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Large aquaculture systems may have the potential to damp wave energy for coastal protection. The 

performance of these systems are influenced by the dynamics of components such as flexible kelp blades 

and mussel droppers. In this thesis, the dynamics of kelp blades and mussel droppers were investigated with 

a consistent-mass cable model with focus on understanding the asymmetric motion of kelp blades. The 

results showed the asymmetric blade motion in symmetric waves is caused by the spatial asymmetry of the 

encountered wave orbital velocities due to blade displacements and the asymmetric action on the blade by 

vertical wave orbital velocities. For the kelp grown from the bottom, the asymmetry of blade motion 

provides ‘shelter’ that could inhibit sediment suspension and coastal erosion. For suspended kelp attached 

to a longline, the asymmetric motion would induce the kelp to roll over the attachment in large wave 

conditions. With understanding the blade dynamics, physical model experiments using the morphological 

and mechanical properties of the cultivated Saccharina latissima at Saco Bay, Maine in the USA were 

conducted to investigate the wave attenuation characteristics of suspended kelp farms. The results indicated 

that 20 longlines with 100 plants/m could reduce up to 23% energy of 6.3 s waves. To predict wave 

attenuation under wider conditions, numerical and analytical wave attenuation models coupled with blade 

motion were developed for regular and irregular waves. With the analytical model, a case study at a site in 

Northeastern US showed the potential of suspended aquaculture farms to dissipate wave energy in a storm 

event. Compared to naturally occurring submerged aquatic vegetation (SAV), suspended aquaculture farms 



 
 

were found to perform better at attenuating shorter waves and less impacted by water level changes due to 

tides, surge and sea level rise. Implementing offshore aquaculture structures in conjunction with SAV-based 

living shorelines that can enhance the coastal defense of SAV-based living shorelines. This research is 

useful for the design of suspended aquaculture structures for nature-based coastal protection. The analytical 

wave attenuation models are also convenient to implement in large-scale models to analyze the influences 

of wave attenuation on coastal morphology. 
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CHAPTER 1 

INTRODUCTION 

Approximately 40% of the world’s population lives within 100 kilometers of the coast (MEA, 2005; 

Ferrario et al., 2014), and 71% of the coastal population lives within 50 kilometers of an estuary (UNEP, 

2006). Coastal communities benefit from proximity to the marine environment, but also live at the risk of 

natural coastal hazards and extreme events. For example, from 1900 to 2017, 197 hurricanes with 206 

landfalls in the US have caused about 2 trillion USD in normalized (2018) damage, or annually about 17 

billion USD (Weinkle et al., 2018). Extreme waves and sea levels are likely to occur at an increasing 

frequency due to climate change (Izaguirre et al., 2011; Tebaldi et al., 2012; Ondiviela et al., 2014). 

To prevent storm damage, conventional techniques typically include hard engineered structures 

such as seawalls, breakwaters, and bulkheads. Hardened structures, however, can reduce sediment sources, 

adversely impact water quality, and cause coastal habitat loss (Currin et al. 2010; Pace 2011; Sutton-Grier 

et al., 2015). If performance levels can be quantified, natural and nature-based infrastructure may be a viable 

alternative to hardened shorelines that may also have economic and ecological benefits (Borsje et al., 2011; 

Gedan et al., 2011). 

A living shoreline represents a common example of nature-based infrastructure (Davis et al., 2015; 

Saleh & Weinstein, 2016). Living shorelines are natural, shallow water, protection structures that can also 

maintain or enhance a productive habitat (Currin et al., 2010; Scyphers et al., 2011; Bilkovic et al., 2016; 

Saleh & Weinstein, 2016; Gittman et al., 2016; Moosavi, 2017). These natural structures can include a 

variety of wetland plants, aquatic vegetation, kelp beds and oyster reefs. In a hybrid approach, these natural 

materials can be used in combination with hard-engineered structures. Usually, living shorelines at exposed, 

high-energy sites require some type of breakwater or sill to damp incident wave energy for more effective 

growth of the living organisms (McGehee, 2016). 

Many aquaculture systems such as those comprised of kelp and mussels can also be considered as 

nature-based infrastructure with the ability to attenuate wave energy and provide coastal ecosystem service 
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as well. For example, Plew et al. (2005) observed that a 650 m × 2450 m mussel farm reduced wave energy 

by approximately 5%, 10%, and 17% at wave frequencies of 0.1, 0.2, and 0.25 Hz, respectively at low sea 

state. It was also found that naturally grown kelp may have advantageous wave attenuation characteristics 

(Mork, 1996). For instance, Mork (1996) measured a 70% to 85% wave energy reduction across a 258 m 

long kelp bed (dominated by Laminaria hyperborea) with the highest values observed during low tide. 

Unlike naturally grown kelp that attach to the seafloor, cultivated seaweeds are seeded on ropes in the water 

column (Peteiro and Freire, 2013; Peteiro et al., 2016; Walls et al., 2017). Since wave energy attenuates 

with depth, near surface cultivated seaweed are expected to have a larger impact on wave attenuation than 

beds growing on the bottom. Therefore, the overarching goal of this dissertation is to quantify the capacity 

and characteristics of suspended aquaculture structures with kelp and mussels on wave attenuation. 

1.1 Asymmetric motion of flexible blades in waves 

Chapter 2 describes the blade dynamics in waves. Wave attenuation capacity of nature-based 

infrastructure is mainly determined by the work of the drag induced by the biological components 

(Dalrymple et al., 1984; Kobayashi et al., 1993). For the shoreline structures with flexible components such 

as vegetation and kelp blades, the wave-induced motion of flexible blades reduces the drag and therefore 

diminish the wave dissipation by decrease the relative velocity between the flow and the blade (Mullarney 

and Henderson, 2010; Riffe et al., 2011; Houser et al., 2015; Rupprecht et al., 2017). The specific 

characteristics of blade motion in waves is also an important factor that influences the wave attenuation 

capacity of nature-based infrastructure. 

The characteristics of blade motion in waves can be symmetric or asymmetric. Symmetric motion 

is a forward/backward oscillation over the wave period with near equal bending angles about the vertical 

axis. Asymmetric motion is oscillation with more bending in the direction of wave propagation. For 

instance, asymmetric behavior was described as a “whip-like” response by Rupprecht et al. (2017). 

Asymmetric motion could also induce drag asymmetry with less drag under the wave crest than the trough. 

According to Luhar et al. (2010 and 2013), the drag asymmetry effect could enhance mean flow in the 

direction of wave propagation. Enhanced mean flow could also reinforce asymmetry blade motion in a 
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meadow (Luhar et al., 2017). Blade inclination in the direction of wave propagation in a meadow may also 

provide “shelter” effects for sediment and further reduce bed-load transport and stabilize the seabed 

(Rupprecht et al., 2017). Although the asymmetric motion of single blades has been identified in laboratory 

experiments (e.g., Luhar and Nepf, 2016; Lei and Nepf, 2019b), the underlying mechanisms for asymmetric 

blade motion in waves could be further quantified. 

To examine the effects of blade motion on wave attenuation, initial work focused on stiff vegetation 

with small amplitude motions (Asano et al., 1992; Dubi and Torum, 1995; Méndez and Losada, 1999; 

Mullarney and Henderson, 2010). Small-amplitude motion was modeled as forced linear vibration with one 

degree of freedom by Asano et al. (1992). This model was then used to analyze the small amplitude 

deflection of vegetation in Dubi and Torum (1994) and Méndez and Losada (1999). Euler-Bernoulli beam 

techniques were introduced by Mullarney and Henderson (2010) to analyze the mode shape of vegetation 

as well as its effects on wave dissipation. These models assume small deflections and therefore adopt 

linearized Euler-Bernoulli beam theory. To investigate large-amplitude motion, numerical techniques were 

developed considering the geometric nonlinearity, e.g., the vegetation models developed by Luhar and Nepf 

(2016) and the elastic-rod model coupled with Reynolds-averaged Navier-Stokes (RANS) and Volume of 

Fluid (VOF) solver proposed by Chen and Zou (2019). However, these vegetation dynamic models did not 

capture the asymmetric “whip-like” motion of flexible blades. 

Therefore the objectives of Chapter 2 are to (1) develop a blade dynamic model that can capture 

the asymmetric “whip-like” motion of flexible blades, (2) simulate the mechanisms for the asymmetric 

motion of submerged aquatic vegetation in waves, (3) analyze the properties of blade asymmetric blade 

motion. Understanding the blade dynamics in waves is essential for the scaling of the physical model 

experiments and incorporating the blade motion effects into the wave attenuation model.  

1.2 Physical model experiments for wave attenuation by suspended kelp canopies 

Chapter 3 describes the physical model experiments for wave attenuation by suspended kelp farms 

based on the morphological and mechanical properties of cultivated Saccharina latissima (sugar kelp) at 

Saco Bay, Maine, USA. Experimental research into the hydrodynamic response of kelp started with the 
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investigation on the hydrodynamic characteristics of kelp blades in steady flow. Buck and Buchholz (2005) 

investigated the drag characteristics of both a single and an aggregate of S. latissima blades by towing the 

blades in still water. The results showed sheltering interactions among the blades so that the drag force of 

a bunch of kelp blades cannot be estimated by simply superimposing the drag of individual blades. To be 

more realistic, Vettori and Nikora (2019) investigated the turbulent flow interaction with single blades of 

S. latissima in an open-channel flume. At low current speed, the flapping motion of kelp blades of S. 

latissima, M. pyrifera, and N. luetkeana can significantly enhance the nutrient flux to the blade surface 

(Huang et al., 2011). Using polyethylene to model S. latissima, Vettori and Nikora (2018) found that the 

model kelp blades increase the turbulence intensity and reduce the mean longitudinal velocity. By 

comparing the hydrodynamic performance of S. latissima with the performance of the model blades 

considering dynamic similarity, Vettori and Nikora (2020) showed that the model blades replicated many 

aspects of S. latissima blade dynamics, although the drag force and reconfiguration were underestimated. 

To avoid the issues induced by downscaling, Fredriksson et al. (2020) conducted full-scale model 

experiments to understand the hydrodynamics of a bunch of model S. latissima blades in steady flow. 

Fredriksson et al. (2020) determined the threshold for the hydrodynamic force to transit from drag 

dominated to friction dominated. To date, no experimental studies demonstrate wave attenuation by 

suspended kelp aquaculture structures, and appropriate parameters from these experiments are essential for 

modeling wave attenuation with canopy models. 

The objectives of Chapter 3 are to (1) measure the morphological and mechanical properties of 

cultivated S. latissima at Saco Bay, Maine, USA, (2) investigate the wave attenuation capacity of suspended 

kelp canopies with model laboratory experiments, and (3) develop bulk drag coefficient and effective blade 

length for suspended kelp canopy. 

1.3 Analytical wave attenuation model for flexible canopies 

Chapter 4 describes the analytical wave attenuation model for flexible canopies by incorporating 

the blade motion. Many wave attenuation models are based on the wave attenuation theories developed by 
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Dalrymple et al. (1984) and Kobayashi et al. (1993) assuming rigid vegetation without motion. Wave 

attenuation is dependent on the work of the canopy drag, which is proportional to the square of the relative 

velocity between the flow and the blade. Neglecting the blade motion can overestimate drag and therefore 

wave attenuation. In an effort to represent these uncertainties, a bulk drag coefficient (𝐶𝐷) approach has 

been applied (e.g., Kobayashi et al., 1993; Mendez and Losada, 2004). Luhar et al. (2017) proposed a 

technique that considers the effects of blade motion by using a reduced effective blade length (𝑙𝑒) rather 

than reduce the original drag coefficient (𝐶𝑑). The effective blade length (𝑙𝑒) is defined as the length of a 

rigid blade that dissipates the same wave energy as the flexible blade with the original length (𝑙). The bulk 

drag coefficient and effective blade length methods reduce the complexity to model the wave-vegetation 

interaction so that these models are computationally efficient and convenient to be implemented on large 

scales. However, experiments are required to calibrate 𝐶𝐷  and 𝑙𝑒 . Conventionally, 𝐶𝐷  is expressed as a 

function of Reynolds number (𝑅𝑒) or Keulegan–Carpenter number (𝐾𝐶) independent from vegetation 

flexural rigidity. Therefore, the Re- and KC-based empirical formulas for 𝐶𝐷 are different for vegetation 

with different flexibilities, e.g., the different formulas in Mendez and Losada (2004), Sanchez-Gonzalez et 

al. (2011), Jadhav et al. (2013), Anderson and Smith (2014), and Ozeren et al. (2014) as summarized in 

Chen et al. (2018) and van Veelen et al. (2020). The empirical formula for 𝑙𝑒 is expressed as a function of 

the Cauchy number (𝐶𝑎) incorporating vegetation flexural rigidity and therefore applicable for a wider 

range of canopy types. Accurate parameterization of 𝐶𝐷 and 𝑙𝑒 is important to predict the wave attenuation 

(Fringer, 2019), which requires a full understanding of wave-vegetation interaction. 

To quantify the blade motion, the blade is modeled as a cantilever beam assuming that the Euler-

Bernoulli beam approach is applicable. By simplifying the blade motion as a balance between drag force 

and blade bending resistance, Mullarney & Henderson (2010) obtained linear normal mode solutions for 

the blade displacement along the length. The model was recently extended to include the effects of 

buoyancy by Henderson (2019). With the normal mode technique, Zhu et al. (2020a) obtained frequency 

dependent analytical solutions for blade displacements in random waves considering the effects of inertial 
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forces. As the analytical solutions are limited to small-amplitude blade motion, a more precise solution for 

the large-amplitude blade motion can be obtained with numerical techniques (e.g., Zeller et al., 2014; Zhu 

and Chen, 2015; Luhar and Nepf, 2016; Leclercq and de Langre, 2018; Zhu et al., 2018; Chen and Zou, 

2019). The consistent-mass cable model described in Zhu et al. (2020b) was able to capture asymmetric 

‘‘whip-like’’ blade motion. These analytical solutions have shown to be useful to describe the mechanisms 

that influence of blade motion related to wave attenuation. Analytical solutions are also easier to be 

implemented into large-scale models. As the analytical wave attenuation model is developed based on the 

small-amplitude blade motion. The nonlinearity effects induced by the large-amplitude blade motion on the 

wave attenuation model as well as its application has not been understood yet. 

The objectives of Chapter 4 are to (1) develop an analytical wave attenuation model with resolving 

the blade motion, and (2) derive the analytical solutions for bulk drag coefficient and effective blade length. 

1.4 Frequency dependent random wave attenuation by flexible canopies 

Chapter 5 describes the extension of the analytical wave attenuation model to random waves and 

the application to analyze the wave attenuation capacity of suspended aquaculture structures in the field. 

