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A B S T R A C T

Inherent optical properties (IOPs) play an important role in underwater light field, and are difficult to estimate
accurately using satellite data in optically complex waters. To study water quality in appropriate temporal and
spatial scales, it is necessary to develop methods to obtain IOPs form space-based observation with quantified
uncertainties. Field-measured IOP data (N=405) were collected from 17 surveys between 2011 and 2017 in the
three major largest freshwater lakes of China (Lake Chaohu, Lake Taihu, and Lake Hongze) in the lower reaches
of the Yangtze River and Huai River (LYHR). Here we provide a case-study on how to use in-situ observation of
IOPs to devise an improved algorithm for retrieval of IOPs. We then apply this algorithm to observation with
Sentinel-3A OLCI (Ocean and Land Colour Instrument, corrected with our improved AC scheme), and use in-situ
data to show that the algorithm performs better than the standard OLCI IOP product. We use the satellite derived
products to study the spatial and seasonal distributions of IOPs and concentrations of optically active con-
stituents in these three lakes, including chlorophyll-a (Chla) and suspended particulate matter (SPM), using all
cloud-free OLCI images (115 scenes) over the lakes in the LYHR basin in 2017. Our study provides a strategy for
using local and remote observations to obtain important water quality parameters necessary to manage resources
such as reservoirs, lakes and coastal waters.

1. Introduction

Inherent optical properties (IOPs; refer to Table 1 for symbols and
acronyms), namely, absorption (a(λ)) and backscattering (bb(λ)) coef-
ficients of water and its constituents, are the most important inter-
mediate variables for water color remote sensing and link between
satellite signals and optically active constituents (OACs), such as sus-
pended sediments, phytoplankton and colored dissolved materials.
They are related to water quality and biogeochemistry and determine
the subsurface spectrum and distribution of radiance (light field)
(Gordon et al., 1975; Morel and Prieur, 1977). IOPs are generally used
to estimate OACs (e.g. Carder et al., 1999; Mishra et al., 2013), the
diffuse attenuation coefficient of downwelling irradiance at 490 nm
(Kd(490)) (Kirk, 1984; Lee, 2005; Mishra et al., 2013), as well as esti-
mate phytoplankton pigment concentration (Lee et al., 2011; Mitchell
and Cunningham, 2015), and carbon pools (Kutser et al., 2005;
Stramski et al., 1999; Zhu et al., 2011). However, traditional

measurements of IOPs such as those involving laboratory analysis and
field instruments provide insufficient spatial information of IOPs,
especially in inland lakes with significant optical variations in space
and time. Satellite ocean color remote sensing provides estimation of
IOPs and OACs at high spatial and temporal resolution through inver-
sion algorithms from radiance measured at the top-of-the-atmosphere.

Significant progress in IOP inversion algorithms has been achieved
but mainly in oceanic and coastal waters. Among these existing algo-
rithms, empirical algorithms are popular using multiple-band regres-
sion to relate IOPs to remote sensing reflectance (Rrs). However, their
application is limited due to the uncorrelated and dynamic variability
of optical properties across different types of water bodies
(Vandermeulen et al., 2015). Semi-analytical inversion algorithms
(SAAs), based on combination of radiative transfer equations and some
empirical methods, perform better than the empirical algorithms over
water bodies that exhibit large variations in properties (Li et al., 2013).
Several solution methods of SAAs have been developed to derive the
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IOPs, including the Garver–Siegel–Maritorena algorithm (Garver and
Siegel, 1997; Maritorena and Siegel, 2005), H–L algorithm (Hoge and
Lyon, 2005), quasi-analytical algorithm (QAA) (Lee et al., 2002; Lee
et al., 2009), bulk inversion (Loisel and Stramski, 2000; Loisel et al.,
2018), and ensemble inversion (Brando et al., 2012; Moore et al., 2009;
Vantrepotte et al., 2012). Inevitably, these algorithms typically carry
assumptions about outputs (Gallegos and Neale, 2002; Schofield et al.,
2004), the use of ancillary input data (Dong et al., 2013; Mitchell et al.,
2014), and region-specific or instrument-specific parameterizations
(Schofield et al., 2004; Zheng et al., 2015). However, no single version
of IOP inversion model provides consistent and optimum performance
for estimation of both total and component IOPs across the range of
visible wavelengths and different oceanic regions (Zheng et al., 2014).

As one of the widely used algorithms for ocean color applications,
QAA has also been used as one of the default models to process satellite
ocean color data in NASA's SeaWiFS Data Analysis System software
(SeaDAS) (Zheng et al., 2014). The QAA scheme does not require the
pre-defined spectral shape of phytoplankton absorption (aph(λ)) or co-
lored dissolved organic matter (CDOM) plus non-algal particulate
matter (NAP) absorption (adg(λ)). In addition, no residual difference
exists between the input and output Rrs(λ) at the wavelengths used in
the algorithm (Werdell et al., 2018). QAA and QAA-based algorithms
first determine a(λ) and bbp(λ), and then decompose a(λ) into their
component parts using different methods. To improve the accuracy of
the algorithm, most studies mainly focus on the total absorption, a(λ)
(e.g. Le et al., 2009; Li et al., 2013), the derivation of aph(λ) and adg(λ),
or one specific part which dominates in the water, such as ag(λ) (e.g.
Kutser et al., 2005; Mouw et al., 2013; Zhu et al., 2011). Specifically,
some expressions of QAA in terms of deriving and decomposing a(λ),
such as reference wavelength of a(λ) at 550 or 670 nm and decom-
position of a(λ) using 412 and 443 nm, do not work in turbid inland
waters (Dong et al., 2013; Le et al., 2009). Limitations also exist when
linking adg(λ) to bio-optical parameters, since NAP and CDOM originate
from different sources. However, separation of ad(λ) and ag(λ) from
adg(λ) remains a challenge due to their similar spectral shapes (Zheng
et al., 2015).

The lower reaches of the Yangtze River and Huai River (LYHR) is
densely populated with ~137 million people, economically prosperous
(GDP~ 1.4 trillion dollars in 2017), and supports the commercial
fishing industry, agricultural production, drinking water resources, as
well as tourism and recreation activities. Notably, the LYHR basin has
approximately 340 lakes (~8235 km2) with areas ranging from
~0.1 km2 to ~2338 km2 (Ma et al., 2010). In particular, some of the
large lakes are the main water supply sources of cities nearby; these
lakes include the third largest freshwater lake in China, Lake Taihu
(supplying the cities of Wuxi, Shanghai, and Suzhou), the fourth largest
freshwater lake in China, Lake Hongze (supplying the cities of Huai'an
and Suqian, and the eastern branch of China's South–North Water
Transfer Project), and the fifth largest freshwater lake in China, Lake
Chaohu (supplying the city of Chaohu). However, under the influence
of human activities, environmental and ecological degradation pro-
blems, such as eutrophication, algal blooms, and the decrease in
transparency due to sand dredging activities, are significant in these
lakes (Cao et al., 2017; Duan et al., 2017). For example, Lake Chaohu
and Lake Taihu are hyper-eutrophic and turbid due to frequent cya-
nobacterial blooms and resuspended sediments; Lake Hongze is meso-
trophic and highly turbid due to large amounts of sediments brought
directly into the lake from the Huai River and illegal dredging activities.
Monitoring these lakes over the scales over which they vary in space
and time necessitates remote sensing algorithms that are able to provide
reasonable products across a large range of optical conditions.

The Ocean and Land Colour Instrument (OLCI) on Sentinel-3A is a
suitable satellite sensor for monitoring inland lakes with
300m×300m pixel size, 21 spectral bands (400–1020 nm) and high
signal-to-noise ratio (https://sentinel.esa.int/web/sentinel/technical-
guides/sentinel-3-olci). For OLCI, several semi-analytical or neural
network (NN) algorithms, i.e., MERIS Case 2 (Doerffer and Schiller,
2007), Case 2 Regional Coast Color (C2RCC) (Brockmann et al., 2016),
S3-OLCI Neural Network Swarm (ONNS) (Hieronymi et al., 2017), and
Machine Learning Regression Approaches (Ruescas et al., 2018), have
been used to estimate IOPs and concentrations of OACs, i.e., Chla, and
suspended particulate matter (SPM) in the previous studies. Based on
the Case 2 Regional processor (Doerffer and Schiller, 2007), C2RCC was
developed for atmospheric correction, and specifically trained for IOPs
estimation using a large training data set obtained by radiative transfer
simulations (Brockmann et al., 2016). C2RCC is available in ESA's
Sentinel toolbox SNAP to generate the IOP products in Case 2 water.

