

were found between the responders and non-responders to any of the four survey items 

used in RQ2 (Age, Education, Geographic Location, Intent to Participate). 

Missing data analysis conclusions. For MOOC 1, within each cluster, the 

differences between responders and non-responders were not significant. For MOOC 2, 

some significant differences were observed in the Moderate and High Engager clusters, 

as summarized in Table 20. In the Moderate Engagers cluster, the responders tended to 

have significantly more Mandatory Discussion Posts compared to non-responders. 

Likewise, in the High Engager cluster, responders had significantly more Mandatory 

Discussion Posts, but they also had more Optional Discussion views and Course 

Completions. Finally, High Engager cluster responders were observed to have fewer Quiz 

1 Attempts than non-responders. 
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 These findings indicate a non-response bias was present. The results indicating 

responders were more active in discussions and course completion are logical considering 

the post-course survey is more likely to be completed by those who stay until the end of 

the course and see the end-of-course survey prompt. Also, responders may have had 

fewer Quiz 1 Attempts because if they were serious about completing the course, they 

were potentially more likely to pass the quiz on their first attempt and not need a second 

attempt. 

 

Table 20 

Non-Response Bias: Summary of Significant Differences for MOOC 2  
 

  Moderate 
Engagers 

High 
 Engagers 

  
Mand.                
Disc.                 
Posts 

Mand. 
Disc. 
Posts 

Opt. 
Disc. 
Views 

Quiz 1 
Attempts 

Course 
Complete 

Age Responders               
(Not Missing Age) More* More* More* Fewer* More* 

Education Responders              
(Not Missing Educ.) More* More* More* Fewer* More* 

Location Responders              
(Not Missing Loc.) More* More* More* Fewer* More* 

Intent Responders              
(Not Missing Intent) More* More* More* Fewer* More* 

Note. Results from ANOVA and Chi-Square analyses. *p < .05. Mand. = Mandatory, Disc. = 
Discussion, Opt. = Optional, Educ. = Education, Loc. = Location. 

 

RQ 2: MOOC 1 Cluster Differences on Age 

 To find cluster differences across the categorical (age) variable, Chi-Square 

analysis was conducted after missing data cases were removed. “Low Engagers” (N = 
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222) had 93 cases removed (new N = 130). “Moderate Engagers” (N = 74) had 31 cases 

removed (new N = 43). “High Engagers” (N = 161) had 37 cases removed (new N = 124). 

The first assumption for Chi-Square analysis was that of independence, which the data 

met. The second assumption was that of expected frequencies have less than 20% of cells 

with expected count less than 5 in the cross-tabulation on cluster and age. The data as 

shown in Table 21 could not meet the expected frequencies assumption. 

 

Table 21 

Descriptives for MOOC 1 Clusters on Age 
 

    

Low          
Engagers  

Moderate             
Engagers 

High         
Engagers         

 

    Freq. % Freq.  %  Freq. %  

13-18 9 7.0% 2 4.7% 12 9.7% 
19-24 16 12.4% 4 9.3% 7 5.6% 
25-34 38 29.5% 14 32.6% 35 28.2% 
35-44 27 20.9% 8 18.6% 33 26.6% 
45-54 20 15.5% 9 20.9% 21 16.9% 
55-64 14 10.9% 5 11.6% 15 12.1% 

65+ 5 3.9% 1 2.3% 1 0.8% 

  N 129  43  124  
 

 
 
 When this assumption is violated, with data greater than a 2x2 table, data can be 

collapsed if theoretically sound (Field, 2013). To accomplish this, the two lowest (13-18 

and 19-24) and two highest (55-64 and 65+) age brackets were combined in Table 22.  
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Table 22  

Descriptives for MOOC 1 Clusters on Consolidated Age 
 

    

Low             
Engagers   

Moderate               
Engagers 

High         
Engagers         

 

    Freq. % Freq.  %  Freq. %  

13-24 25 19.4% 6 14.0% 19 15.3% 
25-34 38 29.5% 14 32.6% 35 28.2% 
35-44 27 20.9% 8 18.6% 33 26.6% 
45-54 20 15.5% 9 20.9% 21 16.9% 
55+ 19 14.7% 6 14.0% 16 12.9% 

  N 129   43   124    
 
 
 After consolidation, the Chi-Square test was run. The null hypothesis (H0) was 

that there were no significant differences between the cluster groups across the age 

categories. The p-value was greater than the chosen significance level of a = .05. No 

association was found between cluster group and age Χ2(8, N = 296) = 3.1, p = .928).  

RQ 2: MOOC 2 Cluster Differences on Age 

 To find cluster differences across the categorical (age) variable, Chi-Square 

analysis was conducted after missing data cases were removed. “Low Engagers” (N = 

425) had 270 cases removed (new N = 155). “Moderate Engagers” (N = 325) had 181 

cases removed (new N = 144). “High Engagers” (N = 941) had 225 cases removed (new 

N = 716). The first assumption for Chi-Square analysis was that of independence, which 

the data met. The second assumption was that of expected frequencies have less than 

20% of cells with expected count less than 5 in the cross-tabulation on cluster and age. 

The data as shown in Table 23 met the expected frequencies assumption.  
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Table 23  

Descriptives for MOOC 2 Clusters on Age 
 

    

Low         
Engagers 

Moderate              
Engagers 

High          
Engagers         

 

    Freq. % Freq.  %  Freq. %  

13-18 12 7.7% 10 6.9% 79 11.0% 
19-24 15 9.7% 3 2.1% 60 8.4% 
25-34 28 18.1% 23 16.0% 101 14.1% 
35-44 33 21.3% 21 14.6% 123 17.2% 
45-54 27 17.4% 33 22.9% 146 20.4% 
55-64 29 18.7% 36 25.0% 127 17.7% 
65+ 11 7.1% 18 12.5% 80 11.2% 

 N 155  144  716  
 

 

 The Chi-Square test was run. The null hypothesis (H0) was that there were no 

significant differences between the cluster groups across the age categories. The p-value 

was greater than the chosen significance level of a = .05. No association was found 

between cluster group and age Χ2(12, N = 1015) = 20.432, p = 0.059.  

RQ 2: MOOC 1 Cluster Differences on Education 

 To find cluster differences across the categorical (education) variable, Chi-Square 

analysis was conducted after missing data cases were removed. “Low Engagers” (N = 

222) had 92 cases removed (new N = 130). “Moderate Engagers” (N = 74) had 31 cases 

removed (new N = 43). “High Engagers” (N = 161) had 37 cases removed (new N = 124) 

as shown in Table 24. 
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Table 24 

Descriptives for MOOC 1 Clusters on Education 
 

  
Low             

Engagers   
Moderate               
Engagers 

High         
Engagers           

  Freq. % Freq.  %  Freq. %   
None of these 3 2.3% 1 2.3% 5 4.0% 
HS or College Prep 11 8.5% 2 4.7% 15 12.1% 
Some College 26 20.0% 10 23.3% 15 12.1% 
Completed 2-yr College 17 13.1% 5 11.6% 19 15.3% 
Completed 4-yr College 24 18.5% 9 20.9% 28 22.6% 
Some Graduate School 14 10.8% 6 14.0% 8 6.5% 
Master's Degree 34 26.2% 8 18.6% 28 22.6% 
Ph.D., J.D., or M.D. 1 0.8% 2 4.7% 6 4.8% 

N 130   43   124     
 
 

Again, assumptions checking for the Chi-Square analysis revealed greater than 

20% cells with expected counts less than 5. Thus, education data were collapsed into 

three suitable categories. The bottom four were combined into a “Less than 4-year 

degree” category, the next two were combined into a “4-year degree” category, and the 

final two were combined into a “Graduate degree” category, as shown in Table 25.  

 

Table 25 

Descriptives for MOOC 1 Clusters on Consolidated Education 
 

  
Low       

Engagers  
Moderate              
Engagers 

High         
Engagers           

  Freq. % Freq.  %  Freq. %   
Less than 4-Year Degree 57 43.8% 18 41.9% 54 43.5% 

4-Year Degree 38 29.2% 15 34.9% 36 29.0% 
Graduate Degree 35 26.9% 10 23.3% 34 27.4% 

N 130   43   124     
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 After consolidation, the Chi-Square test was run. The null hypothesis (H0) was 

that there were no significant differences between the cluster groups across the education 

categories. The p-value was greater than the chosen significance level of a = .05. No 

association was found between cluster group and education Χ2(4, N = 297) = .65, p = 

.957).  

RQ 2: MOOC 2 Cluster Differences on Education 

 To find cluster differences across the categorical (education) variable, Chi-Square 

analysis was conducted after missing data cases were removed. Cluster 1 (N = 425) “Low 

Engagers” had 271 cases removed (new N = 154). Cluster 2 (N = 325) “Moderate 

Engagers” had 177 cases removed (new N = 148). Cluster 3 (N = 941) “High Engagers” 

had 160 cases removed (new N = 781). Descriptives are shown in Table 26. 

