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The goal of this project is to design and develop a fabrication process for silicon 

microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell-

free, living tissue medium that is known to contain many of the same, clinical biomarkers 

of general health, stress response and immune status as in blood. However, a significant 

barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive 

method of access and collection for analysis. Microfabricated chips containing arrays of 

microneedles that can rapidly and painlessly access and collect dermal ISF for bioassay 

could greatly facilitate point-of-care diagnosis and health monitoring, especially in times 

of crisis or in austere environments, where drawing venous blood poses an unnecessary 

infection or biohazard risk. 

Two different fabrication methods were explored. The first method borrows from a 

previously reported dicing saw process, where a series of parallel and perpendicular cuts 

of partial depth are made into a thicker silicon wafer, creating arrays of square columns, 

which are subsequently sharpened into needles. The second method uses a new, entirely-



 

DRIE process to create the arrays of columns. The columns are sharpened into needles 

using an isotropic wet etch method (HNA etch) which preferentially enhances etching at 

the tips and diminishes etching at the base, creating remarkably sharp, conical shaped 

needles capable of piercing skin. The needles contain holes that pass through the wafer 

to the opposite side, where they connect to a series of microfluidic channels that lead to 

a reservoir. The back of the wafer is bonded to glass, providing a hydrophilic cap to the 

channels, as well as a way to see into the device to detect whether the channels are filling 

with liquid. The fabrication procedures for both methods are presented, along with 2D- 

and 3D-rendered schematics for the final devices. 

Needle geometric shape is crucial to their ability to extract ISF. To determine the 

appropriate pre-sharpened etched shape, needle columns with a variety of different 

shapes were designed, produced, sharpened, and examined under a scanning electron 

microscope. The most promising shapes were selected for further processing and testing. 

Resulting chips were first bench tested to ensure capillary filling capability, and then 

tested for ISF collection from human skin. Microneedle arrays which were successfully 

demonstrated to extract ISF are presented, and the unsuccessful shapes are also shown 

in the interest of completion. Potential means for improving performance and future 

research directions are discussed. 
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CHAPTER 1 – INTRODUCTION 

1.1 Motivation and background 
Shown in Figure 1.1 is a basic timeline for infection. After exposure to a pathogen or infectious 

agent, there begins an incubation period, before one begins to show symptoms. This period can 

last anywhere from hours to years, depending on the agent. Without other tests, it is essentially 

impossible to conclude that a person has been infected before they show symptoms. Testing for 

the presence of antibodies or other biomarkers in blood is typically done to diagnose disease 

during incubation or even after the symptomatic period begins. However, blood drawing is 

invasive, opening the host up to additional infection risks, especially in non-sterile environments. 

Also, most on-site analysis methods require blood sample preparation, minimally to remove cells 

(plasma) and add anti-coagulant. In some austere environments, such as a military field setting, 

blood analysis can therefore be impractical or outright impossible. Although there have been 

recent advances in some continuous blood monitoring capabilities, e.g. glucose monitoring for 

diabetics, the extension to early indicators of exposure to infectious or toxic agents are still under 

investigation. Dermal interstitial fluid (ISF) has been proposed as a substitute analyte for blood, 

which may be accessed continuously or with high intermittent frequency in a minimally invasive 

manner. It is also a cell-free, non-clotting fluid, that eliminates or reduces pre-analysis processing. 

 
Figure 1.1 – A basic timeline for infection1 
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Figure 1.2 – Composition of total body water in humans2-4 

The distribution of total body water (TBW) in humans (Figure 1.2) is divided into two main 

compartments: intracellular fluid (ICF), or all fluid inside cells, which makes up around two-thirds 

of body fluid; and extracellular fluid (ECF), all fluid outside the cells, comprising the remaining 

one-third.2 ECF is further divided into subcomponents. Interstitial fluid (ISF) and intravascular fluid 

(blood plasma) compose at least 97% of the ECF (~33% TBW), of which lymph composes a small 

portion of ISF.3 The remaining approximately 2.5% of ECF (<1% TBW) includes the transcellular 

fluid: cerebrospinal fluid, aqueous humor, serous fluid, joint fluid, and others.4 ISF has recently 

been a target of interest as an alternative to blood, due to its comparability to blood plasma. 

Several reports have shown a high degree of overlap in protein, cytokine and metabolic molecule 

composition between ISF and blood serum.5-8 Nonetheless, a barrier of entry to adoption of ISF 

as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for 

analysis. Blisters provide the volume of fluid needed for investigative compositional analysis, but 

Intracellular fluid
67%

Interstitial fluid
26% (of TBW)

Intravascular fluid
7%

Transcellular fluid
<1%

Extracellular fluid 
33%

Composition of Total Body Water (TBW) in Humans
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they are a level greater than minimally invasive, and are not amenable to a wearable diagnostic 

device. Additionally, a blister is a wound, and therefore blister fluid may have a different 

composition compared to ISF residing in intact, normal skin. 

 
Figure 1.3 – Anatomy of the layers of human skin. Dermal ISF is found in the dermis.9 

Enter microneedle arrays: minimally-invasive devices that can painlessly penetrate the skin’s 

stratum corneum, the principal physical barrier, found in the epidermis, which separates what 

would be considered the body’s inside and outside.10 Microneedle instruments have been the 

subject of a great deal of excitement and research for nearly three decades, having current and 

developing applications in minimally invasive transdermal drug and vaccine delivery, disease 

diagnostics, immunobiological administration, and even cosmetics. Using microneedles to access, 

extract and analyze dermal ISF, in lieu of venous blood, could greatly improve point-of-care 

diagnosis and health monitoring in austere environments, pandemic situations, and any case 

where blood monitoring is inconvenient or dangerous to the patient or doctor. However, despite 
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several previously published microneedle chip designs,11-14 very few have been demonstrated to 

successfully collect ISF from human skin in vivo. In our work, presented here, and by others,13,14 

skin penetration and ISF collection was achieved only in microneedles possessing a specific 

geometric shape. In the course of this research, a reliable and robust microneedle geometry for 

accessing and collecting dermal ISF has been fabricated and experimentally verified in vivo. 

Fabrication can be realized with relative ease in silicon, and is fully explained in subsequent 

chapters. 

The primary focus of this thesis is the development of fabrication methods for microfabricated 

silicon microneedle arrays intended for dermal-ISF extraction in human subjects. Two avenues of 

fabrication are presented. The first method borrows from a previously reported dicing saw 

process,13,15 where a series of parallel and perpendicular cuts of partial depth are made into a 

thicker silicon wafer, creating arrays of square columns. The second method uses a new, entirely-

DRIE process to create the arrays of columns. The columns are sharpened into needles using an 

isotropic wet etch method (HNA etch) which preferentially enhances etching at the tips and 

diminishes etching at the base, creating remarkably sharp, conical shaped needles capable of 

piercing skin. 

1.2 Project goals 
The specific aim of this project is to design and develop a fabrication process for silicon 

microneedle arrays that successfully extract dermal interstitial fluid (ISF) from human skin in vivo. 

The sub aims are a) to increase ISF collection volume and b) to achieve a high throughput, high 

yield process of manufacture, which may be scaled up for mass production. 

1.3 Thesis organization 
The organization of this thesis is summarized below. 

Chapter 2 presents silicon microneedle device prior art. 
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Chapter 3 describes the key design features of the devices. It presents the starting point for the 

design, based on prior work by Mukerjee et al.,13,16 and lists the explicit improvements made to 

the design and fabrication, to optimize throughput and performance, over the course of the 

research. 

Chapter 4 contains microfabrication process development, discussing the methods and designs 

attempted along the path to achieving a working device. In the interest of completion, and to 

inform future endeavors, failures are analyzed. First, the fabrication for the backside of the chip 

is presented, which is common to both designs. The backside contains the microchannels and 

reservoir where ISF is collected, and is covered by a transparent layer of glass, covalently bonded 

to the silicon surface. Then, two methods are presented for fabrication of the needles columns 

on the front side of the chip: one that uses DRIE, and another where they are formed with partial-

depth cuts by a precision dicing saw. 

Chapter 5 details the methods and results used in testing the devices. 

Chapter 6 concludes the main body, summarizing the thesis and presents avenues of future 

research potential. 

Appendices A and B contain a full microfabrication recipe for both designs. With that information, 

this project should be fully repeatable.  

Appendix C contains a step-by-step pictorial representation of the process flow. 

Appendix D presents the photomasks layouts, and details how alignment was performed.  

Appendix E lists wafer specifications, Appendix F lists equipment makes/models used, and 

Appendix G lists stock solutions and notable dangers.  
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CHAPTER 2 – SILICON MICRONEEDLES PRIOR ART 

Modern medicine has seen continuous growth of hypodermic needles for venous blood collection 

for laboratory analyses due to its high efficiency and low cost. However, phlebotomy can present 

problems17: (1) reuse of un- or inappropriately sterilized needles is common in developing 

countries, posing serious transmission risk of blood-borne pathogens like HIV,18 (2) 3.5%-10% of 

the world’s population have trypanophobia, a fear of needles, which may cause them to avoid 

treatment,19 (3) hypodermic needles are difficult to use by untrained persons, and the imposed 

infection risks are unacceptable in austere environments, such as military field, pandemic 

situations, and other unsafe or unsanitary domains. 

In contrast to traditional hypodermic needles, the microneedles developed for this project cause 

little to no pain sensation due to fewer interactions with Meissner’s corpuscles, Pacinian 

corpuscles, and large nerve endings.20 The microneedles are short (< 0.5 mm), very sharp, and 

thin enough that they evoke little to no sensation upon insertion, and therefore provide a 

minimally invasive approach to facilitate bidirectional transport of molecules (drugs, ISF, etc.) that 

normally would not be able to permeate the stratum corneum.21 While the initial use case for 

transdermal microneedles was predominantly for transdermal delivery of drugs and vaccines,22 

there has been an increased interest in extracting interstitial fluid from the dermis, and on the 

development of lab-on-a-chip (LoC) technologies using microneedle devices equipped with on-

chip diagnostic sensors. 

2.1 Pioneering work: 1990s 
2.1.1 The Normann group – intracortical stimulation, 1991. 
Perhaps the earliest demonstration of silicon microneedle devices was in 1991 by Campbell et 

al.15 from the University of Utah. They created an array of electrically isolated, solid silicon 

microneedles to be used for chronic intracortical stimulation of feline cortex. They fabricated the 
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microneedles by using a computer-controlled dicing saw to transform a silicon wafer into a 10 x 

10 array of rectangular columns by making deep orthogonal cuts into the wafer. The columns 

were subsequently sharpened into needles with a biphasic wet etch. The saw process 

substantially informed our saw-fabricated design, and the wet etch formulation and process is 

similar to the sharpening procedure used here, as discussed in future sections (§ 3.2.2, § 4.5.1, & 

§ 4.5.2). 

2.1.2 The Prausnitz group – skin permeability for drug delivery, 1998. 
The first published study on the use of silicon microfabricated microneedles to enhance drug 

delivery across skin was in 1998 by Henry et al.22 from Georgia Institute of Technology. This paper 

detailed a fabrication method for an array of solid needles produced and sharpened with reactive-

ion-etch (RIE) technology, using chromium dots as a mask for the individual needles. The 

conditions of the etch allowed for deep vertical etching with slight lateral underetching, which 

naturally produced sharp needles as the etch was allowed to persist until the masks fell off due 

to the underetching. The needles were used to increase skin permeability after insertion and 

removal of the needles; results showed several orders-of-magnitude increase in skin permeability, 

indicating promise for drug-coated solid microneedles to be used as a delivery mechanism. 
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Figure 2.1 – Two of the first silicon microneedle designs published. Left: The Normann group.15 Right: The Prausnitz 
group.22 

2.2 Microneedles for diagnostics 
2.2.1 Wound potential 
In 2000, silicon microneedles were gaining in popularity. Mukerjee et al.,23 from the University of 

California at Davis, developed a microfabricated instrument for transdermal wound potential 

measurements which employed an array of silicon microneedles with platinum coated tips. The 

completed device was used to measure the endogenous electric fields generated at the edge of 

superficial skin wounds. The microfabrication technique to form the columns and etch to needles 

was borrowed from Campbell et al.,15 using a dicing saw to form columns and wet silicon etch to 

sharpen to needles. 

2.2.2 Blood glucose monitoring 
In 2000, an article was published in Diabetes Technology & Therapeutics on the use of silicon 

microneedles in painless monitoring of blood glucose. Smart, et al.,24 developed devices which 

featured a single, disposable out-of-plane silicon microneedle which punctures any skin surface, 

contrary to traditional lancets which use the tip of the finger. The microneedle is advanced and 

withdrawn by a microprocessor and draws less than 200 nanoliters of blood into a microcuvette. 

The attached instrument performs an assay and displays blood glucose concentration. The 
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microneedle and microcuvette are then disposed of, and a new chip can be loaded into the 

instrument for later use. Most subjects tested reported the pain as “barely noticeable” or “can’t 

feel.” In comparison to a conventional lancet, the microneedle device was perceived as 

significantly less painful.  

