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A series of three oceanographic survey cruises were conducted in June, July, and 

August of 2019 in the northeastern Gulf of Maine and Bay of Fundy. Surface water 

samples were collected and analyzed for enumerations of cell densities of the 

dinoflagellate Alexandrium catenella in relation to cell densities of diatoms. 

Hydrographic profiles of temperature, salinity, and nutrients (silicate and nitrate) were 

also made at each station. Data were analyzed to determine if there was any statistically 

significant evidence of allelopathic interference imparted by diatoms that impede A. 

catenella.    A. catenella cells were most abundant in June, reaching 6,195 cells per liter 

at the surface (1 m), with the highest densities occurring at offshore stations. Diatoms 

were also most abundant in June (681,667 cells/L), reaching highest cell densities at 

inshore stations, spatially separated from A. catenella maximal densities, which 

suggested an allelopathic inhibition of A. catenella by diatoms, as had been suggested by 

earlier workers; however, there was no statistically significant inverse relationship 



 

(according to Pearson correlation analysis; r=-0.42, P=0.131).  Distributions of A. 

catenella and diatoms were similar to one another in July, with the highest densities 

occurring at shallower inshore stations (3,378 A. catenella cells/L and 108,333 diatom 

cells/L). The August survey cruise was limited in coverage and occupied fewer 

stations. A. catenella cell densities were highest in the interior Bay of Fundy in August 

(867 cells/L) while diatoms were more abundant in shallower, coastal waters off of 

Maine, and Nova Scotia (66,111 cells/L). The highest surface cell densities of both A. 

catenella and diatoms occurred in waters low in both nitrate and silicate in all three 

months, which is consistent with previous observations.  

The dominant diatom genera included  (in order):  a) in June: 

Thalassiosira, Chaetoceros, Cylindrotheca, Pseudonitzschia, Thalassionema, 

and Rhizosolenia; b) in July: Chaetoceros, 

Thalassiosira, Cylindrotheca, Pseudonitzschia, Rhizosolenia, Guinardia, 

Thalassionema; and c) in August: Skeletonema, Chaetoceros, 

Thalassiosira, Cylindrotheca, Pseudonitzschia, Guinardia, Cylindrotheca, and 

Achnanthes. 

 Pearson correlation analyses also showed that there were no statistically 

significant correlations between either A. catenella or diatom cell densities and surface 

concentrations of the nutrient silicate; however, in June, A. catenella did show a 

statistically significant inverse correlation with nitrate (P=0.0187). 

Overall there was a seasonal decline from June to August, which contrasts with 

earlier reports that showed seasonal increases from June to August in the NE Gulf of 

Maine and Bay of Fundy. In June, there was a positive correlation between A. catenella 



 

and salinity, which corresponded with the time of greatest A. catenella densities offshore 

(r=0.44; p= 0.003). In July, A. catenella were significantly inversely correlated with 

temperature where cells are usually most abundant in the colder waters of the Eastern 

Maine Coastal Current (r=0.32; p=0.036).  August had fewer stations making it difficult 

to draw conclusions.  Overall the data did not support the original hypothesis of 

allelopathy, as there was no statistically significant Pearson correlation between diatoms 

and A. catenella for any of the three summer surveys. 
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I. INTRODUCTION 

I.   1.  Background 

The dinoflagellate Alexandrium catenella, formerly known as Alexandrium 

fundyense, is responsible for annually recurrent outbreaks of Paralytic Shellfish 

Poisoning (PSP) in coastal waters of the Gulf of Maine (e.g., reviewed in Anderson et al., 

2014, Anderson et al. 2012). The genus Alexandrium is thought to have as many as ten 

toxic species along with ten others whose toxicity is less well known (Balech, 1995).  

Species of Alexandrium are present throughout the world oceans, including sub-Artic, 

temperate, and tropical waters (Reyes-Vasquez et al. 1995; Wyatt and Jenkenson, 1997). 

Three toxic species have been identified from the Gulf of Maine: A. tamarense, A. 

catenella, and A. ostenfeldii (Anderson, 1997; Gribble et al., 2005).  A. ostenfeldii is a 

larger cell than either A. tamarense or A. catenella (Tomas, 1997), and both A. ostenfeldii 

and A. tamarense are significantly less abundant than A. catenella (Anderson et al., 2005; 

Townsend et al., 2005).  

Blooms of A. catenella in the Gulf of Maine usually occur between April and 

August, but have been reported to occur as late as October (e.g., Anderson et al. 2014a; 

McGillicuddy et al. 2014b). Bloom commencement is dependent on a supply of over-

wintering benthic resting cysts and sufficient concentrations and/or flux rates of dissolved 

inorganic nitrogen, usually in the form of nitrate (Anderson 1997, Anderson et al. 2014b).  

Highest cell densities are often observed in summertime blooms in offshore waters away 

from coastal shellfish beds in surface waters with low or undetectable nitrate 

concentrations (Love et al. 2005, Poulton et al. 2005, McGillicuddy et al. 2014b, 

Townsend et al. 2001, 2005, 2014).  Incidences of PSP in shellfish beds along the coasts 
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are thought to be the result of wind-driven transport of cells residing in more offshore 

waters (more below). 

 

 I.   2.  Life Cycle  

Dinoflagellates, in general, are larger than most other flagellate groups, ranging in 

size approximately from 20 to 50 μm; they may be thecate (armored) or athecate 

(unarmored), but all possess a pair of flagella enabling limited swimming ability and 

allowing for slight control over their vertical distributions in the water column. Not all 

dinoflagellates are strictly autotrophic; some species are heterotrophs, while others may 

be mixotrophs. 