 

Table 26 

Descriptives for MOOC 2 Clusters on Education 
 

  

Low            
Engagers   

Moderate                   
Engagers 

High         
Engagers           

  Freq. % Freq.  %  Freq. %   
None of these 3 1.9% 4 2.7% 15 1.9% 
HS or College Prep 16 10.4% 16 10.8% 116 14.9% 
Some College  25 16.2% 21 14.2% 147 18.8% 
Completed 2-yr College 18 11.7% 18 12.2% 86 11.0% 
Completed 4-yr College 32 20.8% 40 27.0% 208 26.6% 
Some Graduate School 20 13.0% 13 8.8% 33 4.2% 
Master's Degree 37 24.0% 27 18.2% 151 19.3% 
Ph.D., J.D., or M.D.  3 1.9% 9 6.1% 25 3.2% 

N 154   148   781     
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 Assumptions checking for the Chi-Square analysis revealed less than 20% cells 

(8.3%) had expected counts less than 5. Thus, Chi-Square analysis assumptions were met, 

and analysis was conducted. The null hypothesis (H0) was that there were no significant 

differences between the cluster groups across the Education categories. The p-value was 

less than the chosen significance level of a = .05, thus the null hypotheses was rejected. 

A significant association was found between cluster group and education (Χ2(14, N = 

1083) = 31.044, p = 0.005, Cramer’s V = .120).  

 To determine the strength of this association, because the table was greater than 

2x2, Cramer’s V (an extension of Phi φ) was evaluated (Hair et al., 2015; Liebetrau, 

1983). Effect sizes (Phi φ) for 1 degree of freedom (df) are defined by Cohen (1988) as 

small (.10), medium (.30), and large (.50). Effect sizes were modified based on df by 

dividing Phi φ by the square root of df. This resulted in effect size evaluation guidelines 

for df = 14 of small (.03), medium (.08), and large (.13). Thus, the effect size for the 

association between cluster group and education was considered medium (.120).  

 In a post-hoc analysis, cells in a contingency table (Table 27) were examined for 

adjusted standardized residuals higher than an absolute value of 1.96 which correspond to 

z-score values with alpha = .05 (Agresti, 2002). Students from the Low and High 

Engager clusters show statistically significant differences between expected counts and 

observed counts in the education category of Some Graduate school. Low Engagers 

showed a statistically significantly higher than expected proportion of students with 

Some Graduate education, whereas High Engagers showed a statistically significantly 

lower than expected proportion of students with Some Graduate education.  

 



120 

 

Table 27  

Differences in MOOC 2 Clusters Across Education Levels 
 

    
Low         

Engagers 
Moderate 
Engagers 

High             
Engagers   
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None 3 3.1 -0.1 4 3 0.6 15 16 -0.4 22 

HS or Prep 16 21 -1.3 16 20 -1.1 116 107 1.8  148 

Some College  25 27 -0.6 21 26 -1.2 147 139 1.4  193 
2-year Degree 18 17 0.2 18 17 0.4 86 88 -0  122 
4-year Degree 32 40 -1.6 40 38 0.4 208 202 0.9  280 
Some Graduate 20 9.4 3.9 13 9 1.5 33 48 -4  66 
Master's Degree 37 31 1.4 27 29 -0.5 151 155 -1  215 
Doctoral Degree 3 5.3 -1.1 9 5.1 1.9 25 27 -1   37 

  N 154         148       781           1083 
 
 

RQ 2: MOOC 1 Cluster Differences on Geographic Location  

 To find cluster differences across the categorical (geographic location) variable, 

Chi-Square analysis was conducted after missing data cases were removed. “Low 

Engagers” (N = 222) had 92 cases removed (new N = 130). “Moderate Engagers” (N = 

74) had 31 cases removed (new N = 43). “High Engagers” (N = 161) had 36 cases 

removed (new N = 125). Again, assumptions checking for the Chi-Square analysis 

revealed greater than 20% cells with expected counts less than 5, as shown in Table 28. 

Thus, Geographic Location data were collapsed into four suitable categories. North 

America and Latin America were combined into “Americas,” and Middle East/North 

Africa was combined with Sub-Saharan Africa to “Middle East/Africa” in Table 29. 
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Table 28 

Descriptives for MOOC 1 Clusters on Geographic Location 
 

    

Low            
Engagers   

Moderate 
Engagers 

High          
Engagers           

    Freq. % Freq.  %  Freq. %   
Asia / Pacific 14 10.8% 7 16.3% 17 13.6% 
Europe 15 11.5% 2 4.6% 8 6.4% 
Latin America  11 8.5% 3 7.0% 10 8.0% 
Middle East /              
North Africa 5 3.8% 2 4.6% 5 4.0% 

North America 76 58.5% 23 53.5% 70 56.0% 

Sub-Saharan Africa 9 6.9% 6 14.0% 15 12.0% 

  N 130   43   125     
 

Table 29 

Descriptives for MOOC 1 Clusters on Consolidated Geographic Location 
 

    

Low             
Engagers   

Moderate 
Engagers 

High          
Engagers           

    Freq. % Freq.  %  Freq. %   
Americas 87 66.9% 26 60.5% 80 64.0% 
Asia / Pacific 14 10.8% 7 16.3% 17 13.6% 
Middle East / Africa 14 10.8% 8 18.6% 20 16.0% 
Europe 15 11.5% 2 4.6% 8 6.4% 

  N 130   43   125     
 

After consolidation, the Chi-Square test was run. The null hypothesis (H0) was 

that there were no significant differences between the cluster groups across the 

geographic location categories. The p-value was greater than the chosen significance 

level of a = .05. No association was found between cluster group and geographic location 

Χ2(6, N = 298) = 5.9, p = .432.  
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RQ 2: MOOC 2 Cluster Differences on Geographic Location  

 To find cluster differences across the categorical (geographic location) variable, 

Chi-Square analysis was conducted after missing data cases were removed. “Low 

Engagers” (N = 425) had 271 cases removed (new N = 154). “Moderate Engagers” (N = 

325) had 177 cases removed (new N = 148). “High Engagers” (N = 941) had 162 cases 

removed (new N = 779). Again, assumptions checking for the Chi-Square analysis 

revealed greater than 20% cells with expected counts less than 5, as shown in Table 30.  

 

Table 30 

Descriptives for MOOC 2 Clusters on Geographic Location 
 

    

Low 
Engagers            

Moderate 
Engagers 

High         
Engagers           

    Freq. % Freq.  %  Freq. %   

Asia / Pacific 13 8.4% 4 2.7% 31 4.0% 
Europe 10 6.5% 4 2.7% 26 3.3% 
Latin America  17 11.0% 6 4.0% 50 6.4% 
Middle East / 
North Africa 0 0.0% 4 2.7% 14 1.8% 

North America 109 70.8% 128 86.5% 637 81.8% 
Sub-Saharan   
Africa 5 3.3% 2 1.4% 21 2.7% 

  N 154   148   779     
 

Thus, Geographic Location data were collapsed into four suitable categories as shown in 

Table 31. North America and Latin America were combined into “Americas,” and 

Middle East/North Africa was combined with Sub-Saharan Africa to make “Middle 

East/Africa.”  
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Table 31 

Descriptives for MOOC 2 Clusters on Consolidated Geographic Location 
 

    
Low     

Engagers             
Moderate 
Engagers 

High         
Engagers           

    Freq. % Freq.  %  Freq. %   

Americas 126 81.8% 134 90.5% 687 88.2% 
Asia / Pacific 13 8.4% 4 2.7% 31 4.0% 

Middle East / Africa 5 3.3% 6 4.1% 35 4.5% 
Europe 10 6.5% 4 2.7% 26 3.3% 

  N 154   148   779     
 
 

After consolidation, the Chi-Square test was run. The null hypothesis (H0) was 

that there were no significant differences between the cluster groups across the 

geographic location categories. The p-value was greater than the chosen significance 

level of a = .05. No association was found between cluster group and geographic location 

Χ2(6, N = 1081) = 12.104, p = 0.060).  

RQ 2: MOOC 1 Cluster Differences on Intent to Participate 

 To find cluster differences across the categorical (intent to participate) variable 

(shown in Table 32), Chi-Square analysis was conducted after missing data cases were 

removed. “Low Engagers” (N = 222) had 92 cases removed (new N = 130). “Moderate 

Engagers” (N = 74) had 31 cases removed (new N = 43). “High Engagers” (N = 161) had 

36 cases removed (new N = 125).  
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Table 32 

Descriptives for MOOC 1 Clusters on Intent to Participate 
 

    
Low            

Engagers   
Moderate 
Engagers 

High      
Engagers           

    Freq. % Freq.  %  Freq. %   
Drop-In 13 10.0% 3 7.0% 7 5.6% 
Passive Participant 54 41.5% 20 46.5% 43 34.4% 
Active Participant 48 37.0% 20 46.5% 64 51.2% 
Observer 15 11.5% 0 0.0% 11 8.8% 

  N 130   43   125     
 

Assumptions were met, and the Chi-Square analysis was run. The null hypothesis 

(H0) was that there were no significant differences between the cluster groups across the 

intent categories. No association was found between cluster group and intent to 

participate Χ2(6, N = 298) = 11.1, p = .087).  

RQ 2 MOOC 2 Cluster Differences on Intent to Participate 

 To find cluster differences across the categorical (intent to participate) variable, 

Chi-Square analysis was conducted after missing data cases were removed. Table 33 

shows “Low Engagers” (N = 425) had 270 cases removed (new N = 155). “Moderate 

Engagers” (N = 325) had 181 cases removed (new N = 144). “High Engagers” (N = 941) 

had 402 cases removed (new N = 539). 

