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 New England’s climate is changing faster than that of any other region in the continental 

United States.  Over the last century, Maine has experienced an increase in annual temperature of 

approximately 1.48oC along with a 15 percent increase in annual precipitation.  Temperature and 

precipitation play vital roles in shaping the ecology of freshwater environments.  Therefore, 

changes in regional climate could undermine the structure and stability of Maine’s freshwater 

systems as they currently exist.   

 

Maine currently harbors the last wild populations of Atlantic salmon (Salmo salar) in the 

United States.  Atlantic salmon were once abundant in Maine streams, but suffered dramatic 

declines due to several factors including deforestation, overfishing, and the construction of dams.  

In 2000, Atlantic salmon were listed as a Federally Endangered species.  As juveniles, salmon 

spend 1 to 3 years in Maine streams before smolting.  However, salmon face several threats as 

juveniles in Maine streams, including changes in climate as well as competition from introduced 

or invasive species which could outcompete salmon for resources. 
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 This dissertation examines these impacts on juvenile Atlantic salmon (Salmo salar) and 

the stream food webs in which they are embedded by (1.) Using temperature-controlled 

microcosm experiments to investigate the potential for climate-driven warming to exacerbate the 

effects of competition between native and invasive species from different thermal guilds. The 

results suggest that non-native smallmouth bass (Micropterus dolomeiu) have the potential to 

outcompete Atlantic salmon as waters continue to warm. (2.) Running dynamic regression 

models to analyze the relationship between juvenile Atlantic salmon condition, temperature, and 

precipitation for 9 streams across 4 drainages over a 16-year period. The results suggest that the 

impacts of climate change on salmon growth may vary by stream and spatial scale. (3.) 

Conducting an instream mesocosm experiment to investigate the food-web implications of 

interactions between omnivorous crayfish and predatory Atlantic Salmon. These results suggest 

that strong bottom-up processes occur when crayfish are present, whereby increased algal growth 

could promote the availability of macroinvertebrates important to salmon diet. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Climate Change in Freshwaters and Effects on Biota 

With over 100,000 described species (Heino et al. 2009), Earth’s freshwater 

environments demonstrate incredible diversity that promote wonderment in nature and provide 

important benefits to society (Dudgeon et al. 2006, Heino et al. 2009).  However, freshwaters 

across the globe are threatened by changes in climate that alter the overall composition and 

dynamics of ecological communities (Rahel and Olden 2008, Heino et al. 2009, Perkins et al. 

2010, Woodward et al. 2016).  Over the last century, Earth has warmed approximately 1oC, 

which has been responsible for unprecedented change in our planet’s freshwater systems (IPCC 

2018).  This warming has led to an increase in extreme weather events, where heatwaves along 

with flooding and drought conditions occur more frequently and for prolonged durations than 

historic norms.  These trends are expected to continue throughout the 21st century and intensify 

as global temperature continues to rise (IPCC 2013). 

On a regional scale, New England’s climate is warming faster than any other region in 

the continental United States (Karmalkar and Bradley 2017).  In Maine alone, average annual 

temperature has increased 1.48oC over the last century, and annual precipitation has increased 

over 15 percent (Fernandez et al. 2020).  By 2050, Fernandez et al (2015) estimates that mean 

temperature in the state of Maine will increase by 1.1-1.7oC and ‘hot days’ (when temperatures 

spike above 35oC) are expected to triple in occurrence; meanwhile rainfall is anticipated to 

increase another 5-10 percent.  While such changes in climate may seem abstract, the effects of 

changing temperature and precipitation are well documented in New England waters.  Later ice-
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on and earlier ice out dates (Dudley and Hodgkins 2002) as well changes to seasonal variation in 

stream flow (Hodgkins et al. 2005) have been observed in streams and rivers; which indicate the 

onset of later winter and earlier spring conditions.  Similar trends in ice-on and ice-out dates 

have also been documented in lakes across New England (Dudley and Hodgkins 2002).  

Vulnerability of streams to changes in air temperature and precipitation are due to 

characteristics of the surrounding physical environment as well as stream morphology (Snelder 

and Biggs 2002, Allen and Castillo 2007).  For instance, topography, tree canopy cover, stream 

depth, and ground water input produce stream specific responses to changes in climate; resulting 

in temperature and flow conditions unique to each waterbody (Allen and Castillo 2007).  

Freshwater organisms are particularly susceptible to climate change because of the dominance of 

ectothermic species and the fact that their metabolism, growth, and activity is driven by 

environmental temperature (Angilletta et al. 2002); which ultimately impacts an organism’s 

fitness (Kingsolver and Huey 2008).   

Species have minimum and maximum temperature limits, commonly referred to as a 

thermal range. While metabolic functioning of an organism occurs within these thermal limits, 

species exhibit an optimum temperature at which their metabolic activity and performance is 

maximized (Huey and Stevenson 1979, Huey and Kingsolver 1989).  In general, cold-adapted 

species not only exhibit lower thermal optima, but also lower metabolic performance overall 

compared to warm adapted species (Pörtner et al. 2000, Pörtner 2002).  Species also vary in the 

rate of metabolic response to temperature change within their thermal range (e.g., differ in Q10, 

Rao and Bullock 1954).  Thus overall, temperature is a critical factor controlling the physiology 

of freshwater organisms.  
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Energy budgets evaluate the performance and physiology of individuals in relation to 

their environment according to the amount of net energy gained and lost over time for the whole 

organism, Equation 1 (Brett and Groves 1979, Pörtner and Peck 2010). 

 (1) 

Energy that is not lost via excretion or feces is allocated towards an organism’s growth, 

activity, and metabolism (Warren and Davis 1967).  Temperatures that greatly exceed an 

organism’s thermal optimum become problematic because metabolic costs cannot be met by the 

energetic gains of feeding, resulting in lower net energy gain and reduced fitness (Pörtner and 

Peck 2010).  As temperature changes, consumption rates are affected (Warren and Davis 1967), 

metabolic rate changes (Clarke and Fraser 2004) as does the amount of energy required for 

ectothermic species to complete tasks necessary for survival (Spotila and Standora 1985).  These 

include searching for, capturing, consuming, and digesting prey (Ward and Stanford 1982, 

Anderson et al. 2001, Vucic-Pestic et al. 2011, Dell et al. 2014).  These mechanisms mean 

temperature change can alter outcomes of interactions among species that differ in thermal 

optima and tolerances (Dell et al. 2014, Gilbert et al. 2014).  Since interactions between 

macroconsumers often drive broadscale multitrophic patterns observed in community 

composition and basal resources (Carpenter et al. 1985, Rosemond et al. 1998), changes in 

temperature could have significant consequences on the structure and functioning of food webs 

(Winder and Schindler 2004, Perkins et al. 2010, Woodward et al. 2016).  

While the majority of climate change research has focused on the implications of 

changing temperature, changes in precipitation that impact the hydrology of freshwater 

environments can also have severe impacts on freshwater biota.  Precipitation regulates 

hydrological regimes and plays a crucial role in structuring communities (Resh et al. 1988, Poff 

et al. 1997, Lake 2000, Poff and Zimmerman 2010).  Alteration in the timing and magnitude of 



4 
 

flooding or drought events is known to alter individual performance, the strength of species 

interactions, productivity, and diversity in freshwater environments (Townsend and Scarsbrook 

1997, Lake 2000, 2003, Poff and Zimmerman 2010, White et al. 2016).  Variation in stream flow 

also acts to facilitate or hinder biological invasions (Moyle and Light 1996, Fausch et al. 2001, 

Bunn and Arthington 2002).  Given that temperature and precipitation play vital roles in shaping 

the ecology of freshwater systems, abrupt changes in climate with little warning could undermine 

the structure and stability of Maine’s freshwater systems as they currently exist.  This thesis 

examines these impacts by focusing on an iconic species to Maine, Atlantic salmon (Salmo 

salar), and the stream food webs in which they are embedded.   

Atlantic Salmon and Threats they Face in Maine 

Prior to being listed as a Federally Endangered species, Atlantic salmon were once 

abundant in New England’s freshwaters.  Atlantic salmon provided sustenance to local 

populations, supported a commercial fishery in the 1800s, as well as a prominent recreational 

fishery that saw the largest salmon caught on opening day of each fishing season being gifted to 

the President of the United States (Schmitt 2015).  Now Maine harbors the last wild populations 

of Atlantic salmon in the United States and their decline was driven by multiple factors including 

deforestation, overfishing, pollution, and damming (Buchsbaum et al. 2005, Saunders et al. 

2006).  Juvenile salmon spend about 2-3 years in Maine streams before smolting, where salmon 

undergo physiological changes that allow them to survive in the marine environment and spend 

another 1-3 years before returning to freshwater to spawn (McCormick et al. 1998). 

Unfortunately, salmon face several threats as juveniles.  These include changes in climate 

as well as competition from introduced and invasive species, such as smallmouth bass 

(Micropterus dolomeiu), which could outcompete salmon for both space and resources (Jonsson 
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and Jonsson 2009, Valois et al. 2009, Hare et al. 2016).  Smallmouth bass, were initially 

introduced into 51 Maine waterbodies as a recreational sport fishery during the period of 1868-

1881, but have since spread to hundreds of waterbodies throughout the state (Warner 2005).  

Across North America, smallmouth bass invasions have demonstrated devastating impacts to fish 

assemblages in multiple waterbodies (Rahel and Olden 2008).  And, with increasing 

temperatures, suitable habitats for warm-water species, such as smallmouth bass, are increasing 

while habitat for cold-water species, such as Atlantic salmon, are shrinking (Mohseni et al. 

2003).  

Atlantic salmon were initially listed as a Federally Endangered species in the year 2000 

under the United States of America Endangered Species Act (1973).  Since then, salmon 

recovery action plans, involving both multiple agencies and level of governance have sought to 

counteract declining Atlantic salmon populations seen in the Gulf of Maine Distinct Population 

Segment (GOM DPS) (NMFS 2016, U.S. Fish and Wildlife Service and NMFS 2018).  These 

efforts have focused on objectives including removing physical barriers, such as dams, that 

blocked salmon and other sea run fishes from reaching headwater streams necessary for 

spawning, replacing traditional culverts with fish-friendly culverts on both public and private 

properties, and increasing the effectiveness of stocking efforts in Maine streams (U.S. Fish and 

Wildlife Service and NMFS 2018).  

Despite these many efforts, Atlantic salmon are still at risk of extinction.  In 2016, 

Atlantic salmon were included in the National Oceanic and Atmospheric Administration’s 

(NOAA), ‘Species in the Spotlight’ campaign, which introduced a newly revised 5-year action 

plan that targeted the most effective strategies moving forward with salmon recovery efforts.  

These reports highlight the need for continued work in removing barriers from rivers, gaining 
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more insight into Atlantic salmon decline in the marine environment, ensuring Maine’s streams 

support all life stages, and increasing smolt production in these streams; all in light of a changing 

climate (NMFS 2016).  

The example of continual salmon decline and ongoing recovery efforts, demonstrates the 

complexity inherent to the salmon situation in Maine, but also highlights both the direct and 

indirect linkages that exist within the greater coupled human-natural system (Mather et al. 1998).  

By definition, ecological systems are complex (Bar-Yam 1997); they are comprised of numerous 

components, as well as multiple levels of hierarchical structure that behave both independently 

and in concert with one another (Nekola and Brown 2007).  Odum (1959) described organization 

of the biological world as a continuous spectrum ranging from the less complex protoplasm to 

the inherently more complex biosphere.  The study of ecology ranges from the organismal level 

to that of the biosphere.  Each level possesses characteristics unique to only that level and levels 

are connected to one another in a manner where each  level’s existence is dependent upon that of 

the other levels in the spectrum (Odum 1959). 

Factors such as climate change serve as an additional layer of complexity atop the already 

recognized intricacies of ecological systems.  This often leaves ecologists, policymakers, and 

managers without a clear approach for tackling multifaceted issues surrounding the impacts of 

climate change on ecological systems (Scheraga and Grambsch 1998, Regier and Meisner 2004). 

Moreover, multifaceted issues are unlikely to be resolved without collaborative interdisciplinary 

approaches aimed at informing adaptive management and policy endeavors (Poff et al. 2003, Liu 

et al. 2007).  Fundamental to our attempts at providing solutions, we need to consider the 

following questions (1.) how does abrupt climate change alter the dynamics of coupled human 

natural systems? and (2.) how do we inform policy and management to improve environmental 
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security by enhancing resilience and adaptation of coupled human natural systems experiencing 

abrupt climate change? 

Given the ongoing threats Atlantic salmon face in Maine streams, especially concerning 

climate change and competition from non-native species, I present research that addresses the 

following questions  

 

(1.) How is the performance of juvenile Atlantic salmon in Maine streams impacted by 

changes in temperature and competition with non-native smallmouth bass?  

Warming waters due to climate change have the ability to directly impact the performance of 

cold-adapted salmon as well as alter interactions with non-native warmwater competitors such as 

smallmouth bass.  Here I use temperature-controlled microcosm experiments to address a gap in 

knowledge surrounding the potential for climate-driven warming to exacerbate the effects of 

competition between native and invasive species from different thermal guilds.   

 

(2.) Is juvenile salmon condition correlated with annual changes in temperature and 

precipitation at multiple scales over a 16-year period?  

Temperature and precipitation play vital roles governing the physiology, performance, 

and overall condition of Atlantic salmon.  While many studies have examined salmon 

performance in relation to changes in temperature and precipitation, few studies have utilized 

historical datasets to investigate how salmon condition may be affected by temperature and 

precipitation across the landscape, especially at multiple scales, as well as through time.  Here, I 

used dynamic regression models to analyze the relationship between juvenile Atlantic salmon 

condition, temperature, and precipitation for 9 streams across 4 drainages over a 16-year period.  
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(3.) What is the role of juvenile Atlantic salmon in Maine streams and how does the 

presence of predatory Atlantic salmon impact invertebrate community structure and basal 

resources compared to omnivorous crayfish?  Within streams, interactions among consumers 

exert top-down and bottom-up forces in food webs that alter community composition and food-

web structure and function.  However, little is known about interactions between omnivorous 

crayfish and predatory Atlantic salmon in Maine streams, how interactions between these two 

species may impact stream food webs, and the resulting consequences for juvenile Atlantic 

salmon.  Therefore, I used an instream mesocosm experiment to investigate the food-web 

implications of interactions between omnivorous crayfish and predatory Atlantic salmon.
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CHAPTER 2 

UNRAVELING THE IMPACTS OF COMPETITION AND WARMING  

ON JUVELINE ATLANTIC SALMON (SALMO SALAR) PERFORMANCE IN MAINE 

STREAMS 

 

Introduction 

The interactive effects of climate warming and competition from non-native organisms 

threaten native species (Rahel and Olden 2008).  Over the last century, temperature has increased 

approximately 1oC, a warming trend that is expected to continue over the next century (IPCC 

2018).  Associated with this warming is an increase in extreme weather events, where heatwaves, 

flooding, and droughts occur more frequently and for prolonged durations than historic norms 

(IPCC 2013).  As a result, freshwaters globally are threatened by climate-driven changes that 

alter the overall composition and dynamics of freshwater communities (Rahel and Olden 2008, 

Heino et al. 2009, Perkins et al. 2010, Woodward et al. 2016).  

One manner by which freshwater species are impacted by climate change is through 

thermal impacts on physiological performance that influence the fitness of individuals 

(Angilletta et al. 2002).  The consequences of temperature-dependent interactions are often 

evident in ectotherms, as their metabolism, growth, and activity are driven by environmental 

temperature (Angilletta et al. 2002).  This also means that environmental temperature influences 

not only an individual’s performance, but also their overall fitness (Huey and Kingsolver 1989).  

Moreover, temperature change can alter outcomes of interactions among species that differ in 

thermal optima and tolerances (Dell et al. 2014, Gilbert et al. 2014, Figure 2.1A).  However, 

while we have a firm understanding about the temperature dependence of ectotherms, which 

comprise the majority of freshwater organisms, our knowledge of how temperature influences 

interactions among ectotherms is less understood.  As temperatures rise, two competing species 
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with similar thermal performance curves (i.e. similar thermal ranges and optimum temperatures) 

might experience a symmetrical, or identical, response to warming.  Given that both species 

respond similarly, the manner in which these two species interact with one another may not 

necessarily be impacted (Figure 2.1A).   

Climate-induced changes to freshwater systems have also facilitated the spread of 

invasive, warm adapted species into previously unsuitable habitat (Fausch et al. 2001, Bunn and 

Arthington 2002, Paukert et al. 2016), increasing the potential for interactions between 

individuals from thermal guilds that were previously isolated from one another.  In contrast to 

our previous example, we might expect an asymmetrical response between two competing 

species from different thermal guilds, where ultimately the warmwater species with a higher 

temperature tolerance outperforms the coldwater species at higher temperatures (Figure 2.1B).  

This is similar to the situation that juvenile Atlantic Salmon, ATS, (Salmo salar) may face in 

Maine streams, where warming waters have facilitated the spread of Smallmouth Bass, SMB, 

(Micropterus dolomieu) (Rahel and Olden 2008) that likely outcompete juvenile ATS for both 

space and resources (Valois et al. 2009).  