Figure 1. Life cycle diagram of Alexandrium tamarense. Staged are identified as 

follows (1) vegetative, motile cell;(2) temporary or pellicle cyst; (3) anisogamous 

“female’ and “male” gametes; (4) fusing gametes; (5) swimming zygote or 

planozygote; (6). Resting cyst or hypnozygote; (7&8) motile, germinated cell or 

planomeiocyte; and (9) pair of vegetative cells following division. Adapted from 

Anderson et al. 1996. 
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The life cycle of A. catenella is complex and includes both vegetative and sexual 

phases of reproduction and a benthic resting stage (Fig. 1; Anderson et al. 1995). 

Laboratory culture experiments have suggested that sexual reproduction 

commences when nutrients (principally nitrate) become limiting to the vegetative cells 

that can create blooms. It has also been thought that sexual reproduction and gamete 

formation is stimulated when internal cellular nutrient pools become exhausted or are 

controlled by an endogenous clock (Anderson and Keafer 1987, Anderson 1998).   

In sexual reproduction, gametes produced by vegetative cells, fuse to form 

planozygotes, which in turn divide to produce dormant resting cysts, or hypnozygotes, 

that settle to the bottom (Ishikawa et al. 2014). Here they may remain dormant for several 

years before beginning excystment to become vegetative cells, which are haploid, starting 

the cycle anew (Anderson 1998; Figueroa 2005 ; Figueroa et al., 2007). The planozygote 

stage is diploid, produced by gamete conjugation, or the fusing of gametes. Vegetative 

cell division occurs through desmoschisis, where each daughter cell maintains half the 

mother cell thecal plates.  

Factors that initiate cyst germination are not well understood (Anderson, 1995). 

Temperature changes associated with seasonal warming in spring may trigger 

germination; however, it has also been found that germination can occur without 

temperature changes (Huber and Nipkow, 1922, 1923; Anderson and Wall, 1978; 

Anderson and Morel, 1979; von Stosch, 1973; Pfiester, 1975, 1977; Binder and 

Anderson, 1987; Anderson, 1980). Several laboratory studies have shown that cysts 

stored at cold temperatures may remain quiescent until exposed to warming temperatures 
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(Huber and Nipkow, 1922, 1923; Anderson and Wall, 1978; Anderson and Morel, 1979; 

von Stosch, 1973; Pfiester, 1975, 1977; Binder and Anderson, 1987; Anderson, 1980).  

In the Gulf of Maine, A. catenella benthic resting cysts appear to excyst in late 

winter and early spring under conditions that are not fully understood (Anderson et al., 

1998, 2014). Because these dinoflagellates possess a pair of flagella and are motile upon 

emergence from bottom sediments, the new vegetative cells swim to the surface layers. 

Under favorable conditions of light and nutrients, asexual reproduction, or simple cell 

division, may lead to blooms of high cell densities. After some period of asexual cell 

division, or upon exposure to some environmental cue, the cells form gametes that fuse to 

form planozygotes, which in turn produces resting cysts (Anderson et al. 1998).    

Some dinoflagellate species experience a different resting stage involving 

vegetative cells turning into temporary, or pellicle, cysts during unfavorable conditions 

such as abrupt changes in temperature or salinity or mechanical shock. When favorable 

conditions resume, the temporary cysts return to the vegetative motile stage. Temporary 

cysts are commonly observed in the laboratory (Townsend, unpublished) but are also 

known to occur in nature (Anderson 1995). Blooms of A. catenella are not uniformly 

distributed throughout the region, however, but tend to be associated with regions of 

vertical mixing and vertical nutrient fluxes (Townsend et al., 2001; 2005).  A. 

catenella blooms are seasonally recurrent. There is usually an absence of cells and PSP 

toxins during the winter months (Anderson 1997).  

 

 

 



 5 

I. 3. Annual Blooms of A. catenella in the Gulf of Maine 

While it is thought that increases in the frequency and severity of harmful algal 

blooms (including A. catenella blooms and resulting PSP events) may be a result of rising 

ocean temperatures and increasing coastal eutrophication (McCarthy et al. 2015), this 

scenario is less clear for Gulf of Maine waters. Following a dramatic “red tide” in the 

Gulf of Maine in 1972, after which monitoring programs for PSP in shellfish 

commenced, episodes of PSP and presumably A. catenella blooms, have occurred to 

some extent every year along the coasts of Maine, New Hampshire, and Massachusetts, 

from spring through late summer (Anderson 1997; Fig. 2). The timing of appearance 

of A. catenella (with interannually variable cell densities) tends to follow the spring 

diatom bloom, after silicate becomes limiting to diatoms, at which time species 

succession leads to a non-diatom phytoplankton assemblage dominated by flagellates and 

dinoflagellates, including A. catenella (Townsend et al., 2005; 2014; Gettings et al., 

2014).  

Blooms of A. catenella in the Gulf of Maine region are thought to be dependent 

on the availability and/or flux rates of nitrate, one of the dissolved inorganic forms of the 

limiting nutrient element nitrogen. However, Shankar et al. (2014) demonstrated with 

laboratory culture experiments that A. catenella grows well on ammonium and that they 

initially preferred ammonium over nitrate, in keeping with earlier studies, showing a 

phytoplankton preference for reduced nitrogenous nutrient ammonium over nitrate. While 

the initiation of A. catenella blooms in the Gulf of Maine is thought to be dependent on 

any remaining post-diatom bloom nitrate concentrations, especially deep-water nitrate 

injections into surface waters, which occur via tidal mixing, recycled ammonium may be 
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essential to sustained cell growth (McGillicuddy et al. 2014b, Townsend et al. 2014), as 

was shown for Georges Bank (Gettings et al., 2010; Shankar et al., 2014).   

A series of focused field studies of A. catenella bloom dynamics in relation to the 

oceanography of the Gulf of Maine commenced in the late 1990s (see: Anderson et al., 

2005 DSR II Special Volume). Results of these studies suggest that blooms occur 

naturally offshore (Townsend et al., 2001) in nutrient-rich waters of the Eastern Maine 

Coastal Current (EMCC; Townsend et al., 2006).  

