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a b s t r a c t

Field and laboratory characterization of marine particles is laborious and expensive. Proxies of particle
properties have been developed that allow researchers to obtain high frequency distributions of such
properties in space or time. We focus on optical techniques used to characterize marine particles in-situ,
with a focus on GEOTRACES-relevant properties, such as bulk properties including particle mass, cross-
sectional area, particle size distribution, particle shape information, and also single particle optical prop-
erties, such as individual particle type and size. We also address the use of optical properties of particles
to infer particulate organic or inorganic carbon. In addition to optical sensors we review advances in
imaging technology and its use to study marine particles in situ. This review addresses commercially
available technology and techniques that can be used as a proxy for particle properties and the associated
uncertainties with particular focus to open ocean environments, the focus of GEOTRACES.

� 2014 Elsevier Ltd. All rights reserved.

Introduction to the role of particles in GEOTRACES

Riverine particles and atmospheric aerosols serve as input of
trace elements to seawater. Trace elements are removed from sea-
water by active uptake by phytoplankton, subsequent grazing and
sedimentation as well as via adsorption to particles. They are also
internally recycled within the ocean through physical and biogeo-
chemical processes (for recent summaries, see Anderson and
Hayes, 2014; Jeandel et al., 2015). Consequently, an accurate
knowledge of the abundance, distribution and composition of par-
ticles in the ocean is essential to the mission of the GEOTRACES
program, an international study of the marine biogeochemical
cycles of trace elements and their isotopes <www.geotraces.org>.
Collection of particles in discrete samples, followed by the chemi-
cal characterization of particle composition, is widely used in
GEOTRACES to define the role of particles in trace element cycles
(Lam et al., 2015; McDonnell et al., 2015). The inherent spatial

and temporal limitations of discrete sampling potentially intro-
duce a bias into the interpretation of the results due to an incom-
plete description of the particle field.

Optical techniques allow for sampling at much greater spatial
and temporal resolution, providing a more informed context for
interpreting the results from discrete samples as documented below
(Fig. 1). In addition, preliminary application of optical techniques
during early GEOTRACES cruises has helped to establish an impor-
tant role for intermediate and benthic nepheloid layers particles in
the removal of radionuclides and, presumably, of other trace ele-
ments from seawater (Deng et al., 2014; Hayes et al., in press). Infor-
mation presented in this review will facilitate the incorporation of
additional sophisticated optical techniques in future GEOTRACES
expeditions. This information will also be of value in planning other
programs, such as those studying the marine biogeochemical cycles
of carbon, of major nutrients, and of anthropogenic contaminants.

Optical properties and their sensitivity to mass, size,
composition, shape, and packing of marine particles

Inherent optical properties (IOP) of seawater and its constitu-
ents are independent of sun illumination and can be measured in
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the laboratory and the field. Absorption and angular scattering are
the processes through which monochromatic (i.e. narrow wave-
length band) and collimated (i.e. highly directional) light from a
source is lost out of a light beam through annihilation or redirec-
tion, respectively. The attenuation coefficient (c) is the sum of
the absorption coefficient (a) and the scattering coefficient (b),
which is the integral of all directions of angular scattering. An addi-
tional IOP is inelastic scattering; the process whereby light
absorbed at one wavelength is emitted at another wavelength.

To first order, optical properties of particles vary with concen-
tration. To second order, they vary with size, shape, internal struc-
ture and packing. While the interaction of matter with light is
complicated (e.g. Jonasz and Fournier, 2007, and Sosik, 2008, for
recent reviews), some generalizations can be made, in particular
with respect to the effect of particle size. For particles much smal-
ler than the wavelength, scattering is fore-aft symmetric and
decreases as wavelength to the negative 4th power, whereas
absorption for such particles is proportional to their volume. For
particles much larger than the wavelength, absorption, scattering
and attenuation correlate with cross-sectional area (i.e. their sha-
dow, e.g. Jonasz and Fournier, 2007), exhibiting relatively little
spectral variations in scattering, and hence are relatively insensi-
tive to composition. To first order, the mass normalized optical
property of a single particle can be predicted by the ratio of its size
(e.g. the diameter of a sphere with a similar cross-section) to the
wavelength of light times the difference between its index of
refraction and that of water (e.g. Figs. 3–6 in Stemmann and
Boss, 2012). While mass normalized absorption decreases approx-
imately monotonically with particle size (Duysens, 1956), mass
normalized scattering exhibits a resonance behavior as a function
of size. Scattering reaches a maximum for particles of a few
microns, then decreases as diameter�1 for larger solid particles
(Baker et al., 2001; Fig. 2).

Because particulate matter (PM) concentrations within the
water column change over four orders of magnitude (e.g. PM vary-
ing from 5 to >12,000 lg kg�1 as a function of depth and location in
the open ocean, Brewer et al., 1976; Gardner et al., 1985), the pri-
mary variability in optical properties in the ocean (from the seawa-
ter and the particles) is due to particle concentration. Additionally,
optical properties are sensitive to particle size, shape and compo-
sition. Angular scattering for particles is a strong function of parti-
cle size; in general, the larger the particle, the more the energy is

scattered in the same direction the light is propagating. Composi-
tion effects are mediated through the index of refraction of the
material particles that are composed of both organic (lipids, sugar,
proteins, starch) and inorganic materials (opal, calcite, clay miner-
als). These materials have indices of refraction that are significantly
different from water (n > 1.12, Aas, 1996, where n is measured rel-
ative to water), and hence cause the particles to interact signifi-
cantly with light (the more different the index of refraction of a
particle relative to water, the more intense the scattering from that
particle). Because phytoplankton and other organic particles (such
as bacteria) often have a large fraction of their volume occupied by
fluid, their ‘effective’ index of refraction (that is if we model them
as homogeneous particles) is quite similar to that of water
(n � 1.05, Aas, 1996).

For large populations of particles, composition was found to pri-
marily modulate the ratio of backward to forward scattered light
(e.g. Twardowski et al., 2001; Fournier et al., 2014). When the opti-
cal properties such as attenuation and scattering are normalized by
dry-mass (that is without the interstitial water, as when obtaining
dry weight PM), the mass specific optical property varies by only a
factor of two between organic and inorganic particles (Babin et al.,
2003).

Aggregation of oceanic particles most often results in particles
having a large fluid fraction and significant amount of mass
(Alldredge and Jackson, 1995), and so will change angular scatter-
ing while nearly maintaining mass normalized optical properties
(Boss et al., 2009a; Slade et al., 2011). It has been observed that
the bulk optical properties of particle populations are propor-
tional to the total cross-sectional area of the disaggregated parti-
cles (e.g. as measured with Coulter counters, see for example
Fig. A1, in Behrenfeld and Boss, 2006). Hence, aggregation and
disaggregation of oceanic particles tend to have a relatively small
effect on mass normalized optical properties, as the cross-
sectional area of the solid material is nearly conserved. However
rare and large heterogeneous aggregates are not well sampled by
bulk optical methods. For these aggregates, imaging methods are
better (see below; McDonnell et al., 2015). Similar arguments as
for heterogeneous aggregates may apply to transparent exo-poly-
mers (TEP, whose primary material is made from high index of
refraction building block, but with a lot of added water,
Alldredge et al., 1993).

Fig. 2. Mass-specific side-scattering (reported as turbidity) values (Kbs) as a
function of size for plastic beads (triangles. Solid triangles is calculated for density
of 2.65 g cm�3) and natural particles (solid circles) (from Baker et al., 2001). Note
the resonance near 1micron and the decrease as diameter�1 for larger sizes.

Fig. 1. Example of a section of beam attenuation coefficient due to particles (cp)
collected during the South Atlantic Ventilation Experiment (SAVE) in February,
1989. Shows location of section (red) from North to South. A 25-cm path-length
SeaTech transmissometer (acceptance angle 1.03�). Note bottom expansion of the
depth scale for higher resolution. Concentrations of resuspended boundary sedi-
ments exceeded 1500 lg l�1 in the Argentine Basin (Wood, 1993; Gardner et al.,
2014) but were seldom greater than 100 lg l�1 in the Brazil basin (Richardson et al.,
1990). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Commercial technology to measure optical properties in-situ

Commercially available in-situ optical instruments can be used
to obtain estimates of the beam-attenuation, backscattering, side-
scattering and absorption coefficients, which are then used as
proxies for particle concentration. A list of worldwide datasets
with such measurements is provided in Appendix A. The reason
we use the word estimate is that no instrument measures exactly
the property it is supposed to measure. Attenuation meters have a
finite acceptance angle, which results in a de facto upper size cut-
off sensitivity to particles (Boss et al., 2009b), and, when path
length is short and/or particle concentrations are large, may be
biased due to multiple scattering (e.g. Leymarie et al., 2010). Back-
scattering sensors measure light scattered at a single angle in the
back direction. This single-angle measurement is used to estimate
the full back-hemispherical scattering. This conversion has an
associated uncertainty around 10% for typical marine particles
(Boss et al., 2001a; Sullivan et al., 2013), and in very turbid condi-
tions needs to be corrected for attenuation along the path. The
exact angular response of side-scattering sensors is most often
unknown and hence output is not in strictly physical units; rather
it is calibrated with a turbidity standard. Finally, the vetted com-
mercial instruments available for measuring the absorption coeffi-
cient in-situ (WETLabs ac-9 & ac-S) have a deficiency in collecting
all the scattered light and hence needs to be corrected in a proce-
dure for which there is still no consensus and that introduces
uncertainties on the order of a few tens of percent in the blue por-
tion of the spectrum (e.g. Leymarie et al., 2010; Röttgers et al.,
2013). Note, however, that a novel sensor has recently become
commercial which should, in principle, provide in-situ absorption
that does not need to be corrected for scattering (Turner Design’s
ICAM based on Fry et al., 1992). Given the above, comparing mea-
surements by different sensors requires that instrument specifica-
tions are known and comparable.

