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Chlorophyll absorption and phytoplankton size
information inferred from hyperspectral
particulate beam attenuation
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Electromagnetic theory predicts spectral dependencies in extinction efficiency near a narrow absorption band
for a particle with an index of refraction close to that of the medium in which it is immersed. These absorption
band effects are anticipated in oceanographic beam-attenuation (beam-c) spectra, primarily due to the narrow
red peak in absorption produced by the phytoplankton photopigment, chlorophyll a (Chl a). Here we present a
method to obtain Chl a absorption and size information by analyzing an eigendecomposition of hyperspectral
beam-c residuals measured in marine surface waters by an automatic underway system. We find that three principal
modes capture more than 99% of the variance in beam-c residuals at wavelengths near the Chl a red absorption
peak. The spectral shapes of the eigenvectors resemble extinction efficiency residuals attributed to the absorption
band effects. Projection of the eigenvectors onto the beam-c residuals produces a time series of amplitude functions
with absolute values that are strongly correlated to concurrent Chl a absorption line height (aLH) measurements
(r values of 0.59 to 0.83) and hence provide a method to estimate Chl a absorption. Multiple linear regression of
aLH on the amplitude functions enables an independent estimate of aLH, with RMSE of 3.19 · 10−3 m−1 (3.3%) or
log10-RMSE of 18.6%, and a raw-scale R2 value of 0.894 based on the Tara Oceans Expedition data. Relationships
between the amplitude functions and the beam-c exponential slopes are in agreement with theory relating beam-c
to the particle size distribution. Compared to multispectral analysis of beam-c slope, hyperspectral analysis of
absorption band effects is anticipated to be relatively insensitive to the addition of nonpigmented particles and to
monodispersion. ©2020Optical Society of America
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1. INTRODUCTION30

Bio-optical characterization of the marine environment sup-31
ports global ocean monitoring by enabling the use of sensing32
infrastructure on platforms that range from autonomous33
floats to satellite imagers. In-water sensors lack the coverage34
and resample rates of satellite platforms but enable the direct35
measurement of light absorption and scattering processes.36
Multispectral absorption measurements have useful applica-37
tions to measure marine ecosystems, for example, by enabling38
the estimation of chlorophyll a (Chl a ) concentration [1,2],39
whereas Chl a fluorometers are easily deployed but suffer from40
uncertainty in phytoplankton assemblage and physiology [3,4].41
Multispectral measurements of scattering and attenuation42
are strongly correlated [5], and their spectral slopes are related43
to the underlying particle size distribution (PSD). However,44
they cannot analytically resolve phytoplankton Chl a content45
[6]. Recent advances in hyperspectral instrumentation have46

enabled the decomposition of in situ particulate absorption 47
spectra to discern accessory pigmentation relevant to describing 48
a phytoplankton community composition [7]. 49

For suspended particles with an index of refraction near that 50
of the medium in which they are immersed (which in general 51
includes phytoplankton), electromagnetic theory predicts 52
wavelength (λ) dependencies in scattering or attenuation for 53
spectral regions adjacent to narrow absorption bands, described 54
as anomalous dispersion or absorption band effects [8–14]. The λ 55
dependencies related to absorption band effects provide infor- 56
mation about phytoplankton size, pigmentation, and refractive 57
index at fine spectral scales measured by current hyperspec- 58
tral sensors. In this paper, we present observations relevant to 59
absorption band effects using a global and methodologically 60
consistent dataset of particulate hyperspectral beam-c residuals, 61
and we consider potential applications to characterize marine 62
ecosystems. In particular, we show that these residuals enable 63
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estimation of Chl a absorption and provide size information on64
phytoplankton.65

A. Overview of Absorption Band Effects on66
Beam-Attenuation Spectra67

The modification of the internal marine light field occurs68
through scattering (elastic and inelastic) and absorption proc-69
esses, which are defined as the inherent optical properties (IOPs)70
of the aquatic medium [15]. The beam-attenuation (beam-c)71
coefficient c (λ) describes the decay or directional change in a72
beam of collimated light and is the sum of the total absorption73
a(λ) and scattering b(λ) coefficients. In practice, c (λ) and74
a(λ) are more readily measured, and b(λ) is obtained through75
subtraction. Although often treated as such, a(λ) and b(λ)76
are not independent properties. The coefficients may be fur-77
ther specified to represent the particulate (algal and non-algal)78
contributions by subtracting the properties of the dissolved79
(filtered) materials from those of the whole water [16], expressed80
as ap(λ), bp(λ), and cp(λ) for the particulate absorption,81
scattering, and beam-c coefficients, respectively.82