Benthic cyst beds in the Bay of Fundy, as well as cysts that remain suspended in 

the water column over the winter (Kirn et al., 2005), provide a source of cells that feed 

Figure 2.  Near surface circulation in the Gulf of Maine, with bottom depths and features 

referred to in the text (after Pettigrew et al., 2005).  Study region for this thesis is shown 

by the dashed box.   
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the EMCC and produce a developing bloom that reaches high cell densities some 

distance downstream in waters offshore of Mt. Desert Island and beyond (Fig. 2). 

Depending on the highly variable path of the EMCC (Pettigrew et al., 2005), cells may be 

brought to the nearshore waters creating shellfish toxicity (PSP).   

Blooms are not restricted to the eastern Gulf of Maine and Bay of Fundy, 

however. The infamous 1972 A. catenella bloom and widespread PSP event may have 

been initiated as just described, but its influence extended down the coast, causing 

shellfish toxicity in New Hampshire and Massachusetts (Shumway et al. 1988). Since the 

1972 event, there have been shellfish harvesting closures because of PSP each year all 

along the northern New England-Gulf of Maine coastline, especially during the spring 

and summer months (reviewed in Anderson, 1997; Townsend et al., 2001; Anderson et 

al., 2005a, Keafer et al. 2005).   

The circulation features of the Gulf of Maine and their variability are critical to 

the dynamics of annual A. catenella blooms; a generalized description of those 

circulations is given in Townsend et al. (2006). Surface currents in the Gulf of Maine can 

be viewed as beginning with a flow of shelf waters from the Nova Scotian shelf that 

enters the Gulf of Maine from the southern tip of Nova Scotia (Fig. 2). Responding to the 

earth’s rotation (Coriolis Effect) that flow hugs the coast of SW Nova Scotia and is 

directed into the NE Gulf and Bay of Fundy, where tidal mixing and other physical 

processes create the Eastern Maine Coastal Current (EMCC), a current of tidally well-

mixed and nutrient-rich water that flows down the Maine coast. The EMCC extends from 

the Bay of Fundy, centered approximately on the 100 m isobath, to off the mouth of 

Penobscot Bay, where it may be partially directed offshore and join a cyclonic flow 
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around the Jordan Basin. The vertically well-mixed waters of the EMCC tend to become 

more vertically stratified as they flow away from the more tidally energetic NE Gulf, 

which leads some distance downstream to a developing population of phytoplankton, 

including A. catenella (Townsend et al., 2001; 2005; 2014). A portion of that flow may 

continue down the Maine coast, transporting A. catenella cells to coastal areas of the 

western Gulf (Keafer et al., 2005).   

Aretxabaleta et al. (2014) hypothesized that interannual variability in the 

magnitude of A. catenella blooms in the NE Gulf of Maine may be related to the degree 

of retention of Bay of Fundy blooms (fed by cyst beds in the Bay of Fundy; Martin and 

White, 1988; Anderson, 1996) located upstream of, and which feed, the EMCC. 

Depending on the hydrodynamics operating in the Bay of Fundy, which in turn are 

dependent on interannual variations in deep water intrusions into the Bay of Fundy, the 

gyre circulation in the mouth of the Bay may vary in its intensity. Aretxabaleta et al. 

(2014) posed what has become known as their “Leaky Gyre” hypothesis, where in some 

years, a well-developed gyre circulation will retain A. catenella cells in the Bay, whereas 

in other years the gyre is less well developed, A. catenella cells will leak from the Bay of 

Fundy into the EMCC, potentially leading to more intense A. catenella bloom in the Gulf 

of Maine.   

This thesis is a result of survey work done in the Bay of Fundy and NE Gulf of 

Maine in the summer of 2019 aimed at testing aspects of the “Leaky Gyre” hypothesis, 

which provided an opportunity to examine more closely the development of the A. 

catenella bloom in those waters and its relationship to nutrient fields and diatom 

populations. 
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I. 4. Goals and Hypothesis  

The overall goal of this research was to examine spatial and temporal patterns of 

major diatom taxa in relation to abundances and distributions of A. catenella in the 

northeastern Gulf of Maine and Bay of Fundy during the summer of 2019 and to relate 

each to the nutrient and hydrographic fields.  The overall hypothesis was that diatoms and 

A. catenella would show an inverse relationship with one another, indicating an 

allelopathic interference imparted by diatoms, which impedes the growth of A. catenella.  

Results of studies conducted by Townsend et al. (2005; 2014) suggested that coastal 

waters high in silicate from freshwater sources tended to support post-spring diatom 

populations, which may inhibit the development of high cell densities of Alexandrium 

cells, constituting an allelopathic inhibition of Alexandrium by diatoms.  Laboratory 

studies by Gettings (2010) support that phenomenon.   

 

Specific goals were to investigate the following:  

• Possible evidence of allelopathic interference between diatoms and A. catenella, 

as suggested by Townsend et al. (2005), whereby high cell densities of diatoms 

interfere with and impede the presence of A. catenella. 

• Possible correlations among cell densities of diatoms and A. catenella in surface 

waters with chlorophyll fluorescence, temperature, salinity, and concentrations of 

the dissolved inorganic nutrients nitrate (NO3-) and silicate (silicic acid, or 

silicate, Si(OH)4). 
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• The relative proportions of A. catenella life-history stages (planozygotes, 

vegetative cells, doublets, and gametes) at times and locations of high cell 

densities.   

