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There is growing concern that some aspects of severe weather could become more

frequent and extreme across the northeastern United States (USNE) as a consequence of

climate change. Extratropical cyclones and frontal systems are a common factor in a

variety of severe weather hazards in the region. This dissertation examines three types of

meteorological events impacting the USNE – ice storms, heavy rainfall, and high-wind

events. The first research topic utilizes the Weather Research and Forecasting (WRF)

model in a case study of the December 2013 New England ice storm. In this analysis, a

series of tests are conducted to examine how choice of planetary boundary layer physics

and other factors affect the model skill in comparison to observations. The results show

that near-surface variables are highly sensitive to model setup, highlighting the need for

careful testing prior to use. The second research topic explores large-scale teleconnections

associated with the documented increase in summer precipitation across the USNE over

the past two decades. It is shown that the precipitation surplus occurs in likely

teleconnection with increased frequency of high pressure blocking over Greenland. As the

current generation of climate models do not correctly depict seasonal patterns or trends in

precipitation for the USNE, identifying the association between Greenland blocking and

recent precipitation changes across the USNE is crucial for understanding the shortcomings



for climate projections for the region. The third research topic is an analysis of the

frequency and intensity of mid-autumn wind storms in New England. Fall season storms

can have dominant cold-season characteristics, while also being fueled by warm-season

moisture sources or the result of an extratropical transition. While the results show an

increase in storm total precipitation, there are no significant trends in overall wind storm

frequency or intensity with respect to central pressure or surface wind speeds.

Nevertheless, storm severity is only one factor that contributes to damage from high wind

events. As a whole, this dissertation provides insights to how precipitation and storms are

changing across the USNE, while highlighting some of the challenges of weather and

climate prediction at regional scales.
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CHAPTER 1

INTRODUCTION

In the northeastern United States (USNE), extratropical cyclones and their associated

fronts are responsible for a wide range of weather-related hazards. They are the most

common cause of extreme precipitation (Agel et al., 2019, 2018, 2015; Dowdy and Catto,

2017; Kunkel et al., 2012), as well as high-wind events (Ashley and Black, 2008; Booth

et al., 2015). During the cold season, extratropical cyclones (particularly coastal storms, or

“nor’easters”) bring precipitation in the form of rain, freezing rain, sleet, and snow, and can

undergo rapid intensification. The effects of these severe weather events can range from

short term (risk to life, infrastructure damage, disruption of commerce) to long term (shifts

in forest composition following an ice storm or high-wind event). There is considerable

uncertainty in how extratropical cyclones and the consequences of extreme precipitation

events will change in a warming world.

This dissertation explores three meteorological events associated with extratropical

cyclones that have climatic implications for the USNE – ice storms, heavy rainfall, and

high-wind events. These research topics were chosen due to their applicability to weather

and climate forecasting techniques, as well as their relevance to civilian, industrial, and

legislative stakeholders in the USNE. This dissertation is organized into five chapters as

follows, where Chapters 2–4 are formatted as research papers for peer-review publication.

Chapter 2 is an assessment of the sensitivity of a commonly used numerical weather

prediction (NWP) model, the Weather Research and Forecasting (WRF) model, to various

setup configurations for an ice storm case study. In an attempt to improve storm response

and minimize costs, energy companies have supported the development of ice accretion

forecasting techniques utilizing meteorological output from NWP models. However,

analyses of modeled case study storms tend to provide little verification of output fidelity

(e.g., Musilek et al., 2009; Pytlak et al., 2010; Zarnani et al., 2012. As the classification of

1



freezing rain and sleet is highly sensitive to NWP model uncertainty, it is important to

verify the accuracy of model output against observations. The primary goal of this chapter

is to provide further insight into the sensitivity of NWP model output, which could

adversely affect the development of ice accretion forecasting systems if model-based biases

are not sufficiently minimized.

Chapter 3 explores the contribution of shifts in large-scale circulation across the North

Atlantic to recent increases in summer extreme precipitation over the USNE. While

previous work has discussed the contribution to increased extreme precipitation from

tropical cyclones since the early 2000s (Howarth et al., 2019; Huang et al., 2018), the

large-scale driver of summer precipitation increases in the extra-tropics has received little

attention. It is proposed that increased incidence of high latitude blocking over Greenland

and the subsequent shifts in the upper-tropospheric wave pattern over the North Atlantic

promotes increased southwesterly moisture transport into the Northeast, resulting in more

heavy rainfall events. Clarifying the teleconnection between Greenland blocking and recent

precipitation changes across the USNE may help to explicate the limitations of climate

projections of summer season rainfall for the latter region, as climate models are currently

unable to reproduce the observed tendency towards increased atmospheric blocking over

Greenland.

Chapter 4 examines the frequency and intensity of mid-autumn wind storms (high-wind

events associated with extratropical cyclones) across New England. In recent years, New

England has seen a number of wind storms that have produced extensive infrastructure

damage, raising concerns that these events may become more common in a changing

climate. Storms developing during this time of year are unique in that they can have

dominant cold-season characteristics, while also being fueled by warm-season moisture

sources (such as the remnants of tropical cyclones) or the result of a tropical cyclone

undergoing extratropical transition. In providing insights on the behavior of such storms,

2



we can better evaluate how climate change could impact the risk of damage from wind

storms.

In Chapter 5, the main findings and contributions of this work are summarized.
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CHAPTER 2

WRF SIMULATION, MODEL SENSITIVITY, AND ANALYSIS OF THE

DECEMBER 2013 NEW ENGLAND ICE STORM

2.1 Chapter Introduction

While harsh winters are common in northern New England, damaging ice storms that

impart significant cost to civil infrastructure and the regional economy are relatively rare.

The most impactful ice storm in the region in recent history occurred 5-10 January 1998,

resulting in over $1.4 billion in damage in the U.S. and southeastern Canada (Lott and

Ross, 2006). Another significant ice storm swept across the region on 21-23 December

2013. This more recent ice event was less severe than its 1998 counterpart, but nonetheless

imparted costly damage to the regional electric grid: storm damage exceeded $1.9 million

in Maine (Brogan, 2014) and nearly $6.5 million in Vermont (NOAA/NCEI, 2014). The

potential for extensive infrastructure damage, and uncertainty related to how climate

change will affect the frequency and intensity of ice storms, warrants close inspection of

how well numerical forecast models are able to depict and predict these events.

Most ice storm case studies focus primarily on the development of ice accretion

modeling and forecasting methods. In these existing studies, forecast or reanalysis output

is downscaled using a numerical weather prediction model (NWP), such as the Weather

Research and Forecasting (WRF) model (Skamarock et al., 2008), which provides

meteorological input for an ice accretion model. This approach has been utilized for

predicting ice accretion on power lines (Arnold, 2009; DeGaetano et al., 2008; Hosek et al.,

2011; Musilek et al., 2009; Pytlak et al., 2010; Pytlak, 2012; Zarnani et al., 2012), as well

as in-cloud icing on wind turbines (Davis et al., 2013) and on other ground based

structures in mountainous terrain (Nygaard et al., 2011). Outside of energy production and

distribution industries, WRF has also been utilized to examine the role of sea surface
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temperatures in the Gulf of Mexico on ice-storm severity in the U.S. southern Great Plains

(Mullens et al., 2016).

Despite the ubiquitous application of WRF for developing and validating ice forecasting

systems, relatively few ice storm case studies are found in the literature compared to other

modeled weather events. Those that are available concentrate on the ice forecast

component, with limited consideration for the realism of the driving atmospheric model.

Documentation of WRF output validation for ice storm case studies, if included at all, is

generally restricted to spatially and temporally averaged statistical analyses of surface

variables, as in Musilek et al. (2009) and Pytlak et al. (2010). Sensitivity tests are not

typically reported, except with regards to ice-accretion modeling applications for a select

number of physics parameterizations. For example, Nygaard et al. (2011) compared the

performance of three cloud microphysics parameterization schemes for predicting

supercooled cloud liquid water content and diagnosing median volume droplet diameter,

two necessary input variables for ice accretion models. Eight WRF simulations centered on

Mount Ylläs in northern Finland were evaluated using twice daily soundings from a

meteorological observatory located 100 km east of the mountain. Modeled sounding

profiles were considered representative of the atmospheric conditions during the

simulations, with the overall mean absolute error of modeled temperatures at 1.6°C.

However, in one instance where WRF was unable to resolve a strong surface-based

temperature inversion, modeled surface temperatures were overestimated by 5°C. Davis

et al. (2013) also produced an icing study with sensitivity tests, wherein WRF was used to

provide meteorological conditions at a Swedish wind farm for a wind turbine ice

accumulation model. The sensitivity tests included three planetary boundary layer (PBL)

schemes and three cloud microphysics schemes. General model performance was validated

against 2-meter temperature and 10-meter wind speed observations from three surface

stations, as well as temperature and wind speed observations at 80 meters at the wind

farm. It was noted that while observed and modeled temperatures at the wind farm were
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in good agreement for temperatures above 0.5°C, large cold biases occurred when simulated

temperatures were below freezing. The largest deviations in temperature occurred below

-10°C, although this would not have a large impact on the ice model due to the particles

freezing before contact with the turbine blades. These two studies provide more robust

descriptions of model performance compared to other ice model studies, but nevertheless

the evaluation of WRF output is brief and secondary to the desired model application.

This lack of model validation is in stark contrast to operational weather forecasting

centered icing studies. Ikeda et al. (2013, 2017) used surface and sounding observations to

assess the High-Resolution Rapid Refresh (HRRR) model in identifying surface

precipitation phase for several case study ice storms effecting the central and eastern US.

The HRRR is an operational NWP model that is built upon the WRF model and includes

a postprocessing routine that identifies the type of precipitation at the surface. The

authors found that the size and organization of weather systems is a factor in the forecast

skill for precipitation extent and phase, with greater skill for larger, more organized

systems compared to smaller events. For most events, the simulated near-surface

temperatures had biases of less than 2°C, while several smaller events associated with

cold-air damming on the eastern size of the Appalachian Mountains either did not have a

subfreezing surface layer, or exhibited significant warm biases of up to 4°C within the layer.

Overall, the study found that simulated locations and spatial extents of freezing rain were

reasonable, but not nearly as robust as simulated depictions of rain and snow.

The sparse documentation on relevant WRF performance and sensitivity presents

challenges for those interested in simulating ice storms with the greatest accuracy possible.

Conditions are conducive for freezing rain when the atmosphere is highly stratified: a warm

(above freezing) and moisture-laden air mass overruns a colder, subfreezing surface layer of

air. Previous studies have determined that precipitation type is largely dependent on the

maximum temperature of the warm layer, which is proportional to layer depth (Stewart

and King, 1987; Zerr, 1997). Warm layers with maximum temperatures > 3°C allow for
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complete melting of snowflakes that fall through the layer, while lower temperatures allow

partial or very little melting. The depth of the cold layer, which usually only extends

300-1200 m above the surface (Young, 1978), is also crucial. Underestimating the depth of

the cold layer would result in rain that would not freeze on contact, while overestimating

the depth could result in the identification of sleet or ice pellets, as the rain refreezes before

reaching the ground (Forbes et al., 1987). Considering that changes in temperature as low

as 0.5°C can alter precipitation type (Reeves et al., 2014; Thériault et al., 2010), sensitivity

testing is a crucial first step when using NWP models for research and development

purposes in order to minimize the contribution of model-based uncertainty to icing

forecasts.

This study reports a suite of WRF sensitivity experiments designed to investigate the

variability of model output to model configuration for the specific case of the December

2013 New England ice storm. The experiments test the impact of a variety of configuration

options including the choice of PBL physics parameterization, reanalysis forcing, use of

grid nudging, and the number of vertical levels. For lateral boundary forcing we utilize the

reanalysis models ECMWF ERA-Interim, ECMWF ERA5, and the NCEP North

American Regional Reanalysis. Because ice accretion models utilize simulated values of air

temperature, precipitation rate, and wind speed, we validate these simulated variables

against surface and radiosonde observations. The tests reported here provide further

insight into the sensitivity of WRF output to changes in model setup, thus providing

general guidance for future WRF-based numerical simulations of ice storms.

This paper is structured as follows. The December 2013 New England ice storm is

summarized in Section 2.2, with the data and model setup used described in Section 2.3.

The results are described and discussed in Sections 2.4 and 2.5. A summary of our major

conclusions is presented in Section 2.6.
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2.2 December 2013 New England Ice Storm Case Study

The December 2013 New England ice storm was part of a larger storm system that

brought freezing rain and heavy snow to the Midwest and Northeast, and tornadoes in the

Southeast U.S. from 19 December through 23 December (NCDC, 2014). This storm

exhibited many of the same large-scale features present in the 1998 ice storm, as detailed

by Gyakum and Roebber (2001) and Roebber and Gyakum (2003): a cold anticyclone in

Canada, an anticyclone in the southwestern North Atlantic, and an inverted trough

stretching from the Gulf of Mexico towards the Great Lakes (Fig. 2.1). A quasai-stationary

front extended from east Texas through the Ohio Valley into New England, parallel to the

southwesterly flow aloft. The air mass ahead of the front was unseasonably warm and

moist for the time of year, with precipitable water values greater than 30 mm and a

temperature gradient of more than 25°F (14°C) across the front. Strong low-level

convergence and frontogenetic forcing ahead of a surface low resulted in heavy rain and

tornadoes ahead of the front during 21 and 22 December, while behind the front fell heavy

snow and freezing rain. Ice storm warning criteria (> 0.25 in ice accumulation) were met

for counties in Texas, Oklahoma, Kansas, Iowa, Illinois, Michigan, New York, Vermont,

and Maine during the storm.

In northern New York and New England, precipitation developed in two separate waves,

with the location of the quasi-stationary front a key factor in the type of precipitation (Fig.

2.2). The first wave of precipitation lasted from approximately 1200 UTC 21 December

until 1800 UTC 22 December. At this time, the front was largely stationary over northern

New York, Vermont, and New Hampshire through the southeastern (or “Downeast”) coast

of Maine, running parallel to the southwestern flow aloft. The front was partially obscured

due to topographical features, with southwesterly flow over the White Mountains of New

Hampshire and northeasterly flow to the east of the Longfellow Mountains in Maine.