2.2.3 Interstitial fluid (ISF) extraction 
In 2004, a silicon array for biological fluid extraction was published by Mukerjee et al.13 in Sensors 

and Actuators. This design also employed a dicing saw for column creation and wet silicon etch to 

sharpen the needles. However, this time the needles were hollow, containing integrated 

microchannels on the backside, and through-wafer boreholes facilitating flow from the needles 

to a collection point on the backside. The boreholes were drilled with DRIE prior to column 

creation with the dicing saw. It was found that final needle shape was critically dependent on the 

placement of the borehole relative to the top of the column. A “volcano-like” needle was formed 

if the 10-micron borehole was placed in the geometric center of the square column, prior to 

sharpening. A “micro-hypodermic” needle was formed if the borehole was shifted 25 microns 

from the column’s center. Lastly, a “snake-fang” needle was formed if the borehole was shifted 

an additional 25 microns from center (50 microns total). All shapes are displayed in Figure 2.2. 

   
Figure 2.2 – SEM micrographs of different needle shapes achieved with changing hole position. Left: volcano-shaped; 
center: hypodermic-shaped; right: “snake-fang”-shaped.13  
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The “snake-fang” design was shown to extract ISF from skin. The other two designs were 

susceptible to blockage due to plugging of the holes with tissue, preventing flow of ISF, but the 

“snake-fang” design was capable of pushing the skin to the side, allowing unobstructed flow from 

tip to base. This design has informed much of the fabrication techniques and initial development 

for the devices detailed in this thesis, especially the saw-fabricated design (§ 4.3). 

2.3 Other applications 
2.3.1 Drug and vaccine delivery 
The vast majority of hollow microneedle literature, employing a variety of materials and manner 

of fabrication, is focused on drug delivery. This thesis is concerned with diagnostics, and as such 

a literature review of microneedles for drug delivery is outside the scope of this document. Many 

review articles can be found on the subject.25,26,27 However, I include a brief description of two 

silicon microneedle designs intended for drug and vaccine delivery, as I find their shapes and 

manner of fabrication interesting and results informative. 

Developments by Gardeniers et al.11 (van den Berg group) were published in a 2003 article in the 

Journal of Microelectromechanical Systems. These needles were wedge-shaped, between 150 and 

350 microns in height, and 250 microns wide at the base (Figure 2.3). Drug delivery was increased 

by a factor of 750 in microneedle patch applications compared to diffusion through the stratum 

corneum alone.11 Also in 2003, Griss & Stemme28 published “side-opened” microneedle arrays 

which contained an opening in the shaft rather than an orifice at the tip (Figure 2.4). They were 

fabricated using DRIE, and the side-opened hole was intended to eliminate tissue clogging at the 

tip during insertion (see § 2.2.3). However, they observed issues in fabrication which led to a high 

degree of uncertainty and reliability of the structure and strength of the needles. At random 

times, the top mask used in the process may fall off and stick to a side-wall which lead to errors 

in fabrication of the side-ports. A future group, Zhang et al., from the University of Calgary, was 
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able to improve this uncertainty, and simulated drug delivery through the needles via computer 

modeling.29,30 

These results were interesting to me mainly due to their odd shapes (Figure 2.3 and Figure 2.4). 

However, they also did not require a separate wet sharpening etch as do the microneedles 

presented in this thesis (see § 4.5). Instead, the needles were sharpened with either a dry etch, 

or during initial formation; in Gardeniers’ needles, the photomask was designed with a small 

radius of curvature at the tip, naturally creating a sharp point; and in the Griss & Stemme needles, 

the needles were sharpened with an isotropic (dry) plasma etch. In both cases, this likely reduces 

variability between devices, and even between needles of the same array, as the wet etch I 

currently use attacks needles on the edge of the array slightly faster than those in the center. 

Eventually, a wafer scale sharpening etch should be implemented to reduce chip-to-chip 

variability, which could be accomplished with the current wet etch (again, see § 4.5). However, a 

dry etch or a more-controllable wet etch would be preferable. 

  
Figure 2.3 – Gardeniers, et al. Wedged shaped microneedles fabricated with KOH etching.11 
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Figure 2.4 – Grisse & Stemme’s side-opened microneedles.28  
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CHAPTER 3 – DESIGN FEATURES 

3.1 Design 
Main design features: 

• A 22x22 array of needles (484 total) on frontside 
o 300 µm center-to-center spacing between needles 
o 400-420 µm needle height 
o Notch that travels from the tip to a borehole, facilitating ISF flow from the tip 

• 30 µm-diameter boreholes on every other needle (162 out of 484), which travel through 

the wafer 

• Microfluidic channels and a reservoir that stores collected fluid on the backside, 

connecting with the boreholes 

To create the microneedle arrays, columns are formed first (Figure 3.3), which are then sharpened 

into needles (Figure 3.4). Two different fabrication processes for column formation are presented:  

• Columns formed by deep-reactive ion etching (DRIE), a highly anisotropic etch process 

used to create deep, high aspect-ratio holes and trenches in a substrate. Dimensions 

(LWH): 120µm × 120µm × 400µm. 

• Columns formed by making many equally-spaced parallel and perpendicular cuts at 

partial depth, with a dicing saw (borrowed from Mukerjee et al.13). Dimensions (LWH): 

135µm × 135µm × (400-420µm). 

  
Figure 3.1 – 3D CAD-rendered images of a single chip for both designs – DRIE (left) and dicing saw (right). 
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Figure 3.2 – 3D CAD-rendered images of the backside of a single chip. The microchannels are the same for both DRIE 
and dicing saw designs. 

  
Figure 3.3 – SEM images of unsharpened columns for both designs – DRIE (left) and dicing saw (right). 

  
Figure 3.4 – SEM images of needles after sharpening for both designs – DRIE (left) and dicing saw (right). 

3.1.1 DRIE column frames 
The frames around the columns created by the DRIE (Figure 3.3, left) are an effort to maintain 

vertical etching in the DRIE when used to achieve etch depths of more than a few hundred 

microns. An optimized DRIE recipe can achieve nearly vertical etching (90 ± 3 degrees). Etch 

aspect ratios (vertical/lateral) of 22-30 are typical for the Bosch DRIE process for etch depths of 
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100-300 µm, corresponding to 87-88° sidewalls. Relatively large etch openings permit rapid mass 

transport of reactants and byproducts to/from the bottom of the etch openings. But, large 

openings also mean higher ion flux density inside the etched regions, which can interact. Charge 

repulsion results in deviation of ion path from vertical, resulting in > 90-degree sidewalls (Figure 

3.5). The deeper the etch, the more pronounced this effect has on ion trajectory. Other factors, 

such as ion “bouncing” off the bottom, and changes in heat transfer with etch depth contribute 

to enhanced etching at the base of the columns. If the mask opening is very small, then the etch 

will terminate for a sidewall angle less than 90 degrees. The aspect ratio (sidewall angle) of the 

DRIE recipe, diffusion limitations, and feature tolerances (overetch) will determine the maximum 

depth one can achieve for a given opening size. For a typical etch aspect ratio of 30 (88 degrees), 

a 10 µm hole can only achieve a maximum hole depth of 150 µm (Figure 3.6). “Large” and “small” 

here are unquantifiable, and will depend on the application, materials, and DRIE recipe used. For 

this purpose, I will define “small” as less than ten microns, and “large” as a few hundred microns 

or more. Certain parameters (bias power, step times, chamber pressure, among others) can be 

adjusted to change the sidewall angle.31 However, optimizations to a DRIE recipe are time-, and 

resource-consuming. In this situation, it was far easier to modify the photomask, in a way which 

would maintain a sidewall angle ≈90 degrees. This was achieved through the inclusion of a thin 

frame around each column, thereby reducing the opening between columns. The frame does not 

impede sharpening the columns into needles, as it is thin enough that it etches away quickly. It is 

nearly completely successful at maintaining a near vertical etch (Figure 3.7). 
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Figure 3.5 – Base undercut in the DRIE visualized. 
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< 10µm

With small etch 
openings, deep holes 
and trenches tend to 

terminate

 
Figure 3.6 – Small openings typically lead to etch termination. 

  
Figure 3.7 – Column tapering in the DRIE-fabricated columns is nearly eliminated with the inclusion of a frame around 
each column. 

3.2 Starting points 
My work on microneedle devices was heavily influenced by the work of Mukerjee et al.13,16 at the 

University of California at Davis, published in Mukerjee’s doctoral thesis in 2003, and in the peer-

reviewed Sensors and Actuators in 2004. I am very grateful for the starting point this work 

provided, and note several problems that were solved by Mukerjee et al., and therefore 

implemented in the design and fabrication of devices presented here (Figure 3.1). My specific 

design modifications and fabrication improvements are detailed in the following section (§ 3.3). 

3.2.1 Needle spacing 
The center-to-center spacing of each microneedle is important. If the needles are too far apart, 

the elasticity of the skin will prevent piercing. For example, take a single tack or nail and lightly 
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press it to your finger. Even though it is very sharp, the tack will not immediately pierce the skin, 

which deforms around it (Figure 3.8). It takes significant force and height, which microneedles do 

not have, for a single needle to pierce the skin. 

 
Figure 3.8 – The skin will stretch and deform around a single needle 

Placing the microneedles close together, like a bed of nails, stretches the skin, preventing the skin 

from just deforming around each needle, and facilitates insertion. The work published by 

Mukerjee et al. used a 300 µm spacing between each needle, which was found to be very 

effective. Thus, it was incorporated into the designs for this project. 
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300 µm

 
Figure 3.9 – Each needle stretches the skin nearby it, preventing deformation and facilitating skin piercing. 

3.2.2 Sharpening 
After producing columns (Figure 3.3), they must be sharpened into needles (Figure 3.4). The 

needles produced by Mukerjee et al. were demonstrably sharp enough to pierce human skin. The 

biphasic sharpening procedure, including temperatures, chip orientation, and stir bar spin speeds, 

was used in the fabrication of my devices (see § 4.5 for full explanation of sharpening procedure). 

3.2.3 Glass bonding 
Mukerjee et al. found that bonding the backside microchannels to a layer of glass provided 

mechanical strength to the device, allowing pressure to be applied for insertion into the skin 

without breaking. It also provides a window into the device to observe if the channels are being 

filled, and glass is very hydrophilic, assisting with capillary fill. 

3.2.4 Capillary fill 
Mukerjee et al.13 additionally solved the problem of getting the devices to fill via capillary action 

alone. It was found that the boreholes must be placed adjacent to the microchannel wall, rather 

than sitting in the center of a microchannel, where the force required to overcome the boundary 

at the hole edges is too great for capillary forces. If the hole is instead placed along a wall, the 
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fluid will keep traveling up the wall until it reaches the glass surface which will pull the fluid along 

the channel. 

Pre-drilled glass

Centered 
borehole

Liquid

microchannel
liquid stops 

here

 

Pre-drilled glass

Borehole placed along 
microchannel side-wall

Liquid

microchannel

Liquid travels up side-
wall until it is sucked in 

by the glass

 
Figure 3.10 – Placement of the borehole along a microchannel side-wall allows capillary forces to draw liquid into the 
channel. 

3.3 Modifications and improvements 
Many modifications were made to the design and fabrication published by Mukerjee et al.,13 to 

increase ISF collection capacity, and to increase the throughput and yield of the manufacturing 

process. Mukerjee’s devices were tedious to manufacture, due to process, wafer and equipment 

limitations. The columns, formed with a dicing saw, required precise alignment that was not 

possible at the time without re-aligning after nearly every cut (poor optics and positioning 

accuracy). Regardless, the resulting devices were successful in extracting a miniscule volume 

(≈ 0.15 µL) of dermal ISF. My research aimed to improve on extraction, volume, and 

microfabrication yield, both of which were successfully achieved. The improvements are 

summarized in the table below. 
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Table 3-1 – Design improvements 
Improvement Mukerjee et al. My devices 

Fluid capacity ≈0.2 microliters ≈0.7-1 microliters 

# of collecting needles 18 162 

# of collecting channels 7 18 

Surface area of collection ≈3.6 mm2 ≈36 mm2 

Fabrication time, yield >120 hours (non-published 

estimate), yielding a couple of 

chips 

Roughly 40 process hours, 

yielding 36 chips per 4-inch 

wafer 

Wafer thickness 
(which enabled the following, 
needle height and channel 
depth improvements) 
 

500 µm 550 µm (dicing saw design) 

650 µm (DRIE design) 

Needle height 250-350 µm 400-420 µm 

Microchannel depth 15 µm 40-50+ µm 
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CHAPTER 4 – MICROFABRICATION METHODS & RESULTS 

This chapter describes in detail the trial-and-error that went into developing a working design for 

both methods of fabrication, saw and DRIE. SEM, optical, and CAD-rendered images are shown to 

assist comprehension. Complete microfabrication flows for the final process sequences are 

provided in APPENDIX A. 

4.1 The backside: microchannels and reservoir 
 
The fabrication process begins with the backside of the wafer, which contains a series of 

microfluidic channels (microchannels) which connect the holes of the collecting needles to a 

reservoir – with opening for air escape and access for collection off-chip. Borofloat® glass (Schott) 

of half-millimeter thickness is anodically bonded to the silicon, creating a hydrophilic cap for the 

channels, and a transparent window through which ISF collection may be visualized. 