Use of single optical properties to obtain particle mass, size and
composition

The introduction of the first commercial transmissometers
spawned the investigation of PM and particulate organic carbon
concentration (POC) relationships with beam attenuation coeffi-
cient (Bishop, 1986, 1999; Bishop et al., 1999, 1992; Bishop and
Joyce, 1986; Bishop and Wood, 2008; Cetinic et al., 2012;
Gardner, 1989a; Gardner et al., 1985, 2003, 1993; Hill et al.,
2011; Karageorgis et al., 2008, 2014; Neukermans et al., 2012).
The beam attenuation coefficient was found to be a better proxy
for POC than for PM for waters dominated by biogenic particles,
having a smaller intercept and a significantly higher correlation
coefficient (Bishop, 1999; Gardner et al., 2003).

Remote sensing requirements and the need to understand
coastal and near bottom processes, stimulated the development
of PM/POC – backscattering proxies (Boss et al., 2009c; Cetinic
et al., 2012; Neukermans et al., 2012; Stramski et al., 1999). The
availability of relatively cheap and large-depth capable side-scat-
tering (turbidity) sensors encouraged studies relating side-scatter-
ing and POC or PM (Baker et al., 2001; Bishop and Wood, 2008;
Boss et al., 2009c; Bishop et al., 2012; Cetinic et al., 2012).

Gardner et al. (1993) found in a North Atlantic study, that inclu-
sion of the particles settling to the bottom of a Niskin bottle
(Gardner, 1977) made no significant improvement to the correla-
tion between PM and cp; it did, however, increase the slope of
the regression by 40%, demonstrating that the settled particles
(likely large aggregates) contributed significantly to cp. Bishop
and co-workers (Bishop, 1999; Bishop et al., 1999; Bishop and
Wood, 2008, and Bishop et al., 2012) have found that inclusion of

the >51 lm particle size-fraction improves the correlation of POC
to cp relationships. They found that a single scaling factor relates
POC and cp in oligotrophic waters near Hawaii and in productive
waters of the Oyashio (see Fig. 3AB). In contrast, they found side-
scattering data to severely underestimate euphotic zone POC con-
centrations (Fig. 3CD). Cetinic et al. (2012), using data from the
North Atlantic, have found that POC to cp relationships hold equally
well above and below the euphotic layer. In contrast, they found
that backscattering/cp and side-scattering/cp ratio varied with
depth.

The variability in mass specific optical properties, when com-
pared across studies, has been found to be constrained within
±50% despite some variability in the analytical methods used to
obtain mass (Boss et al., 2009c; Cetinic et al., 2012; Hill et al.,
2011; Neukermans et al., 2012) and large variability in the
environments sampled. Note that in all these studies measurements
have been done using red or near-infra-red wavelengths
(650 nm < k < 880 nm) to minimize the effect of dissolved substance
absorption on the attenuation coefficient, as well as to minimize the
effect of particulate absorption on the scattering coefficient.

Shifrin (1988) has introduced the ‘method of fluctuation’
whereby fluctuation in beam attenuation can be used to provide
an average particle size estimate. Briggs et al. (2013) have devel-
oped a similar method (though derived differently) to obtain an
average particle size from backscattering and beam attenuation
and have validated it in the laboratory against an established
method (laser diffraction). The isolation of spikes in beam attenu-
ation coefficient and scattering signals has been shown to be an
index of both zooplankton and aggregate particles (Bishop and
Wood, 2008; Gardner et al., 2000).

As noted above, there are locations where local or advected
resuspended sediments increase particle concentrations and the
associated cp. These occurrences can be understood with the addi-
tional measurement of the backscattering ratio (see below). During
the GEOTRACES program, evidence of active resuspension and
deposition has been found to be important in scavenging some
particle-reactive radionuclides in bottom waters (Hayes et al., in
press; Anderson and Hayes, 2015) and is likely to have other bio-
geochemical impacts waiting to be discovered. Global mapping of
areas of resuspension is needed for determining likely sites for
further exploration (e.g., Gardner et al., 2014, Fig. 1).

Combination of several optical properties

Spectral optical properties
Spectral beam attenuation of particles (the difference between

measurements of unfiltered samples minus those filtered by an
in-situ 0.2 lm filter) has been shown to provide a robust size index
of particles in the size range of 0.2–20 lm (Boss et al., 2001a; Slade
et al., 2011). A relationship between the particle beam attenuation
spectral-slope and a power-law particulate size distribution (PSD)
is predicted by idealized theory (e.g. Mie theory which assumes
particles are spheres and of homogeneous optical properties, e.g.
Boss et al., 2001b). A commercial switching device (FlowControl)
to automate the filtered/non-filter technique for in-line or in-situ
measurements of particulate properties has recently been com-
mercialized (Sequoia Scientific). Spectral absorption of particles
has been measured in situ using the same filtration system at both
low and high spectral resolution. Low spectral resolution data has
been used to estimate in-situ chlorophyll concentration from the
peak height of the 676 nm Sorret band in an oligotrophic lake
(Davis et al., 1997; Boss et al., 2007). High spectral resolution par-
ticulate absorption data were shown to provide concentrations of
in-situ phytoplankton pigments and hence to extract information
on the underlying phytoplankton population (Moisan et al., 2011;
Chase et al., 2013).
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Most recently, a method that estimates the iron content of lith-
ogenic particles using their absorption at blue wavelengths has
been described (Estapa et al., 2012). Such a method, if proved to
work with in-situ sensors, could pave the way for measurement
of in-situ particle bound iron.

Since the 1960s fluorescence measurements have been used reg-
ularly to sample phytoplankton pigments in situ. This method is
used to quantify pigments in situ and to differentiate phytoplankton
functional types. Interpretation of the signals is not trivial particu-
larly if quantitative results are sought (see recent review by
McIntyre et al., 2010).

Multiple angle scattering
Diffraction-based techniques have been used for fifteen years to

obtain size resolved information of PSD in situ (that is, which min-
imally affect aggregation state) by inversion of near-forward scat-
tering measurements made using the Laser In Situ Scattering and
Transmissometry (LISST) family of in situ sensors (Agrawal and
Pottsmith, 2000). Sizes resolved with different LISST instruments
span from about 2 to 500 lm. The inversion is most sensitive to a
particle’s cross sectional area. Hence, non-sphericity of marine par-
ticles results in smearing across size classes as different orientations
are presented to the sensor (Karp-Boss et al., 2007) while providing
a useful measure of the particulate cross-sectional area (which is
proportional to the surface area for randomly oriented convex
particles).

The LISST sensors were primarily designed to work in turbid
environments (they have a 5-cm pathlength) and hence have a rel-
atively low signal-to-noise ratio in clear water. Nonetheless several

studies have used them in the upper ocean with success
(Neukermans et al., 2012; Reynolds et al., 2010).

Backscattering ratio
The ratio of particle backscattering to the particle scattering

coefficient, the backscattering ratio, has been found to be a useful
descriptor of the bulk composition of the particle assemblage. It
varies in the field by about a factor of 6 from 0.5% associated with
phytoplankton to about 3% associated with highly refractive litho-
genic particles (e.g. Boss et al., 2009c; Loisel et al., 2007;
Twardowski et al., 2001). An extreme value of 5% has also been
reported (McKee et al., 2009).

Optical sensing methods to obtain information on particulate
inorganic carbon concentration

Cross-polarized transmission

Birefringence refers to the ability of a mineral crystal to split an
incident beam of linearly polarized light into two beams of unequal
velocities (corresponding to two different refractive indices of the
crystal), which subsequently recombine to form a beam of light
that is no longer linearly polarized.

The extreme birefringence of CaCO3 makes it light up when
the sample is held between crossed polarizers and viewed using
transmitted light. This characteristic mineralogical property of
CaCO3 is widely used as a means of identification. Calcium car-
bonate particles have an oceanic concentration range of 0.005–
40 lM. It has been demonstrated that a bench top spectropho-
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in the Pacific Ocean overlain on profiles of the scaled beam attenuation coefficient, and scaled side-scattering. (A and B) Dawn/Dusk POCCp and POC as function of depth with
POC at ALOHA and K2. (C and D) Seapoint turbidity sensor scaled to match POC at 310 m. POCCp estimates of POC are better than POCscat. Zooplankton captured by MULVFS
contributed an estimated 0.9 lM (night) and 0.2 lM (day) POC for K2 at 10 m (other samples were not significantly affected). Figure modified from Bishop and Wood (2008).
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tometer can be used to detect particulate inorganic carbon (PIC,
Guay and Bishop, 2002; IOCCG, 2011). Experiments with varying
coccolith concentration in suspension with and without varying
concentrations of non-birefringent material have established a
linear concentration response to PIC. The measurement of bire-
fringent photons requires simultaneous measurement of trans-
mission to correct for scattering losses, although these losses
are minor in most cases. Birefringence is measured as: B = Bobs/
T0.5, where B = corrected birefringence, Bobs = raw birefringence
signal and T (as a fraction) is the measured fractional transmis-
sion (relative to particle free water) at the same wavelength. A
low power (<0.5 W) PIC sensor has been used in diverse ocean
environments ranging from polar regions to the equator, includ-
ing oligotrophic to coastal and oxic to sub-anoxic environments
(Bishop, 2009). The sensor has been under development (with
WETLabs) since 2010 with deployments on CTDs in the subarctic
N Pacific in 2012 and 2013. Repeat profiles at station PAPA show
a detection limit of 0.01 lM and deepwater reproducibility is
0.02 lM. Several mechanical/configuration issues have been iden-
tified that need to be addressed before the sensor is available
commercially.