Several weak areas of low pressure tracked along the stationary front, with precipitation

falling as rain over the Adirondacks and the White Mountains, freezing rain to the
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Figure 2.1: Surface analysis/infrared satellite composites for 0000 UTC (a) 20, (c) 21, (e)
22, and (g) 23 Dec 2013 and 1200 UTC (b) 20, (d) 21, (f) 22, and (h) 23 Dec 2013 from
NOAA (2018).
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Figure 2.2: Regional surface analyses same as Fig. 2.1.
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southeastern St Lawrence Valley and the northern Champlain Valley as well as Downeast

Maine, mixing with sleet into central Maine and transitioning to snow to the north. The

heaviest precipitation accumulations occurred during the latter half of this period,

coinciding with a period of strong frontogenesis aloft ahead of the approach of a stronger

low pressure system (Fig. 2.3a). The second wave of precipitation lasted from

approximately 0000 UTC 23 December to 0000 UTC 24 December, during which the front

drifted southward over eastern Massachusetts and Rhode Island and the low tracked across

the Gulf of Maine. High temperatures on the 23rd range from -9°C (16°F) along the

U.S-Canadian border to near 20°C (68°F) in parts of southern New England. This system

brought rainfall to southern New England and additional freezing rain to the Downeast

coast associated with moderate frontogenetic forcing aloft (Fig. 2.3b). Storm total ice

accumulations as high as 32 mm (1.25 in) were reported in New York and Vermont and 25

mm (1.0 in) in Maine (Fig. 2.4). More than 75,000 customers in Vermont and 170,000 in

Maine, as well as 66,000 in New York, lost electric service as a result of wire icing and

downed trees, in some places for more than a week (NCDC, 2014; NOAA/NCEI, 2014).

Recovery efforts were hampered by extended extreme cold conditions and subsequent

winter storms in the weeks following the ice storm, resulting in additional power outages.

2.3 Data and Model Setup

Simulations of the December 2013 New England ice storm were conducted using WRF

version 3.9. Two one-way nested domains were used with grid spacings of 9 km and 3 km

(Fig. 2.5). The simulations were initialized at 0000 UTC 20 December 2013 and ended at

0000 UTC 25 December 2013, with the first 24 hours used for model spinup. The model

top was set to 50 hPa. Base physics options used for all sensitivity tests included the WRF

single-moment 6-class microphysics scheme (Hong and Lim, 2006), the Rapid Radiative

Transfer Model for general circulation models (RRTMG) longwave radiation scheme

(Iacono et al., 2008), the Goddard shortwave radiation scheme (Chou and Suarez, 1999),
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Figure 2.3: Mesoscale analysis of 850-700 hPa mean Petterssen frontogenesis, mean height,
temperature, and wind for (a) 1200 UTC 22 Dec and (b) 1800 UTC 23 Dec from NOAA
(2019a).
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Figure 2.4: Storm total ice accumulation maps from (left) Taber (2015) and (right) NOAA
(2019b).

the Kain-Fritsch cumulus scheme (Kain, 2004) for the outer domain, and the Noah land

surface model (Tewari et al., 2004). Preliminary simulations were run on the NCAR

Yellowstone (Computational And Information Systems Laboratory, 2016) supercomputer

using 64 cores prior to its decommissioning. All sensitivity simulations reported here were

conducted on the NCAR Cheyenne (Computational And Information Systems Laboratory,

2017) supercomputer using 72 cores.

The model sensitivity tests consist of two groups with the configurations listed in Table

2.1. The first experiment group tests the WRF model sensitivity to choice of PBL scheme

and the respective surface layer. We tested eight WRF PBL schemes, of which five of the

eight PBL schemes utilize the Eta (Janić, 2001) and Revised MM5 (Jiménez et al., 2011)

surface layer schemes, while the remaining PBL schemes were paired with their respective

surface layer scheme. The two main components in which the schemes differ are in the

order of closure and the extent of vertical mixing. The YSU and ACM2 schemes are first

order closure schemes, in which higher order terms in the decomposed equations of motion

are represented in terms of the mean. The remaining PBL schemes are 1.5 order, which

13
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Figure 2.5: WRF model domains (left) and locations of ASOS and radiosonde stations
(right). Surface stations include Albany, NY (ALB), Augusta, ME (AUG), Bangor, ME
(BGR), Boston, MA (BOS), Burlington, VT (BTV), Caribou, ME (CAR), Concord, NH
(CON), Chatham, MA (CQX), Newark, NJ (EWR), Hartford, CT (HFD), New Haven,
CT (HVN), Millinocket, ME (MLT), New York City, NY, (NYC), Providence, RI (PVD),
Portland, ME (PWM), Newport, RI (UUU), Halifax, NS (CYHZ), Quebec City, QC
(CYQB), Yarmouth, NS (CYQI), and Montreal, QC (CYUL). Sounding stations include
Gray, ME (GYX) and Brookhaven, NY (OKX), as well as sites collocated with the Albany,
Caribou, Chatham, and Yarmouth surface stations.

predict higher order variables such as turbulent kinetic energy (TKE) by diagnosing second

order (variance) moments for specific variables. Local mixing schemes allow only adjacent

levels to influence variables at a given location, while non-local schemes include multiple

levels. Most of the tested PBL schemes use local mixing, with two hybrid schemes (ACM2

and TEMF) utilizing either non-local or local mixing depending on the atmospheric

stability, and YSU as the sole nonlocal scheme. PBL schemes also differ in relation to

specific formulations, such as the incorporation of countergradient correction terms. More

detailed descriptions of the PBL schemes tested in this study are found in Cohen et al.

(2015) and Banks et al. (2016). For these simulations, initial and boundary conditions were

supplied by the ERA-Interim reanalysis (ERAI; Dee et al., 2011) obtained from the NCAR

Research Data Archive (ECMWF, 2009), grid nudging (Stauffer and Seaman, 1994) was
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applied to all levels for the outer domain with the nudging coefficients set to 3 x 10−4, and

36 vertical levels were utilized.

The second experiment group tests the WRF model sensitivity to choice of several setup

options using the MYJ PBL simulation as the “control”. Three simulations test the use of

grid nudging and the number of vertical levels. The lowest eta levels for the simulations

using 36 vertical levels are 1.0, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.880, 0.842, and

0.804, and the lowest eta levels for the simulations using 46 vertical levels are 1.0, 0.998,

0.995, 0.993, 0.988, 0.984, 0.98, 0.975, 0.97, 0.962, 0.954, 0.944, 0.934, 0.922, 0.909, 0.895,

0.88, 0.861, 0.842, and 0.804. Four simulations were run using the North American

Regional Reanalysis (NARR; Mesinger et al., 2006) and ERA5 (Hersbach et al., 2020)

datasets from the NCAR Research Data Archive (ECMWF, 2017; NCEP, 2005), both with

and without grid nudging. Compared to ERAI, a global reanalysis dataset available at 6

hourly intervals with 80 km grid spacing and 60 vertical levels, NARR has both a higher

horizontal and temporal resolution (32 km and 3 hour, respectively), but fewer model levels

(45). ERA5, the successor of ERAI, is a fifth-generation reanalysis produced by the

ECMWF, with 31 km grid spacing, 137 vertical levels, and hourly output fields.

WRF model output was validated against surface station observations and tropospheric

sounding data over 21-23 December 2013, when conditions were conducive for freezing rain.

Hourly surface observations from 20 Automated Surface Observing System (ASOS) sites

were obtained from the Iowa Environmental Mesonet website

(https://mesonet.agron.iastate.edu/request/download.phtml), and sounding data were

obtained from the NOAA/ESRL Radiosonde Database (https://ruc.noaa.gov/raobs/) for 6

sites (Fig. 2.5). Surface station and sounding sites within and without the ice storm extent

were chosen to compare PBL scheme and overall WRF performance for icing and non-icing

conditions. The statistical analysis was generally modeled after Musilek et al. (2009) and

Pytlak et al. (2010), which included domain-wide metrics of hourly 2-meter temperature

and 10-meter wind speed, as well as 6-hour accumulated precipitation. Statistical metrics
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from these two studies were used on the innermost domain over 21-23 December and

include the mean error (bias), mean absolute error (MAE), and linear correlation

coefficient (R). Statistics were also calculated for hourly 10-meter wind direction, as well as

values of temperature, wind speed and direction from soundings at 0000 UTC, 0600 UTC

(when available), and 1200 UTC. For the sounding variables, the WRF values were

interpolated to the mandatory and observed significant levels below 700 hPa. The

associated equations are as follow:

Bias =
1

N

N∑
i=1

θi

MAE =
1

N

N∑
i=1

|θi|

R =

∑N
i=1[(Oi −O)(Mi −M)]

(N − 1)(σOσM)

where

θi = Mi −Oi

represents the deviation between the modeled and observed values of a particular variable,

θ, with M and O representing the modeled and observed 3-day averages (respectively), and

N is the number of model-observation value pairs. Because wind direction is a circular

variable and the absolute deviation cannot exceed 180, the difference between the modeled

and observed wind direction is given following Carvalho et al. (2012):

θi = (Mi −Oi)(
1− 360

|Mi −Oi|
), if |Mi −Oi| > 180°
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A positive (negative) bias represents a clockwise (counter-clockwise) deviation in modeled

wind direction compared to the observed values. Domain-wide statistics for each PBL

scheme simulation include modeled and observed values from all surface or sounding

stations. To determine whether the simulations are significantly different from one another,

a two-tailed paired t-test (Wilks, 2011) was performed against every variable of each

simulation within the two groups. The statistical metrics detailed above, as well as the

figures in the following section, were produced using the NCAR Command Language

(NCL) version 6.4.0 (NCAR, 2017).

2.4 Results

2.4.1 Assessment of Large-Scale Features

Before validating WRF performance compared to surface observations as in previous ice

storm studies, it is crucial to first assess the ability of the model to replicate the large-scale

conditions of the storm. This consists of two parts: evaluating the fields provided by the

reanalysis used for the "control" simulation (i.e., ERAI) – such as the large-scale

circulation as well as the mid- and low-level temperature and moisture fields – then

examining how WRF depicts the depth and intensity of the air masses across the front. If

ERAI does not sufficiently replicate the broader conditions during the event, then the

ability of WRF to resolve local-scale features has to be called into question. Furthermore,

understanding how WRF depicts the movement of the warm and cold air masses will lend

itself to assessing the model’s sensitivity to configuration choices.

At the synoptic scale, ERAI is representative of the atmospheric circulation during the

event, including reproducing key surface features such as the highs over Canada and the

western Atlantic and the inverted trough. ERAI also reproduces the enhanced surface

temperature gradient throughout the southeastern US and the location of the freezing line,

as well as ample moisture ahead of the front. The 850 and 925 hPa temperature fields are

also consistent between upper air observations and the reanalysis, with the freezing line
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and the location of the front parallel to the prevailing southeasterly flow. Equivalent

potential temperatures at 850 hPa, the approximate level of maximum temperatures in the

warm air mass, of over 287 K (5°C) are present over New England and are reflected in the

fields of the outer WRF domain (Fig. 2.6). This temperature configuration in the lower

troposphere is characteristic of large scale ice storms, favoring the gradual transition from

rain to freezing rain/sleet instead of a direct change over to snow. From this assessment,

we conclude that the fields provided by ERAI sufficiently represent the synoptic-scale

features of the storm.

Figure 2.6: Comparison of 850 hPa equivalent potential temperature (K) and geopotential
height (dm) contours at 0000 UTC 21 Dec (top) and 0000 UTC 22 Dec (bottom) from ERAI
(left) and the WRF outer domain for the MYJ PBL simulation (right).
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In the following paragraphs we examine the WRF model representation of critical

factors associated with the ice storm, including the depth and intensity of the warm and

cold air masses. For this examination we utilize vertical cross sections, oriented roughly

perpendicular to the movement of the front, and utilize several sounding stations for

verification. The end points of the cross sections are located at the approximate locations of

the Caribou and Brookhaven sounding stations. Individual cross section plots in Figure 2.7

and Figure 2.8 are based on the MYJ PBL simulation. In further assessing WRF realism

for the ice storm, the modeled 2-meter temperature fields are compared against fields from

the Real-Time Mesoscale Analysis (RTMA; NOAA/NCEI, 2019a), a dataset used by

forecasters at the National Weather Service for producing and verifying weather forecasts.

Figure 2.7: Cross sections of temperature (°C), equivalent potential temperature (K), and
winds at (a) 0000 UTC and (b) 1200 UTC 21 Dec, and (c) 0000 UTC 22 Dec for the MYJ
PBL simulation. Observed (black) and WRF modeled (red) soundings for the Caribou (left),
Gray (center), and the Brookhaven (right) stations are above each cross section. The start
and end points correspond with the locations of the Caribou and Brookhaven stations, and
the approximate location of the Gray station is designated by the black arrow. Temperature
profile (solid) is plotted to the right of dewpoint profile (dashed), and winds are in ms−1.
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Figure 2.7: Continued.
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The December 2013 ice storm can be characterized as two separate episodes, however

the time frame differs with that of the two precipitation waves as discussed at the

beginning of Section 2.2. The first episode of the ice storm begins around 1800 UTC 20

December with the formation of a wedge of subfreezing air near the surface (Fig. 2.7a).

The cold wedge advances southward as warmer air aloft is advected northward (Fig. 2.7b),

then from 1200 UTC to 2100 UTC 21 December the cold air retreats northward (Fig.

2.7c). Although minimal precipitation is observed during this period, freezing rain was

observed in central Maine. Station observations also note that mist and fog is present

throughout Maine and into New Hampshire. The second episode begins as the cold wedge

redevelops and quickly intensifies from 2100 UTC 21 December to 1400 UTC 22 December.

This period is characterized by enhanced frontogenesis in advance of a low pressure system

(Fig. 2.3a) and a steep frontal slope (Fig. 2.8a), followed by a re-invigorated overrunning

above the cold air wedge (Fig. 2.8b). The highest hourly rate of precipitation accumulation

in northern New England occurs during this time frame (Fig. 2.9a,b). The second wave of

Figure 2.8: As in Fig. 2.7, except cross sections and soundings at (a) 1200 UTC 22 Dec, (b)
0000 UTC and (c) 1200 UTC 23 Dec for the MYJ PBL simulation.
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Figure 2.8: Continued.
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Figure 2.9: Six-hour accumulated precipitation (mm) from (a) 0600 UTC to 1200 UTC, (b)
1200 to 1800 UTC 22 Dec, (c) 1200 UTC to 1800 UTC 23 Dec, and (d) 1800 UTC 23 Dec
to 0000 UTC 24 Dec for the MYJ PBL simulation.

precipitation, as shown in Figure 2.9c and 2.9d, occurs as the subfreezing surface layer is

thinned (Fig. 2.8c) and ends as surface winds shift to the northwest and temperatures drop

below freezing. Reports of freezing rain during this period are concentrated over southern

Maine and southeastern New Hampshire.

