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The Dietary Guidelines for Americans recommend dairy products as part of a healthy diet 

and these products are significant contributors of important nutrients. In the U.S., and Maine 

specifically, demand for locally-produced, minimally processed foods, including unpasteurized 

dairy, has increased during the past several decades.   

An analysis of retrospective microbial testing data for unpasteurized retail dairy products 

revealed increasing microbial quality from 1998-2016, despite a five-fold increase in sample 

numbers during this time. Higher percentages of samples were non-compliant with microbial 

quality standards during the summer months compared to winter. High coliform counts were the 

leading cause of non-compliant samples in milks and other dairy-based products.  

     The second objective of this research was to investigate the effects of cheesemaking and 

aging temperature on levels of inoculated foodborne pathogens. The cheesemaking process did not 

affect the populations of either pathogen of interest. During aging, lower temperatures (4℃ and 

10℃) significantly decreased population of Shiga-toxigenic E. coli, whereas only 4℃ significantly 

reduced L. monocytogenes. Aging at 4℃ was also effective in maintaining the population of the 



 

 

starter culture. The highest aging temperature (22℃) caused a significant increase of both 

pathogens as well as a significant increase in pH levels and softening of the cheese texture.  

     In tests of unpasteurized retail dairy products, the highest rates of presumptive positive 

results for Listeria spp. were recorded in July and August. The prevalence of presumptive positive 

Listeria spp. was higher in mold-ripened compared to soft cheeses. There was a significant positive 

correlation between non-compliant levels of coliforms and presence of presumptive positive 

Listeria spp. in the samples tested.  

     The results of this research suggest that the overall quality of the expanding unpasteurized 

dairy sector in Maine has remained constant or improved in the past two decades. Small-scale 

cheese operations participating in this market should use refrigeration temperatures for aging of 

cheese when possible, which will provide the best control against foodborne pathogens. Finally, 

more targeted testing techniques are suggested to detect the potential sources of coliforms and to 

ensure the safety of unpasteurized dairy commodities. 
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INTRODUCTION 

Milk and dairy products are an important component of the typical American diet. In 

addition to the more mainstream pasteurized dairy retail space, the market for unpasteurized dairy 

continues to grow in popularity throughout the U.S. Despite its increasing demand, the sale and 

distribution of these products is highly contentious, as a result of the potential consumer safety 

hazards associated with these products. Therefore, the sale of unpasteurized dairy is legal within 

only thirty states, twelve of which, including Maine, permit the sale within retail stores. Maine is 

one of the largest producers of unpasteurized dairy products, which contributes $570 million each 

year to the state’s economy1. High quality milk plays an important role, not only for its 

consumption, but also for producing other dairy-based products. Different microbial tests have 

been used to evaluate the quality of these food commodities. Among these tests, standard plate and 

coliform counts are the most frequent methodologies that are used to assess the overall quality and 

hygienic conditions during milking, as well as to assess the presence of any fecal contamination 

2,3. There are several factors which can influence the initial microbial milk populations including 

milking procedures, milk handling, hygienic practices, and animal health status4,5. Seasonal 

variations in milk quality, yield, and compositions have also been investigated. Previous studies 

have shown that higher coliform, standard plate and somatic cell counts were observed in the 

summer compared to the winter6,7. Additionally, milk production yields and the milk fat and 

protein content were found to be lower in summer rather than in winter and spring months8,9. 

Proper hygienic practices during milking can help to maintain milk quality and minimize 

the introduction of contaminants, better assuring the safety of the finished product. The popularity 

and the production of unpasteurized dairy products, namely cheese, have expanded in the U.S. and 

worldwide; however, safety of unpasteurized dairy products is still questionable. The current FDA 
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regulations (21 CFR 133) allow the interstate sale of cheeses made from unpasteurized milk after 

aging for at least 60 days at temperatures of 35°F (1.67°C) or above to ensure product safety10. 

Several studies have found that 60 days of aging was not enough to eliminate E. coli O157:H7, or 

L. monocytogenes, from cheeses that were made from either pasteurized or unpasteurized milk11–

15.  

In addition to sanitation practices, there are several complex considerations which 

contribute to the overall microbial quality and safety of the finished product. Intrinsic factors 

include pH and water activity levels, nutrient content, redox potential, and the presence of 

antimicrobial substances, which are inherent to the product. Beyond these inherent attributes, 

processing variables present several external factors which can greatly influence microbial 

safety16. These include packaging and relative humidity in the processing environment, as well as 

production steps used by the producer such as aging conditions12,17–21.  

To date, there is a shortage in the literature of systematic investigations regarding the 

quality of unpasteurized retail dairy products; the survival of foodborne pathogens such as non-

O157 E. coli serotypes and L. monocytogenes during the manufacturing of these products within 

small scale cheese operations, and the correlation between the presence of Listeria spp. and 

coliforms in unpasteurized retail dairy products. Thus, the primary objectives of this research were: 

(1) to analyze the retrospective microbial quality of unpasteurized retail milk and fluid dairy 

products in Maine between 1998 and 2016, (2) to investigate the dynamic behavior and survival 

of Listeria monocytogenes and Shigatoxigenic Escherichia coli during the aging of farmstead-style 

cheese, and (3) to screen for the presence of Listeria spp. in unpasteurized retail dairy products in 

Maine. 
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CHAPTER 1    LITERATURE REVIEW 

1.1 Milk Biosynthesis and Composition 

Milk is defined as “the colostrum free lacteal secretion, obtained by the complete milking 

of one or more healthy cows” 21CFR133.11022. The rumen (the first stomach of the ruminant 

digestive system) allows the cow to synthesize nutrients from plant materials (cellulosic and 

fibrous) and from simple sources of nitrogen such as urea23. Milk is synthesized in special cells of 

the mammary gland and stored in the alveoli. Alveoli are spherical micro-organs consisting of 

central storages known as lumens. Each lumen is surrounded by a single layer of secretory 

epithelial cells, which is then connected to the duct system of the udder24.  

The major components of cow's milk are water, proteins, fats, lactose, and salts, which 

constitute of approximately 86.6%, 3.6%, 4.1%, 5.0% and 0.7% of milk, respectively25.  These 

components are synthesized from various precursors from the blood stream, including amino acids, 

blood sugar, and fatty acids, which are converted (metabolized) to proteins, lactose, and fats, 

respectively, throughout different pathways in the secretory cells26. In milk, water is the 

predominant liquid phase and is the matrix in which all other solid constituents are dispersed27. 

Lactose is a polar disaccharide available in milk and comprises approximately 5% of the total milk 

composition. Cow’s milk also has a complex lipid profile. These lipids include triglycerides, 

diglycerides, monoglycerides, free fatty acids, phospholipids, cholesterol, cholesterol ester, and 

hydrocarbons, which are approximately 98% of milk fats, collectively28. In addition, the most 

predominant milk salts are chlorides, citrates, phosphates, carbonates, sulfates and bicarbonates of 

sodium, calcium, potassium, and magnesium. Other elements such as zinc, lead, copper, iron, 

iodine, manganese and boron are also found in trace quantities28.  
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Milk proteins consist of two classes: caseins and whey proteins. Casein, which comprise 

80% of total milk proteins are further subdivided into four major molecules: s1, s2, , and -

casein. These constituents represent 38%, 10%, 34%, and 15% of the casein, respectively29. Due 

to unique interactions with calcium ions and calcium salts; s1, s2, and  are known as calcium-

sensitive caseins, whereas -caseins are considered calcium-insensitive24. Casein proteins are 

tangled in a spherical mass of thousands of individual casein molecules that are linked together in 

part by calcium phosphate nanocrystals through ionic linkages with phosphate serine residues on 

adjacent casein molecules, known as casein micelles27,347 (Figure 1- 1). There are three primary 

characteristics of these micelles; first is polarity, which is due to the high -casein concentration 

on the micelles’ surface. This polar surface enables the micelle to interact with water molecules 

and remain dispersed in the milk water phase27. Second is buffering capability to absorb hydrogen 

ions. This buffering action is due to the high calcium phosphate content within the casein micelles, 

which enables the micelles to absorb the ions and the micellar calcium phosphate is then converted 

to a more soluble form and is released from the micelles into the water phase. Finally, casein 

micelles possess strong water-binding and water-holding capacities. The water-binding capacity 

of the micelle within a cheese matrix, the proteins within the micelle, bind with available water 

making it less accessible for microorganisms to utilize. Additionally, the reduced water 

accessibility within this type of medium helps to reduce enzymatic reactions. 

On the other hand, whey proteins represent 20% of the total milk proteins and consist of 

serum albumin, immunoglobulins, alpha-lactalbumin, and beta-lactalbumin. These proteins are 

available as monomers or dimers that are folded into compact globular, three-dimensional 

structures30. Normally, whey proteins are heat-susceptible and start to denature and unbind through 
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exposure of their nonpolar hydrophobic sites to temperatures above 79C. Similarly, denaturation 

can occur when the pH of milk is reduced to a level of 6.0 or lower30. 

 

 

 

 

 

 

 

1.2 Natural Microflora of Milk 

Generally, fresh milk from a healthy cow is free of pathogens; however, shortly after 

milking, milk becomes colonized by microbes from several sources, including the teat apex, 

milking equipment, air, soil, grass and water31–33. The average level of aerobic microorganisms in 

raw milk is between 103-104 CFU/ml34. The most common microorganisms that exist in milk are 

lactic acid bacteria (LAB), psychrotrophs, yeast and molds35. Several factors, such as the 

environment where animals are kept, feeding location (outdoors versus indoors), and the stage of 

lactation have been found to affect the diversity of milk microflora35–37.  

1.2.1 Psychrotrophic Bacteria 

Psychrotrophic bacteria are microorganisms that are able to reproduce at low temperatures 

(3-7°C)38 with optimal metabolic activity temperatures that range between 20-30°C39. The most 

common genus of Gram-negative psychrotrophs is Pseudomonas, which accounts for 

approximately 65-70% of the psychrotrophs that are isolated from raw milk40. Other psychrotrophs 

Figure 1- 1 The Proposed Structure of Casein Micelles  
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isolated from raw milk include Acinetobacter, Aeromonas, Serratia, Alcaligenes, Achromobacter, 

Enterobacter, and Flavobacterium39. The predominant Gram-positive psychrotrophs in milk are 

Bacillus, Clostridium, Corynebacterium, Microbacterium, Micrococcus, and Staphylococcus39. 

Milking equipment contaminated by soil, water, and vegetation are the primary sources of 

psychrotrophs in milk. Generally, this group of bacteria comprises of less than 10% of the 

microflora of freshly drawn milk if proper hygienic practices have been followed throughout 

milking. Otherwise, psychrotrophs in milk may comprise more than 70% of the total bacterial 

load41. Some psychrotrophs, such as Pseudomonas and Bacillus, can produce extracellular heat 

resistant lipases, proteases and phospholipases42,43, which can have a negative effect on the product 

shelf life44. Psychrotrophs are susceptible to pasteurization; thus, their presence in pasteurized milk 

indicates either post-process contamination or inadequate pasteurization38,45. However, 

psychotrophic spore-forming bacteria, such as Bacillus and Clostridium, are another cause of 

spoilage. These spore-forming bacteria are capable of surviving pasteurization temperatures and 

the spore form and can germinate under normal storage conditions46. Generally, silage, soil, 

pasture, and bedding materials are considered the main sources of spores in the dairy farm 

environment46–49.   

1.2.2 Lactic Acid Bacteria  

Lactic acid bacteria (LAB) are naturally present as indigenous microflora in raw milk50. 

LAB genera are predominantly Gram-positive, cocci and bacilli in shape, strictly fermentative, 

acid tolerant, and are naturally present in the bovine mammary gland51. The most common genera 

of LAB found in milk are Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, and 

Enterococcus. Cow’s milk has a significant LAB population ranging between 101-104 CFU/ml52. 

LAB have been used as starter cultures in the production of fermented foods and beverages due to 



7 

 

a long and safe history of application and consumption and are considered Generally Recognized 

As Safe (GRAS) by the FDA53. LAB have a significant role in cheesemaking due to their use for 

rapid acidification by converting of milk sugar (lactose) to lactic acid, resulting in the precipitation 

of milk proteins (casein)54. Besides this characteristic, LAB also produces organic acids, 

antimicrobial agents, and enzymes which are critical to both ensuring finished product safety and 

maintaining cheese quality55.       

1.2.3 Coliform Bacteria 

Coliform bacteria are Gram-negative rods and ferment lactose with the production of acid 

and gas. They are aerobic or facultative anaerobic bacteria. Coliforms include the following 

genera: Escherichia, Klebsiella, Enterobacter, and Citrobacter56. Typically, sources of coliforms 

are feces, bedding materials, soil, and water. Thus, their presence in the farm environment is very 

likely, however, rigorous sanitation programs will prevent coliform introduction into the finished 

product2. Coliforms are susceptible to pasteurization temperatures; therefore, their presence in 

pasteurized milk indicates either post-pasteurization contamination or inadequate processing56.  

1.3 Milk Quality  

Raw milk quality is evaluated on both the macronutrient composition (fat and protein 

content) and the hygiene status (low bacterial and somatic cell counts)57. High quality milk is 

important for the production of high-quality dairy products. There are numerous microbiological 

tests used to evaluate milk and milk product quality, including the standard plate count (SPC), 

coliform count (CC), somatic cell count (SCC), plate loop count (PLC), the preliminary incubation 

count (PIC), and the laboratory pasteurization count (LPC)58. In the U.S., the present regulatory 

limit for high quality “Grade A” for bacterial counts are less than 100,000 CFU/ml and 750,000 
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cells/ml for SPC and SCC, respectively, as well as the “absence of foodborne pathogens”58. In 

retrospect, both the SPC and CC have been used predominantly to assess the quality of dairy 

products38.  

1.3.1 Standard Plate Count 

The standard plate count is a procedure that measures the total bacterial count in a milk 

sample, although it is known to underestimate certain populations. In this procedure, serial dilution 

and plating on a nonselective agar are used to determine the number of colony forming units (CFU) 

in one ml after incubating plates at 35℃ for 48 hours59. The Petrifilm TM Aerobic Count (PAC) is 

a version of this methodology which uses a dehydrated, commercially available medium60. This 

method is more widely utilized in industry and is the current method of analysis at the Milk Quality 

Laboratory at the Maine Department of Agriculture, Conservation and Forestry in Augusta, 

Maine61. Under ideal circumstances, the SPC level in the milk from clean and healthy cows is 

generally less than 1,000 CFU/ml; however, when sanitation and cooling practices are adequate, 

an SPC level of ~5,000 CFU/ml is common for most farms60.  

1.3.2 Coliform Count 

Coliform testing is used as indicator of fecal contamination. As required by the PMO, 

“Grade A” pasteurized milk must contain coliform counts (CC) of less than or equal to 10 

CFU/ml58. Coliforms typically associated with fecal origins include, Escherichia coli, Klebsiella 

pneumoniae, Citrobacter freundii, and Enterobacter spp.62. These bacteria are natural inhabitants 

of the gastrointestinal tract of warm-blooded animals, therefore, their presence in fluid milk and 

dairy products are not surprising63,64. Under proper hygienic milking practices, the typical level of 

coliforms in raw milk samples should be between 50-100 CFU/ml, however, 25 CFU/ml is 
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achievable in most dairy operations60. Although there are no legal coliform count limits for 

unpasteurized milk samples, as outlined under the PMO, these limits are set within each state that 

allows the sale of unpasteurized milk58,65. Coliform testing is performed by plating milk samples 

on violet red bile agar (VRBA), however, the Petrifilm TM coliform count is an accepted alternative 

method which is currently used by the Milk Quality Laboratory to evaluate the quality of 

unpasteurized retail fluid milk and milk products in Maine markets61.    

1.4 Hygienic Practices During Milking 

Milk is a highly nutritious food product that serves as an optimal medium for microbial 

growth. Microorganisms can enter the milk from numerous sources, including the udder surface, 

milking equipment and tools, as well as the dairy farm environment66–68. Consequently, the initial 

total bacterial count of milk can vary depending on several factors, such as hygienic practices, 

milking procedures, milk handling, and animal health status69. The reduction of bacteria on teat 

skin decreases the contamination of milk, and thus enhances milk quality70. Both farm conditions 

and management practices can either reduce or improve the efficacy of pre-milking teat sanitation 

methods71. Sanitation of the teat end is a crucial step in reducing the bacterial count before the 

milking process, and it helps in controlling mastitis and udder health69. The most common 

contagious pathogens that can cause mastitis are Staphylococcus aureus and Streptococcus 

agalactiae 72. Higher somatic cell counts (SCC) in milk samples can be an indication of mastitis, 

which is defined as an inflammatory disease that infects the mammary tissues of cattle or other 

lactating mammals72. Milk that has a high SCC (> 750,000 cells/ml) is not permitted for sale73,74. 