For individual particles within a medium, the ratios of the83
optical cross-sections to the geometric cross-sections define the84
absorption Qa(λ), scattering Qb(λ), and extinction Qext(λ)85
efficiency factors, which contribute to the bulk IOPs of a water-86
mass [i.e., to ap(λ), bp(λ)], and cp(λ), respectively. Anomalous87
diffraction theory approximates Qext(λ) for large (i.e., cir-88
cumference much greater than the wavelength of light in the89
medium), non-absorbing, and homogeneous spheres through a90
phase-lag term, ρ (the change in a ray’s phase if it were to travel91
the full diameter of a spherical particle), defined as [8]92

ρ = 2x (n − 1) , [unitless] (1)

in which n is the real index of refraction and x is the ratio of93
the particle’s circumference to the wavelength of light in the94
medium, ranging from 0 to ∞. In this paper, the real index95
of refraction n is defined relative to seawater, and (n − 1) is96
assumed to be positive. The spectral dependency in x provides97
a theoretical basis to estimate the PSD from the spectral slope98
of cp(λ) that is sensitive to pigmented and nonpigmented99
constituents [17].100

For absorbing particles, including phytoplankton, the101
imaginary component n′ of the complex index of refraction102
m (defined as m = n + in′) corresponds to a particle’s pig-103
mentation [18] and is included in the anomalous diffraction104
approximation of the optical efficiency factors [8]. In the case105
of phytoplankton cells, Chl a and various accessory pigments106
elevate Qa(λ) and suppress Qb(λ) across a relatively broad range107
of blue wavelengths [19]. At red wavelengths, a special situation108
arises from the specific absorption spectrum of Chl a , which109
produces a narrow red absorption band. Changes to n and n′110
in the vicinity of the absorption band (nominally centered at111
676 nm) modify Qext(λ) based on the size and refractivity of the112
particle (i.e., ρ). Figure 1(a) illustrates the characteristic Qext(λ)113
spectra in the vicinity of an absorption band using various ρ114
values and is based on the anomalous diffraction approximation115
of [8].116

The predicted changes in Qext(λ) are described as a function117
of ρ: For lower ρ values, Qext(λ) is elevated at the absorption118

Fig. 1. (a) Anomalous diffraction approximation for Qext(λ) at a
narrow absorption band as a function of light frequency for various
ρ values, recreated from van de Hulst [8] using a lookup table; and
(b)–(d) illustrative examples of Qext(λ) residuals for various small-sized
phytoplankton (diameters 8, 5, and 1 µm, respectively), with a fixed
n of 1.0344 and spectral n′ with a maximum value of 0.0024 at the
Chl a red absorption peak. The sizes presented in (b)–(d) are sensitive
to the selection of real and imaginary refractive index; for example, as
[14] illustrates, an anomalous dispersion curve for Qb(λ) using a 1µm
absorbing sphere and spectral dependencies in both n and n′.

band [e.g., resembling an increase in Qa(λ)]; for higherρ values, 119
Qext(λ) is reduced at the absorption band; and for moderate ρ 120
values, an anomalous dispersion curve emerges with Qext(λ) 121
reduced at shorter wavelengths and elevated at longer wave- 122
lengths (relative to the center of the absorption band). We use 123
the more general term absorption band effects, following [13], 124
to describe the spectral features in Qext(λ) or cp(λ) that are 125
observed near the absorption bands. 126

B. Relevance of Absorption Band Effects to 127
Phytoplankton Composition 128

The approximation that the real index of refraction is near that 129
of seawater is valid for many types of phytoplankton, although 130
natural variability exists due to differences in cellular compo- 131
sition [14]. For example, calcification generally corresponds 132
to a higher refractivity of coccolithophores [20]. Cell size is 133
relevant to the phase lag parameterization in such a way that, 134
for constant cellular composition, smaller cells are associated 135
with lower ρ values and larger cells with higher ρ values. The 136
combined effects of cell size and index of refraction, therefore, 137
yield the result that Qext(λ) residuals in the spectral vicinity of a 138
narrow absorption band can be positive for small phytoplankton 139
with n near seawater, or negative for larger or more refractive 140
phytoplankton. Within a narrow, intermediate range in size and 141
refractivity, predicted Qext(λ) residuals resemble an anomalous 142
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dispersion curve. Thresholds for ρ have been approximated143
(e.g., ρ < 3 can correspond to an anomalous dispersion curve),144
but these limits are not particularly useful due to intracellular145
variability in refractivity, pigmentation, and cellular shape, as146
well as uncertainties in the actual size distribution when rep-147
resenting ρ for a theoretical mean equivalent particle (ρ̃) [10].148
Illustrative Qext(λ) residuals for various sizes of phytoplankton149
are shown in panels of Figs. 1(b–d) based on the anomalous150
diffraction approximation following [8,11].151