4.1.1 Microfluidic channel and reservoir fabrication 
The fabrication method employs a two-step etch method.16 First, virgin, double-side polished 

silicon wafers are thermally oxidized to a thickness of roughly 500 nm. Then photolithography is 

performed, exposing the resist to the first level mask, which patterns the microchannels and 

reservoir shapes. After development of the photoresist layer, the exposed oxide area is removed 

with a buffered oxide etch (BOE). (Note: before the BOE etch, wafer tape is applied to the 

frontside, to protect the oxide layer on that side during the BOE etch. That oxide layer exists to 

prevent scratching on the silicon surface during processing.) After BOE, the wafer tape and 

photoresist are removed, revealing mask #1’s pattern in the oxide layer. Another 

photolithography step is subsequently executed, this time with a 10 micron-thick SPR-220 

photoresist, which completely covers the pattern in the oxide. This is exposed to the second level 

mask, which contains an array of 30-micron boreholes. The boreholes are then etched in the DRIE 

to a depth of 400-microns. These holes will enable fluid to travel from the needles on the frontside 
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(patterned in future steps), through the wafer, to the microchannels. After the photoresist is 

stripped, the microchannel oxide pattern is again revealed. This oxide pattern is used to mask the 

channel etch with DRIE to an approximate 40-micron depth, carving the channels and reservoir 

into the silicon. For enhanced comprehension, cross-sections are shown in Table 4-1. A cross-

section schematic for the entire fabrication process can be found in APPENDIX C. 

 
Figure 4.1 – The wafer backside features microfluidic channels for ISF transport, and is anodically bonded to glass 
containing a series of predrilled holes which are aligned to the reservoir of each chip 

  
Figure 4.2 – 3D CAD images of a single chip, showing the microchannels and reservoir with the bonded glass layer. 

Table 4-1 – Two-step DRIE etch for microchannel and borehole fabrication 
Step 1 – Silicon, double-side 
polished. Wafer thickness 
varies between column 
designs. (see § 4.2, and 
§ 4.3) 

Si

55
0-

65
0 

µm

 
**THESE DRAWINGS ARE NOT TO SCALE** 
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Table 4-1 (Continued) 
Step 2 – Thermal steam 
oxidation, 500nm thickness 

Si

SiO2

50
0 

nm

SiO2  
 

Step 3 – Photolithography 
for channel-side oxide etch 

Si

SiO2

SiO2

resist

UV-light
 

 
Step 4 – Channel oxide etch 

SiO2 SiO2 SiO2

SiO2

Si

 
 

Step 5a – Spin photoresist 
for channel-side 30µm hole 
arrays. Note: mask/UV-light 
not shown 

resist

Si

SiO2

SiO2 SiO2 SiO2
10

 µ
m

 
 

Step 5b – Develop 30µm 
hole arrays 

Si

SiO2

10
 µ

mSiO2 SiO2 SiO2

resist

30µm

 
 



 

25 

Table 4-1 (Continued) 
Step 6 – DRIE 30µm hole 
arrays 400µm deep 

SiO2 SiO2 SiO2

SiO2

40
0 

µm

resist

DRIE holes

Si30µm

 
 

Step 7 – Remove photoresist, 
revealing oxide pattern. DRIE 
channels 40µm deep using 
the patterned oxide as an 
etch mask 

SiO2 SiO2 SiO2

SiO2

40
0 

µmSi

30µm

 
 

Step 8 – DRIE channels 40µm 
deep using the patterned 
oxide as an etch mask 

SiO2

SiO2 SiO2 SiO2 40
 µ

mSi

30µm
Hole is adjacent 

to a channel wall

 
 

4.1.2 Anodic bonding to glass 
This section describes the procedure by which the backside microchannels and reservoir are 

sealed by a layer of glass. 

4.1.2.1 Anodic bond concepts 
Anodic bonding is a wafer bonding process where glass is fused to silicon or metal without an 

intermediate layer, i.e. adhesive or eutectic. This process requires clean, polished wafers of low 

surface roughness, allowing intimate contact between the glass and silicon. A DC voltage is 

applied such that the glass is negative (cathode) with respect to the silicon (anode). Borosilicate 

glass is used due to its high alkali ion (sodium ion) concentration. The thermal expansion 

coefficients between the two substrates must be closely matched, as the process takes place at 

temperatures between 250 and 500 degrees Celsius to increase sodium ion mobility in the glass.32 
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When voltage is applied, the sodium ions in the borosilicate glass migrate towards the cathode 

and electrons in the silicon move towards the anode, away from the silicon-glass interface. This 

charge separation results in an electric field at the glass-silicon interface and an electrostatic force 

that pulls the surfaces together. Under the high electric field, oxygen anions at the glass surface 

electrochemically react with the silicon (anodic oxidation) creating a chemical bond.33 This bond 

is irreversible, and persists after the electric field is removed and the substrates return to room 

temperature. The anodic bond between glass and silicon produces a hermetic seal, that not only 

acts as an effective fluidic seal, but can also be used to create a reference pressure or vacuum in 

MEMS devices, such as absolute pressure sensors and resonators. 

In the microneedle devices, the bonding is performed after all DRIE steps have been realized. Glass 

is not permitted in the UMaine DRIE due to contamination concerns, and because its insulating 

properties prevent adequate heat transfer between the helium-cooled chuck and the silicon, 

necessary for maintaining control over etch rate and selectivity. 

4.1.2.2 Glass hole design 
The glass wafer, containing predrilled holes, is aligned and bonded to the channel-side of the 

wafer. The holes are aligned to the reservoir of each chip. The holes are intended to allow for air 

escape, and removal of the fluid collected by the chip. 

The holes for our first-generation devices were mechanically drilled (Schott Glass – Elmsford, New 

York) to a 2-mm diameter. The holes were spaced to be aligned to the center of the reservoir. In 

order to increase the ISF capacity on the chip, the hole diameter was reduced to 1-mm for future 

designs, currently in development. Schott Glass could not mechanically drill the smaller diameter 

holes; therefore, they were shipped to another company (AdValue Technology – Tucson, Arizona) 

for laser-drilling. 
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Figure 4.3 – Image of a single chip, bonded to glass 

4.2 The frontside: DRIE column fabrication 
Much effort was expended on the design of a fabrication process by which hollow microneedles 

could be made at the wafer scale, using DRIE instead of a dicing saw to create the columns. The 

primary reasons for this were: a) the required, high-precision alignment of the dicing saw to the 

via hole is not reliably feasible using the dicing saw at UMaine; and b) future integration of a dry 

sharpening etch at the wafer scale is more compatible with a DRIE approach. It was also 

anticipated, at the start of this project, that the DRIE column formation would be more 

economical. An assessment of this is provided in § 4.6 - Cost analysis. As of the publication of this 

thesis, there are no published methods for making hollow microneedle devices in silicon, capable 

of extracting ISF, except for those previously made using a dicing saw. 

4.2.1 Needle shape 
Research by us and others13,16,34 has determined that needle shape is a paramount characteristic 

of microneedle devices that successfully extract ISF from human skin. Upon joining this project, 
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some chips had been fabricated that were incapable of extracting ISF (Figure 4.4). One wafer was 

saw-fabricated (left) and one was DRIE-fabricated (right). These wafers shared a common feature: 

both had rectangular columns, without any hole or grooves, before sharpening. It was 

hypothesized, based on prior art success,13,16 that a path for ISF flow from the microneedle tip to 

the borehole was necessary. For the saw design, this would require inclusion of a hole connecting 

to the backside borehole, prior to dicing (Figure 4.5). For the DRIE design, a slot or hole would 

need to be incorporated. 

  
Figure 4.4 – SEM images of needles whose tip-shape is not sufficient to extract ISF. 

This proved to be challenging with an all-DRIE design. Previous saw-based needle arrays were 

designed with a small hole at the top of the column (Figure 4.5). I found it impossible to employ 

the same design in two DRIE steps, as the holes are too deep for subsequent spin-on photoresist 

application. Attempts to fill the holes with resist, clear the wafer surface, and spin-coat were 

unsuccessful, leaving a bubble or a depression in the resulting surface which would open at some 

point during DRIE, severely widening the holes and ruining the columns (Figure 4.6). Given 

currently available technology at UMaine, it was concluded a single DRIE step is required for the 

formation of the columns.  

Additionally, the same hole design is very difficult to be created by a single DRIE step, due to the 

effect of feature size on etch rates. It would have to be designed so that the small topside hole 
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would meet the backside 30 µm borehole at some point during the etch. This would require 

bonding the wafer to a carrier wafer after the holes opened, to prevent damage to the DRIE chuck 

from open holes. After the topside holes open to the backside, DRIE reactants would still enter 

the holes causing indeterminable levels of damage to the holes themselves (widening). Thus, it 

was decided to avoid this approach, but could prove to be successful in the future. 

  
Figure 4.5 – A hole was required to extract ISF from SAW-fabricated chips.16 

  
Figure 4.6 – The holes were unacceptably widened in the DRIE, if a two-step DRIE etch was used. 

4.2.2 Testing a variety of shapes 
Given the requirement for a single DRIE step to form the columns, and the likely impossibility of 

just including a hole in the column, a special, new, column design needed to be created which 

would lead to forming needles that were of similar shape to those created by the dicing saw 

(Figure 4.5). For efficiency, a single mask was designed that incorporated a variety of different 

column shapes on the same chip, so all of the potential designs could be made on the same chip 
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at the same time (Figure 4.7), to facilitate comparison using SEM imaging. Each chip featured 4x4 

needles of each of the 16 designs (Figure 4.8). These shapes included slots, cuts, boxes and holes 

of varying sizes. The fabrication process purposely excluded any backside processing, as I was only 

concerned with realizing needle shape. A 750-µm thick wafer was used for rigidity. An 800-nm 

thick layer of PECVD silicon nitride was deposited to the column-side before DRIE to act as an 

etch-mask during the future HNA wet etch used to thin and sharpen the needles (§ 4.5). 

4.2.2.1 – SPR-220 photoresist as DRIE etch mask 
The first round of column shape testing with the mask employed MEGAPOSIT SPR-220-7.0 

photoresist as an etch mask for the DRIE process. SPR-220 i-Line photoresist is a general-purpose, 

multi-wavelength resist designed to cover a wide range of film thicknesses.35 The “7.0” stands for 

a nominal film thickness of 7.0 microns. However, the lengthy, 400µm DRIE etch required by this 

project requires greater thickness. At slower spin speeds (1.8-2.0 krpm), thicknesses of 

approximately 10 microns are reliably achieved. Optical microscope results are displayed in Figure 

4.7. Note that these depict column shape post-DRIE, before any thinning or sharpening. 

        

        
Figure 4.7 – 16 cropped optical microscope images showing a top-down view of all 16 column shapes tested 

After thinning and sharpening, the needles were examined with scanning-electron microscopy. 

Results were mostly unsatisfactory. For nearly all column shapes tested, the hole or groove 

feature sizes were too small, becoming smoothed out during the sharpening etches (Figure 4.9). 

This approach was consequently set aside in favor of trying SiO2 as an etch mask for DRIE instead 
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of photoresist (§ 4.2.2.2). However, there were two promising results that were initially missed, 

which were subsequently pursued and will be discussed in a later section (§ 4.2.2.3). 

  
Figure 4.8 – Two SEM images showing column shapes for the test mask, pre-thinning and -sharpening 

  

  
Figure 4.9 – SEM images showing some of the failed column shapes. The two top images are post-thinning step, but 
before sharpening. The two bottom images are post thinning and sharpening. 

4.2.2.2 – PECVD SiO2 as DRIE etch mask 
Upon obtaining initial, disappointing results with the various column geometries, it was decided 

that the feature sizes of the cuts, slots, holes, etc. were too small, or did not protrude far enough 



 

32 

into the columns. Redesigning the photomask would have been time consuming considering I had 

little experience with the pattern generator and mask software at the time. So instead, I wanted 

to try silicon dioxide as the mask for DRIE, since oxide has an etch selectivity 3-10x higher than 

photoresist.36 This meant that a SiO2 thickness of 1-2µm could be used as the etch mask (as 

opposed to 10µm with resist), enabling smaller feature size patterning by using a thin resist to 

pattern the oxide. Additionally, the isotropic BOE etch would help undercut the features so the 

original photomask could be used while trying out larger feature sizes. The idea was also that this 

would serve more than one purpose: if the SiO2 had turned out to be a viable solution, it would 

have minimized defects that occur from particulates in the photoresist or on the wafer surface. 

Plasma-enhanced chemical vapor deposition (PECVD) silicon dioxide had to be used in lieu of 

higher-quality thermal oxide, because a thin film of silicon nitride must exist on the silicon surface 

to serve as the HNA etch mask for the thinning and sharpening steps. Without it, the tips of the 

columns would also etch, significantly reducing final shank height and/or tip sharpness. HNA 

attacks silicon nitride far slower than silicon, with a selectivity of more than 2200.37 SiO2 is 

attacked too rapidly by the hydrofluoric acid in HNA and therefore cannot be used as the 

sharpening etch mask. 

Aiming to increase the isotropic undercutting effect of the BOE etch as much as possible, I used 

an SiO2 thickness of 3µm. The results were far worse than the SPR-220. Significant undercutting 

did occur, thanks entirely to the 21-minute BOE etch time required to get through the thick oxide 

layer. The photoresist frame around each column (to prevent footing in DRIE) created pockets 

where the BOE was allowed to etch inconsistently, producing some stunningly beautiful colors 

mid-etch due to film thickness differences (Figure 4.10). 
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Figure 4.10 – Optical microscope image of colors produced by differing SiO2 film thickness mid-BOE etch 

After completion of the BOE etch, the undercut bias was very pronounced. Figure 4.11 shows a 

few notable examples, after stripping the photoresist and approximately 50µm of DRIE. 

