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α-Synuclein is a polypeptide encoded by the Snca gene, highly expressed in neurons, 

but it is also found in bones and adipose tissue. Co-expression analysis showed that 

Snca regulates skeletal homeostasis, and its deletion reduced estrogen deficiency-

induced bone loss and weight gain. It is a major component of Lewy bodies (LB) in 

Parkinson’s disease (PD), leading to progressive immobilization and a range of 

nonmotor symptoms, including osteopenia, body composition alterations and insulin 

resistance. This thesis aimed to determine α-Synuclein’s intrinsic role in bone and 

adipose homeostasis.  

We discussed the PD pathophysiology emphasizing aspects of bone health and 

metabolism. By using in vivo models we showed conditional deletion of Snca in 
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osteoblasts is insufficient to reduce bone loss after estrogen deficiency, however, 

sufficient to reduce weight gain and decrease marrow adipocyte expansion.  

Prrx1Cre off-target effects led to decreased in α-Synuclein expression in the brain, 

decreased serum catecholamines, and behavioral phenotypes. Mutant mice 

experienced a mild improvement in bone microarchitecture. Although not protected 

from diet-induced obesity, mutants showed smaller adipocytes in the inguinal fat, 

decreased adipogenesis and higher oxidative capacity, however, decreased insulin 

sensitivity. Interestingly, AdipoCre;Sncafl/fl mice showed no significant increase in 

inguinal adipose accrual, decreased weight gain and increased insulin sensitivity. 

In vitro models of loss of α-Synuclein led to fragmented mitochondria, decreased 

adipogenesis, and pAKT and, increased levels of AKT, pIRβ and pSHC. Mutated α-

Synuclein overexpression (A53Ttg/tg) led to higher adipogenesis, mitochondria size and 

increased levels of pAKT/AKT. There was no change in colocalization of α-Synuclein to 

mitochondria in cells with differential α-Synuclein expression. After insulin treatment, α-

Synuclein relocated to the nuclei in controls, however, this response was not seen in 

A53Ttg/tg. 

This work showed α-Synuclein regulates adipose tissue cell autonomously and it does 

affect, mildly, bone microarchitecture through its actions on osteoblasts. Moreover, we 

showed α-Synuclein regulates insulin response by affecting the levels of pAKT/AKT and 

phosphorylated insulin receptor β. 
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Future research is essential to understand the local and systemic effects of α-Synuclein 

signaling on bone remodeling and adipose metabolism to shed light into possible 

treatment targets for osteoporosis and insulin resistance in PD patients.  
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CHAPTER 1 

 INTRODUCTION  

Worldwide, the elderly population continues to expand at an unparalleled rate. 

Approximately, 8.5% of the total population is now over 65 years and is projected to 

reach nearly 17% of the world’s population by 2050 [1]. This aging trend presents 

several public health and socio-economic challenges including an increased risk for 

neurodegenerative and bone diseases. Parkinson’s disease (PD) is the second most 

frequently reported neurodegenerative disease and it has an estimated prevalence of 

1% in subjects over the age of 60. Moreover, the socioeconomic impact of PD is also 

growing [2]. As PD progresses, neurological degeneration leads to wide-spread lesions 

in the brain along with balance impairment and an increased risk of falls. The systemic 

nature of PD seriously impairs life quality; symptoms comprise movement impairment 

and non-motor related dysfunction, dementia, gastrointestinal disturbances, body 

composition alterations, including, metabolic alterations, falls and a markedly increased 

risk of fracture as well as low bone mineral density [3,4,5]. The vast majority of research 

into the pathophysiology of PD has focused on the mechanisms of PD development in 

the substanta nigra and its neurologic implications; however, little is known about how 

PD impacts comorbidities, particularly, energy metabolism and its association with bone 

mass and osteoporosis, a major complication of long-standing PD. In this thesis, we 

discuss the fundamental relationship between PD and bone health, with an eye towards 

future preventive therapies.  
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1.1. Pathophysiology of Parkinson's Disease  

PD is a systemic neurodegenerative disease. It encompasses a series of comorbidities 

that contribute to the complexity of the disease, impairing life quality of patients. 

Symptoms span locomotor dysfunction including resting tremors, rigidity and 

bradykinesia to lesser known- non-motor features such as autonomic dysfunction, 

cognitive/neurobehavioral abnormalities, sleep and sensory disorders. Additionally, PD 

patients often experience weight loss and a greater risk of fracture which increases as 

the disease progresses and with treatment [6].  

1.2. Motor Alterations and Disease Progression  

The underlying pathological processes in PD progresses slowly by degeneration of a 

particular population of neurons in the mesencephalon. An important but not exclusive 

pathophysiological feature in PD is the loss of the dopaminergic neurons in the 

substantia nigra pars compacta resulting in disorganization of the basal ganglia (BG) 

circuits [7]. The pathological hallmark of PD is the formation of intracellular aggregates 

of α-Synuclein in the cytoplasm in these dopaminergic neurons, known as Lewy bodies 

or if located in neurites, Lewy neurites [7,8]. These neurons are affected specifically in 

their cytoskeleton organization, which impairs its function and ultimately leads to cell 

death and alteration of the nigrostriatal circuit [7].  During the early stages of PD, the 

disease affects the dorsal motor nucleus of the vagal nerve, olfactory bulbs and nucleus, 

then the locus coeruleus, and later, the substantia nigra and ultimately cortical areas. 

The damage to the substantia nigra has been shown to be consistently accompanied by 

substantial extranigral lesions that cause impairment of the limbic system, telencephalic 
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cortical function and autonomic regulative mechanisms [9].  Overall, these alterations 

result in 4 classical cardinal (motor) features of PD that a clinical diagnosis includes:  1) 

bradykinesia, or slowness in movement, 2) rest tremor, 3) rigidity and 4) postural 

instability [3].  PD patients also experience non-motor alterations that contribute to 

quality of life deterioration. These are often expressed earlier than locomotor 

alterations, even as earlier as 20 years prior diagnosis.  

 
Figure 1. Loss of nigrostriatal circuits in Parkinson’s Disease (PD).  
Aggregation of α-Synuclein leads to loss of dopaminergic neurons in substantia nigra. 
Disruption of nigrostriatal circuits leads to motor and nonmotor alterations. PD patients 
often show signs of sarcopenia that may contribute to bone deterioration. Endocrine 
and nutritional factors converge to overall bone impairment.  
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1.3. Sleep Disorders and Sensory Abnormalities  

Patients with PD often present diverse sleep disorders. Most common alterations 

include insomnia, REM sleep behavior disorder (RBD), daytime sleepiness and restless 

legs syndrome, but frequently, pain and cramps or desire to urinate often interrupt their 

sleep, as well [10,11,12].  Sleep disturbances have been attributed to thalamic atrophies 

in PD patients and dysregulation of circadian rhythm [13,14]. It is still uncertain what are 

the mechanistic (s) alterations in the brainstem circuits that lead to dysfunction of 

glutamatergic, cholinergic and GABAergic signals in the dorsal pons within the 

brainstem, and how these may explain the symptom complex [15]. Clinical studies have 

shown that loss of REM sleep atonia is positively associated with neurodegenerative 

symptoms such as loss of olfactory function at early stages of neurological progression, 

suggesting these indicators can be used as early markers of PD [16].  

1.4. Autonomic Alterations in PD  

PD patients commonly show signs of constipation and gastrointestinal tract dysfunction 

during the progression of the disease. There are considerable data supporting the 

presence of Lewy bodies in the myenteric plexus of the intestine at early stages of the 

disease; this location is consistent with the fact that these regions are typically vagal 

terminals [17]. Analysis of immunohistochemical staining of colonic biopsies have 

revealed in 4 out of 5 PD patients, the presence of phosphorylated-α-Synuclein in the 

submucosal neurites of the enteric nervous system; remarkably there were no positive 

staining in control subjects [18]. Although, more evidence is required to fully 

characterize the pathophysiology of the gastrointestinal alterations in PD, the current 
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findings suggest that the presence of Lewy bodies in the myenteric plexus may be an 

early sign of peripheral involvement in PD [17].  Other autonomic alterations can lead 

to manifestations such as orthostatic hypotension, sweating, bladder and erectile 

dysfunction [19,20].  It should be noted that part of these, such as gastrointestinal 

dysfunction and imbalance could contribute to altered bone microarchitecture, and/or 

enhance the risk of falls and subsequent fractures. 

1.5. Body Composition and Disease Progression 

Clinical studies show that PD patients often experience weight loss, sometimes 

preceding the PD diagnosis. Chen et al. showed that the average weight of PD patients 

was stable prior to the disease diagnosis, but then decreased with disease progression. 

Surprisingly, these patients increase their food intake, but this does not lead to a 

concomitant weight gain [4]. PD patients were found to be 4-fold more likely to lose 10 

lbs than healthy individuals during the eight years after first diagnosis. This weight 

change correlated with severity of disease leading to greater nutritional risk than healthy 

controls [21].  Indeed, accumulating evidence suggests a negative correlation between 

BMI in PD patients and severity of the disease, aging, comorbidities and higher daily 

levodopa dosing [22, 23]. Previous studies showed that type II Diabetes Mellitus (II DM) 

is a risk factor for PD and that glucose metabolism alterations are often found in PD 

patients [5, 24, 25,26]. Not before the past couple of years, studies have returned to 

investigate implications of PD in metabolism, particularly, insulin response. Marques et 
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al, (2018) showed that glucose control was impaired in mid to later disease stages in 

non-diabetic PD patients, possibly as a consequence of PD dysautonomia [27].  

These findings imply that alterations in body composition and glucose response in PD 

correlates closely with health-related quality of life and neurologic progression, an 

indication of the systemic nature of this disease. 

1.6. Cognitive and Neurobehavioral Alterations 

PD patients often present signs of cognitive impairment and they are at a higher risk of 

dementia aside from the risk of several comorbidities such as depression, anxiety and 

hallucinations [23, 28, 29]. Obsessive compulsive behavior and impulse behavior are 

attributed to the dopamine dysregulation, but these are still not well understood 

[30,31].  

1.7. Bone strength, Quality (and Loss) in Parkinson's Disease Patients   

PD and osteoporosis are two common chronic disorders, affecting a substantial portion 

of the elderly population. Osteoporosis is characterized by low bone mass and 

deterioration of bone micro-architecture, which leads to an increased risk of fracture 

[32, 33]. Fractures, most often due to falls, cause significant morbidity and mortality in a 

substantial portion of the elderly population. It has been established through 

observational and longitudinal studies that PD patients have a higher risk of 

osteoporosis and low bone mineral density when compared to controls [34]. 

Interestingly the levodopa dosage in patients is negatively associated with BMD in PD, 
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particularly relative to spine and femoral neck sites [22].  Zhao et al performed a meta-

analysis of the risk of osteoporosis and bone mineral density in individuals with PD [35].  

The authors found that PD patients were at higher risk for osteoporosis (OR=1.18, 95% 

CI= [1.09, 1.27]) than healthy controls and have lower BMD levels than healthy controls 

overall. Particularly, PD patients have a lower hip, lumbar spine and femoral neck BMD 

than healthy controls for hip, for lumbar spine, and femoral neck.   

The prevalence of PD is greater in males than females by a ratio of nearly 2:1. Yet, 

analysis -by gender- reveal that female PD patients had lower BMD than controls, while 

there were no significant differences in male PD patients compared to controls.  

However, male PD patients are at higher risk for osteoporotic fractures than female 

patients. This could be due to several reasons such as differences in vitamin D levels, 

frequency of falls, and reduced physical activity. In regards to the former, Hagenau et 

al., analyzed a total of 394 studies including subjects from diverse ethnicities and found 

that women with PD tended to have higher mean serum 25(OH)D (56±1.6 nmol/l) than 

men (50±2.6 nmol/l, p= 0.05) [36]. Gao et al showed in a cross-sectional study of 54 

patients with PD and 59 healthy age-matched controls that PD patients had significantly 

lower BMD than in healthy controls, particularly in the lumbar spine. However, this study 

revealed that BMD scores of the spine, femoral neck, and hip were lower in females than 

in males in the healthy group and that within the PD group, BMD in the hip was 

significantly lower in females compared to males, contrary to Zhao et al (2013) [35]. 

Again, this study revealed a strong negative correlation between BMD in the spine, 

neck, and hip and severity of PD. In addition, there were negative correlations between 
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BMD (T-score and Z-score) and scores for PD severity such as Webster, Unified 

Parkinson’s Disease Rating Scale for activities of daily living and motor activities (UPDRS 

II and III) as well as Hoehn-Yahr (H&Y) stage, and a positive correlation between BMD 

and Schwab and England (S&E) Scale activities of daily living score. Thus, in general, 

individuals with the lowest bone mass also had the most severe disease. Indeed, Gao 

suggested that low BMD in the spine, femoral neck, and hip may reflect the severity of 

PD and could be used as a surrogate marker not only of fracture risk but of disease 

progression [22].  

The mechanisms by which PD patients develop osteoporosis it is still an area that is 

understudied. However, it is well known that sympathetic innervation is fundamental for 

integrating skeletal homeostasis with body composition mainly by suppressing bone 

formation and increasing bone resorption via enhanced RANKL production; thus, it is 

fair to speculate that PD dopaminergic alterations also could translate to comprised 

sympathetic innervation to the skeleton [37,38]. It has been shown that animals treated 

with 6-hydroxydopamine and β-adrenergic agonists impairs osteoblast activity in mouse 

calvaria and that the hematopoietic elements in the bone marrow respond to 

sympathetic innervation by increasing outflow of neutrophils as well as increasing 

sclerostin from osteocytes [39,40,41]. A recent study done by Handa et al., showed that 

dopamine receptors (Drd) are expressed in osteoblasts (Drd3 and Drd4) and 

osteoclasts (Drd1 and Drd3) and influence bone homeostasis [42]. In vitro data showed 

that the dopamine receptor agonist – levodopa- inhibits osteoclast differentiation and 

bone formation by decreasing osteoblast mineralization capacity. Animal models of PD 
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responded to levodopa treatment by reducing their bone formation rate and increased 

serum levels of homocysteine. Independently, an in vivo model of neurodegeneration 

of dopaminergic neurons, showed increased in bone resorption and suppressed bone 

formation [42]. In the context of the PD, neurodegeneration occurs while patients are 

under treatment with levodopa, thus, these results suggest both factors occur 

simultaneously and contribute independently to bone loss [42]. Thus, it is conceivable 

that PD autonomic disturbances or the treatment of the disease itself could affect bone 

remodeling through enhanced adrenergic signaling leading to further uncoupling of 

bone formation to resorption. However, there are no basic or translational studies to 

test these hypotheses. 

Muscle mass and activity also influence overall bone health. Sarcopenia and 

immobilization can impair bone formation in PD patients. It has been shown that 

exercise promotes bone remodeling by mechanosensory interactions between muscle 

and bone [43]. It has been reported that loading exercises are marginally beneficial in 

respect to bone mineral density and microstructure. In addition, regular physical 

exercise may suppress sclerostin production, thereby enhancing bone formation. 

Studies have shown that greater lean mass was directly related to higher BMD at the 

femoral neck during aging and smaller muscle area was associated with reduced 

cortical thickness and fractures [44, 45]. Men with lower relative appendicular skeletal 

muscle mass (RASM) (<7.26 kg/m²) had significantly lower BMD compared to the ones 

with higher RASM, and these subjects showed a higher risk of osteoporosis than 

individuals with normal RASM. A cross sectional study of 104 PD patients aged >65 
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years old showed 55.8% of subjects had sarcopenia compared to 8.2% who were 

sarcopenic in the control group. Sarcopenia and frailty were positively correlated with 

greater motor alterations, higher frequency of falls and disease progression [46]. Thus, 

it seems intuitive that strategies to enhance muscle mass could prevent bone loss in PD 

patients, although once again there is a gap in evidence to support that tenet [44].  

It has long been established that hormones are key regulators of bone homeostasis and 

alterations in these endocrine factors can strongly influence bone mineral density. 

Growth hormone is secreted by the pituitary and acts through IGF-1 to stimulate 

osteoblast and osteoclast proliferation and activity [47]. ACTH, another classic 

endocrine hormone, stimulates cortisol secretion and can bind to melanocortin 

receptor family, the MC2R that is expressed in osteoblasts and promote differentiation 

and proliferation [48]. Cortisol has several negative effects on bone by blocking calcium 

absorption and directly suppressing bone formation [49].  

There is a limited amount of research on endocrine alterations in PD, but those few 

showed that untreated PD patients present hypothalamic disturbances that could led to 

decreases in hypothalamic releasing factors causing reduced plasma concentration of 

growth hormone, adrenocorticotropic (ACTH) and cortisol compared to controls [46]. 