Considering IOPs of polydisperse systems rather than single152
particle efficiencies, the cp(λ) and bp(λ) spectra are anticipated153
to be smoothed by the diversity of refractivity and cell sizes154
(i.e., polydispersion), in natural phytoplankton communities155
[10]. However, communities dominated by small cell sizes,156
characteristic of many oligotrophic marine environments, are157
anticipated to produce peaks and anomalous dispersion curves158
in cp(λ) measurements. Communities where absorption is159
dominated by large phytoplankton (i.e., microplankton) are160
anticipated to produce local minima in cp(λ) measurements.161
The objective of this paper is to advance understanding of how162
absorption band effects influence cp(λ) spectra at red wave-163
lengths; in particular, by partitioning the contributions from164
polydisperse systems of phytoplankton to enable inference of165
biomass or community information. We do not focus here on166
bp(λ) or on its backward component, bbp(λ), as hyperspectral167
cp(λ) is more routinely measured in situ. However, we note168
that bbp(λ) is more strongly affected by absorption band effects169
compared to cp(λ) and bp(λ) [13], and is likewise most relevant170
to a remote sensing perspective [21].171

2. MATERIALS AND METHODS172

A. Description of Bio-optical Dataset173

Bio-optical oceanographic data was collected during the Tara174
Oceans Expedition, in which an aluminum-hulled schooner175
sailed through the Pacific, Atlantic, and Indian Ocean basins,176
as well as the Caribbean, Mediterranean, and Red Seas, while177
continually sampling surface waters using a flow-through178
system [22]. Briefly, seawater was routed to a WET Labs179
ac-s meter, which measures c (λ) and a(λ) by passing water180
through separate columns illuminated by collimated and diffuse181
light sources, respectively. The ac-s instrument is hyperspec-182
tral and measures approximately 80 wavelengths spanning183
400–730 nm.184

The relative calibration of the ac-s meter in the underway185
configuration was achieved during the Tara Oceans Expedition186
by periodically filtering (0.2 µm) the flow-through samples187
(every 30 or 60 min) and subtracting the measurements of188
the dissolved samples from the total, as described in [23]. The189
difference corresponds to the particulate contributions, cp(λ)190
and ap(λ), with scattering corrections performed following191
[24]. The ac-s instrument has a nonnegligible acceptance angle192
of 0.93 deg for beam-c measurements, which decreases the193
sensitivity to scattering by large particles. It can introduce a bias194
by decreasing the contribution of large particles in measured195
cp(λ) relative to theoretical cp(λ) [25].196

We accessed Tara Oceans Expedition cp(λ) and ap(λ) mea-197
surements at one-minute temporal resolution through the198
NASA SeaWiFS Bio-Optical Archive and Storage System199

Fig. 2. Sampling locations for bio-optical measurements obtained
from the Tara Oceans Expedition archive in SeaBASS.

(SeaBASS; seabass.gsfc.nasa.gov) data repository [26–28]. The 200
global sampling locations of the concurrent ap(λ) and cp(λ) 201
measurements used in this study (245,277 in total) are shown 202
in Fig. 2. 203

The exact spectral locations of the ac-s wavebands differ, both 204
between instruments and within the same instrument following 205
factory recalibration; in response, we linearly interpolated all 206
cp(λ) spectra onto a consistent waveband set. Following [7], 207
we removed filter artifacts that resulted from default smoothing 208
of the ac-s spectra across cp(λ) channels. We modeled broad 209
spectral dependencies in cp(λ) that result from the relationship 210
between particle size and wavelength as a power-law function 211
[6] using the wavelengths within 500–650 and 700–720 nm, 212
and subtracted the power-law model from the cp(λ) spectra to 213
obtain residuals, denoted c ′p(λ), as 214

c ′p(λ)= cp(λ)− A
[

532 nm

λ

]γ
, [m−1

], (2)

where A and γ are free parameters obtained using a least-squares 215
optimization. The PSD of natural oceanic particles also is repre- 216
sented by a power-law function [16], with exponential slope, ξ , 217
that may be predicted from the cp(λ) exponential slope, γ [6]. 218
Increases in γ have been shown to correspond to increases in ξ ; 219
e.g., steeper (more negative) cp(λ) slopes indicate greater relative 220
proportions of smaller particles. 221

We obtained an independent proxy for Chl a absorption 222
from coincident ap(λ) measurements based on the height of 223
the red peak that is attributed to Chl a absorption. Briefly, we 224
linearly interpolated an absorption baseline between shoulder 225
wavebands and subtracted this from the region of maximum 226
Chl a red absorption, as 227

aLH = ap(λ2)− ap(λ1)−

(
λ2 − λ1

λ3 − λ1

)
×
[
ap(λ3)− ap(λ1)