    
Figure 4.11 – Optical microscope images of undercutting seen with SiO2 etch. 

I did not consider the effects that undercut would have on the column frames. As mentioned 

previously, the 14µm-thick frames around each individual column reduces unacceptable levels of 

footing (base undercut) that occurs in the DRIE when used to achieve etch depths of >200 µm. 

When present, they satisfactorily reduce footing, and if thin enough, they disappear quickly during 

the thinning etch, so as to not cause issues with needle sharpening. Here, they were almost 

completely etched away due to the BOE etch undercut of the oxide mask. The walls are visible for 

the first ≈125 µm of DRIE etch; they start to break through starting at ≈150 µm, and become 

completely removed by the end of the etch (Figure 4.12 and Figure 4.13). The result was footing 

that created columns that were too small at the base due to the footing to make viable needles. 
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Figure 4.12 – Optical microscope images showing the degradation of the frame around the columns as the DRIE etch 
progresses. DRIE depths from L to R: 50µm, 113µm, 168µm, 340µm, 400µm 

  
Figure 4.13 – Final SEM results show unacceptable levels of column undercut from DRIE. This left the bases too small 
to make viable needles 

4.2.2.3 – SPR-220 results revisited 
There were two promising results from the initial SPR-220 photoresist mask that produced final 

needle tip shapes similar to the saw-fabricated needles with the topside 10µm holes: the long, 

center slots, one slightly thinner than the other (Figure 4.14). 

  
Figure 4.14 – Two SEM images showing the two successful-looking designs employed for further testing 

After seeing positive results from the deep center slot designs, the thinner one was selected for 

the next round of testing. The thinner one was more desirable, because it did not continue all the 

way to the base of the column. When DRIE etching, large open areas etch more quickly and footing 
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at the bottom of walls produces undercut, while walls inside small openings slope in the opposite 

direction, closing themselves off. In the final design, the needles have a 30µm hole coming from 

the backside which is intended to protrude around 100-150µm beyond the silicon floor, into the 

columns (Figure 4.15). If the slot were to continue all the way to the bottom of the column, it 

would meet the 30µm backside hole before the column etch was complete, causing a backside 

leak of the helium used to cool the wafer. This would stop the etch, and a carrier wafer would 

need to be attached to plug the holes. This is inconvenient, and severely reduces etch rate, so it 

is wise to avoid when possible. It is also preferred for the interior hole to become opened and 

connected to the exterior groove during the HNA sharpening etch, not during the DRIE column 

etch. Additionally, it is desired that the hole opens as late in that sharpening step as possible, to 

minimize exposure of the interior holes to HNA, which would unpredictably widen them. HNA will 

etch any exposed silicon it touches. 

  
Figure 4.15 – Two SEM images showing hole from backside, after sharpening. (Left): DRIE design. (Right): Saw design. 

4.2.3 The center slot problem 
As promising as the center slot appeared, it was not in the correct spot. Having it positioned along 

the center of a side of the column, as opposed to facing a corner (Figure 4.16), created a shovel-

shaped needle often with a blunt tip (Figure 4.14). I discovered that the shovel-shaped needle 

shape was ineffective for ISF-collection during development of the dicing-saw fabricated devices 
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(§ 4.3). In that case, the 10µm hole was being placed along a line perpendicular to a side and 

passing through the center. The resulting tip shape was blunt (Figure 4.22), much like was 

appearing in this DRIE case, and those devices were unsuccessful at ISF extraction. In response, I 

placed the hole along a diagonal on the dicing-saw design, which created a scoop-like needle 

shape which did extract ISF. Attempting to emulate that successful design in the DRIE process, I 

placed the slot facing a corner of the column instead of a side (Figure 4.16). Consequently, a DRIE 

device with a slot facing the side of the column was never fully fabricated, i.e. with via hole and 

collecting microchannels for in vivo collection testing. 

  
Figure 4.16 – Different slot orientations. Left: along the center of a side. Right: facing a corner. 
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4.2.4 Success – a diagonal slot 

  

  
Figure 4.17 – SEM images of successful DRIE-fabricated devices. Top left: unsharpened, straight out of the DRIE. Top 
right: A view of a column after breaking the frame around, giving a clear view of a beautiful, minimally-tapered base. 
Bottom left: A sharpened needle. The slot didn’t quite make it to the backside 30µm hole, but this device is still capable 
of ISF extraction. Bottom right: a view of many needles in the array. 

When the slot was placed on the diagonal, facing a corner, a nice “scoop-like” shape was produced 

at the tip. This shape was successful in collecting dermal ISF. It is hypothesized that this shape, 

which is similar to the snake fang shape created by Mukerjee, is necessary for flow of ISF from tip 

to base, where it is drawn by capillary action through to the backside microchannels. Bench tests 

results revealed that all designs were capable of drawing water into the microchannels, even 

those with an opening only at the base of the needle. However, in skin, only those needles with a 

groove along the side that extends to the tip were successful in extracting ISF. It is hypothesized 

that the groove prevents skin from completely sealing to the surface of the needle, at the tip, 

providing a channel for ISF to flow into the via hole. 
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Although the design in Figure 4.17 worked, the slot did not quite connect with the 30µm via hole. 

This could pose an impediment to collecting ISF. Therefore, I redesigned the mask to widen the 

slot, which would not taper as quickly and would meet the backside hole. This redesign is in 

fabrication, at the time of publication of this document. 

  
Figure 4.18 – CAD-rendered images of the final DRIE chip. 

4.3 The frontside: dicing saw fabricated columns 
An initial aim for this project was to develop a working, all-DRIE process for microneedle 

fabrication. Saw-fabricated devices were not initially considered, as they had been previously 

developed and demonstrated, but had low throughput and yield.13 However, in the face of all the 

hardship incurred in the early stages of the DRIE design, a sawed column design was added to 

development. Some elements of the previous design were incorporated, although significant 

changes have been made, with the aim of increasing the collected ISF volume: 

a) The number of hollow, collecting microneedles was increased from 20 to 162 per chip 

b) The depth of the microchannels and reservoir was doubled 

c) The opening in the glass covering the reservoir was decreased to reduce evaporation and 

to increase reservoir fill volume 

Additionally, valuable insight into requisite needle shape was gained from repeating this design. 
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4.3.1 Design parameters 
A wafer dicing saw (Figure 4.19) is a type of saw which uses a high-speed spindle and circular 

diamond dicing blades to cut silicon and other solid-state materials into rectangular pieces, or die. 

It is typically used in the semiconductor packaging industry post-fabrication to cut silicon wafers 

into hundreds to thousands of individual chips. Usually, it is intended to cut nearly or entirely 

through a wafer, but this process can be exploited to form grooves by making many equally-

spaced parallel cuts at a specified depth. Columns are created after rotating the wafer 90 degrees 

and repeating the cuts. 

 
Figure 4.19 – A dicing saw in action. Image courtesy of DISCO Corporation. 
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Figure 4.20 – the dicing saw cuts columns into the silicon surface with many equally-spaced parallel and perpendicular 
cuts. The cuts’ diameter is equal to the width of the blade. After the columns are formed, remaining silicon 
surrounding them is removed with a wider blade. This leaves only the columns on the wafer. Shown in the figure is one 
single chip. The process is performed with an entire wafer at once, but the resulting document possesses too many 
faces for SolidWorks to handle. 



 

41 

 
Figure 4.21 – columns produced by dicing saw after removal of the field 

The column shape produced by the saw (Figure 4.21) is very similar to the ones produced by DRIE. 

The main differences between the two designs are, a) the lack of a surrounding frame (Figure 

4.17), b) the surfaces are rougher, c) the saw kerf produces a column that is wider at the base 

than at the top, and d) some chipping at the top edge of the columns is inevitable. However, the 

roughness and chipping is much reduced or removed during the sharpening etch. 

4.3.2 The in-house dicing saw 
The first attempt to saw-fabricate these columns was with the Kulicke & Soffa 775 (circa 1990s) 

saw in the lab at the University of Maine. The stage of this “old” saw is not completely level, and 

the optics are too poor to reproducibly and accurately align to the 10µm hole that must be 

positioned precisely off-center within the columns. I attempted to highlight the holes by spinning 

photoresist and letting it drain through them before a hard bake. This did create visible rings 

around each hole, but still required me to estimate the centers and as a result, alignment was not 

accurate enough and the for much of the wafer, hole placement ended up being off-spec enough 
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to cause significantly different needle tip shapes (Figure 4.22). If the hole is placed too near the 

geometric center of the column, it produces volcano-like needle tips (Figure 4.22, bottom left). 

  

  
Figure 4.22 – SEM images of the first attempt to fabricate columns with the dicing saw. Major inconsistencies in 
alignment produced a variety of different shapes as the columns were sharpened into needles. The successfully-
aligned needles looked satisfactory (bottom right), but they were rare. 

A few chips from the run were salvageable, as they had accurate hole placements along enough 

of the columns on the chip to create a potentially-working device (Figure 4.23). Alas, they did not 

work. This was quite confusing, because based on what was known, they should have worked. 

This was the same design published in 2004, which successfully extracted ISF.13 Several ideas were 

mused upon, including 10µm hole DRIE slopes, wafer resistivity differences affecting etching, and 

etchant temperature. There was a slight difference between Mukerjee’s chips and these: the 

slope of the groove in the chip was much steeper in these chips compared to Mukerjee (Figure 

4.24). The direction that the groove was pointing was also different – the prior devices had the 
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groove aligned with a corner, rather than the side of the column. In future designs, using the 

DISCO DAD 3240 (§ 4.3.3), the hole (saw design) and groove (DRIE design – § 4.2.4) position were 

changed to face the column corner. Additionally, the importance that needle tip design has on 

the ability to extract dermal ISF was again revealed. 

 

 

 

 
Figure 4.23 – SEM images from a couple of the four salvageable chips from the run 

  
Figure 4.24 – SEM images showing needle tips of Mukerjee 2004 (dubbed the “snake fang”)13 

4.3.3 DISCO DAD 3240, Andover, MA 
Advances in dicing saw technology since the release of the Kulicke & Soffa 775 have been 

significant. For the IC industry, high throughput is of paramount importance for maximizing 

profits. Automation and machine learning are means for achieving high throughput, with high 

precision and minimal loss or error, compared to strictly-human operators. Major advancements 

of relevance to this project include the far improved imaging and alignment capabilities, high 

positional precision, and dynamic control of cut depth. DISCO Hi-Tec, an advanced dicing saw 
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manufacturer out of Japan, has a sales facility in Andover, MA, where they also perform 

contracted work for university projects and startups. I visited the facility twice to work closely 

with the staff who taught me how to operate the DAD3240 machine, and to design a recipe for 

column formation. Results obtained with the DAD3240 were extremely positive, and I am very 

thankful to the crew at Disco for their assistance. 

 
Figure 4.25 – Columns showing proper placement of the 10µm hole, obtained using DISCO DAD3240. 
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Figure 4.26 – Results from the first round of sharpening of the DISCO-fabricated wafer. 

The first round of sharpening tests immediately showed that the tips could look much better with 

different placement of the 10µm hole (Figure 4.26). These were not sharp enough, which required 

some tinkering with the sharpening recipe. By using more time on the initial thinning step, the 

needles sharpened up sufficiently to pierce skin, and they successfully extracted ISF from human 

skin (Figure 4.27). 
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Figure 4.27 – SEM image of sharp needles, which extract ISF 

4.4 Dicing from wafer to individual chips 
After anodic bonding the glass to the silicon wafer (§ 4.1.2), the wafer is diced into individual 

microneedle array chips, using the UMaine dicing saw (Kulicke & Soffa). Wafer tape is first applied 

to the glass side of the bonded wafer, and the chips are cut all the way through both the silicon 

and the glass. Tape is removed by exposure to UV light for roughly 30s in sunlight. This also works 

on a cloudy day, but requires longer exposure times. At night, the tape can be cured with UV light 

from the lamp of a mask aligner. With the current design, a single 4-inch wafer will produce 36 

individual chips. 

4.5 Microneedle sharpening and oxidation 
After the wafer has been diced into chips, the columns are sharpened into needles. This uses a 

biphasic etch process with a wet etchant called HNA, designed to etch silicon.38 The acronym 

stands for hydrofluoric acid (HF), nitric acid (HNO3), and acetic acid (AcOH). The etch rate of the 
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silicon is dependent on the ratios of the three acids (see § B.2); the mixture used in this process 

is 1:8:1 by volume of HF:HNO3:AcOH, respectively (see Table G-1 for bottle concentrations). The 

mixture etches silicon due to the formation of an oxide layer (SiO2) on the surface by the nitric 

acid, and subsequent removal of the oxide layer by the hydrofluoric acid. The acetic acid acts as a 

surfactant. 

The “biphasic” nature of the etch comes from the need to first thin the columns as evenly as 

possible, rounding them from square columns to a more cylindrical shape, before sharpening 

them into sharp cones. The extent of both of these steps is important – too much thinning and 

the resulting needles are overly thin and may break during insertion; too little thinning and the 

resulting needles are thick and may not be sharp enough to pierce skin, or the interior boreholes 

may not open up. To gauge how much etching is required, many different etch times were 

investigated and resulting the chips were observed under a SEM. 