Overall, WRF is able to sufficiently depict the depth and intensity of the elevated warm

layer for the MYJ PBL simulation. Modeled maximum temperatures within the warm air

mass are over 4°C in southeastern Maine during the waves of precipitation, which reflect the

maximum temperatures of sounding observations. This indicates that temperatures within

the warm airmass are sufficient for falling hydrometeors in this layer to melt completely.
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Figure 2.10: Difference in 2-meter temperature (°C) between RTMA and MYJ PBL
simulation at (a) 1200 UTC 21 Dec, (b) 0000 UTC 22 Dec, and (c) 1500 UTC 23 Dec.

However, temperature biases near the surface are evident as surface air masses transition in

northern New England. Cold biases are prevalent at 0000 and 1200 UTC 21 December and

at 1200 UTC 22, while a warm bias is present at 0000 UTC 22 December (Fig. 2.10).

Modeled surface temperatures are more consistent with observations for 23 December, as

temperature biases are less prevalent than the prior two days. The modeled profiles for the

endpoints of the cross section at the Caribou and Brookhaven stations (Fig. 2.7 and Fig.

2.8) are representative of the observed conditions for the duration of the storm.

Based on the cross sections and near-surface temperature maps, the vertical

temperature profile and tropospheric winds appear to be well represented overall by WRF.

The modeled temperature profiles closely follow observations within the elevated warm
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layer, then model performance generally decreases downward, with the largest temperature

departures at or just above the surface.

2.4.2 Sensitivity to PBL Scheme

In this section we assess the sensitivity of the model to the chosen PBL scheme. This is

done through comparing domain-wide statistical analyses as used by previous ice storm

modeling studies and investigating the spatial and temporal variability of PBL

performance using surface time series, soundings, and cross sections.

The results of the 3-day domain-wide sensitivity analysis of modeled 2-meter

temperature, 10-meter wind speed and direction, and 6-hour precipitation are shown in

Table 2.2 and sounding error statistics for the surface to 700 hPa in Table 2.3. Overall, the

bias metric indicates that the model tends to overestimate wind speed (at the surface and

up to 700 hPa) and precipitation, while near-surface temperature was generally

underestimated in five of the eight PBL simulations and overestimated above the surface

for all. The variability in MAE values across PBL schemes is minimal, with the exception

of temperature and precipitation from the TEMF scheme. Error values for modeled

sounding temperatures are approximately 0.75°C lower compared to surface values and

nearly half for wind direction. Wind speed errors are 1 ms−1 greater from modeled

sounding profiles than at the surface, although the increased magnitude of wind speeds

above the surface largely accounts for the difference. Linear correlations between modeled

and observed surface values are high for temperature and precipitation (0.8 to 0.9), and

less for wind speed and direction (0.5 to 0.7). The r-values for sounding variables are

greater for all three sounding variables compared to the corresponding surface variables,

further indicating that the modeled conditions are more in line with lower tropospheric

sounding observations than at the surface. From the paired t-tests, the values of 2-meter

temperature and 10-meter wind speed among the PBL simulations are significantly

different (p<0.01) except for three pairs of simulations (BouLac-TEMF for 2-meter
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Table 2.2: Statistical metrics of hourly 2-meter temperature (T2, N = 11,472), 10-meter wind
speed (WS10, N = 11,416) and wind direction (WD10, N = 9,608), and 6-hour precipitation
(PRE, N = 1,520) by PBL scheme simulation, averaged over all stations for 21-23 December.
Precipitation metrics include U.S. stations only.

Variable Scheme Bias MAE R

T2 (°C)

YSU -0.02 1.93 0.95
ACM2 -0.52 1.85 0.96
MYJ -1.18 1.89 0.97
QNSE -1.10 1.87 0.97
MYNN2 0.33 2.06 0.95
BouLac 1.00 2.12 0.95
UW -0.29 2.15 0.95

TEMF 1.14 3.14 0.92

WS10 (ms−1)

YSU 0.49 1.70 0.57
ACM2 0.58 1.67 0.60
MYJ 0.83 1.52 0.72
QNSE 0.70 1.53 0.70
MYNN2 0.02 1.61 0.56
BouLac 0.98 1.90 0.61
UW 0.42 1.64 0.58

TEMF 0.89 1.93 0.48

WD10
(degrees)

YSU 4.69 28.57 0.52
ACM2 5.00 24.25 0.51
MYJ 4.05 22.42 0.57
QNSE 0.46 23.48 0.55
MYNN2 5.48 28.96 0.48
BouLac 6.83 31.30 0.46
UW 2.38 26.28 0.47

TEMF -0.29 28.48 0.48

PRE (mm)

YSU 0.50 1.00 0.80
ACM2 0.58 0.99 0.81
MYJ 0.46 0.99 0.80
QNSE 0.47 0.99 0.80
MYNN2 0.49 1.00 0.80
BouLac 0.42 0.98 0.81
UW 0.48 1.01 0.79

TEMF 2.78 3.11 0.53
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Table 2.3: Statistics of sounding temperature (T, N = 4,880), wind speed (WSP, N = 3,869),
and wind direction (WDR, N = 3,869) for each PBL scheme simulation at mandatory and
significant levels from the surface to 700 hPa, averaged over all stations.

Variable Scheme Bias MAE R

T (°C)

YSU 0.40 1.24 0.98
ACM2 0.26 1.22 0.98
MYJ 0.17 1.21 0.98
QNSE 0.17 1.27 0.97
MYNN2 0.45 1.25 0.97
BouLac 0.58 1.39 0.97
UW 0.48 1.31 0.97

TEMF 1.16 1.83 0.95

WSP (ms−1)

YSU -0.15 2.86 0.91
ACM2 0.02 2.68 0.92
MYJ 0.02 2.83 0.91
QNSE 0.14 2.93 0.90
MYNN2 0.01 2.92 0.91
BouLac -0.44 2.69 0.92
UW 0.12 2.84 0.91

TEMF 0.71 3.36 0.87

WDR
(degrees)

YSU 0.93 10.41 0.66
ACM2 1.14 10.15 0.60
MYJ 0.78 10.10 0.66
QNSE 0.06 10.32 0.65
MYNN2 1.11 10.29 0.71
BouLac 0.12 10.05 0.69
UW 0.85 10.16 0.65

TEMF -1.16 12.00 0.61

temperature, MYJ-TEMF and BouLac-TEMF for 10-meter wind speed). For the values of

10-meter wind direction, 20 of the 28 pairs of simulations are significantly different, as well

as all of pairs with the TEMF simulation for 6-hour precipitation. The modeled values of

sounding temperatures and wind speeds are also significantly different among the

simulations, with the exception of two pairs of simulations (MYJ-QNSE and MYNN2-UW)

for temperature, eight pairs of simulations (ACM2-MYJ, ACM2-QNSE, ACM2-MYNN2,

ACM2-UW, MYJ-MYNN2, QNSE-MYNN2, QNSE-UW, MYNN2-UW) for wind speed. In

contrast, modeled values of wind direction are significantly different for only 4 pairs of

simulations (YSU-MYJ, YSU-BouLac, MYJ-MYNN2, and MYNN2-BouLac).
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In comparing cross sections and surface time series for the PBL simulations, we find

that the schemes generally exhibit the same systematic biases near the frontal boundary.

Figure 2.11 shows time series of 2-meter temperature and 10-meter winds for Portland,

ME; the closest surface station to the Gray sounding location. Overall, the MYJ, QNSE,

and ACM2 simulations tend to result in lower surface temperatures than the other PBL

schemes, with more pronounced cold biases and lesser warm biases. Similarly, the BouLac

simulation tends to have the largest warm biases. However, in all of the simulations WRF

tends to underestimate surface temperatures at 1200 UTC 21 December and 1200 UTC 22

December, and overestimate surface temperatures at 0000 UTC 22 December. Where the

Figure 2.11: Comparison of observed and modeled (PBL simulations) 2-meter temperature
(top, in ℃) and 10-meter wind (bottom, in ms−1) time series for Portland, ME.
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PBL simulations differ is the exact timing and the magnitude of the warm bias in surface

temperatures, which correspond to a simulated wind shift from north/northeast to

south/southeast. The same behavior is present at the Augusta, Bangor, and Millinocket

surface stations, although the temperature maximum at 0000 UTC 22 December is less

pronounced for stations farther north of the front. The only simulation which differs

significantly is the TEMF scheme, which exhibits an enhanced surface temperature

gradient on 21 December similar in characteristic to the later episode (Fig. 2.12). Winds

are substantially stronger within the subfreezing and above freezing air masses and the

temperature gradient more pronounced compared to the other PBL simulations. These

conditions persist into 22 December, resulting in overestimated temperatures by as much as

10°C up to 700 hPa at the Gray sounding site and enhanced precipitation accumulations

compared to the other WRF simulations (Fig. 2.13).

As the temperature gradient strengthens on 22 December, the simulations can be sorted

into two groups. The MYJ, QNSE, and ACM2 schemes tend to represent the front with a

Figure 2.12: Cross sections and soundings at (a) 0000 UTC and (b) 1200 UTC 21 Dec, and
(c) 0000 UTC 22 Dec for the TEMF simulation.
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Figure 2.12: Continued.
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Figure 2.13: Six-hour accumulated precipitation (mm) from 0000 UTC to 0600 UTC 22 Dec
for the MYJ (left) and TEMF (right) PBL simulations.

Figure 2.14: Comparison of frontal passage variation between simulations: cross section of
the (a) MYJ and (b) BouLac simulations, and (c) 2-meter temperature difference (°C) map
between the BouLac and MYJ simulations at 1800 UTC 22 Dec.
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shallower slope and the southward advancement of the cold air mass at a uniform rate,

while the other PBL simulations show the surface air mass stalling in southern New

Hampshire before moving into southern New England. This delay results in extremely

overestimated surface temperatures at the southern stations in which the front passes over

(Fig. 2.14). To north of the front, the temperature time series for the PBL simulations

follow observations but with a spread of 2-3°C between them.

2.4.3 Sensitivity to Reanalysis and Model Setup

This section examines the sensitivity of WRF to other factors besides physics options,

in part to pinpoint the source of systematic biases. This group of sensitivity tests focus on

several model setup options that were determined through preliminary simulations and

kept constant throughout the PBL simulations. The tested setup options include choice of

reanalysis, use of grid nudging versus no grid nudging, and the chosen number of vertical

levels for the simulation. Three of the simulations are variations of the “control” setup

using the ERAI dataset, the MYJ PBL scheme, 36 model levels, and grid nudging: one

simulation using 36 model levels and no grid nudging, and two simulations using 46 model

levels with and without grid nudging. Four simulations are driven by two other reanalysis

datasets (NARR and ERA5), also with and without grid nudging.

Table 2.4 and Table 2.5 show the results of the 3-day domain-wide surface and sounding

(surface to 700 hPa) error statistics, respectively, calculated for the model sensitivity

simulations. As with the PBL simulations, MAE values are larger for near-surface

temperature and wind direction and for wind speed above the surface. These values also

vary within a similar range as the PBL error values: 1-2°C for temperature, 1-3 ms−1 for

wind speed, 20-30 degrees for wind direction, and 1-1.5 mm (6− h)−1 for precipitation.

Although the NARR simulation without grid nudging shows higher biases and MAE values

for temperature and wind, the values are not nearly as extreme as those for the TEMF

PBL simulation. R-values are similarly higher for temperature and precipitation compared
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Table 2.4: As in Table 2.2, except by model setup simulation. The ERAI 36N simulation
corresponds with the MYJ PBL simulation. Tests designated with an N denote grid nudging.

Variable Test Bias MAE R

T2 (°C)

ERAI 36N -1.18 1.89 0.97
ERAI 36 -0.08 2.15 0.94
ERAI 46N -0.98 1.81 0.97
ERAI 46 0.13 2.02 0.95
ERA5 36N -1.13 1.88 0.96
ERA5 36 -0.59 1.77 0.96

NARR 36N 0.31 2.00 0.94
NARR 36 1.42 2.64 0.90

WS10 (ms−1)

ERAI 36N 0.83 1.52 0.72
ERAI 36 1.72 2.33 0.53
ERAI 46N 0.77 1.50 0.71
ERAI 46 1.60 2.25 0.53
ERA5 36N 1.09 1.75 0.67
ERA5 36 1.36 1.94 0.68

NARR 36N 0.35 1.59 0.63
NARR 36 2.00 2.71 0.44

WD10
(degrees)

ERAI 36N 4.05 22.42 0.57
ERAI 36 3.20 31.28 0.50
ERAI 46N 2.32 22.70 0.56
ERAI 46 0.59 30.63 0.50
ERA5 36N 0.79 24.77 0.52
ERA5 36 3.40 25.51 0.53

NARR 36N -0.19 30.61 0.53
NARR 36 3.66 38.62 0.45

PRE (mm)

ERAI 36N 0.46 0.99 0.80
ERAI 36 0.84 1.51 0.61
ERAI 46N 0.48 0.99 0.80
ERAI 46 1.03 1.63 0.58
ERA5 36N 0.42 1.06 0.78
ERA5 36 0.93 1.28 0.80

NARR 36N -0.29 1.03 0.59
NARR 36 0.49 1.04 0.81

to wind speed and direction and are higher for sounding variables compared to those at the

surface. The paired t-tests indicate that the values of 2-meter temperature and 10-meter

wind speed among the model sensitivity simulations are significantly different (p<0.01)

except for one pair of simulations (ERA4 36-NARR 36) for 2-meter temperature and two

pairs of simulations (ERAI 46N-NARR 36 and ERA4 36-NARR 36) for 10-meter wind
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Table 2.5: As in Table 2.3, except by model setup simulation.

Variable Test Bias MAE R

T (°C)

ERAI 36N 0.18 1.21 0.98
ERAI 36 0.17 1.43 0.97
ERAI 46N 0.22 1.25 0.98
ERAI 46 0.32 1.56 0.96
ERA5 36N -0.39 1.32 0.97
ERA5 36 -0.21 1.35 0.97

NARR 36N 0.50 1.40 0.97
NARR 36 0.80 1.90 0.94

WSP (ms−1)

ERAI 36N 0.02 2.83 0.91
ERAI 36 0.92 3.29 0.89
ERAI 46N 0.10 2.92 0.92
ERAI 46 1.22 3.53 0.89
ERA5 36N -0.45 2.95 0.91
ERA5 36 0.83 3.08 0.90

NARR 36N -1.48 3.46 0.88
NARR 36 1.38 3.63 0.86

WDR
(degrees)

ERAI 36N 0.78 10.10 0.66
ERAI 36 -1.32 11.02 0.62
ERAI 46N 0.33 11.02 0.65
ERAI 46 -0.31 12.80 0.59
ERA5 36N -4.09 9.75 0.71
ERA5 36 -2.74 11.15 0.65

NARR 36N -1.53 12.56 0.64
NARR 36 -0.84 14.17 0.61

speed. Additionally, the modeled values of 10-meter wind direction for 20 of the 28 pairs of

simulations, as well as modeled values of 6-hour precipitation for 13 of the 28 pairs, are

significantly different. The modeled values of sounding temperatures and wind speeds are

also significantly different among the simulations except for three pairs of simulations

(ERAI 36N-ERAI 36, ERAI 36-ERAI 46N, and ERAI 46N-ERAI 46) for temperature and

four pairs (ERAI 36/46 with ERA5 36 and NARR 36) for wind speed. As for wind

direction, only the modeled values for eight pairs of simulations are significantly different.