Variations of IOPs in Lake Chaohu, Lake Taihu and Lake Hongze
were investigated and monitored based on field-measured data and
Sentinel-3A/OLCI images. The primary aims of this study are as follows:
1) analyze the field measured IOPs in three large freshwater lakes in
China; 2) develop an IOP inversion algorithm (QAA-based algorithm
(QAA-750E)) specifically applicable to optically complex lakes based on
Sentinel-3A/OLCI Rrs data and validated with in-situ data; and 3) using
this algorithm, study the spatial and temporal variations of IOPs, and
the OACs (Chla, and SPM) derived from Rrs over the three major largest
freshwater lakes and other lakes in the LYHR. This study provides a
case-study on how to develop and locally optimized inversion algorithm
to monitor the distribution of IOPs and OACs in optically complex and
highly dynamic lakes (Fig. 1).

2. Data and methods

2.1. Field-measured data

Lake Taihu, Lake Hongze and Lake Chaohu are the third, fourth, and
fifth largest freshwater lakes in China with areas of ~2338
(33°06′–33°40′N, 118°10′–118°52′E), 1577 (33°06′–33°40′N,
118°10′–118°52′E), and 770 km2 (31°25′–31°43′N, 117°17′–117°51′E),
respectively (Fig. 2) (Tang et al., 2015). Lake Taihu and Lake Chaohu
are located in the Lower Reaches of Yangtze River, and Lake Hongze is
located in the Lower Reaches of Huai River. The mean water depths are

Table 1
Acronyms, abbreviations, and symbols.

Acronyms and abbreviations

AOPs Apparent optical properties
CDOM Colored dissolved organic matter
IOPs Inherent optical properties
NAP Non-algal particulates
OACs Optically active constituents
SPIM Suspended particulate inorganic matter
SPM Suspended particulate matter
SPOM Suspended particulate organic matter
NOMAD NASA bio-optical marine algorithm dataset

Symbols

a(λ) Total absorption coefficient (m−1) at wavelength (λ)
ad(λ) Absorption by NAP (m−1) at wavelength (λ)
adg(λ) Absorption by NAP and CDOM (m−1) at wavelength (λ)
ag(λ) Absorption by CDOM (m−1) at wavelength (λ)
anw(λ) Total non-water absorption (m−1) at wavelength (λ), anw(λ)= a(λ)-

aw(λ)
ap(λ) Absorption by NAP and phytoplankton (m−1) at wavelength (λ)
aph(λ) Absorption by phytoplankton (m−1) at wavelength (λ)
aw(λ) Absorption by pure water (m−1) at wavelength (λ)
bb(λ) Total backscattering coefficient (m−1) at wavelength (λ)
bbp(λ) Backscattering coefficients of particulate (m−1) at wavelength (λ)
bbw(λ) Backscattering coefficients of pure water (m−1) at wavelength (λ)
rrs Remote sensing reflectance just below the water surface (sr−1)
Rrs Remote sensing reflectance (sr−1)
Sd Spectral slope of ad spectrum (nm−1)
Sdg Spectral slope of adg spectrum (nm−1)
Sg Spectral slope of ag spectrum (nm−1)
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3.0, 1.9, and 1.9 m, and the mean secchi disk depths are 0.27, 0.40, and
0.27m in Lake Chaohu, Lake Taihu, and Lake Hongze, respectively.
Frequent occurrence of algal blooms and human activities threaten the
environment balance, with potential adverse impact on drinking water
for people living in the watershed, in Lake Chaohu and Taihu (Qin
et al., 2013). Nutrient-rich inflows have led to elevated eutrophication
of the western part of Lake Chaohu, where the mean content of total

phosphorus (TP) and total nitrogen (TN) were significantly higher than
those in the eastern part (Duan et al., 2017; Yang et al., 2013). In ad-
dition, Lake Taihu is often turbid due to wind-wave-induced re-
suspension, whereas the eastern part of Lake Taihu often has aquatic
macrophytes. Lake Hongze is a relatively turbid lake with some aquatic
macrophytes at its margin (Cao et al., 2017). The three lakes thus re-
present a wide range of inland lakes with complex optical properties.

Fig. 1. Framework of the case-study on how to develop and
locally optimized inversion algorithm to monitor the dis-
tribution of IOPs and OACs. “S” represents “Section”, for ex-
ample, S2.1 represents this part is illustrated in Section 2.1.
LTOA is the OLCI Level-1B full-resolution data. Algal bloom
mask was derived using APA (algae pixel-growing algorithm)
algorithm (Zhang et al., 2014) with algal bloom coverage
≥10%.

Fig. 2. (a) Location of Lake Chaohu, Lake Taihu, and Lake Hongze in China. They are located in the lower reaches of Yangtze and Huai River (LYHR) basin. Sampling
stations of field cruises in (b) Lake Hongze, (c) Lake Chaohu, and (d) Lake Taihu are presented, respectively.
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Field data were collected during eight survey cruises (176 distinct
stations) in Lake Chaohu from May 2013 to December 2016, five cruises
(129 distinct stations) in Lake Taihu from May 2011 to April 2017, and
four cruises (100 distinct stations) in Lake Hongze from April 2014 to
May 2015 (Fig. 2). Rrs(λ), ranging from 350 nm to 1050 nm with an
interval of 1 nm, was measured using an ASD field spectrometer
(FieldSpec Pro Dual VNIR, Analytical Spectra Devices, Inc.) with
viewing direction of 40 deg. from the nadir and 135 deg. from the Sun
(Mobley, 1999). Downwelling plane irradiance (Ed(λ)) was derived by
measuring radiance of gray panel (Lp).

Spectral absorption coefficients of water constituents include total
particulate matter (ap(λ)), phytoplankton (aph(λ)), NAP (also referred
to as the detritus) (ad(λ)), and CDOM (ag(λ)) were determined using a
Shimadzu UV2600 spectrophotometer. Briefly, ap(λ), aph(λ), and ad(λ)
were determined using the quantitative filter technique (QFT)
(Mitchell, 1990; Mitchell et al., 2003). Absorbance spectra were cor-
rected for background by subtracting the average absorbance at 750 nm
from the entire spectra and pathlength amplification (Cleveland and
Weidemann, 1993; Ylöstalo et al., 2014; Zhang et al., 2007). ad(λ) were
measured after the pigments were bleached with sodium hypochlorite
(Ferrari and Tassan, 1999), and aph(λ) was obtained by subtracting
ad(λ) from ap(λ). Water samples were filtered using 0.22-μm pore size
filters, and ag(λ) (280 nm to 700 nm with 1 nm interval) was measured
using a Shimadzu UV2600 spectrophotometer. The total absorption
coefficient spectrum, a(λ), is computed from the sum of aph(λ), ad(λ),
ag(λ) and the absorption coefficients of pure water aw(λ) (Pope and Fry,
1997):

a a a a a( ) ( ) ( ) ( ) ( )ph d g w= + + + (1)

After extraction of pigments using 90% acetone, the concentration
of Chla was measured using a Shimadzu UV2600 spectrophotometer
(Gitelson et al., 2008; Werdell et al., 2013). Concentrations of SPM
were determined gravimetrically in the laboratory, and suspended
particulate inorganic matter (SPIM) was derived gravimetrically by
burning organic matter from the filters (Jiang et al., 2012). Suspended
particulate organic matter (SPOM) was computed from the difference
between SPM and SPIM. Additional information regarding the mea-
surements and processing methods used to derive Rrs(λ), absorption
coefficients, Chla, and SPM can be found in the previous studies (Cao
et al., 2017; Xue et al., 2017a; Xue et al., 2017b).

2.2. Sentinel-3A/OLCI images

OLCI Level-1B full-resolution data (OL_1_EFR, 300-m) covering the
study areas were acquired from the European Space Agency (ESA)
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/
home). A total of 115 cloud-free OLCI images from November 2016 to
December 2017 were retrieved for Lake Chaohu (38 scenes), Lake Taihu
(26 scenes), and Lake Hongze (51 scenes). To compute Rrs, an atmo-
spheric correction scheme was applied to each cloud-free Level-1B OLCI
scene using the vector version of 6S model (Second Simulation of the
Satellite Signal in the Solar Spectrum correction scheme) (Vermote
et al., 1997), which was proven to be more accurate and efficient in
turbid inland waters (Burns and Nolin, 2014). The continental aerosol
type and middle latitude atmospheric profiles of the 6S model are used
in this study. The aerosol optical thickness retrieved by the Aqua/Terra
MODIS (Moderate Resolution Imaging Spectroradiometer) surrounding
the lakes on the same day were set as input parameters to the 6S model
(Huang et al., 2015). The mean of the aerosol optical thickness at three
pixels at different locations around the lake was used as representative
of aerosols present over the whole lake. More details of OLCI image
preprocessing can be found in Shen et al. (2017).