Indeed, LBs have been found in the hypothalamus as early as Braak stage 3 of PD [51, 

52]. Dopamine can affect the anterior pituitary gland. PD patients with decreased levels 

of dopamine can have a direct effect on anterior pituitary gland secretion [53]. These 
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findings suggest that PD may impact bone health by alterations in the pituitary-

hypothalamic axis.  

Low vitamin D has been associated in cross sectional studies with osteoporosis in PD. 

One study showed that PD patients presented more frequently with hypovitaminosis D 

and secondary hyperparathyroidism [54, 55, 56] than healthy controls, either as a 

consequence of limited UV light exposure and/or malnutrition. On the other hand, 

immobilization due to severe PD could increase serum calcium from greater resorption 

and this would suppress PTH and subsequently renal 1,25 dihydroxyvitamin D 

production [57]. Loss of sense of smell and appetite, and autonomic dysfunction in the 

gastrointestinal tract of PD patients have been hypothesized as causative for the 

development of constipation and malabsorption in these patients. The latter, in turn, 

could lead to lower vitamin D levels from malabsorption. Notwithstanding, there are no 

studies that directly link vitamin D deficiency as a result of limited sun exposure and 

malnutrition to low bone mineral density or fractures in PD.  

1.8. Parkinson’s Disease, Falls and Neuroendocrine Mediators 

PD is a prime example of a progressive neurological condition where falls are prevalent, 

presumably because many risk factors converge in this disorder; however, the extent 

and severity of this problem is not well understood. Several studies have shown a 

positive association between PD and risk of falls. A meta-analysis involving 69,387 

subjects showed that PD patients had an increased risk of fracture of 2-3 fold (HR hazard 

ratio = 2.66, 95% CI confidence interval: 2.10–3.36) compared to controls. In particular, 
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there is a 4-fold increased risk of hip fracture compared to healthy patients, 

independently of gender [58].  

A cross-sectional study of PD patients and early patients with PD have shown that falls 

are an increasing problem as the disease progresses. Compared with age- and sex-

matched controls, patients with PD are more frequent fallers, and this problem seems 

to be related to symptoms associated with the disease severity. Coinciding with the 

progressive nature of the disease, it was noted there was a 10-fold higher frequency of 

fallers in a cross-sectional cohort of PD patients compared with the group of patients 

with newly diagnosed PD. In addition, motor complications and disease severity were 

significantly associated with frequency of falling [2]. On a similar note, Silva de Lima et 

al. study showed that the incidence rate of any type of fall was found to be higher in PD 

patients than controls (2.1 vs. 0.7 falls/person; p< 0.0001); moreover, the ‘new fall’ 

incidence rate after enrollment was 1.8 times higher for self-reported PD patients than 

controls (95% confidence interval, 1.6–2.0). Others have reported the median range for 

falling for non-treated PD patients was as high as 4-6 times within the 20 weeks duration 

of the study and can reach to an average of 20.8 falls per year in recurrent fallers [59,60]. 

These findings highlight PD as a prime “falling disease” [61]. 

Falls increase fracture risk and are the most common reason for emergency hospital 

admissions in PD patients [62]. Frequent fallers can be defined as patients that have 

fallen more than 5 times over a 6 months period and some have suggested a possible 

association between fall frequency and alterations in cortical areas in the brain [63]. 
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Some have suggested that neurodegeneration leads to a cortical volume reduction and 

thus, a reduction in functional connectivity due to dopamine deficiency resulting in 

cortical inhibition through the basal ganglial network [64]. Fallers exhibit significantly 

longer disease duration, lower gray matter volume in the right superior temporal gyrus 

(STG), the right supramarginal gyrus (SMG), and part of the inferior parietal lobule (IPL), 

compared with non-frequent fallers. Furthermore, there is a significant linear correlation 

between fall frequency and gray matter volume reduction in the right IPL and right STG 

[63]. In addition, among patients with a high incidence of fracture, PD subjects show the 

most serious complications and a greater risk of mortality (2-3 fold HR increase) than 

those without the disease [65]. Hip fractures are a major cause of morbidity and 

mortality among PD patients. Importantly, hip replacement surgery in these individuals 

is associated with longer hospital stays, poorer mobility, and greater mortality [66]. Thus, 

understanding the physiological and cellular mechanisms relating the pathophysiology 

of PD to low bone mass and fractures is critical to developing targeted therapies.  

A possible mechanism connecting PD to falls relies on the locomotor alteration they 

develop throughout their disease. As mentioned above, loss of nigrostriatal dopamine 

circuits causes postural instability, thus, greater risk of falls. Clinical evidence shows that 

severe dopamine loss in the basal ganglia is associated with discoordination and often 

increases slips and stops of movement over dynamic surfaces, that, in attempt to correct 

them, result in falls [67, 68]. Moreover, frequent falls could also be explained by the 

decrease of muscular activity leading to muscular atrophy or sarcopenia in patients. PD 

severity as noted previously is associated with sarcopenia (odds ratio 2.30; 95% 
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confidence interval 1.15–4.58) [69]. Accumulating evidence point to a strong 

connection between bone and muscle, and it includes endocrine and paracrine signals 

between them. It has previously been shown that increases in muscle growth promotes 

bone formation, possibly through IGF-I secretion from the muscle; IGF-1 produces a 

hypertrophic anabolic signaling affecting bone mass acquisition as well as muscle mass 

[70, 71]. Serum IGF-1 declines with age, and has been identified as a one marker of 

osteoporotic risk in young women [72, 73]. However, the association between levels of 

IGF-1 in the context of PD is controversial: IGF-1 is low in some PD patients although 

this may be due to multiple factors including nutritional aspects, age and coincident co-

morbidities (Fig. 1) [74]. Others have shown higher IGF-1 serum levels in PD patients 

compared to controls and these are inversely correlated with the Unified Parkinson 

Disease Rating Scale for motor function (UPDRS-III) score at early stages of the disease 

suggesting that IGF-1 acts as a neuroprotective peptide as a compensatory mechanism 

to protect against further degeneration of neurological functions [75,76].  Despite these 

data, it remains unclear whether IGF-I can serve as an early biomarker of PD, while lower 

serum IGF-1 at later stages of PD could be due to the loss of muscle mass, nutritional 

deficiencies, concomitant morbidities and neurological damage.     

1.9. Animal Models of PD and Their Implications for Understanding Skeletal 

Morbidity 

There are several genetic animal models of PD that recapitulate some of the most 

important aspects of the disease, such as motor symptoms, Lewy body formation, 
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nonmotor symptoms and disease progression. However, there is no ideal model that 

fulfills all these characteristics; each has advantages and limitations although these can 

provide great insights into the cellular and molecular mechanisms underlying the 

disease. A model of PD in mice is the overexpression of human α-Synuclein under the 

Thy1 promoter driving its expression in nervous system. Its manifestations include 

olfactory and digestive alterations, similar to how patients present at the first stages of 

the disease [77]. Other commonly used genetic models of PD are mutant mice with 3 

independent single mutations, A53T, A30P, and E46K, forced expression of α-Synuclein 

by viral infections and neurodegeneration induced by neurotoxin treatments [78, 79, 

80]. The primary focus in the field has been to improve understanding of the cellular 

and molecular mechanisms of the neurological damage and its progression, for therapy 

and prevention. However, the molecular mechanisms explaining how 

neurodegeneration leads to a variety of the systemic alterations remain understudied. 

Therefore, the pre-clinical literature focusing on the impact of PD in bone health is very 

limited. Models of the modified LRRK2 gene have shown an increased risk of genetic 

and idiopathic PD [81]. To date are no reports of the bone condition in these patients. 

Nevertheless, Berwick et al. found that LRRK2 knock out mice showed higher β-catenin 

levels in the brain, improved bone microarchitecture, an increase in tibial cortical bone 

and stronger bones, mediated by activation of canonical Wnt signaling in bone [82].  

More recently, α-Synuclein has been shown to be expressed in several tissues [42, 83]. 

Close to ~80% of erythroid cells within the bone marrow express α-Synuclein [84]. It is 

also found in the blood of mice and humans, thus providing some evidence that α-
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Synuclein could be playing an endocrine role via the circulatory system, marrow niche 

and ultimately affecting bone remodeling [85]. We previously reported that α-Synuclein 

is a hub gene in bone homeostasis [83]. Specifically, we generated a co-expression 

network consisting of 53 gene modules using expression profiles from intact and 

ovariectomized (OVX) mice from a panel of mouse inbred strains. The expression of 

four modules was altered by OVX, including one whose expression was decreased by 

OVX across all strains. This one module was enriched for genes involved in the response 

to oxidative stress, a process known to be involved in OVX-induced bone loss. 

Additionally, these genes were co-expressed in human bone marrow. - Synuclein was 

one of the most highly connected "hub" genes in that module. We subsequently 

characterized mice deficient in Snca and observed a 40% reduction in OVX-induced 

bone loss. Furthermore, protection was associated with the altered expression of that 

specific network module. In summary, the results of this study suggest that αSynuclein 

regulates bone network homeostasis and ovariectomy-induced bone loss. 

Furthermore, we found that α-Synuclein is expressed in both osteoblasts and 

osteoclasts at different stages of maturation in vitro (Fig. 2) [83].  Moreover, gene 

deletion of α-Synuclein partially protected against ovariectomy-induced bone loss, 

including greater bone volume fraction, more trabecular number and thickness, and 

less weight gain [83]. Pathological α-Synuclein dynamics in bone tissue could explain 

part of the impaired skeletal status in PD as well as other comorbidities.  

Notwithstanding, these results shed light that disturbances in α-Synuclein in the 
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pathophysiology of PD might extend beyond central and peripheral neurological 

systems.  

1.10. Osteoporosis Treatments for PD Patients  

Despite the well-established evidence that PD patients are at a high risk of fracture and 

twice the risk of mortality from fractures, only few receive treatment [65]. Fractures in 

general occur because of falls and low BMD. Therapies to target either or both factors 

are fundamental to improve life quality and decrease mortality. As discussed previously 

levels of vitamin D have been positively correlated with BMD but its positive effects have 

only been demonstrated in deficient states, thus, supplementation benefits remain 

controversial [56, 85].There are studies suggesting vitamin D therapy can improve 

muscular function, reaction time, balance and coordination in older people; this 

potentially could protect against falls [86, 87]. The positive effect of vitamin D was 

greater in osteoporotic patients with hypovitaminosis D and co-administered calcium 

[88]. However, more recent meta-analyses have shown that vitamin D had no effect on 

overall fractures, hip fractures or falls, at low or high dose suggesting that vitamin D 

supplementation lacks clinical benefit and could possibly have a harmful effect [89, 90]. 

However, PD patients are exposed often to malnutrition, thus, considering vitamin D 

and calcium supplementation at low dose may be of use in selected patients.  
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Figure 2. Bone remodeling and dopamine. 
Osteoblasts, adipocytes and osteoclasts are the major regulators of bone homeostasis. 
Alteration of dopamine at central levels may be affecting bone cell signaling 
transduction through dopamine receptors due to decrease in dopamine levels. PD 
patients show higher circulating levels of α-Synuclein, presence of Lewy bodies in the 
midbrain and in enteric terminal nerves. We postulate that α-Synuclein aggregates 
could translate to alterations in cellular dynamic of α-Synuclein in bone cells and 
adipocytes as possible contributing mechanism to bone impairment and metabolic 
alterations in PD patients.   
 

Among possible pharmacological treatment alternatives for osteoporosis in PD 

patients, anti-resorptive treatments such as bisphosphonates are the most common. 

Bisphosphonates are pyrophosphate analogues that reduce bone resorption by directly 

inhibiting osteoclast activities [91]. The oral agents include alendronate, ibandronate 

and risedronate; all show increased bone mineral density and a markedly decreased 

risk of fracture [92]. Intravenous zoledronic acid, administered once per year, is the most 

effective bisphosphonate to date decreasing bone resorption markers and increasing 

BMD by 4-5% in the spine and ~3% values in the femoral neck when compared to 

control [93]. Fractures are reduced by 70% in the spine and ~40% in the hip along with 
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improvement of ~6% of BMD in total hip, lumbar spine and femoral neck [94]. 

Sustainable decreases in serum bone resorption markers at 6 and 12 months of infusion 

were demonstrated. Denosumab is another anti-resorptive agent that works through a 

monoclonal antibody that binds to RANKL, thereby inhibiting osteoclast maturation. It 

has been shown to be effective in reducing bone resorption markers and increased total 

hip and lumbar spine BMD [95]. However, denosumab must be administered every 6 

months and there is a rebound increase in bone resorption, and potentially more 

vertebral fractures if the medication is stopped. Teriparatide is an anabolic agent first 

approved by the FDA in at? 2001 as an osteoporosis treatment targeting bone 

formation [96]. Intermittent PTH administration (i.e. daily injections) has been shown to 

effectively improve BMD and fracture risk [97]. Another anabolic drug, PTHrp analog 

(Abaloparatide) has been shown to prevent fractures and increase BMD in 

postmenopausal osteoporosis and is non-inferior to teriparatide [98, 99].  

To the date there are no data whether these drugs can prevent osteoporotic fractures 

in PD. However, there is a new and innovative trial to address this issue. The TOPAZ 

(NCT03924414) trial will also address barriers to treatment of patients with PD by 

providing rigorous evidence about whether zoledronic acid (ZA) reduces fracture risk in 

patients with PD, simplifying treatment by giving ZA at home without extra medical visits 

and BMD testing, and overcoming poor persistence with oral therapies because one 

infusion may prevent bone loss for at least 2 years [65, 100, 101]. The outcome of this 

trial will demonstrate how a home-based fracture prevention can reach older PD 
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patients who would not otherwise receive treatment to reduce their high risk of 

fractures.  

As we mentioned in this chapter, PD is characterized by non-motor clinical features that 

contribute to disease complexity and impaired life quality. PD disrupts nigrostriatal 

circuits at a central level but also, it could be impairing of catecholamine signaling to 

the major cellular components of bone homeostasis through the sympathetic 

innervation, leading to alterations in bone frailty and metabolic impairment. 

Nevertheless, α-Synuclein is expressed locally in osteoblasts, adipocytes, and 

osteoclasts. Here, we aimed to clarify if α-Synuclein participates in regulating bone 

microarchitecture by acting cell autonomously through bone cells and adipocytes.   
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CHAPTER 2 

MATERIALS AND METHODS 

2.1. Animals  

Animal studies were conducted according to the National Institutes of Health guide for 

the care and use of Laboratory animals. Maine Medical Center Research Institute 

approved all experimental procedures. Sncafl/fl  (B6(Cg)-Sncatm1.2Vlb/J strain [103], 

stock #028559) mice were crossed to Prrx1Cre mice (B6.Cg-Tg(Prrx1-cre)1Cjt/J [104], 

stock# 005584), or to AdipoqCre mice (B6;FVB-Tg(Adipoq-cre)1Evdr/J [105], stock # 

010803), all purchased from The Jackson Laboratory (Bar Harbor, ME). B6;C3-Tg(Prnp-

SNCA*A53T)83Vle/J (Prnp-SNCA*A53T) Prnp-SNCA*A53T transgenic mice express 

human A53T variant α-Synuclein (full-length, 140 amino acid isoform) under the 

direction of the mouse prion protein promoter purchased at The Jackson Laboratory 

(Bar Harbor, ME) and B6.Cg-Tg(Sox2-cre)1Amc/J (Sox2-Cre, stock #8454, The Jackson 

Laboratory) from Dr Lucy Liaw Laboratory.  

2.2. Induction of Estrogen Deficiency 

Prrx1Cre;Sncafl/fl and littermate controls were mice were anesthetized with Avertin and 

either sham operated or ovariectomized (OVX) at 8 weeks old and sacrificed at 20 weeks 

old and fed with phytoestrogen-free diet (D10012M, Research Diets, Inc). 
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2.3. Diet Induced Obesity (DiO) 

Eight-week old female and male Prrx1Cre;Sncafl/fl and AdipoqCre;Sncafl/fl mice and 

littermate controls were randomly assigned treatment with high fat (60% fat) (D12492i, 

Research Diets, Inc.) or low fat (10% fat sucrose matched) diet (D12450Ji, Research 

Diets, Inc.) for 15 weeks. Total body weight was measured weekly and their food weight 

every two days to obtain food intake per mouse per day (grams of food/day/mouse) 

and converted into kilocalories for caloric intake comparison.  