Pre and post-milking teat dipping have been found to be the most effective procedures in 

controlling mastitis pathogens compared to just a post-milking teat dipping procedure75. Common 

commercial sanitizers used for teat dipping include CleanTM 1.75% iodine, Tri-FenderTM 1% 
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iodine and Teat Cleaner NI01TM lactic acid/formic acid, which are all approved by the FDA76. 

For Maine and dairy farms nationwide, the pre-dipping procedure is recommended by the National 

Mastitis Council (NMC). Several studies have found that pre- and post-milking teat dipping 

procedures were effective in reducing mastitis-associated bacteria and the total bacterial count on 

the teat skin surface77–82. Proper milking practices have significant effects on the milk quality and 

also on milk safety by minimizing the chances of contamination with foodborne pathogens.   

1.5 Milk-borne Pathogens 

The neutral pH and nutritional value of milk make it an optimal medium for unwanted 

microbial growth83. In the past, Mycobacterium bovis, Brucella abortus, and Coxiella burnettii 

were the major pathogens of concern in milk. These pathogens have been completely eradicated 

from dairy herds in several countries84; however, these pathogens continue to be endemic in many 

regions85  and more specifically, M. bovis has re-emerged in some places where it had formerly 

been excluded86. Currently the most common foodborne pathogens of concern associated with raw 

milk are S. aureus, Salmonella spp., Shiga-toxigenic Escherichia coli (STEC), L. monocytogenes, 

and Campylobacter spp.66. Several studies have documented that the most prevalent foodborne 

pathogens in bulk tank milk (BTM) samples are Salmonella spp., STEC, L. monocytogenes, and 

Campylobacter jejuni 87–89.   

1.5.1 Listeria monocytogenes 

1.5.1.1 Characterization 

Listeria monocytogenes is an intracellular, Gram-positive rod approximately 1-2 µm in 

length and 0.5 µm wide90. It is a non-spore-forming, aerobic or facultative anaerobe91. L. 

monocytogenes can reproduce in a wide range of environmental conditions, including pH levels of 
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4.5-9.0, high salt media (10-20% W/V of NaCl), water activity as low as 0.92 and temperatures 

between 2-45°C92,93. The motility characteristics of this pathogen is characterized by incubating 

the cultures at room temperature; however, at 37℃ the organism can be non-motile94. 

1.5.1.2 Listeriosis 

Listeriosis is a disease caused by L. monocytogenes and is estimated to affect 1,600 people 

each year in the U.S.95. The infective dose of this pathogen is undetermined; however, it varies 

based on the pathogen strain, the food product in which it is present, and the health of the human 

host96. There are two types of listeriosis: the first is invasive, which is more severe and affects the 

population at the highest risk including pregnant women, the elderly and immunocompromised 

individuals. This type causes fever, muscle pain, meningitis, and septicemia and has a long 

incubation period (3-90 days). The second type is non-invasive, which affects mainly otherwise 

healthy individuals, and the symptoms are fever, headache, and muscle pain with a short incubation 

period of just a few days96. According to epidemiological data, listeriosis has one of the highest 

hospitalization rates and one of the highest cases of fatality rates among foodborne diseases in the 

U.S.97,98.   

1.5.1.3 Prevalence of L. monocytogenes in Food Processing 

Listeria monocytogenes is present in soil, decayed vegetation, silage, water, and is 

considered a natural environmental pathogen99–102. L. monocytogenes is the foodborne pathogen 

of most concern in food processing facilities that produce ready-to-eat (RTE) foods103. This 

bacterium has been isolated from different variety of foods, for example, raw and pasteurized milk, 

cheese (especially soft-ripened), ice cream, fermented raw meat and cooked sausages, raw and 

cooked poultry, raw meats, raw and cooked seafood, and raw and frozen vegetables104. Manure 



12 

 

and improperly fermented silage are also considered possible sources of L. monocytogenes in the 

dairy farm environment105.  

L. monocytogenes can survive for long periods in undesirable environmental conditions. In 

addition to survival and growth at refrigeration temperatures, this pathogen tolerates high salt and 

acid conditions106. Furthermore, it is capable of surviving frozen storage conditions for extended 

periods107 and is more heat resistant in comparison to other non-spore forming pathogens, although 

it can be killed by cooking and pasteurization temperatures108. Despite best efforts in eliminating 

Listeria spp. from food processing environments, Listeria can potentially be reintroduced into the 

facility109. L. monocytogenes can establish and form biofilms in difficult to clean areas within 

processing environments110, and thus, persist for a prolonged period of time. The control of this 

pathogen is required at all food processing steps and strict sanitation procedures are needed to 

prevent contamination with this pathogen, especially since the U.S. has a zero-tolerance of final 

food products.  

1.5.2 Escherichia coli 

1.5.2.1 Characterization 

Escherichia coli is a Gram-negative, rod-shaped, facultative anaerobic, and many strains 

harmlessly colonize the gastrointestinal intestinal tract of healthy humans and animals111. E. coli 

can grow within a wide range of environmental conditions including temperatures between 7 and 

50℃ with an optimum temperature of 37℃, can survive at low pH levels and minimum water 

activity level of 0.95112. The serological characteristics of E. coli are determined in great part by 

the O antigens, which are lipopolyproteins on the bacterial surface and their polysaccharide moiety 

has an important role in serological specificity and the H (flagellar) antigens112. There are six major 

groups (pathotypes) of pathogenic E. coli including enteropathogenic E. coli (EPEC), Shiga toxin-
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producing E. coli (STEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), 

enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC)111.  

1.5.2.2 Hemorrhagic Colitis  

STEC has caused illnesses associated with the consumption of different types of foods, 

including unpasteurized dairy products113. STEC strains are characterized to cause hemorrhagic 

colitis (HC) with bloody diarrhea, which may progress to hemolytic uremic syndrome (HUS). 

HUS is defined as the most common cause of acute renal failure in children114. The estimated 

infective dose of STEC is between 10 to 100 cells and the onset of the disease begins three to four 

days after ingesting contaminated food115.  

1.5.2.3 Prevalence of E. coli in Food Processing  

  Natural sources of E. coli include soil and the feces of humans and animals; thus, the 

presence of this bacterium is considered an indication of fecal contamination of food and water116. 

Both pathogenic and non-pathogenic strains of E. coli are present in the dairy farm environment 

since dairy cattle are a reservoir for them117,118. Currently, O157:H7 accounts for approximately 

75% of the STEC infections worldwide; however, non-O157 STEC serotypes (including O111, 

O26, O121, O103, O145, and O45) are also considered emerging sources of foodborne illnesses119–

121. Prevention and control of foodborne pathogens in different food sectors require various 

approaches include Good Agriculture Practices (GAP), Good Manufacturing Practices (GMP), 

Good Hygiene Practices (GHP), and the use of Hazard Analysis Critical Control Point (HACCP) 

programs122. 

 There are other common safety hazards associated with milk and dairy products, including 

Campylobacter, Salmonella, and S. aureus66. The CDC estimates that Campylobacter spp. cause 

1.3 million illnesses each year in the U.S. and is responsible for the cause of campylobacteriosis. 
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Typical symptoms include fever, diarrhea, abdominal cramps, and vomiting. Sometimes the stool 

may be watery or sticky and may contain blood. Generally, the ingestion of food and water 

contaminated with animal and/or bird feces is the source of campylobacteriosis123–125. Salmonella 

is one of the most prevalent foodborne pathogens worldwide126 and the CDC estimates Salmonella 

causes about 1.2 million illnesses, 23,000 hospitalizations and 450 deaths in the U.S. every year. 

Salmonella can cause salmonellosis and the symptoms of this disease are vomiting, abdominal 

cramps, diarrhea, fever and headaches. S. aureus can cause staphylococcal (Staph) food poisoning, 

which is a gastrointestinal illness. This illness is characterized by nausea, abdominal cramping, 

vomiting, diarrhea, muscle cramping, headaches, and dehydration127.     

1.6 Public Health Concerns  

Milk and milk products possess nutritional benefits; however, unpasteurized milk can 

harbor pathogenic microorganisms that can cause serious health consequences for humans. The 

most common foodborne pathogens associated with the consumption of unpasteurized milk and 

dairy products include Campylobacter, Salmonella, E. coli O157:H7, and L. monocytogenes 128,129. 

In 1948, Michigan was the first state in the United States to enact the requirement of pasteurization 

for dairy products130. Pasteurization is the process of heating milk to a specific temperature for an 

established period of time58. Pasteurization is aimed to enhance safety and extend the shelf life of 

the food product. Unlike sterilization, pasteurization is designed to kill all vegetative cells of 

pathogenic bacteria such as E. coli O157:H7, Salmonella, L. monocytogenes, M. tuberculosis, C. 

burnetti, and Campylobacter. Nonetheless, thermoduric bacteria and spore-formers (Bacillus and 

Clostridium) can survive pasteurization, grow and spoil milk at refrigeration temperatures131. 

Pasteurization also inactivates some milk enzymes, such as lipase and alkaline phosphatase. 

Inactivation of alkaline phosphatase is used as an indicator of effective pasteurization132. Failure 
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of lipase inactivation can cause rancidity development in milk due to the production of free fatty 

acids, specifically butyric acid. The two most common pasteurization processes are low 

temperature-long time (LTLT) and high temperature-short time (HTST) pasteurization as seen in 

(Table 1- 1) LTLT is commonly known as batch or vat pasteurization, which aims to heat milk to 

145°F (63°C) for 30 minutes, whereas HTST is known as a continuous process and is achieved by 

heating the milk to 161°F (72°C) for 15 seconds58. The other thermal treatment commonly used in 

the dairy industry is ultra-high temperature (UHT) pasteurization. This is achieved by heating the 

milk to 275-284°F (135-140°C) for a few seconds to destroy non-spore forming pathogens.  

 

 

 

 

 

 

 

 

 

Pathogen control strategies include separation of raw materials from RTE products, 

implementation of GMPs and controlled conditions, sanitary design of equipment and facilities, 

effective cleaning and sanitation procedures and controls, and an environmental pathogen 

Table 1- 1 Common Milk Pasteurization Processes58 
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monitoring program are all parts of an effective pathogen control strategy in the food processing 

facility58.  

1.6.1 Foodborne Disease Outbreaks in the United States 

Food can potential vehicle for food infectious or intoxications from pathogens of public 

health significance. A foodborne disease outbreak is the occurrence of two or more cases of a 

similar foodborne disease associated with the consumption of a common food133. Foodborne 

outbreaks have been correlated with a wide range of foods commonly including fish, shellfish, 

dairy products, eggs, fruits and vegetables, meat and poultry, and grains134. In the U.S., there are 

approximately 48 million cases of foodborne disease every year including 128,000 hospitalizations 

and 3,000 deaths135. Thus, one out of six Americans become ill because of a foodborne illness each 

year. The estimated annual number of illnesses caused by the top five pathogens are shown in 

(Table 1- 2)136.  

Table 1- 2 Estimated Annual Number of Foodborne Illnesses in the United States Caused by 

Prevalent Pathogens 

 

 

 

 

 

Pathogen Estimated Number of Illnesses 

Norovirus 

Salmonella nontyphoidal 

Clostridium perfringens 

Campylobacter 

Staphylococcus aureus 

5,461,731 

1,027,561 

965,958 

845,024 

241,148 
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1.6.1.1 Foodborne Disease Outbreaks Associated with Pasteurized and Unpasteurized 

Dairy Products 

Milk-borne outbreaks have decreased to less than 1% of all disease outbreaks compared to 

25% in 1938 before pasteurization was widespread58. This noticeable improvement could be 

primarily attributed to pasteurization and proper hygiene practices as well as to temperature control 

throughout milking, handling, shipping and storage of fresh milk and dairy products. Despite these 

encouraging statistics, the consumption of unpasteurized dairy continues to be a public health 

concern129,137,138. Dairy products, such as cheese, are considered RTE foods, which do not require 

any additional heating or preparation to ensure safety before consumption. Cheese can become 

contaminated with pathogens from different sources and at several stages of processing. Several 

foodborne illness outbreaks associated with the consumption of contaminated pasteurized and 

unpasteurized milk and cheese products have been reported in the U.S., including illnesses caused 

by Campylobacter jejuni, Salmonella, E. coli O157:H7 and L. monocytogenes,137,139–141. 

L. monocytogenes has received special attention among other foodborne pathogens due to 

its high mortality rate. The FDA implemented a zero-tolerance policy for the presence of L. 

monocytogenes in RTE food or any other products142. Therefore, any RTE foods testing positive 

for L. monocytogenes is considered adulterated and cannot be legally distributed or sold. The first 

documented listeriosis outbreak in the U.S. was in California in 1985, which was associated with 

the consumption of Mexican-style cheeses, specifically queso fresco and cotija, produced from 

unpasteurized milk. This outbreak caused 142 illnesses, 28 deaths, and 20 fetal demises139. L. 

monocytogenes still remains a foodborne pathogen of concern in dairy products. This pathogen 

also has been associated with numerous outbreaks within different food commodities, including 
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pre-cut celery, ice cream, frozen vegetables, cantaloupe, sprouts, caramel apples, and packaged 

salads143,144.  

In addition to numerous outbreaks, L. monocytogenes has caused multiple food recalls 

recently associated with different types of cheeses, as shown in ( 

Table 1- 3). The food recall is defined as a voluntary action taken by a manufacturer or a 

distributor to protect the public from food products that may cause health issues, such as illness or 

death. These products must be removed from the market after being adulterated or misbranded to 

avoid any public health problems, such as foodborne disease outbreaks145.  

Compared to other states where the sale of unpasteurized dairy products is legal; there were 

only two suspected foodborne outbreaks associated with dairy products in the state of Maine. The 

first was in 1998 associated with the consumption of unpasteurized milk, and the second was in 

2001, which was associated with the consumption of pasteurized chocolate milk. The low 

incidence of foodborne illnesses may be due to the small scale of the Maine dairy industry as well 

as the strict state regulations regarding product safety and quality. 

Table 1- 3 Recent Multi-state Recalls of Cheese Testing Positive for Listeria monocytogenes in 

the United States146–151 
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1.7 Regulations of Selling Unpasteurized Milk and Milk Products 

In the late 19th century, public health reformers and activists highlighted milk in their 

agenda and the safety of the milk supply became a major concern was due to several illnesses and 

deaths of city urban residents including, children, after; drinking contaminated unpasteurized 

milk152. In 1920, milk regulations had reached all parts of the U.S., and in 1939, the U.S. Public 

Health Service had drafted the Model Milk Health Ordinance, which was adopted at the local level 

152. Since the 20th century, the regulation of unpasteurized milk has proved to be a great public 

health success in the United States. In 1973, the U.S. Food and Drug Administration (FDA) 

adopted a regulation which required that all milk for interstate sale must be pasteurized, and in 

1982, the FDA initiated drafting regulations in banning the interstate commerce of unpasteurized 

milk and milk products153. In 1987, the FDA activated the prohibition of the interstate sale or 

distribution of unpasteurized milk153. Although the current FDA regulations (21 CFR 133) allow 

the interstate sale of cheeses made from unpasteurized milk after aging for at least 60 days at 35°F 

(1.67°C) or above, the safety of raw milk cheeses is still questioned10. There are thirty states in the 

U.S. which allow the intrastate sale of unpasteurized milk and milk products; however, only twelve 

of these states (including Maine), permit the sale of these products at retail stores65.  

1.8 Maine Dairy Industry 

 The dairy industry contributes more than $570 million each year to Maine’s economy, 

which generates more than $25 million for state and municipal government taxes every year1. The 

commercial retail sale of licensed, unpasteurized milk has been permitted since 1933 in Maine154 

and licensed producers of unpasteurized milk are permitted to sell their milk from the farm (direct 

to consumer), at retail stores, or at farmers’ markets155. A study by Welcomer et al. (2017)156 

mentioned that the number of licensed unpasteurized milk and cheese producers has increased 
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significantly from 15 and 21 producers in 2006 to 68 and 86 producers in 2016, respectively. The 

data of licensed dairy operations in their study were based on a personal communication with the 

Milk Quality Laboratory at the Maine Department of Agriculture, Conservation and Forestry. In 

Maine, the quantity of licensed operations is continuing to increase which places the state among 

the top artisanal cheese-making states in the U.S. and at the top of the Northeast157.   

1.9  Cheese Classification 

Cheese is defined as a fermented milk product that possibly dates back to Neolithic times. 

Cheeses can be categorized based on the percentage of moisture on a fat-free basis (MFFB %) into 

soft, firm/semisoft, hard and extra hard cheeses as shown in (Table 1- 4).  