Acid-labile method

‘‘Acid labile backscattering’’ is calculated as the difference
between total and acidified backscattering (measured after add-
ing a weak acid in order to drop the pH of the seawater/particle
suspension below the dissociation point for calcite, Balch et al.,
2001). This setup is ideal for semi-continuous shipboard mea-
surements over a variety of spatial and temporal scales. Typically,
acid-labile backscattering measurements can be made once every
few minutes aboard ship, allowing spatial resolution of �1 km at
typical ship speeds (e.g. Balch and Utgoff, 2009). Conveniently
(and fortuitously), due to the typical coccolith backscattering
cross section, the magnitude of the acid-labile backscattering
(in units m�1) is approximately numerically equal to the PIC con-
centration (in moles m�3, Op. Cit.).

Remotely-sensed ocean color

Algorithms to obtain particle properties from ocean color
remote sensing come in several varieties. Correlation-based algo-
rithms are used to map chlorophyll (O’Reilly et al., 1998), POC
(Son et al., 2009; Stramski et al., 1999, 2008), PM (Vantrepotte
et al., 2011), PIC (Balch et al., 2007), and phytoplankton functional
groups (Alvain et al., 2005; IOCCG, 2014). They tend to work best in
open ocean conditions where the assumptions that phytoplankton
and associated constituents co-vary and primarily modulate ocean
color are valid. Semi-analytical algorithms have been developed
which, in addition to empirical input, use radiative-transfer theory
to invert optical constituents in the open ocean. These algorithms,
most often, obtain the combined absorption of non-phytoplankton
and dissolved material, phytoplankton absorption, the associated
chlorophyll concentration, and the backscattering coefficient (see
IOCCG, 2006; Werdell et al., 2013). Semi-analytical algorithms pro-
vide information regarding size (Loisel et al., 2006; Kostadinov
et al., 2009; Berwin et al., 2011) and phytoplankton composition
as well (Kostadinov et al., 2010).

A resource with examples using ocean-color remote sensing for
a variety of ocean related studies with many case studies is pro-
vided at: http://www.ioccg.org/handbook.html. One is cautioned
that many ocean-color based algorithms provide output without
associated uncertainties. In addition, empirical algorithms that

have been tuned with specific data obtained in a specific region
at a given time may not be applicable to other conditions.

Optical imaging of particle abundance and size distribution

Relevant to the GEOTRACES objectives, imaging systems pro-
vide particle size spectra and characterize individual particles at
high frequency. These are useful to estimate (1) macrozooplankton
abundance (Checkley et al., 2008; Stemmann et al., 2008a), (2) par-
ticle flux through the water column (Guidi et al., 2008; Guidi et al.,
2009; Jackson and Burd, 2002; Jouandet et al., 2011), and (3) par-
ticle size distribution in mesoscale spatial patterns (Guidi et al.,
2012; see e.g. Fig. 4). They can be used to test the influence of par-
ticle size distribution on carbon and trace element (TE) fluxes
(Bishop, 2009; Burd et al., 2007; Stemmann et al., 2004a;
Stemmann et al., 2004b), and identify depths where aggregation
takes place that may affect the distribution of elements (Burd
and Jackson, 2009).

Optical imaging systems such as digital cameras have been used
since the 1980s to study in-situ concentrations of particles larger
than tens of micron including marine snow with an equivalent
spherical diameter (ESD) >500 lm (Alldredge, 1998; Davis et al.,
2005; Goldthwait and Alldredge, 2006; Gorsky et al., 1992; Honjo
et al., 1984; McDonnell et al., 2015; Walsh and Gardner, 1992).
Since then, the technology has evolved allowing fast laboratory-
based or in-situ measurements of particle size distribution from
a few microns to a few millimetres. The particle size range ‘‘seen’’
by these instruments is limited by the resolution of the imaging
sensor and the volume of water sampled.

These instruments have been used to study biogeochemical
cycles combining particle information from camera systems and
sediment trap measurements of particle flux in order to better
estimate particle sinking rate, a characteristic influencing particle
export (Asper, 1987; Asper et al., 1992; Diercks and Asper, 1997;
Gardner and Walsh, 1990; Guidi et al., 2008; Iversen et al., 2010;
Jackson et al., 1997; Jouandet et al., 2011; McDonnell and
Buesseler, 2010; Peterson et al., 2005; Walsh and Hunter,
1992). Systems such as the In Situ Ichthyoplankton Imaging Sys-
tem ISIIS (Cowen and Guigand, 2008), the Zooplankton Visualiza-
tion and Imaging System ZOOVIS (Benfield et al., 2007) and the
Shadowed Image Particle Profiler and Evaluation Recorder (SIP-
PER, Samson et al., 2001) allow counting and sizing of large zoo-
plankton from images. The Video Plankton Recorder (VPR, Davis
et al., 2005) and the Underwater Vision Profiler (UVP, Picheral
et al., 2010) provide high temporal resolution particle imaging
and size individual particles >�100 lm. However the larger water
volume per image sampled by the UVP (Volume UVP � 100 times
greater than the VPR) allows better estimation with higher verti-
cal resolution of concentrations of rare large particles (>1 mm).
Several systems utilizing holographic imaging such as the LISST-
holo (Braithwaite et al. 2012) have also been developed for the
purpose of imaging individual particles with sizes >�50 lm
in situ (Hobson et al., 1997; Katz et al., 1999; Alexander et al.,
2000; Pfitsch et al., 2007). Other optical instruments such as
the laser optical plankton counter (LOPC) can be used to quantify
zooplankton and particles based on the opacity and size of parti-
cles (Checkley et al., 2008; Gonzalez-Quiros and Checkley, 2006;
Jackson and Checkley, 2011). Validation is critical to insure parti-
cles are well identified.

While most of the instruments presented above allow imaging
and measurement of large (>100s lm) particles there is increasing
interest in quantifying nano- and microplankton particles. Labora-
tory, on-vessel or in-situ instruments such as the FlowCam (Flow
Imaging), the Imaging FlowCytobot (McLane), or CytoSense
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(CytoBuoy) allow this based on imaging and/or flow cytometery
(Dubelaar and Gerritzen, 2000; Olson and Sosik, 2007; Sieracki
et al., 1998).

Deployment strategies

Sensors to measure marine particles have been routinely
deployed on CTD rosettes (Bishop and Joyce, 1986; Bishop et al.,
1992; Bishop et al., 2012; Bishop, 1999; Bishop and Wood, 2008;
Dickey et al., 2006; Gardner et al., 1985; Gardner et al., 1993;
Gardner et al., 2001; Hill et al., 2011; Karp-Boss et al., 2004;
Stemmann et al., 2008a), during deployments of large volume in-
situ filtration systems (Bishop, 1999; Bishop et al., 1999; Bishop
et al., 2012; Bishop and Wood, 2008; Moran et al., 1999), on
slow-drop packages (packages that fall under their own weight,
Barnard et al., 1998), towed pumping systems, (Holser et al.,
2011), AUVs and profiling floats (Bishop et al., 2002; Bishop and
Wood, 2009; Bishop et al., 2004; Boss et al., 2008; Checkley et al.,
2008; Dickey et al., 2008), submarines, bottom tripods (Gardner
et al., 1985; Slade et al., 2011) and moorings (Dickey et al., 2006;
Gardner, 1989a, 1989b; Richardson et al., 1993). Consideration of
deployment platform should include potential of platform interfer-
ence with particles (e.g. by inducing turbulence that break aggre-
gates) and the ability of the platform to deal with the weight,
size, power and data streaming demands of a particular sensor.

Optical technology for measuring particles and their properties that
could enhance GEOTRACES cruises

Recommendations for sensors and sensor systems that could be
included in GEOTRACES cruises to provide information regarding
particles are provided in Table 1, with relationships between cer-
tain bulk particle properties and optical variables are provided in
Table 2.

The US GEOTRACES intercalibration experiment cruises have
provided a test bed for transmissometer scattering, and PIC sensor
deployments during trace metal rosette casts and in-situ pump
casts (e.g. Appendix B).

Calibration strategies and resolution issues in nearly particle
free oceanic waters

Calibration and clean techniques with particle sampling and
optical measurements are key to obtaining meaningful data in
the open ocean as, often, the signals measured and samples col-
lected are very close to the resolution and/or accuracy of the
instruments/sampling-technique. This is well illustrated by the
data of (Brewer et al., 1976), showing that the lowest and average
PM in the deep North Atlantic are on the order of 5–6 lg kg�1 and
20 lg kg�1, respectively. Using large volume in situ pumps in the
upper 500 m of the water column, Bishop and Edmond (1976)
found particle concentrations to be 20–100% higher than previ-
ously reported (Brewer et al., 1976), mostly due to adding the
large-particle fraction. Gardner (1977) and Gardner et al. (1993)
showed that inclusion of particles that have settled below the
Niskin bottle sampling spigots increases particle concentrations
by 10–100%, which accounts well for the difference between bottle
and pump concentrations reported by Bishop and Edmond (1976).