Prior to being listed as a Federally Endangered Species, ATS were once abundant in New 

England’s freshwaters.  Multiple anthropogenic stressors, primarily overfishing and habitat 

degradation from deforestation, damming, and pollution, drove ATS declines (Buchsbaum et al. 

2005, Saunders et al. 2006, Schmitt 2015).  Now Maine harbors the last wild populations of ATS 

in the United States.  ATS spend about 2-3 years as juveniles in Maine streams before smolting, 

whereby physiological changes prepare them for transition to the marine environment 

(McCormick et al. 1998). 
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Despite ongoing conservation and recovery efforts, ATS still face several threats as 

juveniles, including climate-driven warming that could occur rapidly and unpredictably, along 

with competition from introduced and invasive species, such as SMB (Valois et al. 2009).  By 

2050, mean temperatures in Maine are expected to increase 1-1.7oC and ‘hot days’ (when 

temperatures spike above 35oC) are expected to triple in occurrence (Fernandez et al. 2015).  

Aside from directly impacting the physiology and performance of juvenile ATS, warming waters 

could both facilitate the range expansion of SMB and alter interactions between ATS and SMB 

that already coexist.  SMB are a highly invasive species (Jackson 2002), with invasions 

documented across North America (MacRae and Jackson 2001), often resulting in detrimental 

impacts to invaded waterbodies (Zanden et al. 1999, Jackson 2002, Vander Zanden et al. 2004).  

SMB have been present in Maine since they were introduced during the mid-1800s and have 

since spread prolifically throughout the state (Warner 2005). 

In order to address the gap in research surrounding the impacts of climate-driven 

warming and their potential to exacerbate the effects of invasive competitors, we conducted an 

experiment investigating the temperature-dependence of feeding behavior and agonistic 

interactions between juvenile ATS and SMB in artificial stream channels at 18oC and 21oC.  

ATS are a coldwater fish with a thermal optimum for growth of approximately 18-19oC (Forseth 

et al. 2001, Murphy 2004), whereas warmwater SMB have a higher thermal optimum of 

approximately 22-26oC (Horning II and Pearson 1973, Whitledge et al. 2002, 2003).  Therefore, 

we predicted that ATS would feed less at 21oC than at their thermal optimum of 18oC.  We also 

predicted that ATS feeding would be suppressed by the presence of SMB a known competitive 

forager (Wuellner et al. 2011).  We also predicted an interactive effect where the presence of 

SMB would reduce ATS feeding more at higher compared to lower temperatures.  Secondly, 
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aggression in salmonids (Keenleyside and Yamamoto 1962, Cutts et al. 1998, Turnbull et al. 

1998, Nicieza and Metcalfe 1999, Abrams 2000) and SMB are both well documented.  However, 

aggression in SMB juveniles has been noted from early life stages (Sabo et al. 1996) and may 

provide  an advantage when competing with other species for food (Wuellner et al. 2011).  

Therefore, we predicted that SMB would exhibit higher levels of intra- and interspecific 

aggression than ATS in both the 18oC and 21oC treatments. 

 

Methods 

We tested for the temperature-dependence of competition between wild SMB and 

hatchery-reared ATS juveniles, in a microcosm experiment that investigated how feeding and 

aggressive behaviors of ATS are impacted by the presence and absence of SMB at two 

temperatures.  All experiments took place at the Aquaculture Research Center located at the 

University of Maine campus (Orono, ME).  Trials occurred 28 August to 20 October 2017.  SMB 

were collected by both backpack and boat electrofishing in the Kenduskeag and Penobscot 

Rivers of Maine between June and September 2017 (range of fork length 4.4 - 7.3 cm, median 6, 

mean 5.97+0.62 S.D.).  All SMB were dipped in a 5ppt saline solution for 2 minutes before 

entering the holding tanks to prevent bacterial and/or fungal infections.  SMB holding tanks were 

also treated with preventative measures including continual antifungal treatments (Victorian 

Green and Kordon® RidIch Plus Solution) and 600g of salt per 757 liters of water when needed.  

Age-0 ATS (F1, East Machias River genetic strain) were hatchery raised and provided by the 

Aquatic Research Center in East Machias, Maine (range of fork length 4.8 - 11.9 cm, median 7.1, 

mean 7.19+ 1.19 S.D.) that is fed by water from the adjacent East Machias River.  All fish were 

kept in species specific holding tanks for one week before use in trials and during this time were 
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provided approximately 3 percent body weight in food each day, fish actively fed on Bio-Oregon 

pellets and freeze-dried bloodworms (Chironomidae).  Fish in holding tanks experienced a 15:9 

LD cycle, corresponding to summer months in Maine, with lights on at 0530 hrs and off at 2030 

hrs with a 30 min sunrise/sunset lamp that gradually lightened and darkened the laboratory.  

The flow-through aquaria simulating stream channels were created by placing a standpipe 

(diameter = 22 cm) in the center of a cylindrical tank (88 x 45.5 cm) filled with gravel and two 

half-bricks for shelter. Flow was generated using a Taam Rio+ 1000, Rio©, powerhead pump 

(1025.85 LPH) and all velocities were calibrated manually with a flow meter.  In all trials, 

velocity did not exceed 0.07 m/s (mean 0.043 + 0.003 S.E., range of tank means 0.04-0.06).  

Water temperature was manipulated using a combination of Fluval 100 watt submersible heaters 

and adjusting inflow rates of cool ground water (approximately 9-11oC) in each tank.  

Each trial consisted of 24 fish assigned randomly to a 3x2 factorial design (three 

combinations of fish: ATS (n=4), SMB (n=4), and ATS (n=2) x SMB (n=2), and two 

temperature treatments: low temperature (mean 18oC+0.004 S.E., range of tank means 17.9-18.3) 

and high temperature (range of tank means 20.6-21.2) with each of the 6 treatment combinations 

replicated 6 times by running 6 trials.  However, ATS only treatments were replicated 12 times 

due to having more ATS than SMB.  All fish were only used once. 

Each trial lasted a total of 72 hours (see Figure 2.2 for timeline of specific events); 

approximately 48 of these hours were acclimation and also allowed for tanks in the high 

temperature treatments to reach 21oC.  During the acclimation period, all tanks were covered 

with screening and only briefly opened when food was added to each tank.  After 48 hours, 

screening was removed and curtains surrounding the tanks were erected, which minimized 

potential disturbance from human activity in the room.  Video cameras, Swann Surveillance 
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System with a field of view of 77 degrees, fixed above each tank recorded fish activity for the 

final 24 hours of the trial.  Fish were fed 1.5 percent of the tank body weight with pre-weighed 

freeze-dried bloodworms that were manually distributed among tanks 4 times per day (0530 hrs, 

1030 hrs, 1530 hrs, and 2030 hrs EST).  All fish were sacrificed at the conclusion of each trial 

with a lethal dose of buffered MS-222 (250 mg/L in an aerated tank).  Fork length measurements 

of each individual were recorded. 

A camera fixed approximately 95 cm above the center of each tank, allowed us to record 

fish behavior for the duration of each trial.  Video files were manually reviewed on a minute by 

minute basis for the 10 minutes preceding food addition to the tanks (Pre-Feeding) and the 10 

minutes following food addition to the tanks (Post-Feeding).  Thus, we could assess fish 

behavior when food was limited and when food was abundant.  We recorded feeding behavior 

when a fish broke the surface in an attempt to consume the floating food items, as well as 

aggressive behaviors (i.e. chases, charges as described by Keenleyside and Yamamoto 1962).  

The top-down perspective of our cameras did not provide the proper vantage point to accurately 

observe and report nipping behavior described by Keenleyside and Yamamoto (1962).  

Data Analysis 

Mean feeding and aggressive encounters were visually assessed across one-minute 

intervals to identify overall patterns in feeding activity and aggression by species. Generalized 

linear models (GLM’s) were used to examine the main and interactive effects of temperature 

(low and high treatments) and competition (presence and absence of each species) on ATS and 

SMB feeding both pre- and post- feeding.  Feeding observations were averaged for both the 10 

minute pre-feeding period and 10 minute post-feeding period and mean per capita feeding 

observations per species were calculated by dividing total feeding rates by species abundance in 
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each tank.  All feeding data were loge transformed to help meet assumptions of normality.  As 

with our feeding observations, aggression was grouped for the 10 minutes pre-feeding and 10 

minutes post-feeding.  Aggressions occurred less frequently than feeding, and it was common for 

no aggressions to be observed in a given species-replicate combination. Thus, we used a zero 

inflated Poisson model (Lambert 1992, Desmarais and Harden 2013) to examine the main and 

interactive effects of temperature (low and high treatments) and competition (presence and 

absence of each species) on ATS and SMB aggression both pre- and post-feeding.  Because zero 

inflated models require integer data, in order to account for the number of fish per species in 

each tank, we calculated an adjusted aggression observation based on number of individuals of 

each species in each tank.  We calculated adjusted aggression by multiplying our aggression 

observations by the number of fish in each tank and dividing by the abundance of each species 

.  These methods allowed us to assess 

per capita fish behavior at two temperatures. However, since we did not conduct a density-

controlled experiment we were unable to explicitly separate the effects of interspecific 

competition from intraspecific density. 

Results 

Feeding Behavior   

Overall, we found that during the pre-feeding period, with only ambient food in the tanks, 

feeding levels remained low for both species in both temperature treatments.  However, post-

feeding, SMB fed more on average than ATS in both temperature treatments (Figure 2.3).  Pre-

feeding, ATS fed less frequently in the higher temperature treatment when SMB were present, 

but more frequently when bass were absent (Table 2.1A, Figure 2.4A), indicating a strong 

interactive effect of both temperature and competition on ATS feeding behavior.  In the post-
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feeding period, feeding activity was reduced at high temperatures when bass were present.  

However, these results indicated only a weak effect of competition when food was abundant 

(Table 2.1B, Figure 2.4B).  Conversely, we found that during the pre-feeding period SMB 

feeding increased in the presence of ATS (Table 2.1C, Figure 2.4C) and this effect was 

consistent across both temperatures.  However, post-feeding SMB feeding rates were 

consistently high and did not differ between temperature or competition treatments (Table 2.1 D, 

Figure 2.4D).   

Aggressive Behavior  

Overall during the pre-feeding period, ATS showed more aggression compared to SMB 

in the low temperature treatment, with SMB initially showing increased levels of aggression 

immediately following food addition to our tanks and ATS aggression only increasing 

approximately five minutes after food was added to the tank.  In the high temperature treatment, 

SMB showed increased levels of aggression pre-feeding.  Post-feeding, SMB aggression peaked 

approximately five minutes after food was added to the tanks and ATS aggression increased to 

levels surpassing that of SMB approximately eight minutes after food was added to the tanks 

(Figure 2.5).  ATS aggression in the 10 minute pre-feeding period was reduced when SMB were 

present (Table 2.2A, Figure 2.6A).  Post-feeding, however, we found that ATS aggression 

increased both in the presence of SMB and with temperature (Table 2.2B, Figure 2.6B), however 

there was no interactive effect of SMB and temperature.  For SMB we found an effect of 

competition, where SMB aggression increased when ATS were present pre-feeding and we 

detected a weak interactive effect between competition and temperature, where SMB exhibited 

less aggression in the higher temperature treatment when ATS were present (Table 2.2C, Figure 

2.6C).  Post-feeding we found that aggression in SMB significantly increased when ATS were 
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present and when temperatures were higher (Table 2.2D, Figure 2.6D).  Furthermore, we found 

interactive effects between competition and temperature, where we observed more SMB 

aggression when ATS were present at higher temperatures (Table 2.2D, Figure 2.6D). 

 

Discussion 

Our research suggests that increasing temperatures and competition from invasive SMB 

could negatively impact juvenile ATS performance in Maine streams.  As predicted, we found 

that ATS exhibited less per capita feeding activity in the presence of SMB when temperatures 

were high, compared to when temperatures were low and SMB were absent (Figure 2.4A).  

However, this was only observed for the pre-feeding period.  In the post-feeding period, we 

found a marginally significant effect of competition, where ATS fed less per capita when SMB 

were present (Figure 2.4B).  

Interestingly, ATS feeding activity was not reduced by the three degree increase in 

temperature alone, either pre- or post-feeding.  Feeding activity in fish typically increases until a 

thermal optimum is reached, at which point feeding begins to rapidly decline (Elliott 1976).  

Optimal temperature for feeding can be a few degrees higher than that for growth (Handeland et 

al. 2008).  ATS are a cold water species with a thermal optimum of approximately 18oC (Murphy 

2004).  Temperatures exceeding 18oC could become thermally taxing as temperatures surpass 

that of optimal growth and consumption and approach the upper limits of ATS thermal range, 

leading to a suppression in feeding behavior.  Higher temperatures that exceed an organism’s 

thermal optimum become problematic because metabolic costs cannot be met by the energetic 

gains of feeding; resulting in lower net energy gain and reduced fitness (Pörtner and Peck 2010).  

For example, Elliott (1991) found ATS parr had a mean upper feeding limit of 22.5oC, beyond 
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which feeding activity ceased.  Similarly, sockeye salmon (Oncorynchus nerka) feeding 

increased until the optimal temperature of 15oC, and then steadily declined at higher 

temperatures resulting in decreased growth (Brett 1971). 

Comparatively, it was not surprising that SMB feeding appeared to be unaffected by the 

higher temperatures that individuals were exposed to during our experiment.  Water temperature 

of 21oC is below the thermal optimum of 22oC and 26oC (Horning II and Pearson 1973, 

Whitledge et al. 2002, 2003).  In fact, maximum consumption for sub-adult to adult SMB has 

been shown to occur at approximately 22oC (Whitledge et al. 2003).  And, studies where juvenile 

SMB were acclimated to temperatures ranging between 16 and 35oC reported maximal growth at 

temperatures between 26oC and 29oC (Horning II and Pearson 1973).  Thus, it is actually 

surprising that we did not observe less feeding in the low temperature treatment. 

We did find, however, that feeding activity in SMB significantly increased when ATS 

were present pre-feeding (Figure 2.4C); something we did not find post-feeding.  These results 

parallel the findings of Wuellner et al. (2011), where SMB were quick to feed when in the 

presence of another species upon food being added into tanks.  We also noted that SMB feeding 

increased immediately following food addition to the tanks in magnitudes much higher than that 

of ATS.  It has been suggested that the aggressive nature exhibited by SMB while feeding, could 

provide a competitive advantage when foraging in the presence of another species (Wuellner et 

al. 2011). 

In our trials, we found strong effects of temperature and competition on aggressive 

behaviors in both ATS and SMB.  Agonistic interactions among salmonid conspecifics are well 

documented (Keenleyside and Yamasmoto 1962, Cutts et al. 1998, Turnbull 1998, Nicieza and 

Metcalfe 1999, Abrams 2000) and several studies have examined ATS aggression in relation to 
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feeding (Keenleyside and Yamamoto 1962, Symons 1968, Slaney and Northcote 1974); with 

many studies reporting aggression to be closely associated with feeding (Wańkowski and Thorpe 

1979, Noble et al. 2007) and density (Fenderson and Carpenter 1971).  However, temperature-

dependent aggression in salmonids is poorly understood, especially when considering 

interactions between salmonids and a competitor (Gibson 2015). 

ATS aggression was reduced in the presence of SMB in the pre-feeding period, 

suggesting a strong effect of competition on aggressive behavior under food limited conditions 

(Figure 2.6A).   Gibson (2015) also found that juvenile ATS aggression was suppressed when 

brown trout, Salmo trutta L., were present.  Given that SMB are aggressive competitors while 

foraging, it is not surprising that ATS aggression would be suppressed when competing for 

limited quantities of ambient food and suspended particles during the pre-feeding period.  

Indeed, we did find that aggression in SMB increased when ATS were present during the pre-

feeding period.  We also found that SMB aggression increased at low temperatures when salmon 

were present.  Similarly, previous research by MacCrimmon and Robbins (1981) reported higher 

levels of SMB aggression at 10oC compared to elevated temperatures reaching upwards of 30oC. 

Post-feeding, however, we found the opposite effect of temperature and competition on 

salmonid aggression, where ATS aggression increased both in the presence of SMB and with 

increased temperature (Figure 2.6B).  Aggression in salmonids occurs most often during periods 

of feeding (Keenleyside and Yamamoto 1962, Symons 1968, Slaney and Northcote 1974) so it is 

not surprising that ATS aggression was higher post-feeding.  We also found that SMB 

aggression post-feeding increased when ATS were present and this effect was strongest at high 

temperatures when both species were present (Figure 2.6B).  This temperature-dependence of 
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competition on SMB aggression suggests stronger interactions between juvenile ATS and SMB 

individuals as waters warm with climate change. 