4.5.1 Thinning 
The first step is to thin the columns. The step takes place in a Teflon beaker of HNA (Figure 4.28). 

The beaker cannot be glass, which would be attacked by the HF. Any polymer which can withstand 

nitric and hydrofluoric acids will do. The temperature of the mixture is raised to 50 °C by heating 

a water bath around the beaker containing the HNA. A larger glass beaker is fit around the HNA 

beaker, and some water is added to facilitate the heat transfer. Heating increases the etch rate, 

and helps limit effects of day-to-day room temperature variations in the lab, which could cause 

different etch rates, affecting timing. 
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50°C

 
Figure 4.28 – Columns are thinned in a beaker of HNA. 

In order to limit the effects of diffusion as much as possible, reactants must be allowed to reach 

all surfaces equally. This is accomplished by stirring the solution with a magnetic stir bar which 

rotates at roughly 2-Hz. The exact speed is not critical, but the solution should not be stirred too 

rapidly, as a small amount of diffusion will help keep the columns thick at the base due to the 

natural masking effect of being at the bottom of the silicon chip, farthest from the etchant bulk 

and surrounded by the columns. In addition to the stir bar, the chip is moved up and down in the 

solution with a pair of tweezers to enhance delivery of reactants to the base of the columns. The 

silicon nitride caps on each column act as an etch mask, preventing the height from shortening 

(Figure 4.29). 

  
Figure 4.29 – An example of what some columns look like mid-thinning. This is from the round of shape testing 
described in § 4.2.2. These columns do not have backside holes, which typically open up in this step. 
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4.5.2 Sharpening 
The second step of the etch sharpens the thinned columns into needles. The procedure takes 

place at room temperature and uses the same ratio of acids as the thinning step (§ 4.5.1). This 

time, however, the stir bar is removed. The chip is flipped upside down in the etchant and is held 

stagnant (Figure 4.30). This etching process naturally produces gas, which collects at the base of 

the columns, since the chip is upside down. The gas therefore inhibits liquid etchant from reaching 

the base of the columns, reducing the etch rate there. The liquid readily reaches the tips, resulting 

in a quicker etch rate at the tips compared to the base. This is allowed to persist until the tips are 

so sharp that the nitride caps have nothing to adhere to and fall off. The needles are, at this point, 

adequately sharp enough to pierce skin. 

RT (~20°C)

 
Figure 4.30 – Columns are sharpened in a beaker of HNA. 

  
Figure 4.31 – Columns after sharpening for both designs – DRIE (left) and dicing-saw (right). 
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4.5.3 Oxidation 
The HNA etch leaves the silicon surface bare (free of oxide), which is extremely hydrophobic. As 

ISF contains a high percentage of water, a hydrophobic surface is undesirable and will act to repel 

the fluid. Luckily, silicon dioxide is remarkably hydrophilic, and is relatively easy to create on 

silicon by a chemical oxidation process. The needles are submerged in nearly-boiling (70-80 °C) 

nitric acid for several hours. The acid enters the microchannels as well, oxidizing their silicon 

surfaces. Most of the time, the solution will not enter the channels without the help of a slight 

vacuum. The entire beaker, containing the nitric acid and chips, is placed inside a vacuum 

chamber. The vacuum encourages bubbles to leave the channels, allowing the acid to enter. 

4.6 Cost analysis 
A relative cost analysis was performed, comparing the DRIE and saw methods of column 

fabrication. A true, manufacturing cost analysis is at this point impossible, due to the process 

development status, and reliance on external service for the dicing saw. However, it is useful as it 

gives some insight into the mass-production viability for each method. 

There are several things to note pertaining to scaling up for production. The fabrication currently 

uses 4-inch wafers, producing 36 chips each. If production was scaled up to 12-inch wafers, 7-9x 

more chips could be placed on each wafer, yielding somewhere between 250-325 chips per wafer, 

depending on wafer uniformity limitations of the processing equipment. This would be the single 

greatest cost-reduction strategy for the DRIE method, as timing for all steps should not change. 

Less cost-reduction (per chip) would be achieved with the saw method, as dicing saw time for 

column creation would increase by approximately 3x (3x larger in both x and y directions). 

The actual rates are not that important, as they change frequently, and differ greatly between 

different facilities, and between internal, external-academic, and industry users. For example, 

Table 4-2 shows hourly rates in USD for six different universities. Additionally, most academic 
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facilities pose a monthly or annual cap on billing, and all usage beyond that cap is charged at a 

lesser rate, or free. Hence, it makes more sense to report the cost analysis as a ratio of cost 

between the two methods, rather than absolute cost. Relative ratios between rates of different 

processes will experience less variation over time, unless major advances in cost are made for a 

particular process. It is likely this cost comparison will become significantly outdated within just a 

few years from now, but nonetheless it is useful insight into the current cost climate for both 

dicing and DRIE. 

Table 4-2 – Process rates from a variety of universities 
 DRIE Dicing 

 Internal Ext. Acad Industry Internal Ext. Acad Industry 

Harvard39 55 71.50 325 30 39 130 

UMaine40 70 140 140 35 70 70 

Utah41 100 153 200 47 71 94 

Illinois42 480 480 900 -- -- -- 

CUNY43 45 45 135/225 23 23 115 

Washington44 70 70 210 50 50 150 

 

Table 4-3 shows a rough, relative cost-comparison table for 4-inch wafers using published 

external-academic process rates from Harvard University. Harvard was ultimately chosen for the 

analysis because their rates are reasonably inexpensive, and they are located in a hot-spot of 

biomedical research. 
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Table 4-3 – Cost analysis 
 DRIE Saw 
Number of Photomasks 
Required 

1 1 

Number of Photolithography 
steps required 

1 1 

DRIE Process Steps, time in 
etch chamber 

55+, 9.2 hours 30, 5 hours 

Dicing saw process steps 0 2 steps, ~3 hours total 
Raw cost (9.2 hrs * $71.50/hr) = 

$657.80 
(5 hrs * $71.50/hr) + (3 hrs * 
$39/hr) = $474.50 

Relative cost ratio 1.4 1 
 

Current relative costs make the DRIE method around 1.4x the cost of the dicing saw method. 

 

Table 4-4 – Cost analysis, hypothetical 12-inch scaleup 
 DRIE Saw 
Number of Masks Required 1 1 
Number of Photolithography 
steps required 

1 1 

DRIE Process Steps, time in 
etch chamber 

55+, 9.2 hours 30, 5 hours 

Dicing saw process steps 0 2 steps, ~9 hours total 
Raw cost (9.2 hrs * $71.50/hr) = 

$657.80 
(5 hrs * $71.50/hr) + (9 hrs * 
$39/hr) = $708.50 

Relative cost ratio 1 1.1 
 

With a 12-inch scaleup, DRIE becomes cost-comparable to the dicing saw.  

 

Table 4-5 – Cost analysis, hypothetical 12-inch scaleup with 2x faster DRIE 
 DRIE Saw 
Number of Masks Required 1 1 
Number of Photolithography 
steps required 

1 1 

DRIE Process Steps, time in 
etch chamber 

55+, 4.6 hours 30, 2.5 hours 

Dicing saw process steps 0 2 steps, ~9 hours total 
Raw cost (4.6 hrs * $71.50/hr) = 

$328.90 
(2.5 hrs * $71.50/hr) + (9 hrs 
* $39/hr) = $529.75 

Relative cost ratio 1 1.6 
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Significant advances in DRIE technology have occurred since the release of the STS DRIE at the 

University of Maine, which was manufactured in the early 2000s. The advances have enabled far 

faster etch rates. If a newer DRIE was used, with the recipe modified to be faster, a 2x faster etch 

rate would be a conservative estimate. And this is where one would see major reductions in cost; 

the DRIE method quickly becomes cheaper than the dicing saw. 

Clearly, the analysis presented here takes some major shortcuts and simplifications, and much 

more optimization may be performed if these devices were to be manufactured on an industrial 

scale. However, costs are very volatile and company-specific; internal data would be needed to 

assess.  
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CHAPTER 5 – TESTING METHODS & RESULTS 

5.1 Water draw 
The microneedle arrays rapidly draw water into the microchannels via capillary action alone. The 

chips take only a fraction of a second to fill completely. Figure 5.1 shows six still frames from a 

24fps video. After touching the microneedle side of the chip to a dish of water, the channels are 

nearly filled in four frames (167 ms), completely filling by frame 6 (250 ms). Air bubbles are 

trapped by the channels, an unfortunate side-effect of having multiple needles connected to a 

single microchannel. Current developments are underway to decrease the volume of air trapped 

in the chip (§ 6.2). This includes application of a slight vacuum to the back of the chip during 

collection, and potential microchannel collection redesign. 

   

   
Figure 5.1 – Six still frames from a 24 fps video showing water filling the microfluidic channels. 

5.2 ISF collection from human subjects 
Both needle arrays have been shown to reliably collect small amounts (appx. 0.3µL) of ISF from 

human subjects (myself and R. L. Smith). This volume is far too small for RNA profiling, but only a 

few microliters are required for off-chip protein analysis. The volume of ISF required for on-chip 

detection of specific biomarkers depends on concentration. Some analytes, e.g. glucose, can be 

quantified in ≤ 0.1 µL. With the current design, multiple chips could be used on the same subject 

to collect the required volume. However, there are currently chips in fabrication which employ 
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deeper microchannels and a smaller drilled hole in the glass, increasing the on-chip collection 

capacity volume to 1 microliter. Assuming the skin’s local available volume of dermal ISF is ≥ 1 µL, 

these chips could enable the collection of enough ISF for off-chip analysis using just a few chips. 

This redesign is discussed in the future development section, § 6.2. 

Microneedle chips were tested on the hand, earlobe, and forearm; ISF collection was successful 

at all sites. Needles require very little pressure for insertion, but pressure must be kept on the 

chip during sampling to ensure maximum collected volume. On average, the microchannels and 

reservoir take 15-30 minutes to fill completely with ISF, but this time varied significantly between 

trials. ISF would not cross the air interface at the border of the drilled via-hole in the glass. This 

could be due to depletion of ISF in the skin, but it is also likely that the forces needed to overcome 

the boundary layer are too great for capillary action alone. Evaporative loss of water at the air 

interface is likely to also be a significant factor. When the hole is covered with a film of silicone 

rubber, evaporation is reduced. However, there was too much variability between test results 

(each done with a different chip) to verify if hole coverage alone enhanced collection volume or 

if chip-to-chip or skin location variation was responsible. Future trials will employ a slight vacuum 

to the via-hole immediately after insertion, in an attempt to remove air from the channels and 

thereby assist with quicker collection at greater volumes. Also, devices currently in process will 

have smaller holes (1 mm instead of 2 mm) in the glass, which will both increase the reservoir 

collection capacity and reduce evaporative losses. 
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Figure 5.2 – Top and bottom left: A chip being applied to a human hand. Bottom right: needle holes are visible for a 
few minutes after they are removed from the skin. Some small spots of blood are also present, a rare occasion. 

Larger ISF volumes were collected, at a quicker pace, when a priming step was first performed on 

the area of skin to be collected. In this method, solid silicon microneedles were inserted and 

removed five to ten times before the hollow needle chip was applied. The priming appeared to 

cause an edemic reaction, with subjects showing slight redness and a small amount of swelling. 

As this is a type of wound response, it is unclear at this time whether the ISF composition collected 

via this method will be the same as when priming is not used. 

Once the needles are removed, holes are visible on the skin which persist for around five minutes, 

and redness persists for fifteen minutes to a few hours, depending on the skin sensitivity of the 

subject and location. Occasionally, small amounts of blood enter the channels and residue is 

observed after removal (Figure 5.2). Subjects reported no pain throughout the procedure, but 

sensed the pressure applied, sometimes accompanied by a “prickly” sensation, and mild tugging 

upon removal. 
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We have been able to remove the collected ISF from the chip by placing it in a centrifuge tube 

and spinning. Centrifugal forces draw the fluid out of the chip through the needles and ISF collects 

at the bottom of the tube. Undoubtedly, some residual fluid and/or constituents (e.g. protein) 

remains inside the chip. Application of 0.5 µL of fluid, either just water, or analytical preparation 

solution (such as trypsin for protein analysis via mass spectrometry), can be pipetted into the chip, 

and centrifugation repeated to flush the channels, noting the consequential dilution of the sample 

contents. The tube can then be frozen for future analysis. 