2.4. Serum Collection and Catecholamine’s Measurement  

Concentrations of catecholamines in biological samples were assessed by LC-MS/MS 

methodology as described [106]. Briefly, plasma is mixed with HPLC grade acetonitrile, 

vortexed and centrifuged. The supernatant is then transferred to a 96 well plate for 

LC/MS-MS analysis. A calibration curve is formed in mouse plasma by serial dilution and 

extracted via the same methodology. An Agilent 1200 system consisting of a binary 

pump, column compartment and auto-sampler is used for solvent delivery and sample 

introduction. Chromatographic separation is performed on a Phenomenex Hydro RP 

2.0 x 150 mm 4 μm column via a gradient using 0.1% formic acid in water (A) and 0.1% 

formic acid in acetonitrile (B). Gradient elution is 98% A from 0-1 minute, ramping to 

50% A from 1.1 to 3.0 minutes, holding at 50% until 5.5 minutes, with re-equilibration at 

initial conditions from 5.6 to 7.5 minutes. Flow rate is 0.30 mL/min, and column 

temperature s 30°C. Assay range for catecholamines is 2-500 nM for dopamine, 2-2000 
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nM for epinephrine and 5- 5000 nM for norepinephrine. Inter-assay variability is < 14.6% 

across the dynamic range of the assay. 

2.5. Body Composition by DXA 

Mice were anesthetized by isofluorane inhalation and whole-body and femoral areal 

bone mineral density (BMD) and body composition excluding the head were analyzed 

by dual-energy X-ray absorptiometry (DXA). The instrument (PIXImus, GELunar Corp., 

Madison, Wl, USA) was calibrated daily using a phantom standard provided by the 

manufacturer. All mice were measured at baseline (8 weeks old) and at the end time 

point (20 weeks old for OVX or 23 weeks for HFD study) for lean mass, fat mass, and 

bone mineral density using the PIXImus dual-energy X-ray densitometer (GE-Lunar, 

Madison, WI, USA). Whole body scans were obtained, and X-ray absorptiometry data 

were analyzed, following the manufacturer’s supplied software excluding the skull in the 

analysis (Lunar PIXImus 2, version 2.1).  

2.6. Micro-Computed Tomography (µCT) 

A high-resolution desktop micro-tomographic imaging system (µCT40, Scanco Medical 

AG, Brüttisellen, Switzerland) was used to assess trabecular bone and cortical bone 

architecture in the femur. Scans were acquired using a 10 µm3 isotropic voxel size, 70 

kVp peak x-ray tube potential, 114 µA x-ray intensity, 200 ms integration time, and were 

subjected to Gaussian filtration and segmentation. Trabecular bone was identified by 

manually contouring the endocortical region and then using a threshold of 360 
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mgHA/cm3 to segment bone from soft tissue. Trabecular bone architecture was 

analyzed in a region that began 200 µm superior to the distal femoral growth plate and 

extended proximally 1500 µm (150 transverse slices). The segmented images were 

analyzed with the standard Scanco trabecular bone morphology script to measure 

trabecular bone volume fraction (Tb.BV/TV, %), trabecular thickness (Tb.Th, mm), 

trabecular number (Tb.N, mm-1), trabecular separation (Tb.Sp, mm), and connectivity 

density (Conn.D, 1/mm³). Cortical bone morphology was analyzed in a 500 µm (50 

transverse slices) long region that began at the femoral mid-diaphysis. Cortical bone 

was segmented using a threshold of 700 mgHA/cm3 and the standard Scanco script for 

cortical bone morphology was used to measure total cross-sectional area (Tt.Ar, mm2), 

cortical bone area (Ct.Ar, mm2), marrow area (Ma.Ar, mm2), bone area fraction 

(Ct.Ar/Tt.Ar, %), cortical thickness (Ct.Th, mm), cortical porosity (%), and polar moment 

of inertia (J, mm4).  

2.7. Osmium Tetroxide Staining 

Following µCT scanning for trabecular and cortical structure, marrow fat quantification 

was performed in the tibiae using osmium tetroxide. Tibiae were demineralized in 4.1% 

EDTA, pH 7.4, for 14 days. Then in a fume hood, the demineralized tibiae were 

incubated for 48 hours in a mixture containing equal volumes of 5% potassium 

dichromate and 2% osmium tetroxide (Electron Microscopy Sciences, Hatfield, PA) (1% 

final osmium tetroxide concentration). The tibiae were washed in cool tap water for 2 h 

to remove unbound osmium tetroxide and then µCT imaged using the previously 
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specified µCT scanner. Scans were acquired of the whole tibia using a 10 µm3 isotropic 

voxel size, 55 kVp peak x-ray tube potential, 145 µA x-ray intensity, 300ms integration 

time, and were subjected to Gaussian filtration and segmentation. The medullary cavity 

for each tibia was manually contoured in the same regions where the marrow volume 

was measured in the mineralized µCT scans of the bones. The region within the 

medullary contours was segmented with a threshold of 700 mgHA/cm3 or 1000 

mgHA/cm3 in the proximal (superior to the distal tibiofibular junction) and distal 

(inferior to the distal tibiofibular junction) tibia, respectively, and the segmented volume 

was considered to be the marrow adipose tissue volume (MAT Vol, mm3). The marrow 

adipose tissue volume was then normalized by the volume of the marrow cavity (MV) to 

calculate the marrow adipose tissue volume fraction (MAT Vol/MV, %). 

2.8. Metabolic Profile  

Mice were placed in metabolic cages (Promethion Metabolic Monitoring Cage System, 

Las Vegas, NV) to measure their physical activity by indirect calorimetry. The metabolic 

cages are located in the Physiology Core Department of Maine Medical Center 

Research Institute. Briefly, animals were maintained on a 12 h light/dark (L/D) cycle and 

were acclimated for 24 hours. All animals were housed in identical cages and bedding, 

given ad libitum access to food and water and provided with a running wheel of 4.5 

inches (11.5 cm) in diameter (Mini-Mitter, Bend, OR) that was wired to record revolutions 

per second continuously using a magnetic reed switch. 
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2.9. Behavioral Tests 

Behavioral tests were conducted in a specifically equipped room using test apparatuses 

from Stoelting (Wood Dale, IL). Experiments were recorded with the ANY-maze™ video 

tracking system v5.14 (Stoelting, Wood Dale, IL) or a camcorder (Samsung HMX-F90). 

Videos were analyzed offline with The Observer XT v12.5 from Noldus (Leesburg, VA). 

Mice were group-housed after weaning (2-4 animals per cage) and had been on a 15 

weeks low-fat or high-fat diet treatment at the time of testing. The experimental animals 

were left undisturbed in the testing room 2-3 hours prior to each test to acclimate. 

2.9.1. Elevated Plus Maze Test 

The test apparatus for the elevated plus maze (EPM) is 45cm elevated off the ground 

and cross-shaped. Opposing arms are either open (open area) or surrounded by a wall 

(closed area). The arms are connected via the center area (neutral square). Mice were 

placed in the center area to start the test and were recorded for 5 min, while exploring 

the maze freely. Mice that fell off the maze were excluded from the tests and analysis. 

2.9.2. Open Field Test 

The open field test (OFT) was performed in a square shaped (40 cm x 40 cm) arena with 

opaque walls. The center was defined as a 20 cm x 20 cm area with equal distance to 

the walls, while the remaining area was referred to as periphery. At the beginning of the 

test mice were placed in the periphery facing the center and allowed to explore the 

maze freely for 5 min. 
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2.9.3. Marble Burying Test 

A rat size home cage (45 cm x 23 cm) was used and filled with a 5-6 cm deep layer of 

corncob bedding (Envigo, South Easton, MA). Twenty-eight black marbles were spaced 

out equally on top of the bedding. The mouse was placed in the cage and allowed to 

explore it freely under low lighting. After 30 min the animal was gently removed from 

the cage to avoid disturbing the bedding. Marbles buried by two thirds of their diameter 

or more were counted as buried. 

2.9.4. Tail Suspension Test 

Mice were suspended by their tail and fixed with adhesive tape to a shelf with their 

heads located approximately 8 cm above a flat surface. Animals caged together were 

tested in parallel. Mice were video recorded for 5 min. Immobility, movement and 

climbing behavior were analyzed afterwards using The Observer XT software. 

2.10. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT) 

After 15 weeks of high fat diet challenge, for the glucose tolerance test mice were fasted 

overnight (16–18 h) with free access to water. Fasted glucose levels were measured from 

tail tip punctures and later measurements were acquired after mice were 

intraperitoneally (IP) injected with a glucose solution (1.5 g/kg body weight). For the 

insulin tolerance test, mice were fed ad libitum and IP injected with insulin at a dose of 

1 U/kg. Glucose levels were then measured by using a Glucometer (AlphaTRAK 2 Blood 

Glucose Monitoring System) at 0, 15, 30, 45, 60, and 120 minutes after injection for both 



28 
 

tests. The area under the curve (AUC) was determined to quantify the glucose and 

insulin tolerance. 

2.11. Gene Expression Analysis  

2.11.1. Real-time PCR 

Total RNA was isolated using the TRI Reagent (MRC) according to the manufacturer's 

instructions. cDNA was generated using the High Capacity cDNA Reverse Transcriptase 

Kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. 

mRNA expression analysis was carried out using an AzuraQuant Green Fast qPCR Mix 

LoRox with an iQ5 thermal cycler and detection system (Bio-Rad, Hercules, CA). cDNA 

samples were analyzed for the expression of both genes of interest and a reference 

gene, Cyclophilin B (Ppib). Fold changes in gene expression levels were estimated 

using the ΔΔCt method. Primers for Prrx1 and Snca were purchased from Integrated 

DNA Technologies (Coralville, IL). Primer sequences were as follows: Ppib, Fwd 5′-TGG 

AGA GCA CCA AGA CAG ACA- 3′ and Rev 5′-TGC CGG AGT CGA CAA TGA T-3′; Prrx1, 

Fwd 5′-GAC CAA CCG ATT ATC TCT CCT GG-3′ and Rev 5′-CAG TCT CAG GTT GGC 

AAT GCT G-3′; and Snca, Fwd 5′-CTT TAG CCA TGG ATG TGT TCA T-3′ and Rev 5′-TTG 

TCT TTC CAG CTG CCT CT-3′. Pparγ Fwd 5′-CAA GAA TAC CAA AGT GCG ATC AA-3’ 

and Rev 5'-GAG CTG GGT CTT TTC AGA ATA ATA AG-3’, Adipoq Fwd 5’- TCA CGG 

TGT ACA TGA AAG ATG TG -3’ and Rev 5’-GAG AAC GGC CTT GTC CTT CT-3` , Ap2 

Fwd 5’- GCC AAG CCC AAC ATG ATC A-3` and Rev 5’-TTC CAC GCC CAG TTT GAA 

G-3’, Ucp-1 5’- GAG GTG TGG CAG TGT TCA TTG-3’ and Rev 3’-GGC TTG CAT TCT 
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GAC CTT CA-3’, Cpt1-a Fwd 5’-GGC ATA AAC GCA GAG CAT TCC TG-3’ and Rev 5’-

CAG TGT CCA TCC TCT GAG TAG C-3’ and Sbrep1c Fwd 5’-CGA CTA CAT CCG CTT 

CTT GCA G -3’ and Rev 5’-CCT CCA TAG ACA CAT CTG TGC C  -3’, Mcd Fwd 5’- TGC 

ATG TGG CTC TGA CTG GTG A -3’ and Rev 5’ GGT CAG GCT GAT GGA GTA GAA G-

3’, Lipe Fwd 5’-GCT CAT CTC CTA TGA CCT ACG G -3’ and Rev 5’-TCC GTG GAT GTG 

AAC AAC CAG G-3’, Atgl Fwd 5’-GGA ACC AAA GGA CCT GAT GAC C-3’ and Rev 5’-

ACA TCA GGC AGC CAC TCC AAC A-3’, Adrβ1 Fwd 5’-GCT CTG GAC TTC GGT AGA 

TGT G-3’ and Rev 5’-CGT CAG CAA ACT CTG GTA GCG A-3’, Adrβ3 Fwd 5’-AGG CAC 

AGG AAT GCC ACT CCA A-3’ and Rev 5’-GCT TAG CCA CAA CGA ACA CTC G, DiO2 

Fwd 5’- GGT GGT CAA CTT TGG TTC AGC C-3’ and Rev 5’-AAG TCA GCC ACC GAG 

GAG AAC T-3’, Cidea Fwd 5’-GGT GGA CAC AGA GGA GTT CTT TC-3’ and Rev 5’-CGA 

AGG TGA CTC TGG CTA TTC C-3’, Cited-1c Fwd 5’-CCT CAG CTC CTG TGA GCT TT-

3’ and Rev 5’-CTG GGC AGA AGT CCG ATA AA-3’, Bcl2l13 Fwd 5’-ATG GCG TCC TCT 

ACG ACT G-3’ and Rev 5’- GGT GAG GGA CCT TGT TGT TTC -3’, Bnip3 Fwd 5’- TCC 

TGG GTA GAA CTG CAC TTC-3’ and Rev 5’-GCT GGG CAT CCA ACA GTA TTT-3’, 

Prkn2 Fwd 5’-TCT TCC AGT GTA ACC ACC GTC-3’ and Rev 5’-GGC AGG GAG TAG 

CCA AGT T-3’, Drp1 Fwd 5’-CAG GAA TTG TTA CGG TTC CCT AA-3’ and  Rev 5’-CCT 

GAA TTA ACT TGT CCC GTG A -3’  

2.11.2. Western Blotting 

Brain, femur, white adipose tissue, or bone marrow tissues were homogenized in RIPA 

assay buffer (Cell Signaling Technology). After centrifugation, protein concentration 
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was measured by using the Pierce BCA protein assay kit (Thermo Scientific) according 

to the manufacturer's instructions. 10 μg of each sample was loaded on 4–15% Mini-

PROTEAN TGX precast gels (Bio-Rad), run at 100–200 V for 50 min, and transferred to 

polyvinylidene fluoride membrane using the Trans-blot Turbo Transfer System (Bio-Rad) 

at 25 V for 7 min. The membrane was blocked in TBS plus 0.1% Tween 20 containing 

5% nonfat dry milk for 1 h at room temperature, followed by incubating with primary 

antibody in blocking solution at 4 °C overnight: α-Synuclein polyclonal antibody 

(Abcam,  ab52168, 1:1000), β-actin (Santa Cruz Biotechnology, Inc., sc-47778, 1:2000), 

GAPDH  (Cell Signaling, 5174P,1:1000), HSL (Cell Signaling, 4107, 1:1000), pHSL S565 

(Cell Signaling, 4137, 1:1000), Shc (Cell Signaling, 24325, 1:1000), pShc Tyr239/240 

(Cell Signaling, 2434, 1:1000), AKT (Cell Signaling, 9272, 1:1000), pAKT S473 (Cell 

Signaling, 9271, 1:1000), IRβ (Cell Signaling, 3025T, 1:1000), pIRβ (3021T),  pIRS1 

Ser612 (Cell Signaling, 5610, 1:1000), IRS1 (Cell Signaling, 3407, 1:1000), IRS2 (Cell 

Signaling, 4502, 1:1000), Cyclophylin A (Cell Signaling,2175, 1:1000), pDRP1 S616 (Cell 

Signaling, 3455, 1:1000), pDRP1 S637 (Cell Signaling, 4867, 1:1000), DRP1 (Cell 

Signaling, 5391, 1:1000)        

The membrane was incubated with blocking solution with secondary antibody: 

antirabbit IgG (NA934V) or anti-mouse IgG (NA931V) horseradish peroxidase–

conjugated antibodies (GE Healthcare). Western blots were developed using the 

SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific) for 1 

min and exposed with the ChemiDoc Touch imaging system (Bio-Rad).  
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2.12. Bone Marrow Stromal Isolation  

Both femurs and tibiae were harvested at sacrifice and muscle was removed. Bone ends 

were snipped and placed in a 200 µl tip that was cut open at the bottom and placed 

into a 1.5 mL microcentrifuge tube. Fresh bone marrow was spun out by quick 

centrifuge for 14 seconds at room temperature. Pellet was resuspended in basal 

medium α-minimal essential medium (α-MEM Gibco), 10% v/v fetal bovine serum 

(Hyclone), 100 units/ml penicillin, 100µg/ml streptomycin (Gibco, 1% v/v) and 

incubated at 37 °C with 5% CO2 in a humidified incubator. After 2 days, non-adherent 

cells were removed and counted for osteoclastogenic induction. Adherent cells were 

lifted with 0.25% trypsin and incubating at 37 °C for 3 min, and later counted for 

osteoblastogenic and adipogenic differentiation.  