Table 33 

Descriptives for MOOC 2 Clusters on Intent to Participate 
 

    
Low            

Engagers   
Moderate 
Engagers 

High      
Engagers           

    Freq. % Freq.  %  Freq. %  
Drop-In 8 5.2% 4 2.8% 29 5.4% 
Passive Participant 71 45.8% 56 38.9% 210 39.0% 
Active Participant 66 42.6% 81 56.3% 281 52.1% 
Observer 10 6.5% 3 2.1% 19 3.5% 

  N 155   144   539     
 



125 

 

Assumptions were met, and the Chi-Square analysis was run. The null hypothesis 

(H0) was that there were no significant differences between the cluster groups across the 

intent categories. The p-value was greater than the chosen significance level of a = .05. 

No association was found between cluster group and intent to participate Χ2(6, N = 838) 

= 10.214, p = 0.116. 

RQ 2: Employment in Aviation Industry  

 The survey item Employment in Aviation Industry had considerable missing data 

for both MOOCS. As shown in Table 34, within MOOC 1, Low and Moderate Engagers 

had 100% missing data on employment. High Engagers had 64% missing data on 

employment. Of those who responded to this question, 48% said “yes” and 52% said 

“no” to being employed in the aviation industry. As shown in Table 35, within MOOC 2, 

Low and Moderate Engagers had 99% and 96% missing data. High Engagers had only 

36% missing data with 37 % of respondents answering “yes” and 63% answering “no.”   

 
Table 34 
Descriptives for MOOC 1 Clusters on Employment in Aviation Industry 
 

    YES NO 
 N Freq. % Freq. % 

Low Engagers                      0 0 0.0% 0 0.0% 
Moderate Engagers                                  0 0 0.0% 0 0.0% 

High Engagers 58 28 48.3% 30 51.7% 
 

Table 35  

Descriptives for MOOC 2 Clusters on Employment in Aviation Industry 
 

    YES NO 
 N Freq. % Freq. % 

Low Engagers 2 0 0.0% 2 100.0% 
Moderate Engagers 12 4 33.3% 8 66.7% 

High Engagers 607 226 37.2% 381 62.8% 
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RQ 2: Cluster Descriptives on Activity and Quiz Scores 

 Data were complete for the following RQ2 Variables: Days of Activity, Total 

Quiz Score, and Course Completion. Table 36 and Table 37 show descriptive statistics 

for MOOC 1 and MOOC 2 clusters on Days of Activity and Total Quiz Score.    

 

Table 36 

Descriptive Statistics for MOOC 1 Clusters on Days of Activity, Total Quiz Score 
 

    N Mean Median SD Min  Max 

Days of 
Activity 

Low Engagers 222 3.23 1.00 3.325 1 14 

Moderate Engagers 74 4.16 2.00 3.811 1 14 

High Engagers 161 9.21 11.00 4.294 1 14 

Total 
Quiz 
Score 

Low Engagers 222 1.58 0.00 11.718 0 100 

Moderate Engagers 74 4.59 0.00 19.458 0 100 

High Engagers 161 163.7 190.00 50.888 0 200 
Note. N = Number of respondents, SD = Standard Deviation, Min = Minimum, 
Max = Maximum. 

 
 
Table 37 

Descriptive Statistics for MOOC 2 Clusters on Days of Activity, Total Quiz Score 
 

    N Mean Median SD Min  Max 

Days of 
Activity 

Low Engagers 425 5.66 5.00 3.50 2 14 

Moderate Engagers 325 7.58 8.00 3.80 1 14 

High Engagers 941 9.86 10.00 3.29 1 14 

Total 
Quiz 
Score 

Low Engagers 425 6.35 0.00 22.30 0 100 

Moderate Engagers 325 86.15 100.00 32.14 0 200 

High Engagers 941 190.33 200.00 20.30 0 200 

Note. N = Number of respondents, SD = Standard Deviation, Min = Minimum, 
Max = Maximum. 
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RQ 2: MOOC 1 Cluster Differences on Days of Activity 

 To find cluster differences across continuous variable of days of activity (1-14), a 

one-way ANOVA was conducted. Independence assumption was met. Normality 

assumption was not necessary due to sample size greater than 25. To check for 

homogeneity of variance assumption, Levene’s test was examined. The assumption for 

homogeneity of variance was not met. Welch’s statistic was used. Significant differences 

were found between clusters and days of activity (F (2,454) = 123.058, p < .001 

Fw(2,454) = 110.293, p < .001). 

 Post-hoc comparisons using the Games Howell test were carried out. There were 

significant differences between High and Moderate Engagers (p < .001) with High 

Engagers active on average 5.049 days more than Moderate Engagers. There were 

significant differences between High and Low Engagers (p < .001) with High Engagers 

active on average 5.986 days more than Low Engagers. There were no significant 

differences between Moderate Engagers and Low Engagers (p = .147) with Moderate 

Engagers active on average .937 days more than Low Engagers. 

RQ 2: MOOC 2 Cluster Differences on Days of Activity 

 To find cluster differences across continuous variable of days of activity (1-14), a 

one-way ANOVA was conducted. Assumptions for checking normality (if the dependent 

variable is normally distributed) involved determining the standardized residuals of the 

continuous variable and then plotting the residuals on a histogram to evaluate the extent 

to which they displayed a normal shape. Since the sample sizes in this analysis are all N ≥ 

25, the normality assumption check is not needed due to the central limit theorem. To 

check for homogeneity of variance, the Levene’s test was examined. The assumption for 
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homogeneity of variance was not met. Welch’s statistic was used. Significant differences 

were found between clusters and days of activity (F(2,1688) = 227.472, p < .001 

Fw(2,1688) = 229.335, p < .001).  

 Post-hoc comparisons using the Games Howell test were carried out. There were 

significant differences between High and Moderate Engagers (p < .001) with High 

Engagers active on average 2.28 more days than Moderate Engagers. There were 

significant differences between High and Low Engagers (p < .001) with High Engagers 

active on average 4.19 more days than Low Engagers. There were significant differences 

between Moderate and Low Engagers (p < .001) with Moderate Engagers active on 

average 1.91 days more than Low Engagers. 

RQ 2: MOOC 1 Cluster Differences on Total Quiz Score 

 To find cluster differences across continuous variable of total quiz score (0 to 

200), a one-way ANOVA was conducted. An assumption check for normality was not 

necessary due to sample sizes greater than 25. For the homogeneity of variance 

assumption, Levene’s test was significant, thus the assumption of equal variances was not 

met. The data showed unequal variances and unequal sample sizes. Because the data 

could not meet normality or homogeneity of variances assumptions, a non-parametric test 

was required. ANOVA was thus interpreted using the Welch statistic and Games-Howell 

post-hoc test. Significant differences were found between Cluster membership and Total 

Quiz score (F(2,454) = 1304.720, p < .001, Fw(2,454) = 783.920, p < .001). 

 Post-hoc comparisons using the Games Howell test were carried out. There were 

significant differences (p < .001) between High Engagers and Moderate Engagers, with 

High Engagers achieving total quiz scores on average 159.07 points higher than 



129 

 

Moderate Engagers. There were significant differences (p < .001) between High and Low 

Engagers with High Engagers achieving total quiz scores on average 162.088 points 

higher than Low Engagers. There were no significant differences (p = .421) between 

Moderate and Low Engagers, with Moderate Engagers achieving total quiz scores on 

average 3.01 points higher than Low Engagers. 

RQ 2: MOOC 2 Cluster Differences on Total Quiz Score 

 To find cluster differences across continuous variable of total quiz score (0 to 

200), a one-way ANOVA was conducted. Assumptions for independence and normality 

were met (N ≥ 25). Assumptions for homogeneity of variance were not met. Welch’s 

statistic was used. Significant differences were found between clusters and Total Quiz 

Score (F(2,1688) = 9488.058, p < .001, Fw(2,1688) = 10931.434, p < .001). 

 Post-hoc comparisons using the Games Howell test were carried out. There were 

significant differences between High and Moderate Engagers (p < .001) with High 

Engagers achieving total quiz scores on average 183.976 points higher than Moderate 

Engagers. There were significant differences between High and Low Engagers (p < .001) 

with High Engagers achieving total quiz scores on average 104.176 points higher than 

Low Engagers. There were significant differences between Moderate and Low Engagers 

(p < .001) with Moderate Engagers achieving total quiz scores on average 79.801 points 

higher than Low Engagers. 

RQ 2: MOOC 1 Cluster Differences on Course Completion 

 Frequency of MOOC 1 course completion by cluster is shown in Table 38. To 

find cluster differences across the categorical variable: Chi-Square analysis was 

conducted. The null hypothesis (H0) was that there were no significant differences 
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between the cluster groups and course completion. The p-value was less than the chosen 

significance level of a = .05, thus the null hypotheses was rejected. An association was 

found between cluster group and course completion Χ2(2, N = 457) = 238.371, p < .001.   