Taken together these results suggest that temperature, competition, and food availability, 

play integral roles in shaping the performance of juvenile ATS in Maine streams.  There are 

several implications of these results.  Most importantly, non-native (invasive) SMB have the 

potential to outcompete native ATS as Maine’s climate continues to change and waters continue 

to warm.  Rapid changes in temperature, in addition to gradually warming waters could force 

ATS to perform in sub-optimal conditions that impede their ability to effectively compete for 

resources.  These warming waters could also further facilitate the range expansion of SMB, a 

highly invasive species (Jackson 2002) that has spread prolifically throughout the State of Maine 

(Warner 2005).  

Since few studies have examined ATS interactions with non-native species (Fausch 

1998), our understanding of how spatial partitioning could influence competitive interactions 

remains limited.  Wathen et al. (2012) examined habitat use between ATS and SMB and found 

that when occupying the same habitat, these species may partition themselves in a manner that 

prevents high levels of direct competition.  While the results reported by Wathen et al. (2012) 

suggests that ATS were inferior competitors, it could also offer a level of optimism that these 

two species may be able to co-exist as juveniles in Maine streams.  However, our study is the 

first of our knowledge to directly test how temperature could impact juvenile ATS and SMB 

interactions where both species are forced to interact with one another.  In such situations, our 

results suggest that SMB presence could significantly impact ATS performance.  In natural 

streams where interactions occur across a gradient of temperatures, the results are likely to be 

more complex.  However, since we did not control for density by including treatments examining 
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behavior of 2 salmon only and 2 bass only, we are unable to separate the effects of competition 

and density in our results.  Behavior in fish can be density dependent, which can influence 

interactions among individuals (Ruzzante 1994) and ultimately affect salmonid growth 

(Grossman and Simon 2020).  In tanks slightly larger than ours with a volume of 1.67cm3, 

Keenleyside and Yamamoto (1962) found that juvenile salmon aggression increased with density 

between 2 and 8 individuals.  As density increased above 14 salmon, group behavior was 

observed and aggression rates were suppressed.  In tanks with a volume of 1.93x105 cm3, 

Fenderson and Carpenter (1971) also found similar results where salmon aggression increased 

until a density of 8 fish was reached and plateaued through their highest treatment of 16 fish.  In 

comparison, we observed the behavior of 4 fish in tanks with a volume of approximately 

1.43x105 cm3 and therefore our results were unlikely to be obscured by the effects of schooling 

behavior.  We also observed the behaviors of hatchery ATS competing with wild SMB.  

Hatchery ATS can be more aggressive than wild conspecifics, especially while feeding (Einum 

and Fleming 1997),  leading to decreased growth rates and reproductive output in wild 

populations of ATS (Jonsson and Jonsson 2006).  Therefore, if hatchery ATS have the potential 

to be outcompeted by SMB, as indicated by our results, then wild ATS could face even more dire 

consequences as temperatures rise and the potential for competition with SMB increases. 

While our results offer new insights regarding temperature-dependent effects of 

competition on ATS behavior, the manner in which climate change impacts streams will be 

much more complex.  Changes in temperature often occur simultaneously with changes in stream 

flow and have the ability to impact multiple species, leading to complex and often uncertain 

outcomes (Walther 2010, Woodward et al. 2010, 2016).  Conducting future projects over a 

longer timeframe and including both temperature and flow variability, could provide further 
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detail into the consequences of temperature and flow-dependent interactions to both fish 

behavior as well as growth.  Overall, the results discussed here pose cause for concern given the 

threats that juvenile ATS face in Maine streams as an endangered species. 

 

 

Table 2.1 Results of GLM analysis examining the main and interactive effects of competition 

and temperature on salmon and bass feeding behavior before and after food addition to tanks. 

 Timing 

 

Species Effect F df P 

A. Pre-feeding ATS Comp 2.14 1,32 0.15 

   Temp 0.03 1,32 0.87 

   Comp x Temp 22.5 1,32 <0.001 

       

B. Post-feeding ATS Comp 3.02 1,32 0.09 

   Temp 0.44 1,32 0.51 

   Comp x Temp 1.49 1,32 0.23 

       

C. Pre-feeding SMB Comp 5.43 1,20 0.03 

   Temp 0.17 1,20 0.68 

   Comp x Temp 0.43 1,20 0.52 

       

D. Post-feeding SMB Comp 2.47 1,20 0.13 

   Temp 0.01 1,20 0.91 

   Comp x Temp 0.48 1,20 0.5 
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Table 2.2 Results of zero-inflated poisson model examining the main and interactive effects of 

competition and temperature on salmon and bass aggression before and after food addition to 

tanks. 

 

 Timing 

 

Species Effect Estimate 

Standard 

Error Z Value P 

A. Pre-feeding ATS Comp 1.02 0.47 2.18 0.03 

   Temp 0.98 0.7 1.4 0.16 

   Comp x Temp -0.28 0.55 -0.5 0.62 

        

B. 

Post-

feeding ATS Comp 0.9 0.3 2.98 0.003 

   Temp -2.11 0.99 -2.13 0.03 

   Comp x Temp 1.04 0.66 1.6 0.11 

        

C. Pre-feeding SMB Comp 1.67 0.39 4.24 <0.001 

   Temp 1.41 0.93 1.51 0.13 

   Comp x Temp -0.86 0.5 -1.71 0.09 

        

D. 

Post-

feeding SMB Comp 2.26 0.16 13.76 <0.001 

   Temp 1.16 0.53 2.2 0.03 

   Comp x Temp -1.11 0.29 -3.86 <0.001 
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Figure 2.1 Hypothetical performance curves of two interacting species under varying scenarios 

as temperatures change.  Panel A demonstrates two interacting species with similar thermal 

optimums from the same thermal guild before a temperature increase.  As temperatures rise these 

species may experience a symmetrical response to temperature change; indicated by arrows of 

the same width on the righthand side of the figure.  Panel B demonstrates two interacting species 

from different thermal guilds, with different thermal optimums before an increase in temperature.  

The blue performance curve represents a coldwater species with a thermal optimum of 18oC and 

the red performance curve indicates a warmwater species with a thermal optimum of 24oC.  

These species may experience an asymmetrical response as temperatures warm; indicated by 

arrows with different widths on the righthand side of the figure.  Performance curves with 

varying slopes can also lead to asymmetrical responses of competing species. 
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Figure 2.2 Timeline outlining the standard events of a typical trial during the microcosm experiment.  Each trial lasts for a total of 72 

hrs, allowing for 48 hrs of acclimation to the experimental arena and 24 hours for recording fish activity.  Arrows surrounding the 

“Time” increments indicate that a trial can begin at any time on the first day of a trial and subsequent 48 and 72 hr intervals will occur 

with respect to the initial starting time. 
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Figure 2.3 Overall mean feeding for juvenile ATS and SMB over the 10 minute period pre- and 

post-feeding (+ 1 Standard Error).  Panel A displays both ATS and SMB feeding in the 18oC 

treatment.  Panel B displays salmon and bass feeding in the  21oC treatment. 



27 
 

 

Figure 2.4 Mean feeding (+ 1 SE) observations of juvenile ATS and SMB at 18oC and 21oC.  

Panel A Mean ATS feeding during the pre-feeding period in the presence and absence of SMB.  

Panel B Mean ATS feeding during the post-feeding period in the presence and absence of SMB.  

Panel C Mean SMB feeding during the pre-feeding period in the presence and absence of ATS.  

Panel D Mean SMB feeding during the post-feeing period in the presence and absence of ATS. 



28 
 

Figure 2.5 Overall mean aggressive enounters observed for juvenile ATS and SMB over the 10 

minute period pre- and post-feeding (+ 1 Standard Error).  Panel A displays both ATS and SMB 

aggressive encounters in the 18oC treatment.  Panel B displays ATS and SMB encounters in the  

21oC treatment. 
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Figure 2.6 Aggressive encounters observed for juvenile ATS and SMB at 18oC and 21oC both 

pre- and post-feeding. Panel A Mean ATS adjusted aggression during the pre-feeding period in 

the presence and absence of SMB.  Panel B Mean ATS adjusted aggression during the post-

feeding period in the presence and absence of SMB.  Panel C Mean SMB adjusted aggression 

during the pre-feeding period in the presence and absence of ATS.  Panel D Mean SMB adjusted 

aggression during the post-feeing period in the presence and absence of ATS. 
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CHAPTER 3 

INTERANNUAL VARIABILITY IN TEMPERATURE AND PRECIPITATION HAVE 

STREAM-SPECIFIC IMPACTS ON JUVENILE ATLANTIC SALMON CONDITION IN 

MAINE STREAMS. 

 

 

Introduction 

Freshwaters have been detrimentally impacted by changes in climate that alter the 

suitability of habitat for organisms across the globe.  Both warming waters and changes in 

hydrologic regimes have had broadscale impacts on freshwater systems, including declines in 

individual performance, facilitation of range shifts and invasions, losses of biological diversity, 

and species’ extinctions (Xenopoulos et al. 2005, Rahel and Olden 2008, Woodward et al. 2010, 

Hendry et al. 2011).  However, the response of freshwater systems to climate change is not 

uniform across the landscape and varies with temporal and spatial scales as well as species 

identity (Falke and Fausch 2010).  Simultaneous changes in environmental factors lead to 

uncertain outcomes.  For instance, elevated temperatures coupled with periods of drought will 

likely result in more severe stressors on cold-water species than when elevated temperatures 

coincide with higher rainfall (Woodward et al. 2016).  The effects stemming from changes in 

environmental variables are also not always immediately apparent, producing effects that 

manifest at a later period in time (Copeland and Meyer 2011, Comte and Grenouillet 2013, 

Comte et al. 2013).  Given that factors such as temperature and hydrologic regimes are crucial 

components governing the life histories of freshwater organisms, there has been widespread 

uncertainty regarding the welfare of freshwater ecosystems and their fisheries across the globe 

(Ficke et al. 2007).   

 Stream morphology and characteristics of the surrounding physical environment are 

linked to a waterbody’s vulnerability to changes in air temperature and precipitation (Snelder and 



31 
 

Biggs 2002).  For example, vulnerability to warming relates inversely to groundwater input and 

shading (Allen and Castillo 2007).  While the response of freshwater systems to climate change 

has been well-studied at particular scales or defined periods of time, there is a gap in knowledge 

regarding how freshwater fish respond to environmental changes at multiple scales across the 

landscape (Fausch et al. 2002).  Fausch et al. (2002) advocated for scale to be included in 

riverine research in attempts to capture the spatial and temporal trends in fisheries that exist 

across the landscape; all with the intent to provide a more in-depth understanding of the 

complexities surrounding freshwater fisheries and better inform management. 

In particular, there has been mounting concern for salmonids and their ability to survive 

as patterns in temperature and precipitation continue to shift (Mangel 1994, Isaak et al. 2012).  

This includes cold-adapted Atlantic salmon (Salmo salar), which have been Federally 

Endangered since 2000 and are considered highly vulnerable to changes in climate (Hare et al. 

2016).  Several factors contributed to the dramatic declines of Atlantic salmon observed over the 

last century, including overfishing, pollution, damming, and habitat degradation (Buchsbaum et 

al. 2005, Saunders et al. 2006, Schmitt 2015).  Currently, Maine harbors the last wild populations 

of Atlantic salmon in the United States.  Salmon have an intimate connection with Maine’s 

freshwater environments, spending 1-3 years in streams as juveniles.  However, changes in air 

temperature that could cause waters to warm and changes in precipitation that could lead to 

alterations in hydrologic regimes, have the ability to impact the entire stream community as well 

as directly impact the performance of juvenile Atlantic salmon in Maine waters and threaten their 

recovery (Jonsonn and Jonsson 2009).  

New England’s climate is warming faster than that of any other region in the continental 

United States (Karmalkar and Bradley 2017).  In Maine, average annual temperature has 
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increased 1.48oC over the last century and there has been an increase in warmer than average 

summers, with Maine’s coastal region having experienced the largest magnitude of change 

compared to the rest of the state (Fernandez et al. 2020).  Average annual precipitation has also 

increased over 15 percent in the last 100 years (Fernandez et al. 2020).  Observable effects 

stemming from Maine’s changing climate have been documented in decreases in annual 

snowfall, later ice-on and earlier ice-out dates (Dudley and Hodgkins 2002) along with changes 

in seasonal variation in stream flow (Hodgkins et al. 2002, 2005), which indicate later onset of 

the winter season and earlier spring conditions.  

Despite ongoing recovery efforts, Atlantic salmon are still at risk of extinction and 

climate change stands to further exacerbate the serious issues that salmon already face in Maine 

streams.  While multiple studies have examined the impacts of temperature or stream velocity on 

the performance of juvenile salmon (Arnold et al. 1991, Elliott 1991, Handeland et al. 2008), 

fewer studies have utilized historical datasets to address whether Atlantic salmon in their natural 

environment have been impacted by such environmental stressors (Swansburg et al. 2002, Bacon 

et al. 2009, Mills et al. 2013), even fewer studies include scale as a factor.  With access to 40 

years of salmon survey data from the Department of Marine Resources (DMR) in Maine, we 

used dynamic regression models to analyze the relationship between juvenile Atlantic salmon 

condition, temperature, and precipitation for 9 streams across 4 drainages over a 16-year period.   

We predicted that the condition factor for juvenile Atlantic salmon would be associated 

with changes in environmental variables such as air temperature and precipitation.  As 

temperatures increase, species may be forced to perform in sub-optimal conditions which are 

thermally taxing; the effects of which manifest through poor performance and mortality 

(Kingsolver and Huey 2008, Angilletta et al. 2010).  For Atlantic salmon which are a coldwater 
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fish with an optimum temperature of approximately 18oC (Murphy 2004), waters that exceed 

their optimum temperature could force salmon to perform in the upper limits of their thermal 

range, resulting in declined performance.  Since fish condition is a reflection of growth (Nash et 

al. 2006) and therefore an indicator of fish performance in streams, we predicted that higher 

temperatures would be associated with a lower condition factor.  Salmon performance could also 

be affected by changes in precipitation that lead to variations in hydrologic regimes.  Atlantic 

Salmon juveniles are adapted to surviving in high flow environments (Arnold et al. 1991) and 

perform better than potential competitors in these habitats.  Furthermore, reduced precipitation 

can lead to a reduction in freshwater habitat which condenses interaction space among species 

and amplifies the effects of competition (White et al. 2016).  Thus, we expected lower condition 

values to be associated with decreasing precipitation.  We also tested for an interactive effect 

between temperature and precipitation in relation to salmon condition.  Salmonid growth is 

closely linked with both temperature and stream flow (Hayes et al. 2000), the effects of which 

cannot always be easily disentangled from one another.  We predicted that warm dry years would 

be associated with poor performance and therefore a lower condition factor.  However, the 

effects of environmental variables are not always immediately realized  and may only be 

observed at a later date (Comte et al. 2013).  At early life stages salmonids can be directly 

impacted by changes in the environment that carryover and impact their growth the following 

season (Giannico and Hinch 2003, Roussel 2007, Finstad and Jonsson 2012).  Salmon could also 

be impacted indirectly through abiotic conditions or through changes in the community or 

ecosystem.  Therefore, we included a lag of 1-year in our analyses for both temperature and 

precipitation which allowed us to assess whether salmon condition factor may be impacted, 
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whether it be directly or indirectly, by changes in environmental variables that occurred during 

the previous year. 

Methods 

Data Acquisition and Filtering 

In order to assess whether juvenile salmon condition was correlated with temperature and 

precipitation in Maine, we built a set of dynamic regressions which analyzed condition of 

juvenile salmon in relation to annual temperature and precipitation data.  In August and 

September of each year, the Department of Marine Resources (DMR) conducts electrofishing 

surveys in streams and rivers across the state of Maine.  This dataset contains length and weight 

measurements of juvenile salmon across 45 streams between 1975-2015.  Data associated with 

each stream was manually assessed for completeness and filtered to remove streams with gaps of 

two or more consecutive years.  Of the 45 streams included in the survey data, only 9 streams 

contained data suitable for examining salmon condition over multiple consecutive years.  The 

16-year period between 1999 and 2015 was found to contain the most complete set of data.  

However, gaps in data and the amount of data available for each year did vary by stream.  The 

final dataset contained length and weight measurements for juvenile salmon from 9 streams 

belonging to 4 different drainages, spanning the years 1999 to 2015 (see Table 3.1 for list of 

streams and drainages and Figure 3.1).  Extreme outliers beyond the feasibility of body allometry 

of fish condition (likely data entry errors), were removed from the dataset.  Fulton’s fish 

condition (k), was calculated for salmon juveniles using the following formula: 

 (Nash et al. 2006).  Given that water temperature and stream flow records 

were either not available for our study streams or not available for all years of our study period, 

air temperature and precipitation data available at the state level were accessed.  It is common 
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practice to utilize air temperature and precipitation when water temperature and stream flow 

information is not available (Hare et al 2016).  Moreover, studies investigating the relationship 

between water and air temperature have demonstrated that stream temperature often closely 

tracks air temperature (Swansburg et al. 2002, Isaak et al. 2012).  National Oceanic and 

Atmospheric Administration (NOAA) historical weather station records containing monthly 

averaged temperature and precipitation data for the state of Maine (Lawrimore et al. 2011) were 

accessed through Climate Reanalyzer (Climate Reanalyzer).  Temperature and precipitation were 

annually averaged to capture environmental conditions throughout the year, such as winter 

temperatures and precipitation, which can be important to early development in fish (Webb and 

McLay 1996, Einum and Fleming 2000, Jonsson and Jonsson 2009).  We calculated seasonally 

averaged summer temperatures for June, July, and August, to focus on the period when  

temperatures tend to be highest throughout the year and could impact the salmon growing 

season.  We tested the appropriateness of state level climate data by comparing temperatures at 

the state level to regional weather station data from Bangor, Maine with Pearson’s correlation. 