Rrs derived using 6S and C2RCC atmospheric correction algorithms
were compared to in situ measured Rrs integrated using spectral re-
sponse functions centered at 443, 560, 665, 674, 709, and 754 nm
(Fig. 3, Table 2). 6S was found to perform better (R2 ranging from 0.54

to 0.83, APD (average absolute percentage difference) ranging from
12.71% to 50.64%) to C2RCC at the selected wavelengths, except 443
and 754 nm in algal bloom waters (N=22). Previous studies showed
that C2RCC had good performances at 490 to 709 nm, and poor per-
formances in the blue (412 and 443 nm) and NIR wavebands
(754–865 nm) for the highly absorbing waters in Baltic Sea (Qin et al.,
2017). However in our case, C2RCC tended to underestimate Rrs with
APD > 56% at the six bands in our dataset. The 6S underestimated Rrs
at 443 nm, and overestimation at 754 nm with large variations in algal
bloom waters (Table 2). Given the superior performance of 6S, it was
applied here to atmospherically correct the OLCI data.

Another source of uncertainties in retrievals comes from floating
algal blooms. The floating algae index (FAI) (Hu, 2009) and the algae
pixel-growing algorithm (APA) (Zhang et al., 2014), based on Rayleigh-
corrected reflectance, were used to mask regions of intense algal
blooms (algal bloom coverage ≥10%) (Shen et al., 2017), which were
not used in this study. A match-up dataset of Sentinel-3A/OLCI and
field-measured data was derived using a time window of± 3 h, and a
coefficient of variation (CV) test (3× 3-pixel centered at the sampling
station with CV < 10%) (Cao et al., 2017; Feng et al., 2012). With
these criteria, a total 91 match-up pairs of OLCI-derived Rrs(λ) and
field-measured Rrs(λ), of which 69 match-up pairs were acquired.

2.3. QAA-750E algorithm

An IOP inversion algorithm (denoted as QAA-750E) that is suitable
for optically complex lake waters, was developed based on the pub-
lished QAA (Lee, 2014; Lee et al., 2002), and modified based on the in-
situ data we collected. QAA-750E contains two parts: Part I, the total
absorption coefficients, a(λ), and backscattering coefficients, bb(λ),
were derived from Rrs(λ) based on a modified QAA scheme by shifting
the reference wavelength to 750 nm; and Part II: ad(λ) and aph(λ) were
estimated using the bb(λ) and a(λ) derived in Part I, respectively. An
empirical formula based on bb(λ) was utilized to estimate ad(443), and
then a scheme was developed to derive aph(443) using a(λ) at 665 and
674 nm, where the contributions of NAP and CDOM are low in the lakes
studied here. ag(443) was derived by subtracting ad(443) and aph(443)
from anw(443). The general structure of QAA-750E is illustrated in the
flowchart (Fig. 4), and the corresponding derivation expressions are
listed in Table 3.

2.3.1. Part I: derivation of total absorption and backscattering coefficients
Part I of the QAA-750E algorithm is based on the first part of QAA-

v6 (Lee, 2014), deriving a(λ) and bb(λ) from Rrs(λ). Two empirical steps
(steps 2 and 4) of QAA-v6, were modified in QAA-750E (highlighted in
Table 3) in terms of the optical properties of inland waters. As gLee
(g0= 0.084, g1= 0.17) (Lee et al., 1999) was suggested for higher
scattering coastal waters (Lee et al., 2002), gLee was used to derive u(λ)
(=bb(λ)/(a(λ)+ bb(λ))) from rrs(λ) in the proposed algorithm.

In QAA-v6, Δa(λ0), which represents the absorption of dissolved
and suspended constituents at λ0 (550 nm or 670 nm), is derived using
rrs(λ). However, poor performance was obtained by deriving Δa(550) or
Δa(670). Thus, the reference wavelength in calculating a(λ) was
changed to 750 nm, and a(λ0) (= aw(750)+Δa(750)) was assumed to
be aw(750) (Δa(λ0)= 0) in step 3 of QAA-750E (Table 3). bbp(750) was
then derived in step 4 (Table 3).

In step 5, the power-law exponent value of bbp(λ) (Y) was derived
from the ratio of rrs(443) to rrs(560) (Lee et al., 2002; Li et al., 2013).
The empirical formula of Y in QAA-v6 was tuned using Ecolight data
(Fig. 5a, N= 3984), which simulates the underwater light field of our
inland lakes using the average SPIM, ag(440), and varying value and
vertical profiles of Chla in Xue et al. (2017b). Performance of the si-
mulations was validated using the field measured IOPs and Rrs(λ) in
Lake Chaohu on May 28, 2014 (Xue, 2016). Further, bbp(λ) and a(λ)
were calculated in steps 6–7 using the same semi-analytical equations
with QAA-v6.
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2.3.2. Part II: Derivation of particulate absorption
NAP is part of the suspended particulates and contributes sig-

nificantly to the scattering coefficient. Various relationships between
ad(λ) and bbp(λ) have been published and used to estimate ad(λ) (Dong
et al., 2013; Zhu et al., 2011). In step 8 (Table 3), based on 270 (i.e. 2/3
of the total samples used here to build the model) field measured
ad(443) and estimated bbp(560) in Part I, a relationship was established
to evaluate ad(443) (R2=0.64, RMSE=0.46m−1, Fig. 5b).

Given the high contents of SPIM and CDOM in our lakes, NAP and
CDOM have high absorption coefficients value in the blue and green
bands. Besides, considering the variability of specific phytoplankton
absorption and pigment composition, the anw at red band (> 650 nm)
was used to derive aph(674). In step 9, aph(674) was derived using
anw(λ) at 665 and 674 nm derived from step 7 of Part I (Table 3). ɛ was
defined as the ratio of anw(λ)− aph(λ) at 674 and 665 nm:

a a
a a

(674) (674)
(665) (665)

nw ph

nw ph
=

(2)

Then, aph(674) can be expressed based on Eq. (2):

a a a a(674) (674) ( (665) (665))ph nw nw ph= (3)

A good relationship was found between aph(674) and aph(665)
(R2= 0.97, RMSE=0.17m−1, Fig. 5c):

a a(665) S (674)ph ph1= × (4)

Where, S1= 0.839. Combining Eqs. (3)–(4), aph(674) can be cal-
culated as follows:

a a a a(674) (674) (665) (S (674))ph nw nw ph1= × + × × (5)

a a a(674) (674) (665)
(1 S )ph

nw nw

1
= ×

× (6)

Fig. 3. Comparison of the field-measured Rrs and OLCI derived Rrs using the 6S and C2RCC atmospheric correction models for match-up pairs at (a) 443, (b) 560, (c)
665, (d) 675, (e) 709, (f) 754 nm, and (g) rrs(754), (h) Rrs(443)/Rrs(560) in non-algal blooms waters (N=69) and algal bloom waters (N=22), respectively. Note
that rrs(754) is the function of Rrs(754), showed in Table 3 (Step 1).
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In addition, ɛ can also be written as adg(674)/adg(665), which is the
function of spectral slope of adg(λ) spectrum (Sdg). As variation of Sdg is
relatively low in our data sets, the average Sdg (0.014 ± 0.002 nm−1)
was used to compute ɛ.

a
a

S
S

S
(674)
(665)

exp[ (443 674)]
exp[ (443 665)]

exp[ 9 ] 0.882dg

dg

dg

dg
dg= =

×
×

= × =
(7)

aph(443) was then derived by (R2= 0.89, RMSE=0.28m−1, Fig. 5d):

a a(443) 1.75 (674)ph ph
0.906= (8)

ag(443) is then derived by subtracting ad(443) and aph(443) from
anw(443). Note that this subtraction propagates errors produced in the
former steps into ag(443).

Then, OLCI-derived Rrs(λ) data were used to derive IOPs using the
above IOP inversion algorithm. Pixels identified as clouds (quality flags

in OLCI L1B data), and algal blooms (APA, algal bloom coverage
≥10%) were masked and not used. Daily mean and seasonal mean
IOPs of each lake were generated from the 115 OLCI images over the
lakes.