 

Table 38 

MOOC 1 Frequency of Course Completion by Cluster 
 

      N Frequency % 
Low Engagers 222 0 0% 
Moderate Engagers 74 0 0% 
High Engagers 161 101 62.7% 
Note. N = Number of respondents, % = Percentage  

 

To determine the strength of this association, because the table was greater than 2x2 

whereby Phi would be used, Cramer’s V (an extension of Phi φ) was evaluated (Hair et 

al., 2015; Liebetrau, 1983). Effect sizes were modified based on df by dividing Phi φ by 

the square root of df. The effect size was large (.722) (Cohen, 1988). 

 In a post-hoc analysis, cells in contingency table (Table 39) were examined for 

adjusted standardized residuals higher than an absolute value of 1.96 which correspond to 

z-score values with alpha = .05 (Agresti, 2002). Low and Moderate Engager clusters 

show a statistically significantly higher than expected proportion of students did not 

complete the course. The High Engager cluster showed a statistically significantly higher 

than expected proportion of students did complete the course. 
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Table 39  
 
Differences in MOOC 1 Clusters for Course Completion 
 

   
Did Not 

Complete Complete Cluster 
N 

Low       
Engagers 

Observed Count 222 0 222 
Expected Count 172.9 49.1 222 
Adj. Std. Residual 11.1 -11.1 

 
     

Moderate    
Engagers 

Observed Count 74 0 74 
Expected Count 57.6 16.4 74 
Adj. Std. Residual 5.0 -5.0 

 
     

High 
Engagers 

Observed Count 60 101 161 
Expected Count 125.4 35.6 161 
Adj. Std. Residual -15.4 15.4 

 
     
  Completion Total 356 101 457 

 
RQ 2: MOOC 2 Cluster Differences on Course Completion 

 Frequency of MOOC 2 course completion by cluster is shown in Table 40. To 

find cluster differences across the categorical variable, Chi-Square analysis was 

conducted. Assumptions were met. The null hypothesis (H0) was that there were no 

significant differences between the cluster groups and course completion. The p-value 

was less than the chosen significance level of a = .05, thus the null hypothesis was 

rejected. An association was found between cluster group and course completion (Χ2(2, N 

= 1691) = 1106.891, p < .001). To determine the strength of this association, Cramer’s V 

was examined (Hair et al., 2015). The effect size was large (.809). 

Table 40 

MOOC 2 Frequency of Course Completion by Cluster 
 

  N Frequency % 
Low Engagers 425 0 0% 
Moderate Engagers 325 1 0.3% 
High Engagers 941 764 81.2% 
Note. N = Number of respondents, % = Percentage 

 



132 

 

 In a post-hoc analysis, cells in contingency table (Table 41) were examined for 

adjusted standardized residuals higher than an absolute value of 1.96. Low and Moderate 

Engagers showed a statistically significantly higher than expected proportion of students 

did not complete the course. The High Engagers cluster showed a statistically 

significantly higher than expected proportion of students did complete the course. 

 

Table 41  

Differences in MOOC 2 Clusters for Course Completion 
 

   Did Not 
Complete Complete Cluster 

N 

Low     
Engagers 

Observed Count 425 0 425 

Expected Count 232.7 192.3 425 

Adj. Std. Residual 21.7 -21.7  
     

Moderate     
Engagers 

Observed Count 324 1 325 

Expected Count 178.0 147.0 325 

Adj. Std. Residual 18.1 -18.1  
     

High         
Engagers 

Observed Count 177 764 941 

Expected Count 515.3 425.7 941 

Adj. Std. Residual -33.3 33.3  
     

  Completion Total 926 765 1691 
 
 

Summary 

 The analytical results reported in this chapter include the two-step cluster analysis 

of engagement variables to determine engagement subpopulation and subsequent analysis 

of survey data and performance (Chi-Square and ANOVA) to determine attributes of the 

subpopulations. The cluster analyses revealed three significantly different subgroups for 

each MOOC. Engagement patterns were similar between MOOCs for the most and least 
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engaged groups, but differences were noted in the middle group; MOOC 1’s middle 

group had a broader interest in optional content (both in discussions and videos), whereas 

MOOC 2’s middle group had a narrower interest in optional discussions. Mandatory 

items (Mandatory Discussion or Quizzes) were the best predictors in classifying 

subgroups for both MOOCs. In the subsequent analyses to determine engagement 

subgroup attributes and differences, significant associations were found between 

subgroups and education levels, days of activity, total quiz scores, and course completion. 

The next chapter discusses the engagement subgroups in further detail with attention to 

existing literature and empirical data and provides theoretical and practical implications. 

Finally, limitations and recommendations for future research are presented. 
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

 The purpose of this study was to expand the current understanding of learner 

engagement in aviation-related Massive Open Online Courses (MOOCs). The method 

employed was cluster analysis using theory and literature supported variables. There were 

two research questions that guided this study. The first question asked whether distinct 

subgroups of students exist in an aviation-related MOOC, based on engagement in course 

discussions, videos, and assessments. The second question explored the differences 

among engagement subgroups, based on demographics, days of participation in the 

course, and achievement. A summary and discussion of the results is presented for each 

research question. Next, conclusions, including theoretical and practical implications, are 

discussed. Finally, limitations and recommendations for future research and practice are 

presented. 

Summary and Discussion of RQ 1 Results  

RQ 1 asked whether distinct subgroups of students exist in an aviation-related 

MOOC, based on engagement in course discussions, videos, and assessments. Three 

distinct subgroups of students with statistically significant differences in engagement 

variables were found for two aviation-related MOOCs. Although the MOOCs were 

essentially the same course, there were slight differences in content and arrangement of 

the content, necessitating separate analysis.  

MOOC 1 Clusters 

 For the smaller MOOC, (N = 457) three subgroups of students were found: Low 

Engagers (N = 222), Moderate Engagers (N = 74), and High Engagers (N = 161). The 
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most important predictor for determining cluster assignment was Mandatory Discussions, 

followed by Quiz 1 Attempts, Quiz 2 Attempts, Webinar 1 Views, and finally, Optional 

Discussion Views.  

 Low Engagers. This cluster (N = 222) represented 48.6% of the cases analyzed 

for MOOC 1. None of the students in this cluster completed the course. This cluster was 

designated Low Engagers because it was below the mean on all engagement variables, 

and its students had the lowest mean days of activity (three days) of all the clusters.  

 Moderate Engagers. This cluster (N = 74) represented 16.2% of the cases 

analyzed for MOOC 1. Like the Low Engagers, none of the students in this cluster 

completed the course. Moderate Engagers were below the overall sample mean of 

Mandatory Discussion Posts and Quiz 1 and 2 Attempts, which is consistent with the 

finding that the group had no course completions. This group showed moderate 

engagement in optional content. Optional Discussion Views were slightly above the 

mean, and Webinar Views were well above the mean. Students in this cluster were active 

on average only four days, which was slightly above the mean of Low Engagers (three 

days) but well below the mean of the High Engagers (nine days). 

 High Engagers. This cluster (N = 161) represented 35.2% of the cases analyzed 

for MOOC 1 and had a completion rate of 62%. Students in this cluster were designated 

High Engagers because they were highest on all mandatory engagement variables, but 

were not the highest on one optional variable, Webinar Views (Moderate Engagers had 

more Webinar Views). This group had the highest mean days of activity (9 days) and the 

only course completers (N = 101). 
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MOOC 2 Clusters  

 For the larger MOOC (N = 1691), three subgroups of students were found: Low 

Engagers (N = 425), Moderate Engagers (N = 325), and High Engagers (N = 941). The 

most important predictor for determining cluster assignment was Quiz 2 Attempts, 

followed by Mandatory Discussion Posts, Quiz 1 Attempts, Webinar Views, and finally, 

Optional Discussion Views. Similar to MOOC 1, mandatory content items were the best 

predictors for group membership. 

 Low Engagers. This cluster (N = 425) represented 25.1% of the cases analyzed 

for MOOC 2. Low Engagers had no course completers.  Low Engagers had the lowest 

means on all engagement variables as well as days of activity (five days).  

 Moderate Engagers. This cluster (N = 325) represented 19.2% of the cases 

analyzed for MOOC 2 and had 324 (99.7%) students who did not complete the course 

and 1 (.3%) student complete the course, which was almost identical to MOOC 1’s 

middle group. Moderate Engagers were below the mean on Mandatory Discussion Posts, 

above the mean on Quiz 1 Attempts, and well below the mean on Quiz 2 Attempts. 

Similar to MOOC 1, this group showed interest in optional content, but it was isolated to 

Webinar Views where they were close to mean. Differing slightly from MOOC 1, this 

group was below the mean on Optional Discussion Views. Moderate Engagers had a 

mean of seven days of activity. 

 High Engagers. This cluster (N = 941) represented 55.6% of the cases analyzed 

for MOOC 2 and had 764 (81.2%) students finish the course. High Engagers were above 

the mean on Quiz 1 Attempts, well above the mean on Quiz 2 Attempts and Mandatory 

Discussion Posts, and above the mean on Webinar Views and Optional Discussion 
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Views. MOOC 2’s High Engagers were similar to MOOC 1’s High Engagers on 

everything except they were higher above the mean on optional content, not just 

mandatory content. Students in this cluster had a mean of almost 10 days of activity.   