2.13. Adipogenesis  

Adherent cells from bone marrow stromal isolation were plated in 12 well plates and 

switched to differentiation medium when confluent. Differentiation medium consisted 

in basal medium, 2 µM insulin, 500 µM isobutylmethylxanthine (IBMX) (Sigma-Aldrich), 

1 µM dexamethasone (Sigma-Aldrich), and 20 µM rosiglitazone (Cayman Chemical), 

and changed after 48 h. At day 4, cells were switched to basal medium with only 2 µM 

insulin and 20 µM rosiglitazone.   
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2.14. Oil Red O Staining 

Adipogenic differentiated BMSCs or stromal vascular fraction from inguinal adipose 

tissue (iWAT) were fixed by using 10% neutral buffered formalin for 15 min and washed 

with 60% isopropyl alcohol. Staining solution contained 3.5 mg/ml of Oil Red O (Sigma-

Aldrich) in 60% isopropyl alcohol, after several filtration steps. Washed cells were 

incubated in staining solution for 15 min at room temperature. After washing twice with 

water, retained Oil Red O staining in the cells was eluted with isopropyl alcohol and 

quantified at OD490 nm. For quantification of total number of cells, cells were stained with 

0.4% crystal violet (CV) (Sigma-Aldrich) for 10 min, then eluted with 10% acetic acid and 

quantified at OD650 nm.  

2.15. Osteoblastogenesis 

After cells reached confluency, they were switched to osteoblast differentiation medium 

composed of basal medium containing 1 mM β-glycerol phosphate (Sigma-Aldrich) and 

1 mM ascorbic acid (Sigma- Aldrich). Change media was done every 2 days for 21 days.  

2.16. Alkaline Phosphatase and Von Kossa Staining  

After osteoblastogenic differentiation, cells were fixed in 4% paraformaldehyde for 10 

min at room temperature, stained for alkaline phosphatase (alkaline phosphatase kit, 

Sigma-Aldrich) and subsequently for mineral deposition by applying von Kossa staining, 

following manufacturer’s instructions.  
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Firstly, for alkaline phosphatase staining, cells were washed and stained with AP solution 

mixed with 0.5 ml of sodium nitrite solution, 0.5 ml of FRV-alkaline solution, 22.5 ml of 

H2O, and 0.5 ml of naphthol AS-BI alkaline solution, for 30 min protected from the light.  

Secondly, for von Kossa staining, cells were washed, stained with 5% silver nitrate 

solution and then exposed to light for 1 h. Then, cells were washed with deionized 

water, and treated with 5% sodium thiosulfate solution to neutralize any residual silver 

nitrate.  

2.17. Osteoclastogenesis  

After cells reached confluency, they were switched to osteoclast differentiation medium 

composed of basal medium containing 50 ng/ml of Receptor Activator of NFKB Ligand 

(RANKL) and 30 ng/mL of Macrophage Colony Stimulating Factor (mCSF) to bone 

marrow stromal basal medium. Fresh media was changed every 2 days until day 5.  

2.18. Tartrate-Resistant Acid Phosphatase (TRAP) Staining 

For TRAP staining, osteoclasts were fixed for 30 min at room temperature with 2.5% 

glutaraldehyde in PBS. Cells were incubated for 1 h at 37 °C with TRAP solution, 

composed of 50 µL of Fast Garnets Base Solution, 50 µL of sodium nitrite, 4.55 mL of 

distilled water, 50 µL of napthol AS-biphosphate, 200 µL of acetate solution and 100 µL 

tartrate solution, according to the manufacturer’s instructions (Sigma-Aldrich kit). After 

wash, purple stained cells with 3 or more nuclei were considered TRAP positive.  
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2.19. Histological Sections and Hematoxylin and Eosin (H&E) Staining  

Briefly, after deparaffinization and rehydration, 5 μm longitudinal sections (tibias or 

inguinal adipose tissue) were stained with hematoxylin solution for 5 min followed by 

5 dips in 1% acid ethanol (1% HCl in 70% ethanol) and then rinsed in distilled water. 

Then the sections were stained with eosin solution for 3 min and followed by 

dehydration with graded alcohol and clearing in xylene. The slides after mounted were 

imaged in a light microscope (Leica, Germany). 

2.20. Marrow Adipocyte Analysis  

Histological sections of tibias were imaged after stained with H&E and loaded to the 

BIOQUANT OSTEO 4.0 software (Nashville, TN, USA) to quantify the bone marrow 

adipocytes. The analysis included the area of the trabecular bone right below the 

growth plate.  

2.21. Immunohistochemistry  

The formalin-fixed tissue sections were embedded in paraffin, sectioned, and 

deparaffinized. Briefly, inguinal white adipose tissue sections were kept at 60°C for 10 

min in the oven and then followed by deparaffinizing with xylene and hydrating with an 

ethanol gradient (100%–70%). Slides were heated at 100º C for 15 min for antigen 

retrieval and then quenched with 3% H2O2 for 30 min. The slides were rinsed with water 

and incubated with primary antibody (UCP1 abcam 1 : 250) overnight at 4°C. For 

negative controls, the primary antibody was replaced by blocking solution. The slides 
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were rinsed and incubated with the corresponding secondary antibody for 30 min 

followed by 3,3′-diaminobenzidine (DAB) and hematoxylin staining, respectively. The 

slides were imaged by using a light microscope (Leica, Germany).  

2.22. Isolation of Stromal Vascular Fraction from Inguinal White Adipose Tissue (iWAT) 

Freshly harvested inguinal white adipose tissue was washed in PBS, added PBS 

containing 1 mg/ml collagenase P (Worthington) and finely cut into small pieces and 

incubated for 1 h at 37 °C on a shaker. After being passed through a 70 µm cell strainer, 

cells were washed in PBS, spun at 1200 rpm for 5 min and resuspended in basal 

medium, consisting in DMEM high glucose (Gibco), 10% v/v fetal bovine serum 

(Hyclone), 100 units/ml penicillin, 100µg/ml streptomycin (Gibco, 1% v/v).  

2.23. Seahorse- Cellular Metabolism 

Analysis of preadipocyte metabolism was done by using the XF Cell Mito Stress Test Kit 

with a Seahorse XFe96 analyzer (Agilent Technologies). Preadipocytes isolated from 

inguinal adipose tissue were seeded in a 96-well Seahorse XF cell culture microplate at 

7000 cells/well and after 24 h started adipogenic differentiation. At day 5 preadipocytes 

were seeded at same density and incubated in basal media to analyze undifferentiated 

cell response. At day 6 of adipogenic differentiation (day 0 for undifferentiated cells), 

OCR and ECAR were measured following manufacturer guidelines. Briefly, medium was 

changed to Seahorse XF Base Medium Minimal DMEM without phenol red with 1 mM 

pyruvate, 2 mM glutamine, and 10 mM glucose, pH 7.4, and the cells were equilibrated 
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for 1 h at 37 °C in a CO2-free incubator. After measurements of the basal rate, the 

responses were evaluated toward the application of oligomycin (1.25 µM final 

concentration), FCCP (1µM), and a combination of antimycin (0.5 µM) and rotenone (0.5 

µM). OCR, ECAR, and ATP production rates were calculated by the Seahorse XFe96 

software, Wave version 2.6. 

2.24. Mitochondrial Labelling  

Stromal vascular fraction was induced adipogenesis and at day 8 of differentiation cells 

were exposed to 40 µM of MitoTracker® Red CMXRos (Invitrogen) for 15 min at 37 °C 

with 5% CO2 in a humidified incubator.  

2.25. Immunofluorescence 

Cells cultured in 12-well plates on coverslips were fixed in 4% paraformaldehyde for 15 

min at room temperature and permeabilized with block solution (0.1% Triton™ X-100, 

5% bovine serum albumin in PBS) for 10 min at room temperature. Coverslips were 

washed in TBS + 0.1% Triton™ X-100 and primary antibodies: α-Synuclein (ab52168, 

abcam); Perilipin A (ab3526, abcam), were diluted in block solution and incubated 2 hr 

at room temperature. Cells were then washed in PBS and appropriate Alexa Fluor® IgG 

secondary antibodies (Invitrogen) were applied for 30 min at room temperature. Cells 

were counterstained with the fluorescent nuclear stain diluted in 4,6-diamidino-2-

phenylindole (DAPI) diluted 1:10000. Coverslips were mounted using antifade prolong 

mounting medium (Molecular probes).  
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2.26. Imaging and Quantification Analysis  

Cell images were taken using Leica SP8 inverted confocal microscope (Leica 

Microsystems, Germany) at the MMCRI confocal microscopy facility. Images were 

collected using a 63x objective (HC PL APO 63x/1.40 OIL CS2l) adding 4x or 2x of digital 

magnification. Images were deconvoluted, segmented for quantification of 

morphological parameters such as ROI size and eccentricity and/or co-localization 

analysis by calculation of Manders Coefficients using Image J.   

2.27. Statistical Analysis 

All data are expressed as the mean ± standard error of the mean (SEM). Area under the 

curve (AUC) was calculated using the trapezoidal rule with baseline as the time 0min 

value for the glucose and insulin tolerance test. Results were analyzed for statistically 

significant differences using Two-way ANOVA followed by Tukey multiple comparison 

post hoc test or Fischer square test for in vivo experiments. as indicated. For in vitro 

experiments One-way ANOVA or T-test. All statistics were performed at a significance 

of α=0.05 with GraphPad Prism 8.4.2 statistical software (GraphPad Software, Inc.). 

Outliers were identified using the ROUT method in GraphPad Prism. 
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CHAPTER 3 

EFFECTS OF ESTROGEN DEFICIENCY ON BONE AND ADIPOSE TISSUE IN 

PRRX1CRE;SNCAFL/FL  MICE 

Initially, in order to understand whether absence of α-Synuclein partially protects against 

estrogen deficiency-induced bone loss and weight gain due to intrinsic role of the 

protein in osteoprogenitors, we used the Paired related homeobox 1 or Prrx1 enhancer 

to drive efficiently Cre recombinase expression in the early mesenchyme of the limb.  

3.1. Prrx1Cre;Sncafl/fl Female Mice are Partially Protected from OVX-Induced Weight 

Gain 

To conditionally delete Snca in osteoprogenitor cells, we crossed Prrx1Cre mice to 

Sncafl/fl mice and we obtained Prrx1Cre:Sncafl/+ in heterozygosis. These heterozygous 

mice were crossed to Sncafl/fl to obtain Prrx1Cre:Sncafl/fl mice and Sncafl/fl littermates 

control. The Cre allele was only carried by males in all the mating. Western blot analysis 

showed a decreased expression of α-Synuclein in the femur (Fig.3a). We analyzed body 

composition by DXA at both starting (not shown) and end time points after OVX in 

Prrx1Cre;Sncafl/fl mice and Sncafl/fl littermate controls. There was no statistical difference 

in body weight between the genotypes at baseline; however, control (Sncafl/fl) mice after 

OVX increased their body weight on average ~3.5 fold compared to sham. 

Prrx1Cre;Sncafl/fl increased only ~2 fold for total body weight (Fig. 3b). This difference 

could be explained by less fat accrual and lean mass in Prrx1Cre;Sncafl/fl mice after OVX 

compared to controls (Fig. 3d).  



39 
 

Both femoral (not shown) and total bone mineral density (BMD) and bone mineral 

content (BMC) significantly decreased after OVX in Prrx1Cre;Sncafl/fl mice; however, 

there were no differences in control mice by DXA after OVX (Fig. 3e-f). 

3.2. Prrx1Cre;Sncafl/fl Female Mice are not Protected from OVX-Induced Bone Loss  

We next performed μCT imaging on the trabecular bone of the distal femur. OVX 

reduced bone volume fraction (BV/TV), trabecular number (Tb.N) and connectivity 

density (Conn.D) in Prrx1Cre;Sncafl/fl mice, while controls showed a similar trend, 

although not statistically significant, probably due to the number of animals (Fig. 4a,h,j). 

Mutant mice showed increased trabecular separation (Tb. Sp), but no significant 

changes in trabecular thickness (Tb.Th) or structural model index (SMI) after OVX (Fig. 

4d,e,i). Similarly, OVX in the Prrx1Cre;Sncafl/fl mice reduced cortical thickness (Ct. Th) 

and cortical area (Ct. BA), increased marrow area (Ma. Ar) and cortical area fraction (Ct. 

BA/TA) with no significant changes in cortical porosity (Porosity %) or moment of inertia 

(pMOI) (Fig. 5). These results suggest that loss of α-Synuclein may not be protective for 

estrogen-deficiency induced bone loss.  
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Figure 3. Prrx1Cre;Sncafl/fl female mice are partially protected from OVX-induced fat 
acquisition.  

(a) Prrx1Cre;Snca
fl/fl

 mice were obtained from crossed between Prrx1Cre;Snca
fl/fl

 mice and 

Snca
fl/fl 

mice to conditionally delete exon 2 of α-Synuclein (α-Syn) in Prrx1 expressing tissues. 
(b) Western blot analysis of α-Syn protein expression in adult femur. (d) Body weight after 
12 weeks of ovariectomization (post-OVX) (20 weeks of age), sham operation in black dots 
and ovariectomized (OVX) in red open circles for Prrx1Cre;Sncafl/fl mice and wild type 
(floxed) controls. Body composition measured at 20 weeks of age with a Lunar PIXImus 
Densitometer, including total (e) % lean mass and (f) % fat mass, total (h) bone mineral 
density (BMD) and (g) bone mineral content (BMC). Sham (black filled dots) and OVX (red 
circles) for each genotype is represented by scatter plot and mean ± standard error. Two-
way ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Figure 4. Prrx1Cre;Sncafl/fl female mice are not protected from OVX-induced trabecular 
bone loss.  
Representative images of distal femur microarchitecture examined in (a) female wildtype 
(Sncafl/fl) and (f) Prrx1Cre;Sncafl/fl mice at 20 weeks of age for (a,f) sham and (b,g) OVX 
group. (c) Trabecular (Tb.) bone volume fraction (BV/TV), (d) separation (Sp), (e) thickness 
(Th), (h) number (N), (i) structural model index (SMI) and (j) connectivity (ConnD.) were 
measured by micro-CT. Sham (black filled dots) and OVX (red circles) for each genotype is  
represent by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc Tukey 
test, *p<0.05, ****p<0.0001.  
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Figure 5. Prrx1Cre;Sncafl/fl female mice are not protected from OVX-induced cortical 
bone loss. 
Representative images of cortical femur microarchitecture examined in (a) female 

wildtype (Snca
fl/fl

) and (f) Prrx1Cre;Snca
fl/fl 

mice at 20 weeks of age for (a,f) sham and (b, 
g) OVX group. (c) Cortical (Ct.) thickness (Th), (d) bone area (BA), (e) cortical fraction 
(BA/TA), (h) marrow area, (i) % cortical porosity and (j) polar moment of inertia (pMOI) 
were measured by micro-CT. Sham (black filled dots) and OVX (red circles) for each 
genotype is  represent by scatter plot and mean ± standard error. Two-way ANOVA and 
post-hoc Tukey test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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3.3. Prrx1Cre;Sncafl/fl Female Mice Showed Lower Marrow Adipose Tissue After OVX-

Induced Bone Loss  

From the 3D MAT reconstruction done by osmium-μCT imaging of the tibia we 

observed that MAT volume is located primarily in the proximal metaphysis and distal 

tibia, and some towards the proximal diaphysis in control sham tibia, however in tibias 

from mutant sham mice, there was less MAT expansion to the proximal diaphysis (Fig. 

6a, f, g).  When controls were OVX’d, tibias showed a substantial increase in MAT 

towards the proximal diaphysis, meanwhile, in tibias from mutants the increase was 

modest, suggesting that α-Synuclein could be playing a role in changes in regulated 

MAT (rMAT). Similarly, histological H&E tibia sections showed less adipocyte number 

and volume fraction, although this change did not reach significance (Fig 6b, c-e). 

Adherent cells from the total bone marrow is a population enriched by BMSCs. We 

compared its adipogenic potential from the BMSCs from both genotypes and we found 

that BMSCs from mutant mice showed less adipogenic differentiation, which can 

explain the decreased adipocyte counts in the histological sections from Fig 4b-e.   
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Figure 6. Prrx1Cre;Sncafl/fl female mice showed a decreased in marrow adipose tissue 
(MAT) after OVX-induced bone loss.  

Representative images of (a) Osmium tetroxide-µCT 3D reconstruction and analysis of 

tibia from female wildtype (Snca
fl/fl

) and Prrx1Cre;Snca
fl/fl 

mice at 20 weeks of age for 
sham and OVX group. (b) From H&E staining of tibia sections, adipocyte (c) number, (d) 
adipocyte volume fraction and (e) adipocyte density were quantified by using 
BIOQUANT OSTEO. Osmium tetroxide-µCT MAT 3D reconstruction-based 
quantification included MAT volume in (f) proximal metaphysis (g) proximal diaphysis. 
Analysis of BMSCs adipogenic capacity from (h) control and (i) mutants was compared 
at day 8. Sham (red filled squares and red bars) and OVX (red empty squares, empty 
bars) for each genotype is represent by scatter plot and mean ± standard error.  
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3.4. Prrx1Cre;Sncafl/fl Female Mice Showed Smaller Adipocytes and a Thermogenic 

and Lipolytic Gene Expression Profile from White Adipose Tissue after OVX-

Induced Bone Loss  

To better understand the decrease of fat mass observed in the Prrx1Cre;Sncafl/fl after 

OVX compared to controls, we analyzed the inguinal white adipose tissue (iWAT) of 

these mice. We did not observe a relevant change in α-Synuclein protein levels when 

total iWAT lysates from 8 weeks old control and mutants were analyzed.  