• The species composition (dominant genera) of diatoms at stations with high 

diatom cell densities.  
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II. MATERIALS AND METHODS 

II. 1 Oceanographic Surveys  

                   A series of three oceanographic survey cruises in the northeastern Gulf of 

Maine and Bay of Fundy was conducted in the summer of 2019 aboard the R/V 

Connecticut: 12-19 June, 9-11 July, and 10-12 August. The sampling stations for each 

cruise area are provided in Figure 3. 
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Figure 3.  Station locations for the three survey cruises aboard the R/V Connecticut 

in summer, 2019: Top: 12-17 June; Middle: 9-11 July; Bottom: 10-12 August. 
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During each cruise, standard hydrocasts were made at each station using a 

SeaBird 911 CTD with a Wet Labs in situ fluorometer and SeaBird carousel water 

sampler equipped with 5-liter Niskin bottles. The CTD package was lowered to be within 

5 meters of the bottom at all stations and water was collected during the up-cast. Water 

samples were collected for dissolved inorganic nutrient analyses at various depths 

between the surface and near-bottom, filtered through Millipore HA filters, and frozen at 

-18 °C to be analyzed for nitrate, analyzed here as the sum of nitrate (NO3) and nitrite 

(NO2), and silicate (Si(OH)4) using an autoanalyzer and standard techniques as reported 

in Townsend et al. (2014).  

Determinations of A. catenella cell densities in surface waters (1 m) for the same 

cruises were conducted by colleagues at Woods Hole Oceanographic Institution using a 

DNA probe.  

 

II.2 Diatom Cell Densities 

Water samples for the determination of total diatom cell densities were collected 

at the surface (1 m) using a 6-L Van Dorn bottle. The entire contents (6 L) were sieved 

through a 20 μm mesh sieve; the concentrate was transferred to 15 ml vials and preserved 

in a 5% formaldehyde seawater solution, bringing the final volume to approximately 10 

ml. A total of 94 stations were sampled for the three cruises.   

For microscopic enumerations, each sample vial was inverted several times to mix 

the sample thoroughly, and a 1 ml sub-sample was placed on a 1-ml gridded Sedgwick-

Rafter counting cell and examined under a compound microscope at 100X magnification. 

The Sedgwick-Rafter cell was divided into 1000 grids (20 by 50). At least 100 diatom 
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cells were counted for each sample; usually, this total was met by counting a single row 

across the slide.  Total diatom cell densities at the surface were computed for each sample 

(each station) and presented as cells/L.  

 

II. 3 Diatom Genera  

In addition to total diatom cell densities (at all stations), the dominant diatom 

genera were determined for select stations (the top nine stations for June and July and the 

top two stations for August with the highest total diatom cell densities) based on the 

previously described diatom cell counts. Identifications were based upon descriptions and 

keys in, Smith (1977), Gowen and Mulligan (1978), Tomas (1997), Horner (2002), Gladu 

et al.  (2003), Kraberg et al. (2010) Westheide (2011). For each selected station, 1ml of a 

sample was placed in the gridded Sedgwick-Rafter cell.  A random number generator was 

used to select random grids on the slide, and the genera of diatoms determined for at least 

100 cells.  If 100 cells were obtained within the first random grid, a second grid was also 

counted. 

 

II. 4 Alexandrium Life History Stages  

The top nine stations for June and July and the top two stations for August with 

the highest cell densities of A. catenella (based on counts using a DNA probe performed 

at Woods Hole Oceanographic Institution) were examined as described above, and 

apparent A. catenella cells were staged as either vegetative cells, doublets, gametes or 

planozygotes. Locations on the gridded Sedgwick-Rafter cell were randomly selected 

using a random number generator. Cells that were 40 um or larger were considered 
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planozygotes (Figueroa et al. 2005). Cells 20 um or smaller were assumed to be gametes, 

and anything in between was considered vegetative cells (Figueroa et al. 2005). Cells that 

looked like two adjoined cells were conjoined considered doublets. Because these 

identifications of A. catenella cells were not verified as with the DNA probe, 

identification to species is uncertain, and cells are referred to as 

presumably Alexandrium spp.  

All data analyses and plots were performed using R Studio, MATLAB, and Excel. 

Surface contour plots were constructed using MATLAB for temperature, salinity, total 

diatom cell densities, A. catenella cell densities, chlorophyll fluorescence, and surface 

nitrate and silicate concentrations (μm). Pearson correlation coefficient analyses were 

performed using R Studio among surface variables (T, S, fluorescence) and cell densities 

of diatoms and A. catenella.  
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III. RESULTS AND DISCUSSION 

III. 1. June Cruise 

The surface distributions and cell densities of A. catenella and diatoms in June are 

provided in Figure 4. June was when A. catenella was observed to be the most abundant 

of the three cruise periods, reaching a maximum of 6,195 cells per liter in the offshore 

stations (Station 36; see Appendix I), with significantly lower cell densities nearer the 

shorelines of Maine and Nova Scotia. The highest cell densities of diatoms were also 

observed during this cruise, reaching 681,667 cells/L (Station 38); however, their 

maximum distribution was more inshore than that of A. catenella. While there appears to 

be an inverse relationship between A. catenella and diatoms, the correlation, while 

negative, is weak and not statistically significant (R = -0.11, p = 0.498; Table 2); the lack 

of statistical significance is likely the result of the spatial overlap between highest 

densities of diatoms inshore and highest densities of  A. catenella offshore (Fig. 4). The 

densities of A. catenella cells during the June cruise are generally greater than has been 

observed in the Gulf of Maine (e.g., Anderson et al., 2005; 2014 [DSR II special issues]) 

with the exception of Martin and White (1988), who observed densities greater than 1 

million cells/L in the same region of the Gulf of Maine. 

Table 1 summarizes the species composition (genera) of diatoms at the ten 

highest-density stations for total diatoms in June. The highest diatom densities were at 

Station 38, which was dominated by Thalassiosira spp. followed by Chaetoceros spp.. 