As with the PBL simulations, the model setup simulations show the same general

behaviors, such as the systematic temperature biases during the first episode, but with

varying magnitudes. NARR lateral boundary forcing tends to produce higher surface
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temperatures than ERAI for northern New England stations, whereas ERA5 tends to have

slightly lower surface temperatures. All of the simulations overestimate near-surface

temperatures between 1800 UTC 21 December and 0600 UTC December 22, and most tend

to underestimate temperatures at 1200 UTC on 21 and 22 December (Fig. 2.15). However,

the NARR simulations exhibit higher temperatures than any of the other simulations from

0000 UTC to 1200 UTC 21 December. This behavior is more pronounced at the Augusta

and Bangor surface stations, and to a lesser extent farther north at Millinocket. Grid

nudging has a clear impact on the timing and the magnitude of the warm bias for the

ERAI and NARR simulations but not for those forced by ERA5. Also, the ERAI

simulations with grid nudging exhibit the shallow frontal slope and southward movement of

Figure 2.15: As in Fig. 2.11, except for the model setup simulations. The ERAI 36N
simulation corresponds to the MYJ PBL simulation.
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Figure 2.16: Difference in WRF 2-meter temperatures (°C) between ERAI 36N and NARR
36N (left) and ERAI 36N and ERA5 36N (right) simulations at 1200 UTC 21 Dec 2013.

the cold air mass into southern New England as the QNSE and ACM2 schemes, while the

simulations without nudging reflect the conditions as shown by the other PBL simulations.

The two simulations with 46 vertical levels tend to have slightly higher surface

temperatures (< 0.5°C) within the cold dome and slightly lower temperatures to the south

and east but are otherwise identical to their 36 level counterpart simulations. All of the

model setup simulations generally fall within the same temperature range to the north and

south of the frontal boundary during the second episode.

Although the evolution of the ice storm is similar among the model setup simulations,

there are notable differences between the simulations which can be traced back to the

driving reanalysis dataset. For example, there is an area of persistently cold near-surface

temperature anomalies over the St. Lawrence River in the simulations forced by the ERAI

reanalysis (Fig. 2.16). These anomalies are due to the relatively coarse resolution of the

reanalysis, in which a portion of the river is classified as land while the higher resolution

reanalyses categorize the region as water. As a result, surface temperatures are as much as
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5°C lower over the river for WRF simulations forced with ERAI and the colder

temperatures are advected southeastward into the river valley. Another example of notable

temperature anomalies is between the NARR and ECMWF reanalysis simulations due to

differences in land surface cover classification over lakes. Near-surface temperatures are

often several degrees Celsius higher over open-water lakes than the surrounding area in the

NARR simulations. These anomalies are especially prominent over Lake Champlain (Fig.

2.16a) and likely play a substantial role in the differing extent of sub-freezing temperatures

within the valley between simulations.

2.4.4 Model Sensitivity and Precipitation Type

For this section, we examine how the differences in modeled surface temperatures

between simulations can change the type of precipitation identified. Although the

sensitivity simulations show variations in modeled temperature, wind speed and direction,

and precipitation values, it is difficult to determine whether the variability would

significantly alter precipitation type. WRF does not explicitly identify precipitation type,

so previous modeling studies have required the use of outside classification algorithms.

However, there are a wide variety of classification algorithms to choose from, each with

their own advantages and disadvantages.

As the primary difference between the sensitivity simulations is the modeled

temperature values, most prominently at the surface, we chose a simplified “top-down”

approach based on the maximum temperature in the warm air mass, which is around 850

hPa, and the surface temperature. The precipitation categories and their respective

temperature ranges are listed in Table 2.6. The categories are based on the assumption

that cloud temperatures are low enough (typically < -10°C) for the formation of ice

crystals that fall into the warm layer, and that the air is saturated in both the warm layer

and cold layer when precipitation occurs. Based on the observed and model soundings, as

well as the IR images in Figure 2.1, we find this assumption to be valid for the case study
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Table 2.6: Temperature thresholds (850 hPa and surface) for precipitation classification.
Mixed category includes frozen hydrometeors that result from partially melting (pm) in the
warm layer and refreezing (rfrz) within the subfreezing surface layer. Threshold values based
on Baumgardt (1999) and UCAR (2005).

Precipitation Type T850 Tsfc
Snow < 1°C < 0°C

Mix
1°C — 3°C (pm) < 0°C

or or
> 3°C (rfrz) < -6°C

Freezing Rain > 3°C -6°C — 0°C
Rain > 3°C > 0°C

ice storm. The maximum temperature of the warm layer then determines whether the ice

crystals completely or partially melt, and the surface temperature determines if refreezing

occurs before precipitation reaches the surface. While overly simplistic, this method

provides a useful physical representation for each precipitation type: snow indicates the

lack of a sufficient melting layer; mixed precipitation signifies partial melting in the warm

layer or refreezing in the cold layer; freezing rain represents complete melting within the

warm layer and the presence of a shallow subfreezing surface layer; and rain denotes the

absence of a subfreezing surface layer.

The sensitivity of precipitation type to model setup depends on the timing of modeled

temperature biases in relation to the precipitation field. The underestimated surface

temperatures which peak at 1200 UTC 22 December result in minor differences in the

transition from freezing rain to mixed precipitation with more noticeable cold biases (Fig.

2.17a,b). However, the impact to precipitation type for underestimated temperatures at

1200 UTC 21 December limited, as modeled precipitation is minimal in regions with high

storm total ice accumulations. This is also true for 23 December, as the extent of freezing

rain is more isolated than that of the first wave of precipitation (Fig. 2.17c,d). The

overestimated modeled surface temperatures shown in all of the simulations around 0000

UTC 22 December have a more substantial effect, resulting in rain throughout Downeast

Maine when observations report freezing rain (Fig. 2.17e,f). Simulations which exhibit a

39



Figure 2.17: Comparison of precipitation type for the MYJ (left) and YSU (right) simulations
at 1200 UTC 21 Dec (a, b), 0000 UTC 22 Dec (c, d), and 1500 UTC 23 Dec (e, f).
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Figure 2.18: Precipitation type at 1200 UTC 22 Dec for the ERA5 36N (left) and NARR
36N (right) simulations.

longer duration of above freezing surface temperatures would result in much lower ice

accumulations during this period. Although the spatial extent of precipitation is generally

consistent among most of the simulations, there are some distinct differences. For example,

the ERA5 and ERAI simulations show a larger expanse of mixed precipitation within the

Champlain Valley and in southern Maine while freezing rain is more widespread in the

NARR simulations (Fig. 2.18). However, limited observations in this area preclude a more

thorough assessment of precipitation classification accuracy.

2.5 Discussion

The sensitivity tests reported here indicate varying confidence in the fidelity of the

WRF model solutions. WRF is generally reliable in reproducing the overall meteorological

conditions associated with the December 2013 New England ice storm, where the model

resolves most temperature inversions, as well as the large-scale movement of the storm

system. However, near-surface temperatures close to 0°C are not sufficiently reproduced at

the station scale to the precision required for accurate classification of precipitation type.

Precipitation type algorithms, such as that used in the HRRR forecast model, and ice
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accretion models rely directly on modeled temperature, wind, and precipitation rate to

produce icing forecasts. Variability between the simulations are relatively small in plan

view, yet not so insignificant as to discount model setup as a factor in assessing forecast

accuracy for ice storms. Although the WRF model itself does not explicitly identify

precipitation type, we utilize a simplified precipitation classification approach to

distinguish regions with a higher probability for freezing rain. Based on the surface

temperature biases present, we postulate that the model output would slightly favor the

misclassification of freezing rain as sleet or mixed precipitation for simulations that tend to

underestimate surface temperatures on 22 and 23 December and that all simulations would

favor rain over freezing rain around 0000 UTC 22 December.

It is difficult to identify one simulation that produces an overall robust solution for

conditions both inside and outside of the ice storm. Although all of the sensitivity tests

produce simulations that follow a similar progression of the ice storm, the model fields are

not representative of observations throughout. Some of the simulations produce higher

surface temperatures, which minimize the effect of cold biases during the weakly and

strongly forced episode at the expense of producing a longer period of abnormally warm

temperatures, favoring the identification of rain over freezing rain. Simulations with

generally lower surface temperatures similarly favor an earlier transition to mixed

precipitation. Our results do not indicate clear differences in the model solution solely by

PBL scheme closure or vertical mixing. Only the TEMF scheme stands out as a noticeable

outlier, with especially high MAE values for precipitation and near-surface and lower

tropospheric temperature. The likely cause of the departures in modeled temperature and

precipitation is enhanced frontogenesis on 21 December due to the inclusion of shallow

cumulus convection within the TEMF scheme’s formulation (Angevine et al., 2010). The

NARR forced simulation without grid nudging was similarly an outlier for the model setup

simulations, although the greater error values are attributed to systematically higher

temperatures as opposed to a marked difference in the overall storm evolution. With the
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use of a single case study storm, we cannot determine whether the various model setups

tested would perform similarly for another ice storm in this region. Our overall results do

not afford a single “best” model configuration; instead, the combined results of the

sensitivity tests reflect the interaction among various model components.

Although the scope of this study is limited to a single storm, the extensive validation

and analysis of the December 2013 ice storm demonstrates the numerous challenges of

modeling ice storms, from both a weather forecasting and research application perspective.

Ikeda et al. (2013) note that while current NWP models are better able to predict the areal

extent and timing of precipitation associated with large-scale cold season systems

compared to warm season convective precipitation, even high resolution forecast models

such as the HRRR have difficulty predicting the phase of precipitation for ice storms. As

the classification of freezing rain and sleet is more sensitive to model uncertainty compared

to rain and snow, the advantage of hindcast case studies is the ability to test a variety of

model configurations to identify and minimize systematic model biases. However, previous

modeling studies of ice storms using WRF rely on a single model setup and do not examine

the ways in which their setup influenced the modeled meteorological conditions, and thus

modeled ice accumulations. This and other case study simulations (e.g., Musilek et al.,

2009; Pytlak et al., 2010) report similar simulation mean errors in 2-meter temperatures of

1-2°C, and our results indicate several instances in which model setup choices can alter the

type of precipitation identified from model output. Furthermore, the WRF results are

corroborated solely by a set of surface observations sites, limiting the scope of WRF

performance to point locations and not to the large or local-scale features of the individual

case study storms. By not addressing the sensitivity of ice forecasting systems to the

variable fields they are provided, these systems will require constant modification as NWP

models are updated in order to compensate for a variety of uncertainties. These points

could hamper the development of generally applicable ice accretion forecasting methods.
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2.6 Chapter Summary

This study evaluates the sensitivity of the WRF mesoscale model to several model

setup factors in a case study of the New England ice storm of 21-23 December 2013.

Simulated values of 6-hour precipitation, as well as near-surface and vertical profiles of

temperature, wind speed, and wind direction, are validated against surface station and

radiosonde observations. Overall, we find that WRF produces robust depictions of key

features of the ice storm, including the large-scale circulation and vertical structure of the

atmosphere. The results of the simulations are also consistent with the results of previous

ice storm case studies used to develop and run ice accretion models. However, near-surface

temperatures vary at the local scale between the suite of sensitivity tests and are not

obvious from the simulation average statistical analysis. We find that no single simulation

produced high fidelity simulations of the ice storm overall, although the TEMF PBL

scheme was clearly unsuitable for the examined weather event. Additional simulations of

similar ice storms over New England would be required to determine whether the observed

model biases are isolated to this case study. This study underscores the importance of

extensive validation and testing to assess the accuracy and realism of the WRF model

solution in comparison to observational data, particularly for case studies of weather events

as impactful to civil infrastructure as ice storms.
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CHAPTER 3

RECENT INCREASES IN GREENLAND BLOCKING AND SUMMERTIME

PRECIPITATION ACROSS THE NORTHEASTERN U.S.

3.1 Chapter Introduction

A growing body of literature identifies a trend of increasing annual precipitation over

the past 100 years across the northeastern U.S. (USNE) (Brown et al., 2010; Easterling

et al., 2017; Frei et al., 2015; Griffiths and Bradley, 2007; Huang et al., 2017; Kunkel et al.,

2013a). The most pronounced increase has occurred over the past 20 years, with the rise in

total annual precipitation driven in large part by significant seasonal increases in summer

and fall (Huang et al., 2017). Extreme events, typically defined as the top 1% of days with

precipitation, have also become more frequent and intense across the USNE (Collow et al.,

2016; Frei et al., 2015; Hoerling et al., 2016; Howarth et al., 2019; Huang et al., 2018,

2017), where extreme precipitation has increased at a higher rate than any other region in

the U.S. (Easterling et al., 2017; Kunkel et al., 2013b).

It is generally thought that the recent increase in extreme precipitation relates to the

mid-1990s abrupt shift to positive sea surface temperature anomalies across the North

Atlantic associated with multidecadal variability (e.g., Enfield et al., 2001), particularly

because of the observed contemporaneous increase in hurricane activity (Goldenberg et al.,

2001; Landsea et al., 1999). Rainfall events associated with tropical moisture sources, and

land-falling hurricanes and tropical storms, account for 48% of the increase in annual

extreme precipitation since 1996 (Huang et al., 2018). Tropical cyclones are responsible for

many of the heaviest precipitation events (Barlow, 2011; Howarth et al., 2019); however,

only 19% of extreme events from 1979 to 2008 were associated with tropical cyclones (Agel

et al., 2015).