2.4. Error propagation analysis and accuracy assessment

Algebraic error propagation analysis can provide an effective way to
assess model sensitivity and quantify uncertainties of IOPs (Werdell
et al., 2018). For instance, the uncertainties propagate to QAA-derived
IOPs from parameterization and assumption in the early stage of the
algorithm were estimated (Lee et al., 2010b). Uncertainties associated
with IOPs derived by QAA-750E were calculated on a pixel-by-pixel
basis to analyze the error propagation following the steps in the pro-
posed algorithm. The sequence of computational steps (Eqs.
(A1)–(A12)) involved in the error propagation analysis of the proposed

Table 2
Performance of atmospheric correction using 6S and C2RCC on Rrs(443, 560, 665, 674, 709, 754), rrs(754), and Rrs(443)/Rrs(560) in non-bloom waters (N=69) and
bloom waters (N=22). The corresponding scattering plots are showed in Fig. 3.

Band 6S C2RCC

R2 RMSE APD Bias R2 RMSE APD Bias

Non- bloom Rrs(443) 0.63 0.006 34.07 0.004 0.36 0.014 67.22 −0.013
Rrs(560) 0.79 0.005 12.71 −0.001 0.25 0.022 56.27 −0.020
Rrs(665) 0.85 0.005 19.89 0.001 0.52 0.016 60.86 −0.015
Rrs(674) 0.83 0.005 21.11 0.001 0.56 0.016 61.87 −0.014
Rrs(709) 0.83 0.010 25.76 0.002 0.13 0.023 66.61 −0.019
Rrs(754) 0.80 0.021 50.34 0.001 0.03 0.028 74.42 −0.015
rrs(754) 0.80 0.025 47.41 0.002 0.03 0.038 73.79 −0.024
Rrs(443)
/Rrs(560)

0.46 0.171 30.53 0.128 0.03 0.176 28.88 −0.137

Bloom Rrs(443) 0.15 0.010 157.06 −0.006 0.12 0.010 68.88 −0.006
Rrs(560) 0.79 0.009 17.25 −0.004 −0.50 0.040 86.63 −0.037
Rrs(665) 0.33 0.008 72.88 −0.003 −0.07 0.019 81.89 −0.017
Rrs(674) 0.20 0.009 19.31 −0.003 0.12 0.016 74.53 −0.014
Rrs(709) 0.74 0.021 69.10 0.012 −0.61 0.048 87.25 −0.039
Rrs(754) 0.70 0.041 143.88 0.027 −0.67 0.058 78.28 −0.038
rrs(754) 0.70 0.056 115.87 0.038 −0.67 0.083 78.10 −0.056
Rrs(443)
/Rrs(560)

0.21 0.270 180.80 −0.117 −0.14 2.523 3369 1.172

Fig. 4. Flow chart of QAA-750E algorithm. Input parameters
are remote sensing reflectance (Rrs(λ), sr−1). rrs(λ) is the re-
mote sensing reflectance just below water surface, derived in
step 1 of Table 3. u(λ)= bb(λ)/(bb(λ)+ a(λ)). Output vari-
ables are backscattering particulate coefficient (bbp(λ), m−1),
total non-water absorption coefficient (anw(λ), m−1), ab-
sorption coefficient of NAP and phytoplankton at 443 nm
(ad(443), aph(443), m−1). bbp(λ) and anw(λ) were first derived
in Part I of QAA-750E; ad(443) and aph(443) were then de-
termined using bbp(λ) and anw(λ), respectively. The equations
used in each step are presented in Table 3.

K. Xue, et al. Remote Sensing of Environment 225 (2019) 328–346

333



algorithm are presented in Appendix A. The total uncertainties (in-
cluding measurement uncertainties, uncertainties due to spatial varia-
bility within a pixel, and model uncertainties) can be evaluated from
the match-up statistics.

To evaluate the performance of the algorithm, the APD (%), RMSE,
unbiased RMSE in relative percentage (URMSE, %), and bias were
calculated to describe the difference between the field data (Xi) and the
modelled data (Yi). 2/3 of the field data (N=270) were used to build
the algorithm, and the remaining 1/3 of the field data and 38 match-up
pairs of IOPs were used to validate the algorithm. These parameters are
defined as follows:

Y X
X

APD 1
n

| | 100%
i

n
i i

i1
= ×

= (9)

Y XRMSE 1
n

(log 10( ) log 10( ))
i

n

i i
1

2=
= (10)

Y X
Y X

URMSE 1
n 0.5( )

100%
i

n
i i

i i1

2
=

+
×

= (11)

Y Xbias 1
n

[log 10( ) log 10( )]
i

n

i i
1

=
= (12)

Data were log-transformed prior to statistical analysis because IOP
data cover a large dynamic range. URMSE was used to avoid deviations
that cause skewed error distributions (Qi et al., 2014; Stanford et al.,
2002).

Table 3
Steps of QAA-750E algorithm. Steps with grey background were different from
those of QAA.

Fig. 5. (a) Determination of Y based on Ecolight simulated rrs in Xue et al. (2017b). Relationships between (b) ad(443) and bbp(560), (c) aph(665) and aph(674), (d)
aph(443) and aph(674) used in QAA-750E.
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3. Results

3.1. Bio-optical properties of optically complex lakes

Large range and significant variability of OACs and absorption
coefficients were observed in Lake Chaohu (CH dataset, N= 176), Lake
Taihu (TH dataset, N=129), and Lake Hongze (HZH dataset, N=100)

(Table 4, Fig. 6). CH and TH had similar Chla averages
(38.37 ± 28.94mg/m3 in CH and 34.68 ± 36.21mg/m3 in TH) and
SPM (45.52 ± 20.81mg/L in CH and 60.85 ± 38.73mg/L in TH).
However, TH had wider ranges of Chla (2.47–225.56mg/m3) and SPM
(5.00–180.00mg/L) than CH (Chla 6.85–138.55mg/m3 and SPM
12.00–133.00mg/L). In particular, the inorganic matter (SPIM) of TH
(0.50–157.33, 43.61 ± 35.64mg/L) was approximately 1.5 times that

Table 4
The sampling date, number of samples (N), range (min–max) and mean value (mean ± SD) of in situ measured concentration of chlorophyll-a (Chla), suspended
particulate matter (SPM, SPIM, SPOM), absorption coefficients at 443 nm, and QAA-750E derived particulate backscattering coefficients at 560 nm (bbp(560)) in this
study. Note that abbreviations and symbols can be seen in Table 1, and the details of sampling stations and time can be seen from Fig. 2.

Lake Lake Chaohu (CH) Lake Taihu (TH) Lake Hongze (HZH)

Time May 2013–December 2016 May 2011–April 2017 April 2014–May 2015

N 176 129 100

Range mean Range mean Range mean

Chla (mg/m3) 6.85–138.55 38.37 ± 28.94 2.47–225.56 34.68 ± 36.21 2.70–85.64 11.85 ± 10.00
SPM (mg/L) 12.00–133.00b 45.52 ± 20.81 5.00–180.00 60.85 ± 38.73 13.33–110.00 44.83 ± 18.44
SPIM (mg/L) 2.00–105.00b 30.38 ± 19.88 0.50–157.33 43.61 ± 35.64 4.67–80.00 31.65 ± 15.60
SPOM (mg/L) 1.00–40.00b 15.14 ± 8.31 1.00–64.00 17.24 ± 13.03 1.00–50.00 13.18 ± 7.67
a(443) (m−1) 1.93–9.14 4.38 ± 1.30 1.12–11.48 4.84 ± 2.17 2.04–7.55 4.08 ± 1.12
ad(443) (m−1) 0.76–6.98 2.34 ± 0.90 0.17–7.60 2.36 ± 1.59 0.49–5.94 2.42 ± 1.01
aph(443) (m−1) 0.30–5.50 1.23 ± 0.92 0.08–7.65 1.50 ± 1.28 0.22–2.04 0.70 ± 0.39
ag(443) (m−1) 0.16–4.26 0.81 ± 0.49 0.32–4.08 0.97 ± 0.65 0.27–2.41 0.96 ± 0.33
bbp(560) (m−1)a 0.27–2.29 0.88 ± 0.35 0.11–3.48c 1.10 ± 0.65 0.08–3.21 1.03 ± 0.53

a Represents bbp(560) values were derived with QAA-750E.
b Represents N=154.
c Represents N=93.