At many sites, sea surface profiles are better represented by random waves. Random waves can be 

formulated as a superposition of monochromatic waves with a set of random phases. To represent the 

frequency dependent energy of random waves, the wave spectrum is often used. Assuming a narrow-banded 

wave spectrum, Mendez & Losada (2004) extended Dalrymple et al. (1984) model to consider random non-

breaking and breaking waves propagating over a mildly sloped vegetation seabed. The modification 

developed by Mendez & Losada (2004) has been implemented in the SWAN (Simulating WAves 

Nearshore) model by Suzuki et al. (2012), and the MDO (Mellor-Donelan-Oey) wave model for wind-

generated waves and swells in deep and shallow waters by Marsooli et al. (2017). Also based on the 

Dalrymple et al. (1984) technique, Chen & Zhao (2012) developed two submerged vegetation models for 

random waves by implementing the energy dissipation of random waves as described in Hasselmann & 

Collins (1968) and the joint distribution of wave heights and wave periods proposed by Longuet-Higgins 
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(1983). The Kobayashi et al. (1993) model was extended by Mendez et al. (1999) for irregular waves, wave 

reflection, and evanescent modes. Recently, Jacobsen et al. (2019a) developed a frequency dependent 

model for wave attenuation by submerged vegetation and identified that the wave attenuation for different 

frequency components of random waves are different. Like submerged vegetation, the wave attenuation 

capacity of suspended canopies in the field is also expected to be frequency dependent, which still need to 

be fully understood. As the blade motion influences the wave attenuation, there is still a need to extend the 

blade dynamic model for random waves and implement it into the random wave attenuation model. 

The objectives of Chapter 5 are therefore to (1) extend the analytical wave attenuation model for 

random waves, (2) characterize the effects of suspended aquaculture structures on wave attenuation in the 

field, and (3) provide an approach to use suspended aquaculture structures as a potential nature-based 

solution for wave attenuation. 

1.5 Outline 

This thesis includes six chapters. The remainder of this thesis is organized to support each set of 

chapter objectives as following: 

Chapter 2 describes the cable model developed to examine the blade motion as a function of blade 

geometry and wave properties. The cable model is compared with experimental data and previous 

vegetation models for the large-amplitude motions of blades in waves with and without currents. With the 

cable model, the theory for the symmetric and asymmetric motion of a flexible blade is developed. The 

model is then used to investigate the effects of blade length and flexural rigidity as well as wave height and 

wave period on the symmetric and asymmetric blade motions. Finally, the mechanisms for asymmetric 

blade motion and the conditions in which the asymmetry becomes negligible as well as the properties and 

implications of asymmetric blade motion are discussed. The material in this chapter has been published as 

Zhu et al. (2020b). 

Chapter 3 describes the physical laboratory experiments for wave attenuation by a suspended model 

kelp canopy. The morphological and mechanical properties of cultivated S. latissima at Saco Bay, Maine, 

USA are measured. The scaled physical model is designed based on the morphological and mechanical 
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properties of S. latissima considering dynamical similarity. The wave attenuation and forces are measured. 

The bulk drag coefficient and effective blade length for suspended canopies for wave attenuation are 

developed based on the data.  

Chapter 4 describes the analytical wave attenuation model with resolving blade motion. The 

analytical model is compared with the experiments for both suspended and submerged canopies. The 

analytical model is also compared with the numerical model in Chapter 3 to analyze the effects of the 

nonlinearity of large-amplitude blade motion. With the analytical model, the analytical solutions for bulk 

drag coefficient and effective blade length are derived and compared with the fitted formulas. After 

validation with experiments, the model is then used to analyze the seasonal impacts on the wave attenuation 

capacity of submerged vegetation and suspended canopies. 

Chapter 5 describes the frequency dependent theoretical model for random wave attenuation, which 

is extended from the analytical wave attenuation model in Chapter 4. The analytical wave attenuation model 

is coupled with cantilever-beam and buoy-on-rope vegetation models to consider the motion of canopies 

with different type components. The coupled flow and vegetation model is validated with laboratory 

experimental datasets for submerged canopies (Jacobsen et al., 2019a) and laboratory and field datasets for 

suspended canopies (Seymour and Hanes, 1979). The validated coupled model is then applied in the field 

near Saco, Maine in the Northeastern USA to investigate the potential of a mussel farm to damp storm 

during the January 2015 North American blizzard. The effectiveness of using a suspended aquaculture farm 

alone and in combination with submerged aquatic vegetation (SAV) close to shore for wave attenuation is 

also investigated. The material in this chapter has been published as Zhu et al. (2020a). 

Chapter 6 conclude the thesis with a summary of the major findings and contributions to the field, 

engineering implications for nature-based solutions, and suggestions for future research. 
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CHAPTER 2 

MECHANISMS FOR THE ASYMMETRIC MOTION OF SUBMERGED AQUATIC 

VEGETATION IN WAVES: A CONSISTENT-MASS CABLE MODEL1 

2.1. Background  

Submerged aquatic vegetation (SAV) including salt-marshes, seagrass beds, and kelp forests, 

provides a wide range of ecosystem services. SAV can attenuate wave energy, mitigate coastal erosion, 

reduce storm damage, and create habitats for fish and shellfish (Arkema et al., 2015; Dalrymple et al., 1984; 

Guannel et al., 2015; K. Hu et al., 2018; J. Hu et al., 2019; Z. Hu et al., 2014; Kobayashi et al., 1993; Lowe 

et al., 2007; Maza et al., 2015; Mendez & Losada, 2004; Nepf, 2012; Ondiviela et al., 2014; Suzuki et al., 

2019). The storm attenuation capacity of SAV needs to be quantified to develop effective and resilient 

coastal protection, management and adaptation strategies. While the effectiveness of SAV in coastal 

protection is dependent on its coastal coverage, population, size and density, the dynamics of a single blade 

in waves is critical to the understanding of the hydrodynamics and morphodynamics within a vegetation 

meadow. The dynamic motion of vegetation changes the flow and produces eddies which, in turn, alter the 

flow forcing on the blade and blade motion. The blade motion due to flexibility reduces the relative velocity 

between flow and vegetation as well as the frontal area, resulting in a reduced drag that decreases velocity 

attenuation and wave attenuation in the vegetation meadow (Abdolahpour et al., 2018; Bouma et al., 2005; 

Houser et al., 2015; Mullarney & Henderson, 2010; Paul et al., 2012; Riffe et al., 2011; Rupprecht et al., 

2017; Zeller et al., 2014). Numerical models have been developed to solve a force balance equation for the 

vegetation motion, considering gravity, buoyancy, structural damping, bending stiffness as restoring forces, 

as well as drag and inertia as driving forces (Ikeda et al., 2001; Leclercq & de Langre, 2018; Luhar & Nepf, 

2016; Zeller et al., 2014; Zhu & Chen, 2015). 

                                                           
1 This chapter has been published as Zhu, L., Zou, Q., Huguenard, K., & Fredriksson, D. W. (2020). Mechanisms for 

the Asymmetric Motion of Submerged Aquatic Vegetation in Waves: A Consistent‐Mass Cable Model. Journal of 

Geophysical Research: Oceans, 125(2), 1–31. https://doi.org/10.1029/2019JC015517 
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Blade motion in waves can be symmetric or asymmetric. Symmetric motion is a horizontal 

oscillation over the wave period with near-equal bending angles about the vertical axis. Asymmetric motion 

is an oscillation with more bending in the direction of wave propagation. This asymmetric behavior was 

described as a “whip-like” response by Rupprecht et al. (2017). Asymmetric blade motion could also induce 

drag asymmetry with less drag under the wave crest than the trough. According to (Luhar et al., 2010; 

2013), this effect could enhance the mean flow in the direction of wave propagation. Enhanced mean flow 

could also rein- force the asymmetry of the blade motion in a meadow (Luhar et al., 2017). Blade inclination 

in the direction of wave propagation in a meadow may also provide “shelter” effects for sediment and 

further reduce bedload transport and stabilize the seabed (Rupprecht et al., 2017). 

Asymmetric motion of a single blade has been identified in laboratory experiments (e.g., Jacobsen 

et al., 2019b; Lei &Nepf, 2019b). Döbken (2015) attribute the asymmetric behavior of blade motion to that 

of orbital velocities assuming the blade motion exactly follows the wave excursion. This interpretation only 

holds when the blade deflection is comparable to wave excursion. Using a numerical model of a single 

blade, Gijón Mancheño (2016) concluded that the vertical component of wave orbital velocity is the major 

contributing factor for the asymmetric blade motion based on the results that the blade motion is symmetric 

once the vertical component of wave orbital velocity is removed. Wave orbital asymmetry caused by wave 

nonlinearity, bottom slope, bottom friction and the presence of a structure (Elgar et al., 1990; Peng et al., 

2009; Zou & Peng, 2011; Zou et al., 2003) also leads to asymmetric response. For instance, this asymmetric 

motion was observed in a set of laboratory experiments by Luhar and Nepf (2016) conducted with 

horizontal wave velocities having greater values under the wave crest rather than the trough. Also, with 

experimental techniques, Rupprecht et al. (2017) observed a transition from symmetric to asymmetric blade 

motion with increasing wave orbital velocities, which indicates that the asymmetric motions of Puccinellia 

and Elymus only occur when the wave orbital velocities reached critical values. Since previous work 

focused on the influence of wave forcing characteristics that produces asymmetric motion, a need now 

exists to investigate the role of blade characteristics, including geometry and flexural rigidity that produces 

similar behavior. 
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The objective of this work is to identify the mechanisms for the asymmetric motion of SAV with 

focus on blade geometric and material properties. A cable model with consistent-mass properties is 

developed to examine the blade motion as a function of blade geometry and wave properties. The cable 

model is compared with experimental data and previous vegetation models for the large-amplitude motions 

of blades in waves with and without currents. With the cable model, the theory for the symmetric and 

asymmetric motion of a flexible blade is developed. The model is then used to investigate the effects of 

blade length and flexural rigidity as well as wave height and wave period on the symmetric and asymmetric 

blade motions. Finally, the mechanisms for asymmetric blade motion and the conditions in which the 

asymmetry becomes negligible as well as the properties and implications of asymmetric blade motion are 

discussed. 

2.2. Methodology 

The wave-induced motion of a flexible blade is often characterized by large deflections which are 

difficult to resolve with analytical approaches. Therefore, recent studies of blade dynamics have focused 

on numerical techniques such as the finite-difference and finite-element methods to consider large-

deflection-induced geometric nonlinearity. Using a spring-mass model to consider blade rigidity, Zeller et 

al. (2014) reduced the governing equations of blade dynamics to a system of ordinary differential equations 

(ODEs). In order to improve the model accuracy, consistent-mass models with partial differential equations 

(PDEs) were introduced to model the vegetation motion. The vegetation models developed by Luhar and 

Nepf (2016) and the elastic-rod model coupled with RANS-VOF Navier-Stokes solver proposed by Chen 

and Zou (2019) perform better for simulating the “first-normal-mode-like” blade motion rather than the 

“second-normal-mode-like” blade motion. To capture the “second-normal-mode-like” blade motion 

properly in this study, the consistent-mass cable model developed to represent the dynamics of flexible 

slender structures including steel cables (Howell, 1992; Tjavaras et al., 1998; Triantafyllou & Howell, 

1994), risers (Chatjigeorgiou, 2008), and mooring lines (Li et al., 2018), is extended to simulate the motions 

of SAV. 
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2.2.1. 2D Cable model 

 

Figure 2.1. Schematic diagram for the coordinate systems and the free-body diagram. (a) Fixed global 

Cartesian reference frame (x, z) with origin at the blade base. A local Lagrangian coordinate system (𝑡, �⃗⃗�) 

along the blade length (𝑠) associated with the angle of ϕ between the tangential direction (𝑡) and the 

vertical direction (𝑧). (b) The free-body diagram for one segment of flexible blade ds with effective tension 

(𝑇), shear (𝑄), net buoyancy (𝑓𝑁𝐵), drag (𝑓𝐷), friction (𝑓𝐹), virtual buoyancy (𝑓𝑉𝐵𝑥 , 𝑓𝑉𝐵𝑧), and added 

mass force (𝑓𝐴𝑀). 

 

To apply the 2D cable model, an individual blade of SAV was treated as a slender structure fixed 

at the base and free at the tip as shown on Figure 2.1(a). A fixed global Cartesian reference frame (𝑥, 𝑧) 

with the origin at the blade base is defined on Figure 2.1(a), where 𝑥 and 𝑧 indicate the horizontal and 

vertical directions, respectively. The flow field is described by the horizontal and vertical components, 

𝑈(𝑥, 𝑧, 𝑡) and 𝑊(𝑥, 𝑧, 𝑡), where 𝑡 denotes time. To derive the governing equations for the blade motion, a 

local Lagrangian coordinate system (𝑡, �⃗⃗�) along the blade length is used with 𝑡 representing the blade-

tangential direction and �⃗⃗� as the blade-normal direction. The velocity components of the blade segment 

(𝑑𝑠) in the blade-tangential direction and the blade-normal direction are u and w, respectively. The distance 

along the length of the blade (𝑙) from the base is defined as 𝑠 such that 𝑠 = 𝑙 at the tip of the blade. The 

local bending angle of the blade relative to the vertical direction (𝑧) is 𝜙, where 𝜙 = 0 denotes a vertical 
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upright posture for defining symmetric or asymmetric motion. The points in the Lagrangian coordinate 

system (𝑡, �⃗⃗�) can be obtained by rotating the global Cartesian coordinates (𝑥, 𝑧) counterclockwise by 

(𝜋/2 − 𝜙).  