Cylindrotheca spp. was also present at this station along with other unidentified diatoms 

species.  
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Other less abundant diatom genera in June 

included Pseudonitzschia spp., Thalassionema spp, and Rhizosolenia spp.. There were 

various dinoflagellate species, including Ceratium spp., Protoperidinium spp., 

and Dinophysis spp. in addition to A. catenella. Other plankton groups included the 

silicoflagellate Dictyocha spp., invertebrate larvae, copepods, and Tintinids. 

With respect to the Alexandrium life history stages for June 2019, all stations 

were dominated by vegetative cells (82%). Planozygotes were second in abundance 

(14%) for the majority of the stations and gametes were least abundant; however, there 

were stations where gamete densities were equal to greater than that of planozygotes 

(Stations 34, 35, 36, 37). 

Aerial contour plots of surface temperature, salinity, and chlorophyll fluorescence 

for June are given in Figure 5. The surface temperatures where the highest A. 

catenella cell densities were observed ranged from about 8 to 12 °C, indicating no 

particular temperature preference within this range. Maximum diatom cell densities were 

observed in waters with surface temperatures spanning a similar temperature range. 

However, the highest A. catenella densities did correspond with higher surface salinities 

(R = 0.44; p = 0.003; Table 2), which occurred farther offshore. Diatoms appeared to be 

more inshore and not completely occurring in the offshore higher salinity waters with A. 

catenella, making them seem unrelated to surface salinity. However, there was a 

significant negative Pearson correlation with diatoms and salinity (r =-0.042; p=0.008). 

Both A. catenella and diatoms were clearly associated with surface waters depleted in 

both nitrate and silicate, with negative correlations (Table 2); however, only A. 

catenella was significantly negatively correlated with nitrate. Figure 7 is a plot of cell 
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densities of A. catenella and diatoms across the ranges of temperature and salinity where 

they were collected, which further indicates no apparent temperature preference by either 

group. However, a narrow salinity range, clustered around salinity 32, over which A. 

catenella was observed. Temperatures of occurrences for both diatoms and A. 

catenella were between 7 and 12 °C, with the highest abundances occurring between 8 

and 10 °C.   

In situ chlorophyll fluorescence in the surface waters were more closely related 

to, and significantly positively correlated with, diatom distributions (R = 0.66; p < 

0.001) than was the case for A. catenella, which is in keeping with the significantly 

greater biomass (cell densities) of diatoms (maxima of 681,667 cells per liter diatoms, 

versus 6,195 cells per liter A. catenella).   

The complete Pearson correlation analysis for the June cruise is given in Table 2, 

with significant correlations provided in bold font. Significant negative correlations are 

seen between A. catenella and nitrate, diatoms and salinity, silicate and temperature, 

nitrate and temperature, and salinity, and chlorophyll fluorescence. Significant positive 

correlations are seen for A. catenella and salinity, diatoms and fluorescence, and nitrate 

and silicate.    
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Figure 4.  Contours of surface cell densities (No. Cells/L) of Alexandrium catenella 

(Top Panel) and total diatoms (Bottom Panel) for the June 2019 survey. 
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Table 1.  Major genera of diatoms at stations with the highest total densities of diatoms for the June 2019 cruise.  Both percent 

of total, and density (cells/L) are given.   
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Figure 5.  June cruise, 2019. Top Left: Contours of 

surface temperature (°C), Top Right: Contours of 

surface salinity, and Bottom Right: Contours of 

surface phytoplankton chlorophyll fluorescence 

(µg/L). 
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Figure 6.  June cruise, 2019. Contours of surface nitrate (µM) and silicate (µM). 
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Figure 7.  June cruise, 2019: Densities of A. catenella and total diatoms plotted against 

surface temperatures (left panel) and surface salinity (right panel) for the June cruise. 

Table 2.  June cruise, 2019:  Pearson correlation analysis of A. catenella (cells/L), total diatoms 

(cells/L), surface nitrate and silicate (µM), surface temperature (°C), salinity, and in situ chlorophyll 

fluorescence (µg chlorophyll a per liter).  Values are given for the correlation coefficient, r, the p 

value, and sample size (n).  Statistically significant correlation coefficients (<0.05) are in bold font. 
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III. 2. July Cruise    

The surface distributions of A. catenella and diatoms in July are given in Figure 8. 

Cell densities of both A. catenella and diatoms were lower than in June, reaching maxima 

of 3,378 cells/L A. catenella and 108,333 cells/L diatoms (Station 9; Appendix II).  

Table 3 provides the species composition (genera) of the most common diatoms at 

stations where the total diatom cell densities were highest for the July cruise. The highest 

diatom density observed in the July counts was 108,333 cells/L at Station 9. Chaetoceros 

spp. was the most abundant diatom at this station (68,333 cells/L), followed 

by Thalassiosira spp. (10833 cells/L). There were also Cylindrotheca spp. present (5,000 

cells/ Liter) along with unknown species (30,000 cells/L). Station 37 had the lowest 

diatom abundance (200 Cells/L).  

Surface temperature, salinity, and chlorophyll fluorescence in July are given in 

Figure 9. The surface temperatures where the highest A. catenella cell densities were 

observed were similar to the case in June, ranging from about 8 to 12.5 °C; however, 

there was a significant negative correlation between A. catenella and temperature (Table 

4), indicating their more common occurrence in colder waters of the Eastern Maine 

Coastal Current. The highest densities for diatoms occurred between 9 and 12 °C. There 

was no clear indication of a salinity preference as A. catenella, and diatoms' highest 

densities occurred between 31 and 32.5. Diatoms in July appeared to occur over a wider 

range of salinities as compared with June.  

Figure 9 displays cell densities of A. catenella and diatoms across the ranges of 

temperature and salinity. Maximum cell densities of A. catenella were observed across a 

range of temperatures that were slightly warmer than in June; diatoms occurred over a 
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similar range of temperatures. Unlike June, A. catenella was observed over a relatively 

wide range of salinities and did not show a peak at 32. Diatoms showed a similar salinity 

distribution. Like in June, A. catenella and diatoms did not have a clear association with 

surface nutrient concentrations (nitrate and silicate), as shown in Figure 10.  