Table 1- 4 Cheese Texture Classification Based on Firmness and Ripening Characteristics158 

According to Firmness According to Principle 

Ripening Method 
MFFB% Classification 

< 51 

49-56 

54-69 

> 67 

      Extra Hard 

Hard 

Firm/Semi-Hard 

Soft 

Ripened 

Mold Ripened 

Unripened/Fresh 

In Brine 

  

1.9.1 Hard Cheeses 

Hard cheeses are characterized by having a moisture content which ranges between 30-

45% and are exposed to higher pressures during pressing, which provides the finished product 

attributes based on the processing conditions159. Hard cheese production has numerous steps, 

including renneting around 30℃, cutting the curd into smaller pieces and cooking the curd at 39-

40℃, which allows for the release of whey. Some examples of hard cheeses include cheddar, 

Cantal, derby, ras, kefalotiri, and manchego. Cheddar is considered one of the most popular cheese 
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styles globally. It is produced on a large scale in the U.S., United Kingdom, Canada, New Zealand, 

Australia and Ireland. Cheddar is typically aged at 6-10℃ for 3-4 months and up to 2 years or 

more, based on the ripening age desired159.    

1.9.2 Ripened Cheeses 

Ripened cheeses are aged for a certain period of time, at a certain temperature and under 

certain humidity conditions. Throughout ripening, necessary biochemical and physical changes 

occur, which characterize the cheese’s identity. For example, ripened firm/semi-hard cheeses 

include Saint-Paulin, Edam, gouda, provolone, tilsiter, danbo and havarti. While ripened hard 

examples include cheddar, emmental and samsꝋ158. 

1.9.3 Soft Cheeses 

Soft cheeses typically contain greater than 61% moisture, and 10-50% fat in the dry matter 

(FDM)160. These types of cheeses are classified into four groups: un-ripened, mold-ripened, 

surface bacterial smear-ripened and pickled160. These cheeses are ripened through the development 

of certain fungal cultures, such as Penicillium camemberti and Penicillium roqueforti in the 

interior and/or on the surface of the cheese158,159. These two species of Penicillium contribute 

significantly to the appearance, texture and flavor development on the surface of mold-ripened and 

blue-veined cheeses161. Surface mold-ripened cheeses are soft varieties that have the characteristic 

white fungal mat on the cheese surface, such as brie, camembert and coulommiers. Blue-veined 

cheeses are identified by the blue-green growth of P. roqueforti, which gives the cheese the 

signature appearance and flavors162. These cheese flavors are generated by methyl ketones and 

other compounds, which result from free fatty acids being released by the action of the mold 

cultures163. 
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1.10 Cheese Processing 

In the earliest era of cheese manufacturing, cheesemakers counted on natural sources of 

lactic acid bacteria that would spontaneously ferment lactose to produce lactic acid.  Currently, the 

cheesemaking process is usually standardized by the addition of starter cultures, including 

mesophilic (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris), and in 

certain styles of cheese, thermophilic cultures (Lactobacillus delbrueckii subsp. bulgaricus, 

Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis and Streptococcus 

thermophilus)164. The production of lactic acid by the action of these bacteria helps contribute to 

casein coagulation. Additionally, coagulation of casein is frequently supported by the addition of 

the enzyme chymosin, which is the active component of rennet165. Rennet was initially extracted 

from the intestinal lining of milk-fed calves, which produces chymosin to assist in the digestion of 

milk. Chymosin cleaves the peptide bond between phenylalanine (Phe) 105 and methionine (Met) 

106 in the κ-casein chain, which results in the clotting of milk during cheese processing166. 

Additionally, it is responsible for the changes in texture, as well as the development in flavor 

throughout the ripening process165. During the cheesemaking process, milk constituents are 

separated into two groups. Some are retained in the curd (casein and fat), while others are retained 

in the whey (such as water, lactose, peptides, other nitrogenous compounds, and minerals in the 

soluble form at a final cheese pH level of 4.6)167. There are three common terms: artisan, 

farmstead-style, and specialty that are used to describe the way cheese can be produced168. 

Farmstead-style cheese is cheese made by hand and the source of milk must be from the farmer’s 

own herd168.  

Although there are numerous cheese varieties, cheese processing shares several common 

steps, which include ripening the milk, coagulation, cutting the curd, cooking, releasing the whey, 
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salting, molding, pressing, and aging the cheese for some varieties. Figure 1-2 illustrates the basic 

steps of farmstead-style cheese production169 . 

1.10.1 Ripening 

Ripening is the first step in cheese manufacturing after selecting the desired milk type 

(pasteurized or unpasteurized, whole, low fat, etc.). In the ripening process, milk is heated to the 

proper temperature before adding starter cultures. Heating the milk is achieved either by using 

stovetop or jacketed vat. Once the milk reaches the required temperature, the starter cultures can 

be added169. Through the ripening stage, milk sugar (lactose) is transformed to lactic acid, as the 

added and innate milk cultures become activated in the warm milk. The increase of lactic acid in 

milk helps to facilitate the rennet action to clot milk, expel whey from the curd, to preserve the 

final cheese product and enhance flavor development159. The accumulation of lactic acid lowers 

the curd pH level of curd which helps to produce an unfavorable environment for unwanted 

bacteria and helps to release whey (syneresis), as previously mentioned. Lactose is a polar 

disaccharide that is readily available in milk, and its concentration in cow's milk is consistently 

around 5%170. Thus, the amount of both water and lactose will be equivalent in the whey after 

separating from the curds. Consequently, a small fraction, roughly 5% of water and lactose in the 

milk, is retained in the cheese170. 
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1.10.2 Coagulation 

Coagulation is an essential step in curd formation, which involves the coagulation of the 

milk proteins (casein). There are three methods to coagulate milk proteins: acid, acid/heat and 

rennet coagulation.  

1.10.2.1 Acid Coagulation  

As previously mentioned, acidification can be achieved by the action of starter cultures 

(lactic acid bacteria LAB) or by directly adding acid to milk. When lactic acid or other acids are 

produced or added, the starting milk pH level is typically 6.7 and begins to descend towards the 

isoelectric point of milk protein (casein) which is 4.6. The aggregation of hydrogen ions reaches a 

Figure 1- 2 The Cheesemaking Process 
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state of equilibrium on the polar surfaces of casein micelles and prevents them from interacting 

with water molecules171. This action forces the micelles to interact with each other and form 

micelle chains. These chains increase in length during the coagulation process and creates a three-

dimensional net-like matrix, which entraps all water and solid components. This process 

transforms the milk from a liquid phase to a soft gel or coagulum. The coagulum is highly 

demineralized because most of the micellar calcium phosphate is dissolved by the accumulation 

of lactic acid. Generally, the demineralized casein does not have the capacity to expel much whey. 

For this reason, acid-coagulated cheeses are highly vulnerable to microbiological spoilage due to 

their higher water content (70-80% moisture), and the final pH value of 4.6 is particularly desirable 

for yeasts and molds. Thus, most of these high-moisture cheeses are consumed fresh since they 

have a much shorter shelf life compared to aged cheeses167. 

1.10.2.2 Acid/Heat Coagulation 

In fresh milk, casein micelles are very heat-stable proteins and remain in a colloidal 

dispersion at temperatures up to 140℃30. Moderately acidified milk (pH 5.4-6.2), either by lactic 

acid production or by the addition of an external acid, becomes sensitive to heat-induced 

coagulation at temperatures around 85℃. Since the whey proteins are heat susceptible, they will 

unfold and lose their capacity to interact with water molecules under acid/heat coagulation, which 

is called protein denaturation. Accompanying this process, the neutralization of the casein micelle 

polar surfaces by declining the pH level to the isoelectric point of 4.6 causes calcium-induced 

disorganization172. Consequently, denaturation of whey proteins prevents them from attaching to 

the micellar surfaces, and the casein micelles accumulate and entrap the fat globules. The resulting 

aggregates are called curds. The curd particles separate from the whey are able to be drained and 

pressed. Examples of acid/heat coagulated cheeses include ricotta, queso blanco and Turkish white 
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cheeses. These products typically have a high moisture content of approximately 50-80%167,172. 

These cheeses are also more susceptible to microbial deterioration due to the high pH values and 

high moisture content.  

1.10.2.3 Rennet Coagulation 

Rennet is a proteolytic enzyme belonging to a group of aspartic proteases. There are two 

main sources of rennet: animal, which is from the stomach of milk fed calves166 and microbial, 

produced by fungi such as Rhizomucor and Cryphonectria173. Plant-derived enzymes, such as ficin 

from Ficus spp., papain from Crica papaya, and Cardoon thistle (Cynara cardunculus) are also 

used in cheesemaking to clot milk proteins174. Rennet coagulation includes two steps: the 

enzymatic and non-enzymatic phases173. The enzymatic phase occurs by the hydrolysis of -

casein, resulting in a caseinomacropeptide molecule. Rennet enzymes then effectively attach to 

the carbohydrate-rich, polar layer of caseinomacropeptides on the micellar surfaces. This process 

makes the interior of the micelles non-polar in milk, which is calcium-rich and activates the non-

polar enzymatic phase. As in acid coagulation, the casein micelles lose the ability to interact with 

water molecules, and therefore, interact with each other forming micelle chains, which entraps 

milk solids. Rennet-coagulated cheeses have a higher calcium phosphate content and a higher 

buffering capacity, which helps to control the pH at the beginning stages of cheese ripening 

process. There are two major differences between acid and rennet coagulations.  The curds from 

rennet coagulation are more tender and easier to expel whey from the formed curd than the from 

acid coagulation. The second difference is rennet coagulated curds can occur at a faster pace, 

within 30-60 minutes, at high pH levels (around 6.3-6.6); however, acid coagulation takes a longer 

time, about 5-48 hours to form a curd at low pH levels (approximately 4.6-4.8).  
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1.10.3 Cutting  

Once the rennet is added and milk is transformed into solid curds, the curds are cut using 

a curd knife to help facilitate the separation of curd from the whey. The curd size is crucial, as 

smaller curd particles allows for a greater curd surface area. This will lead to the release of more 

whey, which will result in a lower moisture content and drier curd175.  In low-moisture cheese 

varieties, such as emmental and parmigiano reggiano, cutting the curd into rice-sized particles is 

required to help maximize whey expulsion. In high-moisture cheeses, the curd is usually cut into 

much larger pieces, reducing surface area and limiting whey expulsion to allow for more moisture 

retention in the curd175. 

1.10.4 Heating the Curds 

The curds are slowly heated after cutting and then stirred. The heating process, 

accompanied by continuous stirring, enhances curd concentration and whey expulsion175. Along 

with curd size, the temperature influences the moisture content of the final cheese, and the activity 

of LAB in producing lactic acid, which impacts the curd concentration and whey expulsion as the 

pH level drops. The heating temperature also affects curd demineralization and buffering capacity, 

as a result of its effect on the rate of lactic acid production by LAB167. Normally, L. lactis subsp. 

lactis is inactivated at temperatures of 40℃ (104℉) or above. Thus, any change in the temperature 

can have a significant influence on the rate of lactic acid production, especially at higher 

temperatures. This change can further impact the final product texture and moisture levels159.   

1.10.5 Releasing the Whey 

After the curds have been heated and stirred, it is important to separate the curds from the 

whey. The curd particles then form a large matrix, which becomes the cheese. Syneresis is the 
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process of contraction of the curd particles due to the rearrangement of the para-casein network 

bonds. The rate of syneresis is influenced by the pressure gradient created in the gel network and 

by the flow resistance through the gel network. Several factors determine the rate and extent of the 

syneresis, such as temperature, pH, calcium chloride addition, curd firmness and cutting method 

176–179. Whey proteins dissipate in the milk liquid phase due to their folded structures, and the polar 

region of the amino acids opposing the water phase. For this reason, 5% of both lactose and whey 

proteins are expelled during syneresis in proportion to water throughout the manufacturing process 

of acid-rennet coagulated cheeses180.  

1.10.6 Molding and Pressing   

Once the curds have been salted, they are molded and then pressed, depending on the 

cheese variety. Salt improves both the flavor and the cheese texture, as well as acting as a 

preservative by inhibiting the growth of unwanted bacteria. Salt also aids in moisture removal from 

the curds, causing them to shrink and drain more whey. Salting the cheese can be achieved by 

directly adding, rubbing or sprinkling salt onto the curd. The other salting method is brining, which 

is the immersion of cheese into a salt solution (brine). Cheese varieties that are commonly brined 

are feta and gouda cheeses169.  

Molding determines the cheese shape, and the amount of pressure and pressing time will 

influence the final texture of the cheese. Pressing helps to compress the curd and drain excess 

whey. Typically, cheese is pressed at a lower weight during a short period of time (10-15 minutes), 

and then the weight is increased gradually for at least 12 hours based on the desired final cheese 

texture169.     
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1.10.7 Aging 

As previously mentioned, the current FDA regulations (21 CFR section 133) permit the 

interstate sale of raw milk cheeses after aging for at least 60-days at 35℉ (2℃) or above to ensure 

the microbial safety181. The aging or ripening process is the stage of developing the cheese flavor 

over time. This stage can take between a few days to six years depending on the cheese variety. 

Temperature and humidity are important factors during the aging process. Most cheese varieties 

have an optimal aging temperature between 46℉ and 60℉ with a relative humidity of 75%-95%. 

Flavor development is affected by the constant exchange of ripening gases that are released from 

the cheese, such as carbon dioxide and ammonia, as well as oxygen in the aging environment182. 

Usually, hard cheese varieties are aged at 55℉ with a relative humidity of 65%-85%. The longer 

the hard cheeses are aged, the stronger the flavor development and the lower the moisture 

content169.    

Bacteria, molds and yeasts are present in cheese during the ripening process. Their 

contribution to ripening cheese is either direct, by their metabolism, or indirect by releasing 

enzymes into the cheese after autolysis. Cheese ripening is a complicated process that involves the 

action of both microbiological and biochemical changes. These changes affect the texture and 

flavor properties of the specific cheese variety183. During the cheese ripening process, the 

microbiological changes include the lysis and death of starter culture cells (LAB), the growth of 

non-starter LAB (NSLAB), the growth of secondary microflora, such as Propionibacterium 

freudenreichii and the growth of molds. Some Gram-positive microflora also play an essential role 

in developing the flavor in some cheese varieties, such as smear cheeses184.  

  During the aging process, the starter culture concentration can exceed 9-log colony forming 

units (CFU) per gram of cheese185. Autolysis of the dying starter culture cells releases intracellular 
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enzymes, such as peptidases, and cellular components, such as sugars and nucleic acids, into the 

cheese186. Meanwhile, NSLAB counts start to increase from 2-log CFU/g to reach approximately 

7-8 log CFU/g after aging cheese for 3-9 months187. The role of LAB, such as L. lactis, in 

developing cheese flavor is due to the proteolysis of casein by the release of proteinases188. Another 

role of LAB during cheese ripening is amino acid catabolism. This is accomplished through the 

action of two enzyme classes: amino acid lyases and amino acid aminotransferases, which convert 

amino acids to flavor compounds189. These biochemical changes during cheese ripening are 

divided into primary and secondary changes. The primary changes include glycolysis (as described 

in the ripening section), proteolysis and lipolysis, and the secondary changes include the 

metabolism of fatty and amino acids184.   

1.10.7.1 Proteolysis 

Proteolysis is the degradation of proteins by the action of proteinase enzymes. Proteins are 

made up of amino acid chains, which are linked by peptide bonds. Proteins can lose their native 

conformation through the denaturation process either by enzymatic (rennet), chemical (acid) or 

physical action (by applying heat). Proteases can come from the milk, contamination with 

foodborne pathogens, added enzymes or bacteria, or the presence of somatic cells in the milk. The 

proteolysis of casein starts when rennet is added to the milk. The ideal action of rennet to clot the 

casein is under acidic conditions (pH level of 4.6). The second step of proteolysis is the formation 

of small peptides or amino acids by the action of the native enzymes (plasmin) in the milk or by 

the starter culture, which have direct impacts on cheese flavor190. Proteolysis also contributes to 

cheese softening throughout the ripening processing by hydrolyzing the para-casein, reducing the 

water activity, and forming amino groups via hydrolysis of peptides190,191.   
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1.10.7.2 Lipolysis 

Lipolysis is the degradation of fats (lipids) by lipase enzymes. Triglycerides comprise 98% 

of the fat in milk192. The overall fat content in milk is 3.4%, and cheeses have roughly ten times 

more fat than milk. Milk contains approximately 65% saturated, 30% monounsaturated, and 5% 

polyunsaturated fatty acids192. For that reason, cheese is considered a high-caloric food containing 

high levels of saturated fatty acids (butyric, myristic, palmitic, and stearic acids). Likewise, 

cheeses are considered an abundant source of trans-fatty acids (conjugated linoleic acids) with 

typical values ranging between 8 and 18 mg/g of fat. Throughout the cheese ripening process, 

lipases degrade milk fat, essentially triglycerides, to short-chain fatty acids that might be unstable 

193. Several factors, such as starter culture type, the duration of the ripening process, and 

cheesemaking conditions, might affect the lipolysis process. Short-chain fatty acids are important 

precursors for the production of volatile flavor compounds, which significantly contribute to flavor 

development and the aroma of many cheeses193,194. 
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CHAPTER 2 RETROSPECTIVE ANALYSIS OF MICROBIAL QUALITY OF 

UNPASTEURIZED RETAIL MILK AND FLUID DAIRY PRODUCTS IN MAINE 

BETWEEN 1998 AND 2016 

2.1 INTRODUCTION 

Milk and dairy based-products are highly nutritious food commodities, which contribute 

more than $570 million dollars to Maine’s economy each year1 . Pasteurization is a proven thermal 

processing method to ensure the safety of these products. However, the increasing demand for 

unpasteurized dairy beverages has created a great deal of public health concern. In 1987 the Food 

and Drug Administration (FDA) prohibited the interstate distribution and sale of unpasteurized 

milk products, whereas intrastate sales were regulated at the state level153. The sale of 

unpasteurized milk is allowed in thirty states, but only twelve of these states including Maine, 

permit the sale of these products at retail stores65. In Maine, licensed unpasteurized milk producers 

are permitted to sell their products from the farm (direct-to-consumer), at retail stores, or at 

farmers’ markets155. Unpasteurized dairy distributors are required to obtain a Maine Milk 

commission license, which is regulated by the Maine Department of Agriculture, Conservation 

and Forestry, and is valid for one calendar year (Title 7, Section 2955 Maine Legislature 

Licenses)195. Each dairy farm must be inspected annually to ensure the farm meets the state’s 

standard requirements. According to the Pasteurized Milk Ordinance (PMO) and Maine Milk 

Rules, all dairy products produced in the state must be analyzed every six months58.     