]
, [m−1

], (3)

in which λ2 is the red peak (nominally 676 nm), and λ1 and 228
λ3 are adjacent legacy wavelengths (e.g., 650 and 715 nm). 229
Estimation of Chl a from aLH has been shown to be relatively 230
insensitive to pigment packaging effects [29,30] compared to 231
blue wavelength algorithms, as well as to changes in phyto- 232
plankton physiology compared with Chl a fluorescence-based 233
techniques [31] (see [32] for field data). 234
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B. Reduction of c′p(λ) Spectra Using Empirical235
Orthogonal Functions236

We reduced the dimensionality of the beam-c residuals dataset237
using an eigenanalysis of the c ′p(λ) dataset within a narrow238

spectral subset (13 wavebands spanning approximately 50 nm)239
centered on the Chl a red absorption peak (nominally 676 nm).240
Briefly, we performed an eigendecomposition of the c ′p(λ)241

covariance matrix of the form,242

Cψ =3ψ, [m−2
], (4)

in which C is the covariance matrix of the c ′p(λ) dataset and ψ243

is the eigenfunction matrix, with 13 columns ψ i (λ) describing244
modes of variability across the wavelength domain of the c ′p(λ)245

data. In Section 3.B below we compare the spectral shape of246
the ψ i (λ) eigenvectors with the Qext(λ) residuals predicted for247
absorption band effects. The diagonal matrix3 contains eigen-248
values relating scalar information for each eigenvector, with249
the sum of the eigenvalues equal to the sum of the wavelength-250
specific variances in the c ′p(λ) dataset (the diagonal elements of251

the covariance matrix C), expressed as252

k=13∑
i=1

3i,i =

k=13∑
i=1

σ 2
(λi ,λi )

. [m−2
]. (5)

Comparison of the eigenvalues 3i,i enables consideration of253
the variance captured by each eigenfunction. We reduced the254
spectra of the c ′p(λ) dataset to scalar amplitudes by projecting255

the c ′p(λ)data onto the eigenfunction matrix, as256

S= c ′pψ, [m
−1
], (6)

in which the 13 columns of the S matrix are a time series of257
amplitude functions that quantify the stretching and com-258
pressing necessary to represent the c ′p(λ) dataset in the new259

coordinates defined by the eigenvector basis functions.260
We assessed the relationships between the components of the261

S matrix time series and the aLH and γ data products through262
univariate and multivariate regression. The positive and neg-263
ative phases of each S component i were treated as separate264
S matrix predictors because positive and negative signs in Si265
indicate corresponding phase shifts in ψ i (λ) (i.e., phase shifts266
mirror the eigenvector spectral shape in the y -dimension).267
The positive and negative phases in ψ i (λ) are anticipated to268
resemble the different shapes of the Qext(λ) residuals (i.e., the269
maxima or minima shown in Fig. 1) due to the absence of270
other significant cp(λ) spectral dependencies within this wave-271
length domain. The predictors corresponding to the positive272

and negative values of each Si function, P (+)
i and P (−)

i , are273
defined as274

P (+)
i = Si ; P (−)

i = 0, (if Si > 0); [m−1
],

P (+)
i = 0; P (−)

i = |Si |, (if Si ≤ 0). [m−1
]. (7)

We evaluated regressions using the root mean squared error of275
prediction (RMSE), which–when represented as a percentage276
for raw-scale values––was normalized by the range in the aLH277
dataset. We analyzed the S matrix using a thinned dataset to278

reduce autocorrelation related to the relatively long spatial 279
decorrelation scales of marine waters compared to the average 280
speed of the Tara vessel. We subsampled the dataset across 281
approximate length scales of 11.1 km and 33.3 km for coastal 282
(within 200 km from the shore) and oceanic (over 200 km from 283
the shore) water masses, respectively. Using the subsampled 284
dataset, we evaluated the accuracy of the combined S matrix 285
predictors to estimate aLH using multiple linear regression over 286
10,000 cross-validation replications. In each replication, we 287
randomly partitioned the dataset into modeling and validation 288
subsets using an 80%/20% split, which corresponded to 2262 289
and 565 data points, respectively. 290