The most frequent cause of extreme precipitation annually in the USNE are

extratropical cyclones and their associated fronts (Dowdy and Catto, 2017). Substantial
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increases in these precipitation events were identified in early summer and late winter, with

25% of the post-1996 extreme precipitation increase attributed to frontal activity in June

and July (Huang et al., 2018). Although a causal mechanism for the upsurge in early

summer extreme precipitation was not specified, the authors note an associated increase in

southerly upper-level winds over the USNE region and northerly winds in the Midwest

during this period, consistent with the concomitant weakening of zonal winds and the

increased jet stream “waviness” (i.e. higher amplitude tropospheric wave patterns)

indicated in other studies (Francis and Vavrus, 2012, 2015; Vavrus et al., 2017). In summer,

low-level and mid-level southerly or southwesterly flow promotes greater moisture flux from

the Gulf of Mexico and the Atlantic, resulting in heavy rainfall in the USNE (Agel et al.,

2019, 2018; Collow et al., 2016; Girardin et al., 2006; Thibeault and Seth, 2014). In

contrast, abnormally dry summers are associated with either a more northward-displaced

polar jet stream (Klein, 1952) or northerly surface flow linked with ridging to the west

(Leathers et al., 2000; Namias, 1966, 1983; Seager et al., 2012), where for both cases the

flow of moisture from the Gulf of Mexico and Atlantic into the USNE is reduced.

Although not previously discussed in the literature for the USNE, there are indications

that broader circulation changes in the North Atlantic could be related to recent

precipitation increases. Previous work has shown that since the 1990s there has been an

increasing summertime trend in the Greenland Blocking Index (GBI), a measure of the

frequency of high-latitude atmospheric blocking over the North Atlantic basin (Hanna

et al., 2016, 2015, 2018a,b). This GBI trend appears to be linked to slower zonal flow and

greater meridionality of the North Atlantic jet stream (Francis and Vavrus, 2012, 2015;

Overland et al., 2015, 2012). As in other instances of high-latitude blocking, Greenland

blocking events tend to divert the prevailing westerly flow equatorward rather than

completely block it (Woollings et al., 2008). The resulting southward diversion of the

North Atlantic polar jet tends to accompany the negative phase of the North Atlantic

Oscillation (NAO) index (Hanna et al., 2015; Overland et al., 2012; Woollings et al., 2010),
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which represents fluctuations in the strength of the surface westerlies across the North

Atlantic in response to the pressure anomalies across the basin. Previous studies have

linked a series of wet summers from 2007 to 2012 in the British Isles and northern Europe

to the equatorward shift of storm tracks over the North Atlantic associated with a positive

GBI and negative NAO (Blackburn et al., 2008; Folland et al., 2009; Hanna et al., 2016,

2015). Additionally, recent instances of enhanced surface melting of the Greenland Ice

Sheet are associated with high GBI index events, where increased southerly flow associated

with blocking results in greater transport of subtropical air masses into the region and high

pressure promotes sunny and dry conditions (Hanna et al., 2014, 2013; Rowley et al., 2020;

Tedesco and Fettweis, 2020).

Identifying mechanisms that contribute to this summertime precipitation surplus will

help to clarify the deficiencies of climate projections for the USNE. At present, climate

models are unable to skillfully replicate the seasonal cycle and observed historical trends in

precipitation across the USNE (Lynch et al., 2016; Rawlins et al., 2012; Thibeault and

Seth, 2014, 2015). Current climate projections reflect a continuation of modeled historical

precipitation trends – positive trends in winter and spring, contrary to the observed

positive trends for the fall and annual average – as well as a phase shift in the seasonal

distribution of precipitation, with more annual rainfall occurring during the cold season

(November-April) and less during the warm season (May-October) (Lynch et al., 2016).

The summer-season contribution to the future annual precipitation signal remains unclear

due to differences in the representation of large-scale circulation patterns in the current

generation of climate models (Easterling et al., 2017; Karmalkar et al., 2019; Lynch et al.,

2016).

Here, we investigate the contribution of increased incidence of high pressure blocking

over Greenland and associated shifts in large-scale circulation across the North Atlantic, to

recent summer precipitation increases across the USNE. Using atmospheric reanalysis, we

highlight circulation features associated with enhanced summertime precipitation in the
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USNE. This includes analysis of the upper-level regional and large-scale circulation, as well

as low-level and mid-level moisture transport. To examine the association of anomalous

circulations with Greenland blocking, we also assess the correlation between the reanalysis

circulation features and the GBI. The paper is outlined as follows. Section 3.2 describes

the data and methodology employed, which is followed by the results and discussion in

Section 3.3 and the conclusions in Section 3.4.

3.2 Data and Methodology

This study utilizes several reanalysis and observational datasets. June-July-August

(JJA) precipitation anomaly data for the states of Connecticut, Massachusetts, Maine,

New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont are

from the U.S. Climate Divisional Database (CDD; Vose et al., 2014) and obtained from

NOAA Climate at a Glance (NOAA/NCEI, 2020). The CDD is a 5 km gridded dataset

based on station data from the Global Historical Climatological Network-Daily dataset

(GHCN-D) and other supplemental data sources. Precipitation anomalies are defined using

a 1901-2000 baseline. The GBI is defined as the mean 500 hPa geopotential height

averaged from 60°N-80°N, 20°W-80°W (Fang, 2004; Hanna et al., 2015, 2014, 2013;

Woollings et al., 2010), calculated using JJA geopotential heights for the period 1948-2019

from the NCEP/NCAR Reanalysis (Kalnay et al., 1996) obtained from the NOAA Physical

Sciences Laboratory (NOAA/NCEI, 2019b). Values for the principal component-based

NAO index for 1948-2018 were obtained from the NCAR Climate Data Guide (NCAR,

2020). The NAO index is the leading Empirical Orthogonal Function (EOF) of sea-level

pressure anomalies over 20°N-80°N, 90°W-40°E from 1899 to present, and is calculated

using the NCAR Sea Level Pressure dataset (Hurrell et al., 2020). Reanalysis fields from

the ECMWF Reanalysis version 5 (ERA5; Hersbach et al., 2020) and ECMWF Interim

Reanalysis (ERAI; Dee et al., 2011) obtained from the Copernicus Climate Change Service

(Copernicus Climate Change Service, 2017; ECMWF, 2011) were utilized for circulation
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anomaly maps and correlations to the GBI, and the maps were created using the University

of Maine Climate Change Institute’s Climate Reanalyzer (https://climatereanalyzer.org/).

The anomaly maps are used for making comparisons of circulation features for the period

of 2003-2019 to a 1979-2002 baseline, focusing on the circulation shifts associated with the

summer precipitation changepoint in 2002 identified by Huang et al. (2017).

3.3 Results and Discussion

3.3.1 Key Findings

A comparison of the JJA USNE precipitation anomaly, GBI, and NAO index for the

period of 1948-2019 is shown in Figure 3.1. For the full period of 1948-2019, there is a

statistically significant (p < 0.05) positive trend for USNE precipitation and the GBI, and

a negative but not statistically significant trend in the NAO. There is not a statistically

significant correlation between USNE precipitation and the GBI/NAO indexes (r = 0.02

and r = 0.04, respectively). Prior to 2003, summer precipitation in the USNE was

generally above average following the drought of the 1960s, with individual years of much

higher (+2 in/+50.8 mm) and much lower (-2 in/-50.8 mm) precipitation. This period is

characterized by positive and negative trends (not statistically significant) in the GBI and

NAO. After 2003, the trends for USNE precipitation and GBI were of the same sign as the

previous period and the NAO trend was of the opposite sign (although all are not

statistically significant). However, there is a period of especially wet summers and fewer,

less intense dry spells corresponding to a period of notably higher GBI years and lower

NAO values from 2007 to 2013. Other studies have noted the exceptional nature of these

years, such as how seven of the top eleven GBI summer values over the last 165 years

occurred after 2007 (Hanna et al., 2016). Similarly, the NAO index was only below -1.25

once between 1950 and 2002, but six times since 2003.

To investigate the circulation patterns associated with the recent wet summers in the

USNE, Figure 3.2 compares the fields of several meteorological variables from the ECMWF
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Figure 3.1: Precipitation anomaly (based on 1901-2000 mean, in inches) for the USNE
(top), GBI values (middle; in meters), and NAO principal component index (bottom) for
JJA. Linear trends are indicated by the dashed lines. The precipitation and GBI trends are
statistically significant (p < 0.05), the NAO trend is not statistically significant, and the
correlation between the GBI and NAO is -0.86.
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ERA5 reanalysis for the recent years 2003-2019 compared to a 1979-2002 baseline. Of

particular note are the sea-level pressure and upper tropospheric wind anomalies. A surface

low-high-low pattern appears over the North Atlantic, with low-pressure centers over the

United Kingdom and the eastern U.S. and high pressure over Greenland. At 250 hPa, there

are decreased zonal winds over Iceland and the USNE and increased zonal winds to the

south of these regions, as well as decreased meridional winds over southern Greenland and

increased meridional winds over eastern Canada and the eastern U.S., and the United

Kingdom. Increased precipitation over the eastern North Atlantic is coupled with increased

850 hPa moisture transport corresponding with positive zonal and meridional wind

anomalies over the region, while increased precipitation over the western North Atlantic

and USNE is coupled with increased moisture transport associated only with positive

meridional wind anomalies.

Figure 3.3 shows the correlation between several atmospheric variables and the GBI

from 1979 to 2015. The correlations with anomalous sea-level pressure are indicative of the

summer positive GBI/negative NAO pattern. The upper tropospheric zonal wind anomaly

correlations are similarly consistent with a zonal wind pattern corresponding to the

positive GBI phase. The upper-level meridional wind anomalies over northeastern Canada

and western Greenland also show a statistically significant correlation with the GBI.

However, the recent meridional wind anomalies extending farther south over eastern

Canada and the eastern U.S., as well as the wind anomalies over the United Kingdom, are

not associated with the GBI over the full 37 year period. As for precipitation, only the

anomalies over the eastern North Atlantic are correlated with the GBI over the full period.

3.3.2 USNE Impacts from Greenland Blocking and the NAO

Our results suggest that while Greenland blocking and the NAO have exerted

substantial influence over the summer precipitation patterns for northern Europe and the

United Kingdom since 1979, the higher meridional amplitude pattern associated with more
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Figure 3.2: Reanalysis anomaly fields (2003-2019 minus 1979-2002) of (a) mean sea-level
pressure (hPa), (b) precipitation (% change), (c) 850 hPa moisture transport (kg m−1 s−1),
(d) 500 hPa moisture transport (kg m−1 s−1), (e) 250 hPa u-winds (ms−1), and (f) 250 hPa
v-winds (ms−1) for JJA. The USNE region is outlined in black. Maps created using the
Climate Reanalyzer and the ECMWF ERA5 reanalysis (Hersbach et al., 2020).
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Figure 3.3: Pearson’s linear correlation maps of JJA GBI and (a) mean sea-level pressure,
(b) 250 hPa u-winds and (c) 250 hPa v-winds, and (d) precipitation for 1979-2015. The
USNE region is outlined in black and the plotted correlations are significant at the 95%
level. Maps created using the Climate Reanalyzer and the ECMWF ERA-Interim reanalysis
(Dee et al., 2011).

frequent Greenland blocking events has impacted summer precipitation in the USNE only

in recent years, particularly from 2007 to 2013. The positive precipitation anomalies over

the eastern North Atlantic are the result of an equatorward shift in summer extratropical

storm tracks, which typically occurs during summers when the GBI is positive and the

NAO is negative. In contrast, positive precipitation anomalies over the USNE are more

closely associated with the enhanced meridional wave pattern linked to more frequent and

persistent blocking over Greenland in recent years. This wave pattern appears to promote
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southerly flow over the USNE, which supports oceanic moisture transport into the region

and results in heavier rainfall. In studies conducted by Agel et al. (2019, 2018), three

summertime large-scale meteorological patterns were identified in connection with extreme

precipitation events in the USNE. Two of the patterns (designated by the authors as C1

and C4) are associated with weak synoptic systems or trailing cold fronts from remote

cyclones, resulting in widespread light precipitation with localized extremes. Heavy rainfall

associated with the third pattern (designated as C5) is likely to be closely related to storms

tracks, with inland extreme precipitation forced by weaker storms and trailing cold fronts

while coastal extreme precipitation is forced by stronger storms and southerly moisture

transport from offshore warm conveyer belts and warm fronts. The circulation features for

extreme versus non-extreme events associated with each pattern are similar, but enhanced

moisture transport is one key ingredient which accompanies extreme precipitation.

Although previous studies have not highlighted an association between Greenland

blocking and recent circulation patterns linked to increased precipitation in the USNE,

there is ample evidence to support this linkage. The upper-level u and v-component wind

anomaly pattern (Figure 3.2e,f) supports the enhanced trough/ridge couplet over the

eastern U.S. and western Atlantic proposed by Huang et al. (2018) as contributing to the

increase in early summer extreme precipitation attributed to frontal processes. This

circulation pattern is often cited as one which promotes strong vertical ascent of air as well

as moisture flux into the USNE from the Gulf of Mexico and the Atlantic (Collow et al.,

2016; Leathers et al., 2000; Thibeault and Seth, 2014). Birkel and Mayewski (2018) also

linked the North Atlantic high-low configuration to the unusually wet interval 2005-2014

over the U.S. state of Maine. Likewise, long-term precipitation records for Farmington,

Maine show a 30% increase in precipitation volume during this wet period, largely due to

more 1 inch and 2 inch precipitation events (Fernandez et al., 2020) [the extreme

precipitation threshold for this station is 2.26 inches/57.1 mm (Agel et al., 2015)].

Increased summer extreme precipitation in the USNE over the period 1980-2014 is
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furthermore associated with decreased sea-level pressure and 500 hPa geopotential heights

over the USNE, as well as increased 500 hPa geopotential heights to the northeast of the

region (Collow et al., 2016, 2017).

3.3.3 Possible Connection to Arctic Warming and Sea-Ice Loss

While it is unclear what mechanisms produced the recent positive GBI trend, it has

been suggested that the increase in occurrence of summer Greenland blocking events is

influenced by a number of atmospheric and cryospheric climatic factors. In particular,

dramatic warming across the Arctic over the past two decades is argued to be coupled to a

weakening of upper-level westerlies in response to weakening of the poleward temperature

gradient, and the development of larger amplitude planetary waves, which in turn

accompany increased geopotential heights in high latitudes (Francis and Vavrus, 2012;

Overland and Wang, 2010). Slower zonal flow of the polar jet stream would then encourage

more frequent and intense blocking events (Francis and Vavrus, 2012, 2015; Overland et al.,

2015, 2012). The characteristics of the underlying landmass and topography of Greenland

also promote ridging and high surface pressure (Scorer, 1988). Additionally, researchers

have indicated Greenland blocking could also be influenced by anomalous Rossby

wave-train activity originating in the central Pacific, as the circulation anomalies are

similar to those associated with the negative phase of the NAO (Ding et al., 2014).