Fig. 6. (a) Contribution of ad(443), aph(443), and ag(443) to
total non-water absorption at 443 nm (anw(443)) in CH, TH,
and HZH dataset. (b) Statistics of absorption budget of each
lake, “ad” represents absorption budget of ad(443), “aph” re-
presents absorption budget of aph(443), “ag” represents ab-
sorption budget of ag(443). The black lines exhibit the average
contribution of each component to anw(443) in each lake. (c-e)
Statistics value (mean ± SD) of absorption coefficients
spectra of (c) NAP, (d) phytoplankton, and (e) CDOM in CH,
TH, and HZH dataset, respectively. (f-h) Statistics value
(mean ± SD) of normalized absorption coefficients spectra of
(f) NAP, (g) phytoplankton, and (h) CDOM in CH, TH, and
HZH dataset, respectively.
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of CH (2.00–105.00, 30.38 ± 19.88mg/L). In other words, CH has
more organic matter (SPOM:SPM=33.24%) with higher Chla
(38.37 ± 28.94mg/m3) than TH (SPOM:SPM=28.33%; Chla:
34.68 ± 36.21mg/m3). Unlike Lake Chaohu and Lake Taihu, which
are eutrophic, Lake Hongze is mesotrophic with lower magnitude and
range of Chla (2.70–85.64, 11.85 ± 10.00mg/m3) and SPM
(13.33–110.00, 44.83 ± 18.44mg/L) but with higher portion of in-
organic matter (SPIM:SPM=70.60%). The differences in the content
and proportion of OACs in these lakes leads to significant differences in
the optical properties of the water bodies.

IOPs, including absorption coefficients such as a(443), ad(443),
aph(443), and ag(443), as well as backscattering coefficient, e.g.
bbp(560), reflect the variations and characteristics of OACs in the three
lakes. On average, 55% of anw(443) was attributed by NAP in the three
lakes, while 26% and 19% was attributed by the phytoplankton and
CDOM at 443 nm, respectively (Fig. 6a–6b). Lake Chaohu and Lake
Taihu had similar optical properties. For instance, the average a(443) of
CH and TH datasets were 4.38 ± 1.30m−1 (1.93–9.14m−1) and
4.84 ± 2.17m−1 (1.12–11.48m−1), respectively. Comparably, Lake
Taihu had a slightly higher range and variability of ad(443) (0.17–7.60,
2.36 ± 1.59m−1) and bbp(560) (1.10 ± 0.65, 0.11–3.48m−1) than
those of Lake Chaohu (ad(443), 0.76–6.98, 2.34 ± 0.90m−1; bbp(560),
0.88 ± 0.35, 0.27–2.29m−1). Lake Chaohu and Lake Taihu had large
variations of phytoplankton, while Lake Hongze had lower variability
of aph(λ). For instance, average aph(443) of HZH dataset (0.22–2.04,
0.70 ± 0.39m−1) was approximately less than half of the average
aph(443) in CH (0.30–5.50, 1.23 ± 0.92m−1) and TH (0.08–7.65,
1.50 ± 1.28m−1) datasets. Lake Hongze had similar average ag(λ)
with those of Lake Chaohu and Lake Taihu, but obvious low variability.
Overall, the three large lakes in the LYHR basin exhibited OACs and
IOPs with wide ranges and varying characteristics.

3.2. Performance of QAA-750E on field data and OLCI data

3.2.1. Validation of the algorithm using field data
Using the remaining 1/3 of the field data as the validation dataset,

the field-measured Rrs(λ) values of the CH, TH and HZH datasets were
fed into QAA-750E to assess the algorithm performance at four bands:
443, 560, 665, and 674 nm (data not shown). QAA-750E had similar
performance in the four wavelengths, and performed well in retrieving
a(λ) with average APD of 19.3%, RMSE<0.2m−1, bias< 0.15m−1,
and R2 > 0.67. Field-measured ad(443) and aph(443) were then used to
validate Part II of QAA-750E. The mean APD of ad(443) was 22.1% with
RMSE of 0.11m−1 (R2=0.72); the mean APD in deriving aph(443) was
35.2%, and RMSE value was 0.19m−1 (R2=0.68); and the mean APD
in deriving ag(443) was 71.2%, and RMSE value was 0.48m−1

(R2=0.26). For most water quality applications, such statistics are
considered good and the derived a(λ), ad(443), and aph(443) are of
utility to study water quality.

The proposed model was then applied to the Sentinel-3A/OLCI data,
and validated using the field measured and OLCI-derived match-up
pairs of absorption coefficients (N= 38) to assess the feasibility of the
algorithm in OLCI data (Fig. 7). The error bars indicated the un-
certainties associated to IOPs computed using error propagation in the
proposed algorithm. a(443) had better performance
(RMSE=0.18m−1, URMSE=29.1%) than that of 560, 665, and
675 nm (RMSE ≥0.23m−1, URMSE ≥49.8%). Compared to IOP
products inverted using C2RCC for atmospheric correction, the accu-
racy of the absorption coefficients at 443 nm (a(443), ad(443), aph(443),
and ag(443)) improved (Fig. 7a, e, f, h). The large uncertainties in
ag(443) indicated the limitation of our model regarding this parameter.

3.2.2. Uncertainties associated with IOPs
As an example of an OLCI derived result, Fig. 8 shows the RGB

images, QAA-750E-derived ad(443), aph(443), ag(443), and their re-
lative uncertainty values (RU, ratio of uncertainty value to the

corresponding absorption coefficient) in the different lakes. Spatially,
ad(443) and aph(443) had large RU in the area with low derived ad(443)
and aph(443) (Fig. 8b–8e). Particularly, when ad(443) < 1.0m−1 or
aph(443) < 0.5m−1, the RU of ad(443) and aph(443) can reach ~23%.
RU of ag(443) was considerably higher, especially in areas with high
ad(443) (Fig. 8b, f), indicating the difficulty of obtain accurate ag(443)
using our scheme in waters with high NAP absorption.

3.3. Spatial and temporal variations of IOPs derived from OLCI data

The proposed QAA-750E algorithm was applied to the atmo-
spherically corrected Rrs(λ) of OLCI images to map IOPs of the three
lakes in 2017. Seasonally averaged OLCI-derived IOPs (a(443),
bbp(560), ad(443), and aph(443)) showed significant spatial and tem-
poral variability in spring (March to May), summer (June to August),
autumn (September to November), and winter (December to February)
(Fig. 9). Generally, a(443) varied largely in Lake Chaohu and Lake
Taihu, but demonstrated lower variability in Lake Hongze (Fig. 9a).
High a(443) was observed in the western and eastern part of Lake
Chaohu in summer and autumn, as well as in the open areas and
southwest part of Lake Taihu in spring and winter (Fig. 9a). bbp(560)
and ad(443) were relatively lower in the western part of Lake Chaohu in
spring and winter, but obviously high in the open areas and southwest
part of Lake Taihu in spring and winter, which indicated the NAP
domination at 443 nm in this region and time period in Lake Taihu
(Fig. 9b–c). Lake Hongze had slightly high bbp(560) and ad(443) in the
central and southern part of the lake from summer to winter, which
indicated the large amount of sediment brought directly into the lake
from the Huai River (Fig. 9b–c). The western part of Lake Chaohu and
several bays of Lake Taihu exhibited high aph(443) in summer and
autumn, whereas obviously lower aph(443) was observed in the open
areas and southwest part of Lake Taihu in spring and winter (Fig. 9d).
Lake Hongze had relatively small spatial variations of IOPs and low
magnitude of aph(443) with considerably lower aph(443) in the southern
part than that in the northern part of the lake (Fig. 9d).

Daily averaged IOPs derived using OLCI data were calculated to
observe the temporal variability of IOPs in 2017 in Lake Chaohu, Lake
Taihu and Lake Hongze (Fig. 10). a(443) did not show regular temporal
trend, and had relatively high values from May to September
(Fig. 10a–c). No could-free scenes were available from July to Sep-
tember in Lake Taihu. bbp(560) and ad(443) exhibited similar temporal
distribution and had high variations in Lake Chaohu from July to Au-
gust, and in Lake Hongze from July to September (Fig. 10d–i). ad(443)
had no significant seasonal variability and had relatively high daily
mean value and large variations in the three lakes. However, aph(443)
was significantly lower than ad(443), and showed different seasonal
variations in the three lakes. aph(443) showed large variability in Lake
Chaohu and Lake Taihu, where algal blooms occur frequently, from June to
October (Fig. 10j–k). In particular, consistent with a previous study (Duan
et al., 2017), aph(443) showed an obvious peak in Lake Chaohu in
February, which was not observed in Lake Taihu and Lake Hongze. The
main reason for this phenomenon is the increase of diatoms, which has
higher growth-rate than other algae at low temperatures (below 15 °C)
(Deng et al., 2007). In contrast, aph(443) in Lake Hongze presented a
regular trend and exhibited low variability through the whole year
(Fig. 10l). Overall, the optical complexity of Lake Chaohu, Lake Taihu
and Lake Hongze was mainly determined by NAP and phytoplankton
variations at 443 nm, but variability of ad(443) exceeded that of
aph(443).