3. RESULTS 291

A. Effects of Autocorrelation 292

Autocorrelation is a persistently challenging topic in ocean- 293
ography because spatial and temporal decorrelation scales 294
are variable among regions and seasons, and because large 295
differences between marine provinces (e.g., coastal zones, 296
oligotrophic gyres, upwelling regions) often overshadow 297
smaller-scale variability within each region. Our spatial-scale 298
thinning of the Tara c ′p(λ) dataset decreased the total number 299

of observations by more than 98%. The coastal zones were 300
measured less frequently than oceanic waters in the raw dataset 301
because the Tara vessel generally maintained a trans-oceanic 302
course. Our spatial thinning, which used different length scales 303
for coastal and oceanic measurements, increased the proportion 304
of coastal waters (i.e., within 200 km of shore) within our dataset 305
to 50%, compared to 27% within the original dataset. Despite 306
the changes in size and regional representation due to thinning, 307
the spectral shapes and ordering of the eigenfunctions were not 308
significantly altered by subsampling, and the eigenvalues corre- 309
sponding to the first three modes of the subsampled dataset were 310
each within 2% of those derived from the full (not subsampled) 311
dataset. 312

B. Interpretation of the Eigenfunctions 313

The bulk optical properties of a watermass integrate contribu- 314
tions from various constituents, as well as from the medium. 315
An idealized equation relating cp(λ) to the size-dependent 316
Qext(λ, s ) contributions is of the form [8], 317

cp(λ)=

∫
∞

0
Qext(λ, s )N(s )π s 2ds , [m−1

], (8)

in which N(s ) is the number of particles with radius s . The 318
cp(λ) spectra is a bulk property that arises from the addition of 319
the underlying particle properties, making the spectral depend- 320
encies in Qext(λ, s ) directly related to the spectral shape of 321
cp(λ). Our eigenanalysis of the c ′p(λ) covariance matrix quan- 322

tified the primary modes of variability in the c ′p(λ) spectra, 323

which are shown in Fig. 3. Although both positive and negative 324
phases of the eigenfunctions may resemble the spectral residuals 325
associated with absorption band effects, only one representative 326
phase is shown for each eigenvector. 327

The first three modes of the eigenanalysis captured more 328
than 99% of the variance, with the first, second, and third 329
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Fig. 3. Eigenfunctions of the c ′p(λ) covariance matrix, with the
nominal location of the Chl a red absorption maximum indicated by
the vertical line.

eigenvectors comprising 61.1%, 37.0%, and 1.2% of the total,330
respectively. We did not examine the additional components,331
which individually corresponded to 0.25% or less of the vari-332
ance. We propose the following interpretations of the spectral333
shapes of the relevant positive (+) and negative (−) eigen-334
functions, with the local maximum for Chl a absorption at red335
wavelengths defined as the absorption band for brevity:336

337
• Eigenfunction 1 (+): a negative anomaly shifted∼10 nm338

shorter than the absorption band.339
• Eigenfunction 1 (−): a positive anomaly shifted ∼10 nm340

shorter than the absorption band.341
• Eigenfunction 2 (+): a positive anomaly shifted (∼12 nm)342

longer than the absorption band, a negative anomaly shifted343
(∼15 nm) shorter than the absorption band, and an inflection344
near the absorption band.345

• Eigenfunction 2 (−): a negative anomaly shifted346
(∼12 nm) longer than the absorption band, a positive anomaly347
shifted (∼15 nm) shorter than the absorption band, and an348
inflection near the absorption band.349

• Eigenfunction 3 (+): a positive anomaly centered at the350
absorption band.351

• Eigenfunction 3 (−): a negative anomaly centered at the352
absorption band.353

Considering the theoretical parameterizations governing354
absorption band effects on Qext(λ), the eigenvector basis func-355
tions also may be interpreted through a transition in ρ values356
(i.e., by comparing Figs. 1 and 3), as follows: The lowest ρ (an357
increase at the absorption band) corresponds to eigenfunctions358
1 (−) and 3 (+); intermediate ρ (the anomalous dispersion359
curve) corresponds to eigenfunction 2 (+); and the highest ρ (a360
decrease at the absorption band) corresponds to eigenfunctions361
1 (+) and 3 (−). The spectral shape of eigenfunction 2 (−)362
was not in agreement with the Qext(λ) residuals predicted for363
absorption band effects, as shown in Fig. 1, and we therefore364

Fig. 4. Relationships between aLH and the S matrix predictors:
(a) P1

(+); (b) P1
(−); (c) P2

(+); (d) P3
(+); and (e) P3

(−). (f ) Residuals
against predicted aLH values from a multivariate linear regression of the
S matrix predictors. The horizontal and vertical scales in (a)–(e) and
the horizontal scales in (f ) are log10.

regard it as potentially nonphysical within the scope of this 365
work. This conclusion is supported by the low expression of 366
eigenfunction 2 (−) in the S matrix time series, with less than 367
1% of the S2 amplitudes negative. The same is true, but to a 368
lesser extent, for eigenfunction 1 (−), for which the maximum 369
was less spectrally separate from the absorption band com- 370
pared to eigenfunction 2 (−). Similarly, less than 11% of the S1 371
amplitudes were negative. 372