Assuming a conversion factor to beam attenuation of 0.8 m2 g�1

(based on the compilations of Gardner et al., 1985; Hill et al., 2011),
the lowest and average cp at 660 nm are expected to be of the order
of 0.005 m�1 and 0.015 m�1, respectively.

The digital output of cp from 25 cm-long single band digital
beam-transmissometers is reported to 0.001 m�1 resolution. Mon-
itoring of analog output and digital count output from the sensors
during laboratory bench top testing shows noise levels lower than
0.0003 m�1. Acquisition of digital count data from the CTD permits
this level of precision to be achieved. Aboard ship, along-track

Fig. 4. Example of data obtained from a deployment of the UVP through the Oxygen Minimum Zone of the Northern Indian Ocean in March 2009 (A). Particulate carbon flux
profile (red line) estimated from particle size distribution and concentration according to Guidi et al. (2008). (B) Particle abundance (PSD) for particles with equivalent
spherical diameter (ESD, determined from particles cross-section) varying from 100 lm to 2 cm, binned every 200 m down to 1200 m compared to a theoretical PSD with
slope equal to �4 in red. (C) Difference between the theoretical and the observed PSD with examples of aggregates from the UVP images found where residuals were
maximum. In this example, large aggregate abundance increases with depth below 150 m, presumably reflecting formation and loss of aggregates sinking down to the deep
sea (Roullier et al., 2014). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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transmissometers fed with surface water can achieve 0.0005 m�1

accuracy by taking the difference between two successive measure-
ments with the same instrument, one with and one without a
0.2 lm filter at the intake of a flow sleeve, and averaging over a
minute of independent measurements (Boss et al., 2007; Slade
et al., 2010).

Comparisons of sensors by Barnard and Claustre (personal com-
munication 2012) and Bishop (CTD data R/V Point Sur, Feb 2012)
demonstrated that (1) transmissometers are precise instruments
(precision on the order of 0.001 m�1, and can be improved further
by averaging), (2) transmissometers should be cleaned and cali-
brated by the users close to the time of measurements to signifi-
cantly increase their accuracy (GEOTRACES has published a
protocol on the appropriate procedures, see: http://www.geotrac-
es.org/libraries/documents/Intercalibration/Cookbook.pdf), and (3)
achieving highly accurate measurements in low particle concentra-
tion waters, is still a major challenge. Details of these comparisons
are provided in Appendix B.

In terms of the back-scattering coefficient of particles, a mini-
mum PM of 6 lg kg�1 with a mean around 20 lg kg�1 translates
to about 5 � 10�5 and 15 � 10�5 at 660 nm, where the uncertain-
ties are on the order of 5 � 10�5m�1. To reach this level of accu-
racy, however, dark current measurements have to be
determined on a separate cast with black tape on the receiver
(Twardowski et al., 2007). Twardowski et al. (2007) found that

between 300 and 500 m the difference between the backscattering
signal at a red wavelength in the South Pacific ocean and the clean-
est calibration waters was not significant.

Using turbidity meters it is possible to obtain higher resolution
than with backscattering sensors. For example, Boss et al. (2008)
obtained a minimal difference (7 counts) between the cleanest
field water and the dark current. The higher resolution with turbid-
ity meters is most likely due to the larger (though less well
defined) sampling volume compared to backscattering sensors.
The Seapoint turbidity meter, if measured to millivolt accuracy,
has a resolution of 0.005 FTU (http://www.seapoint.com/stm.htm,
equivalent to about 5 � 10�5 m�1 in backscattering units). Preci-
sion can be improved using higher resolution analog to digital con-
verters and by averaging.

Current technology to measure the absorption coefficient in-
situ has accuracy on the order of 0.005 m�1 or 0.01 m�1 (for
25 cm long WET-Labs’s ac-9 and ac-S respectively), when cali-
brated with Nanopure clean water and for the red part of the spec-
tra. Higher accuracy is possible if a calibration independent
technique is used to obtain the particulate absorption
(0.001 m�1, Boss et al., 2013), resulting in uncertainties in esti-
mated chlorophyll on the order of 40% (Op. Cit.). Uncertainties
associated with the scattering correction increase in absolute value
at blue wavelengths and can be as high as 30% (Röttgers et al.,
2013). When absorption by inorganic particles is important, signif-

Table 1
Sensors and sensor systems recommendations for GEOTRACES cruises.

CTD-Rosette In-Line (shipboard flow through) Autonomous platforms

Commercial
Beam-transmissometer Single band beam-transmissometer AUV and/or profiling floats with:
Backscattering sensors Chlorophyll Fluorometer Beam-transmissometer, Backscattering or turbidity sensors.
Turbidity sensors Spectral absorption and attenuation meter. Chlorophyll fluorometer.
Chlorophyll fluorometers Flow-cytometerse

UVP a Imaging cytometersf

Automated particle imagersg

Prototype
PIC sensorb Filtered/unfiltered optical propertiesc PIC sensor

PIC using acid-labile techniqued Optical (imaging)
Sedimentation recordersb

a Picheral et al. (2010).
b Bishop (2009).
c Slade et al. (2010).
d Balch and Utgoff (2009).
e Dubelaar and Gerritzen (2000).
f Olson and Sosik (2007).
g Sieracki et al. (1998).

Table 2
Summary table: Biogeochemical variables of particles and sensing technologies used to estimate them.

Variables Optical principle Sensor types

Mass concentration:
Particle concentration (mass,

particulate organic carbon)
Transmission, scattering, imaging Transmissometers, backscattering and side-scattering sensors,

cameras
Particulate inorganic carbon Polarized transmission, acid- labile backscattering Custom transmissometers (PIC sensors), angular scattering sensors

with acid-injection.
Phytoplankton pigments Fluorescence for chlorophyll-a like pigments and

Phycobiliprotein and particulate absorption
Single or multi-band fluorometers and/or spectorphotometers

Particle size distribution
Number, area, volume distributions

as function of size
Imaging, near-forward scattering Submersible cameras, Near-forward scattering sensors, Imaging

cytometers, Automated particle imagers.
Single size distribution parameter Slope of spectral particulate beam attenuation Multi spectral transmissometers

Fluctuation in optical properties Single wavelength transmissometers, backscattering and
fluorometers

Particle composition
Bulk tendency between organic and

inorganic
Ratio of backscattering to total scattering or beam
attenuation

A backscattering sensor and spectral absorption and attenuation
sensor or near-infra-red transmissometer
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icant errors in the particulate absorption coefficient in red wave-
lengths are observed (Op. Cit.).

Because detection and analysis of particles vary among different
imaging systems, it is important to understand calibration proce-
dures to ensure comparison of open ocean particle measurements.
General calibration for optical instruments follows two critical
steps: (1) calibration of the water volume for a single image and
(2) calibration of the size of particle within the image. While par-
ticle counting is very sensitive to step 1, particle sizing depends
on step 2. The volume calibration can be performed in an aquarium
filled with seawater with the light source illuminating a calibration
sheet placed at different position in the field of light, and a digital
camera recording the illuminated surface. Once all images are
recorded, the volume can be reconstructed in 3D. An example of
the volume calibration process can be found in Picheral et al.
(2010). The size calibration on the other hand can be done using
mainly 3 methods. For sufficiently large particles (>100 lm) cali-
bration can be done inserting known ‘‘natural’’ targets into the
imaging system prior to taking measurements (e.g. Picheral et al.
2010). This allows calculating a calibration equation converting
pixel area to real surface area of particles. When looking at smaller
particles (<100 lm) inserting and tracking them in the light field
becomes impossible and calibrated beads or culture of phytoplank-
ton cells are used to replace natural targets (Agrawal et al. 2008;
Karp-Boss et al., 2007). Finally, cross-calibration of sensor output
with a well characterized and calibrated sensor (‘gold standard’)
can also be applied to insure inter-comparability of measurements.

Concentration has a critical impact on derived particle size dis-
tributions. For example, imaging instruments have seldom been
used in oligotrophic systems where the principal technical chal-
lenge resides in the low concentration of particles >500 lm. Since
particle concentration decreases approximately exponentially with
size, the illuminated volume must increase considerably in order to
detect such particles and their statistics. For example, in the clear-
est water of the Pacific south gyre, collecting 100 ml was found suf-
ficient enough to detect particles up to 50 lm while 75 l of
seawater was necessary to detect particles as large as 1000 lm
(Stemmann et al., 2008b).

From the discussion above it follows that the uncertainty associ-
ated with obtaining optical properties with current technology may
not allow differentiation between a clear ocean water signal and a
blank (the uncertainty in the signal is on the same order of magni-
tude as its difference from the cleanest calibration water available
and heroic efforts need to be applied to do better). To improve on
this situation, instrumentation and protocols need to be developed
that can enable the robust determination of optical properties of
particles in the deep ocean (e.g. using longer pathlength, stronger
sources, more sensitive/stable receivers, better signal stabilization
and calibration procedures). Specific calls for proposals by federal
agencies (e.g. NSF-OTIC, NOPP or the SBIR programs in the USA) tar-
geting the construction/refinement of novel/existing sensors that
have good signal/noise characteristics, and for their validation in
the clearest ocean waters, are needed to advance this field.