State and local data followed the same trends for both annually (Figure 3.2A, r=0.94) and 

seasonally averaged (Figure 3.2B, r=0.93) temperatures, indicating the state level data was a 

useful proxy.  Reliable precipitation records at the regional level were not available for 

comparison.  

Dynamic Regression Models 

All analyses were conducted in R version 3.4.4.  Data for all variables were averaged by 

year for the study period of 1999 to 2015.  Salmon condition was loge+1 transformed prior to 

analysis to meet the assumptions of normality and homoscedasticity.  Years with missing 

condition values were interpolated using the ‘na.interp()’ function from the ‘forecast’ package in 
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R.  This function utilizes linear interpolation to replace missing values in the dataset with 

estimated values.  In total, 5 of the 9 streams contained interpolated values; 3 streams contained 

only one interpolated value (Cathance Stream – 2015, East Machias River – 2009, and 

Narraguagus River – 2012), one stream contained two interpolated values (Dennys River 2013, 

2015), and one stream contained three interpolated values (Goud Brook – 1999, 2007, 2012).  

Data were then formatted as a time series.  When working with time series data, it is natural for 

the mean of the observed variable to change over time, when this occurs data is considered non-

stationary.  Therefore, detrending techniques are used to obtain a stationary dataset.  All 

variables in our dataset were detrended using regression by testing the variables against year and 

the residuals were output as the data to be analyzed (Shumway and Stoffer 2017).  This allowed 

us to examine the effects of year to year variation between our variables as opposed to longer 

term trends over time. 

Dynamic regression models allow for time ‘lags’ to be included as a model parameter 

which test for latent effects of independent variables on the dependent variable (Shumway and 

Stoffer 2017).  For example, if a time lag of 1 year is included in a model for a variable such as 

temperature, that means we are testing if temperature in a given year is correlated with condition 

the following year.  In total, we generated 4 dynamic regression models using the ‘dynlm’ 

package in R (Table 3.2).  Model 1 tested for correlations between salmon condition and 

temperature.  Model 2 tested for correlations between salmon condition and precipitation.  Model 

3 tested for correlations between salmon condition and temperature + precipitation.  Model 4 

tested for correlations between salmon condition and temperature + precipitation + 

temperature:precipitation interaction.  For each of the models above, a 1-year lag was included 

for both temperature and precipitation.  All models were run using data belonging to salmon 
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classified as both young-of-year (YOY) and parr by the Department of Marine Resources.  Thus, 

the 1-year lag included in our models reflects both the potential direct effects of temperature and 

precipitation on age 1+ individuals who experienced the previous season as well as indirect 

effects which could impact age 0+ individuals during their first year in Maine streams.  In 

addition, we explored the possibility of including salmon CPUE (catch per unit effort) and CPUE 

of a known competitor, the Smallmouth bass (Micropterus dolomieu), as a means to assess how 

density and competition from conspecifics and non-native species may impact salmon condition.  

However, CPUE data was only available for the years 2005 to 2015 and when these factors were 

included, model fits were not reliable.   

Models 1 - 4 were run at three spatial scales: the individual stream level represented the 

finest resolution, the drainage level which often contained multiple streams from the individual 

level belonging to the same drainage, and all of the streams compiled which represented the 

coarsest resolution (i.e., Downeast Maine).  Models 1-4 were first run using annually averaged 

and then seasonally averaged summer (June, July, and August) temperature and precipitation 

values.  An information theoretic approach was then used to select the “best” fitting model 

(Richards 2005) using the ‘AICcmodavg’ package to calculate Akaike Information Criterion 

scores corrected for small sample size (AICc) for each model.  Change in AICc (Δ AICc) was 

calculated by finding the difference in AICc between the model with the lowest AICc score and 

all other models.  Models with a difference greater than 4 are considered to have too much 

information loss to be a “best” fitting model (Burnham et al. 2011).  Models 1 – 4 were then 

ranked by Δ AICc and the “best” fitting model was selected after comparing Δ AICc values and 

adjusted R2 values. 
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Results 

Overall juvenile salmon included in our analyses belonged to two life stages, YOY and 

parr, with the majority of fish, approximately 96 percent, classified as parr by the DMR (Table 

3.3).  Fish ranged in length from 5.0 to 24.2 cm (Table 3.4, Figure 3.3) and average Atlantic 

salmon condition factor per stream ranged from 1.13 to 1.21 (Table 3.4).  This information 

suggested the majority of individuals included in our analyses were age 1+ fish.  Average annual 

temperature ranged from 4.69 to 7.02 oC and average annual precipitation ranged from 6.33 to 

13.04 cm.  Seasonally averaged summer temperatures ranged from 14.6 to 18.8oC and averaged 

summer precipitation ranged from 6.5 to 15.6 cm. 

Annually Averaged Temperature and Precipitation 

At the finest resolution, our analyses detected three streams where condition was 

significantly correlated with temperature and precipitation: the Dennys River, East Machias 

River, and Seavey Stream.  For Dennys River, Model 1 including temperature and a 1-year 

temperature lag best predicted salmon condition, whereby salmon condition decreased with 

warmer temperature (Table 3.5, Figure 3.4) Moreover, temperature was a significant parameter 

in all models in which it was included (Table 3.5).  The second-best model, Model 3 (Δ AICc < 

4) provided support for the influence of precipitation where increasing precipitation was 

associated with a higher salmon condition factor in Denny’s river (Table 3.5).  For both the East 

Machias River and the Seavey Stream, an effect precipitation with a 1-year lag was detected.  

For the East Machias River, precipitation with a 1-year lag best predicted salmon condition in 

Model 2, where increasing precipitation in a given year was positively associated with condition 

the following year (Table 3.5, Figure 3.5).  Precipitation with a 1-year lag was a significant term 

in each model in which it was included (Table 3.5).  Similarly for Seavey Stream, in Model 2 
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precipitation with a 1-year lag best predicted salmon condition; whereby higher amounts of 

precipitation were associated with a higher condition factor (Table 3.5, Figure 3.6).   

 At the drainage level, our models detected significant relationships between condition, 

temperature, and precipitation in 2 of the 4 drainages.  In the Dennys Drainage, which includes 

the Dennys River and Cathance Stream, temperature was the best predictor of salmon condition 

in Model 1; whereby increasing temperature was associated with significantly lower salmon in 

each model temperature was included.  Influence of precipitation was detected in Model 3 (Δ 

AICc < 4), where precipitation increases, were associated with increases in salmon condition 

(Table 3.6).  The East Machias Drainage includes Beaverdam Stream, the East Machias River, 

Northern Stream, and Seavey Stream.  In Model 2 precipitation with a 1-year lag was the best 

predictor of salmon condition; where increasing rainfall in a given year was associated with 

higher condition the following year (Table 3.6).  At the coarsest resolution, which combined all 

of the streams, no relationships between temperature, precipitation, and salmon condition were 

detected (Table 3.6, Figure 3.7). 

Seasonally Averaged Summer Temperature and Precipitation 

At the stream level, our analyses detected two streams where salmon condition was 

correlated with precipitation, Beaverdam Stream and the East Machias River.  For both 

Beaverdam Stream and the East Machias River, Model 2 best predicted salmon condition, 

whereby salmon condition increased with increasing precipitation (Table 3.7, Figures 3.8 and 

3.9, respectively).  At the drainage level and at our coarsest resolution with all streams 

combined, our analyses detected that salmon condition in the East Machias Drainage was 

correlated with precipitation (Table 3.8).  Model 2 best predicted salmon condition at both the 
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drainage level and when all streams were combined, whereby salmon condition increased with 

increasing precipitation (Table 3.8, Figure 3.10). 

 

 

Discussion 

 

Our results suggest that changes in temperature and precipitation impact the condition of 

juvenile salmon in Maine streams, but the relative importance of these factors can vary among 

streams and drainages.  Early life stages are critical in shaping the success of salmonid 

individuals (Einum and Fleming 2000) whereby changes in environmental variables that affect 

juvenile salmon performance could have lasting effects that influence growth, maturation, and 

reproduction (Jonsson and Jonsson 2009).  In particular, temperature plays a vital role in the 

development of salmonids, influencing the timing of spawning, hatching and feeding as well as 

the bioenergetics that underlie growth (Webb and McLay 1996, Jonsson and Jonsson 2009).  

While it was therefore not surprising that lower salmon condition was linked with warmer years, 

it was intriguing that the Dennys River was the sole waterbody where a correlation between 

salmon condition and annually averaged temperature was detected (Figure 3.4).   

Optimal temperature for Atlantic salmon is approximately 18oC (Forseth et al. 2001, 

Murphy 2004) and the upper critical range spans 22-33oC, with an incipient upper lethal 

temperature of approximately 27oC (Jonsson and Jonsson 2009).  If temperatures approach the 

upper critical limits of salmonid thermal tolerance, both feeding activity and growth are 

suppressed (Brett 1971), resulting in a lower condition factor compared to salmon experiencing 

favorable conditions near their thermal optimum.  Temperatures that far exceed the thermal 

optimum for a species are problematic because metabolic costs cannot be met by the energetic 

gains of feeding; which ultimately results in reduced fitness (Pörtner and Peck 2010).  
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Furthermore, changes in temperature likely impact more than individual salmon performance by 

impacting entire stream communities and their food webs (Woodward et al. 2010).  Poff and 

Huryn (1998) reasoned that changes in climate have the potential to impact invertebrate prey 

which could impact salmon secondary production.  Therefore, we cannot rule out that juvenile 

salmon may be impacted by changes in prey resources that are affected by change in 

temperature. 

While long term records of water temperature are not available for the Dennys River, 

data from 2017 (US Fish and Wildlife Service Maine Field Office accessed through the Spatial 

Hydro-Ecological Decision System - SHEDS) demonstrates that mean water temperature 

consistently exceeds above 20oC during the summer months, with temperatures reaching 

upwards of 26oC.  Feeding activity in Atlantic salmon parr has been shown to cease beyond 

22.5oC (Elliott 1991) and analysis of salmon fork length over an 18-year period in the Mirimachi 

River, Canada, indicated that smaller parr size was correlated with warmer temperatures 

(Swansburg et al. 2002).  Elliott and Elliott (2010) suggested that temperatures between 22-28oC 

are likely to be lethal for Atlantic salmon unless individuals find cooler areas of thermal refugia.  

Dugdale et al. (2016) found that the temperature of 28oC predicted salmon movement out of 

warm waters in search of thermal refugia.   

Since these results were found using annually averaged temperature values, we were not 

able to differentiate between warm years due to above average winters versus above average 

summers.  However, we tested the relationship between salmon condition and seasonally 

averaged summer temperature and we did not detect an effect of temperature on salmon 

condition in any of our streams.  This suggests that the effect of temperature detected using 

annually averaged data could be due to factors beyond summertime means, such as warmer 
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winter, spring, or fall temperatures.  For instance, Murphy et al. (2006) found that warm winters 

with variable temperatures resulted in significant weight loss in Atlantic salmon.  Alternatively, 

extreme temperature events or spikes in temperature that produce abnormally warm conditions 

can have stronger impacts on ectothermic species compared to elevated mean temperatures 

(Ledger and Milner 2015, Woodward et al. 2016).  It could be that extreme temperature 

fluctuations have a stronger effect on salmon condition than elevated average summertime 

temperatures.  The impact of such temperature events would not necessarily be captured in our 

analysis which utilized average monthly temperature values.  Regardless, these findings suggest 

that juvenile Atlantic salmon are experiencing thermal conditions in the Dennys River that may 

negatively impact their performance and growth. 

Stream temperature varies spatially by stream and temporally by season due to regional 

climate, groundwater input, tree canopy cover, and stream morphology (Allen and Castillo 

2007). Thus, the high temperatures observed in Dennys River could be due, in part, to stream 

morphology and characteristics of the surrounding environment that impact the vulnerability of 

streams to changing air temperature.  For instance, consistent groundwater input can help to 

regulate stream temperatures (Poole and Berman 2001).  While groundwater input information 

was not available for our streams, habitat information included in the DMR dataset provided 

some insight into this issue.  Dennys River was the widest stream in our dataset with an average 

width of approximately 19.67m and an average depth of approximately 0.37m (Table 3.1).  

Furthermore, survey data suggests that approximately only 0-25% of the stream is covered by 

tree canopy; with very few measurements reaching 75-100% coverage.  Canopy cover provides 

shade in streams and helps to reduce stream temperature (Moore et al. 2005).  Therefore, it could 
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be possible that the Dennys River may be more susceptible to changes in air temperature than 

other streams in our study. 

Like temperature, stream flow is intimately linked to salmon performance and growth 

(Boisclair 2004).  Stream flow is, thus, an important component in predicting suitable salmon 

habitat (Gibson 1993) and behavior (Huntingford et al. 1999, Sykes et al. 2009).  Salmon parr are 

typically found in shallow habitats with high velocities (Arnold et al. 1991, Heggenes and 

Borgstrøm 1991) such as riffles.  Precipitation alone was not found to be a strong predictor of 

salmon condition when assessing annually averaged precipitation.  However, we did find that 

annually averaged precipitation was the second-best predictor of salmon condition in the Dennys 

River (Figure 3.4).  In comparison, seasonally averaged summer precipitation predicted salmon 

condition at all three spatial scales spanning Beaverdam Stream (Figure 3.8) and the East 

Machias River (Figure 3.9), the East Machias Drainage, and all of the streams combined in the 

Downeast region (Figure 3.10).  Given that Beaverdam Stream and the East Machias River were 

the only streams where precipitation was found to have an effect on salmon condition, it is likely 

that these streams are driving the effect of precipitation found at the drainage and Downeast 

region levels.  Moreover, for both the East Machias River and Seavey Stream, we found that 

annually averaged precipitation with a 1-year lag was the best predictor of salmon condition; 

indicating that variations in precipitation can have latent effects on salmon condition (Figures 3.5 

and 3.6).  

Precipitation is an important factor in regulating stream flow.  Analysis of stream 

discharge for multiple streams along the Eastern Coast of the United States and Canada revealed 

that less precipitation translates into reduced stream flows (Allan and Benke 2005).  Precipitation 

and snow melt runoff into streams and filter through soil to recharge groundwater input that 
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helps to maintain stream baseflows throughout the year; even canopy cover from riparian 

vegetation can influence how much precipitation reaches a stream (Allen and Castillo 2007).  

Features of the landscape also help determine stream vulnerability to extreme precipitation 

events such as flooding or drought (Resh et al. 1988).  Regional climate, geographic features of 

the landscape along with vegetation both in and surrounding the waterbody create flow regimes 

unique to each stream (Poff et al. 1997) that could provide useful proxies for evaluating climate 

sensitivity of salmonid populations.  

 In our study, the East Machias River was the second widest river in our study with an 

average width of approximately 18.21m and average depth of approximately 0.31m.  Canopy 

survey data indicated that the majority of the stream contains 0-25% canopy cover and cover 

never exceeded 50%.  In comparison, Seavey Stream is much smaller with an average width of 

6.89m and an average depth of 0.16m.  Canopy cover data indicates that the majority of the 

stream contains 0-25% canopy cover, with very few locations reaching 75-100% coverage.  The 

fact that we found increasing precipitation was associated with increasing salmon condition the 

following year, suggests that these streams are more susceptible to shifts in precipitation than 

other streams in our study.  The 1-year lag between changes in precipitation and salmon 

condition could be due to factors such as groundwater recharge.  If lack of precipitation prevents 

groundwater recharge and limits groundwater input into streams (Allen and Castillo 2007), it 

could result in unfavorable flow conditions for salmon in the future.  Therefore, it is possible that 

even YOY salmon could be indirectly influenced by precipitation patterns that carryover from 

the previous season. 

In comparison to our findings, Nislow et al. (2004) found that Atlantic salmon mass was 

lowest when streamflow was lowest, and that streamflow impacted salmon growth by also 
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impacting factors such as prey capture rate.  Foraging salmonids will compete for the most 

profitable position in streams, which provides a net energy gain after energetic losses associated 

with swimming or holding their position are considered (Fausch 1984, Grossman 2014).  

Changes in streamflow which alter the availability and successful capture of drifting prey 

(Hughes and Dill 1990) could ultimately impact salmon growth.  Since salmon feeding and 

growth rates can determine individual success over winter and into the following season 

(Metcalfe et al. 1988), increased precipitation in a given year that results in immediately higher 

flows could provide salmon parr, like those analyzed here, with favorable conditions that 

positively impact growth and contribute to their success the following year. 