Figure 7. Prrx1Cre;Sncafl/fl female mice showed smaller adipocytes from the inguinal 
white adipose tissue (iWAT) after OVX. 
Representative images of (a) H&E stained histological sections from iWAT pads from 

control Snca
fl/fl

 sham and OVX (b) and Prrx1Cre;Snca
fl/fl  

(c) sham and (d) OVX mice at 20 

weeks. (e) Western blot from total iWAT lysates from control Snca
fl/fl

and Prrx1Cre;Snca
fl/fl 

 
against α-Synuclein and β-actin as reference protein. (f) Total iWAT pads were measured 
from both genotypes under sham or OVX conditions. Sham (red filled squares and red 
bars) and OVX (red empty squared, empty bars) for each genotype is represented by a 
scatter plot and mean ± standard error. Two-way ANOVA and post-hoc Tukey test, 
**p<0.01, ***p<0.001.  
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Being the primary subcutaneous fat depot in the mice, we expected that differences in 

total fat mass were attributable to changes in iWAT acquisition, thus, we weighted the 

iWAT pads and we found a mild decrease in pad size, although no statistically different 

from the control. By H&E staining, iWAT from the mutant after OVX had smaller 

adipocytes (hyperplasia).   

 

 

 

 

Figure 8. Thermogenic genes analysis in Prrx1Cre;Sncafl/fl female mice inguinal white 
adipose tissue (iWAT). 
Graphs of real time PCR for (a) Cidea (b) DiO2

 
(c) Cited-1 and (d) Ucp1 relative to Ppib 

gene. iWAT from Sham (red bars) and OVX (empty bars) for each genotype is represent 
by mean ± standard error. Two-way ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
 

Gene expression analysis by real time PCR showed that iWAT from Prrx1Cre;Sncafl/fl 

female mice had a significantly decrease in transcript levels from Cidea, DiO2 and Cited-

1 [107, 108]. These genes have been inversely correlated with lipolysis, metabolic rate, 

fatty acid synthesis/oxidation, in the literature. Prrx1Cre; Sncafl/fl iwats showed increased 

Ucp1 expression (Fig 8a-d) suggesting mutant iWAT are more thermogenic than 

controls. Mutant iWATs from OVX showed an increased in Mcd  (p= 0.0519), an enzyme 

relevant in β-oxidation and the lypotilic enzyme Lipe, but no significant changes in Atgl, 
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or the oxidative enzyme Cpt1a or in the proadipogenic transcriptional factor Srebp1c 

relative transcript expression.  

α-Synuclein and neurological diseases has been related to mitochondrial alterations, we 

examined whether decreased levels of α-Synuclein were affecting genes in 

mitochondrial biogenesis. Prrx1Cre;Sncafl/fl  iWATs showed decreased levels of Drp1 

and Mfn2 (p= 0.1096, p= 0.0422 for the interaction, Two-way ANOVA), both genes are 

important for mitochondrial fission and fusion, respectively. Our data showed that 

mutant iWATs had decreased levels of Bnip3, a gene that has been positively associated 

with mitophagy.  
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Figure 9. Lipolytic and mitochondrial genes analysis in Prrx1Cre;Sncafl/fl female mice 
inguinal white adipose tissue (iWAT). 
Graphs of real time PCR for (a) Adipose triglyceride lipase, Atgl (b) Malonyl CoA 
decarboxylase, Mcd (c) Lipase E, Hormone sensitive type, Lipe (d) Carnitine 
palmitoyltransferase 1A, Cpt1a (e) Sterol regulatory element-binding transcription 
factor 1, Srebp1c, (f) Dynamin related protein 1, Drp1, (g) BCL2 Interacting Protein 3, 
Bnip3 and (h) Mitofusin-2, Mfn2 relative to Ppib gene. 
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CHAPTER 4 

IMPLICATIONS OF USING PRRX1CRE ENHANCER TO TARGET OSTEOPROGENITOR 

CELLS 

4.1. Prrx1Cre;Sncafl/fl Male Mice Present an Anxiety-Like Response and Decreased 

Ambulatory Activity when fed with High Fat Diet, but showed Resistance to High 

Fat Diet Effect in Spontaneous Activity  

To assess if loss of α-Synuclein in osteoprogenitor cells affected metabolic and activity 

performances, Prrx1Cre;Sncafl/fl and control mice were randomly assigned high fat diet 

(60%) or low fat (10%) diet treatment for 15 weeks, in both genders. At end point, 

females (not shown) and male mice were put in the metabolic cages for 72 hours to 

measure activity (Fig. 10a-e). Male and female (data not shown) mice did not show any 

significant changes in terms of food intake among the genotypes. However, 

Prrx1Cre;Sncafl/fl male mice had higher water intake (p=0.0703) compared to male 

controls on a LFD, and this decreased on a HFD (Fig. 10a). These differences in water 

intake were not found in the females (data not shown). Control male mice on a HFD 

showed a decrease in distance (~55%, p<0.01), speed (33.5%, p<0.05) and time (37.8%, 

p<0.05 ) running on the wheel, as expected when compared to animals on a LFD (Fig. 

10c-e). Notwithstanding, Prrx1Cre;Sncafl/fl mice maintained persistent spontaneous 

running activity when challenged with a HFD. Ambulatory (horizontal) activity did not 

change between the diets in control mice, but Prrx1Cre;Sncafl/fl mice decreased ~50% 

(p<0.05) in their activity when they were on a HFD, as compared to LFD, and had 
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significantly lower horizontal activity when compared to wild type, both on a HFD (Fig. 

10b). These changes in ambulatory activity were not found in females.  

We also performed a set of behavioral tests to the same cohort of female and male mice 

that were housed in metabolic studies, to evaluate behavioral outcomes related to 

anxiety and depression. We first performed an elevated plus maze test (EPM), and found 

that Prrx1Cre;Sncafl/fl mice decreased the number of entrances (entries) to the open 

arms of the maze, when treated with a HFD, while this change was not significant in the 

control mice (Fig.10f). The time spent in the open arms of the maze was not affected by 

the diet, in either genotype. However, Prrx1Cre;Sncafl/fl mice on the HFD spent less time 

in the open area, compared to control mice on the same diet (p=0.0599), suggesting 

that a high fat diet induces an increase in anxiety-related behavior in mutant mice (Fig. 

10g).  

In the open field test (OFT) that Sncafl/fl, the high fat diet decreased the distance travelled 

in the center (Fig. 10h) and periphery of the field in control mice. Since mice typically 

reduce their activity under HFD treatment [119], these data are consistent with the 

decrease in the wheel activity mentioned previously (Fig. 10d-e). In contrast, the high 

fat diet did not affect travelled distance in mutant mice, again showing a phenotype in 

mutant mice that is only revealed when the experimental animals are on a high fat diet.  

In the tail suspension test (TST), we found that the time mutant and control male mice 

spent immobile was comparable, but high fat diet treatment resulted in a significant 

increase in immobility in mutant mice only (Fig. 10j). No significant changes in the 
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immobility were observed in the female mice. We also noticed that mutant mice of both 

genders were more likely to climb their tails during the test when on a LFD (Fig. 10k). 

High fat diet lead to a reduction in tail climbing behavior in mice of both genders and 

genotypes, but this effect was significantly more pronounced in males than in females, 

and in mutant mice compared to control mice (Fig. 10k). The high fat diet also resulted 

in marked reduction in the duration of tail-climbing behavior in male mutant mice, but 

no comparable effect was observed in control mice (Fig. 10l).  

In the marble-burying test, we found no significant effect of genotype or diet in the 

percentage of marbles buried. However, we observed that Prrx1Cre;Sncafl/fl  males fed 

a HFD buried fewer marbles on average than mutant mice on LFD (Fig 10i, genotype-

diet interaction p=0.0981). Taken together, these results indicate that Prrx1Cre;Sncafl/fl 

mice decreased ambulatory activity, but did not alter their spontaneous activity as a 

response to diet-induced obesity. Additionally, they showed diet-dependent 

phenotypes of despair and anxiety.  

4.2. Prrx1Cre;Sncafl/fl Male Mice showed Lower Catecholamines compared to Control 

Mice 

We measured the levels of catecholamines in blood serum from female and male mice 

at the end point of the HFD study. Compared to control mice, Prrx1Cre;Sncafl/fl male 

mice fed on a LFD had lower levels of dopamine, epinephrine and norepinephrine, 

although for the latter two results did not achieve statistical significance (p=0.0951 and  
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Figure 10. Activity and behavioral analysis of Prrx1Cre;Sncafl/fl mice on low and high fat 
diet.  
Male mice activity in metabolic cages (a-f); average 24 h water intake and (b) ambulatory 
(horizontal) activity. Running on the wheel parameters per night (C) in meters, (d) speed 
and (e) % of time spent running. Activity of mice in the elevated plus maze test (EPM) 
(f,g); (f) number of entrances and (g) time spent in the open arms of  the apparatus.. 
Activity in the open field test (OFT) (h) total distance traveled over central area of the 
apparatus. (i)Percentage of marbles buried.  Activity of mice in the tail suspension test 
(TST) (j-l); (j) total time of immobility (stillness), (k) percentage of mice that climbed their 
tail (females left, males right, **p<0.01 Fischer test),  (l) duration of the climbing. Low fat 
(10%) diet (black filled dots) and high fat (60%) diet (red circles) for each genotype are 
represented by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc 
Tukey test, *p<0.05, **p<0.01. 
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p=0.0847, respectively) (Fig. 11b, d, f). Moreover, Prrx1Cre;Sncafl/fl male mice fed a HFD 

showed significantly lower levels of norepinephrine compared to control (Fig. 11d). 

These results suggest an altered sympathetic tone in Prrx1Cre;Sncafl/fl male mice. On 

the other hand, differences in females were not significant for any of the three 

catecholamines analyzed (Fig. 11a, c,e).  

4.3. Prrx1Cre;Sncafl/fl Adult Mice showed a Decreased Expression of α-Syn in Key 

Brain Regions  

To investigate whether the behavioral and metabolic phenotypic changes of the mutant 

mice may derive from Prrx1-Cre mediated α-Syn deficiency in the CNS, we used 8 week 

old mice to analyze Prrx1 and Snca mRNA expression in selected areas of the brain and 

the cerebro-cortex (Fig. 12a-f). Our results indicate significant Prrx1 expression in areas 

of the cortex largely corresponding to the prefrontal (Ctx1), motor (Ctx2), 

somatosensory (Ctx3) and piriform (Ctx4) cortices (Fig. 12b).  

Mutant mice exhibited significant decrease in Snca expression in all those cortical 

regions (Fig. 12c), but the decrease was more pronounced in the Ctx2, the region that 

also showed higher Prrx1 expression (Fig. 12b).  

We also observed Prrx1 expression in all brain areas tested, including the striatum, the 

hypothalamus and the cerebellum (Fig. 12d). In mutant mice, most of these brain 

regions showed an 80% or more reduction in Snca mRNA expression, while the 
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reduction was less pronounced in the olfactory bulb and the hippocampus (Fig. 12d). 

The changes in Prrx1 and Snca brain mRNA expression were consistent with those at 

the protein level. Prrx1 was detected in lysates of different brain regions of control 

animals (Fig. 12f, top), and we observed a consistent reduction in Snca protein in the 

whole brain and different brain regions of Prrx1Cre;Sncafl/fl mice (Fig. 12f, center and 

bottom), when compared those to control mice. 
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Figure 11. Prrx1Cre;Sncafl/fl male mice showed a decreased serum levels of 
catecholamines than wild type mice. 
Female and male mice from both genotypes were on a low fat diet (10%, black dots) 
and high fat diet (60%, red circles) for 15 weeks. Catecholamines levels were measured 
from serological samples at the end point. (a,b) Epinephrine, (c,d) Norepinephrine and 
(e,f) Dopamine levels in females and males, respectively. Low fat (10% fat) diet (black 
filled dots, controls n=8-12, mutants n= 6-15) and high fat (60% fat) diet (red circles, 
controls n=7-15, mutants n=10-15) for each genotype/gender are represented by 
scatter plot and mean ± standard error. Two-way ANOVA and post-hoc Tukey test, 
**p<0.01, ***p<0.001. 
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Figure 12. Prrx1Cre;Sncafl/fl adult mice showed a decreased expression of α-Syn in key 
brain regions. 

RT-qPCR from adult brain mice was performed to analyze Prrx1 and Snca gene 
expression levels. (a) Scheme of cortical arbitrary areas of analysis, (b) Prrx1 expression 
in cortical regions of brain, (d) Prrx1 expression in cortex (Ctx), striatum (Str), thalamus 
(TH), hypothalamus (HY), hippocampus (Hip), pons/medullar/brainstem (P/MY/BS), 
olfactory bulb (OB) and cerebellum (CBx). expression levels decreased in (c) cortex 
regions, (e) olfactory bulb, striatum, hypothalamus, thalamus, hippocampus, 
cerebellum and pons/medullar/brainstem. (f) Western blot analysis of Prrx1 expression 
in key regions of the brain, upper. Whole brains and brain regions were analyzed for α-
Syn expression in Prrx1Cre;Sncafl/fl  and control mice in middle and bottom, respectively. 
Two-way ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001.  
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CHAPTER 5 

 EFFECTS OF DIET-INDUCED OBESITY IN PRRX1CRE;SNCAFL/FL 

To further understand the weight gain protection observed in our mutant mice after the 

OVX study, we challenged male and female mice for 15 weeks of HFD (60% fat) or LFD 

(10% fat sucrose match diet) and analyzed their body composition, bone 

microarchitecture, metabolic profile, and adipogenic capacity of adipocyte precursors 

from the inguinal adipose tissue.  

5.1. Female and Male Mice Food Intake and Body Composition  

We noticed no differences between the caloric intake in females or males (Fig. 13a, c). 

Interestingly, there were no differences between body weight from Prrx1Cre:Sncafl/fl 

mice and Sncafl/fl littermates control after the HFD treatment, in both genders (Fig. 13 b, 

d). Both genotypes decreased their lean and increased fat mass (Fig. 13f, k,g,l). Contrary 

to our previous findings from the OVX study, mutant mice showed significantly higher 

total BMD when fed at LFD compared to control, or either males or females (Fig. 13h, 

m). There were no statistical differences in total BMC between diets or genotypes.  
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Figure 13. Prrx1Cre;Sncafl/fl female or male mice are not protected from diet-induced 
obesity. 

Prrx1Cre;Snca
fl/fl

 female and male mice were challenged with low fat diet (10% fat, LFD, 
light red/blue bars) or high fat diet (60% fat, HFD, dark red/blue bars) for 15 weeks. (a,b) 
Caloric intake and (c-e, d-j) body weight was measured for both genders. Body 
composition was measured at the end point with a Lunar PIXImus Densitometer, 
including total (f,k) % lean mass and (g,l) % fat mass, total (h,m) bone mineral density 
(BMD) and (i,n) bone mineral content (BMC). Measurements for each genotype were 
represented by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc 
Tukey test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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5.2. Bone Microarchitecture Analysis of Femurs from the Diet-induced Obesity in 

Prrx1Cre;Sncafl/fl   

Micro-CT imaging of the trabecular bone of the distal femur in the females showed no 

significant changes in femur length, connectivity density, trabecular BMD, trabecular 

number or separation when mice were fed on a HFD (Fig. 14e, g,h, j. i). However, there 

was a mild increase in trabecular bone volume fraction (Fig. 14f) and trabecular 

thickness (Fig. 14k) in the mutant femurs when they were fed on a HFD. In line with that, 

there was a significant decrease in the SMI (Fig. 14i) when mice were fed with HFD 

compared to LFD, as lower SMI indicate transition from rod-like to plate-like trabecular 

bone, this suggests an improvement in the mechanical properties of the bone (Liu XS, 

2010). 

Similarly, HFD in the Prrx1Cre;Sncafl/fl female mice showed a mild increased cortical area 

(Ct Ar, p=0.0856, Fig 15e), cortical thickness (Ct. Th, p= 0.053, Fig 15j) and cortical area 

fraction (Ct. BA, p=0.0977, Fig. 13h) and no differences in medullary (marrow) and total 

area (Ma. Ar, Tt. Ar. Fig 15f, g) and cortical mineral density (Ct. TMD) with no significant 

changes in cortical porosity (Porosity %) or moment of inertia (pMOI, Imin, Imax, Fig 15 

k-n). 