5.3 Depth of penetration 
A company called Optiscan, Melbourne, Australia (https://www.optiscan.com), has an 

endomicroscopic confocal imaging probe which can be focused with micron accuracy at different 

depths inside living tissue, and captures an image of anything that fluoresces. We sent them 

several microneedle devices to see if needle penetration depth could be quantified. Here, the 

hollow microneedles’ tips were dipped into 10% fluorescein (in water), and after removing excess 

liquid from the tips, the needles were pressed into the skin on the back of the hand. After removal 

from the skin, mineral oil was immediately applied to the skin, in an attempt to fill the holes, as 

fluorescein quickly diffused away into the interstitial space. This is why the holes appear dark (no 

fluorescence) whereas the area surrounding the holes are light (fluorescing). The skin area was 

then imaged at increasing depths. The results (Figure 5.3) clearly show the holes left by the 

microneedles at depths of 30, 50, and 100 microns. After applying contrast enhancement (also 

called stretching, or normalization) to the images, holes could be seen at greater depths, up to 

164 µm (Figure 5.4). There is a change in texture in the images surrounding the holes, attributed 

to cells, at depths ≥ 100 µm, which could be indicative of the change in tissue type from epidermis 

to dermis. Further tests are needed to verify this, but these images confirm that the microneedle 

tips penetrate to depths ≥ 164 µm. 
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Figure 5.3 – Image results showing the needles’ penetration into the skin at (L to R) 0, 30, 50, and 100 microns. Images 
courtesy of Dr. Lindsay Bussau, Optiscan Pty Ltd, Melbourne, Australia. 

  
Figure 5.4 – Image results showing the needles’ penetration, after contrast stretching, into the skin at (L to R) 132, and 
164 microns. Images courtesy of Dr. Lindsay Bussau, Optiscan Pty Ltd, Melbourne, Australia.  
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CHAPTER 6 – CONCLUSIONS & FUTURE WORK 

6.1 Conclusions 
A microfabricated instrument was proposed, fabricated and tested. Significant improvements 

were made over prior art: 

•  Chip collection capacity volume was increased from ≈200 nanoliters to ≈1 microliter. This 

was made possible by increasing the number and depth of the microchannels on the back 

of the chip. 

• The number of collecting needles was increased from 18 needles to 162, with expectation 

that increasing the number of collecting needles will increase the rate and volume of ISF 

collection. 

• Production time was decreased, resulting in a dramatic increase of throughput. The 

improved process flow substantially increased yield of functioning devices. The previous 

(Mukerjee et al.) chip fabrication method is estimated to require ≥ 120 process hours to 

create just a couple of working devices, while now it takes roughly 40 process hours to 

produce a wafer containing 36 working devices. 

• I designed a new column geometry, that is created using one DRIE step, which after 

sharpening produces the requisite microneedle shape for successful ISF extraction. This 

method of fabrication is currently costlier than using an automated dicing saw, but several 

optimizations can be made which would make this DRIE method cheaper, the most 

significant being the use of larger diameter wafers. 
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• I was able to increase the thickness of the wafers used to 550 µm for the dicing saw 

design, and 625 µm for the DRIE design, up from 500 µm published by Mukerjee et al. 

This increase in wafer thickness allows for an increase in microneedle height from 250-

350 µm in Mukerjee’s chips to 400-420 µm, without sacrificing yield due to wafer fragility. 

The taller needles penetrate deeper into the dermis layer of skin, potentially increasing 

the volume of ISF available for collection. 

ISF extraction capability was consistent and repeatable, although the performance, in terms of 

extraction volume and rate, was highly variable. Because a different chip had to be used for each 

trial, as well as other variables, including different subject, location on skin, skin preparation 

protocol, the amount of pressure applied, and evaporative loss; the cause for collection volume 

variation cannot be determined at this time. 

The microneedle device is both mechanically robust and small enough to consider it completely 

portable and ultimately “wearable.” Thirty-six chips of the current size can fit on a single 4-inch 

silicon wafer. If the design were to go to mass production, throughput could be significantly 

increased if 8-inch or 12-inch wafers were employed. Currently, needles are sharpened on a per-

chip basis. A wafer-scale sharpening etch could be implemented, further reducing manufacturing 

time, and chip-to-chip variability. 

The needles themselves are strong enough to withstand multiple skin penetrations, and devices 

could potentially be cleaned, sterilized and reused. 

6.2 Future considerations 
The largest, most immediate concern for future development is to increase the volume of ISF 

collected by the chip. Channel depth has been increased to double the collected volume, but there 

is a limit: ISF must reach the extremely-hydrophilic glass backing to be sucked into the channels 



 

61 

via capillary action. The needles are oxidized in nitric acid after sharpening to increase 

hydrophilicity, but glass is believed to be the main source of capillary forces drawing the ISF into 

the chamber. Significant microchannel redesign is necessary to achieve single-chip capacity 

volumes necessary for RNA sequencing and other volume-intensive tasks. This may be 

accomplished by a microchannel redesign to prevent air bubbles from collecting and being 

trapped in the channels. A vertical approach could prove possible, with drilled glass or silicon 

containing arrays of small holes instead of a single collection point. However, it also may be that 

collection is limited by the accessible volume of dermal ISF. In that case, the only way to increase 

collected volume is to increase the area of skin from which collection is performed. This may be 

done using multiple chips, larger chips, and/or by increasing needle height to access a larger 

volume of dermal tissue. The latter will be difficult to achieve with the current out-of-plane silicon 

microneedle design using DRIE for borehole formation, but other methods and/or materials are 

available, albeit with limitations.45 

Alternatively, diagnostic techniques could be incorporated into the chips themselves as a lab-on-

a-chip (LoC). If these devices are to be used in austere environments, it will be of great importance 

for them to be a single point of analysis, requiring nothing else but the chips themselves. 

Additionally, this may alleviate the volume issue, as LoCs can handle extremely small fluid 

volumes, down to picoliters, depending on the analyte and method of measurement. Certain 

aspects such as RNA sequencing would require major breakthroughs in sequencing technology to 

be able to perform that as a LoC; however, many other aspects like targeted-biomarker detection, 

including specific RNA sequences, could be achieved with selective sensor technology 

incorporated onto the chips.  
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APPENDIX A – COMPLETE FABRICATION PROCESS FLOW 

 

Major steps are given a number, i.e. “Step 1.” The explanation and procedure of the step follows 
in a bulleted list format. It should be assumed the bulleted list was followed sequentially, unless 
otherwise indicated. 

A.1 Backside fabrication 
Both designs begin by fabricating the backside microchannels, reservoir, and 30µm holes. The 
procedure for both designs is the same. 

Step 1 – RCA clean 

• Prepare base bath – 4 liters deionized water + 600 mL ammonium hydroxide + 500 mL 
hydrogen peroxide – heat to 75 °C 

• Prepare acid bath – 4 liters deionized water + 600 mL hydrochloric acid + 500 mL 
hydrogen peroxide – heat to 75 °C 

• Place wafers in wafer carrier, and lower into base bath. Leave for 10 minutes, and then 
rinse in deionized water bath. 

• Lower wafer carrier into the acid bath. Leave for 10 minutes, and then rinse in deionized 
water bath. 

• Blow dry with nitrogen gun. Be extremely thorough, as any leftover water will leave a 
visible streak in the wafer post-oxidation. 

Step 2 – Thermal oxidation furnace, 500 nm (1050 °C, wet oxidation, 1 hour) 

• Verify and record final oxidation thickness with ellipsometer 

Step 3 – Photolithography for channel-side oxide etch 

• HMDS vapor prime wafer at 115 °C hotplate temperature in HMDS vacuum hotplate 
system 

• Spin 5.5 mL AZ1512 photoresist using table spinner 

◦ Spread: ramp to 400 RPM in 5 seconds, hold for 10 seconds 

◦ Spin: ramp to 3500 RPM in 2.5 seconds, hold for 40 seconds 

◦ Final: ramp to 1000 RPM in 4 seconds, then ramp to 0 RPM in 10 seconds 

◦ Rest on spinner 30 seconds before bake 

• Soft bake on vacuum hotplate for 90 seconds at 100 °C, using vacuum cycle 

• Expose wafer to MASK A – channels, 85 mJ dose, Karl Suss MA6 

◦ Mask images can be found in Appendix B: mask images 
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• Develop in MIF300 for 60 seconds 

◦ MIF300 contains TMAH, a potent neurotoxin. Exercise extreme caution. 

• Rinse in deionized water, dry with N2 gun, and inspect print 

• Hard bake on hotplate for 60 seconds at 100 °C 

Step 4 – Channel oxide etch 

• Apply UV-release dicing tape to the column side (opposite) 

◦ This is to act as a mask for BOE, protecting the oxide layer on that side for now. 
Having an oxide layer protects the wafer silicon surface from scratching while it is 
being processed. 

• Place in teflon dish with 6:1 BOE solution for 8 minutes 

◦ BOE etches glass, so glass cannot be used. 

◦ When the etch has finished, the surface that was etched away will be bare silicon, 
and will be hydrophobic. This information can be used to determine when the etch 
has finished. 

• Remove dicing tape by exposing to UV with the aligner for 30 seconds 

• Strip photoresist with PG remover, or Acetone/IPA/MeOH/DIW 

• Clean in piranha solution 

Step 5 – Photolithography for channel-side 30μm hole arrays 

• HMDS vapor prime wafer at 115 °C hotplate temperature in HMDS vacuum hotplate 
system 

• Spin 6 mL SPR220 photoresist using table spinner 

◦ Spread: ramp to 500 RPM in 10 seconds, hold for 10 seconds 

◦ Spin: ramp to 1800 RPM in 10 seconds, hold for 30 seconds 

◦ Final: ramp to 0 RPM in 15 seconds 

◦ Rest on spinner 30 seconds before bake 

• Soft bake on hotplate for 300 seconds at 115 °C 

◦ Ramp temperature by placing wafer on the pins first, then slowly retract the pins 
until the wafer touches the hotplate surface. Start the timer when the wafer 
touches the hotplate surface. Use the chuck vacuum for tight hotplate contact. 

◦ After the soft bake, it is important to avoid thermal shock. Ramp the temperature 
down by slowly raising the pins after disabling the vacuum. Raise the pins all the 
way and then leave for several minutes to ensure a slow temperature ramp down. 
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Failure to do so may result in many cracks in the resist over the wafer. Place on a 
cleanroom wipe after cool down. 

• Expose wafer to MASK B – 30μm hole, 385 mJ dose, Karl Suss MA6 

◦ Use multiple exposure option, 4 cycles with 30 second hold time between cycles 

• Hold time – wait at least 30 minutes before developing. This step is crucial, as it allows 
time for the photoactive compound (PAC) to break down in the thick resist. 

• Develop in MIF300 for 300 seconds, with manual agitation 

◦ MIF300 contains TMAH, a potent neurotoxin. Exercise extreme caution. 

• Rinse in deionized water, dry with N2 gun, and inspect print 

Step 6 – DRIE 30μm hole arrays 400μm deep 

• Etch in STS DRIE using 48 runs of recipe “Maine2” (see Appendix B –  recipes) 

• Strip photoresist with (sequentially) Acetone, IPA, MeOH, DIW 

• Clean wafer with piranha solution 

Step 7 – DRIE channels 40μm deep, using SiO2 patterned in steps 3/4 as mask 

• Etch in STS DRIE using 4 runs of recipe “Maine2” (see Appendix B – recipes) 

Step 8 – Column side oxide etch 

• Apply UV-release dicing tape to the channel side (opposite) 

◦ The column side oxide now needs to be removed, as the bare silicon surface is 
needed for PECVD. Again, the tape is to act as a mask for BOE, now protecting the 
remaining oxide layer on the channel side. As mentioned previously, having an oxide 
layer protects the wafer silicon surface from scratches while it is being processed. 

• Place in teflon dish with 6:1 BOE solution for 8 minutes 

◦ BOE etches glass, so a glass dish cannot be used. 

◦ When the etch has finished, the surface that was etched away will be bare silicon, 
and will be hydrophobic. This information can be used to determine when the etch 
has finished. 

• Remove dicing tape by exposing to UV with the aligner for 30 seconds 
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A.2 Frontside fabrication, DRIE design 
The after completion of the backside, each design has its own process flow for the front, or 
needle-side. The DRIE procedure is as follows: 

Step 9 – Nitride deposition (PECVD) on column side 

• Have the hotplate chuck set at 390 °C 

• Open the chamber and place the wafer on the chuck 

• Close and pump down the chamber 

• Run recipe “MSC SiN-Hi Qual” (see Appendix B – Recipes) 

• Verify thickness using the ellipsometer. It should be around 8200Å. 

Step 10 - Photolithography for columns 

• HMDS vapor prime wafer at 115 °C hotplate temperature in HMDS vacuum hotplate 
system 

• Spin 6 mL SPR220 photoresist using table spinner 

◦ Spread: ramp to 500 RPM in 10 seconds, hold for 10 seconds 

◦ Spin: ramp to 1800 RPM in 10 seconds, hold for 30 seconds 

◦ Final: ramp to 0 RPM in 15 seconds 

◦ Rest on spinner 30 seconds before bake 

• Soft bake on hotplate for 300 seconds at 115 °C 

◦ Ramp temperature by placing wafer on the pins first, then slowly retract the pins 
until the wafer touches the hotplate surface. Start the timer when the wafer 
touches the hotplate surface. Use the chuck vacuum for tight hotplate contact. 

◦ After the soft bake, it is important to avoid thermal shock. Ramp the temperature 
down by slowly raising the pins after disabling the vacuum. Raise the pins all the 
way and then leave for several minutes to ensure a slow temperature ramp down. 
Failure to do so may result in many cracks in the resist over the wafer. Place on a 
lint-free wipe after cool down. 

• Expose wafer to MASK D – columns, 385 mJ dose, Karl Suss MA6 

◦ Use multiple exposure option, 4 cycles with 30 second hold time between cycles 

• Hold time – wait at least 30 minutes before developing. This step is crucial, as it allows 
time for the photoactive compound (PAC) to break down in the thick resist. 