The period of high GBI summers also coincides with a period of record low sea-ice

extent in the Arctic (Stroeve et al., 2012a,b). In model simulations, the jet stream

displacement and precipitation response to Arctic sea-ice loss closely resembles the spatial

pattern for the wet summers in the United Kingdom and northern Europe from 2007 to

2012, indicating that the change in sea-ice extent may have been a contributing driver of

the increased summer precipitation in those regions (Screen, 2013). It has also been

suggested that the recent rise in summer Greenland blocking may be influenced by the

shift towards positive sea surface temperature anomalies in the North Atlantic (indicated
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by the positive phase of the Atlantic Multidecadal Oscillation [AMO]), as the response of

the polar jet stream to these anomalies is also similar to the negative phase of the summer

NAO, and thus a more positive GBI (Folland et al., 2009; Sutton and Dong, 2012).

However, it is unclear to what extend each of these factors have contributed to the

Greenland blocking trend, as the potential mechanisms listed here result in similar effects

on the upper-tropospheric circulation in the North Atlantic.

3.3.4 Climate Model Limitations

This link between regional precipitation and large-scale circulation changes highlights

the limitations of current climate projections, which rely on climate model simulations. At

present, the literature shows that state-of-the-art climate models do not correctly depict

seasonal patterns or trends in precipitation for the USNE. Lynch et al. (2016) found that

climate models from the Coupled Model Intercomparison Project version 5 (CMIP5; Taylor

et al., 2012) are unable to skillfully replicate the seasonal cycle and observed historical

trends in precipitation across the USNE, despite being able to represent key circulation

characteristics important to summer precipitation such as moisture convergence associated

with southwesterly flow and divergence aloft. In light of the potential teleconnection

between shifts in large-scale circulation and precipitation in the USNE, the inadequate

representation of key properties of the North Atlantic polar jet stream (e.g., wave

amplitude) and blocking patterns over Greenland by the CMIP5 models have implications

for interpreting climate projections for the USNE. Hanna et al. (2018a) found that not only

do CMIP5 models not show the recent increase in Greenland blocking, they actually

indicate a negative trend in blocking in historical simulations that continues in forward

projections. Although the authors suggest that internal variability may have contributed to

the recent trend, which could result in differing trends between model output and

observations, a comparison of the GBI calculated from reanalysis and CMIP5 simulations

clearly shows that all of the models are unable to capture the amplitude of the recent
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Figure 3.4: Time series of JJA GBI from NCEP/NCAR Reanalysis 1, 20CRv2c reanalysis,
and ERA-20C, as well as the historical scenario (1950-2005) and the RCP4.5 and RCP8.5
scenarios from all CMIP5 models. A 20-year moving average was applied to the time series,
and the values normalized to the 1986-2005 period. Figure from Hanna et al. (2018a).

change in Greenland blocking (Fig. 3.4). This implication is especially concerning, as the

underestimation of blocking in the North Atlantic has persisted in climate models of the

last 20 years with little improvement (Davini and D’Andrea, 2016). If the blocking trend is

a forced signal and not due to internal climate variability, then climate models could

potentially be underestimating an important contribution to summer rainfall in the USNE

if the GBI trend continues or Greenland blocking becomes more frequent in the future. It

remains to be seen whether these deficiencies will be rectified in the next iteration of CMIP.

3.4 Chapter Summary

This study links recent changes in summer precipitation in the USNE to large-scale

atmospheric circulation shifts associated with Greenland blocking, most notably during a

span of summers from 2007 to 2013 when exceptionally high GBI and low NAO index

values were observed. We show that the recent increase in summer precipitation occurs in

conjunction with more frequent blocking over Greenland (increased GBI), which is

associated with a negative NAO. Although most previous work has focused on the

association of these recent climate trends with an equatorward shift in summer
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extratropical storm tracks over the eastern North Atlantic, the accompanying higher

amplitude upper level flow over the eastern U.S. is also linked to heavier precipitation

through increased southwesterly moisture transport into the USNE.

The results of this study highlight the limitations of the current generation of climate

model projections in reproducing outcomes observed over recent decades. While the

association between Greenland blocking and precipitation in the USNE needs to be

explored further, the inability for models to replicate the amplitude of the Greenland

blocking trend undermines confidence in future climate prediction for precipitation across

the western North Atlantic region. Many of the potential drivers of the recent trend

produce a similar response on circulation patterns in the North Atlantic, and can influence

precipitation patterns in surrounding regions. It is therefore crucial that the next

generation of climate models strive toward improving the representation of observed

large-scale circulations and trends.
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CHAPTER 4

HISTORICAL INCIDENCE OF MID-AUTUMN WIND STORMS

4.1 Chapter Introduction

In the past three years, three notable mid-autumn wind storms, defined in this study as

high-wind events associated with extratropical cyclones, caused extensive infrastructure

damage across New England, primarily from wind gusts in excess of 50 mi/h and in some

cases over 70 mi/h. The most impactful of these storms was a nor’easter (coastal storm)

“bomb” cyclone [central pressure drop of at least 24 mb in 24 hours at 60° latitude

(Sanders and Gyakum, 1980)], that passed over eastern New York and Vermont on 30

October 2017, and resulted in over 1 million outages to the electric grid (Samenow, 2017).

In Maine alone, electric utilities registered nearly 484,000 power outages, a number

exceeding that resulting from the historic January 1998 ice storm, and over $69 million in

damage to the State’s electrical power grid (Graham, 2017; Russell, 2018). In 2019, two

major wind storms occurred within two weeks of one another: the first occurred on 17

October with heaviest impact over eastern Massachusetts and southern Maine, and the

second on 1 November with impacts from central to northern Maine. The 17 October 2019

storm was another nor’easter that underwent rapid intensification and became a bomb

cyclone, setting a new record of 975.3 mb for the lowest atmospheric pressure recorded in

Boston, MA for the month of October, and causing over 500,000 power outages (Barry,

2019). The 1 November 2019 storm was an extratropical cyclone that developed over the

Ohio Valley, and caused more than 800,000 power outages across 14 states in the Great

Lakes, Mid-Atlantic, and Northeastern regions (Stanglin, 2019).

Wind storms represent a major hazard to life and property, as well as a potential

mechanism for ecosystem disruption. Ashley and Black (2008) examined the number of

fatalities as a result of non-convective high-wind events in the U.S. from 1980 to 2005 and

found that these wind events can result in greater loss of life than thunderstorm or

59



hurricane winds. More than 83% of all fatalities from these events are associated with

passing extratropical cyclones, particularly in the U.S. Northeast region, and tend to occur

across larger spatial and temporal scales than convective wind events. In forested regions

that do not frequently experience fires, wind storms are a major disturbance to the local

ecosystem. For example, a 1989 wind storm resulted in damage to 35% of the trees in an

old growth forest in central New York (Marks et al., 1999). Also, 33% of wind storm

fatalities involve felled trees (Ashley and Black, 2008) and the majority of power outages in

states with extensive forest cover are the result of tree damage (Li et al., 2014). Autumn

wind storms can potentially result in greater tree damage than those in other seasons, as

the presence of foliage increases drag and wind stress on a tree, and thus the risk of tree

damage or uprooting from high winds (Vollsinger et al., 2005).

Due to the association of high-wind events with the passage of extratropical cyclones

(Booth et al., 2015; Lacke et al., 2007; Niziol and Paone, 2000), most previous work

examines high-wind events during the cold season (November – April). In the Great Lakes

region and the northeastern U.S., high-wind events during the cold season are most often

associated with extratropical cyclones that travel from southwest to northeast, passing to

the north and west of the Northeast region. This preferred track is not necessarily

associated with the strongest cyclones overall, but instead those in which the strongest

winds of the cyclone (typically to the south or southeast of the storm center) pass over the

region. Projecting changes to high-wind events will thus, in part, depend on how future

storm tracks will shift. Although winter extratropical cyclones in the western Atlantic are

projected to decrease in frequency (Colle et al., 2013), Booth et al. (2015) note that

projected increases in coastal storm track density over the eastern U.S. could result in more

frequent nor’easters, which are associated with high winds as well as high storm surges.

The recent damaging wind storms in New England in 2017 and 2019 also incorporated

attributes of warm season storms. In the past two decades, heavy precipitation has

increased across the northeastern U.S., associated primarily with tropical cyclones and
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tropical moisture sources in September and October (Frei et al., 2015; Howarth et al., 2019;

Huang et al., 2018, 2017). Major midlatitude cities along the eastern coast of North

America such as Washington, D.C., New York City, and Boston are threatened every 2 to 4

years by tropical cyclones or those that have transitioned to extratropical cyclones (Hart

and Evans, 2001). Tropical cyclones that transition can re-intensify and bring heavy

rainfall and strong winds farther north. One example is Hurricane Sandy in October 2012,

which transitioned to a post-tropical storm prior to landfall and brought high winds and

waves to New England (Galarneau et al., 2013). Additionally, wind storms originating over

the continent can interact with offshore tropical cyclones or their remnants, thereby

providing additional moisture and energy for the wind storm. This was the case for the 30

October 2017 wind storm, which absorbed the remnants of Tropical Storm Philippe

(NOAA/NCEI, 2017), and the 18-22 October 1996 wind storm, which tapped into moisture

advected from Hurricane Lili (McNally et al., 2008). Model projections indicate that a

future environment of warmer sea surface temperatures and lower wind shear in the eastern

North Atlantic will be more conducive to tropical cyclone development and propagation.

There could also be a greater proportion of tropical cyclones undergoing extratropical

transition, resulting in extratropical cyclones of greater intensity and which produce

heavier precipitation than in the current climate (Jung and Lackmann, 2019; Liu et al.,

2017; Michaelis and Lackmann, 2019). Moreover, storm tracks for tropical and

extratropical cyclones could shift poleward and closer to the eastern U.S. coast due to a

more northerly polar jet and a northward and westward expansion of the subtropical high

(Jiang and Perrie, 2007; Liu et al., 2017). These future scenarios imply not only an

increase in the number of wind storms originating from the tropics, but also that

mid-autumn wind storms, in general, will likely produce more heavy rainfall.

Another question of concern is whether the frequency and intensity of wind storms have

changed in response to broader circulation patterns. The three unusually strong wind

storms to affect the New England region in 2017 and 2019 occurred during an interval of
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unprecedented autumn warmth in the Arctic (Overland et al., 2017, 2019). Previous

studies (e.g., Francis and Vavrus, 2012, 2015) have suggested that Arctic Amplification –

the disproportionate warming of Arctic surface temperatures compared to lower latitudes

due to increased greenhouse gases and associated positive feedbacks from declining sea ice

extent and snow cover – results in weakened zonal flow of the westerlies and higher

amplitude Rossby waves. A “wavier” jet stream circulation has been linked to atmospheric

blocking and increased extreme weather in the middle latitudes (Screen and Simmonds,

2014). However, the underlying dynamics associated with this phenomenon are still

uncertain, as other studies have indicated that an increasing wave amplitude trend is

sensitive to how atmospheric waves are defined, and the trend is not replicated by climate

model simulations (Barnes et al., 2014; Blackport and Screen, 2020; Screen and Simmonds,

2013).

This study examines storm characteristics and changes in the frequency and intensity of

mid-autumn (October – November) wind storms in New England to help inform future

climate projections for the region. We first develop a climatology of wind storms using

reanalysis data, gridded precipitation data, and surface station observations. We then

identify trends in wind storm frequency and intensity (as measured sustained wind speeds

and gusts), as well as other properties of the events such as the central sea-level pressure,

sea-level pressure tendency, and the sea-level pressure gradient of the accompanying

extratropical cyclone, and daily precipitation. In addition, we assess and compare the

characteristics of stronger and weaker wind storms. These include the distribution of of the

sea-level pressure tendencies (i.e., intensification/deintensification rates of associated

extratropical cyclones), composite analyses of sea-level pressure and maximum 10-meter

wind gusts for stronger and weaker wind storms, preferential storm tracks, and the

prevailing wind direction of wind gusts. Section 4.2 details the methodology. The analysis

results are described and discussed in Sections 4.3 and 4.4. A summary of our major

conclusions is presented in Section 4.5.
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4.2 Data and Methodology

This study utilizes two gridded datasets and one station observation dataset.

Atmospheric data were extracted from the ECMWF Reanalysis version 5 (ERA5; ECMWF,

2019; Hersbach et al., 2020), a fifth generation reanalysis product and the successor to the

ERA-Interim reanalysis. This reanalysis was chosen for its high spatial and temporal

resolutions, with global variables available at 31 km grid cell resolution and hourly time

outputs. Data were acquired for sea-level pressure (SLP), 10-meter maximum wind gusts,

10-meter zonal (u) and meridional (v) winds, and precipitation for October and November

from 1979 to 2019. Maximum wind gusts in the reanalysis are derived from instantaneous

model calculations within the preceding forecast integration. Precipitation data were

obtained from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM;

Daly et al., 2008, 1994) time series dataset, a set of spatial climate data products for

temperature, dew point temperature, vapor pressure, and precipitation. PRISM

interpolates estimates of climate data to a 30 sec 2.5 min (~4km) resolution grid using

station data, a digital elevation model, and other spatial data sets. Daily precipitation

totals were used from 1981 to 2018. Surface observation data was obtained from NOAA’s

Integrated Surface Database (ISD; Smith et al., 2011) daily summaries database. The ISD

consists of houly and synoptic weather observations from more than 35,000 stations

worldwide, with some locations having data as far back as 1901. The daily summaries

subset includes various daily mean and maximum values (based on Greenwich Mean Time),

such as sea-level and station pressures, 10-meter sustained wind and gusts, temperature,

and precipitation. Station data for daily maximum wind gusts, maximum sustained winds,

and total accumulated precipitation were obtained for 15 stations in the states of Maine,

New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut (Fig. 4.1).