Blade dynamics are governed by the force and momentum balances given by 

𝜌𝑣𝑏𝑑 (
𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝜙

𝜕𝑡
) = 𝑄

𝜕𝜙

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
+ 𝑓𝑁𝐵 cos 𝜙 + 𝑓𝑉𝐵𝑥 sin 𝜙 + 𝑓𝑉𝐵𝑧 cos 𝜙 − 𝑓𝐹,              (2.1) 

𝜌𝑣𝑏𝑑 (
𝜕𝑤

𝜕𝑡
− 𝑢

𝜕𝜙

𝜕𝑡
) =

𝜕𝑄

𝜕𝑠
− 𝑇

𝜕𝜙

𝜕𝑠
+ 𝑓𝑁𝐵 sin 𝜙 − 𝑓𝑉𝐵𝑥 cos 𝜙 + 𝑓𝑉𝐵𝑧 sin 𝜙 − 𝑓𝐷 − 𝑓𝐴𝑀,          (2.2) 

and 

𝑄 = 𝐸𝐼
𝜕2𝜙

𝜕𝑠2 ,                                                                 (2.3) 

as well as the compatibility relations for geometrical continuity given by 

𝜕𝑢

𝜕𝑠
+ 𝑤

𝜕𝜙

𝜕𝑠
−

1

𝐸𝑏𝑑

𝜕𝑇

𝜕𝑡
= 0,                                                  (2.4) 

and 

𝜕𝑤

𝜕𝑠
− 𝑢

𝜕𝜙

𝜕𝑠
+

𝜕𝜙

𝜕𝑡
= 0.                                                     (2.5) 

In equations (2.1) to (2.5), 𝜌𝑣 is the vegetation density, 𝑏 is the blade width, 𝑑 is the blade thickness, 𝐸 is 

the elastic modulus, 𝐼 = 𝑏𝑑3/12  is the second moment of the cross-section area of the blade, 𝑇 is the 

effective tension in the blade-tangential direction, 𝑄 is the shear force in the blade-normal direction, 𝑓𝑁𝐵 is 

the net buoyancy force per unit blade length (the following forces are per unit length) acting upward, 𝑓𝑉𝐵𝑥 

and 𝑓𝑉𝐵𝑧 are the horizontal and vertical components of virtual buoyancy (Denny et al., 1997; Gaylord et al., 

2003; Rosman et al., 2013), 𝑓𝐹 is the skin friction in the blade-tangential direction, 𝑓𝐷 is the drag force, and 

𝑓𝐴𝑀 is the added mass force in the blade-normal direction. The effective tension is the sum of the real 

tension and the product of the hydrostatic pressure and the cross-section area. The usage of effective tension 

makes Archimedes principle applicable to calculate the buoyancy of the segment that is not completely 

enclosed in fluid due to the neighboring segment (Howell, 1992; Sparks, 2009; Tjavaras et al., 1998). It 

should be noted that the hydrostatic pressure should be removed from the effective tension when calculating 

the real tension.  
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The static net buoyancy force 𝑓𝑁𝐵 is defined as the difference of the buoyancy and weight, given 

by 

𝑓𝑁𝐵 = (𝜌 − 𝜌𝑣)𝑔𝑏𝑑,                                                             (2.6) 

where 𝜌 is the fluid density, and 𝑔 is the gravitational acceleration. The hydrodynamic forces on the right-

hand side of equations (2.1) and (2.2) including virtual buoyancy (𝑓𝑉𝐵𝑥, 𝑓𝑉𝐵𝑧), drag force (𝑓𝐷), skin friction 

(𝑓𝐹), and added mass force (𝑓𝐴𝑀), which are given by modified Morison equations \cite{Morison1950}, 

𝑓𝑉𝐵𝑥 = 𝜌𝑏𝑑
𝜕𝑈

𝜕𝑡
,                                                             (2.7) 

𝑓𝑉𝐵𝑧 = 𝜌𝑏𝑑
𝜕𝑊

𝜕𝑡
,                                                           (2.8) 

𝑓𝐷 =
1

2
𝐶𝑑𝜌𝑏 |𝑤 + 𝑈 cos 𝜙 − 𝑊 sin 𝜙| (𝑤 + 𝑈 cos 𝜙 − 𝑊 sin 𝜙),                    (2.9) 

𝑓𝐹 =
1

2
𝐶𝑓𝜌2( 𝑏 + 𝑑) | 𝑢 − 𝑈 sin 𝜙 − 𝑊 cos 𝜙|( 𝑢 − 𝑈 sin 𝜙 − 𝑊 cos 𝜙),           (2.10) 

and 

𝑓𝐴𝑀 = 𝑚𝑎
𝜕

𝜕𝑡
( 𝑤 + 𝑈 cos 𝜙 − 𝑊 sin 𝜙),                                         (2.11) 

where 𝐶𝑑 is the drag coefficient, 𝐶𝑓 is the skin friction coefficient, 𝑚𝑎 is the added mass. The added mass 

is given by 𝑚𝑎 =  𝐶𝑚𝜌𝜋𝑏2/4 using the cylinder-equivalent blade cross-section following Luhar and Nepf 

(2016) and 𝐶𝑚 is the added mass coefficient. 

The boundary conditions for the bottom-rooted blade are set as 𝑢 = 0, 𝑤 = 0 and 𝜙 = 0 at the 

blade base (𝑠 = 0) , as well as 𝑇 = 0 , 𝜕𝜙/𝜕𝑠 = 0  and 𝜕2𝜙/𝜕𝑠2 = 0  at the blade tip (𝑠 = 𝑙) . The 

governing equations (1) to (5) are a system of nonlinear partial differential equations solved by 

discretization using a finite difference scheme, the Keller Box method (Anderson et al., 2016; Keller, 1971), 

which is implicit, second order accurate, single step, unconditionally stable and convergent. The Newton-

Raphson iteration method was used to solve the discretized equations. 

2.2.2. Hydrodynamic force coefficients 

The drag coefficient and added mass coefficient for blades are considered a function of Keulegan-

Carpenter number ( 𝐾𝐶 ). The 𝐾𝐶  number is defined as 𝐾𝐶 = 𝑈𝑚𝑇𝑤/𝑏 , where 𝑈𝑚  is the maximum 
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oscillatory flow velocity and 𝑇𝑤 is the wave period. Based on datasets for rigid plates in oscillatory flows 

with 𝐾𝐶 = 1.7~118.2 (Keulegan & Carpenter, 1958; Sarpkaya & O'Keefe, 1996), Luhar and Nepf (2016) 

developed formulas for drag coefficient and added mass coefficient, given by 

𝐶𝑑 = max(10𝐾𝐶−1/3, 1.95)                                                     (2.12) 

and 

𝐶𝑚 = min(𝐶𝑚1, 𝐶𝑚2),                                                         (2.13) 

respectively, where 𝐶𝑚1 = {
1 + 0.35𝐾𝐶2/3,    𝐾𝐶 < 20

1 + 0.15𝐾𝐶2/3,    𝐾𝐶 ≥ 20
 and 𝐶𝑚2 = 1 + (𝐾𝐶 − 18)2/49 as described in 

Luhar (2012). 

The friction coefficient is taken as a function of Reynolds number (𝑅𝑒). The Reynolds number is 

defined as 𝑅𝑒 = 𝑈𝑚𝑏/𝜈, where 𝜈 is the kinematic viscosity of the water. According to Zeller et al. (2014) 

and Abdelrhman (2007), the friction coefficient is given by 

𝐶𝑓 = 0.074 𝑅𝑒−1/5.                                                       (2.14) 

Luhar and Nepf (2016) noted that the exact value of 𝐶𝑓 had little effect on their model results because the 

ratio of the calculated root-mean-square forces for 𝐶𝑓 = 0.1 and 𝐶𝑓 = 0.01 was distributed with mean and 

standard deviation 1.00 ± 0.01. For simplicity, Zeller et al. (2014) selected an approximated value of 0.02. 

In contrast, Luhar and Nepf (2016) used a larger value of 𝐶𝑓 = 0.1 because their model was found unstable 

for the cases with high Cauchy number if 𝐶𝑓 = 0.01 . The Cauchy number (𝐶𝑎 ) is the ratio of the 

hydrodynamic force to the restoring force due to plant stiffness and given by 𝐶𝑎 = 𝜌𝑏𝑈𝑚
2 𝑙3/𝐸𝐼. In this 

study, equation (2.14) is used to calculate the friction coefficient. 

2.3. Model-data comparison 

2.3.1. Blade motion in combined waves and currents 

The cable model results were first compared with the laboratory experiments by Zeller et al. (2014) 

for the blades in combined waves and currents. During the experiments, six wave-current conditions were 

produced, where the wave period 𝑇𝑤 = 2.80 ∼ 5.19 s, the amplitude of the horizontal wave velocity 𝑈𝑤 =
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9.45 ∼ 25.8 cm/s, and the currents 𝑈𝑐 = 3.66 ∼ 13.7 cm/s (Table 2.1). The still water depth was 40 cm. 

The model blades were made of low-density polyethylene (LDPE) with 𝜌𝑣 = 920 kg/m3 and 𝐸 = 0.3 GPa 

(Ghisalberti & Nepf, 2002). Four 1 cm-wide model blades with different lengths and thicknesses were used. 

Three of the blades were 15 cm long with thicknesses of 0.20, 0.25, and 0.30 mm. The fourth blade was 20 

cm long with a thickness of 0.25 mm. Therefore, 𝐶𝑎 = 101 ∼ 2883, 𝐾𝐶 = 40 ∼ 197 and 𝑅𝑒 = 1441 ∼

3790. Details of the experiments can be found in Zeller et al. (2014). 

 

Table 2.1. Blade properties and wave conditions in the experiments by Zeller et al. (2014) and Luhar and 

Nepf (2016). 

Experiment Blade property Wave Current 

𝑈𝑐 

(cm/s) 

𝑇𝑤 

(s) 

𝑎𝑤 

(cm) 

𝑈𝑤 

(cm/s) 

Blade in waves and currents 

(Zeller et al., 2014) 

LDPE: 

𝜌𝑣 = 920 kg/m3 

𝐸 = 0.3 GPa 

𝑏 = 1 cm  

𝑑 = 0.2, 0.25, 0.3 mm 

𝑙 = 15, 20 cm 

5.19 - 25.8 12.1 

4.29 - 17.3 13.2 

2.8 - 9.45 12.9 

5.19 - 24.4 6 

4.29 - 15.9 5.63 

2.8 - 9.64 4.77 

Blade in waves 

(Luhar & Nepf, 2016) 

0.4 mm-thick HDPE: 

𝜌𝑣 = 950 kg/m3 

𝐸 = 0.93 GPa 

1.9 mm-thick silicon foam: 

𝜌𝑣 = 670 kg/m3 

𝐸 = 0.5 MPa 

𝑏 = 2 cm 

𝑙 = 5, 10, 15, 20 cm 

2 1(0.9) 5.0 - 

2 2(1.9) 10.1 - 

2 3(2.9) 15.4 - 

2 4(3.9) 20.6 - 

1.4 2(1.7) 8.9 - 

1.4 4(3.5) 16.7 - 

1.1 2(1.7) 6.6 - 

1.1 4(3.6) 12.8 - 

 

To drive the model, the wave-current flow is considered as a superposition of currents and linear 

waves. The hydrodynamic force coefficients for waves as described in section 2.2.2 are assumed to be also 

applicable for combined waves and currents conditions following Lei and Nepf (2019a). The calculated 

deflected blade-tip heights (𝑧𝑇) at the maximum horizontal displacements (𝑥𝑇,max) are shown on Figure 
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2.2 along with the data and the model results from Zeller et al. (2014). The root-mean-square-error (RMSE) 

for the cable model results is RMSE = 0.043 and smaller than that of the model results from Zeller et al. 

(2014) with RMSE = 0.103. The improvement of RMSE is possible because the present cable model is a 

consistent-mass model while the Zeller et al. (2014) model is a spring-mass model. Additionally, the 

compatibility relations described in equation (4) and (5) are not included in Zeller et al. (2014). Therefore, 

the Zeller et al. (2014) model has difficulty to converge for some test cases with large 𝐶𝑎 ≫ 103 (e.g., 

missed points on Figure 2.2), where the blade is so flexible that can curl over. In comparison, the cable 

model is stable and convergent for all the test cases. 

 

 

Figure 2.2. Model-data comparison for the normalized deflected blade-tip height (𝑧𝑇/𝑙) at the maximum 

horizontal displacement of the blade tip (𝑥𝑇,max) vs the Cauchy number (𝐶𝑎). The data is denoted by black 

circles, the model results from Zeller et al. (2014) are denoted by blue triangles and those from the cable 

model are denoted by red crosses. The associated root-mean-square-error (RMSE) is shown in the legend. 

 

2.3.2. Blade motion in waves 

The cable model results were also compared with the data from the laboratory experiments by 

Luhar and Nepf (2016) for waves only. Eight wave conditions were produced with wave period 𝑇𝑤 = 1.1 ∼

2.0 s and wave amplitude 𝑎𝑤 = 1 ∼ 4 cm (Table 2.1). The still water depth (ℎ) was 30 cm. The model 
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blades were made of high-density polyethylene (HDPE, 𝜌𝑣 = 950 kg/m3 and 𝐸 = 0.93 GPa) and silicon 

foam (𝜌𝑣 = 670 kg/m3 and 𝐸 = 0.5 MPa). The blades were 2 cm wide with lengths of 5, 10, 15, and 20 

cm. The thicknesses were 0.4 mm and 1.9 mm for the HDPE and silicon foam blades, respectively. 

Therefore, 𝐶𝑎 = 0.02 ∼ 1200, 𝐾𝐶 = 3.7 ∼ 20.6, and 𝑅𝑒 = 1000 ∼ 4120. Details of the experiments can 

be found in Luhar and Nepf (2016). 

 

 

Figure 2.3. Measured horizontal component of the wave orbital velocity at 𝑧 =  0 for the wave with period 

𝑇𝑤 = 2 s and amplitude 𝑎𝑤 = 4 cm (Luhar & Nepf, 2016). The measured horizontal component of the 

wave orbital velocity is denoted by the dotted black line and the first four harmonics fit is denoted by solid 

green line. 

 

The velocity profile was measured using particle image velocimetry (PIV, details referred to Luhar 

& Nepf, 2016) that captures the instantaneous flow velocity resulting from the superposition of the incident 

and reflected waves, where the wave reflection ratio of the wave flume is 7% (Lei & Nepf, 2019b). The 

first four harmonics fit of the measured flow velocity (𝑟2 = 0.99, Figure 2.3) at one horizontal position 

was used as an approximation for the input flow field in Luhar and Nepf (2016). This approximation only 

represents the temporal variation of the velocity profile at that horizontal position. Due to the effects of 

wave reflection on the velocity amplitude, this approximation for the flow profile at other horizontal 
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position may has a small 𝑟2 =  0.91 for the wave reflection of 7%. To represent the spatial variation of the 

wave flow field, the wave number (𝑘) is used and obtained by solving the dispersion relation, 𝜔2 =

𝑔𝑘 tanh 𝑘ℎ (Dean & Dalrymple, 1991), where the wave radian frequency 𝜔 = 2𝜋/𝑇𝑤. By incorporating 

the effects of the spatial variance into the wave phase, the modified approximation for the input flow field 

reduces the effects of wave reflection on the flow field and enhances 𝑟2 to be greater than 0.98 at all the 

horizontal positions in the range of the blade motion. In addition, the wave reflection-induced change of 

the velocity amplitude at all the horizontal positions has limited effects (< 2.5%) on the drag coefficient. 