• Develop in MIF300 for 300 seconds, with manual agitation 

◦ MIF300 contains TMAH, a potent neurotoxin. Exercise extreme caution. 
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• Rinse in deionized water, dry with N2 gun, and inspect print 

Step 11 – DRIE columns 400μm deep 

• Etch in STS DRIE using 48 runs of recipe “Maine2” (see Appendix B – recipes) 

• Check depth 

• Etch further as needed, using a shorter run 

◦ Repeat until 400μm depth is reached 

• Strip photoresist with (sequentially) Acetone, IPA, MeOH, DIW 

• Clean wafer with piranha solution 

Step 12 – Channel-side oxide etch 

• Apply UV-release dicing tape to the column-side (opposite) 

◦ The remaining channel-side oxide now needs to be removed, as the bare silicon 
surface is needed for anodic bonding to glass. The tape is to act as a mask for BOE, 
protecting the PECVD nitride on the column-side. 

• Place in teflon dish with 6:1 BOE solution for 8 minutes 

◦ BOE etches glass, so a glass dish cannot be used. 

◦ When the etch has finished, the surface that was etched away will be bare silicon, 
and will be hydrophobic. This information can be used to determine when the etch 
has finished. 

• Remove dicing tape by exposing to UV with the aligner for 30 seconds 

Step 13 – Anodic bond to glass 

• Set hotplate temperature to 420 °C 

• Place wafer on chuck, column-side down 

• Place 4-inch Pyrex 7740 (or equivalent) wafer on top of the silicon wafer 

◦ This glass wafer has had via holes pre-drilled, for ISF access 

• Align pre-drilled holes (see schematic) 

• Place electrode on Pyrex wafer 

• Apply 1100V and wait for bonding 

Step 14 – Dicing saw, cut individual die 

• Align saw angle to columns 

• Find walls between chips, cut along wall 
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• Repeat for entire wafer 

• Rotate 90 degrees 

• Find walls between chips, cut along wall 

• Repeat for entire wafer 

Step 15 – Cover via holes on the backs of chips with tape that can stand HNA 

• I used Kapton tape, which held up satisfactorily. There are probably some tapes that will 
work better. 

Step 16 – Thinning columns 

• Prepare a solution of HNA (hydrofluoric acid : nitric acid : acetic acid) 1:8:1 by volume 

• Heat solution to 50 °C in water bath 

◦ Polymer beaker that can withstand HNA at 50 °C (e.g. Teflon), inside larger glass dish 
with hot water, sitting on hotplate 

• Add stir bar to HNA solution, set to ~2 revolutions per second 

• Gripping chip with tweezers, column-side up, submerge in HNA, and move slowly up and 
down (chip remaining in solution the whole time) at a rate of ~2 per second 

• Continue for 90 seconds 

• Remove, rinse in hot water, dry, and inspect column tips with optical microscope 

Step 17 – Sharpening columns 

• Pour 40 mL HNA (1:8:1 vol) solution into a plastic beaker that can stand HNA, e.g. Teflon 

◦ Room temperature, no stir bar 

• Gripping chip with tweezers, column-side down, submerge in HNA, and do not move 

◦ The goal is to get this step as quiescent as possible. Bubbles produced by the HNA 
reaction will collect at the column base, enhancing etching at the tip. Result will be 
sharpened needles 

• Every 30 seconds, take the chip out, rinse in hot water, dry, and inspect the tips with 
optical microscope.  

◦ The tips will get smaller and smaller, until you cannot see a tip. This is when they are 
sharpened. Stop sharpening as soon as this happens, as shank length will be 
reduced dramatically if sharpening continues. 

◦ When finished, work can be verified with SEM. 
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A.3 Frontside fabrication, dicing saw design 
The dicing saw needle-side procedure is as follows: 

Step 9 - Photolithography for column-side 10μm hole 

• HMDS vapor prime wafer at 115 °C hotplate temperature in HMDS vacuum hotplate 
system 

• Spin 6 mL SPR220 photoresist using table spinner 

◦ Spread: ramp to 500 RPM in 10 seconds, hold for 10 seconds 

◦ Spin: ramp to 1800 RPM in 10 seconds, hold for 30 seconds 

◦ Final: ramp to 0 RPM in 15 seconds 

◦ Rest on spinner 30 seconds before bake 

• Soft bake on hotplate for 300 seconds at 115 °C 

◦ Ramp temperature by placing wafer on the pins first, then slowly retract the pins 
until the wafer touches the hotplate surface. Start the timer when the wafer 
touches the hotplate surface. Use the chuck vacuum for tight hotplate contact. 

◦ After the soft bake, it is important to avoid thermal shock. Ramp the temperature 
down by slowly raising the pins after disabling the vacuum. Raise the pins all the 
way and then leave for several minutes to ensure a slow temperature ramp down. 
Failure to do so may result in many cracks in the resist over the wafer. Place on a 
lint-free wipe after cool down. 

• Expose wafer to MASK C – 10μm hole, 385 mJ dose, Karl Suss MA6 

◦ Use multiple exposure option, 4 cycles with 30 second hold time between cycles 

• Hold time – wait at least 30 minutes before developing. This step is crucial, as it allows 
time for the photoactive compound (PAC) to break down in the thick resist. 

• Develop in MIF300 for 300 seconds, with manual agitation 

◦ MIF300 contains TMAH, a potent neurotoxin. Exercise extreme caution. 

• Rinse in deionized water, dry with N2 gun, and inspect print 

Step 10 – DRIE 10μm hole arrays until they meet 30μm hole 

• Etch in STS DRIE using 48 runs of recipe “Maine2” (see Appendix B – recipes) 

• Etch will automatically stop when holes are broken through, as the helium leakup rate 
will rise higher than the cutoff 

• Strip photoresist with (sequentially) Acetone, IPA, MeOH, DIW 

• Clean wafer with piranha solution 
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Step 11 – Nitride deposition (PECVD) on column side 

• Have the hotplate chuck set at 390 °C 

• Open the chamber and place the wafer on the chuck 

• Close and pump down the chamber 

• Run recipe “MSC SiN-Hi Qual” (see Appendix B – Recipes) 

• Verify thickness using the ellipsometer. It should be around 8200Å. 

Step 12 – Channel-side oxide etch 

• Apply UV-release dicing tape to the column-side (opposite) 

◦ The remaining channel-side oxide now needs to be removed, as the bare silicon 
surface is needed for anodic bonding to glass. The tape is to act as a mask for BOE, 
protecting the PECVD nitride on the column-side. 

• Place in teflon dish with 6:1 BOE solution for 8 minutes 

◦ BOE etches glass, so a glass dish cannot be used. 

◦ When the etch has finished, the surface that was etched away will be bare silicon, 
and will be hydrophobic. This information can be used to determine when the etch 
has finished. 

• Remove dicing tape by exposing to UV with the aligner for 30 seconds 

Step 13 – Anodic bond to glass 

• Set hotplate temperature to 420 °C 

• Place wafer on chuck, column-side down 

• Place 4-inch Pyrex 7740 (or equivalent) wafer on top of the silicon wafer 

◦ This glass wafer has had via holes pre-drilled, for ISF access 

• Align pre-drilled holes (see schematic) 

• Place electrode on Pyrex wafer 

• Apply 1100V and wait for bonding 

Step 14 – Dicing saw, columns 

• Align saw angle to 10μm hole arrays 

• Starting at the bottom row of 10μm hole arrays, make 23 full cuts, 400μm deep 
(measured from wafer top surface), 300μm center-to-center spacing between cuts 

◦ See schematic for more detailed alignment information 



 

74 

• Move the saw blade up to the next row of 10μm hole arrays and repeat the same 23 
cuts 

• Repeat for remaining rows of 10μm hole arrays 

• Rotate chuck 90 degrees 

• Repeat the 23 cuts, move, 23 cuts, etc. for the 8 columns of 10μm hole arrays 

Step 15 – Dicing saw, clear field 

• Align saw angle to columns 

• Using a wide blade, make stepwise cuts at the same depth as the columns (400μm), 
clearing all of the silicon between the column arrays 

Step 16 – Dicing saw, cut individual die 

• Align saw angle to columns 

• Find midpoint between arrays, cut along midpoint 

• Repeat for entire wafer 

• Rotate 90 degrees 

• Find midpoint between arrays, cut along midpoint 

• Repeat for entire wafer 

Step 17 – Cover via holes on the backs of chips with tape that can stand HNA 

• I used Kapton tape, which held up satisfactorily. There are probably some tapes that will 
work better. 

Step 18 – Thinning columns 

• Prepare a solution of HNA (hydrofluoric acid : nitric acid : acetic acid) 1:8:1 by volume 

• Heat solution to 50 °C in water bath 

◦ Polymer beaker that can withstand HNA at 50 °C (e.g. Teflon), inside larger glass dish 
with hot water, sitting on hotplate 

• Add stir bar to HNA solution, set to ~2 revolutions per second 

• Gripping chip with tweezers, column-side up, submerge in HNA, and move slowly up and 
down (chip remaining in solution the whole time) at a rate of ~2 per second 

• Continue for 90 seconds 

• Remove, rinse in hot water, dry, and inspect column tips with optical microscope 

Step 19 – Sharpening columns 
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• Pour 40 mL HNA (1:8:1 vol) solution into a plastic beaker that can stand HNA, e.g. Teflon 

◦ Room temperature, no stir bar 

• Gripping chip with tweezers, column-side down, submerge in HNA, and do not move 

◦ The goal is to get this step as quiescent as possible. Bubbles produced by the HNA 
reaction will collect at the column base, enhancing etching at the tip. Result will be 
sharpened needles 

• Every 30 seconds, take the chip out, rinse in hot water, dry, and inspect the tips with 
optical microscope.  

◦ The tips will get smaller and smaller, until you cannot see a tip. This is when they are 
sharpened. Stop sharpening as soon as this happens, as shank length will be 
reduced dramatically if sharpening continues. 

◦ When finished, work can be verified with SEM.  
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APPENDIX B – RECIPES 

Following are recipes for each of the machine-automated steps in the fabrication process. 

B.1 STS DRIE 
Recipe: Process for 3 minutes, then hold for 10 minutes to allow for better heat management. 

Start on passivate, end on etch. 

 Etch Passivate 
C4F8 flow rate (sccm) 0 110 
SF6 flow rate (sccm) 130 0 
RF Power, 13.56MHz, Coil 900 W, ramp rate 0 W/min 800 W, ramp rate 0 W/min 

auto matching, match load 30%, match tune 53% 
RF Power, 13.56MHz, Platen 16 W, ramp rate 0.1 W/min 0 W, ramp rate 0 W/min 

auto matching, match load 42%, match tune 61% 
Time 13s 7s 

 

Helium backside cooling 

 Pressure: 9500 mTorr 

 Tolerance: 99% 

 Max flow: 40 sccm; Min flow: 10 sccm 

 Leak-up rate test time: 15s; max leak: 15 mTorr/min 

B.2 HNA ETCH 
The HNA etch used to sharpen the columns into needles is a biphasic procedure which combines 
an actively stirred thinning etch step with a quiescent sharpening step. It is currently on the chip 
level, although instruments could be designed to bring the process to wafer-scale. 

Below is an example of how etch rate changes by composition of HNA. The ratio of acids used in 
this fabrication is 1:8:1 HF:HNO3:AcOH, resulting in a moderately slow etch rate. 
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Figure B.1 – Curves of constant rate of change of die thickness (mils/min) as a function of etchant composition in the 
system 49% HF, 70% HNO3 and diluent.38 

B.2.1 Thinning 
The thinning step is performed at 50 °C. Etchant can be heated in a water bath. Solution is 
stirred with magnetic stir bar rotating at roughly 2-Hz. The chip is moved up and down in the 
solution with a pair of tweezers. 

50°C

 
Figure B.2 – The thinning procedure utilizes an up/down motion of the chip and a stir bar to minimize the effects of 
diffusion. 

B.2.2 Sharpening 
The sharpening step is performed at room temperature. The chip is placed upside down in the 
solution and held stagnant. Bubbles, produced by the reaction, collect at the base of the 
columns, halting the etching there. 
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RT (~20°C)

 
Figure B.3 – The sharpening procedure is quiescent. 
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APPENDIX C – DEVICE FABRICATION SCHEMATIC 

The following pages show a pictorial representation of the fabrication steps described in 
APPENDIX A. The dimensions have been significantly modified for ideal special formatting in this 
document, so thicknesses are explicitly noted where required. All materials (i.e. Si, SiO2, resist, 
etc.) are labeled at least once and have consistent coloring. 