 In MOOC 1, the progressively higher number of mandatory discussion posts and 

quiz attempts from the lowest engagement group to the highest engagement group 

matches what is reported in the literature regarding graded or mandatory content as a 

differentiator among engagement clusters (Kovanović et al., 2019). For optional content, 

which in this study consisted of video and optional discussion views, it was notable that 

for both MOOCs, the moderately engaged cluster was differentiated from the low 

engaged cluster by an optional content variable. In MOOC 1, the moderate group was 

above mean in viewing both optional discussions and video (Webinar) and even had 

higher webinar views than the highest engaged cluster. In MOOC 2, the moderate group 

was similarly differentiated from the lowest engaged group in optional content but was 

only interested in the optional discussion content. Consistent with what is already known 

about video content consumption and engagement, the highest engagement clusters in 

both MOOCs had high levels of video views. Anderson et al.’s (2014) engagement study 

noted higher video content activity was a characteristic of those who had high 

achievement, while Karpicke and Roediger (2008) and Karpicke and Blunt (2011) also 

reported similar findings where higher video consumption was correlated with positive 

learning performance (Tseng et al., 2016). This study differed from such findings only in 

MOOC 1 where the highest engaged cluster, which had the highest course completions, 

did not have the highest mean for viewing video content. This may be due to the unique 

nature of video content in that it was an optional Webinar in this study, where in other 
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studies the variable may have used video content that was mandatory. In the larger 

sample of MOOC 2, however, the results for video content viewing were similar to 

findings in the literature. In consideration of the differentiation between low and 

moderately engaged clusters, as is evident in responses for intent to participate, student 

motivations seemed to vary from group to group which is a common finding in the 

literature where intent or motivation is reported to affect attention given to optional 

content (Kovanović et al., 2015; Wise et al., 2013).  

 In general, the investigation into what subgroups existed in two aviation-related 

MOOCs revealed subgroup differences that were less specific than some other reports in 

the engagement clustering literature. While this study uncovered three distinct subgroups, 

Kizilcec et al. (2013) found four. In Kizilcec et al.’s (2013) study, a “Completing” group, 

known for completing most of the assignments and attempting all the assignments, was 

similar to the High Engager clusters. Likewise, the Low Engager clusters in this study 

matched Kizilcec et al.’s (2013) “Sampling” group which may have only watched a 

single video or looked through course material once the class was well under way. Where 

this study could not differentiate in quite the granularity that Kizilec et al. (2013) could, 

was in finding any group other than a single middle group occupied by students 

moderately engaged in optional content. The single moderate groups found in both 

MOOCs of this study were similar to the “Auditing” group of the Kizilcec et al. (2013) 

study. The absence of a second distinct middle group similar to Kizilcec et al.’s (2013) 

“Disengaging group” made of students who started out engaged in assessments then 

stopped a third of the way into the course, may possibly be due to the short duration of 

the aviation-related MOOCs, at two weeks, in contrast to Kizilcec et al.’s (2013) 



139 

 

approximately nine weeks. Also, if the engagement timeline used for analysis had been 

expanded to dates beyond the end of course date, simulating a longer course, the 

subgroup structure may have reflected the presence of another group that was only 

interested in content on a more relaxed or extended timeline. 

 Delimited as the study was, the subgroup structures and characteristics of this 

study most closely resemble that of Kovanović et al.’s (2019) study (N = 23, 648) which, 

although focused on technology use, employed similar variables and found three similar 

subgroups. The majority of students (67%) in Kovanović et al.’s (2019) study were 

classified as “Disengaged users” and had low course resource engagement with no 

discussion board activity. This group corresponded to the Low Engagers group in this 

study (48.6% in MOOC 1 and 25.1% in MOOC 2). Kovanović et al.’s (2019) “Strategic 

users” accounted for the lowest proportion of students (15%) and had average course 

resource engagement with almost no discussion activity. This group corresponded to 

Moderate Engagers in MOOC 1 (16.2%) and Moderate Engagers (19.2%) in MOOC 2. 

Kovanović et al.’s (2019) “Engaged user” group (18%) had high course resource 

engagement and used all of the course resources. This group corresponded to the High 

Engagers in MOOC 1 (35.2%) and in MOOC 2 (55.6%).  

 While the MOOC 1 subgroups reflected similar results to Kovanović et al.’s 

(2019) groups with respect to the ordering in size of the three clusters, the proportions 

were not similar. The Kovanović et al. (2019) study had Disengaged Users at 67%, 

Strategic Users at 15%, and Engaged Users at 18%, where the present study had Low 

Engagers at 48.6%, Moderate Engagers at 16.2%, and High Engagers at 35.2%. Instead 

of finding Kovanović et al.’s (2019) almost-even proportions between Strategic Users 
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and Engaged Users, MOOC 1’s Moderate Engager group was a little under half the size 

of the High Engager group. In MOOC 2, there were even more notable differences found 

in that the High Engager group was the largest, when based on the literature, the Low 

Engager group was expected to be the largest. MOOC 2’s High Engager (55.6%) group 

was unusual in that it was more than twice the size of the Low Engager (25.1%) and 

Moderate Engager (19.2%) groups. This may be due to the marketing efforts targeting a 

population of students already involved in the host-university. Despite the artificial 

numbering of the MOOCs in this study (“MOOC 1” and “MOOC 2”) ordered in 

increasing size, the larger MOOC 2 occurred first. While both classes were highly 

marketed, the first offering potentially attracted many students who were already in the 

host university’s distribution lists. Since the marketing targeted presumably enthusiastic 

potential students who were already in the marketing audience of the university, it is 

possible that the MOOC that occurred first (MOOC 2) depleted the population of 

potential students and at the same time gathered a large portion of highly motivated 

students in its first offering. Many of these students ended up forming a 

disproportionately large High Engager group. This disproportionately large group was 

not found in the MOOC that occurred later in the year (MOOC 1) because this MOOC 

experienced a relatively smaller registration demand as many prospective students in the 

marketing distribution potentially had already attended the first offering of the MOOC.  

Additionally, the time period between these two MOOCs coincided with much business 

growth in the sUAS industry (FAA, 2019); other training and education providers may 

have entered the market and depleted some of the population of students. 

Focus on Middle Groups  
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 As described previously, learning more about the less-engaged middle group of 

students was an important focus of this study. The middle cluster in the first MOOC 

stayed active for almost one quarter of the course duration and was significantly distinct 

from other clusters in all engagement variables except for Mandatory Discussion Posts 

and Quiz 1 (where it was not significantly different from the Low Engagers, but it was 

significantly different from the High Engagers). The Moderate Engager group was mostly 

concerned with optional content (webinars and optional discussions). This group 

surpassed even the High Engagers on Webinar Views (having on average 1.18 more 

Webinar Views than the High Engagers (p < .001)). Although not as high as the High 

Engagers, the middle cluster logged significantly more (p = .002) activity than the Low 

Engagers group (1.626 more views) in the Optional Discussion variable, solidifying its 

characterization as being moderately engaged in optional content. Similarly, MOOC 2’s 

middle cluster stayed active for the same period of time (almost a quarter of the course) 

and was significantly distinct from other clusters in all engagement variables except Quiz 

1 (where it failed to be significantly different from the Low Engagers). Instead of being 

focused on optional webinars, however, this group was more focused on optional 

discussions, logging an activity level that was much closer to the level of High Engagers. 

The gap between the middle and high group was much closer in this variable than it had 

been in MOOC 1. While in MOOC 1 the High Engager group had on average 1.594 more 

optional discussion views (p = .005) than the Moderate Engager group; in MOOC 2 the 

High Engager group had only .633 more Optional Discussion Views (p < .001).  

Potentially due to the absence of the extrinsic reward of a certificate, or the short 

duration of the MOOCs, this study did not find a unique cluster of the type of strategic 
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engagers which other studies have found. Some descriptions of strategic engagers from 

other studies carry the negative connotation that such subgroups only engage strategically 

in just what earns them a certificate. Although even the mere record of completion that 

this course offered may have been enough to provoke this type of strategic behavior in 

the High Engager groups, another argument is that behaviors may be attributed to 

individual goals or to personal preferences for the content offered. Without the extrinsic 

reward of a certificate, intrinsic motivations may be of greater influence, and the 

observed activity may provide clearer links to the quality of course content. The moderate 

clusters in both MOOCs had only one student complete the course, thus course designers 

may be able to interpret engagement in an activity as more likely associated with the 

level of stimulation or relevance of content delivered at a given time.  

Summary and Discussion of RQ 2 Results  

 The second RQ explored differences among engagement subgroups based on 

demographics, days of participation in the course, and achievement. Demographic 

variables on age, education level, geographic location, and intent to participate were 

collected in pre-course surveys. One question on employment in the aviation industry 

was collected in a post-course survey, but due to low response rate, the cluster differences 

on this question were not tested, only descriptives were reported. In MOOC 1, Low and 

Moderate Engagers had 100% missing data on employment. High Engagers had 64% 

missing data on employment. Of the High Engagers who responded to this question (N = 

58), 48% said “yes”, and 52% said “no” to being employed in the aviation industry. In 

MOOC 2, Low and Moderate Engagers had 99% and 96% missing data, respectively. 
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High Engagers had only 36% missing data, and of these responders (N = 607), 37 % of 

respondents answered “yes”, and 63% answered “no.”  