Therefore, the modified approximation for the input flow field by incorporating spatial variance is 

adequately precise to drive the cable model. 

The comparisons between the cable model results and the data, as well as the model results from 

Luhar and Nepf (2016) are shown on Figure 2.4 for the horizontal displacement range of the blade-tip 

(𝑥𝑇,max − 𝑥𝑇,min) and the root-mean-square of the total horizontal force (𝐹𝑥,rms) at the blade base. To 

normalize 𝐹𝑥,rms, the root-mean-square of the total horizontal force on a rigid blade with the same geometry 

is used and given by 

𝐹𝑥,rms,rigid = √ 1

𝑇𝑤
∫ [ ∫ (

1

2
𝐶𝑑𝜌𝑏|𝑈|𝑈 + 𝑚𝑎

𝜕𝑈

𝜕𝑡
+ 𝜌𝑏𝑑

𝜕𝑈

𝜕𝑡
) 𝑑𝑧

𝑙

0
]

2
𝑑𝑡

𝑇𝑤

0
.                    (2.15) 

For the HDPE blades, the RMSE of the cable model results is 0.050 for the blade-tip range and 

0.184 for the total horizontal force, which are a little larger than those of the model results from Luhar and 

Nepf (2016) with RMSE = 0.048 for the blade-tip range and RMSE = 0.174 for the total horizontal force. 

However, the cable model shows improvements in simulating the motion of the silicon foam blade with 

RMSE = 0.126 for the blade-tip range and RMSE = 0.043 for the total horizontal force, which are smaller 

than those by the model of Luhar and Nepf (2016) with RMSE = 0.151 for the blade-tip range and RMSE 

= 0.049 for the total horizontal force. 
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Figure 2.4. Comparisons for (a, b) the normalized horizontal displacement range of the blade-tip 

(𝑥𝑇,𝑚𝑎𝑥 − 𝑥𝑇,𝑚𝑖𝑛)/2𝑙 and (c, d) the root-mean-square of the total horizontal force (𝐹𝑥,rms) normalized by 

the total horizontal force (𝐹𝑥,rms,rigid) for a rigid blade with the same geometry for (a, c) HPDE and (b, d) 

silicon foam blades, respectively. The model results from Luhar and Nepf (2016) are denoted by blue 

triangles with root-mean-square-error (RMSE) in blue text while the cable model results are denoted by red 

crosses with RMSE in red text. 

 

To further evaluate the performance of the numerical models, the model results for the blade tip 

trajectory are shown on Figure 2.5 and the blade postures associated with the total horizontal force (𝐹𝑥) are 
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shown on Figure 2.6 and Figure 2.7. We note that the blade motion shown on Figure 2.5 is asymmetric with 

respect to the vertical line x=0, which will be further examined in section 2.4. 

 

 
Figure 2.5. Blade postures and blade tip trajectory for the 20 cm-long (a) HDPE and (b) silicon foam blades 

over one wave period for the waves with period 𝑇𝑤 = 2 s and amplitude 𝑎𝑤 = 4 cm. The data is denoted 

by black open circles, the model results from Luhar and Nepf (2016) are denoted by magenta dotted lines, 

and those from the cable model are denoted by green lines (thick green lines indicate the trajectory of the 

blade tip while the thin green lines indicate the postures of the blade at selected time steps). 

 

Both model blades exhibit periodic motion, but with different dynamic characteristics. For instance, 

the HDPE model blade behaves like the “first normal mode” of a cantilever beam (Figure 2.5a and Figure 

2.6a-l) since the wave frequency 𝑓𝑤 = 1/𝑇𝑤 = 0.5 Hz is smaller than the first natural frequency 𝑓1 =

1.8752𝑓0 = 1.54 Hz of the HDPE blade, where 𝑓0 = √𝐸𝐼/[(𝜌𝑣𝑏𝑑 + 𝑚𝑎)𝑙4] (Rao, 2010). The silicon foam 

model blade, however, behaves like a “second normal mode” (Figure 2.5b and Figure 2.7a-l) since the wave 

frequency 𝑓𝑤 is between the first natural frequency 𝑓1 = 0.36 Hz and the second natural frequency 𝑓2 =

4.694𝑓0 = 2.26 Hz of the silicon foam blade. The normal mode theory for linear vibration is not suitable 

to analyze the nonlinear vibration of the blades, but it is the basis to analyze the nonlinear normal mode for 

large-amplitude vibration of a cantilever beam (Hsieh et al., 1994). 
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Figure 2.6. Comparisons for (a-l) the 20 cm-long HDPE blade posture (𝑥, 𝑧) normalized by blade length 

(𝑙), (m) the differences between the simulated and observed blade-tip displacements (𝜖𝑇), and (n) the total 

horizontal force (𝐹𝑥) normalized by the root-mean-square horizontal force by rigid plate with the same 

geometry (𝐹𝑥,rms,rigid)  along time (𝑡) . The waves with period 𝑇𝑤 = 2  s and amplitude 𝑎𝑤 = 4  cm 

propagate from left to right. Black dashed lines: the data from Luhar and Nepf (2016); magenta dotted lines: 

the model results from Luhar and Nepf (2016); green solid lines: the cable model results; grey shaded 

region: the estimated uncertainty in the experiments (Luhar & Nepf, 2016). 
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Figure 2.7. Comparisons for (a-l) the 20 cm-long silicon foam blade posture (𝑥, 𝑧) normalized by blade 

length (𝑙), (m) the differences between the simulated and observed blade-tip displacements (𝜖𝑇), and (n) 

the total horizontal force (𝐹𝑥) normalized by the root-mean-square horizontal force by rigid plate with the 

same geometry (𝐹𝑥,rms,rigid) along time (𝑡). The waves with period 𝑇𝑤 = 2 s and amplitude 𝑎𝑤 = 4 cm 

propagate from left to right. Black dashed lines: the data from Luhar and Nepf (2016); magenta dotted lines: 

the model results from Luhar and Nepf (2016); green solid lines: the cable model results; grey shaded 

region: the estimated uncertainty in the experiments (Luhar & Nepf, 2016). 

 

To quantify the performance of the numerical simulations for blade postures, the normalized error 

(𝜖𝑇) between the simulated and observed displacements of the blade tip is used and given by 

𝜖𝑇(𝑡) = √(𝑥𝑇 − 𝑥𝑇
∗ )2 + (𝑧𝑇 − 𝑧𝑇

∗ )2/𝑙,                                            (2.16) 
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where (𝑥𝑇 , 𝑧𝑇)  and (𝑥𝑇
∗ , 𝑧𝑇

∗ )  are the simulated and observed Cartesian coordinates of the blade tip, 

respectively. A smaller value of 𝜖𝑇 indicates a closer simulation. For the HDPE blade shown on Figure 

2.6(m), 𝜖𝑇 of the cable model results is smaller than that of the model results from Luhar and Nepf (2016) 

under wave trough. The time averaged 𝜖𝑇 over one wave period for the cable model is 𝜖𝑇 = 0.116 and 

14.1% less than that of the model from Luhar and Nepf (2016) with 𝜖𝑇 = 0.135 for HDPE blade (Table 

2.2). For the silicon foam blade shown on Figure 6(m), 𝜖𝑇 of the cable model is smaller than that of the 

model from Luhar and Nepf (2016) during the entire wave period. The 𝜖𝑇 of the cable model is 0.056 and 

79.7% less than that of the model from Luhar and Nepf (2016) with 𝜖𝑇 = 0.276 for silicon foam blade 

(Table 2.2). 

 

Table 2.2. Normalized time averaged error (𝜖�̅�) for the simulated excursions of the blade tip. 

Blades Luhar and Nepf (2016) Cable model (𝑎 − 𝑏)/𝑎 × 100% 

 (a) (b)  

Silicon foam 0.276 0.056 79.7% 

HDPE 0.135 0.116 14.1% 

 

The calculated total horizontal force by the cable model is consistent with the data with a 

normalized root-mean-square error (NRMSE) of 0.151 for the HDPE blade and 0.045 for the silicon foam 

blade. The NRMSE of 𝐹𝑥 by the cable model is comparable to the model results from Luhar and Nepf 

(2016) with NRMSE = 0.139 for the HDPE blade and NRMSE = 0.041 for the silicon foam blade. Although 

the results of the two models are quite different for the blade postures, the results for the total horizontal 

force are similar because the total horizontal force is the integration of the horizontal force distributed along 

the blade. The variance of the distributed force and the momentum along the blade cannot be represented 

by the total horizontal force, but it imposes significant influences on the blade postures. Therefore, the 

difference in the total horizontal force comparison with the results from Luhar and Nepf (2016) is small, 

but the difference in posture comparison is large. As the postures of the blade represent the combined action 
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of the distributed force and momentum along the blade, the posture is used to demonstrate the blade 

dynamics rather than the integration of the horizontal forces along the blade length. 

Compared with the model of Luhar and Nepf (2016), the cable model showed an advantage to 

simulate the blade dynamics, in particular for the simulations of blade postures in waves. The improvements 

for the posture simulations are mainly due to the incorporation of (i) the influences of the blade-motion-

induced rotations of local Lagrangian coordinates along the blade on the added mass force as shown in 

equation (2.11), (ii) the dynamic equilibrium for the geometric continuity of the segments as shown in the 

compatibility relations from equations (4) and (5), and (iii) the spatial variation of the wave orbital velocity 

encountered by the blade due to blade displacements. Since the blade acts as a solid moving boundary in 

the fluid domain, its motion influences the flow structure. Therefore, accurate blade posture predictions are 

required to fully resolve the flow-vegetation interaction, wave-driven currents in a vegetation meadow, and 

the wave attenuation by vegetation. This model can also be used to estimate the internal stress of the blade 

and the total force at the bottom of the blade in order to analyze the breakage and the sediment holding 

properties of the blade. 

2.4. Symmetric and asymmetric blade motions 

2.4.1. Definition 

To quantify the asymmetric motion, the blade posture asymmetry (𝛽𝑥𝑇) is defined as the ratio of 

the time-averaged horizontal displacement of the blade tip (𝑥𝑇)  to the maximum absolute horizontal 

displacement (|𝑥𝑇|max) over one wave period (Figure 2.8) and given by 

𝛽𝑥𝑇 =
𝑥𝑇

|𝑥𝑇|max
,                                                                           (2.17) 

where (𝑥𝑇) is always smaller than (|𝑥𝑇|max) such that 𝛽𝑥𝑇 ∈ (−1, 1). The posture asymmetry is positive 

when the blade inclines to the direction of wave propagation. For example, the motions of the blades shown 

on Figure 2.5 are asymmetric with 𝛽𝑥𝑇 = 0.30  and 𝛽𝑥𝑇 = 0.27  for HDPE and silicon foam blades, 

respectively.  
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Figure 2.8. The blade posture asymmetry (𝛽𝑥𝑇) is defined as the ratio of time-averaged displacement of the 

blade tip (𝑥𝑇) to the maximum absolute displacement (|𝑥𝑇|max). (a) Blade postures and tip trajectory. The 

horizontal and vertical coordinates (𝑥, 𝑧) are normalized by the blade length (𝑙). The thin green lines 

indicate the blade postures and the thick green line indicate the excursion of the blade tip. The black dash-

dotted line indicates the time-averaged posture of the blade postures over one wave period and the thin 

dashed line indicate the vertical center. (b) The time series of the horizontal displacement of the blade tip. 

The time (𝑡) is normalized by wave period (𝑇𝑤). 

 

2.4.2. Theory 

Asymmetric blade motions shown on Figure 2.5 are partially induced by the weak asymmetry of 

wave motion as shown on Figure 2.3. However, using linear waves to drive the model without the influences 

of wave asymmetry still results in asymmetric blade motion (Figure 2.9) with 𝛽𝑥𝑇 = 0.31 and 𝛽𝑥𝑇 = 0.32 

for HDPE and silicon foam blades, respectively. The magnitude of the blade posture asymmetry in linear 

waves is similar to that in weak asymmetric waves, suggesting that other mechanisms may have contributed 

to the observed asymmetric blade motion. 

The mechanisms that contribute to the blade asymmetric motion in linear waves are identified 

according to the governing equations of blade motion. Substituting equations (2.3) and (2.6) to (2.11) into 

(2.1) and (2.2) yields 
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Figure 2.9. Blade postures and blade tip trajectory for the 20 cm-long (a) HDPE and (b) silicon foam blades 

over one wave period for the symmetric waves with period 𝑇𝑤 = 2 s and amplitude 𝑎𝑤 = 4 cm. Thick 

green lines indicate the trajectory of the blade tip while the thin green lines indicate the postures of the 

blade at selected time steps. 