Conclusions and recommendations

Optical technologies can significantly aid the goals of the GEO-
TRACES program in constraining material pools and processes asso-
ciated with trace elements. While some of the optical sensors are
likely to be challenged in the clearest subsurface ocean waters, they
will provide very useful data near the ocean’s surface and bottom
and will also be useful in detecting specific particle layers. GEO-
TRACES should include particle optics during CTD/rosette casts
and during in-situ filtration system deployments and treat such data
as core variables. The particulate samples, especially size fraction-

ated samples collected by in-situ filtration, when analyzed for major
constituent phases, would provide an especially valuable resource
for GEOTRACES and for interpretation of optical signals. Optical sen-
sors must be capable of full water column deployment and thus not
interfere with cast operations. Further, at sea there must be scientific
oversight of the optical data to ensure the quality of the data as it is
collected. It is further recommended that a CTD-based intercalibra-
tion of multiple transmissometers, scattering and other candidate
optical sensors in low particle waters would benefit data quality
by providing the most stable instruments for major sections. The
GEOTRACES program would benefit from the addition of in-line
(shipboard flow through) optical sensors to provide information
on horizontal distributions of particles within the mixed-layer.
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A. Appendix: Repositories where optical data can be found

NSF funded, Biological and Chemical Data Management Office,
bcodmo.org/.

ONR funded, Worldwide Ocean Optics Database (WOOD),
wood.jhuapl.edu/wood/.

NASA’s SeaWIFS Bio-optical Archive and storage system (Sea-
BASS), seabass.gsfc.nasa.gov/.

NOAA’s National Ocean Data Center, www.nodc.noaa.gov/.
Texas A&M transmissometer and POC data sets from JGOFS,

WOCE, CLIVAR and others: ocean.tamu.edu/�pdgroup/SMP_prj/
DataDir/SMP-data.html or

odv.awi.de/en/data/ocean/.

B. Appendix: Recent inter-comparison exercises involving
transmissometers

In a comparison between ten new sensors deployed side-by-
side (Barnard, Claustre, 2012 personal communication), it was
found that if users did not clean and calibrate the sensors them-
selves (that is relying on the manufacturer calibration and not
cleaning the windows) differences between sensors readings could
be as large as 0.05 m�1. Slight misalignment due to handling when
instruments are shipped can cause significant deviation in read-
ings. Conducting local calibration and cleaning the instruments
improved agreement between instruments to within 0.01 m�1.
Forcing all instruments to agree on the value at depth resulted in
a difference between instruments that was on the order of
0.001 m�1.

Four transmissometers of two different designs (WET-Labs’ C-
STAR analog and digital instruments (CST 391 and CST 1450) and
two prototype neutrally buoyant instruments, WET-Labs’ POC017,
POC018) were simultaneously profiled in deep California Current
waters over 5 days at the same location (Bishop, unpublished data,
2012). Published GEOTRACES protocols for transmissometers were
followed. Pooled sensor results for a low variability water layer
between 1400 and 1600 m gave an average beam attenuation coef-
ficient value of 0.0085 (s.d. 0.0033) m�1 (Fig. A1, Lerner et al., 2013).
In contrast, each individual instrument repeated the 1400–1600 m
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beam attenuation coefficient value to a precision of
s.d = 0.0009 m�1. The largest contributor to the absolute disagree-
ment of the 4 sensors was that each had a different and finite resid-
ual signal response to temperature, which although falling within
manufacturer’s specifications, is repeatable and can be compen-
sated for during data processing. We were able to correct data from
the older – less accurate analog sensor CST391 for temperature
effects and brought all results into agreement of ±0.0022 m�1. Man-
ufacturer calibration of the sensor in particle free water has been
shown to be reproducible. The residual thermal sensitivity issues
of transmissometers can be solved.

References

Aas, E., 1996. Refractive index of phytoplankton derived from its metabolite
composition. Journal of Plankton Research 18, 2223–2249.

Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling
velocity observations in sediment transport. Marine Geology 168, 89–114.

Agrawal, Y.C., Whitmire, A., Mikkelsen, O.A., Pottsmith, H.C., 2008. Light scattering
by random shaped particles and consequences on measuring suspended
sediments by laser diffraction. Journal of Geophysical Research 113, C04023.
http://dx.doi.org/10.1029/2007JC004403.

Alexander, S., Anderson, S., Hendry, D.C., Hobson, P.R., Lampitt, R.S., Lucas-Leclin, B.,
Nareid, H., Nebrensky, J.J., Player, M.A., Saw, K., Tipping, K., Watson, J., 2000.
HoloCam: a subsea holographic camera for recording marine organisms and
particles. Optical Diagnostics for Industrial Applications 4076, 111–119.

Alldredge, A., 1998. The carbon, nitrogen and mass content of marine snow as a
function of aggregate size. Deep-Sea Research Part I-Oceanographic Research
Papers 45, 529–541.

Alldredge, A.L., Jackson, G.A., 1995. Aggregation in marine systems. Deep-Sea
Research Part-II 42, 1–7.

Alldredge, A.L., Passow, U., Logan, B.E., 1993. The abundance and significance of a
class of large, transparent organic particles in the ocean. Deep-Sea Research,
Part-I 40, 1131–1140.

Alvain, S., Moulin, C., Dandonneau, Y., Breon, F.M., 2005. Remote sensing of
phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea
Research Part I-Oceanographic Research Papers 52, 1989–2004.

Anderson, R.F., Hayes, C.T., 2015. Characterizing marine particles and their impact
on biogeochemical cycles in the GEOTRACES program. Progress In
Oceanography 133, 1–5.

Asper, V.L., 1987. Measuring the flux and sinking speed of marine snow aggregates.
Deep-Sea Research Part a-Oceanographic Research Papers 34, 1–17.

Asper, V.L., Honjo, S., Orsi, T.H., 1992. Distribution and transport of marine snow
aggregates in the Panama Basin. Deep-Sea Research 39 (6A), 939–952.

Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering
properties of marine particles in coastal and open ocean waters as related to the
particle mass concentration. Limnology and Oceanography
48, 843–859.

Baker, E.T., Tennant, D.A., Feely, R.A., Lebon, G.T., Walker, G.T., 2001. Field and
laboratory studies on the effect of particle size and composition on optical
backscattering measurements in hydrothermal plumes. Deep-Sea Research,
Part-I 48, 593–604.

Balch, W.M., Utgoff, P.E., 2009. Potential interactions among ocean acidification,
coccolithophores, and the optical properties of seawater. Oceanography 22,
146–159.

Balch, W.M., Drapeau, D.T., Fritz, J.J., Bowler, B.C., Nolan, J., 2001. Optical
backscattering in the Arabian Sea – continuous underway measurements of
particulate inorganic and organic carbon. Deep-Sea Research Part I-
Oceanographic Research Papers 48, 2423–2452.

Balch, W., Drapeau, D., Bowler, B., Booth, E., 2007. Prediction of pelagic calcification
rates using satellite measurements. Deep-Sea Research Part Ii-Topical Studies in
Oceanography 54, 478–495.

Barnard, A.H., Pegau, W.S., Zaneveld, J.R.V., 1998. Global relationships of the
inherent optical properties of the oceans. Journal of Geophysical Research-
Oceans 103, 24955–24968.

Behrenfeld, M.J., Boss, E., 2006. Beam attenuation and chlorophyll concentration as
alternative optical indices of phytoplankton biomass. Journal of Marine
Research 64, 431–451.

Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-
Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., Pilskaln, C.H., Riseman,
E.M., Schultz, H., Utgoff, P.E., Gorsky, G., 2007. RAPID research on automated
plankton identification. Oceanography 20, 172–187.

Bishop, J.K.B., 1986. The correction and suspended particulate matter calibration of
sea tech transmissometer data. Deep-Sea Research Part a-Oceanographic
Research Papers 33, 121–134.

Bishop, J.K.B., 1999. Transmissometer measurement of POC. Deep-Sea Research Part
I-Oceanographic Research Papers 46, 353–369.

Bishop, J.K.B., 2009. Autonomous observations of the ocean biological carbon pump.
Oceanography 22, 182–193.

Bishop, J.K.B., Edmond, J.M., 1976. New large volume filtration system for sampling
of oceanic particulate matter. Journal of Marine Research 34, 181–198.

Bishop, J.K.B., Joyce, T.M., 1986. Spatial distributions and variability of suspended
particulate matter in warm-core ring 82b. Deep-Sea Research Part a-
Oceanographic Research Papers 33, 1741–1760.

Bishop, J.K.B., Wood, T.J., 2008. Particulate matter chemistry and dynamics in the
twilight zone at VERTIGO ALOHA and K2 sites. Deep Sea Research Part I:
Oceanographic Research Papers 55, 1684–1706.

Bishop, J.K.B., Wood, T.J., 2009. Year round observations of carbon biomass and flux
variability in the southern ocean. Global Biogeochemical Cycles 23, GB2019.
http://dx.doi.org/10.1029/2008GB003206.