3.4. Extension of QAA-750E to other lakes in the LYHR basin

3.4.1. Algorithm performance
Performance of QAA-750E was assessed using 17 field measured

data in four small lakes (Lake Longgan, Lake Huangda, Lake Gaoyou
and Lake Bo) in the LYHR basin. Given the lack of concurrent satellite
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and field data on the same day, images within 2 days before and after
the field measurements (October 20–24, 2017) were used for additional
independent algorithm validation. The mean values of the two images
were used to compare with the field measurements only when the re-
trieved a(443) from the two images agreed to±50% around the mean
values. The algorithm performed well in estimating a(443) and ad(443)
with APD of 13.7% (RMSE=0.08m−1, URMSE=18.4%, R2= 0.46,
Fig. 11a) and 25.1% (RMSE=0.14m−1, URMSE=32.6%, R2= 0.71,
Fig. 11b) over lakes in the LYHR basin, respectively. aph(443) had re-
latively high uncertainties in statistical measures (RMSE=0.13m−1,
URMSE=30.4%, APD=29.9%, R2=0.53, Fig. 11c).

The algorithm was further applied to estimate the concentrations of
Chla and SPM. aph(674) derived from QAA-750E had good relationship
with field Chla (Chla=57.41aph(675)1.33, R2= 0.89,
RMSE=8.54mg/m3, N=270). QAA-750E derived ap(443) had good
relationship with field SPM (SPM=7.47ap(443)1.45, R2= 0.74,
RMSE=17.19 g/m3, N=270). The validation results using the field
dataset in LYHR showed that Chla (URMSE=37.0%, APD=34.5%,
R2=0.58, Fig. 11d) and SPM (URMSE=27.6%, APD=24.5%, and

R2=0.71, Fig. 11e) can be derived with acceptable performance. Note
that overestimation of ag(443) (RMSE=0.17m−1, URMSE=38.3%,
APD=38.7%, R2=0.78) was observed (Fig. 11f) due to error propa-
gation and low budget of CDOM in total absorption.

3.4.2. Spatial and seasonal distribution of OACs in LYHR
Chla, SPM and CDOM (represented by ag(443)) of lakes in the LYHR

basin, that are presented in Fig. 12, showed distinct seasonal and spatial
distribution. Generally, Chla was higher in summer and autumn than
that in spring and winter in these lakes (Fig. 12a–d). In spring, the
western part of Lake Chaohu and northern part of Lake Taihu had high
Chla value, which showed similar pattern to aph(443) (Fig. 12a). Lake
Chaohu and Lake Taihu had obviously higher Chla in summer and
autumn due to high frequency of algal bloom (Fig. 12b–c). Nearly half
part of Lake Poyang is macrophyte zone, and water level changes fre-
quently in a year (Liu et al., 2015). Chla of Lake Poyang was lower than
Lake Chaohu and Lake Taihu; and was relatively higher in summer and
autumn than spring and winter.

SPM showed large spatial and seasonal variations because of the

Fig. 7. Validation of QAA-750E in estimating a(443), ad(443), aph(443) using match-up pairs of non-algal bloom waters. The error bars indicated the uncertainties
associated to IOPs caused by error propagation in the proposed algorithm. The black squares represent the corresponding results of C2RCC.
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occurrence of algal blooms or sediment resuspension at different lakes
(Fig. 12e–h). The high SPM in open water and several bays of Lake
Taihu in summer and autumn was mainly caused by the high content of
algae in the water column. On the other hand, similar with previous
studies, high SPM was observed in spring and winter in open water and
southwestern part of Lake Taihu (Shi et al., 2015), and several small
lakes (Lake Shijiu, Lake Nanyi and Lake Huangda) (Hou et al., 2017)
(Fig. 12e, h). SPM was high in the central and southern parts of Lake
Hongze, and was highest in summer, lowest in spring, mainly caused by
river discharge, wind and sand dredging activity (Cao et al., 2017). In
Lake Poyang, SPM did not exhibit large spatial and seasonal variations,
and was relatively higher in autumn. ag(443) showed less spatial and
seasonal variations than NAP and phytoplankton, and had lower
average value in winter than other seasons (Fig. 12i–l).

4. Discussion

4.1. Factors interfering the IOP inversions

4.1.1. Inversion model parameterization
An objective of QAA-750E is to estimate, beside retrieving the total

absorption and backscattering coefficients, the absorption coefficient of
each component (ad, aph, and ag) in turbid and eutrophic lakes. NAP
(contribution of ad(443) to anw(443) ~50%) and phytoplankton (con-
tribution of aph(443) ~30%) dominated anw(443) in these waters. Note,
however, that the empirical formulas and assumptions of parameters in

the proposed algorithm introduce uncertainties to derived IOPs.
In step 2 (Table 3), the polynomial parameters relating u(λ) and

rrs(λ) (g0 and g1) are assumed to be constant. The values are 1) gGor:
g0= 0.0949 and g1=0.0794 for oceanic Case 1 waters (Gordon et al.,
1988); 2) gLee: Lee et al. (1999) suggested g0 of 0.084 and g1 of 0.17 for
higher scattering coastal waters (Lee et al., 2002); 3) gQAA (Lee et al.,
2002): g0= 0.0895, and g1=0.1247, which is the average g0 and g1
value of gGor and gLee, was used in the three versions of QAA (v4–6). In
this study, changing gQAA to gLee slightly improved the performance of
IOP estimation (APD of a(443) decreasing ~3%). In addition, Brando
et al. (2012) reported that using gLee was much better than gGor and
gQAA for retrieving a(440) and bbp(555) for optically complex waters in
Fitzroy Estuary and Keppel Bay in Australia.

The assumption of a(750) was based on the measured absorption
coefficients at 750 nm with mean Δa(750) (=a(750)–aw(750)) value of
0.02m−1. T-mode (transmittance) of ap(λ) measurements has un-
certainties associated with the unknown level of absorption in the NIR
range due to the unknown quantity of scattered loss by the filter with
imbedded particles compared to the blank filter (IOCCG, 2018). Pre-
vious studies showed that ap in the near-infrared spectral region can
reach to values similar to the NIR absorption of pure water in river
samples (Röttgers et al., 2014), which had high ad⁎(650)
(0.018 ± 0.001m2/g) and ad⁎(750) (0.014 ± 0.001m2/g). If the
concentration of SPM equals 100 g/m3, mean ad(750) would be
1.4 m−1 in the river samples in Röttgers et al. (2014). In order to un-
derstand the uncertainties introduced from the assumption of Δa(750),
effects of variations of Δa(750) on the RU of IOPs were analyzed using
the field-measured datasets (Fig. 13). It indicated that the RU values of
a(443), bbp(560), ad(443), and aph(443) were not sensitive to variation
Δa(λ0) ranging from 0 to 0.2 m−1, but had larger variations of RU
(>10%) when Δa(λ0) > 0.5m−1.

The power-law exponent of bbp(λ) (Y) is related to the particle size
and composition, and high value of Y indicates more contribution of
small particles in the backscattering coefficients (Aurin and Dierssen,
2012; Babin et al., 2003; Morel and Gentili, 1991). Y affects the deri-
vation of bb(λ) and a(λ) in the non-reference wavelengths, but had
second-order importance in deriving IOPs (Lee et al., 2002). Previous
studies showed that QAA-derived a(λ) and bb(λ) is insensitive to var-
iations of Y (Aurin and Dierssen, 2012; Lee et al., 2009), especially in
the spectral range between 490 and 670 nm (Zheng et al., 2014). For
instance, if rrs(443)/rrs(560)= 0.6, 50% variation of rrs(443)/rrs(560)
would lead to variation of Y < 34%, and variation of bbp(560) < 17%
in this study. In QAA-v5 and QAA-v6, Y was derived using the function
of rrs(443)/rrs(555); However, the estimated Y values using equation in
QAA (mean value 0.7) were obvious lower than the field measured Y
(mean value 1.9) in Lake Taihu in 2008 (LT2008) (Duan et al., 2012;
Ma et al., 2008). Besides, the measured Y correlated poorly with rrs in
the LT2008 data, leading to failure in building a new equation using
field measured Y and rrs. Therefore, the new empirical function of Y in
the proposed model was tuned using an Ecolight simulation data set
due to the poor correlation between measured Y and rrs. Even though
QAA750E-derived Y did not correlate well with measured Y (R2= 0.2,
scattering plot not shown), QAA750E-derived Y and measured Y had a
comparable range and mean value (Fig. 14a). QAA750E-derived bbp(λ)
showed good correlation (R2 > 0.85, RMSE<0.37m−1, APD <
20.75%) with measured bbp(λ) at 443, 560, and 665 nm in LT2008
dataset, but had slight overestimation in large bbp(λ) value (Fig. 14b).
Note that uncertainties may also exist in the bbp(λ) measured using
Hydroscat-6 instrument in turbid waters with high scattering (Doxaran
et al., 2016).