Periods of low flow, especially stemming from drought conditions are dangerous for 

juvenile salmon for multiple reasons (Elliott and Elliott 2010).  Lack of rainfall resulting in a 

drop in water level can lead to stranding and increase risk of salmon mortality (Saltveit et al. 

2001).  Drought conditions can also lead to changes in temperatures that quickly warm beyond 

the upper limits of salmon thermal tolerance.  During the summer of 1976 in Wales, over 400 

Atlantic salmon died within a 5-day period due to drought conditions in the River Wye (Brooker 

et al. 1977).  A reduction in annual precipitation in 1975 and 1976, coupled with warm 

temperatures created lethal conditions (Brooker et al. 1977).  Coupled interactions between 

stream flow and temperature can also force salmon to change their foraging strategies.  Such a 

change could force salmon into faster flowing water in attempts to maximize their net energy 

gain and avoid weight loss (Smith and Li 1983).  Since temperature and precipitation can 

synergistically affect salmon populations, we expected to find a significant interactive effect 

between these two variables and salmon condition in our models. We anticipated that either 

cooler, wetter years would be associated with a higher condition factor or that warm, dry years 
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would be associated with a low condition factor.  Surprisingly, we did not find any interaction 

between condition, temperature, and precipitation in any of the streams we analyzed. 

The broadest interpretation of our results suggests that scale may be an important factor 

when examining the relationships between salmon condition, temperature, and precipitation over 

time.  Indeed factors at multiple scales operate simultaneously across the landscape to produce 

observable effects in fish behavior, ecology, and even metacommunity dynamics (Fausch et al. 

2002, Falke and Fausch 2010, White et al. 2014).  When analyzing annually averaged 

temperature and precipitation, our coarsest resolution models which analyzed combined data 

across 9 locations, detected no significant relationships between condition and the environmental 

variables tested.  At the intermediate scale, the drainage level, the prominent effects of both 

temperature and the 1-year precipitation lag were detected.  Analysis at the stream level 

demonstrated that salmon responses to temperature and precipitation vary by stream.  This 

suggests that salmon in different streams could be differentially impacted by temperature and 

precipitation and that even juvenile salmon located within the same drainage may not be 

impacted by these factors to the same degree.  

This could be due to a combination of factors, organized in a hierarchical fashion, that 

ultimately result in unique responses at the stream level.  For instance, higher order factors such 

as climate, geology, and land cover often operate on a broader scale and watershed level, but 

feed into characteristics such as landform, that determine stream specific conditions (Snelder and 

Biggs 2002).  Poff and Huryn (1998) suggested that factors such as climate, geology, and land 

cover determine environmental conditions within streams that then influence the salmon, their 

invertebrate prey base, and ultimately salmon production. They predicted that salmon production 

would be highest in streams containing large riffles, open canopy cover, and stream bedrock 
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composed of carbonate (Poff and Huryn 1998).  While factoring such characteristics into our 

analysis was beyond the scope of this study, the varying results that we observed between 

streams within each drainage and between drainages could be due to attributes of the landscape 

that produce unique impacts to individual streams and specific responses in salmon to changes in 

temperature and precipitation. It should be taken into consideration that the number of streams 

and fish included in our analyses did vary between drainages.  Moreover, the fact that we did not 

detect significant effects of temperature and precipitation on juvenile salmon condition in all 

streams or at each spatial scale, does not diminish the importance of these two environmental 

variables when considering salmonid performance and growth. 

However, environmental factors alone are not solely responsible for determining the fate 

of salmon in the wild. Several studies have investigated how factors such as competition and 

density impact salmon performance (Heggenes and Borgstrøm 1991, Ward et al. 2009).  We 

were interested in including variables such as salmon CPUE into our models that would allow us 

to capture a more detailed perspective into the many factors influencing salmon growth and thus 

salmon condition.  Moreover, while condition factor is a generalized metric for assessing fish 

growth and is useful for comparing among multiple populations, Atlantic salmon growth is 

impacted by several factors including life history events such as maturation and smoltification 

(Mangel 1994), that can also impact salmon condition in a way that obscures relationships 

between environmental parameters and salmon performance.  Future work which includes 

environmental variables along with factors such as intraspecific competition or density, which 

might be indicated by CPUE, that take into account life history events, could address how abiotic 

and biotic drivers affect salmon populations both spatially and temporally.  
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Over the last century salmon populations have been impacted considerably by 

anthropogenic factors such as habitat degradation and overfishing, which have threatened their 

chances of survival as a species. While salmon recovery efforts have focused on restoring 

salmon habitat, the anticipated impacts of climate change over the next century threaten salmon 

recovery.  This work serves as an initial step towards understanding the multiple factors that 

impact salmon condition in Maine streams both spatially and temporally.  While multiple factors 

beyond the scope of this study likely contribute to the overall condition of salmon (i.e. biological 

interactions among stream dwelling fishes and invertebrates or physical characteristics of the 

landscape), the results presented here further reinforce that temperature and precipitation are 

linked to the well-being of juvenile Atlantic Salmon in Maine streams.  Perhaps most 

importantly, our research suggests that not all salmon populations will be uniformly impacted by 

changes in climate and this is likely due to multiple factors spanning several scales across the 

riverine landscape in Downeast Maine.  This also reinforces that a one-size-fits-all approach to 

salmon recovery efforts may not always be appropriate.  Management practices are as inherently 

complex as the ecological systems they strive to protect.  The decision to implement fine versus 

broad scale (or patch versus landscape) approaches comes with the consequence that processes 

from any other scale could be excluded from the potential benefits of management decisions 

(Lindenmayer et al. 2008).  At the very least, multiscale approaches to conservation management 

attempt to capture processes important to specific species or regions that would otherwise be 

neglected if only broader scales were considered (Lindenmayer et al. 2008).  Targeted 

management decisions generated on sound science and flexibility that anticipate change in future 

environmental conditions will be key to managing endangered species (Gregory et al. 2013).  
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Therefore, it is our hope that this work informs future adaptive management solutions in light of 

a changing climate. 

 

 

 

Table 3.1 The nine streams and four drainages included in our analyses.  Average width and 

depth of each stream were calculated using survey data from the Maine Department of Marine 

Resources. 

Stream Drainage Avg. Width Avg. Depth

Beaverdam Stream East Machias 7.92 0.38

Cathance Stream Dennys 10.64 0.18

Dennys River Dennys 19.67 0.37

East Machias Stream East Machias 18.22 0.31

Gould Brook Narraguagus 5.34 0.32

Narraguagus River Narraguagus 16.45 0.91

Northern Stream East Machias 6.46 0.17

Old Stream Machias 11.23 0.27

Seavey Stream East Machias 6.89 0.17  
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Table 3.2 Overview of dynamic regression models and the variables included in each model.  Models become increasing complex, 

with Model 4 including an interaction between temperature and precipitation. 

Model Name Model Description

Model 1 Condition ~ Temperature + Temperature Lag 1 Year

Model 2 Condition ~ Precipitation + Precipitation Lag 1 Year

Model 3 Condition ~ Temperature + Temperature Lag 1 Year + Precipitation + Precipitation Lag 1 Year

Model 4 Condition ~ Temperature + Temperature Lag 1 Year + Precipitation + Precipitation Lag 1 Year + Temperature:Precipitation  

 

 

Table 3.3 Total count of Atlantic salmon individuals included in analyses by stream and life stage. 

Stream Name YOY Parr Total Count 

Beaverdam Stream 4 384 388 

Cathance Stream 10 415 425 

Dennys River 18 2283 2301 

East Machias River 5 419 424 

Gould Brook 18 189 207 

Narraguagus River 285 4720 5105 

Northern Stream 11 809 820 

Old Stream 34 1245 1279 

Seavey Stream 2 451 453 
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Table 3.4 Range of Atlantic salmon length (cm), mass (g), and condition factor by stream. 

Stream Min. Max. Median Mean Min. Max. Median Mean Min. Max. Median Mean

Beaverdam Stream 5 19.2 11.3 11.6 1.3 64.5 16.4 19.5 0.17 1.92 1.16 1.16

Cathance Stream 5.7 20.8 12.9 13 2.3 117 23.4 26.2 0.63 2.51 1.15 1.14

Dennys River 5 24.2 13.7 13.8 1.5 189.5 29 31.8 0.35 3.18 1.16 1.15

East Machias Stream 5.6 22.1 15.3 15.3 2 129.1 43 44.7 0.6 1.79 1.21 1.21

Gould Brook 5.5 16.2 11.4 11.3 1.9 52.8 17.1 18.7 0.55 2.28 1.19 1.19

Narraguagus River 4 23.9 12.5 12.4 0.7 117 22 24.4 0.49 2.08 1.14 1.13

Northern Stream 5.5 20.4 12.55 12.9 2 95.7 23.2 27.6 0.63 2.22 1.19 1.19

Old Stream 5.5 18 11.3 11.6 2.2 64.8 16.7 19.1 0.6 2.4 1.16 1.16

Seavey Stream 5.3 21.7 11.6 12.1 2.3 135.3 17.4 22.7 0.7 3.9 1.14 1.14

Length Mass Condition Factor
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Table 3.5 Results of dynamic regression Models 1 – 4 at the stream level, examining the relationship between annually averaged 

temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge+1) between 1999 and 2015.  Values listed represent p-

values unless otherwise stated. 

Stream Name Model Years Interpolated Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip AICc Change Adjusted R2 

Beaverdam Stream Model 2 None     0.43 0.18   -56.188 0 0.05801 

  Model 1 None 0.51 0.73       -53.6412 2.54683 -0.1045 

  Model 3 None 0.26 0.69 0.43 0.125   -48.5982 7.58981 0.0241 

  Model 4  None 0.28 0.7 0.46 0.16 0.94 -41.9421 14.24596 -0.07278 

                      

Cathance Stream Model 1 2015 0.15 0.94       -53.8757 0 0.01893 

  Model 2 2015     0.17 0.94   -53.744 0.13161 0.01082 

  Model 3 2015 0.12 0.84 0.14 0.74   -47.8698 6.00584 0.07942 

  Model 4  2015 0.13 0.79 0.13 0.98 0.35 -42.6597 11.21591 0.03488 

                      

Dennys River Model 1 2013, 2015 0.03 0.4       -70.3222 0 0.241 

  Model 2 2013, 2015     0.18 0.94   -66.0342 4.28797 0.007675 

  Model 3 2013, 2015 0.03 0.29 0.06 0.46   -66.8813 3.44086 0.3933 

  Model 4  2013, 2015 0.02 0.28 0.07 0.64 0.45 -61.1593 9.16285 0.3709 

                      

East Machias River Model 2 2009     0.87 0.04   -65.1324 0 0.1912 

  Model 1 2009 0.98 0.63       -59.7401 5.39231 -0.1329 

  Model 3 2009 0.59 0.69 0.83 0.05   -56.1459 8.98653 0.08571 

  Model 4  2009 0.57 0.74 0.85 0.05 0.53 -50.1385 14.99393 0.03488 

                      

Gould Brook Model 2 1999, 2007, 2012     0.38 0.83   -58.649 0 -0.08308 

  Model 1 1999, 2007, 2012 0.52 0.63       -58.4629 0.18608 -0.09575 

  Model 4  1999, 2007, 2012 0.57 0.56 0.36 0.79 0.51 -44.0947 5.9364 -0.2575 

  Model 3 1999, 2007, 2012 0.53 0.59 0.36 0.94   -50.0311 8.61793 -0.1965 
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Table 3.5 continued 

Stream Name Model Years Interpolated Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip AICc Change Adjusted R2 

Narraguagus River Model 2 2012     0.63 0.49   -67.3362 0 -0.08391 

  Model 1 2012 0.99 0.93       -66.3462 0.98996 -0.1531 

  Model 3 2012 0.84 0.93 0.66 0.5   -57.7119 9.62423 -0.2752 

  Model 4  2012 0.78 0.86 0.68 0.33 0.27 -53.0568 14.27933 -0.237 

                      

Northern Stream Model 2 None     0.98 0.15   -58.3917 0 0.026 

  Model 1 None 0.43 0.64       -56.7844 1.60729 -0.07693 

  Model 3 None 0.22 0.71 0.94 0.1   -51.2144 7.17736 0.01662 

  Model 4  None 0.24 0.72 0.95 0.14 0.99 -44.5478 13.8439 -0.08171 

                      

Old Stream Model 1 None 0.81 0.43       -38.0773 0 -0.09143 

  Model 2 None     0.95 0.9   -37.2134 0.86388 -0.152 

  Model 3 None 0.8 0.47 0.8 0.9   -28.4423 9.63501 -0.2849 

  Model 4  None 0.82 0.48 0.89 0.97 0.8 -21.878 16.19933 -0.4044 

                      

Seavey Stream Model 2 None     0.67 0.07   -54.2809 0 0.1696 

  Model 1 None 0.57 0.23       -51.8324 2.44848 -0.02343 

  Model 3 None 0.89 0.32 0.78 0.11   -46.1359 8.14493 0.05807 

  Model 4  None 0.89 0.33 0.78 0.15 0.86 -39.5183 14.76255 -0.03295 
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Table 3.6 Results of dynamic regression Models 1 – 4 at the drainage level as well as all stream combined, examining the relationship 

between annually averaged temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge+1) between 1999 and 2015.  

Values listed represent p-values unless otherwise stated. 

Stream Name Model Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip  AICc Change Adjusted R2 

DE Drainage Model 1 0.06 0.69       -43.80338 0 0.1386 

(Dennys River,  Model 2     0.119 0.988   -42.26156 1.54182 0.05148 

Cathance Stream) Model 3 0.03 0.56 0.06 0.58   -40.17686 3.62652 0.3034 

  Model 4  0.04 0.51 0.06 0.82 0.32 -35.1765 8.62688 0.3095 

                    

EM Drainage Model 2     0.8 0.04   -46.06542 0 0.1959 

(Beaverdam Stream,  Model 1 0.73 0.6       -40.78881 5.27661 -0.1183 

East Machias River, Model 3 0.32 0.65 0.74 0.04   -38.20042 7.865 0.1525 

Northern Stream, Model 4  0.35 0.67 0.75 0.05 0.96 -31.53759 14.5278 0.06795 

Seavey Stream)                   

MC Drainge                   

(Old Stream)                   

NG Drainage Model 2     0.72 0.56   -51.13151 0 -0.1156 

(Narraguagus River, Model 1 0.65 0.67       -51.09331 0.0382 -0.1182 

Gould Brook) Model 4  0.81 0.58 0.66 0.43 0.27 -37.26672 4.65221 0.8259 

  Model 3 0.75 0.65 0.69 0.64   -41.91893 9.21258 -0.2791 

                    

All Streams Model 2     0.28 0.21   -34.57138 0 0.08313 

Combined Model 1 0.43 0.81       -31.76809 2.80329 -0.09245 

  Model 3 0.2 0.79 0.28 0.13   -27.45834 7.11304 0.07801 

  Model 4  0.23 0.81 0.3 0.19 0.83 -20.87267 13.6987 -0.009063 
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Table 3.7 Results of dynamic regression Models 1 – 4 at the stream level, examining the relationship between seasonally averaged 

summer temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge+1) between 1999 and 2015.  Values listed represent 

p-values unless otherwise stated. 

Stream Name Model Years Interpolated Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip  AICc Change Adjusted R2 

  Model 2 None     0.03 0.69   -59.31773 0 0.2254 

Beaverdam Stream Model 1 None 0.89 0.77       -53.22359 6.09414 -0.1337 

  Model 3 None 0.97 0.93 0.05 0.70   -49.63388 9.68385 0.08527 

  Model 4  None 0.91 0.87 0.05 0.64 0.66 -43.29588 16.0219 0.01426 

                      

Cathance Stream Model 1 2015 0.09 0.66       -55.51109 0 0.1143 

  Model 2 2015     0.36 0.83   -52.36885 3.14224 -0.07795 

  Model 3 2015 0.12 0.62 0.48 0.97   -46.59085 8.92024 0.002812 

  Model 4  2015 0.15 0.65 0.50 0.95 0.90 -39.94863 15.5625 -0.09523 

                      

Dennys River Model 1 2013, 2015 0.17 0.62       -68.48819 0 0.1488 

  Model 2 2013, 2015     0.56 0.86   -64.18475 4.30344 -0.1139 

  Model 3 2013, 2015 0.21 0.72 0.80 0.89   -58.94824 9.53995 0.00383 

  Model 4  2013, 2015 0.15 0.86 0.58 0.92 0.40 -53.47265 15.0155 -0.01718 

                      

East Machias River Model 2 2009     0.07 0.98   -63.98764 0 0.1313 

  Model 1 2009 0.24 0.81       -61.4771 2.51054 -0.01633 

  Model 3 2009 0.26 0.57 0.10 0.84   -56.24845 7.73919 0.09155 

  Model 4  2009 0.31 0.64 0.14 0.86 0.98 -49.58318 14.4045 0.0007899 

                      

Gould Brook Model 1 1999, 2007, 2012 0.71 0.20       -59.97822 0 0.003266 

  Model 2 1999, 2007, 2012     0.24 0.74   -59.41378 0.56444 -0.03252 

  Model 3 1999, 2007, 2012 0.61 0.22 0.32 0.52   -52.05889 7.91933 -0.05409 

  Model 4  1999, 2007, 2012 0.96 0.82 0.12 0.28 0.12 -49.49707 10.4812 0.1029 

                      

 



56 
 

Table 3.7 continued. 