Unpasteurized dairy products have been historically implicated in foodborne illness 

outbreaks153,196–199. Most recently a 2016 multistate outbreak in Utah caused two illnesses as result 

of the consumption unpasteurized milk contaminated with Campylobacter jejuni200. 
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Cow and goat milk are the primary basis of most dairy products consumed by people today. 

Regardless of the source, each milk has a similar chemical composition including protein, fat, 

carbohydrate, vitamins, minerals, and water201. However, the percentages of these constituents are 

influenced by several factors including stage of lactation, diet, genetics, and climatic 

conditions202,8. Milk is an ideal medium for the growth of many microorganisms. Specifically, the 

relatively neutral pH (6.6-6.8) and extremely high water activity (Aw = 0.99) create a favorable 

environment for bacteria203. Microorganisms in milk originate from several sources such as the 

teat apex, milking equipment and tools, as well as the dairy farm environment31,66,204. 

Subsequently, the initial total bacterial count of milk can differ significantly depending on factors 

such as hygienic practices, milk handling, and the animal’s health status5. Therefore, it is critical 

that dairy farmers follow proper sanitation and milk storage practices in order to minimize sources 

of contamination58,5.  

Several microbiological tests have been established to evaluate the bacteriological 

acceptability of unpasteurized milk58. More specifically, the standard plate and coliform counts 

(SPC and CC) are common procedures205,206. Although not all bacteria enumerated using SPC is 

non-pathogenic, it can be an indicator of overall product quality. Coliform testing is an indication 

of sanitary quality and potential safety due to this class of bacteria being associated with fecal 

contamination. High coliform levels are usually caused by production problems, including poor 

hygiene practices and post-processing contamination207,208. In the U.S., the legal maximum SPC 

limit for high quality “Grade A” raw milk is no more than 100,000 CFU/ml58 . The legal maximum 

coliform bacteria limit in “Grade A” pasteurized milk is 10 CFU/ml58, which also applies to 

unpasteurized milk products.  
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A large pool of data regarding the microbial quality of unpasteurized dairy products in 

Maine has been generated from samples collected during Maine Department of Agriculture dairy 

inspections. Analysis of this data could provide valuable insight into certain factors that may affect 

the quality of these controversial products, such as potential seasonal effects, as well as provide 

information regarding industry trends. In this study, longitudinal microbiological testing data was 

obtained with permission from the Maine Department of Agriculture, Conservation and Forestry 

between 1998 and 2016, which include standard plate and coliform counts of unpasteurized retail 

fluid dairy products in Maine. By analyzing this data, we hoped to: (1) assess the overall quality 

and evaluate the cleanliness of unpasteurized retail dairy products in Maine, (2) investigate the 

effects of independent variables (season, year and animal species) on the quality of unpasteurized 

milk, (3) evaluate the microbial quality across types of unpasteurized retail dairy products (milk, 

light cream, heavy cream).  

2.2 MATERIALS AND METHODS 

2.2.1 Data 

As previously mentioned, the dataset used in this study was obtained from the Maine 

Department of Agriculture, Conservation and Forestry, Milk Quality Laboratory in Augusta, 

Maine. The data set included SPC and CC data results for retail test samples of fluid unpasteurized 

goat and cow dairy products including milk, light cream, and heavy cream from licensed dairy 

farms between 1998 and 2016. The total number for cow and goat milk samples were 3087 and 

717, respectively. Data were generated by serial dilution plating of retail samples onto 3M™ 

Petrifilm™ Aerobic and Coliform Count Plates. All samples were collected aseptically by state 

inspectors and then analyzed by trained laboratory technicians.  
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2.2.2 Descriptive Analyses 

Statistical analyses were performed using IBM SPSS Statistics version 25. The SPC and 

CC data were log-transformed as follows: log10 (original CFU/ml+1) to compare the means209. The 

calendar year was divided into seasons with “fall” defined as September-November, “winter” as 

December-February, “spring” as March-May, and “summer” as June-August210. In accordance 

with state regulations, SPC ≤ 50,000 CFU/ml (4.7 log CFU/ml) and CC ≤ 10 CFU/ml were used 

as the compliance threshold.   

2.2.3 Statistical Analyses  

An independent T-test was used to analyze statistical differences among the means. Due to 

large number of data set observations, non-parametric correlations (Spearman’s correlation 

coefficient) were used to detect any trends between milk quality standards (SPC and CC) and year. 

Chi-Square tests of independence were used to compare the continuous variables (SPC and CC) 

and categorical variables (seasons, product types, and animal species). Pearson’s Chi-Square was 

used to determine the associations between continuous and categorical variables. Standardized 

(Pearson) residuals were used to determine the statistical differences among seasons and among 

the dairy product types. P value of < 0.05 was set as the significance level.  

2.3 RESULTS 

2.3.1 Bacterial Populations of Unpasteurized Retail Goat and Cow Milk Samples 

Figure 2-1 displays the longitudinal bacterial population trends (SPC and CC), and the 

number of analyzed samples of both unpasteurized retail cow and goat milk samples. Overall, there 

were no statistically significant differences between the mean SPC totals for both cow and goat 

milk samples (3.14 and 3.12 log CFU/ml, respectively). However, the mean CC levels were 
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significantly (p <0.05) higher (0.60±0.01) in cow’s milk samples, compared to goat milk 

(0.49±0.03). In unpasteurized cow’s milk samples, the highest mean SPC value was recorded in 

1998 and the lowest in 2006 as shown in (Figure 2-1 A). Similarly, the highest mean CC values 

were observed in 1998 and 1999, whereas the lowest values were noted between 2012 and 2016. 

Clear trends were observed between bacterial populations and year for both dairy products.  Figure 

2-1A also demonstrates the increase in unpasteurized milk products analyzed during this time 

period. More specifically, the number of unpasteurized cow’s milk samples increased overtime 

and were approximately four times higher compared to goat’s milk samples analyzed in the same 

time period as shown in (Figure 2-1A).  

Figure 2-1B shows bacterial populations (SPC and CC) in unpasteurized retail goat milk 

samples. In accordance with the results of unpasteurized retail cow’s milk, the highest mean SPC 

and CC values were recorded in earlier years, while the lowest values were observed between 2010 

and 2016. Overall, the mean SPC and CC populations in goat’s milk samples decreased from 4.1 

log CFU/ml in 1998 to 2.9 log CFU/ml over the duration of the data collection period, with 

variability in coliform counts also decreasing from 1.4 log CFU/ml to 0.4 log CFU/ml in recent 

years. Interesting to note, the number of retail samples for both dairy products were five times 

higher in 2016 compared to 1998. Spearman’s correlation analysis demonstrated a significant weak 

negative correlation between milk quality results of both products and year.     
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Bacterial populations (Standard Plate Count SPC and Coliform Count CC) were expressed as 

means ± standard errors. 

Total Samples of Cow’s Milk n= 3087 and of Goat Milk n= 717. 

 

Figure 2-1 The Mean Bacterial Populations Values between 1998 and 2016 in Unpasteurized Retail (A): Cow’s 

Milk and (B): Goat’s Milk 
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The percentage of samples analyzed is displayed in Table 2-1. Overall, non-compliance 

was more likely to be the result of high CC rather than high SPC. No significant differences were 

associated among species and quality standards using Pearson Chi Square analysis.  

 

 

 

 

 

*indicates Pearson Chi-Square correlation between species and SPC and CC is significant at 

level <0.05  

Cows’ Milk n= 3087, Goats’ Milk n= 717. 
 

 

2.3.2 The Seasonal Effects on the Bacterial Populations of Unpasteurized Fluid Retail 

Cow and Goat Milk Samples 

Figure  2-2 demonstrates the seasonal effects on the quality of retail samples of 

unpasteurized cow and goat’s milk. As expected, higher percentages of non-compliant SPC and 

CC were observed in the summer for both dairy products. Across both cow and goat’s milk, there 

were significant differences between non-compliant SPC and CC in summer compared to other 

seasons. Similarly, in cow’s milk there were significant differences between non-compliant CC in 

summer and spring months, as well as between summer and both fall and winter months. 

Interestingly, all the submitted SPC goat’s milk samples in the winter months were in compliance 

with the state regulations. Unlike cow’s milk, the lower percentage of non-compliant CC samples 

were recorded in spring, which was significantly different than in fall and winter. The correlation 

between the prevalence of non-compliant SPC and CC in both products and seasonality was 

Species % Compliant % Non-Compliant % Compliant % Non-Compliant

Cow 90.30 9.70 74.10 25.90

Goat 90.10 9.90 77.30 22.70

 SPC (p = 0.830)*  CC (p  = 0.083)*

Table 2-1 The Percentage of Compliant and Non-Compliant Bacterial Populations in Unpasteurized 

Retail Milk Samples. 
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determined, and the Pearson Chi-Square showed there were significant correlations between 

seasonality and both SPC and CC for both dairy products.  
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Compliant Standard Plate Counts (SPC): ≤ 50,000 CFU/ml and Coliform Counts (CC): ≤ 10 

CFU/ml. Non-compliant SPC > 50,000 CFU/ml and non-compliant CC > 10 CFU/ml. 

Cow samples (Fall n=713, Winter n= 647, Spring n= 783, Summer n= 868) Goat samples (Fall 

n=188, Winter n= 47, Spring n= 165, Summer n= 296). 
 

Figure 2-2 The Season Effects on Bacterial Populations in Unpasteurized Retail Cow’s Milk (2A and 

2B) and Goat’s Milk (2C and 2D). 
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2.3.3 The Microbial Quality of other Unpasteurized Fluid Dairy Products 

 In addition to milk, other fluid products were analyzed including light and heavy cream as 

part of this data set as shown in Figure 2-3. Overall, a higher percentage of non-compliant samples 

were observed based on coliform count data compared to standard plate count results for all 

analyzed dairy products. Fluid milk had a significantly (p < 0.05) lower percentage of non- 

compliant SPC comparison to other dairy products. However, non-compliant CC percentages were 

consistent and not significantly different among all dairy samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chi-Square test was used, and significant differences were based on the value of standardized 

residuals.   

Different letters across products were significantly different (p <0.05). 

Compliant Standard Plate Counts (SPC): ≤ 50,000 CFU/ml and Coliform Counts (CC): ≤ 10 

CFU/ml. Non-compliant SPC > 50,000 CFU/ml and non-compliant CC > 10 CFU/ml. 

Milk samples n= 3087, Light cream n=43, Heavy cream n= 201. 

Figure 2-3 The Effects of Different Types of Unpasteurized Retail Cow’s Milk Products on Bacterial 

Populations. 
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2.4 DISCUSSION  

 The microbiological community within milk is a significant indicator in evaluating the 

quality of dairy products. This study was designed to assess the microbial quality of unpasteurized 

retail dairy products based on retrospective testing data from retail samples produced by licensed 

dairy farms in Maine. The bacterial populations in Figures 1A and 1B revealed a decrease, thus 

the overall microbial quality has maintained over time even as there has been increase in retail 

samples over time. For example, the mean cow’s milk SPC and CC declined significantly from 

3.7 log CFU/ml and 0.90 log CFU/ml in 1998 to 3.02 log CFU/ml and 0.50 log CFU/ml in 2016, 

respectively. By analyzing this same data set, the number of dairy producers in 1998 was 18 and 

in 2016 was 53. This suggests that as market size increased the product quality has also improved 

likely as a result of the current inspection and licensing program. Furthermore, the increase in 

sample submissions may signify a greater demand for this product type in the market. 

 Due to the restrictions in many states on the sale of unpasteurized milk, there is a lack of 

long-term studies on the microbial quality of unpasteurized retail dairy products. However, a 

possible explanation for the reduction in SPC and CC observed in this study could be related to 

several factors, such as enhanced animal health, proper hygiene practices, and proper storage 

conditions. For example, Goldberg et al. (1991)211 found that microbial quality of Vermont bulk 

tank milk improved between 1985 (SPC 30,000 CFU/ml) and 1990 (SPC 23,000 CFU/ml). This 

was attributed to the implementation of an effective mastitis control program to maintain animals’ 

health. In Maine, licensed dairies producing unpasteurized dairy products are required to submit 

at least four samples of their products during a consecutive six month period to ensure compliance 

with state regulations58. However, if two of these four consecutive samples exceed the standard, 

the dairy farm concerned is required to send an additional sample for microbiological testing. Non-
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compliance of the third sample will result in an immediate license suspension58. Additionally, the 

annual inspection program is a second safe guard for preserving product quality. This is evident in 

the reduction of average microbial populations across the data set. Accordingly, the effectiveness 

of the state inspection program is apparent in the fact that there have be no reported outbreaks 

linked to unpasteurized dairy products in Maine within the past 20 years. 

The SPC can be greatly influenced by specific groups of microorganisms, including 

thermoduric, psychrotrophic, and environmental bacteria, such as Streptococcus spp. and 

coliforms212,213. The correlation among different dairy quality standards, such as SPC and CC, and 

external factors including seasonality, sanitation, milk storage conditions, animal species, milk 

transport methods, and farm size has been well documented213–216. The results of this study showed 

that there were no significant correlation between SPC and CC in unpasteurized retail cow’s milk; 

however, a significant (p < 0.01) but weak positive correlation between these standards was found 

in unpasteurized retail goat’s milk. No significant (p > 0.05) correlation was observed between 

milk quality standards and animal species. Positive correlations between SPC and CC have been 

reported by multiple investigators, which suggests little differentiation of microbial populations in 

these samples217,218. Researchers also have found that microbial counts and herd size were also 

positively correlated213,217. The presence of coliforms in milk is generally related to animal 

cleanliness, dairy farm environment, and inadequate cleaning and sanitation of milking 

equipment206. Thus, the majority of compliance violations in our data set are a result of coliform 

bacterial presence. This suggests that there are incidences of potential contamination after milking 

and possibly farm sanitation issues.  

High coliform counts (> 1000 CFU/ml) in unpasteurized milk may signify poor hygiene 

and sanitation practices, inadequate refrigeration, or the existence of coliform mastitis214,219,220.  In 
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the case of coliform mastitis, research has shown that Escherichia coli and Klebseilla pnuemoniae 

have been isolated from cow’s milk221. An investigation by Van Kessel et al. (2004)222 reported 

that 40% of bulk tank milk samples had coliform counts between 10-100 CFU/ml. These 

researchers also found that there were no differences in coliform counts from milk bulk tank 

samples across the U.S. regions (west, midwest, northeast, and southeast). High coliform counts 

could also be a result of undiagnosed mastitis in milking animals223. Although the results in this 

study showed there was no correlation between SPC and CC, these microbiological tests cannot 

be separated because SPC measures the overall milk quality, whereas CC typically measures the 

possible fecal, environmental, and post-process contamination of milk224. Conducting these tests 

simultaneously provides a more clear picture of the overall microbial profile. Moreover, it is 

important to note that sanitation practices may differ significantly in dairy operations intending to 

sell products without pasteurization (our data) compared to bulk tank milk that will be later 

pasteurized.  

We further investigated the potential seasonal effects on milk quality. A possible 

explanation in higher non-compliant SPC and CC percentages in both cow and goat’s milk samples 

in summer months compared to other seasons could be attributed to the variation of environmental 

temperatures in Maine. There was a significant correlation between milk sample quality and 

bacterial populations being higher when the outside temperatures are warmer in the summer. 