On the other hand, Prrx1Cre;Sncafl/fl male mice when fed on a HFD showed decreased 

trabecular BMD (p=0.0525) and no significant changes in other trabecular parameters. 

Mutant mice fed on a LFD showed significantly higher femur length, increased medullar 

area, total area and increase in moment of inertia (Fig. 16, 17).  
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Overall, HFD showed a slight improvement in trabecular and cortical bone 

microarchitecture in the females but bone deterioration in the males. These opposite 

effects of the HFD may be explained by the dramatic increase in fat mass and decrease 

of lean mass in the males, while, in the females this phenotype was milder. Worth noting 

that both genders showed significantly higher total BMD when fed on a LFD by PIXImus.  

These results suggest that α-Synuclein may play a role in bone homeostasis through 

intrinsic mechanisms within the bone cells (i.e, osteoblasts, osteocytes), however, its loss 

does not lead to a striking bone phenotype. These outcomes suggest that αSynuclein 

regulates bone primarily through sympathetic tone, indirectly through cross talk with 

other tissues such as adipose depots, or other cell types within the bone marrow, or a 

combination of all of the above.  
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Figure 14. Prrx1Cre;Sncafl/fl female mice showed a mild improvement in trabecular bone 
microarchitecture after treatment with HFD. 
Representative images of distal femur microarchitecture examined in (a, b) female 
controls (Sncafl/fl) and (c,d) Prrx1Cre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at 
low fat diet (LFD, pink bar) and (b, d) high fat diet (HFD, red bar). (e) Femur total length, 
(f) trabecular (Tb.) bone volume fraction (BV/TV), (g) connectivity density (ConnD.), (h) 
tb bone mineral density, (i) structural model index (SMI) (j) number (N),  (k) thickness 
(Th), (l) separation (Sp) were measured by µCT. Data is represented by scatter plot and 
mean ± standard error. Two-way ANOVA and post-hoc Tukey test, *p<0.05. 
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Figure 15. Prrx1Cre;Sncafl/fl female mice showed no differences in cortical bone 
microarchitecture  compared to control after HFD treatment. 
Representative images of cortical femur microarchitecture examined in (a. b) female 
controls (Sncafl/fl) and (c,d) Prrx1Cre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at 
low fat diet (LFD, pink bar) and (b, d) high fat diet (HFD, red bar). (e) Cortical (Ct) area, 
(f) medullar (marrow) area, (g) total cortical area, (h) cortical bone fraction, (i) cortical 
mineral density, (j) cortical thickness,  (k) porosity %, (l) polar moment of inertia, (m) 
minimum and (n) maximum moment of inertia were measured by µCT. Data is 
represented by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc 
Tukey test, *p<0.05. 
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Figure 16. Prrx1Cre;Sncafl/fl male mice showed no differences in trabecular bone 
microarchitecture compared to control after treatment with HFD. 
Representative images of distal femur microarchitecture examined in (a. b) male 
controls (Sncafl/fl) and (c,d) Prrx1Cre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at 
low fat diet (LFD, light blue bar) and (b, d) high fat diet (HFD, dark blue). (e) Femur total 
length, (f) trabecular (Tb.) bone volume fraction (BV/TV), (g) connectivity density 
(ConnD.), (h) tb bone mineral density, (i) structural model index (SMI) (j) number (N),  
(k) thickness (Th), (l) separation (Sp) were measured by µCT. Data is represented by 
scatter plot and mean ± standard error. Two-way ANOVA and post-hoc Tukey test, 
*p<0.05. 
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Figure 17. Prrx1Cre;Sncafl/fl male mice showed no differences in cortical bone 
microarchitecture  compared to control after HFD treatment. 
Representative images of cortical femur microarchitecture examined in (a. b) male 
controls (Sncafl/fl) and (c,d) Prrx1Cre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at 
low fat diet (LFD, light blue bar) and (b, d) high fat diet (HFD, dark blue bar). (e) Cortical 
(Ct) area, (f) medullar (marrow) area, (g) total cortical area, (h) cortical bone fraction, (i) 
cortical mineral density, (j) cortical thickness,  (k) porosity %, (l) polar moment of inertia, 
(m) minimum and (n) maximum moment of inertia were measured by µCT. Data is 
represented by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc 
Tukey test, *p<0.05. 
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5.3. Histological Analysis of Inguinal Adipose Tissue after HFD Study   

We observed at the histological H&E stained sections of iWAT an increase in size in the 

adipocytes from the HFD group (Fig. 18 b); however, and similar to our previous 

observations from the OVX study, the iWAT from the mutant mice on a HFD remained 

small, and with a “multilocular appearance” (Fig. 18 d). Despite of the reduced size of 

the iWAT adipocytes, the iWAT pad weight was not significantly different when both 

mice genotypes were on a HFD (Fig. 18 e).  

 

 

 

 

 

 

Figure 18. Prrx1Cre;Sncafl/fl female mice showed smaller adipocytes from the inguinal 
white adipose tissue (iWAT) after HFD. 
Representative images of (a) H&E stained histological sections from iWAT pads from 

control Snca
fl/fl

 LFD and HFD (b) and Prrx1Cre;Snca
fl/fl  

(c) LFD and (d) HFD mice after 15 
weeks of diet. (e)Total iWAT pads were measured from both genotypes under LFD (pink 
bar) or HFD (red bar). Pads weight for each genotype is represent by scatter plot and 
mean ± standard error. Two-way ANOVA and post-hoc Tukey test, **p<0.01.  
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5.4. Metabolic Cages Activity Analysis, Glucose Tolerance Test (GTT) and Insulin 

Tolerance Test (ITT) 

α-Synucleiopathies such as PD have been associated with alterations in metabolism and 

insulin impairment. We tested if partial deletion of α-Synuclein had an effect in glucose 

and insulin response. Glucose tolerance test at the end point of the HFD challenge in 

female mutants showed no significant difference at a LFD or HFD (Fig. 19a) respect to 

controls. However, they were significantly less insulin sensitive than controls (Fig. 19b) 

at any diet.  

Mutants had increased in VCO2 (Fig. 19c) during the day and maintained their resting 

respiratory quotient during the day meantime the controls diminished it (Fig. 19f). They 

showed an increase in resting energy expenditure (Fig 19g) at night when fed on a HFD 

while in controls this change was not significant. There were not statistical differences in 

total energy expenditure (Fig. 19h). Mutants on a HFD had an increased in ambulatory 

activity compared to controls however they ran less in the wheel than controls (p= 

0.0958) (Fig. 19d,e). 
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Figure 19. Prrx1Cre;Sncafl/fl female mice have a decreased insulin sensitivity and higher 
ambulatory activity on high fat diet. 
(a) Glucose tolerance test (GTT) and (b) Insulin tolerance test (ITT) were performed at 
the end point of the HFD treatment and analyzed the area under the curve to determine 
statistical differences. Metabolic analysis included measurements of (c) CO2 expelled, 
(d) ambulatory (horizontal) activity, (d) running on the wheel parameters per night in 
meters, (f) resting respiratory quotient, (g) resting energy expenditure and (h) total 
energy expenditure. Low fat (10% fat, pink bars) diet and high fat (60% fat, red bars) diet 
for each genotype are represented by scatter plot and mean ± standard error. Two-way 
ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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5.5. Thermogenic Gene Expression Analysis and Adipogenic Differentiation of 

Inguinal Adipose Depot and Preadipocytes Metabolic Profile  

Our previous findings related to the increase in resting energy expenditure and the 

decrease in adipocyte size “beige like” adipocytes in the iWAT from mutant mice led us 

to hypothesize that the phenotype could be due to an increase in the thermogenic 

capacity. We analyzed histological sections of iWATs from the OVX and HFD studies 

and immunostained with UCP-1 antibody, a mitochondrial protein responsible for the 

thermogenic respiration and highly expressed in the brown adipose tissue. As it is 

shown in the Fig. 17 a-d, we found several regions within the iWAT from the mutant 

mice after OVX or HFD studies that had an multilocular appearance and high expression 

of UCP1, brown staining in Fig. 19 b, d.  

When we isolated preadipocytes from stromal vascular fraction (SVF) from iWAT, mutant 

cells showed significantly decrease in adipogenic differentiation (Fig. 20e,f) and 

increased maximal respiration and decreased coupling efficiency (Fig. 20j). These 

changes were not found in undifferentiated cells (Fig. 20i).  

Snca mRNA expression time course (Fig. 20h) showed highest levels at day 8 of 

differentiation and mutants showed, as expected, significantly lower levels of Snca at 

that day of differentiation. Pparγ (at day 2) and Adipoq (at day 0, 2 and 4) were 

significantly lower in the mutant preadipocytes compared to control cells (Fig. 21). 

Contrary to our gene expression analysis from the OVX study, here we found Atgl, Mcd 

and aP2 mRNA relative levels were significantly lower in the mutant preadipocytes at 
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day 2, 4 and day 0-2, respectively (Fig. 22). Interestingly, and supporting previous results 

in section 3.4, we found mutant preadipocytes had higher mRNA levels of CPT1a. These 

results suggest that Snca could be playing a role in the expression of master regulators 

of adipogenesis such as Pparγ, promoting adipogenic commitment and lipid storage. 

Thus, in partial absence of the protein, we observed higher thermogenic capacity and 

expression of genes that promote β-oxidation.  

Drp1 and Mfn2 mRNA relative levels were lower in mutant preadipocytes (day 2 and 

day 2-4) and similarly, Bcl312 mRNA was significantly lower at day 0 and 6. Park2, a gene 

also associated with mitophagy, was also decreased in mutant preadipocytes compared 

to controls at day 0, 2 and 4. These results are aligned to our observations from iWAT 

in the OVX study suggesting that α-Synuclein is associated with mitophagy and 

mitochondrial biogenesis as others have shown in models of neurodegeneration. 

To clarify if the phenotype of these mutant cells were due to changes in sympathetic 

tone, we analyzed the expression of the Adrβ1 and Adrβ3 in the preadipocytes. At day 

8, there is a decreased of Adrβ1 relative mRNA levels compared to controls. At day 0, 2 

and 8 there was a decrease (although not statistically significant) of the Adrβ3 relative 

mRNA in the mutants suggesting that mutant phenotype could be, in part, due to a 

decrease in β-adrenergic signaling as result of partial loss of α-Synuclein in the CNS.   
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Figure 20. Prrx1Cre;Sncafl/fl iWAT adipocytes expressed UCP-1 and have higher 
oxidative capacity compared to controls. 
Representative images of Immunohistochemistry of histological sections from iWAT 
pads from control Sncafl/fl (a) OVX, (c) HFD, Prrx1Cre;Sncafl/fl (b) OVX, (d) HFD. (k) Stromal 
vascular fraction (SVF) from iWAT was isolated and induced adipogenic differentiation, 
stained with (i) Oil Red O (ORO) and crystal violet (CV). (m) ORO staining was measured 
spectrophotometrically at OD= 490 nm and normalized by CV absorbance at 650 nm. 
(n) Relative α-synuclein mRNA expression time-course from SVF after day 0, 2, 4, 6 and 
8 of adipogenesis. Values for each genotype are represented by scatter plot and mean 
± standard error. For (e-j), Two-way ANOVA and post-hoc Tukey test, *p<0.05, for (m-
p), T test, *p<0.05.  
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Figure 21. Prrx1Cre;Sncafl/fl iWAT preadipocytes showed less expression of pro- 
adipogenic and mature genes. 
Relative α-synuclein mRNA expression time-course from SVF after day 0, 2, 4, 6 and 8 of 
adipogenesis for (a) Pparγ, (b) Adipoq. Values for each genotype (controls black bars, 
mutants white bars) are represented by mean ± standard error. T- test, *p<0.05 
 
 

 

 

 

 

 

 

Figure 22. Prrx1Cre;Sncafl/fl iWAT preadipocytes showed less expression of pro- 
adipogenic and mature genes.  
Relative α-synuclein mRNA expression time-course from SVF after day 0, 2, 4, 6 and 8 of 
adipogenesis for (a) Atgl, (b) Lipe, (c) Cpt-1a, (d) Mcd, (e) Srebp1c and (f)  aP2. Values 
for each genotype (controls black bars, mutants white bars) are represented by mean ± 
standard error. T- test, *p<0.05. 
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Figure 23. Prrx1Cre;Sncafl/fl iWAT preadipocytes showed less expression of 
mitochondrial genes.  
Relative α-synuclein mRNA expression time-course from SVF after day 0, 2, 4, 6 and 8 of 
adipogenesis for (a) Bcl213, (b) Drp1 (c) Park2, (d) Mfn2. Values for each genotype 
(mutants black bars, control white bars) are represented by mean ± standard error. T- 
test, *p<0.05. 
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Figure 24. Prrx1Cre;Sncafl/fl iWAT preadipocytes showed less expression of β- 
adrenergic  receptors . 
Relative α-Synuclein mRNA expression time-course from SVF after day 0, 2, 4, 6 and 8 
of adipogenesis for (a) adrβ1, (b) adrβ3. Values for each genotype (controls black bars, 
mutants white bars) are represented by mean ± standard error. T- test, *p<0.05. 
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CHAPTER 6 

 EFFECTS OF DIET-INDUCED OBESITY IN ADIPOQCRE;SNCAFL/FL 

We did not find a weight gain protection against DiO in our previous Prrx1Cre:Sncafl/fl 

model;  But we still could not determine whether α-Synuclein was regulating adipose 

metabolism cell autonomously or not, as our model presented important off-target 

effects that led to central Snca deletion. Therefore, by using Adiponectin, a mature 

adipocyte marker, to specifically target adipose depots with no (not reported to date) 

off-target effects in the CNS.   

Similarly to our previous HFD studies, we challenged female and male (males not 

shown) AdipoqCre;Sncafl/fl mice for 15 weeks of HFD (60% fat) or LFD (10% fat sucrose 

matched diet) and analyzed their body composition, bone microarchitecture, metabolic 

profile, and adipogenic capacity of adipocyte precursors from the inguinal adipose 

tissue.  

6.1. Female Mice Food Intake and Body Composition  

We found no differences between the caloric intake in females or males (Fig. 25b). 

Female AdipoqCre;Sncafl/fl mice had significantly lower body weight when fed on a HFD 

(Fig. 25c,d) compared to control. Mutants had higher lean mass and decreased fat mass 

when treated with HFD. Mutants showed improved total bone mineral density (BMD) 

and femoral BMD, but these differences were not statistically significant (Fig. 25 g, h).  
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6.2. Bone Microarchitecture Analysis of Femurs from the Diet-induced Obesity in 

AdipoqCre;Sncafl/fl 

Micro-CT analysis of the femur microarchitecture from the AdipoqCre;Sncafl/fl mice 

imaging  for trabecular bone of the distal femur in the females showed no significant 

changes in femur length, connectivity density, trabecular BMD, SMI, trabecular number 

or separation when mice were fed on a HFD (Fig. 26e, g-j, l). There was a mild increase 

in trabecular bone volume fraction (Fig.26f) in the mutant femurs however, there were 

not significantly different from controls at a HFD.  

There were no significant changes in cortical bone with HFD in the AdipoqCre;Sncafl/fl 

female mice. When animals were fed on a LFD, AdipoqCre;Sncafl/fl showed higher 

cortical bone mineral density compared to controls (Fig. 27i).  

6.3. Metabolic Cages Activity Analysis, Glucose Tolerance Test (GTT) and Insulin 

Tolerance Test (ITT) 

Similarly to our previous HFD DiO, we analyzed if AdipoqCre;Sncafl/fl mice model would 

also show alterations in their glucose and insulin response. Although we did not find 

significant differences in the AUC analysis for the GTT (Fig. 28a), we observed that 

mutant mice were slightly more sensitive at either LFD or HFD than controls and 

significantly more insulin sensitive at both diets (Fig. 28b).  

Mutants had significantly lower active respiratory quotient compared to controls (Fig. 

28d) during the day, suggesting that mutants can be using more fats as energy source 

than controls, during a LFD. However, mice of both genotypes had an active respiratory 
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quotient of ~0.7 when fed on a HFD, suggesting that under those circumstances, they 

both turned to higher usage of fat as an energy source. Mutants on LFD during the night 

cycle had lower (although not significant) active energy expenditure (Fig. 28e), and 

significantly increase it when they were fed on a fat rich diet. There were no significant 

differences between the groups in resting energy expenditure (Fig. 28f), however, there 

was a significant increase in total energy expenditure in the mutants when we compared 

the mutants fed on a LFD and HFD, not seen in the controls (Fig. 28g). These results 

could possibly explain the “resistance” shown by the mutants to gain weight under HFD.  