For this study, we identify wind storms using wind gust and sustained wind speed

thresholds corresponding to the National Weather Service (NWS) Wind Advisory and High

Wind Warning criteria (https://www.weather.gov/box/criteria). Wind storms were defined
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Figure 4.1: Domains for sea-level pressure (D1, left) and 10-meter wind gusts (D2, right)
with the locations of observation stations. Surface stations include Augusta, ME (AUG);
Barnes, MA (BAF), Hartford-Bradley, CT (BDL); Bridgeport, CT (BDR); Boston, MA
(BOS); Burlington, VT (BTV); Caribou, ME (CAR); Chicopee Falls, MA (CEF); Concord,
NH (CON); Groton-New London, CT (GON); New Haven, CT (HVN); Manchester, NH
(MHT); Montpelier, VT (MPV); Providence, RI (PVD); and Portland, ME (PWM).

using the Wind Advisory Criteria as when the daily maximum wind gust was at or above

21 ms−1 (46 mph) or the daily maximum sustained wind speed (maximum observed

2-minute average wind speed) was at or above 14 ms−1 (31 mph). For observation-based

wind storms, the criteria must be met at three or more stations. A subset of strong wind

storms was defined using the NWS High Wind Warning criteria as days with maximum

wind gusts of at least 26 ms−1 (58 mph) or maximum 2-minute sustained winds of at least

18 ms−1 (40 mph). Both the wind gust and sustained wind speed criteria were used for

observations in order to produce a more complete climatology of events, as wind gusts are

only recorded when wind speeds rapidly fluctuate by 10 knots (5.1 ms−1) or more, but a

wind storm event only needs to satisfy the threshold for at least one of the wind variables.

Two wind storm climatologies were created using the ERA5 reanalysis and PRISM

precipitation datasets. For the first climatology, wind storms were identified using 3-hourly

SLP and maximum wind gust fields over two domains (D1 and D2, Fig. 4.1). Within the

larger domain, low-pressure centers were isolated by comparing the SLP of a given grid cell
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with the eight grid cells surrounding it to see if the pressure of the central cell is lower than

its neighbors, a commonly used approach (Ulbrich et al., 2009). Additional criteria were

applied in order to isolate high-wind events over land that are associated with

synoptic-scale features, as opposed to short-lived events or high winds confined to elevated

terrain. A low center was designated as a wind storm if the maximum wind gusts for more

than 20 grid cells within the inner domain were at or above the advisory or warning

criteria. A land-sea mask was used to exclude wind values over water, and wind storms

lasting < 12 hours were also excluded. Although these restrictions produce a smaller

sample of wind storms (the number of identified approximately doubles using a 10 grid cell

criteria), the additional “events” typically involve a few grid cells, often localized over

mountain peaks, with maximum wind gusts just above the minimum criteria, and would

unlikely result in substantial wind damage in the region. A second reanalysis climatology

was created by applying the wind gust criteria to the grid cells corresponding to the

approximate locations of the ISD surface stations. As with the observation-based

climatology, the wind criteria must be met at three or more station locations.

The statistical analysis for the reanalysis- and observation-based wind storm

climatologies consisted of assessing the frequency and intensity of wind storms for the

period 1 October – 30 November inclusive, as well as the two months separately. Wind

storm frequency was determined by counting the number of storms that occurred during

the specified time period. Although wind storm intensity was defined by sustained winds

and gusts, other storm characteristics were also assessed, including the central SLP of the

low-pressure center, the 24-h normalized SLP tendency, the SLP gradient, and the average

daily accumulated precipitation within the inner domain for the domain-level

reanalysis-based climatology, and the daily total precipitation for the two station-level

climatologies. SLP tendencies were calculated over a 24-h period centered on the time of

maximum wind gusts, then normalized to a reference latitude of 46°N following Roebber

(1989):
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∆P46 =
∆Pφsin46°

sinφ

where ΔP46 is the normalized, 24-h SLP tendency, ΔPφ is the SLP tendency, and φ is the

mean latitude of the low during the 24 h period. At 46°N, the threshold for a bomb cyclone

is a drop in central pressure of at least 20 mb over 24 hours. SLP gradients were calculated

by choosing the maximum difference between the central SLP value from the SLP 10 grid

squares from the low in the four cardinal directions, which are normalized to 1000 km. The

trends in these individual variables were identified using the ordinary linear regression

slope and the Theil-Sen slope estimator (Sen, 1968; Theil, 1950), and the statistical

significance of the trends were assessed at the 95% level using the Student’s t-test and the

Mann-Kendall trend test (Kendall, 1948; Mann, 1945). The Theil-Sen slope estimator

represents how the median of the data changes linearly with time, and is a nonparametric

alternative to the least squares regression – which represents how the mean of the data

changes with time. The Mann-Kendall test is a commonly used non-parametric test for

detecting statistically significant linear or non-linear trends in hydrological and

meteorological time series (Romanić et al., 2015; Tabari et al., 2011). The null hypothesis

is that there is no trend, while the alternative hypotheses are that there is a negative,

positive, or non-null trend. This test is based on the ranks of observations and compares

the relative magnitudes of data points as opposed to the data values themselves (Gilbert,

1987). The advantage of the Mann-Kendall test is that it is not affected by the distribution

of the data and is less sensitive to outliers. The statistical analysis was performed using the

NCAR Command Language (NCL) functions for linear regression and

Mann-Kendall/Theil-Sen (NCAR, 2019).
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4.3 Results

4.3.1 Trends

For the 1979-2019 study period, 44 wind storms are identified from the reanalysis in

connection with a low-pressure system in proximity to New England. Wind storms more

often occur in November, and the majority of October wind storms occur near the end of

the month (Fig. 4.2). A greater number of wind storms are identified at the station-level

from the reanalysis (82) and a smaller number from observations (35), likely due to stronger

reanalysis wind gusts at surface stations along the coast. As a result, the number of strong

storms, which correspond to the NWS’s High Wind Warning criteria (wind gusts greater

than 26 ms−1 or sustained winds greater than 18 ms−1), constitutes less than half (45%) of

all wind storms included in the station-level reanalysis-based climatology, while the number

of strong storms are similarly dispersed among the domain-level reanalysis based (61%)

and the station-level observation-based (54%) climatologies (Table 4.1). Thirteen wind

storms from the domain-level climatology meet the criteria for a bomb cyclone, with seven

of those storms resulting in wind gusts greater than 26 ms−1 over New England, indicating

that the majority of wind storms in the region are not associated with bomb cyclones.

For the reanalysis- and observation-based climatologies, there are no significant positive

or negative trends in overall wind storm frequency (Table 4.1). The lack of a significant

positive or negative trend in the number of wind storms over time is partly reflective of the

relatively small sample of events for the 41-year study period, with the number of storms

generally ranges between zero and two during the two month period (Fig. 4.3). In

examining the full length of the record, there appears to be greater year-to-year variability

in the number of wind storms in the past two decades compared to the two decades prior.

However, there is not a similarly marked difference in the frequency of bomb cyclones

between the first half of the study period compared to the latter half.

The results of the storm intensity (sustained winds and wind gusts) and storm

characteristic metrics (SLP, normalized SLP tendency, SLP gradient, precipitation)
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Figure 4.2: Distribution of all wind storms from the domain-level reanalysis-based
climatology (top) and the station-level observation-based climatology (bottom).

indicate that there are few statistically significant trends present in more than one of the

climatologies. There are no statistically significant trends in the domain-level

reanalysis-based climatology (Table 4.2). However, there are statistically significant trends

in precipitation identified from the two station-level climatologies. For the station-level

reanalysis-based climatology, statistically significant positive trends are present for daily

precipitation from strong October wind storms (Table 4.3). From the observation-based

climatology, there are statistically significant positive precipitation trends for both

categories of October wind storms as well as for the two month period overall for strong

wind storms (Table 4.4).

68



F
ig
ur
e
4.
3:

T
he

fr
eq
ue
nc
y
of

w
in
d
st
or
m
s
ov
er

ti
m
e
fo
r
19

79
-2
01
9
fr
om

th
e
do

m
ai
n-
le
ve
lr
ea
na

ly
si
s-
ba

se
d
cl
im

at
ol
og

y
(f
ar

le
ft
),

th
e
st
at
io
n-
le
ve
lr
ea
na

ly
si
s-
ba

se
d
cl
im

at
ol
og

y
(c
en
te
r
le
ft
),
th
e
ob

se
rv
at
io
n-
ba

se
d
cl
im

at
ol
og

y
(c
en
te
r
ri
gh

t)
,a

nd
th
e
nu

m
be

r
of

w
in
d
st
or
m
s
cl
as
si
fie
d
as

bo
m
b
cy
cl
on

es
fr
om

th
e
do

m
ai
n-
le
ve
l
re
an

al
ys
is
-b
as
ed

cl
im

at
ol
og

y
(f
ar

ri
gh

t)
.
T
he

lin
ea
r
re
gr
es
si
on

lin
e
is

in
di
ca
te
d
in

gr
ay

in
ea
ch

pl
ot
.

69



Table 4.1: Statistical analysis of wind-storm frequency (storms year−1) for the
reanalysis-based and station-based wind storm climatologies. Strong storms are those in
which maximum wind gusts greater than 21 ms−1 (58 mi/h) or maximum sustained winds
greater than 18 ms−1 (40 mi/h) are present. Bomb cyclones (BC) are wind storms where
the 24-h SLP tendency is -20 hPa or lower. Statistically significant trends at the 95% level
are bolded.

Total Linear Slope Theil-Sen Slope

ERA5
Domain-Level

All

2 month 44 0.02 0.00
Oct 18 0.02 0.00
Nov 26 0.00 0.00
BC 13 0.00 0.00

Strong

2 month 27 0.01 0.00
Oct 10 0.02 0.00
Nov 17 0.00 0.00
BC 10 0.00 0.00

ERA5
Station-Level

All
2 month 82 0.01 0.00

Oct 35 0.02 0.00
Nov 47 -0.01 0.00

Strong
2 month 37 0.00 0.00

Oct 16 0.01 0.00
Nov 21 -0.01 0.00

ISD
Station-Level

All
2 month 35 0.00 0.00

Oct 15 0.00 0.00
Nov 20 0.00 0.00

Strong
2 month 19 -0.01 0.00

Oct 11 0.00 0.00
Nov 8 0.00 0.00

4.3.2 Storm Characteristics

In this section, the characteristics of winds storms included in the domain-level

reanalysis-based climatology are examined, as well as how storm characteristics differ

between the first half of the study period (1979-1999) and the second half (2000-2019), and

between weak and strong wind storms. These characteristics include the

intensification/deintensification rates of the extratropical cyclones, the composite SLP and

wind gust fields for weak and strong wind storms, the spatial distribution of storm tracks,

and the prevailing direction of high winds.
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Table 4.2: Statistical analysis of wind-storm intensity for the domain-level reanalysis-based
climatology. Statistical significance designated as in Table 4.1. Units are hPa year−1

for sea-level pressure, hPa (24h)−1 year−1 for normalized sea-level pressure tendency, hPa
(1000km)−1 year−1 for pressure gradient, ms−1 year−1 for 10-meter wind gusts, and mm
year−1 for precipitation.

Variable Linear Slope Theil-Sen Slope

All

2 month

SLP 0.02 0.07
SLPtend 0.02 0.02
SLPgrad 0.02 -0.15
Max Gust -0.01 -0.02

PRE 0.03 0.00

Oct

SLP -0.16 -0.20
SLPtend -0.01 0.00
SLPgrad 0.14 0.00
Max Gust 0.04 0.17

PRE 0.01 -0.30

Nov

SLP 0.15 0.21
SLPtend 0.10 0.07
SLPgrad -0.01 0.35
Max Gust -0.05 -0.08

PRE 0.01 -0.08

Strong

2 month

SLP -0.34 0.00
SLPtend 0.02 0.04
SLPgrad 0.04 -0.27
Max Gust -0.02 0.00

PRE -0.17 0.00

Oct

SLP -0.14 -0.33
SLPtend 0.00 0.00
SLPgrad 0.02 0.00
Max Gust -0.04 -0.03

PRE 0.20 -0.57

Nov

SLP 0.04 0.23
SLPtend 0.03 0.01
SLPgrad -0.04 0.63
Max Gust -0.02 0.02

PRE -0.21 -0.24
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Table 4.3: As in Table 4.2, only for the station-level reanalysis-based climatology.

Variable Linear Slope Theil-Sen Slope

All

2 month
Max Gust 0.00 -0.02
Max Wind 0.00 0.01

PRE -0.06 -0.14

Oct
Max Gust 0.00 0.00
Max Wind 0.01 0.04

PRE 0.22 0.32

Nov
Max Gust -0.01 -0.02
Max Wind 0.03 0.04

PRE -0.35 -0.51

Strong

2 month
Max Gust 0.03 0.04
Max Wind 0.00 0.00

PRE 0.44 -0.07

Oct
Max Gust 0.03 0.18
Max Wind -0.05 0.09

PRE 0.30 0.25

Nov
Max Gust 0.05 0.08
Max Wind 0.02 0.14

PRE -0.52 -0.67

Table 4.4: As in Table 4.2, only for the station-level observation-based climatology.

Variable Linear Slope Theil-Sen Slope

All

2 month
Max Gust 0.01 0.00
Max Wind -0.01 -0.01

PRE 0.38 0.65

Oct
Max Gust 0.01 0.01
Max Wind -0.01 -0.07

PRE 0.68 2.47

Nov
Max Gust 0.00 0.01
Max Wind -0.01 -0.01

PRE 0.05 0.19

Strong

2 month
Max Gust -0.05 -0.13
Max Wind -0.02 -0.02

PRE 0.65 1.77

Oct
Max Gust -0.04 -0.23
Max Wind 0.01 -0.07

PRE 0.71 3.56

Nov
Max Gust -0.01 -0.02
Max Wind -0.06 -0.01

PRE 0.24 0.00
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The first storm characteristic is the intensification (and deintensification) rates for the

extratropical cyclones associated with wind storms. The distributions of normalized 24-h

SLP tendency, which is calculated over a 24-hour period centered on the time of maximum

wind gusts, are shown in Figure 4.4. Overall, the low-pressure systems tend to intensify

during high-wind events in New England. The distribution for SLP tendencies for all wind

storms has two peaks, with a higher peak at weakly negative or zero tendencies and a lower

peak at negative tendencies falling within the criteria for bomb cyclones. The average 24-h

SLP tendency for the sample of strong wind storms is -13.6 hPa and -8.3 hPa for the

sample of weaker wind storms. The peak SLP tendency for strong wind storms is one

category to the left of the peak SLP tendency for weak wind storms; however, the SLP

tendencies for weak wind storms are concentrated towards less negative and more positive

values while SLP tendencies for strong storms are more evenly distributed across highly

negative, less negative, and positive tendencies. When examining the SLP tendency

distributions for the first and second half of the study period (Fig. 4.5), the general pattern

is a shift towards lower SLP tendencies, and thus higher intensification rates, for all wind

storms. Also, the number of bomb cyclones stays the same or slightly increases for both

weak and strong wind storms, despite a decrease in the overall number of wind storms

between the first and second half of the study period.