Bishop, J.K.B., Smith, R.C., Baker, K.S., 1992. Springtime distributions and variability
of biogenic particulate matter in Gulf-Stream warm-core ring 82b and
surrounding Nw Atlantic Waters. Deep-Sea Research Part a-Oceanographic
Research Papers 39, S295–S325.

Bishop, J.K.B., Calvert, S.E., Soon, M.Y.S., 1999. Spatial and temporal variability of
POC in the northeast Subarctic Pacific. Deep-Sea Research Part Ii-Topical Studies
in Oceanography 46, 2699–2733.

Bishop, J.K.B., Davis, R.E., Sherman, J.T., 2002. Robotic observations of dust storm
enhancement of carbon biomass in the North Pacific. Science 298, 817–821.

Bishop, J.K.B., Wood, T.J., Davis, R.E., Sherman, J.T., 2004. Robotic observations of
enhanced carbon biomass and export at 55 degrees S during SOFeX. Science
304, 417–420.

Bishop, J.K.B., Lam, P.J., Wood, T.J., 2012. Getting good particles: accurate sampling
of particles by large volume in-situ filtration. Limnology and Oceanography
Methods 10, 681–710.

Boss, E., Pegau, W.S., Gardner, W.D., Zaneveld, J.R.V., Barnard, A.H., Twardowski,
M.S., Chang, G.C., Dickey, T.D., 2001a. Spectral particulate attenuation and
particle size distribution in the bottom boundary layer of a continental shelf.
Journal of Geophysical Research-Oceans 106, 9509–9516.

Boss, E., Twardowski, M.S., Herring, S., 2001b. Shape of the particulate beam
attenuation spectrum and its inversion to obtain the shape of the particulate
size distribution. Applied Optics 40, 4885–4893.

Boss, E.S., Collier, R., Larson, G., Fennel, K., Pegau, W.S., 2007. Measurements of
spectral optical properties and their relation to biogeochemical variables and
processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia 574,
149–159.

Boss, E., Swift, D., Taylor, L., Brickley, P., Zaneveld, R., Riser, S., Perry, M.J., Strutton,
P.G., 2008. Observations of pigment and particle distributions in the western
North Atlantic from an autonomous float and ocean color satellite. Limnology
and Oceanography 53, 2112–2122.

Boss, E., Slade, W., Hill, P., 2009a. Effect of particulate aggregation in aquatic
environments on the beam attenuation and its utility as a proxy for particulate
mass. Optics Express 17, 9408–9420.

Fig. A1. Result of a test of 4 transmissometers R/V Point Sur, Feb 2012. Data
represent the averages of beam attenuation coefficient over 3 days in a low
variability layer from 1400–1600 m near Monterey Bay, CA. UPPER vs. LOWER
panels are data from CST391 with and without a correction applied to account for
thermal effects on transmissometer beam intensity. This correction adjustment
resulted in an improved agreement between transmissometers from ±0.0033 m�1

to ±0.0021 m�1.

E. Boss et al. / Progress in Oceanography 133 (2015) 43–54 51

http://refhub.elsevier.com/S0079-6611(14)00154-2/h0005
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0005
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0010
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0010
http://dx.doi.org/10.1029/2007JC004403
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0015
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0015
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0015
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0015
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0030
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0030
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0030
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0025
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0025
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0020
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0020
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0020
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0035
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0035
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0035
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0045
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0045
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0050
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0050
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0055
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0055
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0055
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0055
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0060
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0060
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0060
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0060
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0075
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0075
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0075
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0070
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0070
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0070
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0070
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0065
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0065
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0065
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0080
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0080
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0080
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0085
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0085
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0085
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0090
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0090
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0090
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0090
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0095
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0095
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0095
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0100
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0100
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0105
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0105
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0120
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0120
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0125
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0125
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0125
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0140
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0140
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0140
http://dx.doi.org/10.1029/2008GB003206
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0135
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0135
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0135
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0135
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0110
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0110
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0110
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0115
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0115
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0150
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0150
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0150
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0130
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0130
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0130
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0155
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0155
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0155
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0155
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0180
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0180
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0180
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0185
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0185
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0185
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0185
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0170
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0170
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0170
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0170
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0160
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0160
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0160


Boss, E., Slade, W.H., Behrenfeld, M., Dall’Olmo, G., 2009b. Acceptance angle effects
on the beam attenuation in the ocean. Optics Express 17, 1535–1550.

Boss, E., Taylor, L., Gilbert, S., Gundersen, K., Hawley, N., Janzen, C., Johengen, T.,
Purcell, H., Robertson, C., Schar, D.W.H., Smith, G.J., Tamburri, M.N., 2009c.
Comparison of inherent optical properties as a surrogate for particulate matter
concentration in coastal waters. Limnology and Oceanography-Methods 7, 803–
810.

Boss, E., Picheral, M., Leeuw, T., Chase, A., Karsenti, E., Gorsky, G., Taylor, L., Slade,
W., Ras, J., Claustre, H., 2013. The characteristics of particulate absorption,
scattering and attenuation coefficients in the surface ocean. Contribution of the
Tara Oceans expedition, Methods in Oceanography 7, 52–62.

Braithwaite, K.M., Bowers, D.G., Smith, W.A.M.N., Graham, G.W., 2012. Controls on
floc growth in an energetic tidal channel. Journal of Geophysical Research-
Oceans 117. http://dx.doi.org/10.1029/2011JC007094.

Brewer, P.G., Spencer, D.W., Biscaye, P.E., Hanley, A., Sachs, P.L., Smith, C.L., Kadar, S.,
Fredericks, J., 1976. The distribution of particulate matter in the Atlantic Ocean.
Earth and Planetary Science Letters 32, 393–402.

Brewin, R.J.W., Hardman-Mountford, N.J., Lavender, S.J., Raitsos, D.E., Hirata, T., Uitz,
J., Devred, E., Bricaud, A., Ciotti, A., Gentili, B., 2011. An intercomparison of bio-
optical techniques for detecting phytoplankton size class from satellite remote
sensing. Remote Sensing of Environment 115, 325–339. http://dx.doi.org/
10.1016/j.rse.2010.09.004.

Briggs, N.T., Slade, W.H., Boss, E., Perry, M.J., 2013. Method for estimating mean
particle size from high-frequency fluctuations in beam attenuation or scattering
measurements. Applied Optics 52, 6710–6725.

Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annual Review in Marine
Sciences 1, 65–90.

Burd, A.B., Jackson, G.A., Moran, S.B., 2007. The role of the particle size spectrum in
estimating POC fluxes from disequilibrium. Deep Sea Research Part I:
Oceanographic Research Papers 54, 897–918.

Cetinic, I., Perry, M.J., Briggs, N.T., Kallin, E., D’Asaro, E.A., Lee, C.M., 2012. Particulate
organic carbon and inherent optical properties during 2008 North Atlantic
Bloom Experiment. Journal of Geophysical Research-Oceans 117, C06028.
http://dx.doi.org/10.1029/2011JC007771.

Chase, A., Boss, E., Zaneveld, R., Bricaud, A., Claustre, H., Ras, J., Dall’Olmo, G.,
Westberry, T., 2013. Decomposition of in situ particulate absorption spectra.
Methods in Oceanography 7, 110–124. http://dx.doi.org/10.1016/
j.mio.2014.02.002.

Checkley, D.M., Davis, R.E., Herman, A.W., Jackson, G.A., Beanlands, B., Regier, L.A.,
2008. Assessing plankton and other particles in situ with the SOLOPC.
Limnology and Oceanography 53, 2123–2136.

Cowen, R.K., Guigand, C.M., 2008. In situ ichthyoplankton imaging system (ISIIS):
system design and preliminary results. Limnology and Oceanography-Methods
6, 126–132.

Davis, R.F., Moore, C.C., Zaneveld, J.R.V., Napp, J.M., 1997. Reducing the effects of
fouling on chlorophyll estimates derived from long-term deployments of
optical instruments. Journal of Geophysical Research 102, 5851–5855.

Davis, C.S., Thwaites, F.T., Gallager, S.M., Hu, Q., 2005. A three-axis fast-tow digital
Video Plankton Recorder for rapid surveys of plankton taxa and hydrography.
Limnology and Oceanography-Methods 3, 59–74.

Deng, F., Thomas, A.L., Rijkenberg, M.J.A., Henderson, G.M., 2014. Controls on
seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep
waters in the Southwest Atlantic. Earth and Planetary Science Letters 390, 93–
102.

Dickey, T., Lewis, M., Chang, G., 2006. Optical oceanography: recent advances and
future directions using global remote sensing and in situ observations. Reviews
of Geophysics 44, RG 1001. http://dx.doi.org/10.1029/2003RG000148.

Dickey, T.D., Itsweire, E.C., Moline, M., Perry, M.J., 2008. Introduction to the
Limnology and Oceanography Special Issue on Autonomous and Lagrangian
Platforms and Sensors (ALPS). Limnology and Oceanography 53, 2057–2061.

Diercks, A.R., Asper, V.L., 1997. In situ settling speeds of marine snow aggregates
below the mixed layer: Black Sea and Gulf of Mexico. Deep-Sea Research II 44,
385–397.

Dubelaar, G.B.J., Gerritzen, P.L., 2000. CytoBuoy: a step forward towards using flow
cytometry in operational oceanography. Sciancias Marinas 64, 255–265.

Duysens, L.M.N., 1956. The flattening of the absorption spectrum of suspensions, as
compared to that of solutions. Biochimica et Biophysica Acta 19, 1–12.