Given that few measurements of Y are available and the fact that the
way Y varies remains unclear (Lee et al., 2002), ΔY was set as 0.5 ac-
cording to the NOMAD dataset (NASA bio-Optical Marine Algorithm
Data set) (Y=1.25 ± 0.46) in Lee et al. (2010b). ΔY= 0.5 was also
used in CDOM-dominated, mineral-rich coastal and estuarine waters
(Y=0.23 ± 0.18, ranging from −0.22 to 0.69) (Aurin et al., 2010;

Fig. 8. Examples of derived IOPs and associated uncertainties of Lake Chaohu
(Mar 2, 2017), Lake Taihu (Feb 11, 2017), and Lake Hongze (May 18, 2017): (a)
RGB images (R: Band 10, G: Band 6, B: Band 3), (b) ad(443), (c) the relative
uncertainty (RU) of ad(443), (d) aph(443), (e) RU of aph(443), (f) ag(443), and
(g) RU of ag(443).
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Aurin and Dierssen, 2012). Besides, Y had a large range (from 0.25 to
2.5) in Arctic and lower-latitude waters (Zheng et al., 2014). The rrs
estimated Y ranged from 0.41 to 2.23 with mean value of 1.59 ± 0.25
in this study, and thus ΔY was also set to be 0.5 according to Lee et al.
(2010b), and Aurin and Dierssen (2012). Moreover, effects of variations
of ΔY (ranging from 0.1 to 1.0) on the RU of IOPs indicated that RU
values of a(443), bbp(560), ad(443), and aph(443) increased with in-
creasing ΔY (Fig. 13). The mean RU of a(443) was about 25%, when
ΔY=0.5, and Δa(λ0)= 0.2m−1. Compared with the RU values of
bbp(560), ad(443), and aph(443), RU of a(443) was more sensitive to the
variation of ΔY.

The current algorithm is not capable of determining the spectrum of
aph(λ) effectively. Phytoplankton absorption coefficients at two bands
(443 nm and 674 nm) were estimated using anw in the red band to de-
creasing the influence of optical variations in the proposed algorithm.
Variations of phytoplankton absorption, due to phytoplankton groups
and pigment composition, need to be considered in the further studying
of retrieving spectrum of phytoplankton absorption in optically com-
plex lakes.

4.1.2. Error propagation
As in most QAA and QAA-based algorithms, the errors in the derived

a(λ), bbp(λ), ad(λ), and aph(λ) propagate to the next steps in this step-
by-step process (Lee et al., 2010b; Zhu et al., 2011). One advantage is
that aph(443) and aph(674) had low uncertainties, resulting from the
usage of a(665) and a(674), which had low error propagation errors,
derived in the previous steps. In the proposed algorithm, if the field-
measured a(λ) were set as the input parameters of part II, the APD of
aph(λ) would reduce by ~15%. If the average relative error was larger
than 20% in a(443) estimation or 30% in ad(443), the accuracy of
ag(443) decreased dramatically because of the subtraction of the two
former terms in the derivation of the latter. The high uncertainties of
ag(443) also caused by low contribution (~19% at 443 nm) of CDOM to
total absorption. A previous study also indicated that high-concentra-
tion Chla or sediments might lead to large uncertainty in ag(443) esti-
mation (Zhu et al., 2013). Further research should be conducted to
evaluate CDOM in turbid lakes with large amounts of NAP.

4.1.3. Measurement uncertainties
The uncertainties in input field measured or satellite-derived Rrs(λ)

can also affect the performance of IOP inversion models (Binding et al.,
2008; Zheng and Stramski, 2013). In measurement of Rrs(λ) using
above-water approach, water-leaving radiance (Lw(λ)) is derived by
correcting the measured above-water upwelling radiance using a

Fig. 9. Seasonal means of IOPs derived from OLCI images using the QAA-750E model: (a) a(443), (b) bbp(560), (c) ad(443), (d) aph(443) of Lake Chaohu, Lake Taihu,
and Lake Hongze from Jan 1, 2017 to Dec 31, 2017. Note that the grey colors in Lake Taihu and Lake Hongze represent aquatic vegetation area.
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reflectance ratio (ρ), which depends on sky conditions, wind speed,
solar zenith angle (Mobley, 1999), sky polarization (Mobley, 2015),
and wavelength (Lee et al., 2010a). According to the look-up table of
Mobley (1999) and measurement conditions, ρ= 0.028 was used in this
study. Note that changing of ρ from 0.01 to 0.05 would lead to mean
coefficient of variance (CV) value of Rrs ~50% at the range of
400–800 nm.

For OLCI-derived Rrs, C2RCC had obvious overcorrection of Rrs, and
nearly constant value of Rrs(443)/Rrs(560) (~0.42), which is consistent
with the study of Bi et al. (2018) in Lake Taihu and Lake Hongze. The
neural network (NN) model in C2RCC was trained using the data mostly
collected from European waters. In addition, atmospheric correction
using both 6S model and C2RCC did not perform well in waters with
algal scums or floating blooms, which has high signal in the NIR or

Fig. 10. Temporal trend of daily averaged IOPs derived using OLCI data: (a-c) a(443) (m−1), (d–f) bbp(560) (m−1), (g–i) ad(443) (m−1), (j–l) aph(443) (m−1) in Lake
Chaohu, Lake Taihu, and Lake Hongze from Jan 1, 2017 to Dec 31, 2017, respectively.

Fig. 11. Performance evaluation of the proposed algorithm in deriving (a) a(443), (b) ad(443), (c) aph(443), (d) Chla, (e) SPM, and (f) ag(443) in lakes in the LYHR
basin. The Dashed line is the 1:1 reference line.
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SWIR bands. Therefore, the algal blooms pixels were masked in the
estimation of IOPs.

Filter-pad methods of ap(λ) measurements can be ranked in des-
cending order of superiority as follows: IS (inside an integrating
sphere), T-R (transmittance reflectance), and T (transmittance)
(Stramski et al., 2015). It is noticeable that T method had large un-
certainties in waters with extreme high NIR absorption (Röttgers et al.,
2014), and appropriate path-length amplification formula should also
be used in the T method (Stramski et al., 2015). The IS method performs

better with the beneficial of overall high accuracy and simple protocol
of measurements (Röttgers and Gehnke, 2012).

Overall, the retrieved IOPs rely on accuracy of Rrs and measured
IOPs directly, indicating that improved atmospheric correction and
measurement of IOPs and apparent optical properties (AOPs) with high
accuracy is necessary. In addition, satellite-to-in situ analysis provided
only a general assess of algorithm accuracy (Bailey and Werdell, 2006;
Werdell et al., 2018), and error propagation analysis in this study as-
sessed the uncertainties introduced by the model itself. The quantified

Fig. 12. Seasonal average values of: (a–d) Chla (mg/m3), (e-h) SPM (mg/L), and (i–l) ag(443) (m−1) of the lakes in the LYHR basin from Jan 1, 2017 to Dec 31, 2017.
Note that the aquatic macrophyte zone is showed in light grey, and the blank area of Lake Poyang (d, h, i) was caused by the decrease of water level in winter.
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uncertainties from field measurement, acquisition and preprocessing of
satellite imagery should be collectively considered to adequately re-
solve variability in time or space, but it is difficult to do so in practice
(Werdell et al., 2018; Zhu et al., 2013).