Age. No significant associations were found between cluster membership and age 

for either MOOC. For all clusters of MOOC 1, the smallest percentage of students were 

found in the youngest (13-24 years old) and oldest (55+) categories. MOOC 1 clusters all 

showed the largest percentage of students in the age category 25-34 years old. Similar to 

MOOC 1, the smallest percentages of students were found in the younger two categories 

(13-18 and 19-24 years old) or in the oldest category (65+). Unlike MOOC 1, however, 

the largest concentration of students were not found in the 25-34 age category, but rather 

in slightly older categories, which were different for each cluster.  

 Age results from this study are somewhat consistent with other results reported in 

the literature. Zhenghao et al.’s (2015) study of Coursera MOOC students (N ≈ 52,000) 

reported a median age of 41, and for this study, the median age group bin was 35 to 44 

(MOOC 1) and 45 to 55 (MOOC 2). Christiansen et al. (2013) found in their study of 

MOOCs (N = 34,779), 41.1 % of respondents were under 30, and 58.9% were over 30. 

For this study, exact comparisons could not be made due to age bins, but in MOOC 1, 

46.3% of students were under 35 years old, and 53.7% were over 35. In MOOC 2, 32.6% 

were under 35 years old, and 67.4% were over 35.  

 Although no significant associations between cluster membership and age were 

found, the descriptive results have face value in that they are relevant for targeting 

specific populations for marketers and course designers. For instance, if further study into 

this data revealed that older students were more engaged in webinars and younger 
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students were more engaged in discussion boards, then content and medium could be 

tailored to potentially increase engagement for both groups.  

Education. One significant association was found between cluster group and 

education in MOOC 2, with a small effect size (.120). A posthoc analysis showed Low 

Engagers had a higher proportion of students reporting some graduate education than 

what would be expected if there were no differences among the three clusters. 

Conversely, High Engagers showed a lower than expected proportion of students 

reporting some graduate education.  

 In terms of descriptive results in this study, almost 60% of students reported 

having a Bachelor’s degree or higher. Other MOOC studies in the literature report 

MOOC students have high levels of educational attainment as well. A large-scale study 

of Coursera MOOC students (N approximately 52,000) showed 79.4% of students have a 

Bachelor’s degree or higher, and EdX reported Harvard and MIT typical course 

registrants with 66% of registrants at the Bachelor’s and above level (Ho et al., 2014).   

 Since significant findings were reported for MOOC 2 education levels, 

particularly in the proportions of students with some graduate education, a discussion on 

descriptives in the upper levels follows. In Low Engagers, 13% of students reported 

having some graduate education, which was statistically significantly higher than 

expected, while in High Engagers, only 4% reported that level, which was lower than 

expected. To compare this higher level of education to Christiansen et al.’s (2013) 

finding that 44.2% students reported education beyond a Bachelor’s degree, it was 

necessary to combine descriptive results for the Some Graduate School level with the two 

levels above it (Master’s Degree and Ph.D., J.D., or M.D.). MOOC 2, overall, had 29.4% 
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of students reporting some graduate education or higher. Specific percentages for each 

cluster were 39% for Low Engagers, 33.1% for Moderate Engagers, and 26.8% for High 

Engagers. MOOC 2’s Low Engagers at 39% had the statistically higher than expected 

proportion of students reporting some graduate education or higher, and this cluster came 

the closest to the average Coursera study (N ≈ 52,000) participant education demographic 

(44.2%). From this comparison, one can see that all three clusters were below the 

percentage of users reporting higher education in the Coursera study and that the most 

engaged groups were lower in reported education levels than expected.  

 Although the significant association of cluster membership and education was 

small, just as with age, the descriptive findings on education and the comparison to other 

MOOCs have relevance in that they can be used for more informed marketing and course 

design decisions. For instance, the finding that more than expected highly educated 

students were present in the low engagement group may indicate those students were at 

that time also enrolled in graduate study and potentially too busy to engage more. Thus, 

designers may consider creating MOOCs which require less daily time commitment. 

Alternatively, the finding that more than expected highly educated students were present 

in the low engagement group may mean it takes a different kind of content to engage 

those users. Christensen et al.’s (2013) large-scale study of Coursera MOOC students (N 

approximately 52,000) reported that benefits from taking MOOCs are more frequently 

reported by students with lower socioeconomic status and lower education levels 

attained. While this study did not focus on socioeconomic status, the finding that group 

proportions were different than expected for users reporting some graduate education 
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may mean steps need to be taken in course design to ensure benefits of the course are 

experienced at the higher education levels as well lower ones. 

Geographic Location. No significant associations were found between cluster 

membership and the variable of geographic location for either MOOC. MOOC 1’s 

Cluster descriptives showed the highest proportion of students were from North America 

for all clusters (58.5%, 53.5%, 56%). The least reported country for all clusters was 

Middle East/North Africa (3.8%, 4.7%, 4.0%). For MOOC 2, again, the highest 

proportion of students were from North America (70.8%, 86.5%, 81.8%). In this MOOC 

however, the second highest country of origin reported was Latin America for all three 

clusters (11%, 4.1%, 6.4%).  

 While geographic region is often discussed in the literature from an achievement 

perspective, in this study, the perspective that is considered more relevant is the goal 

perspective. In a study on completers of Coursera MOOCs (N = 51,954), Zhenghao et al. 

(2015) found that benefits from taking MOOCs are more frequently reported by students 

from developing countries. Relating to the goal perspective, of the primary desired 

outcomes Coursera completers were surveyed about, 52% (called “Career Builders”) 

reported their primary goal was to improve their current job or find a new job, whereas 

only 28% (called “Education seekers”) cited an education benefit or an academic goal as 

their primary reason for enrolling (Zhenghao et al., 2015). While such a goal question 

was not within the scope of this study, the prominence of career-minded students in the 

large population of Coursera completers, coupled with the finding that career-benefits are 

more commonly reported from students of developing countries, makes a case for the 

relevance of the geographic variable in MOOCs 1 and 2 if the developers assume there 
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exists a similar proportion of students who desire career benefits. If one assumes that the 

aviation-related MOOCs in this study, as well as others offered in the future, are 

attracting students who need the aviation knowledge for improving their careers, then 

content can be better tailored to them based on which countries are showing specific 

engagement patterns. For instance, developers might analyze the data further to 

investigate why Latin American students took a solid interest in one MOOC but not the 

other.  

 Again, the MOOCs in this study did not offer a traditional certificate of 

completion but offered only a record of completion. This was done in an attempt to avoid 

confusing students who might think completing the MOOC would somehow earn them a 

sUAS certification that is regulated by the FAA. The absence of this extrinsic reward of a 

certificate could indicate that many people truly wanted or needed the information 

offered by the MOOC to help them with their daily job. In developing countries, where 

workplace training and education may be much less of an emphasis or not even a 

possibility, MOOCs may serve as a stop-gap. Although not every MOOC learner has 

specific goals for professional learning, many learners in professional MOOCs cite goals 

related to filling gaps in professional knowledge or conversing with other domain 

professionals (Milligan & Littlejohn, 2014). Since research shows that persistence and 

certificate attainment is found to be higher for international students than for Americans 

(Nesterko et al., 2013), investigating hypotheses about professional necessity may be 

worthwhile. Finer-grained analysis of aviation-related MOOCs on the geographic 

variable and how MOOC completers are using what they are learning may be a fruitful 

area of research. 
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Intent to Participate. No significant associations were found between cluster 

membership and the variable of Intent to Participate for either MOOC. For this survey 

item, students could indicate intent in one of four categories: Active: “Bring it on. If it’s 

in the course, I plan on doing it;” Passive: “I plan on completing the course but on my 

own schedule and without having to engage with other students or assignments;” Drop-

In: “I am looking to learn more about a specific topic within the course. Once I find it and 

learn it I will consider myself done with the course;” or Observer: “I just want to check 

the course out. Count on me to ‘surf’ the content, discussions, and videos, but don’t count 

on me to take any form of assessment.”  

 In MOOC 1, Moderate Engagers had an even split for the most common intent 

reported. Identical proportions of students reported they intended to be either Passive 

(46.5%) or Active (46.5%). For Low Engagers, the top categories were Passive (41.5%) 

followed by Active (36.9%), whereas for High Engagers the distribution was reversed, 

and the top category was Active (51.2%) followed by Passive (34.4%). In MOOC 1, for 

all clusters, the least-reported categories were Drop-ins and Observers.  

 For those who knew they would not complete the course on timeline, results 

showed the Low Engagers had the largest percentage of students with specific intents 

other than being passive or active. In other words, this is the group which most utilized 

the very specific categories designed to capture more information from those not 

intending to complete the course (Drop-In or Observer). In the Low Engagers cluster, 

21.5% chose either the Drop-In or Observer intent category, compared to 7% in Moderate 

Engagers and 14.3% High Engagers. It is possible that individuals responding in these 

categories truly registered so little activity consistent with their predetermined limited 
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interest that they ended up in the Low Engager group. It is also possible that had the 

course been longer than two weeks, or had the study not been delimited to the two week 

time period, students with these types of intents would have ended up in the Moderate 

Engager group having had more time to sample bits and pieces of the course. Finally, the 

wording of the options could have influenced some responses because the Passive 

category was broad enough to capture all who did not intend to complete the course and 

many may have selected this if they were unwilling or unsure about how to specify their 

intent any further. 