C. Interpretation of the S Matrix Predictors 373

The relationships between the S matrix predictors and the 374
aLH dataset are shown individually in Fig. 4, with the negative 375
amplitudes from the time series for component 2 (26 out of 376
2827 observations) omitted. Each S matrix predictor had highly 377
significant positive correlation with aLH (posterior probability 378
<0.001 of nonpositive correlation in the population to which 379
our results generalize), except for the negative amplitudes in 380
the time series for component 2, which indicated a positive but 381
insignificant relationship. 382

We found that, for each eigenanalysis component, slope coef- 383
ficients derived by linear univariate regression of aLH and the S 384
matrix predictors were greater for the phases that corresponded 385
to higher ρ values based on the interpretations described in 386
Section 3.B. For example, the positive phase of component 1, 387
which corresponds to a negative anomaly near the absorption 388
band (higher ρ), produced a significantly steeper slope than the 389
negative phase of component 1, which corresponds to a positive 390
anomaly near the absorption band (lower ρ). Similarly, the 391
positive phase of component 2 (anomalous dispersion curve; 392
intermediate ρ) produced a significant positive slope, while 393
the slope of the negative phase (nonphysical) was flattened and 394
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Fig. 5. Median validation scatterplot relating measured (vertical)
and predicted (horizontal) aLH values from the S matrix predictors,
with both axes on the log10 scale.

insignificant. The negative phase of component 3 (absorption395
band minima; higher ρ) produced a greater slope than the396
positive phase (absorption band maxima; lowerρ).397

The repeated cross-validation within the thinned Tara398
Oceans Expedition dataset produced a median RMSE to esti-399
mate aLH of 3.19 · 10−3

± 0.55 · 10−3 m−1, corresponding400
to 3.3% of the range in aLH. RMSE derived from log10-401
transformed variables (log10-RMSE) indicated uncertainty of402
18.6%± 1.7%. The median R2 value in the validation datasets403
was 0.894. A link to code based on the median-performing404
model is provided in the supplemental materials. The log-log405
scatter plot of measured and predicted aLH values in the median406
validation subset is shown in Fig. 5.407

The relationships for the S matrix predictors and the expo-408
nential slopes of the cp(λ) dataset, γ , were evaluated using the409
nonparametric scatterplot smoother lowess [33], shown in410
Fig. 6 with log10 horizontal scales. As in Fig. 4, we omitted the411
predictor corresponding to the negative phase of S2, due to the412
low number of observations and lack of physical interpretabil-413
ity. The nonparametric smoothers indicate that large positive414
expressions of mode 1 and large negative expressions of mode 3415
in the S matrix correspond with decreasing γ , and large negative416
expressions of mode 1 correspond with increasing γ . Based on417
our Section 3.B interpretation of the eigenvector spectra, the418
relationships in Figs. 6 (a–c) also could be expressed in terms of419
ρ, indicating a negative association between γ and ρ. Ignoring420
the variability in m (i.e., ρ ∝ x ), the results are in agreement421
with theory relating γ to the PSD. For example, an increase in422
the concentration of larger cells corresponds to a lower γ and423

a greater expression of the high-ρ amplitude functions P (+)
1424

and P (−)
3 . However, the theoretical relationship between PSD425

and γ corresponds to the full particle population, while the426
relationship to the absorption band effects corresponds to the427
pigmented particle fraction.428

Fig. 6. Relationships between γ and the S matrix predictors:
(a) P1

(+); (b) P1
(−); (c) P2

(+); (d) P3
(+); and (e) P3

(−), with locally
weighted scatterplot smoothing (lowess) functions overlaid in solid
black. The horizontal scales are log10. (f ) Histogram estimate of the
probability density function of the γ values derived from the c p(λ)

dataset.

4. DISCUSSION 429

A. Relevance of Absorption Band Effects to 430
Phytoplankton Dynamics 431

The development of hyperspectral IOP sensors and their 432
deployment in a continuous, underway configuration provided 433
us with a large surface ocean IOP dataset with 13 wavebands 434
within about 25 nm of the Chl a red absorption peak. Our 435
eigendecomposition found that three principal modes cap- 436
tured more than 99% of the variance in the c ′p(λ) dataset. The 437

shapes of these principal modes resembled the Qext(λ) spectral 438
residuals predicted by the electromagnetic theory to arise in the 439
vicinity of narrow absorption bands. 440