For the Alexandrium life-history stages in July 2019, vegetative cells again 

dominated (87%). However, gametes tended to dominate more over planozygotes at more 

stations on this cruise (8%, 5%, respectively). Doublets were present in July (in trace 

amounts) but not in June.   

Table 3 gives the species composition (genera) of diatoms at the ten highest 

diatom density stations in July. In the initial density counts, highest diatom densities were 

at Station 9 (108,333 cells/L); however, when recounted for identification of genera, 

Station 30 (82,222 cells/L) displayed the highest densities. Diatoms were dominated 

by Chaetoceros spp. (68,333 cells/L) followed by unidentified diatom taxa (30,000 

cells/L), Thalassiosira spp. (10,833 cells/L) and Cylindrotheca spp. (5,000 cells/L). The 

pennate diatom Pseudonitzschia spp. was also present at this station (833 cells/L). Other 

diatom genera for the July cruise included Thalassionema spp., Guinardia spp. 

Rhizosolenia spp. along with several unidentified taxa. There were various dinoflagellate 

species, including Ceratium spp., Protoperidinium spp. and Dinophysis spp., in addition 

to A. catenella. Other plankton groups included the silicoflagellate Dictyocha spp., 

invertebrate larvae, copepods, Tintinids, microflagellates, and other unidentified cells.  

Highest densities of diatoms correlated with high chlorophyll fluorescence, 

whereas the highest A. catenella cell densities occurred in areas of lower fluorescence.  
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Results of the Pearson correlation analysis for the July cruise are given in Table 4. 

Significant negative correlations were observed between A. catenella and temperature (as 

discussed above), silicate and temperature, and between nitrate and temperature. 

Significant positive correlations were observed between A. catenella and both silicate and 

nitrate (although r values were weak, at ca. 0.3), diatoms and fluorescence, and between 

silicate and nitrate.  
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Figure 8.  Contours of surface cell densities (No. Cells/L) of Alexandrium 

catenella (Top Panel) and total diatoms (Bottom Panel) for the July 2019 survey. 
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Table 3.  Major genera of diatoms at stations with the highest total densities of diatoms for the July 2019 cruise.  Both 

percent of total, and density (cells/L) are given.   
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Figure 9.  July cruise, 2019. Top Left: 

Contours of surface temperature (°C), Top 

Right: Contours of surface salinity, and 

Bottom Right: Contours of surface 

phytoplankton chlorophyll fluorescence 

(µg/L). 
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Figure 10.  July cruise, 2019. Contours of surface nitrate (µM) and 

silicate (µM). 
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Figure 11. July cruise, 2019: Densities of A. catenella and total diatoms plotted against 

surface temperatures (left panel) and surface salinity (right panel) for the July cruise. 

Table 4.  July cruise, 2019: Pearson correlation analysis of A. catenella (cells/L), total diatoms 

(cells/L), surface nitrate and silicate (µM), surface temperature (°C), salinity, and in situ 

chlorophyll fluorescence (µg chlorophyll a per liter).  Values are given for the correlation 

coefficient, r, the p value, and sample size (n).  
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III. 3. August Cruise 

The surface distributions and cell densities of A. catenella and diatoms in August 

are given in Figure 12. Fewer stations were sampled in August, so little can be concluded 

about their spatial distributions. Nonetheless, the maximum cell densities of A. 

catenella and diatoms appear to be inversely correlated, with the highest densities of A. 

catenella found in the Bay of Fundy (867cells/L at Station13, Appendix III)), and the 

maximum diatom densities in the Gulf of Maine (66,111 cells/L at Station 9). The 

correlation was not statistically significant, however (Table 6).  

The corresponding surface temperature, salinity, and chlorophyll fluorescence for 

August are given in Figure 13. The surface temperatures where A. catenella cell densities 

were observed ranged from 10 to 13 °C, which is higher than in either June or July, 

reflecting the seasonal warming of surface waters (Figure 15). The maximum A. 

catenella densities were observed between about 12 to 14 °C.  

Diatoms were observed in waters with surface temperatures between 10 and 14 

°C. The highest densities for both diatoms and A. catenella occurred in waters with 

surface salinities between about 31.5 and 32.5 (Figure 15).  

The spatial distributions of A. catenella in August did not display a clear 

association with silicate or nitrate, except that, like the case in June and July, they 

occurred in nutrient-depleted surface waters. However, there was a significant inverse 

correlation between A. catenella and nitrate (Table 6) that is not apparent in the surface 

contour plots in Figures 12 and 13. Higher densities of diatoms appeared to be associated 
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with higher silicate surface waters, but there was no significant correlation (Table 6). 

There was a positive and statistically significant correlation between A. catenella and 

surface temperature (Table 6), but no apparent relationships between diatoms and either 

temperature or salinity. Interestingly, there was no correlation between A. catenella cell 

densities and surface temperatures in June, followed in July by a statistically inverse 

correlation, and a statistically positive correlation in August, which leads to the 

conclusion that it is not the temperature that controls their distributions. There were no 

correlations between diatom cell densities and temperature in June, July, or August. 

Figure 11 shows the cell densities of A. catenella and diatoms plotted across the 

ranges of temperature and salinity, which further supports the conclusion that there is no 

apparent temperature preference by either group in August; however, A. catenella can be 

seen to cluster about the salinity of 32 to 32.5. The surface temperatures where the 

highest A. catenella cell densities were observed ranged from 10 to 12.5 °C. Likewise, 

the maximum diatom cell densities were observed in waters with surface temperatures 

between 13 and 14.5 °C. Highest A. catenella densities lay between 32 and 32.5 salinity, 

while diatoms lay between 31.5 and 32. 