 Similar to MOOC 1, students in MOOC 2 most often chose Passive or Active 

intent categories. Low Engagers had a higher proportion of students choosing Passive, 

while Moderate and High Engagers had a higher proportion of students choosing the 

Active intent category. A closer examination of those who did not intend to complete the 

course on timeline again revealed the lowest cluster (Low Engagers) had the largest 

percentage of students with specific intents other than being Passive or Active. Of the 

Low Engagers, 11.7% chose either the Drop-In or Observer intent category, whereas this 

number was smaller for the Moderate and High Engagers at 4.9% and 8.9%, respectively. 

 Results for both MOOC showed the least engaged clusters using these special 

sampling type categories the most. Although one might hypothesize that those who 

intend to be drop-ins, with very specific learning goals, might end up in the moderately 

engaged cluster for both MOOCs; again, just as in MOOC 1, that was not the case. 

Instead those specific learning goals may have been isolated to one or two content items, 

or the time period during which engagement was measured did not allow for enough 

sampling from these students. As such, it is reasonable that some of those ended up in the 
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very bottom, least engaged cluster. Additionally, considering the finding that the 

predictor importance variables for cluster assignment ended up being mandatory 

discussions and quizzes, and given the time-bounded nature of those content items in 

counting toward course engagement, it also makes sense that these Drop-Ins would be 

more prevalent in the Low Engager clusters. 

Days of Activity. For both MOOCs, significant differences (p < .001) were found 

between clusters and days of activity which was limited to between 1 and 14 days during 

which the course was live. In MOOC 1, there were significant differences between 

Moderate and High Engagers and between Low Engagers and High Engagers. For 

MOOC 2, there were significant differences between Low and Moderate Engagers, 

Moderate and High Engagers, and Low and High Engagers. In all cases, the more highly 

engaged groups were active more days than the lower engaged groups. 

 Results of days of activity match what one might expect in that the most and least 

engaged groups have the most and least days of activity during the course, notably 

without days of activity as a clustering variable. Previous research found days of activity 

to be significantly associated with performance for a sample of all students in a particular 

MOOC, but found that, for those who passed the course, number of days active was not a 

significant predictor of their end-of-course performance. This finding was explained in 

part by the rationale that even students working at different speeds (some needing longer 

than others to work through the material) can finish with the same level of success 

(Kennedy et al., 2015). 

Total Quiz Score. For both MOOCs, significant differences (p < .001) were 

found between Cluster membership and Total Quiz score (calculated by taking the sum of 
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scores from Quiz 1 and Quiz 2). For MOOC 1, there were significant differences between 

Moderate and High Engagers and Low and High Engagers. For MOOC 2, there were 

significant differences between Low and Moderate Engagers, Moderate and High 

Engagers, and Low and High Engagers. Results of quiz score match what is expected 

based upon variable order of importance in predicting cluster membership. Since the quiz 

attempts variable was the most important predictor in MOOC 2 and the second most 

important in MOOC 1, it follows that a noticeable disparity would exist among the 

groups with the highest engagement cluster having the highest quiz scores and the middle 

engagement cluster having the next highest, and so on.  

Course Completion. For both MOOCs, significant associations were found 

between cluster group and course completion, with large effect sizes. In both MOOCs, 

the lower engaged clusters (Low and Moderate Engagers) showed a statistically 

significantly higher than expected proportion of students did not complete the course. 

Also, for both MOOCs, the highest engaged group showed a statistically significantly 

higher than expected proportion of students did complete the course. 

 Although course completion rate differences between clusters in both MOOCs 

were significant, they were not unexpected given the cluster descriptions and their order 

of engagement. Similar to the differences in the total quiz score, these results make sense 

given the first and second most influential predictor in the clustering solutions were quiz 

attempts, and quizzes were mandatory for completing the course. What was surprising 

however, was the difference for the larger MOOC compared to what is reported in the 

literature. In the literature, MOOC completion rates are reported to average around 7% 

(Jordan, 2014). MOOC 1’s completion rate was only slightly above that with 9.8% (101 
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out of 1032) of registrants completing the course. Surprisingly however, MOOC 2’s rate 

was well above the average, with 18.9% (765 of the initial 4,037) of registrants 

completing the course. The disparity between the two MOOCs in this study, again, may 

be attributed to MOOC 2 occurring first and depleting the pool of likely participants. 

However, why it had an above average completion rate warrants further investigation. It 

could be attributed to course length, which is reported by Jordan (2014) as having a 

significant negative correlation with course completion. From that we could hypothesize 

that a shorter course would have a higher proportion of students complete it compared to 

the proportion who would complete a longer course. It could also be due in part to the 

topic, being very vocational or practical. If practical or professional-focused courses are 

needed immediately for work, it could mean there are more students registered who will 

persist out of necessity. Thus, it is possible that higher MOOC completion rates may be 

attributed to course topics that are more practical or vocational (Auyeung, 2015).  

Conclusions on Results  

Three distinct subpopulations were discovered for both MOOCs in this study. The 

cluster results for each MOOC showed several similarities, with most and least engaged 

clusters very similar in nature to what is reported in the literature. In answering the call 

for more fine-grained research on non-completers, this study discovered a middle cluster 

in both MOOCs containing mostly non-completers who were different in several ways 

from the lowest engaged cluster, which was also full of non-completers. For both 

MOOCs, the moderately engaged cluster was differentiated from the lowest engaged 

cluster by an optional content variable. In MOOC 1, the moderate group was above mean 

in viewing both optional discussions and video (Webinar) and even had higher Webinar 
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views than the highest engaged cluster. In MOOC 2, the moderate group was similarly 

differentiated from the lowest engaged group in optional content but was only interested 

in the optional discussion content. The discovery of this middle subgroup allowed for a 

closer look at the MOOC’s less-engaged students, which was an important aim of the 

study in meeting the broader community’s call for research.  

Theoretical Implications  

 Moore’s (1997) theory of transactional distance and intrinsic and extrinsic 

motivation theories proved suitable supports to variable selection for this study. 

Engagement in discussion boards provided evidence for potential decreased transactional 

distance and increased feelings of social connectedness which may have related to 

increased persistence, performance, and positive experience in the course (Falloon, 

2011). Consistent with self-determination theory (SDT; Ryan & Deci, 2000), this study 

also found evidence for social connectedness as relevant to engagement. Assuming 

students in the more engaged groups were bolstered in feelings of competence and 

relatedness by positive feedback and interaction from each other or an instructor (Deci et 

al., 1991) these students may have experienced a resulting increased determination to 

engage and complete the course. Relative to Moore’s (1997) factors of structure and 

autonomy, this study found engagement variables that represented mandatory content to 

be the most important predictors in subgroup membership, and the variables reflecting 

optional content most differentiated the middle subgroups from the others. 

Practical Implications  

  Clow (2012) argues a successful learning analytics cycle has four key steps which 

include having learners, generating data, producing metrics, analytics, or visualizations, 
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and most importantly, “closing the loop” by delivering interventions back to learners (p. 

134). While most archival research may be too late for useful interventions to reach the 

students who generated the data, it still counts as “closing the loop” if analytics are used 

to recommend changes to help future students (Clow, 2012).  

 The way in which clustering variables in this study differentiated the middle 

clusters (e.g., interest shown in webinars and in optional discussions) offers an immediate 

starting point for course instructors to discuss why this specific content was relevant to 

non-completers. Course instructors can consider adding more of this type of content and 

analyzing future courses to optimize these facets. Additionally, the findings on age 

demographics and unexpected education levels offer a starting point for more analysis on 

why MOOC 2 had unexpected proportions of students with some graduate school in the 

lowest and highest clusters. 

 This study leveraged learning analytics through analysis of extremely basic data 

traces, and a resulting methodological implication is that more advanced data traces could 

be analyzed if the capability were contracted with the host LMS platform. This would 

allow for analysis of MOOC video watching without the need for proxies. Unlike the 

static data traces from course content which is read by the student, data traces for video 

content have the potential to show in-depth dynamic interaction of the student and the 

content. Based on the capability of the analytics package offered by the LMS, video 

skips, pauses, fast-forward or backward seeks are potentially information-rich data traces 

which can be analyzed for information about how a student processed the content. 

 Studying video-watching patterns can be useful in re-designing videos or 

providing supplemental content to support students in their learning process. Since 
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frequent or long pauses have been noted as typical of weak students, such fine-grained 

video data could accurately guide course designers in content improvement.  

 For MOOC developers who wish to close the loop of the analytics cycle for 

classes before they are over, interventions such as early warning systems, like Purdue’s 

Course Signals system involving predictive analytics might help students to see when 

they are on track or off track (Pursel et al., 2016). Similar systems could be used for 

instructors or multiple course facilitators in order to make MOOC discussion boards more 

engaging when they seem to be lagging. While such interventions are most feasible in 

smaller traditional online courses where the ratio of instructor to student is optimal, they 

could be modified for MOOCs based on developer goals. For instance, it would not be 

practical for a MOOC instructor to elicit more engagement from many students in a 

MOOC, but learning analytics systems might instead be employed to identify some of 

Huang et al.’s (2014) “superposters” or “high-volume contributors” (p.1). Although no 

causal conclusions were drawn, Huang et al.’s (2014) study found that high-volume 

“superposters” tended to have contributions which added value and correlated positively 

with not just activity from others, but quality contributions from others. With this in 

mind, an intervention could be made to encourage more collaborative learning by 

promoting these computer-identified high-volume individuals to essentially serve as 

forum-moderators.  