The first eigenfunction, which captured 61.1% of the vari- 441
ance in the c ′p(λ) dataset, was primarily expressed in its positive 442

phase in the S matrix time series, which corresponded to a 443
minimum at wavelengths shorter (∼10 nm) than the Chl a red 444
absorption maximum. The second eigenfunction, which cap- 445
tured 37.0% of the c ′p(λ) variance, most closely resembled the 446

anomalous dispersion curve illustrated in Fig. 1(c). Absorption 447
band effects are not anticipated to produce spectral shapes 448
resembling the reflection of this curve (recall Section 3.B and 449
Fig. 1), and likewise the negative phase of the second eigenfunc- 450
tion was rarely present in the S matrix time series (less than 1% 451
of the S2 values were negative). The variance captured by the 452
second eigenfunction is interesting because previous analyses 453
have indicated that the anomalous dispersion result is only 454
relevant to very small phytoplankton(e.g., [14]). Although 455
caution is warranted in relating ρ to phytoplankton size because 456
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of uncertainty in cellular shape, refractivity, and pigmentation457
[10], the results of our eigenanalysis interpretation are in general458
agreement with the ecological perspectives that picoplankton459
(diameters generally less than 1 or 2 µm) are ubiquitous across460
oceanic gyre ecosystems [34] and that increases in biomass often461
result from the addition of larger cells over a more stable back-462
ground of smaller cells [35]. The third eigenfunction captured463
only 1.2% of the variance in c ′p(λ), but was retained because its464

spectral shape resembled the Qext(λ) anomalies corresponding465
to the ρ end members (i.e., the maximum and minimum were466
centered on the absorption band).467

The eigenvector projections onto the c ′p(λ) dataset indicate468

that the separate phases of the S matrix predictors [i.e., P (+)
i and469

P (−)
i in Eq. (7)], are each significantly and positively correlated470

with aLH, with the exception of P (−)
2 , which corresponded471

to an eigenvector spectral shape that was not predicted from472
the absorption band effects. Predictors associated with higher473
ρ domains (based on interpretations in Section 3.B) indicate474
steeper relationships with aLH compared to those associated475
with lower ρ domains. The results suggest that additions of476
larger or more refractive phytoplankton [see Eq. (1)] correspond477
to greater increases in aLH than additions of smaller or less478
refractive phytoplankton. In general, this perspective is in agree-479
ment with the phytoplankton ecological paradigm that larger480
phytoplankton predominantly occupy more productive water481
masses, while smaller phytoplankton are ubiquitous across less482
productive, more oligotrophic regimes [36,37]. Considering483
the relationships between γ and the S matrix predictors, our484
findings are consistent with electromagnetic theory, although485
we could not separate the effects of refractivity and size with the486
approach taken here.487

Our theoretical description of absorption band effects is488
based on the treatment of phytoplankton as simple, homo-489
geneous spheres. Phytoplankton are often nonspherical, but the490
Qext(λ) approximations discussed here can be generalized to491
describe the average efficiency factors for nonspherical particles,492
provided that the particles are randomly oriented within the493
medium [38]. Phytoplankton also contain various internal cel-494
lular structures that produce a large variability in the refractive495
index, particularly for structures bound by lipid membranes,496
those containing gases, or housing pigmented molecules, as well497
as layering by plates and frustules that encase coccolithophore498
and diatom cells, respectively. As a conceptualization, our theo-499
retical description provides a basis to interpret the eigenanalysis500
and is consistent with previous approaches that have advanced501
fundamental concepts in marine optics using simple represen-502
tations of phytoplankton cells as homogeneous [39] or layered503
[40] spheres.504

Despite the terminology anomalous dispersion, the theory505
described in this paper is in agreement with basic principles506
(e.g., ρ decreases with increasing wavelength), with all else507
being equal and consistent with normal dispersion. However,508
key differences between the absorption band effects and γ509
analysis are relevant to measuring marine systems. First, while510
cp(λ) slope methods are sensitive to the sizes of pigmented and511
nonpigmented particles [6], absorption band effects are only512
anticipated for pigmented particles, as spectral dependencies513
in particle n′ values arise primarily through absorption by514

photopigments. Second, the relationship between the cp(λ) 515
and PSD slope is robust in polydisperse environments within 516
an appropriate PSD size range, but is challenged in monodis- 517
perse systems [41]. Absorption band effects are confounded by 518
polydispersion [10], but we show that hyperspectral resolution 519
enables the decomposition of overlapping signals to extract key 520
biological information from polydisperse environments. 521