Typically, mice on HFD tend to decrease their activity compared to LFD. Our results 

show that AdipoqCre;Sncafl/fl mice remained active; they ran significantly more that 

controls during the night and under HFD, they walked significantly more than control 

under LFD and stayed less time still that controls, under HFD during the day (Fig. 28h-

k).  
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Figure 25. AdipoqCre;Sncafl/fl female mice had a reduced body weight gain and fat mass 
accrual after diet-induced obesity. 
AdipoqCre;Sncafl/fl female and male mice were challenged with low fat diet (10% fat, 
LFD, light red/blue bars) or high fat diet (60% fat, HFD, dark red/blue bars) for 15 weeks. 
(a) Representative image of differences in size at the end point of the study. Bottom, 
western blot against α-Synuclein in total lysates from mutant and control iWAT. (b) 
Caloric intake and (c) body weight was measured for thought the study and (d) at the 
endpoint. Body composition was measured at the end point with a Lunar PIXImus 
Densitometer, including total (e) % lean mass and (f) % fat mass, total (g) bone mineral 
density (BMD) and (h) femoral bone mineral density (FaBMD). Measurements for each 
genotype were represented by scatter plot and mean ± standard error. Two-way 
ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.    
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Figure 26. AdipoqCre;Sncafl/fl female mice showed a mild improvement in trabecular 
bone microarchitecture after treatment with HFD. 
Representative images of distal femur microarchitecture examined in (a. b) female 
controls (Sncafl/fl) and (c,d) Prrx1Cre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at 
low fat diet (LFD, pink bar) and (b, d) high fat diet (HFD, red bar). (e) Femur total length, 
(f) trabecular (Tb.) bone volume fraction (BV/TV), (g) connectivity density (ConnD.), (h) 
tb bone mineral density, (i) structural model index (SMI) (j) number (N),  (k) thickness 
(Th), (l) separation (Sp) were measured by µCT. Data is represented by scatter plot and 
mean ± standard error. Two-way ANOVA and post-hoc Tukey test, *p<0.05. 
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Figure 27. Adipoq Cre;Sncafl/fl female mice showed no differences in cortical bone 
microarchitecture  compared to control after HFD treatment. 
Representative images of cortical femur microarchitecture examined in (a, b) controls 
(Sncafl/fl) and (c,d) AdipoqCre;Sncafl/fl mice after 15 weeks of HFD. (a, c) mice at low fat 
diet (LFD, light brown) and (b, d) high fat diet (HFD, dark brown). (e) Cortical (Ct) area, 
(f) medullar (marrow) area, (g) total cortical area, (h) cortical bone fraction, (i) cortical 
mineral density, (j) cortical thickness,  (k) porosity %, (l) polar moment of inertia, (m) 
minimum and (n) maximum moment of inertia were measured by µCT. Data is 
represented by scatter plot and mean ± standard error. Two-way ANOVA and post-hoc 
Tukey test, *p<0.05. 
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Figure 28. AdipoqCre;Sncafl/fl female mice had improved insulin sensitivity and higher 
activity levels. 
(a) Glucose tolerance test (GTT) and (b) Insulin tolerance test (ITT) were performed at 
the end point of the HFD treatment and analyzed the area under the curve to determine 
statistical differences. Metabolic analysis included measurements of (c) CO2 expelled, 
(d) active respiratory quotient, (e) active energy expenditure, (f) resting energy 
expenditure, (g) energy expenditure (h) running speed, (i) distance, (j) walking time and 
(k) still time. Values for each genotype are represented by scatter plot and mean ± 
standard error. Two-way ANOVA and post-hoc Tukey test, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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6.4. Histological Analysis of Inguinal Adipose Tissue after HFD study    

Inguinal white adipose tissue (iWAT) from mutant mice were significantly smaller than 

controls when they were both fed on HFD (Fig. 29 a). Preadipocytes isolated from 

mutant iWATs showed significantly less adipogenic capacity as shown by Oil Red O 

staining quantification (Fig. 29b, c). Thus, we think α-Synuclein is fundamental for 

adipocyte function, either mediating commitment establishment or fatty acid storage.   

 

 

 

 

 

Figure 29. AdipoqCre;Sncafl/fl female iWATs showed an impaired adipogenic capacity. 
(a) Quantification of iWAT pads at the endpoint of the HFD study. (b) Representative 
images of in vitro culture of preadipocytes isolated from iWAT from mutants and control 
mice. Stromal vascular fraction (SVF) from iWAT was isolated and induced adipogenic 
differentiation and, were stained at day 8 with (c) Oil Red O (ORO) and crystal violet 
(CV). ORO staining was measured spectrophotometrically at OD= 490 nm and 
normalized by CV absorbance at 650 nm. For (a), Two-way ANOVA and post-hoc Tukey 
test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. For (c), T test, *p<0.05. 
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6.5. AdipoqCre;Sncafl/fl  Male Mice showed No Differences in Serum Catecholamines 

Compared to Control Mice 

As we observed previously, Prrx1Cre;Sncafl/fl male mice showed altered levels of 

catecholamines that we attributed to Prrx1Cre off-target expression in the CNS. Here, 

in order to test whether our mice model AdipoqCre;Sncafl/fl was showing impaired 

sympathetic function, we measured catecholamines in serum at the endpoint of the 

HFD. Our results showed no significant difference for any of the three – epinephrine, 

norepinephrine, or dopamine- between the genotypes at any of the diets (Fig.30).  

 

 
Figure 30. AdipoqCre;Sncafl/fl male mice showed no significant differences in 
catecholamines serum level compared to control mice. 
Male mice from both genotypes were on a low fat diet (10%, black dots) and high fat 
diet (60%, red circles) for 15 weeks. Catecholamines levels were measured from 
serological samples at the end point (23 weeks old). (a) Epinephrine, (b) 
Norepinephrine and (c) Dopamine levels in males. Each genotype is represented by 
scatter plot and mean ± standard error (black filled circles, LFD and brown circles, HFD). 
Two-way ANOVA and post-hoc Tukey test, *p<0.05.  
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CHAPTER 7 

IN VITRO STUDIES IN PRIMARY CULTURE OF LOSS AND GAIN OF FUNCTION  

To better understand α-Synuclein role in adipocyte function we added a few strains of 

mice to use in adipocyte primary culture and compare to our previous in vitro data. First, 

we crossed Sox-2 Cre enhancer to Sncafl/fl until we obtained litters with a null deletion 

of Snca and littermate controls. Second, we obtained a strain overexpression human 

mutant Snca. These homozygous mice expressed the endogenous mouse α-Synuclein 

and overexpressed A53T missense mutation for the human Snca gene under the 

expression of the prion (Prnp) promotor (A53TSnca).  

7.1. Differentiation in Preadipocytes from Inguinal Adipose Tissue from Snca-/- Mice 

and A53Ttg/tg  

We isolated the preadipocytes from iWATs from both genotypes, and after 8 days of 

adipogenic differentiation, cells were fixed and stained. Oil Red O staining 

quantification (Fig. 31 a,b) showed that total deletion of Snca leads to a significant 

decrease in adipogenic differentiation, while A53T Snca showed a significantly higher 

adipogenic capacity.  
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Figure  31. iWAT preadipocytes from null Snca-/- mice and A53Ttg/tg showed an opposite 
adipogenic phenotype. 
Representative images of in vitro culture of preadipocytes isolated from iWAT from (a) 
null mice for Snca-/- and control Snca+/+, (b) overexpressing A53T αSynuclein mice after 
8 days of adipogenic induction. ORO staining was measured spectrophotometrically at 
OD= 490 nm and normalized by CV absorbance at 650 nm. T test, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
 

7.2. Lipid Droplet in Preadipocytes from Inguinal Adipose Tissue from Snca-/- mice 

and A53Ttg/tg  

As α-Synuclein has been associated to lipid storage in neuronal models. We fixed 

preadipocytes after adipogenic differentiation and immunostained against Perilipin A 

(PLIN), found in lipid droplet membrane, quantified the size and number of lipid 

droplets in each phenotype. We found that AdipoCre;Sncafl/fl, had lower lipid droplet 

number per cell and increased expression of phosphorylated Hormone Sensitive Lipase 

(pHSL) to total protein ratio. No changes in lipid droplet size or number were found in 

A53Ttg/tg adipocytes (Fig. 32).  
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7.3. Mitochondria Morphology in Preadipocytes from Inguinal Adipose Tissue from 

Snca-/- Mice and A53Ttg/tg  

PD has been associated with aberrant mitochondrial function. We fixed preadipocytes 

after adipogenic differentiation and immunostained against α-Synuclein and co-stained 

mitochondria with MitoTracker. We found that AdipoCre;Sncafl/fl, had smaller fragments 

of mitochondria compared to control (Fig. 33a,b,c), but lower pDRP1S616/pDRP1637 

(Fig. 33g) ratio than controls, suggesting inhibition of fission. A53Ttg/tg adipocytes 

showed increased mitochondria fragment size (Fig. 33e, f, d), and coherently we 

observed decreased in pDRP1 (S616) levels (Fig. 33g), indicative of decreased 

mitochondrial fission.  

7.4. Differential Subcellular Localization of α-Synuclein in iWAT Preadipocytes from 

AdipoCre;Sncafl/fl  and A53Ttg/tg mice  

As α-Synuclein has been shown to interact and even, be located within the 

mitochondria, we analyzed if partial deletion or overexpression of mutated protein 

would change its localization towards mitochondria. In control cells, α-Synuclein 

significantly colocalizes to mitochondria (60%, p<0.05 compared to random 

distribution, percentages are values normalized by the amount of protein), however it 

does not seem to significantly change its distribution in partial absence of the protein 

(Fig. 34a, b, c) or in overexpressing mutant α-Synuclein adipocytes (Fig. 34e, f, g).  

As one of the most striking and consistent finding of our work was that our mice with 

partially loss of α-Synuclein had significant alterations in the insulin sensitivity, we further 
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investigated if this phenotype could be a recapitulation of an aberrant insulin signaling, 

at a cellular level. Thus, we treated our preadipocytes with 2 µM of insulin for 48 h before 

the endpoint of adipogenic differentiation. α-Synuclein in control adipocytes seems to 

be evenly distributed in the cytoplasm and nuclei in vehicle conditions, however, it 

significantly changed its location to the nuclei after insulin treatment (Fig. 35g). Similar 

response we observed in A53T+/+ control but A53Ttg/tg does seem to be translocating 

protein to the nuclei, compared to controls (Fig. 35h). These results showed that α-

Synuclein can respond to insulin and can translocate to the nuclei under normal 

conditions.  

7.5. Insulin Signaling in Preadipocytes from AdipoCre;Sncafl/fl  and A53Ttg/tg mice  

Immunoblots from total iWATs lysates from AdipoCre;Sncafl/fl, showed decreased pAKT 

and AKT levels (Fig. 36b,c) and increased in pAKT and total AKT in overexpressing A53T 

α-Synuclein compared to controls (Fig. 36b, d). Snca-/- null preadipocytes showed the 

highest levels of total AKT and the lowest levels for pAKT (Fig. 36b, e), along with and 

increased in pIRβ and pShc (Fig. 36f, g, h). These results suggest that normal α-Synuclein 

is necessary for an adequate insulin signaling in the adipocyte and that α-Synuclein may 

be required in the nuclei to exert its regulatory role in the insulin response.  
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Figure 32. iWAT preadipocytes from AdipoCre;Sncafl/fl mice showed decreased lipid 
droplet formation and high expression of lipolytic marker. 
Representative images of immunofluorescence against Perilipin A (PLIN) from in vitro 
culture of preadipocytes isolated from iWAT from (b) AdipoCre;Sncafl/fl, (a) control mice, 
(f) overexpressing A53T αSynuclein or (e) control mice after 8 days of adipogenesis. 
Quantification of (c, g) lipid droplet number normalized per number of cells, (d, h) lipid 
droplet size for the different genotypes. Western blot analysis for (i, k) phosphorylated 
hormone sensitive lipase (pHSL), total HSL and GAPDH. (j, l) Quantifications of the 
intensity band and pHSL/HSL ratios. T test, *p<0.05. Scale bar 20 µM.  
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Figure 33. Differential expression of α-Synuclein in iWAT preadipocytes from 
AdipoCre;Sncafl/fl  and A53Ttg/tg mice does not alter its location relative to mitochondria. 

Representative images of immunofluorescence against α-Synuclein (αSyn, in green) 
from in vitro culture of preadipocytes isolated from iWAT from (b) AdipoCre;Sncafl/fl, (a) 
control mice, (f) overexpressing A53T α-Synuclein or (e) control mice after 8 days of 
adipogenesis and co-staining with the mitochondrial marker, MitoTracker. 
Quantification of (c, g) percentage of colocalization of α-Synuclein to mitochondria for 
each genotype. T test, *p<0.05. Scale bar 20µM.  
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Figure 34. iWAT preadipocytes from AdipoCre;Sncafl/fl  and A53Ttg/tg showed opposite 
mitochondrial phenotype. 
Representative images of in vitro culture of preadipocytes isolated from iWAT from (b) 
AdipoCre;Sncafl/fl, (a) control mice, (f) overexpressing A53T αSynuclein or (e) control 
mice after 8 days of adipogenesis, after incubation with the mitochondrial staining, 
Mitotracker (Red). Quantification of (c, d) mitochondrial fragment size for the different 
genotypes. Western blot analysis for (g) pDRP1 (S616), pDRP1 (S637) and total DRP1. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Scale bar 20µM.  
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Figure 35. α-Synuclein relocates to the nuclei after insulin treatment in control 
preadipocytes but not in A53Ttg/tg preadipocytes. 
Representative images of immunofluorescence against α-Synuclein (αSyn, in green) 
from in vitro culture of preadipocytes isolated from iWAT from control mice with (a, c) 
vehicle or (b, d) insulin treatment, overexpressing A53T αSynuclein under  (e) vehicle or 
(f) insulin treatment [2µM] at day 6 for 48 h. Quantification of (g, h) percentage of 
colocalization of α-Synuclein to the nuclei for each genotype. T test, *p<0.05. Scale bar 
20µM.  
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Figure 36. Differential levels of α-Synuclein induces changes in insulin signaling through 
AKT. 
(a) Scheme of insulin signaling. (b) Immunoblot from total iWATs lysates against pAKT, 
AKT, GAPDH, (f) pIRβ, IRβ, pShc and Shc and band quantification for (c) 
AdipoCre;Sncafl/fl, (d) overexpressing A53T αSynuclein and (e, g, h) Snca-/- null, and 
respective controls.  T test, *p<0.05.  
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CHAPTER 8 

 DISCUSSION  

8.1. Discussion of the Effects of Deletion of α-Synuclein in Osteoprogenitor Cells  

Prrx1 (paired related homeobox 1) is expressed in the undifferentiated mesenchyme of 

the craniofacial and appendicular skeleton as well as the inguinal depots [109], and its 

loss of function in mice leads to defective growth of osteoprogenitor and severe limb 

abnormalities [109]. Our initial observations that Snca could be one of those target 

genes regulating remodeling led us to use the PrrxCre in ovariectomy experiments 

[110]. Importantly, this provided a link between Snca and bone turnover. Snca has been 

strongly implicated in the pathology of neurodegenerative disorders, especially PD, 

largely by forming molecular aggregates that impair the dopaminergic system [111, 

112, 113]. Intriguingly, PD patients also exhibit non-neurological comorbidities such as 

sarcopenia, low bone mineral density and a much higher risk of fractures than age-

matched control [114, 115, 116].   

Here, we showed that partial deletion of α-Synuclein in osteoprogenitors neither 

protects against estrogen deficiency-induced bone loss nor counters the effects of 

obesity. Even though α-Synuclein seems to be playing a relevant role in the stress 

response in the bone marrow and bone, its partial absence does not explain the effects 

seeing in the Snca-/- null mice. We attribute the mild changes in bone microarchitecture 

(increase in trabecular bone volume fraction (Fig. 12f) and trabecular thickness (Fig. 12k) 

after fed with a HFD) to the indirect effects of higher lean and fat mass that in some 
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cases act as a mechanical stimulus to build  bone after HFD. However, with dramatic 

loss of lean mass but associated fat mass gain, this may lead to lower bone mass and in 

humans, osteoporosis.  

Moreover, as we discuss on the next section, we cannot discard alterations in the 

sympathetic tone as consequence of off target effects of Prrx1Cre in the CNS.   