4.2. Optical characteristics of the three large lakes

Field-measured bio-optical parameters of Lake Chaohu, Lake Taihu
and Lake Hongze showed large range and variability (Table 4). Com-
bined with 29 other lakes and coastal waters, these data were divided
into three classes (Fig. 15a): (1) Class 1 represents Lake Chaohu, Lake
Taihu and Lake Hongze in this study (Nos. 1–3); (2) Class 2 contains 9
lakes in the LYHR (Nos. 4–13, data were acquired from previous studies
and field measurements) (Shi et al., 2011); and (3) Class 3 contains 19
lakes and coastal waters around the world (Nos. 14–32, data were ac-
quired from published articles) (Brunelle et al., 2012; Li et al., 2015;

Meler et al., 2017; Meler et al., 2016; Nima et al., 2016; Perez et al.,
2011; Perkins et al., 2013; Riddick et al., 2015; Shi et al., 2011; Trochta
et al., 2015; Wang et al., 2014; Wang et al., 2005; Ylöstalo et al., 2014).
In addition, the NOMAD dataset were also used to make the comparison
of optical properties in different oceanic and coastal waters (Werdell
and Bailey, 2005).

Characterized using the ternary absorption budget at 443 nm, the
optical similarity of Class 1 and Class 2 indicated that the three lakes
had similar optical properties with several lakes in the LYHR basin
(Class 2), most of which were dominated by ad (Fig. 15b). aph(443) in
Class 1 was slightly higher and had larger variation than those of waters
in Class 2 (Fig. 15c); ad(443) and ag(443) of Class 1 waters had similar
mean value with those of Class 2 waters (Fig.15d–e). That is to say, the
algorithm built using the data in Class 1 can theoretically be used with
Class 2. Thus, although the algorithm parameters should be tuned for a
particular lake using local data, QAA-750E algorithm can be applied to

Fig. 13. Sensitivity analysis of the model parameters, Δa(750) (0–1.5m−1) and ΔY (0.1–1.0), to relative uncertainties (RU) of (a) a(443), (b) bbp(560), (c) ad(443),
and (d) aph(443).

Fig. 14. (a) Histograms of estimated and measured Y with the LT2008 data. (b) Comparison of QAA-750E estimated and measured bbp(λ) at 443 nm, 560 nm, and 665
nm by using LT2008 data.
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lakes with similar bio-optical properties and variability.
The optical properties among different optical water types usually

determine the scope or applicability of an IOP inversion algorithm.
Waters in Class 3 and the NOMAD dataset had low total absorption, and
were dominated by aph(443), ag(443) or co-dominated by aph-ag at
443 nm, with contribution of ad(443) < 40% (Fig. 15b). The optical
diversity between Classes 1–2 and Class 3 and the NOMAD dataset
could explain the reason that algorithms built in Class 3 and the
NOMAD dataset did not performed well in our dataset. Optical char-
acteristics of the dataset used in this study makes the proposed algo-
rithm suitable to waters with relatively high total absorption and high
contribution of NAP and phytoplankton. However, some parameters in
the empirical steps of QAA-750E are site-specific. In waters with dif-
ferent optical water types and specific inherent optical properties
(SIOPs), local data are still required to optimize or validate the algo-
rithm.

5. Conclusions

Based on the general structure of the QAA scheme, an IOP inversion
algorithm (QAA-750E) was developed to estimate IOPs in optically
complex lakes. In the proposed algorithm, reference wavelength in
deriving a(λ) was shifted to 750 nm, then, ad and aph were derived
separately using the derived a(λ) and bbp(λ), respectively. Compared to
standard OLCI product, the proposed algorithm performed well in es-
timating absorption coefficients and backscattering coefficients, and
was implemented on Sentinel-3A/OLCI satellite data to map IOPs and
associated OACs for lakes in the LYHR basin in 2017. Error propagation
analysis provided the uncertainties of derived IOPs on a pixel-by-pixel
basis in these lakes. In addition, the IOP variations of the three lakes
can represent the optical properties of the lakes in the LYHR basin;
however, the spatial and seasonal patterns of IOPs in the three lakes

showed different characteristics. Lake Hongze had low variability of
IOPs; conversely, Lake Chaohu and Lake Taihu had large variations of
aph(443) in summer and autumn, resulting from frequent occurrence of
algal blooms. Moreover, Lake Taihu had high ad(443) in the open area
and southwest part of the lake in spring and winter due to wind-driven
sediment resuspension. Overall, this approach is suitable for turbid lake
waters with similar optical properties and requires local optimization
when applied to other waters, as optical water types, error propagation,
and field measurements may influence the IOPs inversion. Combined
with Envisat/MERIS (MEdium Resolution Imaging Spectrometer) data
and the following satellite data (e.g. Sentinel-3B/OLCI), a long term
trend of IOP products derived by satellite data would provide a more
effective way to explore the changes of water constitutes and light field
fluctuations in optically complex lakes.
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Fig. 15. (a) Location of the lakes and coastal waters
and NOMAD stations in the worldwide. Class 1 (Nos.
1–3) represents Lake Hongze, Lake Taihu, and Lake
Chaohu in this study, Class 2 (Nos. 4–13) represents
lakes in LYHR, and Class 3 (Nos. 14–32) represents
lakes and coastal waters in the worldwide. The label
of each symbol is the number of the water body. (b)
Ternary plot showing the relative contribution of
aph(443), ad(443), and ag(443) to total non-water
absorption at 443 nm in these waters. Plots of (c)
aph(443), (d) ad(443), and (e) ag(443) for waters of
Class 1–3. The boundary of the grey column (“Min-
Max”) indicates the minimum and maximum of the
data in the previous studies. The solid line is the
mean value of each region, and the error bar indicate
the standard difference (“Mean & SD”). These data
were acquired from the published articles and field
measurement. The number (No.) and name of the
waters are as follows: 1 Lake Hongze, 2 Lake Taihu, 3
Lake Chaohu, 4 Lake Longgan, 5 Lake Huangda, 6
Lake Poyang, 7 Lake Gaoyou, 8 Lake Weishan, 9 Lake
Bo, 10 Lake Dong, 11 Lake Hong, 12 Lake Liangzi, 13
Lake Shijiu, 14 a highly turbid lake in Argentina, 15
Lake Xingkai, 16 Lake Balaton (Kis-Balaton), 17
Boreal lakes of southern Finland, 18 Coastal of the
Baltic sea, 19 Lake Erie (west basin), 20 Lake
Michigan (Green Bay), 21 Lake Balaton (main ba-
sins), 22 Lake Qiandao, 23 Lake Superior, 24 Lake
Ontario, 25 Lake Qinghai, 26 Lake Michigan (off
west shore), 27 Norwegian coastal water, 28 Lake
Michigan (open waters), 29 Hudson Bay, 30
Canadian Arctic, 31 Amundsen Gulf, 32 Lake Huron.
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Appendix A. Error propagation analysis of the proposed model

On the basis of error propagation theory and analytical expressions of uncertainties (Lee et al., 2010b), uncertainties associated with IOPs derived
by QAA-750E were calculated. The following equations present the calculation of bbp(λ), a(λ), ad(443), and aph(443) uncertainties. Uncertainties of
bbp(λ) and a(λ) were estimated using the similar equations to Eq. (13b) and Eq. (14) in Lee et al. (2010b). Evaluating the uncertainties of a(λ0) (Δa
(λ0)) and Y (ΔY), which are related to the uncertainty of rrs(λ), is difficult. Thus, Δa(λ0) was assumed to be 0.02m−1 based on the statistics of field
measured a(λ), and ΔY was assumed to be 0.5 according to the previous studies (Aurin et al., 2010; Aurin and Dierssen, 2012; Lee et al., 2010b).

First, two parameters, part1 and part2, were defined as

part a( ) B( ) ( )1 0
0

Y

0=
(A1)

part a b( ) [B( ) ( ) ( )] ln Yb2 0 0 w 0
0

Y
0=

(A2)

where B( ) u
u
( )

1 ( )=
Given that Δa(λ0) and ΔY were assumed to be constant, the uncertainties of bbp(λ) and a(λ) were related to B(λ0), Y, and A(λ):

b part part( ) ( ) ( )bp 1
2

2
2= + (A3)

a part part( ) (A( ) ) (A( ) )1
2

2
2= × + × (A4)

where A( ) u
u

1 ( )
( )=

Then, the uncertainty of ad(443) can be derived from the uncertainty of bbp(λ),

a part part part part(443) ( (560) (560)) ( (560) (560))d 0 1
2

0 2
2= × + × (A5)

where

part a b( ) 1.57 [B( ) ( ) ( )]b0 0 0 w 0
0

Y 0.38

= × ×
(A6)

The uncertainty of aph(443) (Eq. (A10)) was then derived from the uncertainty of aph(674) (Eq. (A7)):
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where

part a1.59 (674)ph3
0.094= × (A11)

The uncertainty of ag(443) was affected by the uncertainty of a(443), ad(443), and aph(443), and can be calculated by Eq. (A12) based on Eqs.
(A4), (A5), and (A10):
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