Previous studies attributed the increase in bacterial populations to the effect of temperatures 

changes between seasons, which is consistent with our findings. Harmon (1994)225 found that 

during the summer, the number of environmental bacteria in animal bedding material increased, 

which could be attributed to favorable temperatures and humidity for bacterial growth. Heat stress 

directly affects the susceptibility of the mammary host defenses against Gram-negative bacterial 
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infections, which causes an elevation in cases of clinical mastitis226. The occurrence of these 

infections and clinical mastitis are usually highest in summer months when the herds are 

confined226. Zucali et al. (2011)227 similarly observed higher numbers of SPC and CC during the 

warmer months (June and July) compared to the colder months (Dec, Jan, and Feb). Therefore, the 

lower temperatures in winter help to contribute to lower bacterial populations and thus, higher 

quality milk products during that time period.  

In addition to product quality, seasonality has also proven to have an effect on milk 

production yields. Neciu et al. (2012)8 reported that an increase cows’ milk production was 

observed in summer (June-September) compared to winter (December-February). The researchers 

attributed this variation to two potential factors. The first was food intake, which usually contains 

a higher percentage of green forage in the summer than in the winter months. The second factor 

was the relationship between exposure to day light. During the summer months, the animals are 

exposed to more day light, which stimulates the secretion of prolactin, which is the protein 

responsible for milk synthesis. As we observed in this study, the number of samples for both milk 

types were higher in summer compared to the winter months, which is consistent with the findings 

of Neciu et al. (2012)8.       

 The microbial quality of unpasteurized fluid retail dairy products was also investigated in 

this study. It should be noted that regardless of the product processing, all products had almost the 

same percentage of non-compliant CC, whereas unpasteurized fluid milk showed a lower 

percentage of non-compliant SPC compared to cream products. As previously mentioned, an 

increase in the total bacterial and coliform counts is a result of insufficient cleaning and 

sanitization, as well as post processing temperature abuse. In farm-produced cream, Pseudomonas, 

Micrococcus and yeasts are the most predominant microorganisms that develop sour, bitter, rancid, 
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and yeasty off flavors. Normally, the separation of cream from milk is achieved at 40-45℃, 

microbial growth is very likely to occur at this ideal temperature ranges if the cream is held at this 

temperature for a prolonged period of time228. Coliforms and lactococci also are responsible for 

slime formation in farm-produced cream. However, proper cooling and storage conditions (< 40℉) 

can limit the microbial growth in these products. Thus, improper cooling could be a potential 

source of increased coliforms that were noted in the cream data set. As reported by the literature, 

the microflora of cream-based products should similar as the microbial counts of full-fat whole 

milk229. Therefore, the processing of cream products has an important role in the quality of dairy 

products. The sanitation of the separation equipment could also affect the bacterial counts of these 

milk products230.  

2.5 CONCLUSIONS 

The interest in locally produced and minimally processed foods, such as unpasteurized 

dairy products has increased in the U.S.231. This is especially true in Maine where the sale and 

distribution of unpasteurized dairy products have been permitted at the retail level since 1933. 

There will always be a certain degree of concern for consuming these products as a result of the 

inherent properties of a minimally processed product. However, the results of this study suggest 

that the overall quality of an expanding market of unpasteurized dairy products in the state of 

Maine remained constant, most likely as a result of the current state inspection program’s adequacy 

in safe guarding these commodities. Furthermore, fecal contamination (as illustrated by the 

coliform count data) as well as seasonality, are major contributing factors to food safety risks 

associated with dairy. However, maintaining and monitoring a consistent and effective sanitation 

program will help to maintain low microbial counts throughout the year. We can conclude from 

this study that the overall quality of unpasteurized dairy products has remained relatively constant 
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despite the local market expansion of these products. Furthermore, higher non-compliant samples 

were detected during the summer months than in winter, and coliforms were the overall cause of 

non-compliant status in all analyzed products. Thus, more attention should be paid towards 

sanitation to minimize sources of possible fecal contamination, especially during the summer.  

Overall, the data shows that Maine has high quality unpasteurized milk products with a 

compliance of 90% for SPC for both cow and goat’s milk, and also greater than 70% compliance 

of coliform counts, and no reported foodborne illness outbreaks within the past 20 years.   
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CHAPTER 3  THE DYNAMIC BEHAVIOR AND SURVIVAL OF LISTERIA 

MONOCYTOGENES AND SHIGATOXIGENIC ESCHERICHIA COLI DURING THE 

AGING OF FARMSTEAD-STYLE CHEESE 

 

3.1 INTRODUCTION 

Foodborne disease outbreaks have been associated with a wide range of foods, including 

unpasteurized (raw) and pasteurized milk and dairy products129,137,232,233. Raw milk can become 

contaminated with pathogens through several sources, including fecal contamination, udder 

infection (mastitis), direct passage from the cow’s blood to the milk, and contamination from 

human skin during milking5,234.  In an effort to minimize outbreaks, the US Food and Drug 

Administration (FDA) prohibited the interstate sale or distribution of raw milk in 1987153. 

However, current FDA regulations allows the interstate sale of cheeses made from unpasteurized 

milk after aging cheese for at least 60 days at 35°F (1.67°C) or above235. Cheese is considered a 

ready-to-eat (RTE) food product, which does not require any additional heat processing to ensure 

its safety before consumption. Therefore, potential foodborne illness risks can increase as a result 

from poor sanitation practices and cross contamination from the dairy environment. Although 

several bacteria have been implicated in dairy-related foodborne illness outbreaks, Listeria 

monocytogenes and Escherichia coli are two prominent bacteria that have been associated with 

contaminated dairy products from past outbreaks. In the United States, the first recorded E. coli 

(enterotoxigenic E. coli O27:H20) outbreak, associated with the consumption of imported semisoft 

cheese, was in Washington D.C. in 1983236, while the first recorded outbreak of L. monocytogenes, 

was correlated with Mexican-style cheeses queso fresco and cotija in California in 1985139. These 

outbreaks established pathogenic E. coli and L. monocytogenes as significant threats to the dairy 



49 

 

food industry. The FDA has established a zero-tolerance policy at any detectable level for L. 

monocytogenes due to a high mortality rate142, and E. coli has a low potential infectious dose (10-

100 CFU)237 to susceptible populations.  

Shiga toxigenic E. coli (STEC) is considered a subgroup of Shiga toxin-producing E. coli 

(STEC). E. coli strains are Gram-negative, rod-shaped, facultative anaerobes, and predominant in 

the gastrointestinal tract of healthy mammals238. Illness from this subgroup is characterized by 

diarrhea or hemorrhagic colitis, which progresses to hemolytic uremic syndrome (HUS), and can 

lead to acute renal failure in children112,239. Although E. coli O157:H7 is considered the major 

strain of STEC and accounts for most global infections, other non-O157 STEC serotypes, 

including O26, O111, O121, O103, O45, and O145, have also been isolated from clinical 

infections119,120,239. The two E. coli serotypes that have been most frequently implicated in dairy 

product outbreaks are E. coli O157:H7 and E. coli O26:H114. Cattle are among the primary 

reservoir of STEC strain carriers; however, bovine typically do not express any clinical 

symptoms240. Furthermore, the ability of STEC strains to survive at low temperatures, and can 

promote an acid tolerance response in mildly acidic pH environments, makes these E. coli 

serotypes an important health concern241.  

Listeriosis is a severe disease with a relatively high mortality rate compared to other 

foodborne illnesses caused by other pathogens, such as E. coli O157:H7 and Salmonella. This 

disease is caused by L. monocytogenes a Gram-positive, non-sporeforming, facultative anaerobe 

that is rod-shaped and can survive and reproduce in a wide range of environmental conditions242. 

The primary risk to cheese safety is usually associated with environmental contamination after 

pasteurization from either the cheese processing facility or during cheese aging243,244. Due to the 

psychrotrophic nature, and the acid tolerance of L. monocytogenes to survive and continue to grow 
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at refrigeration temperatures245, this bacterium is considered the largest foodborne pathogen threat 

to refrigerated RTE foods.  

Several studies have investigated the behavior of L. monocytogenes and E. coli during the 

manufacturing and aging of different types of cheeses made from pasteurized and unpasteurized 

milk12,20,241,246–248. The survival of foodborne pathogens in cheese is dependent on several factors, 

including cheese making procedures, cheese type, starter cultures, pH, aging temperatures, and the 

bacterial outer membrane composition249–251. Most importantly, the starter cultures (lactic acid 

bacteria LAB) produce antimicrobial compounds, which are imperative to ensure food safety by 

suppressing the growth of foodborne pathogens252,253. In laboratory studies, experimental 

inoculation methods, and the levels of initial inoculum both play a significant role in the pathogen’s 

population dynamics. Previous studies have focused on the survival of E. coli O157:H7 during the 

manufacturing of different types of unpasteurized cheese, whereas other non-O157 E. coli 

serotypes survival has not been validated. Therefore, additional studies are required to understand 

the capabilities of these pathogen strains within this food matrix.  

Cheesemakers may decide to use a variety of temperatures during aging for a number of 

reasons, including flavor and aroma development, desirable mold growth, texture enhancement, 

and ultimately product safety. In this study, the survival of two relevant pathogens (L. 

monocytogenes and STEC) was monitored during aging at different temperatures (4℃, 10℃ and 

22℃) chosen for feasibility purposes for small cheesemaking operations. The objectives presented 

in this study were: (1) to investigate the behavior of L. monocytogenes and STEC during the 

manufacture of unpasteurized farmstead-style cheese, (2) to study the survival of these pathogens 

during aging, and (3) to examine the effects of three applicable aging temperatures on the survival 

of these pathogens.  
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3.2 MATERIALS AND METHODS  

3.2.1 Bacterial Strains 

Shigatoxigenic E. coli (STEC) O26:H11 EH1535 (ATCC BAA-1635) and O111:H8 

(ATCC BAA-184), and L. monocytogenes serotype 4b (ATCC 19115) and serotype 1 (ATCC 

19111) were purchased from the American Type Culture Collection (ATCC; Manassas, VA, 

USA). These bacterial strains were maintained in the Pathogenic Microbiology Laboratory, School 

of Food and Agriculture, at the University of Maine (Orono, Maine, USA). Frozen stock strains 

were held at -80°C in glycerol prior to use. Strains were added to 10 ml of trypticase soy broth 

(TSB) (Acumedia, Lansing, MI, USA) supplemented with 0.6% yeast extract (IBM Scientific, 

Peosta, IA, USA) to begin the inoculum preparation.  

3.2.2 Inoculum Preparation 

Bacterial strains were sub-cultured individually twice in 10 ml of TSB supplemented with 

0.6% yeast extract. The inoculated TSB tubes were incubated for 24±2 hours at 37±1℃ for STEC 

and for 24-48 h at 30±1℃ for L. monocytogenes. Overnight bacterial cultures were centrifuged 

twice for 10 minutes at 10,000 X g at 20℃ using an Eppendorf Centrifuge 5810R (Hamburg, 

Germany) and washed with 10 ml of 0.1% peptone water (BD Bacto™, Sparks, MD, USA), and 

then re-suspended with 10 ml of 0.1% peptone water. A cocktail of STEC and L. monocytogenes 

strains was added to 3 gallons of unpasteurized milk to provide an initial inoculum of 4.5 CFU/ml 

of each species.  

3.2.3 Starter Culture  

A freeze-dried, commercial starter culture (Mesophilic C101) composed of lactose, 

Lactococcus lactis subsp. lactis, and Lactococcus lactis subsp. cremoris was purchased from New 
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England Cheesemaking Supply Company (South Deerfield, MA, USA). The starter culture was 

stored at -20℃ until further use.  

3.2.4 Milk Collection 

Unpasteurized milk was collected from J. Franklin Witter Teaching and Research Center 

at the University of Maine (Old Town, Maine, USA) on the day of milking and transported in clean 

and sanitized food grade containers. Raw milk was refrigerated for 2-4 hours at 4℃ until further 

use. Mesophilic standard plate counts (SPCs) were determined by serially diluting milk in 0.1% 

peptone water. A series of dilutions were plated onto trypticase soy agar (TSA; Alpha Biosciences, 

Baltimore, MD, USA) plates in duplicate and incubated for 24±2 hours at 37±1℃ before 

enumeration.  

3.2.5 Cheese Manufacturing 

A farmstead-style cheese recipe was selected and used for the cheese preparation169. 

Cheese was made in three-gallon batch sizes in stainless steel stockpots. An uninoculated batch 

was produced as the control, and another batch was inoculated, as previously described. The milk 

was heated to 32℃ using a single electric burner (Mainstays; China), and the temperature was 

monitored during the heating process using a glass thermometer. The thermometer was inserted at 

approximately half of the milk depth and clipped to the edge of the stockpot. A sterile stainless 

steel skimmer was used to stir the milk intermittently. A commercial starter culture (1.5 g/3 

gallons) was added once the temperature reached 32℃. The milk was held at 32°C for 60 minutes 

using a bacteriological incubator. Single strength liquid rennet (3.5 g/3 gallons; R7 liquid animal 

rennet, South Deerfield, MA, USA) was added and milk was lightly stirred using the sterile 

stainless steel skimmer.  The milk was incubated for an additional 45 minutes at 32℃ using the 

incubator. After coagulation, the curds were cut into small pieces (1-inch cubes) using a sterile, 
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stainless steel knife. After cutting the curd, the curds were cooked until the temperature reached 

39℃ within approximately 7-10 minutes accompanied with intermittent stirring. The curds were 

then drained from the whey using a sterile stainless steel skimmer, and 30 g of pickling salt 

(Canning and Pickling Salt, Morton Salt, Inc, Chicago, IL, USA) were added and mixed 

thoroughly into the curd using the stainless-steel skimmer. Cheese curds were transferred into 

custom-made, stainless steel molds (81.9 cm3) and pressed at room temperature in a stainless steel 

Dutch style cheese press. The curds of both inoculated and control cheeses were pressed side by 

side in two separate presses for 30 min using 35 pounds of total pressure for each cheese, and then 

45 pounds pressure was applied to the cheese samples for 18 hours. The final cheese weight was 

approximately 3 pounds. The cheesemaking process was repeated three times.  

3.2.6 Vacuum Packaging  

After pressing, a sterilized knife was used to cut the cheese samples into small pieces 

(approximately one cubic inch, 18 g/piece) for individual microbiological analysis. Each cheese 

sample was packed into individual sterile, polyethylene bags (Weber Scientific, Hamilton, NJ, 

USA) and vacuum packaged using a VACMASTER VP 210 (Kansas City, MO, USA).  

3.2.7 Cheese Samples and Aging Conditions 

Vacuum packaged cheese samples were aged simultaneously at three temperatures: 4℃ 

using a household refrigerator (Hotpoint, Louisville, Ky, USA), 10℃ using a Thermoelectric Wine 

Cooler (Intertek SC-08B), and 22℃ using a bacteriological incubator (Benchmark Scientific 

H2265-HC; Sayreville, NJ, USA). Cheese samples (control and inoculated cheeses for each 

temperature) were analyzed weekly for 84 days. 
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3.2.8 Bacterial Enumeration and Detection 

For microbiological analyses, each vacuum packaged cheese sample was diluted in warm 

(45℃), sterile 2% (w/vol) sodium citrate dihydrate solution (Fisher Chemical, Fair Lawn, NJ, US), 

and homogenized for 2-3 minutes using a sterile Waring Commercial Blender 700S (Torrington, 

Connecticut, USA). For direct enumeration, the cheese homogenate was serially diluted in 0.1% 

peptone water, and spread-plated in duplicate onto deMan, Rogosa and Sharpe (MRS) medium 

(Alpha Biosciences, Baltimore, MD, USA), sorbitol MacConkey Agar (sMAC; Acumedia, 

Lancing, MI, USA) and Modified Oxford Agar (MOX; Alpha Biosciences, Baltimore, MD, USA) 

plates supplemented with modified oxford antibiotic supplement (BD Difco; Sparks, MD, USA) 

(FDA BAM, 2017). Plates were incubated at 35±1℃, 37±1℃ and 30±1℃, respectively, for 24-

48 hours before enumeration. When the population of each studied pathogen was near or below 

the detection limit (100 CFU/g), an enrichment procedure was used. The cheese samples were 

diluted in 2X 2% sterile sodium citrate dihydrate, homogenized for 2-3 minutes, and then a solution 

of 2X selective enrichment medium was added. E. coli (EC) medium (Alpha Biosciences, 

Baltimore, MD, USA) was used to enrich samples for E. coli detection, and Buffered Listeria 

Enrichment Broth (Alpha Bioscience, Baltimore, MD, USA) was used to enrich samples for L. 

monocytogenes detection254. Enrichments were incubated as previously described. After 

incubation, aliquots of enriched samples were plated onto selective medium and the plates were 

incubated under the same conditions for both pathogens before the plates were examined for 

typical morphology colonies.  
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3.2.9  Enumeration of Fungi 

Fungi were enumerated at the end of aging (day 84) using acidified potato dextrose agar 

APDA (Alpha Bioscience, Baltimore, MD, USA). Tartaric acid (Sigma-Aldrich; St. Louis, MO, 

USA) was prepared in distilled water to a concentration of 10%, filtered and then added to PDA 

after autoclaving.  The APDA plates were incubated at room temperature 22-25℃ for 5 days prior 

to enumeration. 