 

𝐸𝐼
𝜕𝜙

𝜕𝑠

𝜕2𝜙

𝜕𝑠2 +
𝜕𝑇

𝜕𝑠
+ (𝜌 − 𝜌𝑣)𝑔𝑏𝑑 cos 𝜙 +

1

2
𝐶𝑓𝜌2(𝑏 + 𝑑)|−𝑢 + 𝑢𝑤(𝑥, 𝑧, 𝑡)|[−𝑢 + 𝑢𝑤(𝑥, 𝑧, 𝑡)] +

𝜌𝑏𝑑 [−
𝜌𝑣

𝜌
(

𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝜙

𝜕𝑡
) +

𝜕𝑢𝑤(𝑥,𝑧,𝑡)

𝜕𝑡
+ 𝑤𝑤(𝑥, 𝑧, 𝑡)

𝜕𝜙

𝜕𝑡
] = 0                     (2.18) 

and 

𝐸𝐼
𝜕3𝜙

𝜕𝑠3 − 𝑇
𝜕𝜙

𝜕𝑠
+ (𝜌 − 𝜌𝑣)𝑔𝑏𝑑 sin 𝜙 +

1

2
𝐶𝑑𝜌𝑏|−𝑤 + 𝑤𝑤(𝑥, 𝑧, 𝑡)|[−𝑤 + 𝑤𝑤(𝑥, 𝑧, 𝑡)] +

𝐶𝑚𝜌
𝜋

4
𝑏2 [ −

𝜕𝑤

𝜕𝑡
+

𝜕𝑤𝑤(𝑥,𝑧,𝑡)

𝜕𝑡
] + 𝜌𝑏𝑑 [−

𝜌𝑣

𝜌
(

𝜕𝑤

𝜕𝑡
− 𝑢

𝜕𝜙

𝜕𝑡
) +

𝜕𝑤𝑤(𝑥,𝑧,𝑡)

𝜕𝑡
− 𝑢𝑤(𝑥, 𝑧, 𝑡)

𝜕𝜙

𝜕𝑡
] = 0,     (2.19) 

where  

𝑢𝑤(𝑥, 𝑧, 𝑡) = 𝑈 sin 𝜙 + 𝑊 cos 𝜙                                                        (2.20) 

and  

𝑤𝑤(𝑥, 𝑧, 𝑡) = −𝑈 cos 𝜙 + 𝑊 sin 𝜙                                                     (2.21) 

are the encountered flow velocities (wave motion related to the blade) in the blade tangential and normal 

direction, respectively. According to linear wave theory (Dean & Dalrymple, 1991), the horizontal and 

vertical components of the wave orbital velocity are given by 

𝑈(𝑥, 𝑧, 𝑡) = 𝑎𝑤𝜔
cosh 𝑘𝑧

sinh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)                                                 (2.22) 
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and 

𝑊(𝑥, 𝑧, 𝑡) = 𝑎𝑤𝜔
sinh 𝑘𝑧

sinh 𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡).                                               (2.23) 

Substituting equations (2.22) and (2.23) into equations (2.20) and (2.21) yields 

𝑢𝑤(𝑥, 𝑧, 𝑡) = 𝑎𝑤𝜔
cosh 𝑘𝑧

sinh 𝑘ℎ
cos 𝜙 cosh 𝑘𝑥

tan 𝜙 tan 𝑘𝑥−tanh 𝑘𝑧

cos[𝑘𝑥+arctan(
tan 𝜙

tanh 𝑘𝑧
)]

sin 𝜓𝑡                         (2.24) 

and 

𝑤𝑤(𝑥, 𝑧, 𝑡) =
𝑎𝑤𝜔 cosh 𝑘𝑧

sinh 𝑘ℎ
cos 𝜙 cosh 𝑘𝑥

−1+tan 𝜙 tan 𝑘𝑥 tanh 𝑘𝑧

cos[𝑘𝑥+arctan(tan 𝜙 tanh 𝑘𝑧)]
cos 𝜓𝑛 ,                   (2.25) 

where the velocity phase 𝜓𝑡 = 𝜔𝑡 − [𝑘𝑥 + arctan(tan 𝜙 / tan 𝑘𝑧)]  and 𝜓𝑛 = 𝜔𝑡 − [𝑘𝑥 +

arctan(tan 𝜙 tanh 𝑘𝑧) ]. 

It is assumed that the blade moves at the same period as the wave period (𝑇𝑤). It is also assumed 

that there is a unique solution to the governing equations (2.18), (2.19), (2.4), and (2.5). The existence of 

symmetric motion is explored by examining a pair of symmetric solutions, i.e., 

{𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), 𝑤(𝑠, 𝑡), 𝜙(𝑠, 𝑡)}  at the position (𝑥, 𝑧) at time 𝑡  and {𝑇(𝑠, 𝑡 + Δ𝑡), 𝑢(𝑠, 𝑡 + Δ𝑡), 𝑤(𝑠, 𝑡 +

Δ𝑡), 𝜙(𝑠, 𝑡 + Δ𝑡)} = {𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)} at the symmetric position (−𝑥, 𝑧) at time 𝑡 + Δ𝑡, 

as demonstrated on Figure 2.10. It takes Δ𝑡 to move from position (𝑥, 𝑧) to (−𝑥, 𝑧) and it also takes the 

same time Δ𝑡 to move back to (𝑥, 𝑧) due to symmetric motion, yielding Δ𝑡 = 𝑇𝑤/2. 

Taking {𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), 𝑤(𝑠, 𝑡), 𝜙(𝑠, 𝑡)}  as the solution at time 𝑡 , 

{𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)} is shown to satisfy the compatibility relations by substituting it into 

the compatibility relation equations (2.4) and (2.5). The next step is to check if 

{𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)}  also satisfies equations (2.18) and (2.19) at 𝑡 + Δ𝑡 . Substituting 

{𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)} into equations (2.18) and (2.19) for time 𝑡 + Δ 𝑡 yields 

𝐸𝐼
𝜕𝜙

𝜕𝑠

𝜕2𝜙

𝜕𝑠2 +
𝜕𝑇

𝜕𝑠
+ (𝜌 − 𝜌𝑣)𝑔𝑏𝑑 cos 𝜙 +

1

2
𝐶𝑓𝜌2(𝑏 + 𝑑) |−𝑢 + 𝑢𝑤 (−𝑥, 𝑧, 𝑡 +

𝑇𝑤

2
)| [−𝑢 +

𝑢𝑤 (−𝑥, 𝑧, 𝑡 +
𝑇𝑤

2
)] + 𝜌𝑏𝑑 [−

𝜌𝑣

𝜌
(

𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝜙

𝜕𝑡
) +

𝜕𝑢𝑤(−𝑥,𝑧,𝑡+
𝑇𝑤

2
)

𝜕𝑡
− 𝑤𝑤 (−𝑥, 𝑧, 𝑡 +

𝑇𝑤

2
)

𝜕𝜙

𝜕𝑡
] = 0         (2.26) 

and 
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𝐸𝐼
𝜕3𝜙

𝜕𝑠3 − 𝑇
𝜕𝜙

𝜕𝑠
+ (𝜌 − 𝜌𝑣)𝑔𝑏𝑑 sin 𝜙 +

1

2
𝐶𝑑𝜌𝑏 |−𝑤 − 𝑤𝑤 (−𝑥, 𝑧, 𝑡 +

𝑇𝑤

2
)| [ −𝑤 − 𝑤𝑤 (−𝑥, 𝑧, 𝑡 +

𝑇𝑤

2
)] +

𝐶𝑚𝜌
𝜋

4
𝑏2 [−

𝜕𝑤

𝜕𝑡
−

𝜕𝑤𝑤(−𝑥,𝑧,𝑡+
𝑇𝑤

2
)

𝜕𝑡
] + 𝜌𝑏𝑑 [−

𝜌𝑣

𝜌
(

𝜕𝑤

𝜕𝑡
− 𝑢

𝜕𝜙

𝜕𝑡
) −

𝜕𝑤𝑤(−𝑥,𝑧,𝑡+
𝑇𝑤

2
)

𝜕𝑡
− 𝑢𝑤 (−𝑥, 𝑧, 𝑡 +

𝑇𝑤

2
)

𝜕𝜙

𝜕𝑡
] =

0.                 (2.27) 

 

Figure 2.10. The postures of the blade over one-half of a wave period (𝛥𝑡 = 𝑇𝑤/2) for symmetric motion. 

The thin arrows show the global coordinate system (𝑥, 𝑧) with origin 𝑂 while the thick arrows show the 

velocity of the blade segments at the distance of 𝑠. The thin green lines indicate the selected blade postures. 

The thick dark green lines indicate the blade posture with velocity (𝑢, 𝑤) and bending angle 𝜙  at the 

position (𝑥, 𝑧) at time t and the symmetric blade posture with symmetric velocity (𝑢, −𝑤) and symmetric 

bending angle −𝜙 at the symmetric position (−𝑥, 𝑧) after half wave period. The thick light green line 

indicates the excursion of the blade tip. 

 

The differences between equations (2.26) and (2.18), and between equations (2.27) and (2.19) are the terms 

involving flow velocities, 𝑢𝑤  and 𝑤𝑤 . In order for (2.26) to equal (2.18) and (2.27) to equal (2.19), it 

requires  

𝑢𝑤 (−𝑥, 𝑧, 𝑡 +
𝑇𝑤

2
) = 𝑢𝑤(𝑥, 𝑧, 𝑡)                                                       (2.28) 

and 

𝑤𝑤 (−𝑥, 𝑧, 𝑡 +
𝑇𝑤

2
) = −𝑤𝑤(𝑥, 𝑧, 𝑡).                                                  (2.29) 
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Replacing (𝑥, 𝑧, 𝑡) by (−𝑥, 𝑧, 𝑡 + 𝑇𝑤/2) in equations (2.24) and (2.25) yields the velocity at (−𝑥, 𝑧, 𝑡 +

𝑇𝑤/2), i.e., 

𝑢𝑤 (−𝑥, 𝑧, 𝑡 +
𝑇𝑤

2
) = 𝑎𝑤𝜔

cosh 𝑘𝑧

sinh 𝑘ℎ
cos 𝜙 cosh 𝑘𝑥

tan 𝜙 tan 𝑘𝑥−tanh 𝑘𝑧

cos[𝑘𝑥+arctan(
tan 𝜙

tan 𝑘𝑧
)]

sin(𝜓𝑡 + Δ𝜓𝑡)        (2.30) 

and 

𝑤𝑤 (−𝑥, 𝑧, 𝑡 +
𝑇𝑤

2
) = −𝑎𝑤𝜔

cosh 𝑘𝑧

sinh 𝑘ℎ
cos 𝜙 cosh 𝑘𝑥

−1+tan 𝜙 tan 𝑘𝑥 tanh 𝑘𝑧

cos[𝑘𝑥+arctan(tan 𝜙 tan 𝑘𝑧)]
cos(𝜓𝑛 + Δ𝜓𝑛),     (2.31) 

where  

Δ𝜓𝑡 = 2 [ 𝑘𝑥 + arctan (
tan 𝜙

tan 𝑘𝑧
)] + 𝜋                                               (2.32) 

and 

Δ𝜓𝑛 = 2[𝑘𝑥 + arctan(tan 𝜙 tan 𝑘𝑧)].                                            (2.33) 

By comparing (2.30) and (2.24) as well as (2.31) and (2.25), equations (2.28) and (2.29) are not always 

guaranteed due to the phase differences Δ𝜓𝑡 and Δ𝜓𝑛. Thus, {𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)} is not a 

solution to the governing equations (2.18) and (2.19) and therefore the blade motion is asymmetric. The 

phase differences lying within the interval [−𝜋, 𝜋) are given by 

Ψ𝑡 =  2 [ 𝑘𝑥 + arctan (
tan 𝜙

tan 𝑘𝑧
)]  fmod 2𝜋 − 𝜋                                      (2.34) 

in the tangential direction and 

Ψ𝑛  =  {2[𝑘𝑥 + arctan(tan 𝜙 tan 𝑘𝑧)] + 𝜋} fmod 2𝜋 − 𝜋                               (2.35) 

in the normal direction, where the “fmod” operator is defined as 𝑎 fmod 𝑏 =  𝑎 −  𝑛𝑏 and 𝑛 ∈ 𝑁 such 

that 𝑛𝑏 ≤ 𝑎 < (𝑛 + 1)𝑏 . The phase differences shown in equations (2.34) and (2.35) are explicitly 

expressed as functions of blade displacements, bending angle and wave number (representing wavelength), 

but implicitly functions of wave conditions and blade characteristics.  

The phase differences consist of two terms corresponding to two major mechanisms that induce 

asymmetric motion, i.e., (i) the blade horizontal displacement (𝑘𝑥) and (ii) the action of vertical wave 

orbital velocity (tanh 𝑘𝑧, the ratio of vertical component to the horizontal component of wave orbital 

velocity) associated with blade vertical displacement (𝑘𝑧) . The effects of bending angle (𝜙)  are not 
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considered as a major mechanism because the term including tan 𝜙 is dependent on the vertical wave 

orbital velocity. If the vertical wave orbital velocity does not exist, the effects of tan 𝜙 will disappear. On 

the other hand, when 𝜙 > 45∘, tan 𝜙 > 1 acts as an amplification factor such that the action of vertical 

wave orbital velocity is more pronounced than the horizontal displacement of the blade. 

Due to the phase differences in the encountered flow velocities, the drag and inertial forces are 

asymmetric, as well as the blade motion. The tangential phase difference Ψ𝑡 describes the phase difference 

of the combined tangential force acting on the blade and driving the asymmetric blade motion. The 

tangential forces include friction and the tangential component of the virtual buoyancy. The normal phase 

difference Ψ𝑛 describes the phase difference of the combined normal force acting on the blade and driving 

the asymmetric blade motion. The normal forces include drag, added mass force, and the normal component 

of the virtual buoyancy. In the case of perfect symmetric blade motion, both Ψ𝑡 and Ψ𝑛 should equal zero 

at each time step. The onset of asymmetric motion will occur, however, relatively symmetric motion 

(defined as 𝛽𝑥𝑇 ≪ 1) can occur when  

|Ψ𝑡| ≪ 1                                                                   (2.36) 

and 

|Ψ𝑛| ≪ 1.                                                                 (2.37) 

The drag dominates compared to the frictional and inertial forces, so the normal forces are much larger than 

the tangential forces. Therefore, the contribution of normal phase difference Ψ𝑛 to the asymmetric motion 

is expected to be much larger than that of tangential phase difference Ψ𝑡. Thus, the motion is symmetric as 

long as equation (2.37) is satisfied.  

Asymmetric blade motion is caused by the phase differences Ψ𝑡 and Ψ𝑛 of the encountered flow 

velocity due to the blade displacements. However, the magnitude of the asymmetry is also impacted by 

other factors including the blade characteristics and wave properties, which determine the blade 

displacements. The impacts of these factors on the magnitude of blade asymmetry will be further 

investigated using the cable model in the following sections.  
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2.4.3. Case study 

The dynamic response of blades to symmetric wave forcing is investigated using the cable model. 

Blade geometric and material properties are adopted from those summarized in Lei and Nepf (2016), which 

are also provided in Table 2.3. In this case study, the blade length 𝑙 = 0.05 ∼ 0.60 m and the flexural 

rigidity 𝐸𝐼 = 0.13 × 10−5 ∼ 3.9 × 10−5  Nm2 are used to represent a variety of blade characteristics. 

Water depth is set as ℎ = 1 m such that 𝑙/ℎ = 0.05 ∼ 0.60. Wave period 𝑇𝑤 = 0.9 ∼ 12.2 s is selected 

such that the ratio of water depth to wavelength is ℎ/𝐿 = 0.026 ∼ 0.791. This would correspond to a wide 

range of wave conditions from shallow to deep water. The wave height is set as 𝐻/ℎ = 0.02 ∼ 0.30 to 

consider the influence of wave heights on asymmetric motion. To make equations (2.12) to (2.14) 

applicable to calculate the hydrodynamic force coefficients, the selected results for analysis are from the 

cases with 𝐾𝐶 = 0.1 ∼ 113.6. The corresponding 𝑅𝑒 = 9.7 ∼ 3822.5 and 𝐶𝑎 = 3.1 ∼ 14742.8.  

 

Table 2.3. Blade geometric and material properties for the selected species used in the present study 

following Lei and Nepf (2016). 