Estapa, M.L., Boss, E., Mayer, L.M., Roesler, C.S., 2012. Role of iron and organic carbon
in mass-specific light absorption by particulate matter from Louisiana coastal
waters. Limnology and Oceanography 57, 97–112.

Fournier, G. R., Sanjuan-Calzado, V., Trees, C., 2014. Implications of a new phase
function for autonomous underwater imaging. In: Proc. SPIE 9111, Ocean
Sensing and Monitoring VI, 911119, http://dx.doi.org/10.1117/12.2053878.

Fry, E.S., Kattawar, G.W., Pope, R.M., 1992. Integrating cavity absorption meter.
Applied Optics 31, 2055–2065.

Gardner, W.D., 1977. Incomplete extraction of rapidly settling particles from water
samplers. Limnology and Oceanography 22, 764–768.

Gardner, W.D., 1989a. Baltimore canyon as a modern conduit of sediment to the
deep-sea. Deep-Sea Research Part a-Oceanographic Research Papers 36, 323–
358.

Gardner, W.D., 1989b. Periodic resuspension in Baltimore Canyon by focusing of
internal waves. Journal of Geophysical Research 94, 18185–18194.

Gardner, W.D., Walsh, I.D., 1990. Distribution of macroaggregates and fine-grained
particles across a continental-margin and their potential role in fluxes. Deep-
Sea Research Part a-Oceanographic Research Papers 37, 401–411.

Gardner, W.D., Biscaye, P.E., Zaneveld, J.R.V., Richardson, M.J., 1985. Calibration and
comparison of the LDGO nephelometer and the OSU transmissometer on the
Nova Scotian rise. Marine Geology 66, 323–344.

Gardner, W.D., Walsh, I.D., Richardson, M.J., 1993. Biophysical forcing of particle
production and distribution during a spring bloom in the North Atlantic. Deep
Sea Research Part II: Topical Studies in Oceanography 40, 171–195.

Gardner, W.D., Richardson, M.J., Smith, W.O., 2000. Seasonal patterns of water
column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-
Sea Research II 47, 3423–3449.

Gardner, W.D., Blakey, J.C., Walsh, I.D., Richardson, M.J., Pegau, S., Zaneveld, J.R.V.,
Roesler, C., Gregg, M.C., MacKinnon, J.A., Sosik, H.M., Williams III, A.J., 2001.
Optics, particles, stratification and storms on the New England continental
shelf. Journal of Geophysical Research 106, 9473–9497.

Gardner, W.D., Richardson, M.J., Carlson, C.A., Hansell, D., Mishonov, A.V., 2003.
Determining true particulate organic carbon: bottles, pumps and
methodologies. Deep-Sea Research Part Ii-Topical Studies in Oceanography
50, 655–674.

Gardner, W.D., Richardson, M.J., Mishonov, A.V., Biscaye, P.E., 2014. Global
Distribution And Intensity Of Deep-Water Benthic Nepheloid Layers – What
Satellites, Floats And Gliders Don’t See. Ocean Sciences Meeting, Hawaii.

Goldthwait, S.A., Alldredge, A.L., 2006. An investigation of diel synchronicity
between water column marine snow concentration and the flux of organic
matter in the Santa Barbara Channel, California. Deep-Sea Research Part I-
Oceanographic Research Papers 53, 485–505.

Gonzalez-Quiros, R., Checkley, D.M., 2006. Occurrence of fragile particles inferred
from optical plankton counters used in situ and to analyze net samples collected
simultaneously. Journal of Geophysical Research – Oceans 111, 5–6.

Gorsky, G., Aldorf, C., Kage, M., Picheral, M., Garcia, Y., Favole, J., 1992. Vertical-
distribution of suspended aggregates determined by a new underwater video
profiler. Annales De L Institut Oceanographique 68, 275–280.

Guay, C.K.H., Bishop, J.K.B., 2002. A rapid birefringence method for measuring
suspended CaCO3 concentrations in seawater. Deep-Sea Research Part I-
Oceanographic Research Papers 49, 197–210.

Guidi, L., Jackson, G.A., Stemmann, L., Miquel, J.C., Picheral, M., Gorsky, G., 2008.
Relationship between particle size distribution and flux in the mesopelagic
zone. Deep-Sea Research Part I-Oceanographic Research Papers 55, 1364–1374.

Guidi, L., Stemmann, L., Jackson, G.A., Ibanez, F., Claustre, H., Legendre, L., Picheral,
M., Gorsky, G., 2009. Effects of phytoplankton community on production, size
and export of large aggregates: a world-ocean analysis. Limnology and
Oceanography 54, 1951–1963.

Guidi, L., Calil, P.H.R., Duhamel, S., Björkman, K.M., Doney, S.C., Jackson, G.A., Li, B.,
Church, M.J., Tozzi, S., Kolber, Z.S., Richards, K.J., Fong, A.A., Letelier, R.M.,
Gorsky, G., Stemmann, L., Karl, D.M., 2012. Does eddy-eddy interaction control
surface phytoplankton distribution and carbon export in the North Pacific
Subtropical Gyre? Journal of Geophysical Research 117, G02024.

Hayes, C.T., Anderson, R.F., Fleisher, M.Q., Huang, K.F., Robinson, L.F., Lu, Y., Cheng,
H., Edwards, R.L., Moran, S.B., in press. 230Th and 231Pa on GEOTRACES GA03, the
U.S. GEOTRACES North Atlantic transect and implications for modern and
paleoceanographic chemical fluxes. Deep Sea Research Part II: Topical Studies in
Oceanography, http://dx.doi.org/10.1016/j.dsr2.2014.07.007i.

Hill, P.S., Boss, E., Newgard, J.P., Law, B.A., Milligan, T.G., 2011. Observations of the
sensitivity of beam attenuation to particle size in a coastal bottom boundary
layer. Journal of Geophysical Research-Oceans 116, C02023. http://dx.doi.org/
10.1029/2010JC006539.

Hobson, P.R., Krantz, E.P., Lampitt, R.S., Rogerson, A., Watson, J., 1997. A preliminary
study of the distribution of plankton using hologrammetry. Optics and Laser
Technology 29, 25–33.

Holser, R.R., Goni, M.A., Hales, B., 2011. Design and application of a semi-automated
filtration system to study the distribution of particulate organic carbon in the
water column of a coastal upwelling system. Marine Chemistry 123 (1–4), 67–
77. http://dx.doi.org/10.1016/j.marchem.2010.10.001.

Honjo, S., Doherty, K.W., Agrawal, Y.C., Asper, V.L., 1984. Direct optical assessment
of large amorphous aggregates (Marine Snow) in the deep ocean. Deep-Sea
Research Part a-Oceanographic Research Papers 31, 67–76.

IOCCG, 2006. Remote sensing of inherent optical properties: fundamentals, tests of
algorithms, and applications. In: Lee, Z.P. (Ed.), Reports of the International
Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.

IOCCG, 2011. Bio-Optical Sensors on Argo Floats. Claustre, H. (ed.), Reports of the
International Ocean-Colour Coordinating Group, No. 11, IOCCG, Dartmouth,
Canada.

IOCCG, 2014. Phytoplankton Functional Types from Space. In: Sathyendranath, S.
(Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15,
IOCCG, Dartmouth, Canada.

Iversen, M.H., Nowald, N., Ploug, H., Jackson, G.A., Fischer, G., 2010. High resolution
profiles of vertical particulate organic matter export off Cape Blanc, Mauritania:
degradation processes and ballasting effects. Deep-Sea Research Part I-
Oceanographic Research Papers 57, 771–784.

Jackson, G., Burd, A., 2002. A model for the distribution of particle flux in the mid-
water column controlled by subsurface biotic interactions. Deep-Sea Research II
49, 193–217.

Jackson, G.A., Checkley, D.M., 2011. Particle size distributions in the upper 100 m
water column and their implications for animal feeding in the plankton. Deep-
Sea Research Part I: Oceanographic Research Papers 58, 283–297.

Jackson, G.A., Maffione, R., Costello, D.K., Alldredge, A.L., Logan, B.E., Dam, H.G.,
1997. Particle size spectra between 1 lm and 1 cm at Monterey Bay determined

52 E. Boss et al. / Progress in Oceanography 133 (2015) 43–54

http://refhub.elsevier.com/S0079-6611(14)00154-2/h0165
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0165
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0175
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0175
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0175
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0175
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0175
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0190
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0190
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0190
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0190
http://dx.doi.org/10.1029/2011JC007094
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0200
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0200
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0200
http://dx.doi.org/10.1016/j.rse.2010.09.004
http://dx.doi.org/10.1016/j.rse.2010.09.004
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0205
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0205
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0205
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0220
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0220
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0215
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0215
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0215
http://dx.doi.org/10.1029/2011JC007771
http://dx.doi.org/10.1016/j.mio.2014.02.002
http://dx.doi.org/10.1016/j.mio.2014.02.002
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0235
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0235
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0235
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0240
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0240
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0240
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0245
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0245
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0245
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0250
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0250
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0250
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0700
http://dx.doi.org/10.1029/2003RG000148
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0265
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0265
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0265
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0255
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0255
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0255
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0270
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0270
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0275
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0275
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0280
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0280
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0280
http://dx.doi.org/10.1117/12.2053878
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0290
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0290
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0295
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0295
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0300
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0300
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0300
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0305
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0305
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0335
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0335
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0335
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0310
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0310
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0310
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0340
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0340
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0340
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0315
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0315
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0315
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0320
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0320
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0320
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0320
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0325
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0325
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0325
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0325
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0345
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0345
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0345
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0345
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0350
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0350
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0350
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0355
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0355
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0355
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0360
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0360
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0360
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0360
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0370
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0370
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0370
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0375
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0375
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0375
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0375
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0365
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0365
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0365
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0365
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0365
http://dx.doi.org/10.1016/j.dsr2.2014.07.007i
http://dx.doi.org/10.1029/2010JC006539
http://dx.doi.org/10.1029/2010JC006539
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0395
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0395
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0395
http://dx.doi.org/10.1016/j.marchem.2010.10.001
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0400
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0400
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0400
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0420
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0420
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0420
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0420
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0430
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0430
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0430
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0435
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0435
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0435
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0435
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0425
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0425
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0425
http://refhub.elsevier.com/S0079-6611(14)00154-2/h0425


using multiple instruments. Deep Sea Research Part I: Oceanographic Research
Papers 44, 1739–1767.