3.2.10  Measuring the pH and Water Activity Levels 

The water activity and pH levels of the uninoculated controls were measured at each 

sampling point. To determine the water activity, a cross-sectional piece of cheese approximately 

1.5-2.0 g was cut using a sterile knife. The AquaLab Pre Water Activity Meter, (Pullman, WA, 

USA) was calibrated prior to use using AquaLab standards. A HANNA pH meter (Woonsocket, 

RI, USA) was used to measure the pH.  A cross section of the cheese sample was cut and the FC 

2020 pH Edge electrode with conical glass tip (Woonsocket, RI, USA) was placed into the sample 

to determine the pH level. The water activity and pH measurements were conducted in duplicate.   

3.2.11  Texture Profile Analysis (TPA)  

The control cheese sample texture was analyzed on days 0 and 84 for each aging 

temperature using a compression test with a TAXT2i texture analyzer (Texture Technologies Inc.; 

Scarsdale, NY, USA). The texture analyzer was calibrated using a 5,000 g standard weight.  Cheese 

samples were placed on a petri dish and placed onto the texture analyzer platform. TPA was 

performed using a 12.7 mm (½ inch) cylindrical probe, at a 2 mm/s test speed. Force (g), area (g 

× s), distance (mm) between peak heights, and time (s) were recorded using the texture analyzer 
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software (Exponent 32, version 5.0, 6.0, 2010, TAXT2i Texture Technologies Inc., Scarsdale, NY, 

USA) to calculate TPA. Values were averaged for (n=3) cheese samples per treatment replicate.    

 

3.2.12  Statistical Analysis 

Data analysis was performed using IBM SPSS Statistics version 25 (Orem, UT). Bacterial 

populations of E. coli, L. monocytogenes and LAB were expressed as CFU/ml or g and log-

transformed before analysis as follows: log10(original CFU/ml+1)209. Physicochemical analyses 

(pH, water activity, and texture) were averaged for each time point. To monitor the behavior of 

pathogens during the cheesemaking process, and to investigate the effects of temperatures during 

aging on pathogen counts and physiochemical parameters, one-way analysis of variance 

(ANOVA) was used to determine statistically significant differences among treatments followed 

by Tukey’s honest significant difference (HSD) for mean separation. P values < 0.05 were 

considered as statistically significant. Data were expressed as mean ± standard deviation of the 

three independent trials.  

3.3 RESULTS  

3.3.1 Milk 

The unpasteurized cow’s milk was plated prior to making cheese and the average SPC was 

1×103 CFU/ml (3 log CFU/ml) after 24 hours of incubation on TSA plates at 37°C. This average 

was within the state legal limit ≤ 50,000 CFU/ml (4.7 log CFU/ml).  

3.3.2 The Behavior of Pathogens during Farmstead-style Cheese Manufacturing 

Figure 3-1 shows the behavior of E. coli and L. monocytogenes during the cheesemaking 

process. Throughout the cheesemaking process, there was no significant (p > 0.05) changes in the 
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mean E. coli population among all production steps, although E. coli appeared to be at the lowest 

levels during the cheese coagulum phase and in the whey. However, there was a significantly lower 

population of L. monocytogenes detected in the whey (3.05±0.01 log CFU/ml) when compared to 

milk and cut curd as shown in Figure .  

 
 

 

 

 

 

Pathogen population data were expressed as mean ± standard errors. 

Different letters were significantly different (p <0.05), ANOVA (Tukey’s HSD) within bacterial 

species. 

Initial inoculum of each pathogen was 4.5 log CFU/ml.  

n=3. 
 

 

3.3.3 The Survival of Pathogens during the Aging of Unpasteurized Cheese 

Figure 3-2 represents the effects of temperature (4°C, 10°C and 22°C) on the survival of 

E. coli and L. monocytogenes during the aging of artificially inoculated unpasteurized cheese. 

Figure 3-1 Behavior of E. coli and L. monocytogenes during Cheese Manufacturing 



58 

 

Aging the cheese at both 4°C and 10°C resulted in a significant reduction of E. coli counts; 

however, aging at 22°C resulted in a significant increase in counts, as shown in Figure 3-2 A. The 

L. monocytogenes counts were also significantly reduced at 4°C; however, at both 10°C and 22°C, 

L. monocytogenes populations significantly increased as shown in Figure 3-2 B. The enrichment 

results showed that when cheese was aged at 4°C, E. coli was reduced to <100 CFU/g after 63 

days, while in cheese aged at 10°C, E. coli was reduced to <100 CFU/g at day 70 (Figure 3-2 A). 

Similarly, the enrichment results revealed that when cheese was aged at 4℃, L. monocytogenes 

was reduced to <100 CFU/g at day 70 (Figure  3-2 B). Overall, aging the cheese at lower 

temperatures (4°C and 10°C) was effective in reducing the bacterial populations of E. coli, while 

L. monocytogenes populations were successfully reduced at 4°C.    
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Data expressed as mean Log CFU/g ± standard deviation.  

*: represents significant differences within treatments when compared to day zero.  

**: indicates below the detection limit (100 CFU/g). 

n=3. 

Figure 3-2 The Effect of Temperature on the Survival of E. coli (A) and L. monocytogenes (B) during 

Cheese Manufacturing 
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3.3.4 The Effects of Temperature on Lactic Acid Bacteria (LAB) Populations During the 

Aging Process of Unpasteurized Cheese 

The LAB counts were plated for both control and inoculated cheese samples aged at 

different temperatures (4°C, 10°C and 22°C). Figure 3-3 shows the effects of the mentioned 

temperatures on the LAB counts over time. As shown in (Figure  3-3 A and B), the rate in the 

reduction of beneficial LAB was faster at 22℃ compared to 4 and 10°C during the aging process. 

Overall, aging cheese at the lowest temperature (4°C) was more effective in maintaining the 

beneficial LAB counts in both control and inoculated cheese samples over aging time.     
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Data expressed as mean Log CFU/g ± standard deviation.  

*: represents significant differences across treatments. 

n=3  

Figure 3-3 The Effect of Temperature on Lactic Acid Bacteria (LAB) counts (A) Control Cheese and (B) 

Inoculated Cheese samples During the Cheese Aging Process 
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3.3.5  The Effects of Aging Temperatures on the pH Levels of Unpasteurized Cheese 

during Aging 

The pH values were measured in control cheese samples, and Figure  3-4 shows the effects 

of temperature (4°C, 10°C and 22°C) on the mean pH levels over time. Cheese samples started 

with a mean pH level of 4.80, and pH levels gradually increased in all control samples over time, 

regardless of aging temperature. However, when aged at 22℃, cheese samples had a significant 

increase in pH values compared to the other aging temperatures at day 84, reaching a pH of 7.31 

compared to pH levels of 5.07 and 5.58 for the cheeses aged at 4°C and 10°C, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH values were expressed as mean ± standard deviation. 

*: represents significant differences across treatments.  

n=3.   

 

Figure 3-4 The Effects of Temperatures on pH values of Cheese During the Cheese Aging Process. 
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3.3.6 The Effects of Aging Temperature on the Water Activity Levels and Texture of 

Unpasteurized Cheese during Aging 

The water activity levels were also measured in control cheese samples, and Figure 3-5 

shows the effects of aging temperature (4°C, 10°C and 22°C) on mean water activity values. All 

cheese samples had an average starting water activity level of 0.980. There were no significant (P 

> 0.05) changes in water activity across treatments by the end of aging process. 

 

  

 

  

  

 

 

 

 

 

 

 

 

 

 

Water activity levels were expressed as mean ± standard deviation. 

*: represents significant differences across treatments. 

n=3. 
 

 

The effects of aging temperature (4°C, 10°C and 22°C) on the control cheese texture are 

illustrated in Table 3-1. Since no texture differences were detected on day 0, the texture was only 

analyzed on day 84. For cheese samples aged at 4°C, the mean texture values remained stable at 

day 84. However, aging samples at the higher temperatures (10℃ and 22°C) appeared to soften 

the cheese texture over time, as both samples had significantly (p <0.05) lower compression force 

values at day 84 compared to 4°C.  

Figure 3-5 The Effect of Temperature on the Water Activity Levels During the Aging Process 
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1Peak force (Hardness): represents mean ± standard error. 

Different letters represent significant differences across treatments.  

n=3. 

  

3.3.7 The Effects of Temperature on Fungal Counts in Unpasteurized Cheese After 

Aging 

The control and inoculated cheese samples were plated to enumerate fungal counts after 

the aging process was complete on day 84 Figure 3-6. There were no significant (p > 0.05) 

temperature effects on fungal populations in the control samples during the aging process. 

However, aging temperature had a significant (p <0.05) effect on fungal populations in the 

inoculated cheese samples. Fungal populations were significantly lower at 4°C (6.31±0.25) 

compared to 10°C (7.62±0.29) by the end of aging period.  

Table 3-1 Unpasteurized Cheese Texture Analysis 
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Fungi Log CFU/g were expressed as mean ± standard error. 

Significant (p <0.05) differences between treatments, ANOVA (Tukey’s HSD). 

n=3. 
 

 

3.4 DISCUSSION 

This study investigates the survival of STEC (O26:H11 and O111:H8) and L. 

monocytogenes (serotype 4b and serotype 1) during the manufacturing and aging of unpasteurized 

cheese, and the effects of aging temperature (4℃, 10℃, and 22℃) on cheese samples over time. 

The standard plate count of the fresh cow’s milk used for this study was 1,000 CFU/ml, which was 

within the state legal limit of less than 50,000 CFU/ml61. The milk samples were plated onto 

selective media and the results were negative for the targeted pathogens in the control milk. Within 

the first 24 hours after making the cheese samples, the inoculated pathogens in the samples 

increased by approximately 1 log CFU/g. This increase can be attributed to the growth of the 

pathogens in the cheese matrix, which was most likely supported by the composition of the cheese, 

water activity, and pH levels, and salt content12,18,254,255. In the same manner, other studies also 
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Figure 3-6 The Effect of Temperature on the Fungi Population at the End of the Aging Process 
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reported an increase of 1 log in L. monocytogenes and E. coli O157:H7 counts during the first 24 

hours of manufacturing different kinds of cheeses12,246,256,257. In contrast with the findings of this 

study, Samelis et al. (2009)258 investigated the reduction of L. monocytogenes and L. innocua 

counts during the first 24 hours of manufacturing traditional Greek Graviera cheese, which may 

have been due to an increase in the counts of both mesophilic and thermophilic LAB. 

In the inoculated milk, pathogen counts did not change (lag phase) during the initial 

cheesemaking steps (approximately first two hours). This could be attributed to the adjustment of 

bacterial cells to a new environment before starting an exponential growth phase259. There are 

several factors which affect the duration of lag phase, including bacterial inoculum size, the 

physiological history of bacterial cells, and the physiochemical properties of both the original 

growth and the new growth environments260. Thus, in this study, the difference in the composition 

and physiochemical properties of the original medium (TSB supplemented with 0.6% yeast 

extract) which was used to grow each pathogen in a nutrient rich overnight culture and then 

transition to milk, could be another potential contributor to the pathogen entry and length of the 

lag phase. During the cheesemaking process, the bacteria encounters conditions, which may 

initiate internal stress responses, including the production of antimicrobial agents by the lactic acid 

bacteria (LAB) metabolic activity, low pH levels due to the production of lactic acid, heat shock 

and osmotic stress241. Thus, STEC and L. monocytogenes have developed general tolerance 

responses241. Consequently, bacterial cells enter the lag phase to not only adapt to new 

environmental conditions before reproduction, but also enable survival within unsuitable 

mediums261,262. Other studies have also reported no change in L. monocytogenes and E. coli 

O157:H7 lag phase growth during the first two hours of the cheesemaking process246,257,256, 

although they were studying different cheese models than in this study. 
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The acidification of milk in the cheese manufacturing process may induce an acid tolerance 

response in these pathogens; therefore, pathogen survival for a longer duration of the cheese 

ripening process is not surprising assuming that they have counteracted the acidified conditions of 

the cheese process263. LAB produce antimicrobial agents during the cheesemaking, including 

organic acids, bacteriocins, carbon dioxide, hydrogen peroxide, and diacetyl264. The organic acids 

penetrate the bacterial cytoplasmic membrane of bacteria in the form of protonate, and in this 

situation both H+ and anions can accumulate265. Therefore, the influx of protons and anions can 

interrupt the pH homeostasis and reduce the internal pH of the bacterial cell. This reduction of the 

internal pH can denature the pathogenic bacterial enzymes266. The ability of organic acids, such as 

lactic, acetic and propionic acids, to cause sublethal injury of E. coli and L. monocytogenes cells 

by disrupting the outer membranes has been well documented267–269. Consequently, L. 

monocytogenes and E. coli can overcome the lethal effect of low pH levels by developing acid 

tolerance responses (ATR) to mild pH (5.5), including the glutamate decarboxylase-(GAD) 

system, the arginine diaminase system, and sigma factors266,270, 271. Kroll and Patchett (1992)272 

reported a 40-fold increase in L. monocytogenes survival after incubating at pH 5.0 compared to 

the survival of the same pathogen when previously grown at pH 7.0. Applied to this study, the 

survival of these studied pathogens in the acidic environment of cheese could be attributed to the 

induction of these responses. The impact of ATR on the survival of pathogens in acidic 

environments is due to the intracellular decarboxylation in the cytoplasm, which neutralizes the 

extra protons, and then increases the cytoplasmic pH266,273. Additionally, sigma factors are 

produced under stress conditions and induce the bacteria to enter the stationary phase and become 

more resistant and maintain their viability274. Adaptation of foodborne pathogens to mild acidic 

environments not only improve their survival against lethal pH levels, but also provides cross-
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protection against other stresses, including heat shock, osmotic stress, oxidative stress, cold, and 

bacteriocins270,275. 

Other researchers have found that pathogens still survive and reproduce after cutting the 

curd due to the physical entrapment of bacterial cells in the curd20,250. In this experiment, heat 

inactivation of both STEC and L. monocytogenes was not likely to occur in this farmstead-style 

cheese replication because the curd was cooked until the temperature reached 39℃, and the 

duration was a relatively short period of time (approximately 15-20 min.). Our results were in 

contrast with other studies, since different types of cheeses are made with different methodologies. 

Ercolini et al. (2005)276 found that E. coli O157:H7, L. monocytogenes, S. aureus and Salmonella 

spp. counts were reduced in cheese cores due to higher cooking temperatures (55℃). Spano et al. 

(2003)277 reported that E. coli O157:H7 counts were reduced in the curd after stretching it in hot 

water at 80℃/5 minutes during the manufacturing of unpasteurized Mozzarella cheese. Similarly, 

Fusco et al. (2012)278 reported E. coli O157:H7 counts decreased when the temperature of the curd 

core was 55℃ after stretching the curd for 5-8 minutes in hot water at 90℃. 

However, these cheeses received much higher heat temperatures. Subsequently, we 

observed a significant 1 log reduction in L. monocytogenes counts in the whey, compared to counts 

in the curd during whey expulsion. This decrease could be attributed to several factors, including 

the sum of stresses during the cheesemaking process, the presence of native microflora, high 

concentrations of LAB, the lower pH levels in the whey, and possibly an interaction between E. 

coli and L. monocytogenes strains241,256. Schleeser et al. (2006)20 also observed a 1 log decrease in 

E. coli O157:H7 counts in the whey during the manufacturing of unpasteurized cheddar cheese.  

Exposing cheese to different aging conditions can influence pathogen survival during the 

aging process. The STEC counts in this study started to decrease after the first week of aging at 



69 

 

the coolest aging temperatures used (4℃ and 10℃). A steady reduction in STEC counts was 

observed until day 56. However, STEC counts were still detected in the enriched samples at both 

temperatures by the end of this study. A similar trend was observed for the L. monocytogenes 

counts, which started to decrease after the first week of aging at the lowest aging temperature 

(4℃). L. monocytogenes counts slowly decreased until day 63 at this temperature, and after day 

63, L. monocytogenes cells were detected only in the enriched samples until day 84 of aging at 

4℃. Likewise, the counts of LAB slowly decreased in both control and inoculated cheese samples 

during aging at 4℃. The ability of L. monocytogenes and E. coli to grow over a wide range of 

temperatures (2-45℃ and 10-46℃), respectively, makes the control of these foodborne pathogens 

at these temperatures difficult279,280. This ability to survive over a wide temperature range allows 

these foodborne pathogens to survive at low temperatures and to compete with other 

microorganisms in the food system279,281. In this study, the survival of the inoculated pathogens at 

refrigeration temperatures (4℃ and 10℃) could be attributed to the induction of cold shock 

proteins (Csps)282,283. These proteins bind to RNA and DNA and help in the control of replication, 

transcription, and translation284. Csps, including enzymes, such as denaturase, are associated with 

modifications of cell membranes in response to temperature285. When the bacteria are exposed to 

cold stress conditions, the uptake of compatible solutes, such as glycine betaine and carnitine 

increases, which are involved in the osmotolerance response286. These solutes act as cryoprotectant 

compounds at low temperatures, which protect the bacterial cells287. Another mechanism that 

enables both E. coli and L. monocytogenes to survive at low temperatures is an increased 

proportion of unsaturated membrane lipids, which helps enhance the fluidity of the membranes288. 