C.1 BACKSIDE FABRICATION, BOTH DESIGNS 

Step 1 – RCA clean 

Si

55
0-

65
0 

µm

 

Step 2 – Thermal steam 
oxidation, 500nm thickness 

Si

SiO2

50
0 

nm

SiO2  

Step 3 – Photolithography 
for channel-side oxide etch 

Si

SiO2

SiO2

resist

UV-light
 

Step 4 – Channel oxide etch 

SiO2 SiO2 SiO2

SiO2

Si
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Step 5a – Spin thick 
photoresist, covering oxide 
pattern 

resist

Si

SiO2

SiO2 SiO2 SiO2

10
 µ

m

 

Step 5b – Expose to 30µm 
hole arrays, develop 

Si

SiO2

10
 µ

mSiO2 SiO2 SiO2

resist

30µm

 

Step 6a – DRIE 30µm hole 
arrays 400µm deep 

SiO2 SiO2 SiO2

SiO2

40
0 

µm

resist

DRIE holes

Si30µm

 

Step 6b – Remove 
photoresist, revealing the 
oxide patterned earlier 

SiO2 SiO2 SiO2

SiO2

40
0 

µmSi

30µm

 

Step 7 – DRIE channels 40µm 
deep using SiO2 as etch 
mask 

SiO2

SiO2 SiO2 SiO2 40
 µ

mSi

30µm
Hole is adjacent 

to a channel wall
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Step 8 – Column-side oxide 
etch 

SiO2 SiO2 SiO2

Si

 

 

C.2 DRIE COLUMN FABRICATION PROCESS 

DRIE step 9 – PECVD nitride 
on column side. Saw wafers 
are 650 microns thick. 

SiO2 SiO2 SiO2

Si3N4

85
0 

nm

Si

65
0 

µ m

 

DRIE step 10 – 
Photolithography for 
columns 

SiO2 SiO2 SiO2

Si3N4

Si

resist

 
 

SiO2 SiO2 SiO2

Si3N4

Si

resistresistresist

 

DRIE step 11 – DRIE columns 
400 µm deep 

resistresistresist
Si3N4Si3N4Si3N4

SiO2 SiO2 SiO2

40
0 

µm

Si
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DRIE step 12 – Remove 
resist, and channel-side 
oxide 

Si3N4Si3N4Si3N4

Si

 

DRIE step 13 – Anodic bond 
to glass 

Si3N4Si3N4Si3N4

Predrilled glass

Si

 

DRIE step 16 – Thin columns 

Predrilled glass

SiSi

Si3N4Si3N4Si3N4

 

DRIE step 17 – Sharpen 
columns 

Predrilled glass  

Final dimensions 

Predrilled glass
40

0 
µm

300 µm

 

 

C.3 SAW COLUMN FABRICATION PROCESS 

Saw step 9 – 
Photolithography for 
column-side 10µm hole 
arrays 

resist

SiO2 SiO2 SiO2

10
 µ

m

Si
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Saw step 10 – DRIE 10µm 
hole arrays until they meet 
30µm hole 

resist

SiO2 SiO2 SiO2

Si

Holes meet

 

Saw step 11 – Channel-side 
oxide etch 

Si

SiO2 SiO2 SiO2  

Saw step 12 – PECVD nitride 

SiO2 SiO2 SiO2

Si3N4

85
0 

nm

Si

 

Saw step 13a – Remove 
oxide layer Si3N4

85
0 

nm

Si
 

Saw step 13b – Anodic bond 
to glass 

Si3N4

Si

Predrilled glass  

Saw step 14, 15, 16 – Cut 
columns with dicing saw 

Si3N4Si3N4Si3N4

Predrilled glass

Si
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Saw step 17, 18 – Thin 
columns 

Si3N4Si3N4Si3N4

Predrilled glass

Si

 

Saw step 19 – Sharpen 
columns, nitride caps fall off 

Predrilled glass  

Final dimensions 

Predrilled glass

40
0 

µm

300 µm
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APPENDIX D – PHOTOMASKS 

There are four photomasks in total for this project. Each column formation process (DRIE vs. dicing 
saw) only uses three each, and they are named as follows: 

• USED FOR BOTH: Mask #1 – Channels. This mask is used for patterning the microfluidic 
channels and reservoir. In the photos, this mask is colored blue. 

• USED FOR BOTH: Mask #2 – 30µm Borehole. This mask is used for patterning the 30µm 
borehole on the channel-side of the wafer. The borehole is DRIE’d to a depth of 400µm 
and is what allows the ISF to reach the microfluidic channels, traveling straight through 
the wafer. In the photos, this mask is colored red, or purple if overlapping another mask. 

• SAW PROCESS ONLY: Mask #3 – 10µm Borehole. This mask is used for patterning the 
10µm borehole on the needle-side of the wafer. The borehole is DRIE’d until it meets the 
30µm hole patterned with mask #2. In the photos, this mask is colored dark purple. 

• DRIE PROCESS ONLY: Mask #4 – Columns. This mask is used for patterning the columns, 
when using DRIE to form them. A 14-µm wide frame surrounds each column, protecting 
it from “footing,” which happens when using DRIE to great depths. 

D.1 Backside: Channels, Mask #1 

 
Figure D.1 – The first mask level patterns the microchannels, reservoirs and first level alignment marks. 
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Figure D.2 – Closeup of a single chip, with a further closeup of some individual channels. 

 
Figure D.3 – closeup of microchannels, from Figure D.2. 

D.2 Backside: 30-micron holes, mask #2 

 
Figure D.4 – The 30-micron boreholes are aligned to the microchannels. 
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D.3 Frontside – Saw: 10-micron holes, mask #3 

 
Figure D.5 – 10-micron holes 

D.4 Frontside – DRIE: columns, mask #4 

 
Figure D.6 – DRIE columns 

D.5 Alignment marks 

 

Figure D.7 – Mask #1 alignment marks 
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Figure D.8 – Mask #2 aligns to marks left by mask #1 

 

Figure D.9 – Mask #3 (saw only) aligns to marks left by mask #1 

 

Figure D.10 – Mask #4 (DRIE only) aligns to marks left by mask #1 
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APPENDIX E – WAFER SPECIFICATIONS 

Table E-1 – Dicing saw wafer specifications 
Diameter 100.0 ± 0.5 mm 
Lot number FM4714 
Type/Dopant Silicon, P/B 
Orientation <100> 
Thickness 550 ± 15 µm 
Total thickness variation (TTV) < 15 µm 
Resistivity* 0.01 - 0.2 Ω-cm, 0.01 - 0.02 Ω-cm 

* Resistivity range 0.01-0.2 Ω-cm was due to a purchasing order error and was corrected on a 
future order. However, four-point probe measurements showed that resistivity values from 
both orders were comparable to each other. 
 

Table E-2 – DRIE-only wafer specifications 
Diameter 100.0 ± 0.5 mm 
Lot number Unk. 
Type/Dopant Silicon, P/B 
Orientation <100> 
Thickness 650 ± 10 µm 
Total thickness variation (TTV) < 10 µm 
Resistivity 0.01 - 0.05 Ω-cm 

 

Table E-3 – Extra-thick test wafer specifications 
Diameter 100.0 ± 0.5 mm 
Lot number Unk. 
Type/Dopant Silicon, P/B 
Orientation <100> 
Thickness 750 ± [[xx]] µm 
Total thickness variation (TTV) Unk. 
Resistivity 0.01 0.02 Ω-cm 
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APPENDIX F – EQUIPMENT 

Table F-1 – Equipment 
Equipment Name Manufacturer Model 
Anodic bond power supply Stanford Research Systems, 

Inc. 
PS325 / 2500V 25W 

Anodic bond temperature controller OMEGA Engineering CN76000 
Camera – DSLR Canon EOS 6D 
Camera – Zeiss Axioplan 2 Zeiss AxioCam HRc 
Camera equipment – DSLR 
microscope adapter system 

VariMag VariMag II V2 3BBL 

Contact profilometer KLA Tencor Alpha-Step 500 
Deep-reactive ion etch (DRIE) STS Multiplex 
Dicing saw – in house Kulicke & Soffa 775 
Dicing saw – remote DISCO Hi-Tec DAD3240 
Dicing saw blades – in house Thermocarbon DiceMaster 2.187-8A-9R7-3 & 

2.187-6A-9R7-3 
Drill – for glass Dremel 395 Type 5 
Drill bits Lasco Diamond Products 1.5 & 2.0 mm 

diamond 
Ellipsometer J. A. Woollam Co., Inc M-2000V 
Four-point probe Keithley 2400 SourceMeter 
HMDS / vacuum hotplate Solitec Wafer Processing VBS-200 
Hot plate (wet lab) Corning PC-420/PC-420D 
Mask aligner Karl Suss MA6 
Optical microscope (cleanroom) Leitz 020-448.026 
Optical microscope 1 (wet lab) Zeiss Stemi 2000-C 
Optical microscope 1 (wet lab) light 
source 

Chiu Technical Corporation Lumina FO-150 

Optical microscope 2 (wet lab) Zeiss Axioplan 2 
Optical microscope 2 (wet lab) light 
source 

Zeiss HAL 100 

Optical profilometer FRT MicroProf 100 
Oven – cleanroom Fisher Scientific 506G 
Oven – wet lab Quincy Lab, Inc. 10GC 
Oxidation furnace Tylan Tytan 
Photomask pattern generator GCA MANN 3600 
Plasma-enhanced chemical vapor 
deposition system (PECVD) 

Oxford Instruments Plasmalab80Plus 

Reflectometer Filmetrics 230-0243 
Scanning electron microscope (SEM) Zeiss NVision 40 
Table spin coater and controller Bidtec SP-100 
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APPENDIX G – STOCK SOLUTIONS 

The following information explains the chemicals used in the process. The grade and 
concentration for all chemicals referenced in this thesis are listed in Table G-1. Relevant dangers 
and other information are elaborated in sections G.1-G.4. 

Table G-1 – Chemical Concentration Table 
Chemical Grade Concentration Lookup code 
Acetic acid, glacial ACS Plus 100.0% A38s-212 
Acetone ACS ≥99.5% A18-4 
Ammonium hydroxide TraceMetal 20-22% A512-4 
AZ MIF 300 developer Unspecified 2.38%-wt tetramethylammonium 

hydroxide in water 
GHSBBG70N4 

Buffered oxide etchant Unspecified 6:1 ammonium fluoride : 
hydrofluoric acid 

Not specified 

Chromium mask 
etchant 

Unspecified < 5% perchloric acid 
< 10% ceric ammonium nitrate 
> 85% water 

CE-5M 

HNA etchant Not 
applicable 

1:8:1 by volume (stock) 
HF : Nitric : Acetic 

Not applicable 

Hydrochloric acid (HCl) ACS Plus 36.5-38.0% A144S-212 
Hydrofluoric acid (HF) Unspecified 48-51% AC223335000 
Hydrogen peroxide ACS 30% H325-500 
Isopropyl alcohol (IPA) ACS Plus ≥99.5% A416-4 
Methanol (MeOH) ACS ≥99.8% A412-4 
Nitric acid TraceMetal 68.0-71.0% A509SK-212 
Sulfuric acid ACS Plus 95.0-98.0% A300-212 

 

G.1 Chemicals 
Hydrofluoric acid 

Hydrofluoric acid is a powerful contact poison. There is no antidote for internal HF 
toxicity. HF has the ability to penetrate tissue, and poisoning can occur readily through 
the skin or eyes, or when inhaled or swallowed. Symptoms of exposure typically are not 
immediately evident, which can provide false reassurance causing victims to delay 
medical treatment. Hydrofluoric acid exposure requires immediate specialized medical 
attention! Calcium gluconate gel, which binds to the fluoride ion, is used for skin burns. 
However, HF attacks very rapidly, and tissue will need to be removed, and/or deep 
injections made to access the area where the HF has reached. Amputation is not 
uncommon. 

G.2 Developers 
AZ-MIF-300 (MIF300) 

AZ-MIF-300 is a solution of 2.38%-wt high purity tetramethylammonium hydroxide 
(TMAH) in water. The solution is colorless, or slightly yellow. TMAH has virtually no odor 



 

92 

when pure, but often has a strongly fishy smell when trimethylamine is present as an 
impurity. 

Exposure to TMAH affects nerves and muscles, causing difficulties in breathing, 
muscular paralysis and death. There is no antidote. The tetramethylammonium ion is 
structurally related to acetylcholine, and binds and activates the nicotinic acetylcholine 
receptors. There is evidence that poisoning can occur through skin-contact with 
concentrated solutions of TMAH. 

G.3 Etchants 
Buffered Oxide Etch (BOE) 

The BOE used for this project is a 6:1 solution of ammonium fluoride and hydrofluoric 
acid. It is manufactured by Transene. Hydrofluoric acid is a powerful contact poison. 

Chromium Mask Etchant CE-5M 

From the manufacturer (Transene): Chrome Mask Etchant CE-5M is a ceric ammonium 
nitrate and perchloric acid etching solution for all types of chrome plates. Etch rate will 
depend upon substrate chrome density and process conditions. In general, the etch time 
usually ranges from 15 to 55 seconds at room temperature (25 C). Chrome Mask Etchant 
CE-5M is suitable for sub-micron photolithography applications. 

G.4 Photoresists 
Megaposit SPR220-7.0 

From the manufacturer: SPR220 i-Line photoresist is a general purpose, multi-wavelength 
resist designed to cover a wide range of film thicknesses, 1-10µm, with a single coat 
process. 

Nominal thickness for my process: 10µm 

AZ 1512 

From the manufacturer: The AZ 1500 series yields an improved adhesion for all common 
wet etching processes. AZ 1512 has a very high photo active compound concentration, 
maximizing resist contrast (very high development rate, minimized dark erosion). Resist 
film thickness varies between 1.0 – 1.8 µm, depending on spin speed. 

Nominal thickness for my process: 1.2 µm 
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