B. Potential for Application of Absorption Band 522
Effects 523

The methods presented here enabled us to assess spectral vari- 524
ability in cp(λ) near a photopigment absorption band without 525
requiring a priori decisions about the shapes of the extracted 526
signals. Optimization of the spectral shapes of extracted signals 527
(e.g., using theoretical response functions), may improve esti- 528
mates of aLH from cp(λ) datasets. We compared our analysis 529
with an eigendecomposition using c ′p(λ) spectra that were 530

peak-normalized, and we found that the accuracy of our esti- 531
mates of Chl a absorption decreased, although the relationships 532
between the S matrix predictors and γ were similar. Advancing 533
the capability to estimate Chl a absorption from beam-c would 534
provide useful redundancies in instances in which both beam-c 535
and absorption are measured concurrently (e.g., by an ac-s) and 536
would be useful in turbid waterbodies, where absorption meters 537
are more prone to fouling than beam-c meters. In general, 538
beam-c is more easily measured than absorption. 539

Information on PSD can be derived from the cp(λ) exponen- 540
tial slope using legacy multispectral instrumentation because 541
the approach only requires measurement of two wavelengths 542
[41]. Decomposition methods require greater spectral reso- 543
lution, because the targeted signals are often more complex 544
and spectrally overlapping. Because the signals associated with 545
absorption band effects are most apparent within a narrow range 546
in λ, even the hyperspectral ac-s instrument only provided up 547
to 13 relevant wavebands in this study. Improvement in spectral 548
resolution generally coincides with a trade-off in radiometric 549
accuracy, which is problematic for decomposition of low ampli- 550
tude signals. For example, the signals associated with absorption 551
band effects are relatively low compared to the ranges in cp(λ) 552
that result from variability in the refractivity and size distribu- 553
tions of pigmented or nonpigmented particles in natural marine 554
systems. 555

Low signal of the spectral anomalies related to absorption 556
band effects may be partially mitigated by the measurement of 557
backscattering, rather than beam-attenuation or total scattering, 558
because the backscattering spectra are more sensitive to absorp- 559
tion band effects [13]. Recently, a commercial hyperspectral 560
bb(λ) instrument has been developed, which could potentially 561
be applied to advance this topic [42]. For water bodies domi- 562
nated by large refractive phytoplankton, cp(λ) and bbp(λ) are 563
anticipated to produce local minima at the Chl a red absorption 564
band (e.g., consider Fig. 1 for high ρ), and an estimation of 565
phytoplankton biomass could be performed using a line height 566
approach to reduce spectral resolution requirements. Research 567
to develop multispectral backscatter instruments that target 568
absorption band effects to predict Chl a is underway [43]. In the 569
work summarized here, we did not investigate the importance 570
of accessory pigmentation on absorption band effects, because 571
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most phytoplankton photopigments are not active in the vicin-572
ity of the Chl a red peak. Chlorophyll b, which can form an573
absorption plateau with Chl a at high concentrations, is one574
notable exception.575

5. CONCLUSIONS576

We reduced the dimensionality of a surface ocean hyperspectral577
beam-c dataset with minimal loss of information by identifying578
three principal modes of spectral variability, which were similar579
in shape to the spectra of theoretical particle extinction residuals580
associated with absorption band effects. The results indicate581
that at wavelengths adjacent to the Chl a red absorption peak,582
absorption band effects are a primary source of variability in583
beam-c spectra, due in part to the absence of other strong spec-584
tral dependencies within the region. Challenges to our approach585
include low signal and high spectral requirements, polydis-586
persion of natural marine ecosystems, and variability in the587
pigmentation, refractivity, and shape of marine phytoplankton.588

The positive and negative amplitudes of the major eigenfunc-589
tions we found provided useful predictors for aLH in our study,590
indicating that analysis of absorption band effects in cp(λ)591
spectra can enable an alternative estimate of Chl a absorption.592
The relationships between the eigenfunctions and the cp(λ)593
exponential slopes are in agreement with electromagnetic theory594
and suggest that useful size parameters could be estimated from595
the decomposition of hyperspectral beam-c measurements.596
Future improvements in measuring the index of refraction of597
phytoplankton will be useful to advance these topics, and the598
upper and lower limits for interpreting absorption band effects599
should be explored. Culture work, in particular, could help600
better elucidate the bio-optical relationships described by this601
analysis.602

Finally, in this study we considered absorption band effects603
using an observational approach that was made possible by604
advances in hyperspectral IOP instrumentation. Basic, rather605
than applied, scientific research was first necessary to develop606
an understanding of the optics of narrow absorption bands, and607
our work relies on advances achieved through electromagnetic608
theory (e.g., [9–13]. Our principal conclusion is that, with609
recent advances in IOP instrumentation, current hyperspectral610
beam-c datasets enable accurate estimation of Chl a absorption611
based on information captured from absorption band effects.612
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