When considering the life cycle stages from August compared to June and July, 

there were fewer life cycle counts completed because August had significantly fewer 

stations. However, vegetative cells again dominated in August (83%), followed by 

gametes (12%). This station also had trace numbers of doublets.  

In situ chlorophyll fluorescence in the surface, waters were closely related to the 

diatom distributions, as can be seen in Figures 12 and 13; diatoms were strongly and 
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statistically correlated with fluorescence (r = 0.6; Table 12); there was no apparent 

association between the relatively low cell densities of A. catenella and fluorescence.  

Table 5 gives the species composition (genera) of diatoms at the ten stations 

where the total diatom cell densities were highest for the August cruise. The highest 

diatom densities were at Station 9 (66,111 cells/L; Appendix III), which was dominated 

by Chaetoceros spp. (39,444 cells/L) followed by Skeletonema spp. (28,333 

cells/L). Guinardia spp., Pseudonitzscha spp., Thalassiorira spp., Cylindrotheca spp., Ac

hnanthes spp, and unidentified diatoms, were also present at this station (at densities of 

1,667, 1,667, 1,111,556, 556, 10,556 cells/L respectively). There were various 

dinoflagellate species, including Ceratium spp. Protoperidinium spp. 

and Dinophysis spp., in addition to A. catenella. Other groups included the 

silicoflagellate, Dictyocha spp., unidentified invertebrate larvae, copepods, tintinnids, and 

microflagellates.  

The results of Pearson correlation analyses for the August cruise are given in 

Table 6. Significant negative correlations were observed between A. catenella and nitrate, 

diatoms and silicate, temperature and salinity, and between temperature and fluorescence. 

There were significant positive correlations between A. catenella and temperature (as 

already mentioned), diatoms and fluorescence, silicate and nitrate, silicate and salinity, 

and between nitrate and salinity.  
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Figure 12.  Contours of surface cell densities (No. Cells/L) of Alexandrium catenella 

(Top Panel) and total diatoms (Bottom Panel) for the August 2019 survey. 
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Figure 13.  August cruise, 2019. Contours of surface temperature (°C), salinity, 

phytoplankton chlorophyll fluorescence (µg/L). 

Table 5.  Major genera of diatoms at stations with 

the highest total densities of diatoms for the August 

2019 cruise.  Both percent of total, and density 

(cells/L) are given.   
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Figure 14.  August cruise, 2019. Contours of surface nitrate (µM) and 

silicate (µM). 
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Figure 15. August cruise, 2019: Densities of A. catenella and total diatoms plotted 

against surface temperatures (left panel) and surface salinity (right panel) for the 

August cruise. 

Table 6.  August cruise, 2019: Pearson correlation analysis of A. catenella (cells/L), total diatoms 

(cells/L), surface nitrate and silicate (µM), surface temperature (°C), salinity, and in situ chlorophyll 

fluorescence (µg chlorophyll a per liter).  Values are given for the correlation coefficient, r, the p value, 

and sample size (n). 
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IV.  CONCLUSIONS 

A few key findings of this study are summarized here. First, the results from the 

three survey cruises in 2019 in the northeastern Gulf of Maine and Bay of Fundy 

demonstrate a seasonal decline in cell densities of both A. catenella and diatoms over the 

summer, from June to July to August. The highest diatom and A. catenella densities were 

in June 2019 (681,667 cells/L and 6,195 cells/L respectively), the lowest densities were 

in August 2019 (66,111 cells/L and 867 cells/L, respectively). This result contrasts 

reports by Townsend et al. (2001) for surveys in 1998, which showed an increase in cell 

densities in the Bay of Fundy, from June to July to August, and a less pronounced 

increase in the NE Gulf.   

The highest cell densities of A. catenella in June of 2019 were well offshore, 

versus that of diatoms, which were more inshore. However, there were no statistical 

correlations between A. catenella and diatoms for any of the three surveys, presumably 

because of the confounding effect of overlapping distributions, as can be seen in Figures 

4 and 8). There was no similarly suggestive, but statistically inconclusive, evidence of 

allelopathic interference by diatoms in July or August.    

Aerial distributions of A. catenella and diatoms in surface waters did not show a 

preference for any particular temperature. While A. catenella was not correlated with 

temperature in June, when the highest cell densities were offshore, they were 

significantly inversely correlated with temperature in July, meaning that cells were most 

abundant in colder waters, characteristic of the Eastern Maine Coastal Current (Figure 8). 

In August, A. catenella was statistically positively correlated with surface temperature 
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when their maximum abundances were in the Bay of Fundy. Their presence in high 

numbers is likely the result of processes independent of or unrelated to surface 

temperatures.   

In laboratory culture experiments with Alexandrium fundyense, Etheridge and 

Roesler (2005) found a strong relationship between temperature and P max, where P max 

increased at increasing temperatures, but at higher temperatures, the growth rate 

decreased.  Seto et al. (2019) showed that in A. catenella cultures maintained under 

uniform temperature (15C) and pH conditions, the growth rate decreased when 

temperature increased to 20C, consistent with findings from Etheridge and Roesler 

(2005). In their laboratory, culture experiments with Alexandrium fundyense, Etheridge 

and Roesler found that growth rates increased with increasing temperature until 15C but 

decreased at higher temperatures of 20C and 25C. Townsend et al. (2005) noted that A. 

fundyense were typically found at surface water temperatures between 8 and 11C; 

growth rates at these temperatures would be half of that measured by Etheridge and 

Roesler (2005) at 15C. The highest cell densities observed in this study were between 9 

and 10 C in June and July, but at about 13 C in August, leaving one to speculate that 

factors other than water temperatures, such as nutrient fluxes, were controlling growth 

and therefore cell distributions.     