 
Elastic 

modulus 
Density Thickness Width Length 

Flexural 

rigidity 

 E (GPa) ρv (kg/m3) d (mm) b (mm) l (m) EI (×10−5 Nm2) 

Thalassia testudinuma 0.4 ∼ 2.4 940 0.30 ∼ 0.37 10 0.1 ∼ 0.25 - 

Zostera marinab 0.3 700 0.15 ∼ 0.23 3 ∼ 5 0.15 ∼ 0.6 - 

Posidonia oceanicac 0.5 910 0.2 10 0.15 ∼ 0.5 - 

Blades for case study 0.1 ∼ 0.3 900 0.25 10 0.05 ∼ 0.6 0.13 ∼ 3.9 

aBradley and Houser (2009), Weitzman et al. (2013). bAbdelrhman (2007), Fonseca et al. (2007), McKone 

(2009), Moore (2004). cFolkard (2005), Infantes et al. (2012). 

 

To investigate the onset of asymmetric blade motion, Ψ𝑡 and Ψ𝑛 at the blade tip are calculated 

using the displacements and bending angles of the blade tip defined as Ψ𝑡𝑇 and Ψ𝑛𝑇, respectively. The 

results of the blade posture asymmetry (𝛽𝑥𝑇) are shown on Figure 2.11, where waves propagate to the right 

such that 𝛽𝑥𝑇 > 0. The results for the cases where waves propagate to the left are omitted here because 𝛽𝑥𝑇  
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Figure 2.11. Contour of the blade posture asymmetry (𝛽𝑥𝑇, in colors) vs the normal phase difference 𝛹𝑛𝑇 

and tangential phase difference 𝛹𝑡𝑇 at the blade tip. Waves propagate to the right such that 𝛽𝑥𝑇 > 0. 

 

keeps the same magnitude but with an opposite sign. The blade motion is near symmetric (𝛽𝑥𝑇 < 0.05) 

when |Ψ𝑛𝑇|/𝜋 < 0.003, regardless of the value of Ψ𝑡𝑇. If |Ψ𝑡𝑇|/𝜋 < 0.3, 𝛽𝑥𝑇 < 0.05 when |Ψ𝑛𝑇|/𝜋 <

0.01. Posture asymmetry increases with increasing Ψ𝑡𝑇  and Ψ𝑛𝑇 . “Ripples” appear in the contours on 

Figure 2.11 because Ψ𝑡𝑇  and Ψ𝑛𝑇  are the factors that only induce asymmetry. However, when the 

asymmetry occurs, the magnitude is influenced by the blade material and geometric characteristics, as well 

as the wave conditions. 

The blade posture asymmetry is also examined as a function of the ratio of blade length to wave 

length (𝛾 = 𝑙/𝐿) for the wave conditions and blade characteristics shown on Figure 2.12. The results show 

that the motion is almost symmetric (𝛽𝑥𝑇  <  0.05) when 𝛾 < 0.01. As 𝛾 increases, 𝛽𝑥𝑇 increases to a peak 

value defined as peak asymmetry (𝛽𝑝) and the corresponding 𝛾 is defined as peak length ratio (𝛾𝑝), which 

characterizes the resonant condition. As shown on Figure 2.12, 𝛽𝑝 increases with wave height and blade 

length. It is also evident that 𝛽𝑝decreases with increasing blade flexural rigidity (Figure 2.12a-d). However, 

for longer blades such that 𝑙/ℎ ≥  0.45 as shown on Figure 2.12(e) and (f), the decrease in 𝛽𝑝 is less than 

5\% for 𝐻/ℎ ≥  0.1. This might be because long blades (𝑙/ℎ ≥  0.45) are so flexible that their postures are 
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close to a bending limit. Near the limit, the posture changes slowly with flexural rigidity and so does the 

peak asymmetry. In general, the motion of a longer blade with smaller flexural rigidity in larger-amplitude 

waves behaves more asymmetric. 

 

 

Figure 2.12. The blade posture asymmetry (𝛽𝑥𝑇) as a function of the ratio of blade length and wavelength 

(𝛾 = 𝑙/𝐿). The blade lengths normalized by water depth (𝑙/ℎ) are (a) 0.05, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.45 

and (f) 0.6. The wave heights normalized by water depth (𝐻/ℎ) are 0.04, 0.06 and 0.1. The blade flexural 

rigidities (𝐸𝐼) are 1.04 × 10−5, 1.95 × 10−5 and 3.9 × 10−5 Nm2. 
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2.5. Discussion 

2.5.1. Mechanisms for asymmetric blade motion 

In symmetric waves, asymmetric blade motion is due to the phase differences of the encountered 

flow velocity and induced by two mechanisms: (i) the blade displacements and (ii) the vertical component 

of the wave orbital velocity. The effect of the vertical component of the orbital velocity is more pronounced 

than that of blade displacements, especially for a larger deflected blade with the posture being more 

horizontal. Previous research attributed the asymmetric motion to the wave orbital trajectory based on the 

assumption that the blade motion is at the same scale as the wave excursion (Döbken, 2015). However, the 

generalized mechanisms for the asymmetric blade motion may be derived from the wave flow field relative 

to the blade motion without that assumption. 

The blade postures as a function of wave orbital velocities at 8 wave phases over one wave period 

are shown on Figure 2.13, where the waves propagate to the right. The blade is initially vertical at 𝑡/𝑇𝑤 =

0 and reaches steady state after up to 30 wave cycles. The steady state position of the blade is independent 

of its initial conditions. The blade motion is governed by the driving force and the bending stiffness of the 

blade. To simply demonstrate the underlying mechanisms, it is assumed that the driving force is dominated 

by drag and the blade velocity (𝑢, 𝑤) is smaller than the wave orbital velocity (𝑈, 𝑊) such that the force 

direction acts in the direction of the flow velocity (𝑈, 𝑊). For the steady scenario at position 0 under wave 

crest, the driving force is directed to the right following wave orbital velocity, which causes the blade to 

bend to the right (Figure 2.13c). From position 0 to position 2, the horizontal component of wave orbital 

velocity 𝑈 is directed to the right in the direction of wave propagation, while the vertical component of 

wave orbital velocity 𝑊 points downward. From position 2 to 4, 𝑈 changes direction toward the left, but 

𝑊 is still directed downward. Ultimately, there is a net force imposed on the blade due to 𝑊 acting 

downward on the blade for the first half of the wave cycle, which promotes the downward motion of the 

blade and prevents it from moving back to position 0. In the second half of the wave period (positions 4 to 

7), the blade begins slightly inclined to the right compared to position 0. Over the second half of the wave  
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Figure 2.13. The postures of a 45 cm-long blade (in green) in the wave flow field with wave period 𝑇𝑤 =

3.2  s and amplitude 𝑎𝑤 = 5  cm in 1 m-deep water (intermediate water waves). The blade posture 

asymmetry is 𝛽𝑥𝑇 = 0.7. The waves propagate from left to right. The dark thin green lines indicate the 

blade postures. The blade displacements (𝑥, 𝑧) are normalized by wavelength (𝐿). (a) The blade postures 

from positions 0 to 7. (b) The upper parts (zoom in) of the blade postures labeled number 0 to 7, which 

indicate the blade positions at 8 wave phases with 𝑡/𝑇𝑤 = 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1. The 

black arrows indicate wave orbital velocity at the blade tip. (c) to (k) show the blade postures and wave 

flow field. The green solid line indicates the current blade posture and the dashed green lines indicate the 

blade posture at previous one position. The light thick green line indicate the trajectory of the blade tip. The 

black arrows indicate the wave flow field. 
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period, 𝑈 points to the left from positions 4 to 6 and changes direction toward the right from positions 6 to 

0. However, 𝑊 is directed upward from positions 4 to 0, which prevents the downward motion of the blade 

on the left side of the vertical axis. The net effect of 𝑊 is a blade that is inclined in the direction of wave 

propagation. 

Blade displacement influences the asymmetric flow velocity encountered by the blade. For 

example, by comparing U during the second half of the wave period (position 4-7, Figure 2.13g-j) with the 

first half (position 0-3, Figure 2.13c-f), the positive horizontal velocity 𝑈 towards the right is larger than 

the negative 𝑈 towards the left. Therefore, the net horizontal component is directed to the right, causing the 

blade to incline to the right. 

Even though wave orbital velocities are symmetric over the wave period, blade inclination occurs 

due to the blade displacement and the asymmetric action of the vertical component of the wave orbital 

velocity. This inclination is more pronounced in shorter waves, as the vertical velocity increases to the same 

magnitude as the horizontal velocity, and the blade displacement becomes more comparable with the 

shortened wavelength. 

2.5.2. Conditions for symmetric blade motion 

Blade displacements and vertical wave orbital velocities induce blade asymmetry. Symmetric blade 

motion therefore occurs if these variables are very small, which are satisfied when (i) blade length is much 

smaller than the wavelength (𝑙/𝐿 ≪ 1), (ii) in shallow water waves (ℎ/𝐿 ≪ 1) and (iii) the blade length is 

much smaller than water depth (𝑙/ℎ ≪ 1) in finite-depth-water waves. These conditions are derived from 

equations (2.36) and (2.37) and the detail derivations are provided in Appendix A. 

For short blades in long waves (𝑙/𝐿 ≪ 1), the blade displacement and 𝑊 are negligible to the scale 

of wavelength so that phase differences between the encountered wave orbital velocities at asymmetric 

positions are also negligible, resulting in symmetric blade motion. 

Similarly, in shallow water waves (ℎ/𝐿 ≪ 1), the blade motion is symmetric because the effects 

of blade displacement and 𝑊  are negligible due to the small blade displacement compared to the 
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wavelength and negligible 𝑊 in shallow water waves. One example of the symmetric blade motion in 

shallow water waves is shown on Figure A.1.  

For short blades (𝑙/ℎ ≪ 1) in finite-depth-water waves (ℎ/𝐿 ∼ 𝑂(1)), the blade motion behaves 

symmetric because the horizontal displacement of the blade is small, and 𝑊 is close to 0 when approaching 

the blade near the bottom. In the field, at the initial growth phase of SAV, the blade is so short that the 

motion is symmetric. When the blade grows longer, the blade motion may become asymmetric. 

2.5.3. Properties and implications of asymmetric blade motion 

Strict conditions for symmetric motion indicate that the occurrence of symmetric motion is limited. 

Therefore, the blade motion is typically asymmetric for most situations. The peak asymmetry occurs when 

the ratio of blade length to wavelength reaches the peak length ratio. The results showed that the peak 

asymmetry is a function of wave conditions and blade characteristics. Generally, the peak asymmetry of 

blade motion becomes larger in waves with a larger amplitude. When the blade grows longer, the peak 

asymmetry also increases because longer blade has larger deflection and encounters larger wave orbital 

velocities. However, the blade flexural rigidity reduces the peak asymmetry. 

The behavior of asymmetric blade motion can be used to guide planting strategies of SAV for 

sediment settlement. The asymmetric motion is expected to benefit sediment settlement because the 

“shelter” created by the blade inclination could hinder sediment suspension at the seabed. To take advantage 

of the peak asymmetry, it is recommended to choose the SAV species such that the ratio of the blade length 

and the dominant wavelength is close to the peak length ratio. Longer blades are preferred because they 

increase the peak asymmetry and provide a larger “shelter”. 

The asymmetric blade motion may also influence the morphological characteristics and the fatigue 

life of SAV. The cross-section of the vegetation and even the elastic modulus may become asymmetric in 

response to the asymmetric blade motion. For example, asymmetric motion induces the stress imbalance 

on the cross section. Thus, the tension side of the cross section becomes thinner while the compression side 

becomes thicker. Asymmetric blade motion and sheltering may lead to morphological change which in turn 
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may affect flow pattern near the vegetation. The influences of asymmetric motion on the vegetation 

morphology and fatigue life will be investigated in the future work. 

In the field, waves are usually superimposed with background currents (Weitzman et al., 2013, 

2015). Following currents are expected to enhance the asymmetry of the blade motion while opposing 

currents are expected to decrease the asymmetry. With following currents, the asymmetry of blade motion 

increases with increasing currents (e.g., Figure 6 of Lei & Nepf, 2019a). 

A single vegetation blade likely has little influence on waves, however, numerous blades as a SAV 

meadow can significantly impact waves by generating turbulence (Abdolahpour et al., 2018; Tan et al., 

2019; Tang et al., 2019; Zhang et al., 2018), reducing wave energy (Garzon et al., 2019; Henderson et al., 

2017; Infantes et al., 2012; Nowacki et al., 2017; Paul et al., 2012), and inducing mean currents 

(Abdolahpour et al., 2017; Chen et al., 2019; Luhar & Nepf, 2011). The wave-driven currents in a vegetation 

meadow are expected to enhance the asymmetry of blade motion (e.g., Figure 8 of Lei & Nepf, 2019b). In 

return, the asymmetric motion of blades as a meadow are likely to impact the wave-driven current and 

consequently the mass transport, which warrants further investigation. The asymmetric blade motion in a 

meadow is observed to modify the wave orbital velocity and further influence wave attenuation with a 

magnitude larger than the influences of blade stiffness (Paul et al., 2012). The wave shape may also be 

changed with the asymmetric blade motion due to the asymmetric wave attenuation. 

2.6. Summary 

The asymmetric behavior of SAV in waves was investigated using a mass-consistent cable model. 

Implementing the cable model improves blade motion modeling. This was especially true for “second-

normal-mode-like” blade motion by incorporating the effects of the blade-motion-induced rotations of local 

Lagrangian coordinates along the blade on inertial force, the compatibility relations for geometrical 

continuity of the blade segments and the spatial variation of wave orbital velocity encountered by the blade 

due to blade displacements. With this cable model, two major factors were found to influence asymmetric 

blade motion other than wave orbital motion asymmetry. These factors are (i) the spatial asymmetry of the 

encountered wave orbital velocities induced by the blade displacements and (ii) the asymmetric action on 
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the blade by the vertical wave orbital velocities. When near symmetric motion exists (𝛽𝑥𝑇 ≪ 1), conditions 

are (i) the blade length is much smaller than the wavelength with 𝑙/𝐿 ≪ 1, (ii) in shallow water waves with 

ℎ/𝐿 ≪ 1 or (iii) the blade length is much smaller than the water depth with 𝑙/ℎ ≪ 1 in finite-depth-water 

waves. Peak asymmetry occurs when the ratio of blade length to wavelength (𝑙/𝐿) reaches the critical 

value. Peak asymmetry is found to increase with wave height and blade length but decrease with increasing 

blade flexural rigidity. 