Unlike the decrease of STEC counts during aging at 10℃, the counts of L. monocytogenes 

increased consistently over time to 6.4 log CFU/ml up to day 84, which was a significant increase 
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from 5.7 log CFU/ml at day 0. Aging at the higher temperature (22℃), caused an increase in both 

STEC and L. monocytogenes counts over time. The increase in these pathogen counts were 

paralleled with a decrease in the LAB counts of both control and inoculated cheese samples, and 

a gradual increase in pH levels to reach a maximum pH of 5.58 at 10℃ and 7.31 at 22℃ by day 

84. The optimal pH level for L. monocytogenes growth is ≥ 4.4, whereas E. coli thrives at pH levels 

≥ 4.0289.   

The decrease in the LAB counts in the control cheese samples were not significantly (p > 

0.05) different between aging temperatures, whereas aging temperature was a significant (p <0.05) 

factor in LAB counts among inoculated cheese samples. Specifically, the LAB counts had a one-

fold reduction at 22℃ compared to 4 and 10℃. This could be attributed to the autolysis of LAB 

and to the high growth of fungi (approximately 7.5 log CFU/g) in the control samples, which was 

observed by the end of aging among all temperatures. In the inoculated samples, the LAB counts 

at 10℃ and 22℃ decreased progressively, which may be attributed to the same reasons as 

mentioned above.  Autolysis of LAB is caused by releasing the intracellular enzymes into the 

cheese curd, and the resulting lytic cells provide ripening enzymes, including proteinases, 

peptidases, lipases, and esterases, which enhance or increase the development of cheese flavor290. 

Thus, the increase of pH levels in our observations could be attributed to the utilization of lactic 

acid by molds and to release ammonium through proteolysis291. The increase of pH combined with 

the process of proteolysis, might have inhibited the influence of bacteriocins292, which results in 

the maintenance of the growth of L. monocytogenes during aging at 10℃ and the growth of both 

L. monocytogenes and E. coli at 22℃. 

The water activity within a food matrix is an important intrinsic parameter that can affect 

microbial growth. In the results of this study, the water activity of control cheese samples did not 
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appear to be significantly affected by aging temperature (4, 10, and 22℃) over time. The minimum 

water activity requirement for pathogen growth is 0.95 for E. coli293 and ≥ 0.92 for L. 

monocytogenes294. The water activity values in this study were within the maximum (0.95-0.99) 

growth rates that are required for many pathogenic bacteria295, and could be another potential 

reason for the survival of the pathogens examined in this study. The stability of the water activity 

levels among cheese samples over time was likely due to the vacuum packaging, which prevented 

water vapor loss during the aging process296. 

Previous studies have also investigated the survival of E. coli in inoculated aged cheeses 

at refrigeration temperatures. For example, Reitsma and Henning (1996)19 investigated the survival 

of three strains of E. coli O157:H7 after 158 days of aging pasteurized cheddar cheese at 6-7℃ 

after vacuum packaging. Similarly, Schleeser et al. (2006)20 reported that E. coli O157:H7 survived 

for 360 days at all initial inoculation levels (101, 103, and 105 CFU/ml) in enriched samples of 

unpasteurized cheddar cheese (pH 5.28) post vacuum packaging and aging at 7℃. D’Amico et al. 

(2010)12 also found that three strains of E. coli O157: H7 with an initial inoculation level of 20 

CFU/ml survived in enriched samples of unpasteurized Gouda (pH 5.16) and cheddar (pH 5.20) 

cheeses after aging for 270 days at 9℃. In other acidified fermented foods, such as fermented 

sausage, Glass et al. (1992)297 reported that E. coli O157:H7 survived for eight weeks at a pH level 

of 4.8 and stored at 4℃. In contrast to the inoculation method that was used in this study, other 

studies have used surface inoculation methods. D’Amico et al. (2008)18 found that a cocktail of 

five strains of L. monocytogenes, when inoculated at a low initial level of 20 CFU/ml, increased 

after 60 days of aging on pasteurized and unpasteurized surface mold-ripened soft cheese at 4℃. 

Valero et al (2014)298 documented that the initial inoculation level of 4 log CFU/g of L. 

monocytogenes decreased after 60 days of aging in unpasteurized sheep’s milk cheese vacuum 
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packaged and stored at 4℃, 12℃, and 22℃, and L. monocytogenes survived until day 114, 104, 

and 77 days, respectively. The researchers attributed the faster reduction of L. monocytogenes 

counts in the cheese aged at 22℃ to the loss of humidity and the excess production of metabolites 

by LAB that inhibited their growth. Shrestha et al (2011)299 reported that L. monocytogenes counts 

reduced gradually in a post-aging contamination study in pasteurized cheddar cheese after aging 

for 30 days at 21℃. Post-processing contamination of cheese with foodborne pathogens during 

ripening, slicing, and storage can potentially occur300.  

In addition to the effects of aging temperatures on pathogen survival, LAB counts, pH and 

water activity levels; the texture profile analysis (TPA) of control cheese samples was analyzed on 

day 0 and 84 of aging at 4, 10, and 22℃. Aging at a low refrigeration temperature (4℃) maintained 

the firmness of the cheese texture over time. One potential reason could be the slow occurrence of 

proteolysis at this temperature, which could be attributed to the high moisture content and 

relatively low pH level. After 60 days of aging at 10℃ and 22℃, a decrease in cheese firmness in 

samples was observed. This could be due primarily to a higher rate of proteolysis at these aging 

temperatures291. Awad (2006)301 reported the hardness of Ras cheese (a popular hard cheese in 

Egypt made from a mixture of unpasteurized cow and buffalo’s milk) had decreased by the end of 

aging at 13±2℃. The authors found that this was due to the higher rate of proteolysis. During 

cheese ripening, several factors, including pH, salt, and moisture content influence the cheese 

texture302. Proteolysis is considered an important process during cheese ripening, which affects 

both the cheese flavor and the cheese texture303. During cheese ripening, proteolysis is catalyzed 

by several sources of enzymes including rennet, milk plasmin and cathepsin D, enzymes from 

starter cultures and non-starter cultures, and lastly from added secondary cultures, such as 

Penicillium roqueforti190. In the initial stages of cheese ripening, rennet hydrolyzes the Ph23-Ph24 
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bond of αs1-casein, resulting in large peptides (water-insoluble) and intermediate-sized peptides 

(water-soluble), which causes the initial softening of the cheese texture304. After this preliminary 

softening, these peptides are further broken down into shorter peptide chains due to rennet and 

other enzymes present such as the extracellular proteinases from the starter culture. Consequently, 

peptidases hydrolyze these short peptides which further promotes the formation of free amino 

acids190. Changes in the cheese texture are attributed to the breakdown of the protein network, 

cause a decrease in water activity through water binding by liberated carboxyl and amino groups, 

as well as an increase in pH cheese levels190. Thus, as is observed in this study, a gradual increase 

in pH and gradual decrease in water activity levels during aging at both 10℃ and 22℃ might have 

accelerated proteolysis, which resulted in the softening of the cheese texture over time. 

3.5 CONCLUSIONS 

Overall, it is difficult to compare our observations with previous studies due to the many 

variables applied during the cheesemaking and aging process, in this study such as the initial 

inoculum level, pathogens serotypes used, starter culture behavior, aging temperatures and use of 

vacuum packaging that can all influence pathogen survival in different ways. The initial inoculum 

level used in this study was above the level of contamination that would realistically be found in 

cheeses produced under good manufacturing and sanitation practices, which allows for clearer 

observation of population dynamics. However, even when realistically low inoculum levels were 

used in other studies, such as D’Amico et al. (2010)12, similar survival trends were observed. Both 

E. coli and L. monocytogenes are two of the most common foodborne pathogens associated with 

ready to eat cheese products. A combination of natural antimicrobial agents in the milk, 

antimicrobial metabolites from the starter cultures, low pH levels, and aging temperatures are 

potential factors that may affect the survival of foodborne pathogens in dairy products. 
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Cheesemakers may also use higher cooking temperatures for certain types of cheese, which may 

effectively reduce pathogen populations within the milk.  In agreement with previous studies, the 

policy of the FDA regarding 60 days of holding unpasteurized milk cheese should be reconsidered. 

We can conclude that aging at the lowest temperature possible will provide the best control against 

both Shigatoxigenic E. coli, and most importantly L. monocytogenes, and can be utilized by small-

scale cheese makers to ensure the safety of their products.  

3.6 LIMITATIONS 

The two major limitations of this study were vacuum packaging and cheese sample size. 

Vacuum packaging was used to prevent cross contamination with lab equipment and personnel 

within the aging space since the treatment cheese samples were experimentally inoculated with the 

pathogens of interest. This process might have maintained the survival of pathogens, and may also 

have excluded the growth of other microbes during the aging conditions in our observations. In 

this study, the cheese samples were cut into small pieces (~1 in3) in order to avoid complexity 

introduced by a differential pathogen surviving across different regions of a large cheese sample.  
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CHAPTER 4 DETECTION OF LISTERIA SPP. IN UNPASTEURIZED RETAIL DIARY 

PRODUCTS IN MAINE 

4.1 INTRODUCTION 

The Maine dairy industry is a significant contributor to the state’s economy1. Maine is 

among thirty states that legally permit intrastate sale of unpasteurized dairy products in both direct-

to-consumer and retail sales305. Consumer demand has increased for unpasteurized fluid milk and 

milk products, most notably in Maine. However, with this increased demand comes increased risk 

of foodborne illness as consumption of contaminated, unpasteurized fluid milk and milk products 

in the U.S. has been well reported129,198,199. Results from previous investigations have clearly 

shown that Campylobacter, Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes 

are among the most common foodborne pathogens to cause foodborne diseases within this product 

type129,306.   

Dairy farms are ideal harborage sites for various microorganisms including Listeria 

spp.66,222. Listeria is ubiquitous in the environment including soil, water, grass, silage, sewage, and 

animal feces87,307. Listeria spp. are Gram-positive, motile, intracellular, facultative anaerobes, 

which can survive in a wide range of pH (4.0-9.5), temperatures (1-45℃) and water activity ≥ 

0.92. In addition, these species are capable of growth in 10% w/v of NaCl308. There are 17 

recognized species in the Listeria genus; however, only Listeria monocytogenes and Listeria 

ivanovii are considered pathogenic for humans and animals, respectively309. It is very well-known 

that L. monocytogenes can contaminate raw milk from the dairy farm environment310. Skovaard 

and Morgen (1988)307 reported there was a relationship between silage quality and the presence of 

Listeria spp. in feces. The risk of fecal contamination of raw milk by Listeria spp. can occur during 
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seasons when the animals housed indoors due to limited space between animals and silage 

consumption311.  

L. monocytogenes is most frequently implicated in foodborne illness outbreaks; however, 

other Listeria species isolated within these environments can serve as indicator organisms for this 

pathogen312. Therefore, the recovery of any Listeria species from a processing environment is 

cause for concern because of the small infectious dose and high mortality rate associated with 

listeriosis infection98. For this reason, the FDA has implemented a zero-tolerance policy for this 

microorganism in foods, and is especially a concern for ready-to eat-foods142.     

Coliforms are a broad classification of microorganisms, which are indicators for possible 

fecal contamination. Genera comprising this grouping include Escherichia, Klebsiella, 

Citrobacter, and Enterobacter66,313. Coliform bacteria are widely found in fluid milk314, in many 

cheeses63, and other dairy products. These bacteria can originate from different sources in the dairy 

farm environment such as water, equipment, plant materials, and fecal sources315. Cheese 

characteristics, including water activity and pH levels, salt content, aging conditions, and starter 

cultures, all influence the possible microbial profile in the final product316. Coliform bacteria are 

natural inhabitants of the gastrointestinal tract of warm-blooded animals. These bacteria are 

characterized as Gram-negative, aerobes or facultative anaerobes and non-spore formers. An 

additional defining feature of this group is that they are able to ferment lactose and produce acid 

within 48 hours at 35℃317. Fecal coliforms, including E. coli, K. pneumoniae, C. freundii, and 

Enterobacter spp., are a subgroup of coliform bacteria which can grow at 44℃ and ferment 

lactose318. Producers will test for coliforms as an indication of overall facility sanitation and 

cleanliness. The FDA defines the maximum coliform levels in the Pasteurized Milk Ordinance 

(PMO) as less than 10 CFU/ml58. Although there is no universally accepted threshold for coliform 
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presence in unpasteurized milk products, states which permit the sale of this product type have 

typically enforced ranges below 100 CFU (ml or g). Maine enforces the more rigorous end of this 

specification citing no more than 10 CFU/ml319.  

  Generally, fresh milk drawn from healthy cows is usually free from pathogens; however, 

milk becomes exposed to potentially pathogenic bacteria once a cow is milked. Several sources, 

including unhygienic milking equipment, milkers’ hands, feces, silage, contaminated water and 

grass, are the cause of this contamination311. Furthermore, Listeria contamination of raw milk 

cheeses are well reported. Past studies have documented the prevalence of L. monocytogenes and 

Listeria spp. in different types of cheese including soft, semi soft, and mold-ripened cheeses320–

322. 

Even though prior studies haven’t reported a correlation between coliforms as indicators 

of a broader range of potential pathogens in dairy products, it may be possible due to the 

manufacturing practices of these product types18,323,324. Therefore, the primary objectives of this 

study were to possibly bridge the gap within this potential correlation between pathogens and 

coliforms by (1) to determine if there may be a potential correlation between Listeria spp. and 

coliforms in unpasteurized dairy products, and (2) to investigate the prevalence of Listeria spp. in 

different types of Maine unpasteurized cheese.  

4.2 MATERIALS AND METHODS 

4.2.1 Samples  

One hundred and four unpasteurized retail dairy products, including 45 cheeses and 59 

milk samples, were collected weekly from the Milk Quality Laboratory at the Maine Department 

of Agriculture, Conservation and Forestry in Augusta, Maine from June through October of 2018. 

Samples were collected from 28 consenting dairy farms throughout the state of Maine that agreed 



78 

 

to participate in this study.  Milk samples were collected in sterile plastic containers while cheese 

products were packaged into individual sterile polyethylene bags. After collection, the samples 

were transported in a cooler under refrigeration. The studied cheese samples were categorized into 

soft and mold-ripened cheeses because these were the cheese types that were more frequently 

produced by participating dairy producers in this study.       

4.2.2 Microbiological Analysis 

Coliform data were generated by dilution plating of retail samples onto 3M™ Petrifilm™ 

Coliform Count Plates in the Milk Quality Laboratory at the Maine Department of Agriculture, 

Conservation and Forestry in Augusta, Maine. All samples were collected aseptically by state 

inspectors and analyzed by trained laboratory technicians. The results were reported in colony 

forming unit (CFU) per ml or g with greater than 10 CFU/ml or g being non-compliant with state 

regulations. 

Detection of presumptive Listeria spp. in unpasteurized dairy samples was conducted at 

the Pathogenic Microbiology Laboratory at the School of Food and Agriculture at the University 

of Maine, Orono, Maine. Buffered Listeria Enrichment Broth (Alpha Bioscience, Baltimore, MD, 

USA) was used to enrich Listeria spp. Each 25 ml sample of unpasteurized retail milk was 

aseptically placed into a sterile polyethylene bag with 225 ml of 1X of the enrichment broth. Each 

25 g cheese sample was placed into a sterile blender, diluted in warm (45℃), sterile 2% (w/vol) 

sodium citrate dihydrate (Fisher Chemical, Fair Lawn, NJ, US). Samples were then homogenized 

for 2-3 minutes using a sterile Waring Commercial Blender 700S (Torrington, Connecticut, USA), 

and then a solution of 2X selective enrichment medium was added. Enrichments were incubated 

at 30±1℃ for 24 hours. After incubation, aliquots of enriched samples were plated onto modified 
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Oxford agar (MOX; Alpha Biosciences, Baltimore, MD, USA). Preparation of this media requires 

the addition of modified oxford antibiotic supplement (BD Difco; Sparks, MD, USA) (FDA BAM, 

2017). Plates were again incubated at 30±1℃ for 24 hours before examination for colonies with 

typical morphology.  

4.2.3 Statistical Analysis  

Chi-Square tests of independence were used for comparisons of categorical variables. 

Pearson Chi-Square was used to determine the association between coliforms and Listeria spp. 

therein, other variables (months and products) were observed using the Pearson correlation 

coefficient at significance levels p < 0.01 and p < 0.05. Mean temperature differences were 

determined by using one-way analysis of variance (ANOVA) followed by Tukey’s honest 

significant difference (HSD) for mean separation. P values < 0.05 were considered statistically 

significant and data were expressed as mean ± standard errors. The analyses were performed by 

using IBM SPSS Statistics version 25 (Orem, UT).   