Cell densities of A. catenella were significantly correlated with salinity in June, 

the time of the greatest cell densities offshore, showing an apparent preference for 32 

salinity. Townsend (2020) interpreted the salinity correlation and offshore maximum cell 

densities of A. catenella to unusual vertical fluxes of nutrients offshore in June of 2019, 
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and possibly less allelopathic inhibition there versus more inshore waters, rich in silicate, 

and where diatoms were most abundant. 

These results on distributions of A. catenella in the northeastern Gulf of Maine are 

consistent with reports by Townsend et al. (2001, 2005, 2014), which showed the highest 

densities of cells closely associated with the Eastern Maine Coastal Current. In July, but 

not in June (which appears to be an unusual phenomenon, as just discussed (Townsend, 

2020) or in August, A. catenella surface distributions were greatest in cold surface waters 

that are also associated with the Eastern Maine Coastal Current system (Townsend et al. 

2001). In a study conducted by Townsend et al. (2010), the highest A. catenella cell 

densities were associated with the inshore frontal edge of the cold, high nutrient waters of 

the southwestward also following the EMCC. However, this study showed fewer cells 

along the outer edge of the EMCC. Highest cell densities were confined to waters inshore 

of the 31.4 isohaline. Within that patch, A. catenella's highest densities did not abut the 

shoreline; instead, they were seaward and not coincident with the lowest salinity waters 

immediately adjacent to the coast. 

Waters of the EMCC are known to have the highest surface concentrations of 

inorganic nutrients of any area of the Gulf of Maine region (Townsend et al., 1987; 

Townsend, 1998), and dinoflagellates, in general, have high affinities for both light and 

nutrients (Eppley and Thomas, 1969; Eppley et al., 1969; Langdon, 1987; Chang and 

McClean, 1997). The association between high A. catenella cell densities and the EMCC 

is, therefore, the result of favorable growth conditions of high nutrient concentrations and 

longer daylengths in June (Townsend et al. 2001; Townsend et al., 1987; Brooks and 
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Townsend, 1989; Pettigrew et al., 1998) and, as shown by Townsend et al. 2001), it is 

during the time of maximal solar insolation was maximal in June that the highest A. 

catenella densities occurred. Like the findings in 1998 (Townsend et al., 2001), as the 

summer progressed, cell densities decreased in the Gulf of Maine surface waters.  

In addition to nutrient limitation, and the possibility of allelopathic interactions, 

zooplankton grazing may also play a role in defining the temporal and areal distributions 

and abundances of both diatoms and Alexandrium (Smayda, 1972; Teegarden and 

Cembella, 1996; Turner and Borkman, 2005, Campbell et al. 2005, Turner 2010).  

Unfortunately, we did not sample zooplankton and cannot speculate on their role in the 

summer of 2019 in the NE Gulf of Maine and Bay of Fundy. 

The EMCC receives some of its A. catenella cells from the "Leaky Gyre" in the 

Minas Basin, as some cells escape the Bay of Fundy and seed the northern Gulf of Maine 

where cells continue to grow in the EMCC waters which are enriched with nutrients as a 

result of tidal mixing (Townsend et al., 1987; Brooks and Townsend, 1989). Tidal 

pumping of deep waters in eastern Maine supplies nutrients to the EMCC, where diatoms 

usually thrive first and outcompete other phytoplankton groups (Townsend et al. 2014). 

The EMCC carries nutrient-rich tidally mixed waters downstream along the coast, 

stimulating phytoplankton growth, especially frontal edges of the cold-water current 

(Townsend et al. 2014). It was observed in this study that A. catenella cell densities 

increase with distance "downstream" within the EMCC, in increasingly vertically 

stratified surface waters. 
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Other findings of interest from this study include:   

Throughout the summer months of 2019, diatoms had much higher cell densities 

(i.e., biomass) when compared to A. catenella. Diatoms were also found to be 

significantly correlated with in situ chlorophyll fluorescence, while A. catenella was not 

correlated.  

 

In July, diatoms and A. catenella did not display temperature preferences; 

however, both diatoms and A. catenella occurred about a salinity between 31 and 32.5. 

 

  Also, a noteworthy point for July, A. catenella resumed its “normal distribution” 

within the EMCC and was negatively correlated with temperature. High densities of A. 

catenella cells were distributed in large surface patches of greater than 1000 cells L-1 and 

one smaller patch with surface densities greater than 10,000 cells L-1. The pattern of cells 

appeared to be positioned about the cooler EMCC waters off the mid-Maine coast.  

 

For the three cruises, there was no clear association between A. catenella and 

surface nutrients; however, higher densities of diatoms seemed to be in areas of higher 

silicate for June and August, while July did not.  

 

Overall there is not enough evidence to support that diatoms have an allelopathic 

interference on A. catenella. There may be some sort of indication in June; however, 

there is no statistically significant evidence to support the hypothesis. A combination of 
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factors lies behind the dynamics of Alexandrium in the Gulf of Maine and Bay of Fundy, 

as suggested by these results.  

The timing of Alexandrium population growth, the degree to which they reach 

bloom densities, the areal extent of those blooms, and the population crash ending the 

blooms, all depend on a number of environmental factors that hold the potential for 

fruitful lines of research in the future. 
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APPENDIX 

 

APPENDEX I:  RV Connecticut June July and August 2019 sampling locations, 

bottom depth, salinity, sigma t, temperature, fluorescence, nutrient concentrations, 

and cell densities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

Table 7. June 2019 sampling locations, bottom depth, salinity, sigma t, temperature, 

fluorescence, nutrient concentrations, and cell densities 
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Table 8. July 2019 sampling locations, bottom depth, salinity, sigma t, temperature, 

fluorescence, nutrient concentrations, and cell densities 
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Table 9.. August 2019 sampling locations, bottom depth, salinity, sigma t, 

temperature, fluorescence, nutrient concentrations, and cell densities 
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