Stream Name Model Years Interpolated Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip  AICc Change Adjusted R2 

Narraguagus River Model 2 2012     0.61 0.14   -69.0998 0 0.02922 

  Model 1 2012 0.82 0.63       -66.64556 2.45424 -0.1317 

  Model 3 2012 0.99 0.88 0.63 0.21   -59.4578 9.642 -0.1434 

  Model 4  2012 0.84 0.85 0.82 0.30 0.58 -53.31506 15.7847 -0.2172 

                      

Northern Stream Model 2 None     0.12 0.13   -60.29096 0 0.135 

  Model 1 None 0.42 0.73       -57.59574 2.69522 -0.02368 

  Model 3 None 0.61 0.52 0.21 0.12   -52.76354 7.52742 0.1074 

  Model 4  None 0.84 0.35 0.38 0.19 0.44 -47.11912 13.1718 0.07888 

                      

Old Stream Model 1 None 0.442 0.564       -39.65337 0 0.01095 

  Model 2 None     0.47 0.953   -37.87166 1.78171 -0.1055 

  Model 3 None 0.435 0.476 0.308 0.924   -31.67722 7.97615 -0.04968 

  Model 4  None 0.397 0.734 0.447 0.838 0.667 -25.32166 14.3317 -0.1324 

                      

Seavey Stream Model 2 None     0.207 0.564   -52.86893 0 0.04077 

  Model 1 None 0.884 0.328       -51.94741 0.92152 -0.0161 

  Model 3 None 0.895 0.513 0.306 0.709   -44.34186 8.52707 -0.0537 

  Model 4  None 0.983 0.457 0.44 0.65 0.684 -37.95395 14.915 -0.1391 
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Table 3.8 Results of dynamic regression Models 1 – 4 at the drainage level as well as all stream combined, examining the relationship 

between seasonally averaged summer temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge+1) between 1999 and 

2015.  Values listed represent p-values unless otherwise stated. 

Stream Name Model Temp Temp Lag 1 Year Precip Precip Lag 1 Year Temp:Precip AICc Change Adjusted R2 

DE Drainage Model 1 0.08 0.94       -44.25329 0 0.1625 

(Dennys River,  Model 2     0.40 0.94   -40.06856 4.18473 -0.08786 

Cathance Stream) Model 3 0.12 0.87 0.56 0.99   -35.09497 9.15832 0.04299 

  Model 4  0.11 0.67 0.48 0.90 0.60 -28.88682 15.3665 -0.02297 

                    

EM Drainage Model 2     0.04 0.69   -45.81655 0 0.1833 

(Beaverdam Stream,  Model 1 0.46 0.64       -42.3162 3.50035 -0.01646 

East Machias River, Model 3 0.56 0.75 0.07 0.66   -37.52051 8.29604 0.1157 

Northern Stream, Model 4  0.64 0.73 0.12 0.73 0.86 -30.90369 14.9129 0.03028 

Seavey Stream)                   

MC Drainge                   

                    

NG Drainage Model 1 0.65 0.21       -52.75437 0 -0.007976 

(Narraguagus River, Model 2     0.58 0.56   -51.68036 1.07401 -0.07796 

Gould Brook) Model 3 0.69 0.32 0.69 0.77   -43.52404 9.23033 -0.157 

  Model 4  0.90 0.96 0.34 0.91 0.15 -40.38007 12.3743 -0.0212 

                    

Al l Streams  Model 2     0.03 0.64   -36.94906 0 0.2097 

Combined Model 1 0.81 0.67       -31.54352 5.40554 -0.1079 

  Model 3 0.96 0.78 0.05 0.63   -27.46 9.48906 0.07811 

  Model 4  0.85 0.99 0.06 0.58 0.67 -21.10583 15.8432 0.005535 
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Figure 3.1 Geographic location of all streams included in our dynamic regression models.  

Symbol type represents drainage, many of which contain multiple streams.  Symbol color 

identifies specific streams.  Symbology: Squares represent Narraguagus Drainage, Diamonds 

represent Machias Drainage, Circles represent East Machias Drainage, and Triangles represent 

Dennys Drainage.  Multiple points mapped along each stream represent locations where the 

Department of Marine Resources has conducted surveys between 1975 – 2015.  Inset map:  All 

streams are located in Downeast Maine, as indicated by the grey locator circle on the State of 

Maine map.  Nearly all sites fall within the Washington County Boundary.  Map was created 

using ArcGIS Pro, version 2.6 and Maine Office of GIS Maine Boundaries County Lines 

(CNTY24L) shapefile. 
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Figure 3.2 Average annual temperature (Panel A) and seasonally averaged summertime (June, 

July, and August) temperatures (Panel B) for Bangor and the State of Maine between 1999 and 

2015. 
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Figure 3.3 Histograms of juvenile Atlantic salmon length by stream for individuals included in the analyses. 
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Figure 3.4 Average annual temperature (oC), precipitation (cm), and Atlantic salmon condition 

(Loge +1) factor for Dennys River between 1999 and 2015. 
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Figure 3.5 Average annual temperature (oC), precipitation (cm), and Atlantic salmon condition 

(Loge +1) factor for East Machias River between 1999 and 2015. 
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Figure 3.6 Average annual temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge +1) 

factor for Seavey Stream between 1999 and 2015. 
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Figure 3.7 Average annual temperature (oC), precipitation (cm), and Atlantic salmon condition (Loge +1) 

factor for all streams combined between 1999 and 2015. 

 

 

 

Figure 3.8 Seasonally averaged summer temperature (oC) and precipitation (cm), along with average 

Atlantic salmon condition (Loge +1) factor for Beaverdam Stream between 1999 and 2015. 
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Figure 3.9 Seasonally averaged summer temperature (oC) and precipitation (cm), along with average 

Atlantic salmon condition (Loge +1) factor for the East Machias River between 1999 and 2015. 

 

 

 

Figure 3.10 Seasonally averaged summer temperature (oC) and precipitation (cm), along with average 

Atlantic salmon condition (Loge +1) factor for all streams combined between 1999 and 2015. 
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CHAPTER 4 

BOTTOM-UP EFFECTS OF NORTHERN CRAYFISH, FAXONIUS VIRILIS, 

INCREASE ATLANTIC SALMON, SALMO SALAR, PREY IN MAINE RIVERS 

 

Introduction 

Predation in freshwater environments can lead to shifts in the distribution, abundance, 

and diversity of prey (Stenroth and Nyström 2003, Nilsson et al. 2012), resulting in indirect 

effects that cascade from one trophic level to the next and ultimately impact food web dynamics 

(Carpenter et al. 1987, Mcqueen et al. 1989, Rosemond et al. 2001). Therefore, consumer 

presence and interactions between consumers can influence community structure (De Bernardi 

1981, Polis and Holt 1992) as well as carbon and nutrient cycling (Vanni et al. 2002, McIntyre et 

al. 2008).  Furthermore, intraguild interactions can shape community assemblages (Wallace and 

Webster 1996, Covich et al. 1999) and affect basal resources that sustain stream food webs 

(Cummins 1974, Stevenson et al. 1996, Mancinelli et al. 2007).  For instance, predation by 

benthic versus drift feeding fish often has contrasting influences over prey resources, with 

benthic feeders having a stronger impact on invertebrate assemblage and abundance compared to 

drift feeders (Dahl and Greenberg 1996, Dahl 1998, Miyasaka and Nakano 1999).  Moreover the 

impact of stream dwelling fish on invertebrate communities are altered by competition among 

fish species (Hanson and Leggett 1986, Mittelbach 1988, Diehl 1992, Flecker 1992, Leduc et al. 

2015) and with large-bodied invertebrates such as crayfish and shrimp (Soluk and Collins 1988, 

Pringle and Hamazaki 1998, Huhta et al. 1999, Turner et al. 1999).  However, many taxa are 

both predators as well as consumers of detritus or algae (Momot 1995, Pringle and Hamazaki 

1998) and less is known about how interactions between these omnivores and predatory fish alter 

top-down control of freshwater ecosystems.  
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Here I investigate the food-web implications of interactions between omnivorous crayfish 

and predatory Atlantic Salmon, Salmo salar (Holm 1989, Griffiths et al. 2004, Findlay et al. 

2014).  Atlantic salmon, Gulf of Maine, Distinct Population Segment, are a Federally 

Endangered Species and Maine currently harbors the last wild populations of Atlantic salmon in 

the United States (Buchsbaum et al. 2005, Saunders et al. 2006, Schmitt 2015).  Juvenile salmon 

spend approximately 1-3 years in Maine streams, where they are predators of macroinvertebrates 

and occasionally smaller fish (Fay et al. 2006).  In comparison, crayfish are omnivores that can 

act as shredders, scavengers, grazers, and predators (Momot 1995).  Crayfish impact multiple 

trophic levels simultaneously (Nyström et al. 1996, Whitledge and Rabeni 1997, Geiger et al. 

2005) and may function as a keystone species (Creed, Robert P. 1994, Nyström et al. 1996, 

Whitledge and Rabeni 1997, Joaquín Gutiérrez-Yurrita et al. 1998, Woodward et al. 2008, 

Phillips et al. 2009).   

Fish and crayfish share a complex dynamic that extends through multiple life stages of 

each species (Reynolds 2011).  Crayfish first prey upon fish eggs and even small fish (Miller and 

Savino 1992, Findlay et al. 2014).  When juvenile fish become larger, both organisms often 

occupy similar niches where they compete for shelter and prey (Stenroth and Nyström 2003, 

Hirsch and Fischer 2008, Peay et al. 2009) and when fish become large enough, they often prey 

upon crayfish (Hepworth and Duffield 1987, Rabeni 1992).  This suggests that Atlantic salmon 

are likely interacting with crayfish in Maine streams in multiple ways.  Yet limited knowledge 

exists regarding salmon and crayfish interactions or the impacts of these two important 

macroconsumers on stream macroinvertebrate assemblages, algal production, and the breakdown 

of terrestrial detritus.  
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We conducted an in-situ stream channel experiment to examine the roles and interactive 

effects of Atlantic salmon and northern crayfish, Faxonius virilis (formerly Orconectes), a 

species common to Maine streams since the 1970’s (Crocker 1979, Martin 1997).  Stream 

channels naturally colonized with invertebrates were populated with salmon, crayfish, or both 

salmon and crayfish individuals.  The design enabled us to investigate 1) macroinvertebrate 

community responses in both cobble and leaf substrate, and 2) indirect effects of these 

consumers on algal growth and leaf breakdown rates.  Within these broad objectives we tested 

several hypotheses. First, given that both salmon and crayfish function as predators but vary in 

feeding modes (Momot 1995, Fay et al. 2006), we hypothesized that the impact of these 

consumers on macroinvertebrate community structure would differ between species.  Salmon are 

primarily drift feeders (Wańkowski 1981) and as such they are likely to have stronger impacts on 

mobile prey in cobble substrates compared to invertebrates found in leaf packs.  Crayfish are also 

benthic predators and shredders (Bobeldyk et al. 2010, Dunoyer et al. 2014), which suggests they 

would have a stronger impact on leaf pack invertebrates than those on cobble substrate.   

Our second hypothesis was that these differences in the effects of salmon and crayfish on 

invertebrate communities would have cascading effects on basal resources.  Given crayfish both 

consume detritus and potentially alter leaf pack invertebrate communities, we expected them to 

have a stronger impact on leaf breakdown rates than salmon.  In contrast, cobble-dwelling 

invertebrates are especially vulnerable to salmonids who both consume invertebrates and alter 

their grazing behavior, so we predicted increased algal biomass in the presence of Atlantic 

salmon.  Despite the fact that crayfish function as detritivores (Momot 1995), they are often 

described as impacting algal pathways by consuming grazers (Lodge et al. 1994).  Therefore, we 

expected to see increased algal biomass when crayfish were present.  Finally, interactions 
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between salmon and crayfish could lead to novel effects on both invertebrate and basal 

resources, either through agonistic encounters that depress feeding (Stein and Magnuson 1976) 

or by facilitation of drift feeding fish by benthic activity of crayfish (Holm 1989).  Therefore, we 

included salmon and crayfish interactions as a factor in our analyses. 

 

Methods 

 

 We examined the roles of Atlantic salmon and northern crayfish in Maine streams within 

stream channels (n=24) placed in a third order forested stream (Sunkhaze Stream, Milford, 

Maine).  Stream channels were subject to the same environmental conditions (i.e. flow, water 

depth, and temperature) as the rest of the surrounding stream.  Stream temperature from trial start 

to end date ranged from 15.3 - 27.6oC, with a mean temperature of 21.4oC.  The channels 

(measuring 183 x 46 x 23 cm) were constructed out of a wood U-shaped frame and a corrugated 

plastic bottom (Figure 4.1).  Mesh (6 mm openings) attached at both ends allowed for stream 

water to flow through the channel and a 2 mm mesh lid allowed access into the channels 

(Haghkerdar et al. 2019).  Channel substrate was provided by adding a bed of small cobbles (6 – 

12cm diameter), two leaf packs suspended from the channel frame, four white porcelain tiles 

(5.08 x 5.08cm) placed equidistant throughout the stream channel, and four large cobbles 

(approximately 15-17cm diameter) to provide shelter.  Channels were installed 19-20 June 2018, 

3 weeks prior to the experiment to enable the colonization by macroinvertebrates through open 

mesh ends.  We supplemented natural colonization by adding the contents of one 0.16m2 Surber 

sample to each channel that had been collected downstream of the experimental reach.  Surber 

contents were added to the upstream end of each stream channel and a D-net held at the end of 
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the channel for 30 seconds following the addition allowed us to return any invertebrates that 

initially drifted out of the channel.  

Juvenile Atlantic salmon (n=36, range of length 5.5-7.0cm, median length 6.3cm, mean 

length 6.34cm+ 0.37 S.D.) were provided by Green Lake Hatchery in Ellsworth, Maine, while 

northern crayfish (n=36, range of length 3.2 – 7.5cm, median length 4.2cm, mean length 

4.69cm+1.38 S.D.) were captured in minnow traps baited with beef liver that were placed at the 

field site overnight.  On 9 July 2018, salmon were acclimated to stream conditions and were held 

in live wells.  In order to obtain individual-specific data during the trial, fish were marked using 

VIE tagging protocols (McFarlane et al. 1990, Frederick 1997, Olsen and Vøllestad 2001) and 

crayfish carapaces were marked with nailpolish.  At the time of tagging on 14 July 2018, length 

and weight measurements were recorded.  Salmon and crayfish were then placed into one of the 

following treatments: Atlantic salmon only (n=4 individuals), northern crayfish only (n=4 

individuals), or a combination of Atlantic salmon and northern crayfish (n=2 salmon, 2 crayfish); 

we also had a control containing neither species.  We acknowledge that, because overall density 

of consumers did not vary, this experimental design does not allow us to distinguish between 

interspecific effects of crayfish from overall density-dependent effects.  All treatments were 

replicated 6 times and were randomized across 6 blocks, each containing one stream channel per 

treatment.  Stream channels were then left undisturbed for approximately 3 weeks aside from 

routine channel inspections to clear the mesh ends every 1-3 days.   

On 2 August 2018, stream channels were systematically broken down and removed from 

the stream.  Starting with the block furthest downstream, fish and crayfish were first removed 

from the channels using a net.  Fish were euthanized with a lethal dose of buffered MS-222 

before being placed on ice.  Crayfish were removed from stream channels and immediately 
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placed on ice.  Both weight (g) and length (cm) measurements for fish (fork length) and crayfish 

(total length) were recorded again, allowing us to assess growth as change in mass over time.  

We collected invertebrate samples from both the cobble lining the stream channel as well as the 

leaf packs fixed in each channel.  Cobbles lining the bottom of the channel were rinsed over a 

500-µm mesh sieve to collect colonized insects that were preserved in 70 percent ethanol for 

later identification. Leaf packs (including invertebrates) and algae tiles were placed on ice and 

frozen for further analysis.  Leaf packs were then thawed and invertebrate samples were picked 

from the leaves and preserved in 70 percent ethanol.  Invertebrate samples from both the cobble 

and leaf pack samples were identified to family using standard taxonomic keys (Peckarsky et al. 

1990, Merritt et al. 2008) as small instars of many taxa prevented reliable identification to genus.  