 Also, course instructors may decide to interpret low engagement in specific 

discussion forums a result of a student perception that participation in those specific 

forums do not constitute a valuable learning activity (Kovanović et al., 2019). For MOOC 

course designers, considering whether or not this perception was in play for certain 
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clusters in both mandatory and optional discussion boards is a starting point. Depending 

on whether actual content posed for discussion is ineffective or whether a constructivist 

collaborative learning design is inappropriate, interventions aimed at optimizing the 

content or approach should be considered.  

Limitations  

As with any study, there are some specific limitations which must be noted. First, 

this study was limited in scope by topic, location, and time. Only data from one aviation-

related MOOC topic covering small unmanned aerial systems from one location and one 

year was used, which limited the generalizability of findings. Nevertheless, the discovery 

of subgroup types and engagement patterns that were similar to those reported in the 

literature lessens its negative impact on the significance for the aviation education 

domain. Before making generalizations within aviation education, it will be necessary to 

ensure the findings are robust across other course topics. Specifically, more analysis 

including other MOOC topic types (e.g., vocational topics related to a person’s everyday 

job versus traditional-academic topics, related to a person’s degree program or area of 

academic study) should be made. Additionally, the representativeness of the study sample 

should be confirmed by comparing basic student demographics with demographics from 

other aviation-related MOOCs. Currently this descriptive data is unavailable for 

comparison.  

A limitation related to time was the short duration of the MOOC at only two 

weeks and the delimitation of the study to only examine activity during the two weeks the 

course was live instead of after the course, when students still had access to course 

content. The extent to which this limitation impacted the study is not certain, but the use 
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of such a short time period may have contributed to the finding of only one middle 

subgroup rather than two groups as some studies have found. If so, this time limitation 

reduced the granularity of information produced on the moderately engaged non-

completers as there may have been an entirely distinct subgroup of students who accessed 

and benefitted from course content long after the course’s live period ended. 

Another limitation of this study was related to the exploratory approach and two-

step cluster analysis utilized. While exploratory research is common in domains where 

little research exists, the presence of a solid literature base for MOOC engagement may 

have sufficiently guided hypothesis testing. Regarding the cluster analysis methodology, 

Antonenko et al. (2012) warned that “clustering algorithms will sometimes find structure 

in a dataset, even where none exists” (p. 395), and Ferguson and Clow (2015) noted the 

relative ease with which “good storytelling” can emerge from data clusters even when 

cluster quality is not good. While an appropriate algorithm relative to data type was used, 

and cluster quality was confirmed in group mean and literature comparisons, these 

limitations were mitigated but not removed entirely. 

Finally, this study was limited by the nature of variables selected for analysis of 

the construct engagement. Measuring engagement with the number of posts written or 

viewed or by the number of times a student views a page where a video is linked is 

common and expedient, especially for learning analytics research using large data sets. 

Even so, the use of these variable types limits the depth of information available for 

analysis and reveals much less about engagement than what might have been revealed by 

using more fine-grained data such as length of post, quality of content in posts, or video 

viewing patterns including pauses, fast-forwards, and re-plays.  
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Recommendations  

Given the lack of research on aviation-related MOOCs, and the growing diverse 

student body of both aviation professionals and individuals outside the industry who may 

be considering entry, there are many opportunities for future research. The following 

recommendations from this study describe future directions that relate to the specific data 

analyzed and future directions that relate more broadly to the methodology and 

continuing research problem.  

Data recommendations. The primary data-specific recommendations from this 

study are summarized: 

• Future research should prioritize examination of optional content in both 

MOOCs. Follow-up content analysis should be done to evaluate whether 

any different subgroups or cluster engagement patterns emerge. One or 

two survey questions should be embedded in optional content to assess 

student goals (pre-activity survey) and satisfaction (post-activity survey) 

with specific optional content. 

• Given the unexpected engagement patterns from those reporting some 

graduate education, future researchers should consider altering course 

content to be more relevant to those who may already have formal 

education in the subject or may need a different type of content to 

increase engagement. In essence, content appropriateness should be 

considered for more than one education level.  

• The sUAS MOOCs analyzed in this study were only two weeks in 

duration, and the study was delimited to include data from those two 
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weeks. Future research should include one year beyond the end of the 

course date, when users still have access to course content, to determine if 

any additional subgroups of students exist. It is possible that extending 

the time frame would yield a second middle cluster of students who have 

an engagement pattern different than the current findings of a single 

middle cluster. 

• Future research may consider adjusting the marketing of the MOOC to 

specific demographics (e.g., age, country of origin, employment 

industry). If MOOC designers want to target different students for future 

MOOCs, a look at archival data in these categories across all MOOCs 

will be an important first step in that direction.  

• Finally, data in this study was not generalizable based on limited 

knowledge about representativeness of the sample to the population and 

based on the use of only one of several possible aviation-related MOOC 

course topics. Demographics for several aviation-related MOOCs will be 

necessary to better assess the representativeness of the sample. Similar 

studies on other aviation-related course topics should be conducted to 

assess the robustness of the subgroups detected. 

• Due to low survey response on post-course surveys, the question of 

employment in the aviation industry should be moved to the pre-course 

“Welcome Survey.”  
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Methodological recommendations. The broader methodological and research 

problem recommendations from this study are primarily for instructional designers and 

are summarized as follows: 

• The first methodological recommendation from this study broadly applies 

to any MOOC researchers. Education providers should ensure more 

detailed learning analytics packages from the host LMS are available for 

data collection. Many more valuable research questions can be answered 

if there is richer data available for video watching (e.g., pauses, skips, 

fast-forwards, rewinds, and re-visits).  

• Future research should be designed in a mixed-method format to include 

more than just quantitative analysis on simple summed measures. Such 

research should include more qualitative analysis on content and or length 

of discussion posts and views.  

• As engagement may be influenced by other factors and represented by 

other variables beyond those which were included in this analysis, future 

studies should consider exploring engagement through other theories and 

empirical evidence. Additionally, future research should examine how 

engagement is influenced by other demographic factors such as language 

barriers or by contextual factors such as course topic (traditional academic 

topic versus vocational topic). 

Conclusions  

Unlike traditional online courses, MOOCs offer students great flexibility in how 

they can interact in a course with other learners and in how they can consume course 
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content, all of which result in varied engagement patterns among students. Prior to this 

study, very little was known about students in aviation-related MOOCs (Velázquez, 

2017). Outside of the aviation domain, it was known that more research was needed on 

the large number of students who do not finish MOOCs but who engage, albeit 

sometimes minimally. While most studies consistently find similar low engager and high 

engager groups and focus on completion as the primary success metric, those aimed at 

discovering more about the large number of students who engage in the course without 

completing it have done so with the goal of “deconstructing disengagement,” as Kizilcec 

et al. (2013, p. 170) describe it. Ultimately this focus on non-completers who legitimately 

engage but then disengage may help institutions design better courses or offer better tools 

to support these selective learners.  

The goal of this research was to expand upon what little was known of students in 

aviation-related MOOCs and to make use of learning analytics to uncover course-specific 

behavior data about the different subpopulations found. Archived datasets of student 

activity in two sUAS MOOCs were analyzed to answer two research questions. Both 

MOOCs showed three distinct subgroups of students based on engagement in course 

discussions, videos, and assessments. Groups were significantly different in four of the 

seven attributes analyzed (Education, Days of Activity, Total Quiz Score, and Course 

Completion). The way in which clustering variables in this study differentiated the 

middle clusters, specifically in webinars and optional discussion engagement, offers an 

immediate starting point for course instructors to discuss why this specific content was 

relevant and engaging enough to attract students who did not care about completing the 

course.  
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Although no professional degrees or FAA certifications were at stake in the two 

aviation-related MOOCs analyzed for this study, educators and instructional designers in 

the aviation industry have several important opportunities to consider in the execution 

and study of such MOOCs. Instructional designers know it is imperative to remain 

responsive and adaptive to meet emergent needs of students and instructors alike, but 

revisions informed by research in smaller traditional classes can take a long time due to 

the limited throughput of students which may cause a lag in feedback (Neal & Hampton, 

2016). Results of this study can be used to guide instructional designers who aim to 

“close the loop” of the learning analytics cycle and make improvements that foster better 

learning and engagement (Clow, 2012, p. 134). The scale and flexibility of MOOCs offer 

frequent opportunities for instructional experimentation and fine-tuning of learning 

materials, as well as opportunities for development of adaptive learning, flipped 

classrooms, and peer-to-peer learning (Haber, 2014; Hollands & Tirthali, 2014; Krause, 

2019). The goal of this study was to understand more about how aviation MOOC 

students engage in their course content. The data-driven recommendations emerging from 

this study are a first step toward better meeting the needs of the aviation education 

community now and in the future. 
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