Asymmetric blade motion in a vegetation meadow is expected to influence the wave-driven 

currents, wave attenuation and wave shape. Meanwhile, the wave-driven currents and wave asymmetry also 

influence the asymmetry of blade motion. It is therefore worthwhile not only to investigate the dynamics 

of vegetation, but to also incorporate the two-way feedback between the asymmetric blade motion and the 

wave flow field in wave-vegetation models, such as the coupled CFD and immersed boundary method 

model by Chen and Zou (2019) and N-box model (Zeller et al., 2015). Improved blade posture simulations 

by the present consistent-mass cable model will yield more accurate predictions for wave-vegetation 

interaction. In the future work, the cable model will be coupled with a 3D wave hydrodynamics model to 

investigate the capacity of SAV for wave attenuation, as well as its influence on wave-driven currents in a 

vegetation meadow. 
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CHAPTER 3 

WAVE ATTENUATION BY SUSPENDED CANOPIES WITH CULTIVATED KELP 

(SACCHARINA LATISSIMA)  

3.1. Background 

Kelp is considered one of many types of brown macroalgae seaweeds that contribute to coastal 

ecosystems by providing food, shelter, and enhanced oxygen habitats for fish and marine animals. Kelp 

also provides services such as recycling inorganic nutrients, preventing eutrophication, reducing carbon 

dioxide concentration, and potentially mitigating ocean acidification (Duarte et al., 2017; Stévant et al., 

2017; Xiao et al., 2017; Campbell et al., 2019). Furthermore, the existence of kelp can physically influence 

the environmental hydrodynamics. For example, Macrocystis pyrifera (giant kelp) forests can significantly 

reduce currents (Jackson 1997; Gaylord et al., 2007; Rosman et al., 2007) and internal wave amplitudes 

(Jackson 1984; Rosman et al., 2007) off west coast of California, USA. However, no significant (surface) 

wave attenuation was observed over M. pyrifera forests by Elwany et al. (1995), which is likely due to the 

compliant nature of the kelp, the sparse canopy density (~0.1 plants/m2) and the limited canopy height 

related to the water depths (typical averages of 10 m). Similar results are also observed for highly flexible 

Nereocystis luetkeana (bull kelp, Gaylord et al., 2003) and deeply submerged Ecklonia radiata (<10% of 

the water column, Morris et al., 2019). However, Laminaria hyperborea (tangle) with 25 plants/m2 in 

shallow water (5 m) have been observed to reduce wave energy by 70-85% over a distance of 258 m (Mork, 

1996).  

Unlike wild kelp that grows on the seafloor, kelp aquaculture farms that float may also have the 

potential to dissipate wave energy, especially since surface wave energy is concentrated near the surface. 

Furthermore, many kelp aquaculture farms are densely seeded to maximize economic output. With large 

cultivated kelp plant density, the wave attenuation performance could provide better performance than 

naturally occurring kelp beds. 
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Wave attenuation theories for submerged canopies including wild kelp beds have been developed 

by Dalrymple et al. (1984) and Kobayashi et al. (1993). These approaches were extended to floating and 

suspended canopies by Plew et al. (2005) and Zhu and Zou (2017), respectively. Zhu and Zou (2017) 

showed that the suspended and floating canopies can reduce more wave energy than submerged canopies 

in the same conditions because wave energy decreases toward the bottom, especially for shorter waves. 

However, these approaches assumed a rigid canopy component without motion, which may overestimate 

the wave attenuation. Recently, Zhu et al. (2020a) extended the wave attenuation methods to be frequency 

dependent for random waves and incorporated the motion of the flexible canopy component. Compared to 

nearshore submerged aquatic vegetation (SAV), suspended aquaculture structures are less affected by water 

level changes since suspended aquaculture structures float near the water surface (Zhu et al., 2020a). In one 

case study, Zhu et al. (2020a) demonstrated that the implementation of aquaculture structures offshore can 

extend the wave attenuation capacity of SAV-based living shorelines over wider ranges of wave frequency 

and water level. With numerical techniques, such as the SWASH (Simulating WAves till SHore, Zijlema 

et al., 2011) model, Chen et al. (2019) investigated the wave-driven circulation cell induced by suspended 

canopies and found that the vertical position of the canopy also has significant effects on the wave-driven 

current in the canopy. Although these studies have provided important insight into the wave attenuation 

potential of suspended aquaculture farms, experimental research to quantify the performance of suspended 

kelp aquaculture is still needed. 

Research to examine the hydrodynamic characteristics of kelp blades in steady flow was conducted 

by Buck and Buchholz (2005). In their study, the drag characteristics of both a single and an aggregate of 

Saccharina latissima (sugar kelp) blades were investigated with tow tests in still water. The results showed 

sheltering interactions among the blades so that the drag force of an aggregate of kelp blades cannot be 

estimated by simply superimposing the drag of individual blades. Vettori and Nikora (2019) investigated 

the turbulent flow interaction with single blades of S. latissima in an open-channel flume and showed 

enhanced turbulence in blade wakes. At low current speeds, the flapping motion of kelp blades of S. 

latissima, M. pyrifera, and N. luetkeana can significantly enhance the nutrient flux to the blade surface 
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(Huang et al., 2011). Using polyethylene to model S. latissima, Vettori and Nikora (2018) found that the 

model kelp blades increase the turbulence intensity and reduce the mean longitudinal velocity. By 

comparing the hydrodynamic performance of S. latissima with the performance of the model blades, Vettori 

and Nikora (2020) showed that the model blades replicated many aspects of S. latissima blade dynamics, 

although the drag force and reconfiguration were underestimated. To avoid the dynamic similarity issues, 

Fredriksson et al. (2020) conducted full-scale model experiments to understand the hydrodynamics of an 

aggregate of model S. latissima blades in steady flow. Fredriksson et al. (2020) showed a threshold for 

reconfiguration as the tow speed at which the horizontal component of tangential drag was equal or 

exceeded the horizontal component of the normal drag. To build upon this work, it is important to examine 

the dynamics of suspended kelp blades in waves and the value of suspended kelp aquaculture structures for 

wave attenuation in a laboratory environment. Appropriate parameters from these experiments are essential 

for modeling wave attenuation with canopy models. 

The objective of this study is to quantify the wave attenuation capacity of suspended kelp canopies 

with a scaled physical model in a set of laboratory experiments. To predict wave attenuation under a wider 

range of conditions, a simple numerical model was developed based on the blade dynamic model in Zhu et 

al. (2020b). This model was also used to perform dynamic similarity analysis in preparation for the model 

tests. The physical model kelp material was chosen from the measured morphological and mechanical 

properties of cultivated S. latissima at Saco Bay, Maine in the USA considering dynamic similarity. The 

motions of both a single and an aggregate of blades were recorded to analyze the blade dynamics with focus 

on the mechanisms for observed roll-up of suspended blades. The horizontal forces on unsheltered single 

blades and sheltered blades were measured to examine the differences. The wave height evolution along 

the suspended canopy was also measured to investigate wave attenuation performance. With the 

experimental results, bulk drag coefficient and effective blade length estimates for the suspended canopy 

were developed. The numerical model was compared with the datasets and then used to investigate the 

potential of using suspended kelp aquaculture structures as nature-based coastal protection.  
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3.2. Materials and methods 

3.2.1. Theory for blade dynamics and wave attenuation 

 

 

Figure 3.1. Sketch for the coordinate systems. The global Cartesian reference frame (𝑥, 𝑧) with 𝑥 = 0 at 

the leading edge of the canopy and 𝑧 = 0 at the still water level (SWL). The local Lagrangian coordinate 

system (𝑡, �⃗⃗�) along the blade length (s) associated with the angle of 𝜙 between the horizontal line and the 

blade tangential direction (𝑡). The blade length is 𝑙. The suspended blade is fixed at the upper end with 

distance of 𝑑1 below the SWL. The canopy length is 𝐿𝑣. The water depth is ℎ. 

 

The dynamics of kelp blades in waves can be described using the cable model in Zhu et al. (2020b) 

by representing the structure as a cantilever beam discretized as blade segments ( 𝑑𝑠 ). The velocity 

components of the blade segment are defined using a local Lagrangian coordinate system (𝑡, �⃗⃗�) along the 

blade length with 𝑡 representing the blade-tangential direction and �⃗⃗� as the blade-normal direction (Figure 

3.1). The velocity components in the blade-tangential direction (𝑢) and normal direction (𝑤) are a function 

of the distance (𝑠) along the blade length (𝑙) from the fixed end with time (𝑡). The wave velocity field 

(𝑈, 𝑊) is defined using global Cartesian coordinates (𝑥, 𝑧), where the horizontal coordinate 𝑥 is positive in 

the direction of wave propagation with 𝑥 = 0 at the leading edge of the kelp canopy and the vertical 

coordinate 𝑧 is positive upward with 𝑧 = 0 at the still water level (SWL). The angle of the tangential 

direction (𝑡) relative to the horizontal direction (𝑥) is 𝜙. Thus, the points in the Lagrangian coordinate 
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system (𝑡, �⃗⃗�) can be obtained by rotating the global Cartesian coordinates (𝑥, 𝑧) counterclockwise by 𝜙. In 

the procedure, a set of normalized variables were applied to the governing equations in Zhu et al. (2020b) 

and described as, 

�̂� =
𝑠

𝑙
, �̂� = 𝑡𝜔, �̂� =

𝑢

𝑙𝜔
, �̂� =
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where 𝑇 is the effective tension of the blade, 𝐸 is the bending elastic modulus, 𝐼 = 𝑏𝑑3/12 is the second 

moment of the cross-section area of the blade with 𝑏 being the blade width and 𝑑 being the blade thickness, 

𝜔 = 2𝜋/𝑇𝑤 is the wave angular frequency with 𝑇𝑤 being the wave period, and 𝑈𝑚 is the magnitude of the 

horizontal wave orbital velocity. Therefore, the dimensionless governing equations are given by 
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The dimensionless parameters governing the blade dynamics include the aspect ratio, 

𝛿 = 𝑑/𝑏,                                                             (3.6) 

the slenderness, 

𝑆 = 𝑏/𝑙,                                                            (3.7) 

the length ratio, 

𝐿 = 𝑙/𝐴𝑤,                                                      (3.8) 

the Keulegan-Carpenter number, 
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𝐾𝐶 = 𝑈𝑚𝑇𝑤/𝑏,                                                   (3.9) 

the density ratio, 

𝜌′ = 𝜌𝑣/𝜌,                                                           (3.10) 

the buoyant parameter, 

𝐵 = (𝜌 − 𝜌𝑣)𝑔𝑏𝑑𝑙3/𝐸𝐼 = (1 − 𝜌′)𝐶𝑎/𝐹𝑟
2,                           (3.11) 

and the Cauchy number, 

𝐶𝑎 = 𝜌𝑏𝑈𝑚
2 𝑙3/𝐸𝐼,                                                 (3.12) 

where 𝜌𝑣 is the blade mass density, 𝜌 is the water density, g is the gravitational acceleration, 𝐴𝑤 = 𝑈𝑚/𝜔 

is the wave orbital excursion, and 𝐹𝑟 = 𝑈𝑚/√𝑔𝑏 is the Froude number. In (3.4), the friction coefficient is 

𝐶𝑓 = 0.074𝑅𝑒−1/5 (Abdelrhman, 2007; Zeller et al., 2014) with the Reynolds number 𝑅𝑒 = 𝑈𝑚𝑏/𝜈 and 𝜈 

being the fluid kinematic viscosity. In (3.5), the drag coefficient is 𝐶𝑑 = max(10𝐾𝐶−1/3, 1.95) and the 

added mass coefficient is 𝐶𝑚 = min(𝐶𝑚1, 𝐶𝑚2) with  𝐶𝑚1 = {
1 + 0.35𝐾𝐶2/3,    𝐾𝐶 < 20

1 + 0.15𝐾𝐶2/3,    𝐾𝐶 ≥ 20
 and 𝐶𝑚2 = 1 +

(𝐾𝐶 − 18)2/49 (Luhar, 2012; Luhar and Nepf, 2016). The formulas for 𝐶𝑑 and 𝐶𝑚 are obtained from the 

experiments by Keulegan & Carpenter (1958) and Sarpkaya & O'Keefe (1996) with 𝐾𝐶 = 1.7~118.2.  

The dynamic similarity for the blade motion requires the same dimensionless parameters in (3.6) 

to (3.12) for the model and the full-scale prototype. The aspect ratio (𝛿), slenderness (𝑆), and length ratio 

(𝐿) represent the geometrical property and the KC number represent the inertia property of fluid. The 

similarity for 𝛿 , 𝑆 , 𝐿 , and 𝐾𝐶  can be satisfied by Froude similarity criteria (including geometrical 

similarity). The density ratio 𝜌′, buoyant parameter 𝐵, and Cauchy number 𝐶𝑎 represent the blade material 

properties. However, they are not independent as 𝐵 = (1 − 𝜌′)𝐶𝑎/𝐹𝑟
2  (3.11). Therefore, two of the 

following parameters: 𝜌′, 𝐵, and 𝐶𝑎 are the required criteria to select the material to fabricate the model 

blades. In a similar approach, Fryer et al. (2015) used 𝜌′ and 𝐶𝑎 as the similarity criteria to fabricate the 

model kelp blade for Macrocystis with a silicone-based polymer. 
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In this study, the blade is fixed and suspended at the upper end (𝑠 = 0) with tangential direction 

downward such that 𝜙 = 3𝜋/2 for the initial static state (Figure 3.1). Thus, the boundary conditions are set 

as �̂� = 0 , �̂� = 0  and 𝜙 = 3𝜋/2  at the fixed end with �̂� = 0 , as well as �̂� = 0 , 𝜕𝜙/𝜕�̂�  = 0  and 

𝜕2𝜙/𝜕�̂�2 = 0 at the free end with �̂� = 1. The relationships between 𝑠 and (𝑥, 𝑧) are 

𝑥 = ∫ cos 𝜙 𝑑𝑠
𝑠

0
,                                                                    (3.13) 

and 

𝑧 = −𝑑1 − ∫ sin 𝜙 𝑑𝑠
𝑠

0
,                                                         (3.14) 

where 𝑑1 is the distance from the upper fixed end of the blade to SWL (Figure 3.1). Equations (3.13) and 

(3.14) are required to calculate the blade posture and transit the flow velocity from global Cartesian 

coordinates to local Lagrangian coordinates. Solving the blade dynamical equations (3.2) to (3.5) with 

boundary conditions yields the blade velocity (𝑢, 𝑤) and direction angle (𝜙). 

For linear waves, the wave orbital velocities are expressed as (Dean & Dalrymple, 1991) 

𝑈 =
𝐻

2
𝜔

cosh 𝑘(ℎ+𝑧)

sinh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡),                                             (3.15) 

and 

𝑊 =
𝐻

2
𝜔

sinh 𝑘(ℎ+𝑧)

sinh 𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡),                                            (3.16) 

where 𝐻 is the wave height, ℎ is the water depth, and 𝑘 = 2𝜋/𝜆 is the wave number with 𝜆 being the 

wavelength and determined by dispersion equation 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ. 