Leaf Litter Decay Rate 

After all invertebrates had been picked from the leaf pack samples, the leaves were 

placed in a 1mm sieve and washed to remove any remaining fine particulate organic matter 

(FPOM).  The remaining leaves or coarse particulate organic matter (CPOM), were dried to 

constant mass (48h at 60 oC) to obtain dry weight, combusted at 550 oC for 4h, and then 

reweighed to enable the calculation of ash-free dry mass (AFDM).  We then calculated rate of 

decay of the leaf litter (Benfield 2007) for the duration of the experiment whereby decay, k =  

1 ∗  𝑙𝑛  
𝐹𝑖𝑛𝑎𝑙 𝐴𝐹𝐷𝑀  𝑔  / 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝐹𝐷𝑀  𝑔 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (𝑑𝑎𝑦𝑠)
   

 

 

 

In order to address whether crayfish density may be impacting leaf litter decay rate we 

also calculated per capita decay rate.  Mean k from the control treatment served as a baseline 

value (i.e., breakdown in the absence of salmon or crayfish) and was substracted from from the 

mean k  for the crayfish and SxC treatments at the block level.  This difference was then divided 
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by the number of crayfish individuals in both the SxC (2 individuals) and crayfish only treatment 

(4 individuals), yielding a per capita k value. 

Algal Biomass 

Tiles were frozen for approximately one year and were thawed before being processed.  

The four tiles per channel were pooled into two sets of two, with each pair of tiles added to a 

whirlpack with 20mL of 90% buffered ethanol for 18h to extract Chlorophyll-a pigments. 

Concentrations were determined through standard acidification spectrophotometric method for 

Chla analysis (Eaton et al. 2005).  Algal biomass, was expressed as µg Chla / cm2. 

Salmon and Crayfish Stomach Contents 

We quantified salmon and crayfish diet to document the functional feeding roles that 

individuals assumed in the experimental venue and whether diet composition was altered by the 

presence of competitors.  Salmon and crayfish individuals were thawed and the contents of their 

stomachs were removed and preserved in 70% ethanol.  All invertebrates sampled from the 

salmon stomach contents were identified to the level of family.  Crayfish stomach contents were 

preserved in 70% ethanol in individual 3 dram vials and stained using Congo Red.  Congo Red is 

an effective method for staining animal material that may otherwise be indistinguishable from 

other stomach contents (Wissinger et al. 2018).  Stained stomach contents were examined under 

a microscope at 100x resolution using a Sedgewick-Rafter Counting Chamber slide (Wildco®).  

One row was randomly selected using a random number table and 7 consecutive grids in that row 

were examined.  For each grid, the amount of coarse plant debris (> 1 µm), amorphous material, 

algal cells, and invertebrate material (stained red) was quantified.  To provide a sample 

representative of the entire vile, 3 samples were processed for each vial and averaged per 

individual for statistical analysis.   
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Statistical Analysis 

All analyses were conducted using R, version 3.4.4.  Generalized linear models (GLM) 

were conducted to determine the main and interactive effects of salmon and crayfish presence on 

algal biomass, leaf litter decay rates, as well as invertebrate richness and evenness in the cobble 

and leaf pack samples.  Block was initially included in all models and was retained in the final 

models if block was significant (P < 0.05) and it improved model fit (adjusted R2). Richness was 

calculated using the ‘Rarefy’ package in R to account for differences in total invertebrate 

abundance among channels, while Pielou’s equitability (Shannon index divided by the log of the 

number of species) was calculated to represent evenness using the R package, ‘Vegan.’  Since 

there were two leaf packs per channel, all samples were averaged per stream channel for all leaf 

pack analyses.  Furthermore, mean per-capita leaf litter decay rates were compared between 

crayfish only and SxC treatments using a two-sample t-test.  MANOVA with Pillai’s trace as a 

test of significance was used to test the effect of salmon presence on crayfish diet to account for 

non-independence among diet categories (coarse plant debris, amorphous material, algal cells, 

and invertebrate material).  Data for crayfish diet were proportional and a logit transformation 

was performed which improved the normality of the data.  We used GLM to test for a difference 

in salmon growth between salmon only and salmon x crayfish treatments, treatment block was 

included as a main effect.  Meanwhile, GLM was used to compare crayfish growth in the 

presence and absence of salmon, treatment block was also included as a factor in the model. 

We examined the impact of crayfish and salmon presence and their interactive effects on 

the invertebrate community in both the cobble and leaf pack samples with a Redundancy 

Analysis (RDA) on a Hellinger-transformed family abundance matrix using the R-package 

‘Vegan.’  The RDA model included crayfish presence, salmon presence, and the salmon x 
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crayfish interaction term as factors. The significance of these terms in the model was tested with 

a permANOVA with 999 permutations and channel as the unit of replication.  Given that there 

was a significant effect of treatment block for the cobble samples, we ran a Partial Redundancy 

Analysis (pRDA) with block as a conditioning factor in the cobble analysis.  Lastly, RDA on a 

Hellinger-transformed species abundance matrix was used to examine the impacts of crayfish 

presence on salmon diet.  This analysis reflected the higher level of taxonomic resolution in 

salmon diet contents compared to broad diet categories for crayfish.  Given that there was a 

significant effect of treatment block, we ran a Partial Redundancy Analysis with crayfish 

presence and block as a conditioning factor with 999 permutations. 

 

Results 

Cobble Invertebrate Samples 

Overall, 6,292 invertebrates were sampled from the cobble.  Heptageniidae, Ameletidae, 

and Ephemeridae mayflies (Ephemeroptera), and Chironomids (Diptera) comprised the majority 

of the invertebrates found in the cobble.  The next most abundant taxon was Megaloptera, 

followed by Plecoptera and Trichoptera. Odonata, Zygoptera, Gastropoda, Decapoda, and 

Coleoptera were present in low abundance (Appendix A1).  The partial redundancy analysis 

revealed that crayfish presence effected the community composition of invertebrates in the 

cobble samples (Table 4.1), with a higher abundance of Heptageniidae, Ameletidae mayflies and 

Perlidae stoneflies in stream channels with crayfish (Figure 4.2A).  In contrast, no effect was 

found for Atlantic salmon on invertebrate communities and no interaction between these two 

factors was detected (Table 4.1, Figure 4.2A).  Invertebrate species richness in cobble substrate 

was lower when crayfish were present (Table 4.1, Figure 4.3) and post hoc Tukey tests revealed 

this difference was likely driven by differences between salmon only and crayfish only 
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treatments (p=0.0906).  Both salmon presence and salmon x crayfish interaction had no influence 

on species richness (Table 4.1).  Family evenness was not influenced by any of the treatments 

(Table 4.1).  

Leaf Pack Invertebrate Samples 

Overall, 5,043 invertebrates were sampled from the leaf packs Chironomids (Diptera) 

Leptophlebiidae and Heptageniidae (Ephemeroptera) comprised the majority of the invertebrates 

found in the leaf pack samples.  The next most abundant taxon was Zygoptera, followed by 

Megaloptera, Trichoptera, Plecoptera, and Coleoptera. The remaining taxa collected all equaled 

approximately 1 percent of the total inverts collected: Decapoda, Gastropoda, Hemiptera, 

Hydrachnidia, Odonata, and Oligochaeta (Appendix A2).  The redundancy analysis revealed that 

crayfish had a significant effect on invertebrate community composition in the leaf pack samples, 

with a higher abundance of Calopterygidae damselflies and Ameletidae mayflies (Table 4.2, 

Figure 4.2B), while no effect was found for Atlantic salmon, block, or interactive effects 

between salmon and crayfish presence (Table 4.2).  We found that invertebrate species richness 

was not impacted by crayfish or salmon presence and no interaction between crayfish and 

salmon presence was found (Table 4.2).  Similarly for evenness, we found no effect of crayfish 

or salmon presence and no interaction between crayfish and salmon presence (Table 4.2).   

Salmon and Crayfish Stomach Content Samples 

Overall, 131 organisms were counted in the salmon stomachs.  We found that salmon diet 

was largely categorized by Ephemeroptera, Diptera, and Trichoptera.  In the treatments where 

crayfish were present, Ephemeroptera comprised 76 percent of the stomach content items 

sampled and only 45 percent for salmon in salmon only treatments.  Interestingly, in salmon only 

treatments, 30 percent of salmon diet was Diptera and when crayfish were present 10 percent of 

the diet was Diptera.  However, RDA indicated that crayfish presence did not significantly 
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impact the composition of salmon diet (F(1,9) = 2.31, p=0.071, Figure 4.4).  Furthermore, crayfish 

presence did not affect the richness (F(1,9)  1.92, p=0.224) or evenness (F(1,9) = 2.84, p=0.169) of 

invertebrates found in salmon stomachs.  Similarly, crayfish diet was not impacted by the 

presence of salmon (Table 4.3).  Overall, the majority of the crayfish stomach contents were 

amorphous material and coarse plant detritus (Figure 4.5).   

We found an effect of crayfish presence on salmon growth (F=6.81, df= 1,31, p=0.013), 

whereby salmon lost mass in salmon only treatments and gained mass in SxC treatments; no 

effect of treatment block was found (F=1.14, df=1,31, p=0.293; Figure 4.6).  Crayfish growth 

was not impacted by the presence of salmon (F=0.492, df=1,9, p=0.500) or block (F=0.076, 

df=1,9, p=0.789). 

Algal Biomass and Leaf Litter Decay Rate 

Crayfish presence was associated with a significant increase in algal abundance (F=4.91, 

df=1,20, P=0.04, Figure 4.7A), but there was no effect of salmon (F=1.30, df=1,20, p=0.27) or of 

the interaction between crayfish and salmon (F=0.0535, df=1,20, p=0.81941). Leaf decay rate 

significantly increased when crayfish were present (F=25.60, df=1,20, p<0.001), and decreased 

when salmon were present (F=6.41, df=1,20, p=0.016), and we found an interactive effect 

between salmon and crayfish presence on decay rate (F=6.97, df=1,20, p=0.016) whereby the 

positive effects of crayfish on breakdown rate was stronger when salmon were absent (Figure 

4.7b).  Nevertheless, mean per-capita decay rate was twice as high in the SxC treatment 

compared to the crayfish only treamtent (t(7.35)= -2.199, p = 0.06). 

 

Discussion 

Our results suggest that the crayfish, a large invertebrate consumer filling multiple 

functional roles, has greater influence in Maine stream food webs than predatory juvenile 
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Atlantic salmon.  As we predicted, composition of the benthic invertebrate community in both 

the cobble and leaf pack samples were impacted by the presence of crayfish.  We also found that 

crayfish presence resulted in lower familial richness of invertebrates on cobble samples but not 

leaf packs.  Finally, the effect of crayfish was largely independent of salmon presence, with the 

only significant salmon x crayfish interaction detected in leaf litter breakdown rates. 

Responses in Cobble Substrate   

Faxonius crayfish are known for having extensive impacts to the biotic and abiotic 

elements of the systems they inhabit (Phillips et al. 2009, Roessink et al. 2017). While the impact 

of crayfish on stream food webs could be driven by differences in metabolic rates between 

crayfish and other stream organisms, aquatic invertebrates and aquatic ecothermic vertebrates 

(i.e., fish) have similar mass specific metabolic rates 0.56 (W kg-1) and 0.38 (W kg-1), 

respectively (Makarieva et al. 2008).  Matching our predictions, more algal biomass was found 

in treatments when crayfish were present compared to when salmon were present.  Initially we 

surmised that predation of scrapers by crayfish may have caused a simple trophic cascade 

resulting in increased algal biomass; as this has previously been shown before for Faxonius 

species including the northern crayfish (Lodge et al. 1994, Luttenton et al. 1998).  Crayfish 

presence could have also impacted algal biomass through trait mediated-indirect effects by 

altering prey behavior through scaring (Lima 1998, Peckarsky et al. 2008, Matassa and Trussell 

2011) which led to decreased feeding and increased algae.  However, crayfish are known 

predators of benthic invertebrates and invertebrate material is a known component of the crayfish 

diet (Momot 1995, Whitledge and Rabeni 1997, Joaquín Gutiérrez-Yurrita et al. 1998).  While 

we too found that invertebrate material was present in crayfish stomachs (Figure 4.5), scrapers 

(Heptagenaiidae and Ameletidae mayflies) were more abundant in our cobble samples when 
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crayfish were present compared to when they were absent.  These compositional changes could 

be in response to an increase in algal resources which may have in turn facilitated higher 

abundances of predatory Perlidae stoneflies that regularly feed on smaller mayfly taxa 

(Peckarsky 1979). 

Increased algal biomass when crayfish are present could be due to bioturbation, a process 

where crayfish activity removes silt and dead cells from patches of algal growth, leading to 

increased algal productivity (Whitmore 1997).  Dorn and Wojdak (2004) found increased Chla in 

ponds containing northern crayfish and rusty crayfish for the first year of a two-year experiment; 

they attributed this to bioturbation from crayfish.  Stenroth and Nyström (2003), also found 

increased algal biomass when signal crayfish were present, which they attributed to crayfish 

activity. If bioturbation is the main driver of increased algal biomass in crayfish treatments, we 

would expect that invertebrate taxa tracking algal resources, such as scraping mayflies, may 

decrease the presence of rarer, less competitive invertebrates and result in the lower richness 

observed in the cobble samples (Figure 4.3). Several other studies have also associated reduced 

richness and changes in invertebrate abundance with crayfish presence (Nyström et al. 1996, 

Stenroth and Nyström 2003, Nilsson et al. 2012).  

Interestingly, we did not find any evidence that salmon influenced algal biomass via 

trophic cascades.  This was surprising given that numerous studies have shown the direct and 

indirect impacts of salmonids on scrapers often results in increased algal biomass (McIntosh and 

Townsend 1996, Rosenfeld 2000, Simon and Townsend 2003, Buria et al. 2010).  However, top-

down pressure from predators is not the only factor regulating algal biomass in streams.  A 

combination of nutrient and light availability, along with grazing pressure, could moderate algal 

biomass (Rosemond 1993, Rosemond et al. 1993) and the strength of cascades (Pace et al. 1999). 
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For example, Biggs et al. (2000) found that algal production was sensitive to nutrient enrichment 

despite strong influence of Galaxidae predators on invertebrates in New Zealand streams.  

Similarly, Winkelmann et al. (2014) found that despite the strong top-down impacts of 

benthivorous fish on algal production, cascades were regulated by light availability, with top-

down effects dominating during fall months when light availability was lowest.  Thus, algal 

biomass in our stream channels may have been limited by light or nutrient availability and not by 

grazing, dampening top-down control often associated with salmonid presence. The increase in 

algal biomass in channels with crayfish lends further weight to this hypothesis, as the removal of 

light limitation is the primary mechanism by which bioturbation by crayfish promotes algal 

growth.   

Salmon diet was dominated by Ephemeroptera, and Diptera, mainly chironomids. While 

not all mayflies sampled from salmon stomachs could be identified to the level of family, 

Ameletidae comprised the majority of the identifiable samples.  Perhaps the lower abundance of 

Ameletidae mayflies in the absence of crayfish, could partially be explained by their large 

representation in salmon diet.  Other Ephemeroptera included Ephemeridae, Heptageniidae, and 

Leptophlebiidae.  These results are similar to that of Keeley and Grant (1997), who found that 

chironomids and mayflies made up a large portion of juvenile salmon diet in New Brunswick, 

Canada.  However, unlike their findings, the majority of organisms consumed in our study were 

mayflies rather than chironomids.  Salmon predominately feed on drifting invertebrates and drift 

feeding predators often have less of an impact on benthic prey compared to benthic feeding 

predators (Dahl and Greenberg 1996, Dahl 1998).  Thus, it was not entirely unexpected that 

salmon presence did not yield significant effects on invertebrate community composition, 

richness, or evenness in either the cobble or the leaf pack samples.  
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Despite the fact that crayfish have been shown to compete with fish species for prey 

items (Momot 1995, Phillips et al. 2009), salmon diet was not altered by the presence of crayfish.  

In fact, no significant differences in invertebrate composition, richness, or evenness at the level 

of order were detected for the samples collected from salmon’s stomachs.  We suspect that a 

drastic shift in community composition or in the abundance of key prey items would have to 

occur, in order for crayfish presence to significantly impact salmon diet.  However, there is the 

potential that salmon could actually benefit from crayfish presence.  In examining the 

interactions between juvenile Atlantic salmon and noble crayfish, Astacus Astacus, Holm (1989) 

found that crayfish activity in the sediment actually forced prey items to become resuspended in 

the drift and this led to an increase in salmon growth.  We also found increased salmon growth in 

enclosures where crayfish were present (Figure 4.6).  Increased salmon growth could be due to a 

release of intraspecific competition in crayfish SxC treatment, a non-linear response to salmon 

density, crayfish activity making prey items readily available for salmon consumption via 

physical disturbance or facilitation of algal production, or a combination of these factors.  

However, since we did not conduct a density-controlled experiment we are unable to distinguish 

between these underlying mechanisms.  Nevertheless, the absence of a salmon effect on 

macroinvertebrate abundance and community composition provides evidence that salmon did not 

depress the availability of prey resources when at high abundance (i.e., 4 salmon per channel), 

which suggests release from density-dependent intraspecific competition in salmon was less 

likely responsible for higher salmon growth with crayfish.     