8.2. Discussion of the Implications of using Prrx1Cre as Enhancer to Target Deletion 

in the Skeletal Limb 

The Prrx1Cre recombinase mouse is used in studies to test the function of skeletal genes 

in vivo by employing conditional genetic engineering. The current work provides new 

evidence supporting earlier, but often not recognized studies, that Prrx1Cre is 

expressed in adult brains. 

 

There have been a few previous reports indicating that Prrx1 is expressed early in the 

prenatal brain at E16.5 [117], and also in neural progenitor cells from the pituitary gland, 

forebrain and hippocampus [118, 103]. However, virtually all papers employing 

conditional deletion of skeletal and progenitor genes using the Prrx1 Cre driver failed 

to report on neural expression of the Cre transgene. In this study, we showed that Prrx1 

transcripts were present in several regions of the brain, leading to decreased Snca 

transcript levels and partial protein loss of α-Synuclein in the frontal-motor area of the 

cortex (Ctx1), striatum and pons/medulla/brainstem. We noted that the Prrx1Cre;Sncafl/fl 
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mice exhibited impaired trabecular and cortical bone microarchitecture after OVX to 

the same extent as that observed in Sncafl/fl control mice. Therefore, protection against 

estrogen deficiency-induced bone loss observed in the global Snca knockout mice was 

neither regulated through osteoprogenitors nor by Prrx1Cre(+)Snca(+) cells in the CNS. 

However, it is worth noting that ovariectomies were done at 8 weeks of age, as reported 

previously in a number of protocols [119]. Ovariectomy in older mice might have 

demonstrated a different response although it would likely have been confounded by 

age-related trabecular bone loss which occurs in female C57BL6 mice after 16 weeks of 

age.   

Due to the marked non-skeletal expression changes from the conditional deletion, we 

performed comprehensive metabolic and behavioral studies of the Prrx1Cre;Sncafl/fl 

and Sncafl/fl littermate control mice. We found important differences between 

genotypes. For example, male Prrx1Cre;Sncafl/fl on a LFD had higher water consumption 

than controls, but no changes in food intake. These changes could have been 

associated with decreased dopamine and norepinephrine levels found in their serum. 

Catecholamines have an inhibitory effect on fluid intake, in rats [220] by acting through 

the nucleus accumbens, one of the centers involved in regulation of hunger and thirst. 

It has been shown that bilateral lesions of accumbens and caudate nuclei result in 

significant and sustained increase in water intake [221]. Dopamine injections after 

inducing injury in accumbens and caudate nuclei, reestablished water intake in a dose 

dependent manner [222]. Similarly, norepinephrine injections in the nucleus 

accumbens increases water intake, without changes in food intake, in rats [221], thus 
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indicating that catecholamines regulate water intake through osmolarity/volumetric 

changes of a porto-hepatic feedback rather than through β-adrenergic stimulation 

[221]. 

The nucleus accumbens is part of the striatum, within the basal ganglia, and receives 

glutaminergic, dopaminergic and histaminergic input fibers from different regions in 

the brain. We found decreased expression of α-Synuclein in the striatum of mutant mice 

that could lead to an abnormal regulation of the thirst feedback loop and increased 

fluid intake. In PD, α-Synuclein aggregation causes death of dopaminergic cells in 

substantia nigra pars compacta, disrupting normal nigrostriatal circuits. We postulate 

that partial loss of α-Synuclein in the striatum and pons/medulla/brainstem (P/MY/BS) 

region impairs central regulatory circuits of thirst, although Snca transcript levels were 

also decreased in the hypothalamus of Prrx1Cre;Sncafl/fl mice, and this could affect 

sensibility to detect tonicity and water intake through antidiuretic hormone (ADH) 

secretion. Interestingly, one of the major reasons for emergency hospitalization of PD 

patients is profound electrolyte disturbances [223]. Serological (Pathological??) levels 

of sodium and chloride levels have been associated with dyskinesia in PD patients [224], 

and dehydration has emerged as a mortality factor in PD [225].However, peripheral 

catecholamine levels do not always correlate with cerebrospinal fluid (CSF) levels 

although there is evidence indicating that PD patients show lower CSF and serum levels 

of dopamine and norepinephrine, and that the decreased CSF dopamine level 

observed in PD can cross the blood brain barrier [226].   
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Low levels of epinephrine and norepinephrine can also result in physical and neural 

symptoms such as anxiety. PD patients often present with psychiatric symptoms (~60%), 

including signs of anxiety, depression (17-50%) and psychosis. Our data suggests that 

Prrx1Cre;Sncafl/fl male mice have an altered behavioral and activity phenotype that could 

be explained by lower levels of dopamine and norepinephrine in blood, and abnormal 

α-Synuclein in key brain regions such as striatum, brainstem and hypothalamus. 

Locomotor control is attributed to the activity of ascending dopaminergic projections 

from the substantia nigra to the striatum within the basal ganglia, which projects to the 

mesencephalic locomotor region of the brainstem controlling locomotion. It was 

recently found that dopaminergic neurons can also innervate the mesencephalic 

locomotor region through descending inputs to control locomotion [227]. Therefore, 

slight changes in α-Synuclein in these neurons could translate into dramatic changes in 

locomotor/activity pattern in mice.  

Our physical-behavioral activity experiments showed that control animals, when 

switched from LFD to HFD, did not show any diet effects on the EPM; however, they 

decreased their distance traveled in the central and peripheral areas on the open field 

test. Female and male controls were less likely to climb their tails when fed with a HFD, 

however no differences in immobility latency were found. Lastly, the marble burying 

test, which measures the propensity of mice to engage in a digging behavior, is 

increased in models of anxiety [228]. There was no diet effect in the number of marbles 

buried in control mice. Additionally, control mice fed on a HFD decreased the time, 

distance and speed they spent running on the wheel in the metabolic cages, compared 
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to control mice on LFD. These results show an anxiety-type of behavior and/or activity 

switch when mice were on a HFD. Mice [220] and humans [229, 230], when undergoing 

a HFD and overfeeding, significantly reduce acute spontaneous activity and exhibit an 

anxiety-like phenotype in mice [231], as obesity and diabetes in humans is associated 

with increased rates of anxiety and depression [232, 233]. 

We noted other phenotypic differences in activity between the conditional deletion of 

Snca and their littermate controls that reinforce the function of the Prrx1 Cre in brain. 

For example, Prrx1Cre;Sncafl/fl male mice on HFD dramatically decreased their 

ambulatory activity compared to LFD and to control mice under HFD (Fig. 10b), and 

contrary to evidence in control mice, there was no diet effect on the spontaneous 

running activity (Fig. 10c-e) and in distance travelled in center and periphery (not shown) 

of the open field (Fig. 10h). Prrx1Cre;Sncafl/fl male mice also decreased the number of 

entries  to the open areas when fed a HFD compared to LFD, but decreased time spent 

in the open area in respect to controls on a HFD. There was a subtle interaction factor 

for the genotype by diet effect (p=0.0981) observed in the marble burying test. 

Prrx1Cre;Sncafl/fl male mice on LFD buried higher number of marbles than when fed on 

a LFD and compared to control at any of the diets. It appears that diet effects on activity 

differ between mutant and control mice by two type of responses: changes in the type 

of preferred activity (ambulatory versus non-ambulatory) and despaired (anxiety-type) 

behavior. In sum, the phenotypic changes we observed provide strong support that 

there are functional consequences by using the Prrx1Cre driver for genes that are 

expressed in the brain. 
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8.3. Discussion of the Effects of Deletion of α-Synuclein in Adipocytes from the 

Inguinal Adipose Tissue  

Prrx1Cre mice were partially protected against OVX-induced weight and fat mass gain, 

suggesting a possible cell autonomous role for α-Synuclein in adipocyte metabolism.  

Our primary intention was to determine if α-Synuclein regulates BMD during estrogen 

deficiency by intrinsic mechanisms within the osteoblasts; but we could not ignore the 

fact that our first mouse model to target the limb showed off-target effects in the CNS, 

an organ that expresses significant amounts of α-Synuclein. In an attempt to prove that 

the adipose phenotype was due to the intrinsic effects of α-Synuclein preadipocytes, we 

performed a set of in vitro experiments to induce adipogenesis and to quantify if 

primary culture of preadipocytes, would show a phenotype correlative to our in vivo 

data. Indeed, mutant preadipocytes had higher oxidative capacity, and their capacity to 

differentiate into a mature adipocyte decreased, as their fat storage capacity did, as well.  

To further investigate α-Synuclein’s role in adipose tissue, we moved to a second mouse 

model, AdiponectinCre, which demonstrated that mutant mice were recapitulating the 

Snca null phenotype in terms of adipose phenotype (Fig. 26a-b). These mice had 

improved insulin sensitivity, opposite to what we found in the Prrx1Cre;Snca study and 

possibly suggesting that α-Synuclein regulate insulin response by cell autonomously 

and non-cell autonomously. Altogether, we conclude that α-Synuclein is necessary to 

regulate insulin sensitivity (Fig. 17 a-b); systemically, enhancing insulin sensitivity (i.e., 
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through β cell stimulus for insulin secretion) and locally -within the fat cell- reducing its 

sensitivity.  

 

From our in vitro studies we infer α-Synuclein is critical for  proper insulin signaling as 

we observed that total deletion of Snca leads to increased levels of AKT but decreased 

levels of pAKT, suggesting adipocytes increased its levels of AKT, possibly, as a 

compensation to the decreased pAKT levels. Overexpression of the mutated form of 

Snca leads to more availability of the pAKT and total AKT. We hypothesize that Snca is 

necessary for a proper signaling transduction from the insulin receptor (IR) to AKT. 

When α-Synuclein is completely absent, levels of phosphorylated IR beta (pIRβ) and 

pShc increased, the later also increases when mutated A53TSnca (Fig. 34). These results 

suggest that at some point downstream to IRβ and Shc, the signal fails to transduce, 

thus, normal levels of α-Synuclein is necessary but not sufficient for  proper signal 

transduction. Preliminarily, we analyzed IRS1 and IRS2 protein levels, as they are 

important substrates of insulin signaling. We did not observe differences in IRS1 or 2, 

but in the absence of Snca, there was a decrease in pIRS1 (S612), while in the presence 

of mutated A53TSnca total IRS1 is decreased (Not shown).  

 

There is a strong connection between PD and insulin resistance (IR). A recent study 

showed that nearly 60% of the non-diabetic participants may have undiagnosed insulin 
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resistance [25]. Others have shown that dysglycemia seems to be another nonmotor 

feature of PD, as insulin production is regulated by the autonomic nervous system, as 

sympathetic denervation might lead to β-cell dysfunction. The progression of PD could 

be correlated to blood glucose dysregulation [27].  

 

Others have also shown PD patients have impaired insulin sensitivity as their Snca serum 

levels are inversely associated to IR indicators [234]. Similarly, when we partially deleted 

Snca in the central nervous system, we observed similar effects as in PD patients; insulin 

resistance. One possible explanation is that normal α-Synuclein levels are needed to 

control insulin signaling at the neurological level and for peripheral control of insulin 

secretion as suggested by Marques et al (2018) [27]. A study showed α-Synuclein 

interacts with Kir6.2 (a major subunit of the ATP-sensitive K channel), on insulin secretory 

granules, acting to downregulate insulin secretion in pancreatic beta cells [235]. They 

showed in islet cell cultures overlapping localization of α-Synuclein with Kir6.2, but also 

with Sur1 (an ATP-binding cassette protein that functions as an ion channel regulator), 

insulin, and C peptide.  

 

Neurological function is dependent on glucose metabolism. Moreover, it has been 

shown that insulin signaling contributes significantly to normal brain function and   

recently had been shown to be dysregulated in neurodegenerative diseases [236, 237, 



101 
 

238]. Previous studies have shown an association with mitochondrial dysfunction and 

insulin resistance [239, 240], such as alterations of mitochondria dynamics, polarization 

and ROS levels in insulin resistance [241].  Overexpression α-Synuclein has been 

associated with high levels of pAKT in dopaminergic (DA) neurons [242], IR and 

increased reactive oxygen species (ROS) levels, as well as mitochondrial depolarization 

[243]. 

When we deleted Snca solely in the white adipose tissue using the AdipoCre which is 

not expressed in the CNS, Snca expression is physiologically normal,  we observed an 

improvement in the insulin response, suggesting that α-Synuclein could be regulating 

insulin sensitivity by inhibition in adipose depots but activation in the CNS.  

Therefore, this work shows α-Synuclein has a role in energy metabolism and lipid 

storage, by regulating insulin responsiveness. α-Synuclein responds to insulin treatment 

by regulating insulin sensitivity, at least to a significant extent, by mechanisms intrinsic 

to the adipocyte.    
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CHAPTER 9 

CONCLUSIONS AND CLINICAL IMPLICATIONS  

The first part of our work provides new evidence supporting earlier, but often not 

recognized studies, that Prrx1Cre is expressed in adult brains. In this case, that 

expression led to partial deletion of the Snca gene in the CNS, which resulted in 

aberrant catecholamine levels, altered activity patterns and anxiety-types of behavior. 

Taken together, our data suggest that deletion of genes that are normally expressed in 

the CNS using the Prrx1 Cre could profoundly affect a mesenchymal phenotype of 

interest, whether it be skeletal or adipogenic. As such it provides a further cautionary 

note for investigators that seek to understand early osteoprogenitor differentiation in 

the marrow using the Prrx1Cre enhancer. 

PD patients are at high risk of fracture and its association with α-Synuclein remains 

unclear. Here we showed that decreased Snca expression in osteoprogenitors leads to 

a mild bone phenotype, suggesting Snca might be acting coordinately through bone 

cells (i.e. osteoblasts, osteocytes) and bone marrow cells (i.e. osteoclasts, adipocytes or 

hematopoietic-derived cells) to orchestrate the protection against low bone mass, as 

seen in Snca-/- mice.   

Moreover, PD patients present a high incidence of insulin resistance and Type II DM is 

a risk factor for PD [244]. Only recently, researchers have started to focus their efforts on 

understanding the association between glucose metabolism and neurodegeneration.  
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Figure 37. Proposed Role of α-Synuclein in Insulin Signaling Regulation. 
(1) α-Synuclein  mediate the binding of insulin to the insulin receptor (IR), (2) α-Synuclein  
can be acting as a checkpoint by regulating AKT phosphatases or other downstream 
targets downstream IR. (3) α-Synuclein  can be found in the plasma membrane and 
complexed within lipid rafts to facilitate glucose transporter 4 (GLUT 4) translocation to 
the cell membrane. (4) α-Synuclein can translocate to the nuclei and mediate gene 
activation/repression programming by binding to transcriptional factors. (5) A53T 
missense mutation in Snca favors aggregation and concomitantly loss of the normally 
functional α-Synuclein.  
 

However, α-Synuclein connections to insulin response are still unclear. Here, we 

provided evidence that α-Synuclein plays an important role in energy metabolism and 

insulin sensitivity by acting not only through the central nervous system but also directly 

in adipocytes. α-Synuclein can respond to insulin stimuli and its absence leads to a 
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defective insulin pathway. Possible mechanisms of α-Synuclein regulation of insulin 

response include binding to transcriptional factors to enable activation or repression of 

downstream targets by nuclear translocation in response to insulin exposure. Also α-

Synuclein could be acting in the cytoplasm as a checkpoint by regulating AKT 

phosphatases or other downstream targets of IR, and enabling proper protein 

interaction. Moreover, α-Synuclein can be found in the plasma membrane and 

complexed within lipid rafts to facilitate GLUT 4 exocytosis and membrane translocation 

(Fig 37). 

Our findings help to better understand the mechanisms by which α-Synuclein regulates 

energy metabolism and insulin response. Additionally, our results contribute to an 

understanding of the possible mechanism that could explain the neuroprotective 

effects of antidiabetic drugs such as Exenatide, as recently demonstrated in a large 

clinical trial [245]. More studies are necessary to fully define the cellular role of α-

Synuclein in non-neural tissues.  
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CHAPTER 10 

FUTURE DIRECTIONS 

By using our in vitro models of loss of α-Synuclein and overexpression of mutant α-

Synuclein we aim to further determine α-Synuclein targets in the insulin pathway, 

particularly upstream AKT and establish if glucose transport 4 (GLUT 4) translocation or 

availability is impaired in any of our α-Synuclein models as it occurs in diabetic patients 

[246].  

We are particularly interested to analyze the location, possible presence of α-Synuclein 

aggregates and lipid storage capacity, along with gene expression profile in 

subcutaneous fat biopsies from PD patients from the Alzheimer’s Disease Center at 

Rush University.   

We aim to metabolically phenotype A53Ttg/tg mice, a clinically relevant mice model of 

PD, and compare it to the knock out Snca-/- to better understand the role of α-Synuclein 

in the regulation of insulin response (Supplemental grant, NIA/NIGMS).  
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