4.3 RESULTS 

4.3.1 The Correlation between Listeria spp. and Coliforms in Unpasteurized Retail Dairy 

Products. 

Table 4-1 shows the correlation between Listeria spp. and coliforms. The overwhelming 

majority of samples compliant for coliforms tested negative for Listeria spp. When samples were 

non-compliant for coliforms, there were almost the same chance of getting presumptive positive 

and negative for Listeria spp. The Pearson’s correlation showed there was a significant (p < 0.05) 

association between Listeria spp. and coliforms (Pearson Chi-Square = 20.099, p = 0.000).  
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*Pearson Chi-Square between the Presence of Listeria spp. and Non-compliant Coliforms is 

significant at level (0.05). 

 

4.3.2  The Prevalence of Listeria spp. and Coliforms in Different Types of Unpasteurized 

Retail Cheese. 

The prevalence of Listeria spp. in unpasteurized retail cheeses is displayed in Table 4- 2. 

The results showed that 88% (22 of 25) of soft cheese and 77.4% (14 of 18) of mold-ripened cheese 

samples were Listeria spp. negative. The presence of Listeria spp. was not significantly (p > 0.05) 

correlated with the cheese types as shown in Table 4- 2.  

 

 

 

 

 

 

 

 

*Pearson Chi-Square between the Presence of Listeria spp. and Chees Types is significant at 

level (0.05). Soft Cheese n= 25, Mold-Ripened Cheese n= 18. 

Coliforms Positive Negative

 Compliant 6.9 93.1

 Non-Compliant 43.8 56.3

% Listeria spp.

* (p = 0.000)

Cheese Types Negative Positive

Soft 88.0 12.0

Mold-Ripened 77.8 22.2

p = 0.370*

% Listeria spp.

Table 4-1 Pearson Correlation Between Coliforms and Listeria spp. in Unpasteurized Maine 

Dairy Products 

Table 4- 2 Prevalence of Listeria spp. in Different Types of Unpasteurized Retail Cheese 
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4.3.3 The Effect of Months on the Prevalence of Listeria spp. and Coliforms in 

Unpasteurized Retail Dairy Samples. 

Table 4- 3 displays the effects of months on the occurrence of Listeria spp. and coliforms 

in the studied samples. No trend was observed between month and the occurrence of non-

compliant coliform levels throughout the study. The highest percentages of non-compliant 

coliform levels were observed in July, October, and September. The occurrence of presumptive 

Listeria spp. was significantly (p < 0.05) higher in July and declined in August as shown in Table 

4- 3. The prevalence of Listeria spp. was significantly (p < 0.05) correlated with higher 

temperatures, whereas non-compliant coliforms was not as shown in Table 4- 3.   

 

 

 

 

 

 

 

 

*Pearson Chi-Square between the Prevalence of Non-compliant Coliforms and Listeria spp. is 

significant at level (0.05). 

June n= 15, July n= 20, August n= 29, September n= 14, October n= 26. 

 

Figure 4-1 shows the variation of mean temperatures among months. Temperatures in July 

(22.03℃±2.47) and August (21.94℃±2.78) were significantly (p < 0.05) higher than temperatures 

in June (17.27±3.72), September (16.80℃±4.36), and October (7.77℃±4.43). The mean 

Months Compliant Non-compliant Negative Positive

June 80.0 20.0 100 0.0

July 55.0 45.0 45.0 55.0

August 82.2 17.2 75.9 24.1

September 71.4 28.6 100 0.0

October 57.7 42.3 96.2 3.8

% Coliforms % Listeria spp.

* (p = 0.000)* (p = 0.143)

Table 4- 3 Prevalence of Listeria spp. and Coliforms during the Study in Unpasteurized Maine Dairy 

Products 
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temperature in October was significantly (p < 0.05) lower than the mean temperatures of the other 

months.   

    

 

 

 

 

 

 

 

 

 

Temperatures were expressed as mean ± standard error. 

ANOVA was used and significant differences between means were analyzed using Tukey’s HSD.  

The columns not sharing the same letters are significantly different (p <0.05) across months. 

 

4.4 DISCUSSION 

The State monitoring procedures for pathogen detection in unpasteurized retail dairy 

products have not been established within the state of Maine. This study, however, investigates 

the correlation between Listeria spp. and coliform counts in these products and detects the 

occurrence of Listeria spp. in soft unpasteurized retail cheese samples. Based on our results in 

Table 4-1, we found that there was a significant (p < 0.05) correlation between the prevalence of 

presumptive positive Listeria spp. and non-compliant coliform counts. The study also showed that 

samples with compliant coliform levels were negative for Listeria spp. in over 93% of cases, which 

Figure 4-1 The Trend of Maine’s Temperatures Across Study Duration 
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may indicate that low coliform levels are a fairly reliable indicator for the absence of Listeria 

species. It should be noted that both coliforms and Listeria spp. are environmental microorganisms 

that can be found on dairy farms, which might result in the possible contamination of the milk 

and/or dairy products. On the other hand, the results suggest that non-compliant coliform levels 

are correlated with an increased risk of Listeria spp. presence, but cannot be considered a plausible 

indicator of non-compliant samples for coliforms, since these samples had nearly equal 

percentages of presumptive positive (43.8%) and negative (56.3%) results for Listeria spp. Other 

studies have also investigated the correlation between coliform bacteria and the presence of 

foodborne pathogens in milk samples. The overall conclusions from their results were correlation 

was not significant, and coliform bacteria cannot be used as an index organism for any pathogens 

because these microorganisms can be naturally found in the farm environment. In addition, the 

highest quality unpasteurized milk products cannot guarantee pathogen absence11,18, 89,325,326,316.   

Listeriosis can cause severe health implications in cow herds; however, shedding the 

organisms in feces from subclinical animals can also occur327,328. Furthermore, feeding practices, 

such as the use of poor-quality silage, can also be a source of pathogenic bacteria329. Silage is 

produced through anaerobic fermentation of a moist forage crop by the acidification process of 

carbohydrates after being converted into organic acids through the action of lactic acid bacteria 

(LAB)330. Lactic acid bacteria’s ability to reduce pH in this feeding material extends the product’s 

shelf life while minimizing nutrient losses. Additionally, this ability inhibits the growth of 

unwanted epiphytic bacteria in plants, including Clostridium spp., Bacillus spp., coliform bacteria, 

yeasts and molds by producing antimicrobial agents330,331. The occurrence of pathogenic bacteria 

in silage is attributed to contamination or improper fermentation processes, which favor the growth 

of pathogens332. Listeria spp. including L. monocytogenes, have been isolated from poorly 
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fermented silage with pH levels > 4.0333,334. Thus, the presence of Listeria spp. in the milk could 

be attributed to the transmission of these organisms from contaminated silage into the fluid milk.    

L. monocytogenes is considered a severe threat to the dairy industry. In general, 

unpasteurized dairy products are more vulnerable to pathogens due to the lack of heat processing. 

The occurrence of Listeria spp. in unpasteurized cheese products is mainly from contaminated 

milk or post-processing contamination. High mortality rates from human listeriosis have led to the 

FDA to establish a zero-tolerance policy in RTE foods at any detectable level335. Thus, the 

detection of foodborne pathogens is crucial to ensure the safety of unpasteurized dairy products. 

The potential presence of Listeria spp. in two types of unpasteurized milk cheeses was detected in 

this study. The results showed that both soft and mold-ripened cheeses had tested presumptive 

positive for Listeria spp.; however, mold-ripened cheeses had almost doubled the percentage 

(22%) of presumptive positives for Listeria spp. compared to soft cheeses (12%). The incidence 

of presumptive positives for Listeria spp. in the tested cheeses could be attributed to the cheese 

characteristics and high tolerance properties of Listeria. Soft cheeses have food preservative 

characteristics such as pH levels of 4.5 to 6.5 and a final salt content of 2.3% to 3.5%336; however, 

Listeria spp. can survive and may induce tolerance responses under pH levels 4.0-9.5 and a NaCl 

content of 10% w/v263,308. Mold-ripened cheeses may have favorable pH levels for Listeria growth. 

These are typically characterized by Penicillium camemberti and Penicillium roqueforti growth 

during ripening. These molds metabolize lactic acid that is produced by the starter cultures to 

produce ammonia from the amino acids, which elevates the initial pH (4.6) to neutral 7.0337. This 

pH value could be the reason that mold-ripened cheeses had higher percentages of presumptive 

Listeria spp. positives in this study. The prevalence of Listeria spp. positives namely L. 

monocytogenes, in soft, semi-soft and mold-ripened cheeses have been investigated in other 
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studies. Loncarevic et al. (1995)320 in Sweden reported that 42% of unpasteurized retail soft and 

semi-soft cheeses were positive for L. monocytogenes. Other investigations have reported 

prevalence range of 0.5%-15% of L. monocytogenes in soft and semi-soft cheeses made from 

unpasteurized and pasteurized milk338. Trmcic et al. (2016)316 attributed the prevalence of Listeria 

spp. to the cheese characteristics (pH 5.25-7.02 and of water activity levels of 0.939-0.981) of 

unpasteurized mold-ripened and soft cheeses.  

We further observed the effects of the monthly temperatures from June to October on the 

prevalence of presumptive Listeria. A higher percentage of presumptive positive Listeria spp. were 

detected in the summer months (July and August) than in fall (September and October). A study 

by Gaya et al. (1996)339 in Spain reported that the contamination samples with Listeria spp. from 

various containers of milk was seasonal but contradicts the seasonality that we observed. The 

researchers found that the occurrence of Listeria spp. was higher in fall and winter than in spring 

and summer. Another investigation by Abou-Eleinin et al. (2000)340 documented that 35 out of 

450 samples tested positive for Listeria spp. positive and their prevalence was higher in winter and 

spring rather than in fall and summer months. Researchers likely detected more Listeria spp. in 

winter and spring compared to summer because outdoor feeding areas where goats graze increases 

direct animal contact with soil matter and germinating seeds, which are harborage sites for the 

pathogen. These materials are then routinely ingested by the goat and excreted in the feces.  

Listeria is a psychrotrophic bacterium that can grow at low temperatures341. Unlike the previously 

mentioned study, Ho et al. (2007)100 found there were no seasonal effects on the prevalence of L. 

monocytogenes and Listeria spp. isolated from dairy equipment, which suggests that milk itself is 

the more likely source of contamination.  
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It is necessary to mention that in this study all presumptive positive samples were 

independent of commodity type and producer during summer season with the exception of one 

dairy producer who provided both a presumptive positive cheese and milk sample. This indicates 

that the dairy producers had more environmental challenges (temperature, humidity, pest 

management) in summer months to keep up with proper sanitation practices. There were twelve 

out of one hundred and four unpasteurized dairy samples that were presumptively positive for 

Listeria spp. with majority belongs to unpasteurized milk samples. This indicates that there are 

sanitation issues on those farms, which may potentially increase the risk for Listeria presence in 

the finished product.   

The current literature demonstrates varied information regarding the validity and accuracy 

of using specific selective media to detect for Listeria spp., and there are some microbes that could 

cause some false positive results, such as Enterococcus species. Thus, the presumptive positive 

results may vary based on the type of food product in which the pathogen is isolated, as well as 

the enrichment and detection methods. For example, in this study, there twelve out of a hundred 

and four (11.53%) of unpasteurized dairy samples indicated positive for Listeria spp. after a 24 

hours enrichment in BLE broth at 30℃ and subsequent plating on MOX for 48 hours at 30±1℃. 

In a study by Benhalima et al. (2019)342, nine of the forty-two unpasteurized milk samples were 

positive for Listeria spp. after enrichment in two broths (Fraser half concentration enrichment 

broth and Fraser broth, and then plated on two selective media (MOX and PALCAM). The 

percentage of false positives detected on each selective agar was 4.76% and 2.22%, respectively. 

This could be attributed to the type of enrichment broth and the additional biochemical tests used 

to confirm the Listeria genus. 



87 

 

We found there were significant (p <0.05) differences in the incidence of presumptive 

Listeria between months, but the occurrence of coliforms was not significantly (p > 0.05) 

correlated by month. Coliform bacteria form part of the intestinal microflora of animals; thus, their 

presence in dairy farms is to be expected66,313, and may indicate possible fecal contamination or 

inadequate sanitation practice and/or hygiene. In our observations, samples with non-compliant 

coliform levels did not reveal a clear trend in their presence among months. Although the optimum 

temperature for coliforms is 35±1℃343, other bacteria genera recently termed “environmental 

coliforms”, including Serratia, Hafnia, Rahnella, Buttiauxella, and Leclercia have been shown to 

grow in milk at refrigeration temperatures344. This could explain the prevalence of coliforms in the 

tested samples that were collected (with average air temperatures of 7.77℃ in October and 22.03℃ 

in July). A study by Harmon (1994)225 reported that during summer months the number of 

environmental bacteria, such as coliforms in bedding material, increased which could be attributed 

to favorable temperature and humidity, and is consistent with our findings. Coliforms are a 

consistent component to the microbial population in unpasteurized milk20,217,325,435. High counts of 

coliform bacteria in the milk also could be attributed to undiagnosed mastitis in the milking 

animals223. An investigation by Van Kessel et al. (2004)345 documented that 96% of tested bulk 

tank milk samples in the U.S. in 2002 tested coliform positive. The reported coliform levels in 

unpasteurized milk in the U.S. were between 31 CFU/ml and 2570 CFU/ml208,219,325.        

4.5 CONCLUSSION 

 The findings of this study and other studies suggest that the level of coliform bacteria is 

not a reliable indicator microorganism to predict the presence or absence of foodborne pathogens, 

including Listeria spp. in unpasteurized dairy products. However, overall low coliform levels 

seemed in our samples to be correlated to a lower risk of Listeria spp. presence.  Current detection 
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methodologies utilize enrichment procedures which may favor or suppress certain Listeria spp. 

Also, the outgrowth of the background flora in raw milk, such as Enterococcus species, may give 

a false positive result for the presence of Listeria spp. on some selective media346. Therefore, 

additional research on alternative detection methods are necessary to reduce the instance of false 

positives. Similarly, coliforms are ubiquitous in farming environments and therefore, more 

targeted testing approaches, which specifically test for E. coli presence, may be better indicators 

of fecal contamination sources. Proper farming practices, in addition to routine quality testing, are 

necessary to improve the ability to detect bacteria of public health concern. Further studies are 

needed to verify the significant correlation that we found, as well as test samples during winter 

and spring months and rapid screening pathogen testing is highly recommended. 

4.6 LIMITATIONS 

This study; however, was subject to several limitations. Limited financial support for this 

research made investigation into additional detection techniques for Listeria spp. not possible. 

Additionally, a lack of study participants made the sampling size for this work relatively small, 

thus the data that was generated may be less representative of the true food safety risk associated 

within these commodities. Lastly, the lack of previous studies in this research area has also limited 

the comparison to our findings with others.     
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OVERALL CONCLUSIONS AND RECOMMENDATIONS 

 To our knowledge, there have been no prior studies which have evaluated the quality and 

safety of unpasteurized retail dairy products in Maine or investigated the effects of various aging 

temperatures on pathogen survival used in unpasteurized cheese manufacturing.  

     The results indicate that a clear trend was revealed between bacterial populations and the 

time period between 1998 and 2016. However, it should be noted that in both cow and goat milk 

samples, the highest mean values standard plate and coliform counts were documented in earlier 

years, whereas the lowest means were recorded more recently. Furthermore, there were no 

significant differences in the cleanliness status of either cow or goat’s milk products, although 

coliforms were the source of higher non-compliant in the studied samples. However, the variations 

in the environmental conditions may have had significant effects on bacterial populations, since 

higher coliform bacterial populations were observed in the summer months compared to winter. 

Additionally, the results also reveal that low coliform counts appeared to be correlated with a lower 

risk of presumptive Listeria spp., and the cheese type and the environmental conditions had an 

impact on the prevalence of Listeria spp. in the tested unpasteurized retail dairy products.  

 This research has also clearly shown the growth trends of the studied foodborne pathogens 

during the manufacturing and aging process of unpasteurized cow’s cheese at different aging 

temperatures. This suggests that small-scale cheesemakers in Maine should use the lowest 

temperature (4℃) studied during aging in order to control the growth of pathogens in the finished 

product without altering the level of beneficial lactic acid bacteria or desirable finished product 

attributes. 

     We can conclude that Maine’s retail dairy market may represent a valuable sector within 

the thirty states that allow the sale of unpasteurized dairy products. The number of retail 
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unpasteurized milk samples has had a five-fold increase from 1998 to 2016, which suggests that 

the market for these types of products continues to expand. Therefore, high quality and more 

importantly the safety of unpasteurized dairy products is crucial. Additional state monitoring 

procedures for pathogen detection is highly recommended to better ensure the safety of these 

products. Further studies are also needed to identify other farm risk factors associated with 

coliform counts in unpasteurized milk and dairy products.  
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