Responses in Leaf Packs 

Significantly higher rates of detrital breakdown occurred in channels with crayfish  

(Figure 4.7B) which is consistent with several other studies (Bobeldyk et al. 2010, Moore et al. 
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2012, Dunoyer et al. 2014). However, two mechanisms can generate this effect: crayfish directly 

consuming detritus, or an indirect effect mediated by changes in shredder abundance or behavior 

in response to crayfish that cascaded through the food web. Only 3 taxa described as shredders 

were found in the leaf packs, Diptera Tipulidae, Plecoptera Capniidae, and Plecoptera 

Leuctridae, and they were found in low abundance in comparison to other functional feeding 

groups such as collector-gatherers, predators, and scrapers. Rather, the significant effect of 

crayfish on leaf pack invertebrate communities was primarily through an increase in 

Leptophlebidae, which feed on FPOM and biofilms, Ameletidae scrapers, and predatory Perlidae 

stoneflies and Calopterygidae damselflies. Thus there is no strong evidence that crayfish altered 

shredder assemblages in leaf packs. Furthermore, analysis of the crayfish stomach contents 

revealed mostly amorphous material or unidentifiable organic matter not belonging to insects, 

followed by course plant detritus, algal cells, and invertebrate material (Figure 4.5).  These 

findings are consistent with other studies which report large quantities of amorphous material 

and suggest that detritus plays an important role in Faxonius diet (Momot et al. 1978, Whitledge 

and Rabeni 1997, Evans-White et al. 2001).  Low abundance of shredders in the leaf packs 

coupled with the large quantity of detritus found in the crayfish stomachs, suggest that crayfish 

were the leading cause of increased leaf litter breakdown observed when crayfish were present; 

lending support to the notion that crayfish often function as shredders in stream environments 

(Anderson and Sedell 1979, Usio and Townsend 2001). 

Crayfish had the largest effect on leaf litter breakdown in treatments when salmon were 

absent compared to treatments where both species were present.  This suggests that 

allochthonous detritus is a more important source of energy for crayfish than for salmon.  Our 

results were not surprising considering that isotope analysis has suggested that crayfish cluster 
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closer to detrital and algal food sources than fish (Evans-White et al. 2001).  We did find an 

interaction between salmon and crayfish presence, where we observed increased detrital 

breakdown in crayfish treatments when salmon were absent.  We observed an intermediate 

amount of detrital breakdown when both species were present.  We suspected the significantly 

moderate effects of leaf litter breakdown when both species were present could have been an 

artifact of the reduced crayfish and salmon density in the SxC treatment.  Indeed, we found that 

per capita breakdown in the SxC treatment was twice as high as the crayfish only treatment.  

This suggests that crayfish feeding rates were density-dependent and food may have become 

limiting when 4 individuals were present in the crayfish only treatment compared to when only 2 

individuals were present in the SxC treatment.  

 

Conclusion 

Given that Maine harbors the last wild populations of Atlantic salmon in the United 

States, insight into the role that juveniles assume during their time in freshwater is integral to 

informing adaptive management policies surrounding their recovery.  Our results suggest that 

while salmon function as predators of macroinvertebrates in streams, crayfish impact multiple 

trophic levels simultaneously and therefore, have a larger impact to stream food webs and basal 

resources than juvenile Atlantic salmon.  While crayfish are often regarded as a keystone species 

and even ecosystem engineers (Creed and Reed 2004), our results indicate that crayfish at the 

very least, demonstrated the potential to be an important macroconsumer in Maine’s freshwater 

systems.  We found that crayfish altered macroinvertebrate community composition.  As 

shredders, crayfish increased the rate of leaf litter breakdown, influencing detrital pathways and 

potentially increasing allochthonous carbon flow through food webs.  Lastly, crayfish activity 
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also increased algal biomass despite evidence that some grazing by crayfish occurred.  These 

activities appeared to have increased salmon growth, leading us to posit that stronger bottom-up 

processes may occur when crayfish are present.  Thus, the impact that crayfish have on algal 

biomass and detrital breakdown could extend beyond carbon and nutrient cycling by promoting 

increased availability of macroinvertebrates important to salmon diet.  These results demonstrate 

the role that consumer interactions have in shaping stream food webs and highlight the 

importance of maintaining diverse assemblages in Maine Streams. 

 

Table 4.1 Results of the partialRDA analysis examining community composition (conditioned on 

experimental block) and GLM analyses examining richness and evenness for invertebrates 

sampled in the cobble substrates.  

Source of Variation df F P 
    

pRDA- Community Composition    

Crayfish Presence 1,19 6.26 <0.01 

Salmon Presence 1,19 0.99 0.39 

Crayfish x Salmon Presence 1,19 0.28 0.99 

    

GLM - Richness    

Crayfish Presence 1,20 6.62 0.02 

Salmon Presence 1,20 1.08 0.31 

Crayfish x Salmon Presence 1,20 0.06 0.81 

    

GLM - Evenness    

Crayfish Presence 1,20 1.35 0.26 

Salmon Presence 1,20 0.14 0.71 

Crayfish x Salmon Presence 1,20 0.22 0.64 
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Table 4.2 Results of the RDA analysis examining community composition and GLM analyses 

examining richness and evenness for invertebrates sampled in the leaf packs. 

Source of Variation df F P 

    

RDA - Community Composition    

Crayfish Presence 1,19 3.87 <0.01 

Salmon Presence 1,19 0.52 0.88 

Crayfish x Salmon Presence 1,19 0.51 0.87 

    

GLM - Richness    

Crayfish Presence 1,20 1.13 0.30 

Salmon Presence 1,20 <0.01 0.99 

Crayfish x Salmon Presence 1,20 1.90 0.18 

    

GLM - Evenness    

Crayfish Presence 1,20 2.18 0.16 

Salmon Presence 1,20 0.21 0.65 

Crayfish x Salmon Presence 1,20 2.23 0.16 

 

 

Table 4.3 MANOVA results testing the effect of salmon presence on the percentage of algal 

cells, amorphous detritus, coarse plant detritus, and invertebrate material found in crayfish 

stomach samples. 

Response Variable df Pillai F P 

Multivariate     

All categories 1,10 0.50 0.26 0.24 

Univariate     

Algal Cells 1,10 NA 0.10 0.75 

Amorphous Detritus 1,10 NA 0.16 0.69 

Coarse Plant Detritus 1,10 NA 0.14 0.72 

Invertebrate Material 1,10 NA 3.06 0.11 
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Figure 4.1 Image of stream channels placed in Sunkhaze Stream, Maine, during the Summer 

2018 field season.  Stream channels were placed directly in streams to mimic natural stream 

conditions.  Mesh attached at both ends allowed for stream water to flow through the channel, 

supporting natural invertebrate colonization and a mesh lid allowed access to the channels. 
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Figure 4.2 Results of the partialRDA analysis examining the effects of salmon and crayfish 

presence on familial invertebrate community composition in the cobble samples (Panel A) and in 

the leaf packs (Panel B). Polygons enclose all 6 replicates for each treatment combination.  
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Figure 4.3 Effect of salmon and crayfish presence on invertebrate familial richness (rarefied) 

found in the cobble substrate. 

 

Figure 4.4 Average percentage of invertebrate orders (+ 1 SE) identified in salmon stomachs in 

stream channels with and without  crayfish. 
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Figure 4.5 Average percentage of algal cells, amorphous detritus, coarse plant detritus (cell walls 

visible), and invertebrate material found in the stomachs of northern crayfish individuals in the 

presence and absence of salmon. 

 

 
Figure 4.6 Mean growth (change in mass over time) when crayfish were present in the Salmon x 

Crayfish treatment compared to when crayfish were absent in the salmon only treatment. 
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Figure 4.7 Algal biomass (ug/cm2), Chla, accumulation on tiles over the duration of the 

experiment by crayfish and salmon presence. (Panel A) Decay rate, k, of leaf litter in stream 

channels in the presence and absence of salmon and crayfish (Panel B). 

 

 

 

 



90 
 

 

CHAPTER 5 

GENERAL CONCLUSION AND IMPLICATIONS 

The case of Atlantic salmon declines over the last century, and the looming threat of 

Atlantic salmon extinction, serves as a stark reminder that society has strong influence over the 

well-being of natural systems.  This situation also serves as a reminder that humans can greatly 

affect the recovery of species in peril.  This is exemplified through the efforts of multiple 

agencies and organizations working to restore salmon waters and increase chances of survival for 

juvenile Atlantic salmon in Maine streams (NMFS 2016, U.S. Fish and Wildlife Service and 

NMFS 2018).  However, changes in climate continue to pose serious risk to freshwater fisheries 

(Ficke et al. 2007, Woodward et al. 2016), including Atlantic salmon populations (Hare et al. 

2016).  The results presented here reinforce that both temperature and precipitation impact 

juvenile Atlantic Salmon in Maine streams.  Warming waters could force Atlantic salmon to 

perform in sub-optimal conditions that impede their ability to effectively compete for resources.  

Furthermore, outcomes from experiments in Chapter 2 suggest that non-native smallmouth bass 

have the potential to outcompete Atlantic salmon as waters continue to warm.  This is concerning 

given that the range of smallmouth bass is expected to expand as temperatures rise, which could 

increase the likelihood of salmon and bass interactions in streams. 

However, it is important to recognize that not all salmonid populations will be uniformly 

impacted by changes in climate.  This was demonstrated by the results of Chapter 3, which 

investigated whether juvenile Atlantic salmon condition was correlated with annual changes in 

temperature and precipitation at multiple scales over a 16-year period.  For example, I found that 

annual temperature was a better predictor of salmon condition in the Dennys River, while annual 

precipitation with a 1-year lag was a better predictor of salmon condition in East Machias River 
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and Seavey Stream.  Therefore, the results presented here reinforce the importance of scale when 

studying salmon populations (Poff and Huryn 1998) and reinforce suggestions that studies need 

to capture trends across multiple spatial and temporal scales to gain a more complete picture of 

the population and community dynamics of freshwater organisms (Fausch et al. 2002, Snelder 

and Biggs 2002). 

Lastly, species interactions at the stream level often drive patterns in community 

composition that influence the structure and functioning of stream food webs (Carpenter et al. 

1985, Rosemond et al. 1998).  Changes in climate that threaten to alter the performance of 

individuals could lead to alterations in the functioning of stream food webs (Winder and 

Schindler 2004, Woodward et al. 2010, 2016).  The final portion of my work in Chapter 4 aimed 

to better understand the relative influence of predatory juvenile Atlantic salmon and omnivorous 

northern crayfish on invertebrate community structure and basal resources in Maine streams.  I 

found that omnivorous crayfish assuming multiple trophic roles have a larger impact to stream 

food webs and basal resources than predatory Atlantic salmon. These results further suggest that 

strong bottom-up processes occur when crayfish are present, whereby increased algal growth 

could promote the availability of macroinvertebrates important to salmon diet, highlighting the 

importance of maintaining species diversity in stream food webs. 

Earth’s freshwater environments are fascinatingly complex systems with a wealth of 

diversity that easily captures the imagination.  However, as climate across the globe continues to 

change, it is important to recognize the inherent intricacies of ecological systems and 

acknowledge that humans do not exist in isolation from the natural world.  Just as the availability 

of freshwater along with the resources it contains impacts humanity, the decisions that we make 

can have lasting and profound impacts on the systems we rely so heavily upon for our own 
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survival.  Unfortunately, for Atlantic salmon in the United States, this story is known all too 

well.  While perfect solutions are unlikely to exist for multifaceted issues stemming from climate 

change, including that of Atlantic salmon recovery, informed decisions based on sound science 

underlie practical and attainable management goals.  It is my hope that the research presented 

herein informs future adaptive management and policy efforts striving to enhance the resiliency 

of endangered Atlantic salmon populations in Maine streams.  While the path to Atlantic salmon 

recovery may be arduous, it is not one that salmon must travel alone.    
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APPENDIX A 

MEAN ABUNDANCE OF INVERTEBRATES FOUND IN SUNKHAZE SAMPLES 

Table A1 – Mean abundance (number of individuals per family) of invertebrates found in the 

cobble samples by treatment. 

Order Family Crayfish Salmon SxC 

Salmon/Crayfish 

Free 

Coleoptera Elmidae 1.42 0.67 1.17 1.00 

Coleoptera Psephenidae 0.00 0.00 0.04 0.00 

Decapoda Cambaridae 0.00 0.00 0.00 0.08 

Diptera Athericidae 1.00 0.58 0.67 0.83 

Diptera Chironomidae 54.58 69.08 49.67 56.00 

Diptera Dixidae 0.00 0.08 0.00 0.00 

Diptera Empididae 0.08 0.00 0.00 0.00 

Diptera Tabanidae 0.00 0.08 0.00 0.00 

Diptera Tipulidae 0.08 0.06 0.00 0.03 

Ephemeroptera Ameletidae 2.00 0.42 1.25 0.67 

Ephemeroptera Ephemerellidae 1.17 0.58 1.17 1.08 

Ephemeroptera Ephemeridae 0.25 0.67 0.17 1.33 

Ephemeroptera Heptageniidae 2.06 1.29 1.75 1.65 

Ephemeroptera Leptophlebiidae 8.25 11.71 5.75 10.67 

Ephemeroptera Tricorythidae 2.83 3.42 2.83 2.42 

Gastropoda Planorbidae 0.00 0.00 0.08 0.00 

Hempitera Notonectidae 0.00 0.08 0.00 0.00 

Hempitera Veliidae 0.00 0.08 0.00 0.00 

Hydrachnidia Unknown 0.00 0.00 0.08 0.00 

Megaloptera Corydalidae 2.25 5.75 3.83 5.00 

Megaloptera Sialidae 0.08 0.08 0.08 0.17 

Odonata Aeshnidae 0.08 0.50 0.25 0.17 

Odonata Petaluridae 0.00 0.25 0.00 0.17 

Oligochaeta Unknown 0.08 0.58 0.42 0.25 

Plecoptera Capniidae 0.75 0.00 0.33 0.08 

Plecoptera Leuctridae 0.67 0.92 0.67 1.08 

Plecoptera Perlidae 0.46 0.08 0.67 0.38 

Plecoptera Perlodidae 0.33 0.00 0.08 0.00 

Trichoptera Hydropsychidae 0.83 0.25 1.08 0.21 

Trichoptera Leptoceridae 0.08 0.17 0.00 0.00 

Trichoptera Polycentropodidae 1.00 3.92 0.83 2.33 

Zygoptera Calopterygidae 6.25 3.83 5.92 2.92 

Zygoptera Coenagrionidae 0.00 0.08 0.00 0.17 
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Table A2 – Mean abundance (number of individuals per family) of invertebrates found in the 

leaf pack samples by treatment. 

Order Family Crayfish Salmon SxC 

Salmon/Crayfish 

Free 

Coleoptera Elmidae 1.42 0.67 1.17 1.00 

Coleoptera Psephenidae 0.00 0.00 0.04 0.00 

Decapoda Cambaridae 0.00 0.00 0.00 0.08 

Diptera Athericidae 1.00 0.58 0.67 0.83 

Diptera Chironomidae 54.58 69.08 49.67 56.00 

Diptera Dixidae 0.00 0.08 0.00 0.00 

Diptera Empididae 0.08 0.00 0.00 0.00 

Diptera Tabanidae 0.00 0.08 0.00 0.00 

Diptera Tipulidae 0.08 0.06 0.00 0.03 

Ephemeroptera Ameletidae 2.00 0.42 1.25 0.67 

Ephemeroptera Ephemerellidae 1.17 0.58 1.17 1.08 

Ephemeroptera Ephemeridae 0.25 0.67 0.17 1.33 

Ephemeroptera Heptageniidae 2.06 1.29 1.75 1.65 

Ephemeroptera Leptophlebiidae 8.25 11.71 5.75 10.67 

Ephemeroptera Tricorythidae 2.83 3.42 2.83 2.42 

Gastropoda Planorbidae 0.00 0.00 0.08 0.00 

Hempitera Notonectidae 0.00 0.08 0.00 0.00 

Hempitera Veliidae 0.00 0.08 0.00 0.00 

Hydrachnidia Unknown 0.00 0.00 0.08 0.00 

Megaloptera Corydalidae 2.25 5.75 3.83 5.00 

Megaloptera Sialidae 0.08 0.08 0.08 0.17 

Odonata Aeshnidae 0.08 0.50 0.25 0.17 

Odonata Petaluridae 0.00 0.25 0.00 0.17 

Oligochaeta Unknown 0.08 0.58 0.42 0.25 

Plecoptera Capniidae 0.75 0.00 0.33 0.08 

Plecoptera Leuctridae 0.67 0.92 0.67 1.08 

Plecoptera Perlidae 0.46 0.08 0.67 0.38 

Plecoptera Perlodidae 0.33 0.00 0.08 0.00 

Trichoptera Hydropsychidae 0.83 0.25 1.08 0.21 

Trichoptera Leptoceridae 0.08 0.17 0.00 0.00 

Trichoptera Polycentropodidae 1.00 3.92 0.83 2.33 

Zygoptera Calopterygidae 6.25 3.83 5.92 2.92 

Zygoptera Coenagrionidae 0.00 0.08 0.00 0.17 
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