Jeandel, C., Rutgers van der Loeff, M., Kretschmer, S., Lam, P.J., Sherrell, R.M., Roy-
Barman, M., German, C.R., Dehairs, F., 2015. What did we learn on the oceanic
particle dynamic from the GEOSECS-JGOFS times? Progress in Oceanography
133, 6–16.

Jonasz, M., Fournier, G., 2007. Light Scattering by Particles in Water: Theoretical and
Experimental Foundations. Elsevier, Amsterdam.

Jouandet, M.P., Trull, T.W., Guidi, L., Picheral, M., Ebersbach, F., Stemmann, L., Blain,
S., 2011. Optical imaging of mesopelagic particles indicates deep carbon flux
beneath a natural iron-fertilized bloom in the Southern Ocean. Limnology and
Oceanography 56, 1130–1140.

Karageorgis, A., Gardner, W.D., Georgopoulos, D., Mishonov, A.V., Krasakopoulou, E.,
Anagnostou, C., 2008. Particle dynamics in the Eastern Mediterranean Sea: a
synthesis based on light transmission, PMC, and POC archives (1991–2001).
Deep-Sea Research I 55, 177–202. http://dx.doi.org/10.1016/j.dsr.2007.11.002.

Karageorgis, A.P., Gardner, W.D., Mikkelsen, O.A., Georgopoulos, D., Ogston, A.S.,
Assimakopoulou, G., Krasakopoulou, E., Oaie, Gh., Secrieru, D., Kanellopoulos,
Th.D., Pagou, K., Anagnostou, Ch., Papathanassiou, E., 2014. Particle sources over
the Danube River Delta, Black Sea based on distribution, composition and
size using optics, imaging and bulk analyses. Journal of Marine Systems 131,
74–90.

Karp-Boss, L., Wheeler, P.A., Hales, B., Covert, P., 2004. Distributions and variability
of particulate organic matter in a coastal upwelling system. Journal of
Geophysical Research 109, C09010. http://dx.doi.org/10.1029/2003JC002184.

Karp-Boss, L., Azevedo, L., Boss, E., 2007. LISST-100 measurements of phytoplankton
size distribution: evaluation of the effects of cell shape. Limnology and
Oceanography-Methods 5, 396–406.

Katz, J., Donaghay, P., Zhang, J., King, S., Russell, K., 1999. Submersible holocamera
for detection of particle characteristics and motions in the ocean. Deep-Sea
Research Part I 46, 1455–1481.

Kostadinov, T.S., Siegel, D.A., Maritorena, S., 2009. Retrieval of the particle size
distribution from satellite ocean color observations. Journal of Geophysical
Research-Oceans 114, C09015. http://dx.doi.org/10.1029/2009JC005303.

Kostadinov, T.S., Siegel, D.A., Maritorena, S., 2010. Global variability of
phytoplankton functional types from space: assessment via the particle size
distribution. Biogeosciences 7, 3239–3257.

Lam, P.J., Twining, B.S., Jeandel, C., Roychoudhury, A.N., Resing, J., Geibert, W.,
Santschi, P., Anderson, R.F., 2015. Methods for analyzing the concentration and
speciation of major and trace elements in marine particles. Progress in
Oceanography 133, 32–42.

Lerner, P., Bishop, J.K.B., Strubhar W.D., Bernard, A., Moore, C., 2013.
Transmissometer measurement of particle beam attenuation coefficient. ALSO
Ocean Sciences Meeting Session SS53-380. New Orleans Feb 16–21 2013.

Leymarie, E., Doxaran, D., Babin, M., 2010. Uncertainties associated to
measurements of inherent optical properties in natural waters. Applied Optics
49, 5415–5436.

Loisel, H., Nicolas, J.-M., Sciandra, A., Stramski, D., Poteau, A., 2006. Spectral
dependency of optical backscattering by marine particles from satellite remote
sensing of the global ocean. Journal of Geophysical Research 111, C09024.
http://dx.doi.org/10.1029/2005JC003367.

Loisel, H., Meriaux, X., Berthon, J.F., Poteau, A., 2007. Investigation of the optical
backscattering to scattering ratio of marine particles in relation to their
biogeochemical composition in the eastern English Channel and southern North
Sea. Limnology and Oceanography 52, 739–752.

MacIntyre, H. L., Lawrenz, E., Richardson, T.L., 2010. Taxonomic Discrimination of
Phytoplankton by Spectral Fluorescence. Ch. 7 In: D.J. Chlorophyll a
Fluorescence in Aquatic Sciences: Methods and Applications, Developments in
Applied Phycology 4, Suggett et al. (Eds.), Springer http://dx.doi.org/10.1007/
978-90-481-9268-7_7.

McDonnell, A.M.P., Buesseler, K.O., 2010. Variability in the average sinking
velocities of marine particles. Limnology and Oceanography 55, 2085–2096.

McDonnell, A.M.P., Lamborg, C.H., Buesseler, K.O., Lam, P.J., Sanders, R., Smith, H.,
Sargent, E.C., Riley, J.S., Lampitt, R.S., Marsay, C. and Bishop, J.K.B., 2015. A
summary of techniques for the collection of marine particles. Progress in
Oceanography 133, 17–31.

McKee, D., Chami, M., Brown, I., Sanjuan Calzado, V., Doxaran, D., Cunningham, A.,
2009. Role of measurement uncertainties in observed variability in the spectral
backscattering ratio: a case study in mineral-rich coastal waters. Applied Optics
48, 4663–4675.

Moisan, J.R., Moisan, T.A.H., Linkswiler, M.A., 2011. An inverse modeling approach to
estimating phytoplankton pigment concentrations from phytoplankton
absorption spectra. Journal of Geophysical Research-Oceans 116, C09018.
http://dx.doi.org/10.1029/2010JC006786.

Moran, S.B., Charette, M.A., Pike, S.M., Wicklund, C.A., 1999. Differences in seawater
particulate organic carbon concentration in samples collected using small- and
large volume methods: the importance of DOC adsorption to the filter blank.
Marine Chemistry 67, 33–42.

Neukermans, G., Loisel, H., Meriaux, X., Astoreca, R., Mckee, D., 2012. In situ
variability of mass-specific beam attenuation and backscattering of marine
particles with respect to particle size, density, and composition. Limnology and
Oceanography 57, 124–144.

Olson, R.J., Sosik, H.M., 2007. A submersible imaging-in-flow instrument to analyze
nano-and microplankton: imaging FlowCytobot. Limnology and Oceanography-
Methods 5, 195–203.

O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A.,
Kahru, M., McClain, C., 1998. Ocean color chlorophyll algorithms for SeaWiFS.
Journal of Geophysical Research-Oceans 103, 24937–24953.

Peterson, M.L., Wakeham, S.G., Askea, M.A., Miquel, J.C., 2005. Novel techniques for
collection of sinking particles in the ocean and determining their settling rates.
Limnology and Oceanography: Methods 3, 520–532.

Pfitsch, D.W., Malkiel, E., Takagi, M., Ronzhes, Y., King, S., Sheng, J., Katz, J., 2007.
Analysis of in-situ microscopic organism behavior in data acquired using a free-
drifting submersible holographic imaging system. Oceans 1–5, 583–590.

Picheral, M., Guidi, L., Stemmann, L., Karl, D.M., Iddaoud, G., Gorsky, G., 2010. The
Underwater Vision Profiler 5: an advanced instrument for high spatial
resolution studies of particle size spectra and zooplankton. Limnology and
Oceanography-Methods 8, 462–473.

Reynolds, R.A., Stramski, D., Wright, V.M., Wozniak, S.B., 2010. Measurements and
characterization of particle size distributions in coastal waters. Journal of
Geophysical Research-Oceans 115. http://dx.doi.org/10.1029/2009JC005930.

Richardson, M. J., Gardner, W.D., Berglund, B.L., and Walsh, I.D., 1990. Global
distribution of biogenic and particulate matter: What satellites can’t see, but
transmissometers can. EOS, Trans. Amer. Geophys. Union, 71, 136.

Richardson, M.J., Weatherly, G.L., Gardner, W.D., 1993. Benthic storms in the
Argentine Basin. Deep-Sea Research Part Ii-Topical Studies in Oceanography 40,
975–987.
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