The second storm characteristic is the average, or composite, SLP and wind fields

associated with stronger and weaker wind storms. Figure 4.6 shows the composites for

strong wind storms and all other wind storms, respectively, at the time of maximum wind

gusts, as well as twelve hours before and after. The average storm track for both wind

storm categories is similar, with the center of the low approaching New England from the

southwest and then passing to the north of the region, which is consistent with previous

studies (e.g., Booth et al., 2015; Niziol and Paone, 2000). The strongest surface winds

across New England tend to be out of the south or southeast, and the strongest wind gusts

occur to the southeast of the low center. Notable differences between the two sets of
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Figure 4.4: Normalized 24-h sea-level pressure tendency distributions for wind storms from
the domain-level reanalysis-based climatology. Bins are at intervals of 5 hPa (24 h)−1 with
the upper bounds labeled (i.e. < -30, -30 to -25, -25 to -20, etc.).
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Figure 4.5: As in Figure 4.4 for the first half (1979-1999) and second half (2000-2019) of the
study period.
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composites are that the average low system associated with strong wind storms tends to be

more compact and have a lower central SLP value.

The third storm characteristic is the preferred storm tracks of wind storms. Although

the composites indicate a prevalent southwest-to-northeast path over the Great Lakes, it is

also important to consider other major storm tracks. From the domain-level climatology, we

identify three categories of storm tracks. The first category is the southwest-to-northeast

track over the Great Lakes previously shown in the composites (Fig. 4.7a), the second

category includes lows originating in closer proximity to the East Coast, such as nor’easters

(Fig. 4.7b), and the third category includes tracks over the western Great Lakes with more

south-to-north trajectories towards Hudson Bay (Fig. 4.7c). The first two categories each

account for approximately a third (15 and 14 winds storms, respectively) of all wind

storms, while the third category accounts for 22% (10) of wind storms. Four storms had

paths that did not fit any of the categories. Bomb cyclones are more common in the second

(7) and the first storm track categories (6) than the third category (2).

The last storm characteristic is the prevailing direction of maximum wind gusts in the

region. Although these high-wind events are associated with an extratropical cyclone,

previous studies and the composite analysis show that the highest winds are more closely

tied to the location of a frontal boundary. To examine the prevailing wind direction during

the wind storms, wind rose for several station locations are shown in Figure 4.8. While the

direction of wind gusts varies for some stations along the southern New England coast and

southern New Hampshire, the strongest wind gusts, as well as event winds overall, tend to

be out of the south or southeast (wind a lesser fraction out of the east or northeast). The

prevailing wind directions indicated by the wind rose and the composites are consistent

with previous studies indicating that the highest winds are located in the southeast

quadrant of the low ahead of a cold front.
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Figure 4.6: Sea-level pressure (in hPa) and maximum 10-meter wind gust (in ms−1)
composite analysis of strong wind storms (left, 27 total) and all other wind storms (right,
17 total) from the domain-level reanalysis-based climatology. Composites are shown for the
time of the maximum wind gusts within the New England domain (T0), and for twelve hours
before (T-12) and after (T+12).
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Figure 4.7: Storm tracks organized by category: (a) type 1, (b) type 2, and (c) type 3.
Tracks for strong wind storms are in red, all other tracks are in black.

4.4 Discussion

The results of this study support and expand upon the findings from previous studies

on the characteristics of high-wind events associated with extratropical cyclones in the

region. The composite analysis shows that high-wind events in New England associated

with extratropical cyclones typically approach from the southwest and pass to the north of

the region, and the wind rose indicate that the strongest winds tend to be out of the south

or southeast. This storm track and prevailing wind direction are consistent with the results

of previous wind storm studies (e.g., Booth et al., 2015), which indicate that the southeast

quadrant of a low is where the strongest winds are located. However, there are many

examples of wind storms that have characteristics differing from the composite.

Low-pressure systems with more coastal storm tracks (such as nor’easters) occur at an
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Figure 4.8: Wind rose for Burlington, VT (BTV); Caribou, ME (CAR); Boston, MA (BOS);
Portland, ME (PWM); New Haven, CT (HVN); and Concord, NH (CON). Concentric circles
indicate the frequency (%) of wind gusts during wind storms, with the average wind gust
(in ms−1) for each direction labeled at the end of the “petal”. The frequency of wind gusts
between 21 ms−1 and 26 ms−1 are indicated in gray, and the frequency of wind gusts at or
above 26 ms−1 are indicated in red.
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equal frequency as the Great Lakes storm track indicated by the composite, although the

lows tend to pass to the north of the region as well. The majority of wind storms that fall

within the third storm track category are considered strong wind storms, and yet the lows

do not approach New England at all. Additionally, the strongest wind storms are not

always associated with very low central pressures or bomb cyclones. Other factors, such as

the pressure gradient, are also important.

It is difficult to determine whether changes large-scale circulation patterns have had a

detectable effect on wind storms in New England, as our results overall do not indicate a

statistically significant change in wind storm frequency or intensity. This outcome could

relate to the relative brevity of the record, as the small sample of storms makes identifying

a statistically significant trend from interannual variability difficult. Despite the lack of

statistically significant temporal trends in overall wind storm frequency or wind intensity,

this study illuminates other aspects which could be important when projecting damage

from future wind storms. There are indications that at the surface stations used in this

analysis, strong wind storms (i.e., events which meet NWS High Wind Warning criteria) in

October are associated with higher rainfall accumulations than at the beginning of the

study period. Although high winds are the main characteristic of wind storms, heavy

rainfall can also occur with these events. As previous studies (e.g., Howarth et al., 2019;

Huang et al., 2018) have shown that tropical cyclones and their remnants have

substantially contributed to a rise in extreme precipitation in the northeastern U.S, we

cross-referenced dates from the wind storm climatologies with the National Hurricane

Center’s North Atlantic hurricane database version 2 (HURDAT2; Landsea and Franklin,

2013) to identify wind storms with tropical origins. Only three wind storms from the

domain-level climatology were associated with tropical cyclones which transitioned to

extratropical cyclones before reaching New England: Josephine (8 October 1996), Noel (3

November 2007), and Sandy (29-30 October 2012). However, tropical cyclones can also

help strengthen wind storms of extratropical origin. At least two wind storms, occurring on
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30 October 2017 and between 18-22 October 1996, interacted with offshore tropical systems

and resulted in heavy rainfall in New England. Additionally, future shifts in storm tracks

could result in additional damage from storm surges associated with wind storms.

Extratropical cyclones with coastal storm tracks, such as nor’easters, can cause substantial

coastal flooding and beach erosion (Dolan and Davis, 1992). This storm track is a common

one for New England wind storms, and a projected increase in storms following this path

could not only result in more high-wind events for the region, but also greater damage

along the coast. Future work is suggested to more thoroughly examine the roles of tropical

moisture sources and storm tracks in projections of New England wind storms.

There are challenges associated with the study of wind storms and predictions for storm

damage in the future. One major difficulty is developing a single, precise definition for

“wind storm”. In this study we apply wind criteria used by the NWS, an approach

commonly used by other studies (Booth et al., 2015; Lacke et al., 2007; Niziol and Paone,

2000). However, it is difficult to determine how to apply the wind criteria spatially and

temporally, and do to so uniformly at both the station level and at the domain level. For

the domain-level reanalysis climatology, additional criteria are utilized in order to isolate

high-wind events that are associated with synoptic-scale features and not local

topographical features. Although the criteria limit the number of identified wind storms,

the additional “events” often involve a few grid cells with maximum wind gusts just above

the minimum criteria, and would unlikely result in substantial wind damage in the region.

Similar criteria are more difficult to apply to station observations, as the values are for

daily maximum values and long-term automated weather variables are available for a

limited number of locations in New England. The requirement that sustained winds and

gusts must meet the criteria at multiple stations has a similar effect on the sample size as

the grid cell criteria, although the location and density of surface stations has a notable

effect on how many and which wind storms are included in the dataset.
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Another major challenge is predicting how changes in extratropical cyclone intensity

translates into wind damage. Although the central pressure is a common measure of

extratropical cyclone intensity, it is a combination of factors (central SLP, SLP gradient,

storm track) that result in high-wind events over a given location. For example, Booth

et al. (2015) noted that extratropical cyclones associated with the strongest winter winds

in the northeastern U.S. are not necessarily the strongest overall. Instead, it is important

to consider the location of the strongest winds associated with the low with respect to the

region of interest. Furthermore, high sustained winds or wind gusts do not guarantee that

wind damage will occur (although the risk of damage increases), and wind damage can

occur at wind speeds below the criteria used by the NWS. Modeling studies show that

forest damage can begin at wind speeds as low as 10 ms−1 (Gardiner et al., 2000; Peltola

et al., 1999). Other studies have used wind reports to compare damaging and

non-damaging extratropical cyclones (Angel and Isard, 1998), or to produce wind storm

climatologies (Lacke et al., 2007); however, this method has its own limitations, such as the

lack of wind reports outside of population centers as well changing reporting methods over

time and among NWS offices (Doswell et al., 2005). Additionally, other factors can increase

the risk of wind damage that are only attributable to wind storms. Heavy rainfall from

tropical and extratropical cyclones not associated with high winds during these months

increases the risk of flooding and tree damage due to windthrow. Other environmental

stresses such as drought, heat, disease, and insect infestations can weaken trees and

increase the risk of wind damage. For example, drought conditions across Maine were a

contributing factor to the large number of downed trees during the 30 October 2017 wind

storm (Whittle, 2017). The combination of weather, climate, and environmental factors

ultimately determines the resulting damage from these events.
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4.5 Chapter Summary

This study examines the frequency and intensity of mid-autumn wind storms in New

England and their characteristics. Wind storms are identified separately from the ERA5

reanalysis and ISD observation dataset using the NWS’s Wind Advisory and High Wind

Warning criteria. From the trend analysis, we find little evidence that wind storms have

become stronger in terms of central surface pressure or wind speeds, although there are

indications that strong October wind storms in the past two decades are associated with

more precipitation than October storms from earlier in the record. The increased

precipitation could be connected to the increased moisture transport associated with

tropical cyclones and their remnant circulations, although to what degree is beyond the

scope of this study. Our results also show that extratropical cyclones associated with

mid-autumn high-wind events in New England typically travel from southwest-to-northeast

with three preferred storm tracks. Although strong wind storms are often characterized by

lower surface pressure or rapidly intensifying bomb cyclones, the intensity of an

extratropical cyclone itself is not the only predictor of a high-wind event in the New

England region, and the damage that they produce is a function of many factors. These

include the local climatology, such as the frequency of heavy rainfall events, and the

presence of environmental factors such as drought and heat stress. All such factors can

increase the risk of damage from wind storms, and highlight the various ways in which

climate change can impact storm severity.
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CHAPTER 5

SUMMARY

Extratropical cyclones and the frontal processes associated with them are a substantial

instigator of severe weather events in the USNE. These weather phenomena provide an

array of challenges to a many stakeholders in the region: homeowners, business owners,

farmers, forest managers, utility companies, and policy makers. This dissertation focuses

on three topics pertaining to the investigation and effects of severe weather associated with

extratropical cyclones.

In Chapter 2, the sensitivity of the WRF mesoscale model to several model setup

factors is evaluated for a case study of the New England ice storm of 21-23 December 2013.

The results show that, while the spatially and temporally averaged statistics for

near-surface variables (2-meter temperature, 10-meter wind speed and direction,

precipitation) are consistent with those of select ice-storm case studies, these variables are

highly sensitive to the model configuration when examined at the station level. No single

model configuration produces the most robust solution for all variables or station locations,

although the TEMF scheme generally yields model output with the least realism. In all,

the main finding is that careful model sensitivity testing and extensive validation are

necessary components for minimizing model-based biases in simulations of ice storms.

In Chapter 3, it is shown that the recent increase in summer precipitation amount

occurs in conjunction with more frequent high pressure blocking over Greenland (increased

GBI) and an associated increasingly negative NAO, particularly during a period of

exceptionally high GBI and low NAO values from 2007 to 2013. The occurrence of these

patterns in summer has been previously identified in connection with southward shifted

storm tracks and wet conditions across the eastern North Atlantic. Over the western North

Atlantic and USNE, the circulation shifts are shown to be related to enhanced rainfall due

to southerly wind anomalies and increased moisture transport into the USNE. This link
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highlights the importance of adequately depicting circulation changes within climate

models, as the current generation of models are unable to skillfully replicate the seasonal

cycle and observed historical trends in precipitation across the USNE, as well as trends in

Greenland blocking.

In Chapter 4, recent wind storm frequency and intensity are explored by utilizing

reanalysis and station-based meteorological observations onward from 1979. The results do

not show a statistically significant increase in the overall frequency of mid-autumn wind

storms, nor their intensity with respect to central pressure or surface wind speeds.

However, there is a statistically significant trend toward increasing precipitation

accompanying wind storms with maximum 10-meter wind gusts greater than 26 ms-1 (58

mph). While stronger high-wind events tend to be associated with lower central sea-level

pressure values and substantial intensification rates, the intensity of the event is not solely

predicated on the intensity of the associated extratropical cyclone. Other characteristics of

the cyclones, such as the storm track and the pressure gradient, as well as the local

climatology and environmental factors (e.g., drought) could potentially increase the risk of

wind damage in a warming world.

The results of this dissertation highlight the complexities of forecasting precipitation

and storm damage, both in the short-term and long-term. Although this work examines

several types of weather events and at different time scales, there are common themes

among the topics. A recurring theme is the importance of spatial scale in weather and

climate predictions. State-of-the-art dynamical models are able to replicate the general

circulation patterns at the global scale; however, forecasting at the regional and local scale

is more challenging due to a greater sensitivity to changes in large-scale circulation as well

as the effects of sub-grid scale processes. This is especially difficult for predictions that

require high precision, as well as spatial and temporal resolution. As computer models are

heavily relied upon for weather forecasting and as a tool for studying past, present, and
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future climate, it is important to recognize their limitations and to view model output

critically.

The findings of this dissertation lend to multiple research avenues that could be further

pursued. First, additional WRF simulations could investigate whether the observed model

tendencies for the December 2013 case study also occur in other ice storm simulations.

These subsequent tests can include other physics parameterizations, such as radiation and

cloud microphysics, as well as other case study storms. Second, subsequent research could

further examine the teleconnection between Greenland blocking and summer precipitation

in the USNE by comparing summer circulation and precipitation patterns over the North

Atlantic for high and low GBI years, both prior to and following the 2003 precipitation

rise. And finally, additional inquiry into New England wind storms could concentrate on

extending the reanalysis-based climatology (e.g., ERA5 is expected to be extended to 1950)

or further investigate the role of tropical moisture sources and extratropical transition, as

well as coastal flooding and storm surges, in the extent of storm damage for recent wind

storms.
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