Wave energy dissipation is assumed to be the work of canopy drag following Zhu et al. (2020a) for 

which the conservation equation becomes 

𝜕𝐸𝑐𝑔

𝜕𝑥
= − ∫ 𝑁𝛼𝑆

1

2
𝐶𝑑𝜌𝑏 |𝑈𝑅| 𝑈𝑅

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑙

0
𝑑𝑠,                                              (3.17) 

where 𝐸 = 𝜌𝑔𝐻2/8 is the local wave energy per unit horizontal area, 𝑐𝑔 = 𝜔(1 + 2𝑘ℎ/ sinh 2𝑘ℎ)/2𝑘 is 

the wave group velocity, N is the canopy density defined as the number of blades per unit horizontal area, 

𝛼𝑆 ≤ 1 is a factor to consider the sheltering effects between blades with 𝛼𝑆 = 1 for no sheltering, and 𝑈𝑅 

is the relative velocity normal to the blade with 
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𝑈𝑅 = −𝑤 − 𝑈 sin 𝜙 + 𝑊 cos 𝜙.                                               (3.18) 

Solving (3.17) yields the transmitted wave height at distance 𝑥 in relation to the incident wave height 𝐻0 at 

𝑥 = 0, 

𝐻(𝑥)

𝐻0
=

1

1+𝑘𝐷𝐻0𝑥
,                                                            (3.19) 

where the wave decay coefficient (𝑘𝐷) is expressed as 

𝑘𝐷 =
8𝛼𝑆𝑏𝑁𝑘2 sinh2 𝑘ℎ

𝐻0
3𝜔3(2𝑘ℎ+sinh 2𝑘ℎ)

∫ 𝐶𝑑|𝑈𝑅| 𝑈𝑅
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑙

0
𝑑𝑠.                                      (3.20) 

For a rigid blade with (𝑢, 𝑤) = 0 and 𝜙 = 3𝜋/2, (3.20) becomes 

𝑘𝐷,𝑅 =
𝛼𝑆𝐶𝑑𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(ℎ−𝑑1)−9 sinh 𝑘(ℎ−𝑑1−𝑙)+sinh 3𝑘(ℎ−𝑑1)−sinh 3𝑘(ℎ−𝑑1−𝑙)

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
.                (3.21) 

For a sparse canopy with 𝛼𝑆 = 1, (3.21) reduces to the solution by Zhu and Zou (2017), which can be 

further reduced to the solutions of Dalrymple et al. (1984) and Kobayashi et al. (1993) for bottom-rooted 

vegetation with 𝑑1 = ℎ − 𝑙 . As (3.20) is computationally expensive by resolving the wave-blade 

interaction, (3.21) is often used with a bulk drag coefficient (𝐶𝐷 ≤ 𝐶𝑑) or an effective blade length (𝑙𝑒 ≤ 𝑙) 

such that 

𝑘𝐷 =
𝛼𝑆𝐶𝐷𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(ℎ−𝑑1)−9 sinh 𝑘(ℎ−𝑑1−𝑙)+sinh 3𝑘(ℎ−𝑑1)−sinh 3𝑘(ℎ−𝑑1−𝑙)

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
                (3.22) 

and 

𝑘𝐷 =
𝛼𝑆𝐶𝑑𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(ℎ−𝑑1)−9 sinh 𝑘(ℎ−𝑑1−𝑙𝑒)+sinh 3𝑘(ℎ−𝑑1)−sinh 3𝑘(ℎ−𝑑1−𝑙𝑒)

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
.           (3.23) 

The objective of using 𝐶𝐷  instead of 𝐶𝑑  or 𝑙𝑒  instead of 𝑙  is to reduce the overestimation of wave 

attenuation by neglecting the blade motion. The bulk drag coefficient and effective blade length methods 

also reduce the computation requirements to represent wave-blade interaction, which makes the wave 

attenuation model more straightforward to implement into large-scale models. However, the empirical 

values of 𝐶𝐷 and 𝑙𝑒 need to be determined from detailed laboratory experiments. Some empirical formulas 

for 𝐶𝐷 (e.g., Kobayashi et al., 1993; Mendez and Losada, 2004; Sanchez-Gonzalez et al., 2011; Jadhav et 

al., 2013; Anderson and Smith, 2014; Ozeren et al., 2014; Chen et al., 2018; van Veelen et al., 2020) and 
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𝑙𝑒 (e.g., Luhar et al., 2017; Lei and Nepf, 2019a, b) have been developed for submerged canopies. However, 

a need exists to develop 𝐶𝐷 and 𝑙𝑒 formulas of suspended canopies for wave attenuation applications. 

3.2.2. Measurements for cultivated S. latissima 

The model kelp material is selected based on the properties of the S. latissima cultivated on a 60 m 

kelp aquaculture longline in Saco Bay, Maine, USA. S. latissima is one of the most extensively farmed kelp 

species in Maine and in the USA (Grebe et al., 2019). Two sets of kelp samples were collected from two 

nonadjacent 10 cm regions of the longline on May 17, 2018, with 43 and 38 samples, respectively. 

Therefore, the averaged plant density was about 405 m-1. The kelp samples were stored in seawater. The 

morphological and mechanical properties of the kelp samples were measured within 24 hours after 

collection to minimize the effects of kelp deterioration. 

S. latissima consists of holdfast, stipe and blade (Figure 3.2a). Compared to the dimensions of kelp 

blade, the holdfast and stipe are small and difficult to match in the physical model. To illustrate this 

characteristic, consider the 1.9 m-long kelp on Figure 3.2a as an example, the stipe length is 15 cm and 

8.6% of the blade length at 175 cm. The diameter of the stipe is 5.8 mm and 4.5% of the blade width at 

130.4 mm. In a 1:10 physical model, the model stipe diameter is less than 0.58 mm. Thus, the holdfast and 

stipe are not geometrically modeled in this study. The contribution to wave attenuation was compensated 

by the rigid part of the model blade for fixing the suspended blade. 

The kelp blade morphological characteristics were measured from 77 samples using a ruler for the 

blade length, a caliper for the blade width and a micrometer for the blade thickness. The blade width was 

determined by taking the average from three positions: near the stipe, in the middle and near the tip. 

Thickness values were obtained along the blade width at intervals of 1.27 cm (0.5 in) with at least five 

positions.  

The mass density and bending elastic modulus were measured from 41 rectangular specimens 

(Figure 3.2b) cutout from 6 to 9 different positions along the blade length of 6 blades. Since the kelp tissue 

started to degrade and die after cuts were made, measurements for each specimen were completed within 2 

min and one whole kelp blade sample was completed within 1 hour. The specimens were cut out from  
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Figure 3.2. (a) S. latissima sample with bending elastic modulus (𝐸) at three positions along the blade 

length. (b) A specimen on a gridded cutting board. (c) Measuring the mass of a specimen with a digital 

analytical balance scale. (d) Bending test for a specimen. (e) Comparison between the measured and 

calculated blade postures. The measured 𝐸 is the value with which the calculated blade posture has the 

largest 𝑅2 compared with the data. Photo credit: Yu-Ying Chen. 

 

the center part of the blade where the blade thickness varies slightly with an averaged standard deviation of 

less than 0.05% of the averaged thickness. Thus, the cross section can be considered as a rectangular section 

and the volume of the specimen can be calculated using the averaged thickness, width and length. The mass 
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of the specimen was measured using a digital balance scale with the precision of 0.1 mg (Figure 3.2c). To 

control the effects of the wetness of the specimen, the specimen was placed between two layers of a paper 

towel to reduce the seawater attached on the specimen surface. The specimen was still wet, but not dripping 

during the measurements. Due to the loss of surface water and kelp degradation, the measured mass values 

decreased by 4% during the course of the experiment. The averaged mass value was used in this study. 

The bending elastic modulus of the kelp blade was measured using the cantilever beam bending 

test (Figure 3.2d). Four bending tests were conducted for each specimen with measurements taken on both 

ends and both sides, for 164 tests. For each bending test, a photo of the bending blade was taken to record 

the blade posture. The blade posture was extracted using ImageJ (a Java-based image processing program, 

Schneider et al., 2012; Liang et al., 2017). Given a value of 𝐸, solving (3.2) and (3.3) by setting 𝑢 = 0, 

𝑤 = 0, and 𝜌 = 0 with boundary conditions yields 𝜙, which can be used to calculate the blade posture with 

(3.13) and (3.14). The measured 𝐸 is set as the value with which the calculated blade posture fits best with 

the measured blade posture (Figure 3.2e). The calculated blade postures compared well with the measured 

blade postures, with 𝑅2 > 95% for 160 tests and 𝑅2 = 88%, 89%, 92%, and 93% for the other 4 tests.  

3.2.3. Experimental design 

The laboratory experiments were conducted in the 24 m-long, 38 cm-wide, and 60 cm-high wave 

flume in the Environmental Fluid Mechanics Laboratory at Massachusetts Institute of Technology. The 

model experiments were designed at a scale of 1:10 to match the dimensions of the wave flume. The wave 

conditions were designed based on Froude similarity. The model kelp blade was made to satisfy the 

similarity for (3.6) to (3.12). 

In the physical model experiments, the holdfast, stipe, the ruffle of the kelp blade, and the variance 

of thickness were too small to scale so that the kelp was modeled as a rectangular flat plate with a constant 

thickness. The material selected for modeling kelp blades was silicon film with 𝜌𝑣 = 1.2 g/cm3, 𝐸 = 2.04 

MPa and 𝑑 = 0.1 mm. The model kelp was designed as a 10.16 cm (4 in) long and 0.95 cm (3/8 in) wide 

rectangular plate. The corresponding full-scale kelp blade was 101.6 cm long, 9.5 cm wide and 1 mm thick. 
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To satisfy dynamical similarity, the mass density and bending elastic modulus of the full scale kelp blade 

were designed as 𝜌𝑣 = 1.23 g/cm3 and 𝐸 = 21 MPa, such that 

 
(𝜌′)𝑀

(𝜌′)𝐹
= 1,

(𝐵)𝑀

(𝐵)𝐹
= 1,

(𝐶𝑎)𝑀

(𝐶𝑎)𝐹
= 1,

(𝐿)𝑀

(𝐿)𝐹
= 1,   

(𝛿)𝑀

(𝛿)𝐹
= 1,   

(𝐾𝐶)𝑀

(𝐾𝐶)𝐹
= 1,   

(𝑆)𝑀

(𝑆)𝐹
= 1,       (3.24) 

where ( )𝑀  denotes the dimensionless parameter for the model and ( )𝐹  denotes the dimensionless 

parameter for the full scale prototype. The properties of the full-scale model blade will be compared with 

the measurements for S. latissima blade in the section 3.3.1. 

 

Figure 3.3. Photos of (a) a model kelp longline and (b) the model kelp farms with waves propagating from 

left to right. Sketches of (c) the side view of the wave flume showing the setup of model kelp farms and 

wave gauges and (d) the front view of section A-A showing the setup of load cells. 

 

A kelp farm includes numerous kelp plants attached to a horizontal rope. In this laboratory 

experiment, the horizontal rope was modeled using a rigid stainless steel welding rod with a diameter of 

0.89 mm (0.035 in). For each model longline, 31 aggregates of model kelp blades with 10 blades for each 

aggregate were fixed to the model longline (Figure 3.3a). The fixed part of the blade was 𝑙𝑟 = 0.5 cm so 
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that the flexible part of the blade was 𝑙𝑓 = 9.66 cm. The plant density for the model longline was 10 

plants/cm associated with 100 plants/m for the full scale, which was less than the measured values at 405 

plants/m in this study. The rod was mounted to a stainless steel frame attached to the flume walls (Figure 

3.3b). The model kelp farm consisted of 20 model sections with a distance of 20 cm apart in the flume. 

Thus, the total canopy length was 𝐿𝑣 = 3.8 m corresponding to 38 m in the full scale. The canopy density 

𝑁  was 5263 plants/m2. Three vertical positions of the model kelp farm beneath the SWL with 𝑑1 =

6, 11, 16 cm were compared in the experiments.  

A set of experiments were then conducted to investigate the dynamics of a single blade and a blade 

in the canopy in a water depth of 40 cm. The suspended blade was fixed at 11 cm below the still water level. 

The wave height ranged from 1.4 cm to 6 cm with 4 wave periods of 0.8 s, 1 s, 1.4 s and 2 s. The blade 

motion was recorded by a camera. 

After the blade dynamics were investigated, another set of experiments were then conducted to 

assess the wave attenuation. As the suspended blades were observed to roll over the attachment rod in large 

wave heights, the largest wave heights were set at 3.8 cm to prevent the blade roll up in the wave attenuation 

experiments. For the wave attenuation experiments, the incident wave height was 𝐻𝐼0 = 1.8~3.8 cm, wave 

period was 𝑇 = 0.8~2  s, and water depth was ℎ = 30~40  cm with 𝑘ℎ = 0.58~2.41  and 𝐻𝐼0/ℎ =

0.05~0.11. The wave length was 𝜆 = 102~370 cm so that the canopy would cover 1 to 3.7 wavelengths. 

Thus, for the corresponding full-scale model, the waves are 18 cm to 38 cm in amplitude with period of 2.6 

to 6.3 s in 3 to 4 m-deep water with 𝐶𝑎 = 35~13930, 𝐿 = 6~284, 𝐾𝐶 = 0.2~10.8 and 𝑅𝑒 = 24~488.  

3.2.4. Wave decay measurements 

The wave decay experiment setup is shown on Figure 3.3. During the tests, the wave height was 

measured using two resistance-type wave gauges with one permanently mounted at 50 cm before the canopy 

and the other moving along the canopy to measure the wave height evolution for each case. The fixed wave 

gauge provided a reference measurement to show that the wave conditions were steady throughout one 

case. The movable wave gauge collected data along the canopy at an interval of 5 cm or up to 15 cm 



54 
 

depending on the wave length (with at least 20 horizontal positions for one wavelength). At each horizontal 

position, the wave gauge measured the water elevation at 1000 Hz for 1 min (including 30 to 74 wave 

periods). 

The wave reflection ratio of the flume is estimated at 7% (Lei and Nepf, 2019a), yielding an 

oscillating wave height along the canopy (Figure 3.4). Assuming that the incident wave height and reflected 

wave height decay follow (3.19) at the same decay coefficient 𝑘𝐷 along the canopy, a local wave height in 

the canopy can be obtained (with derivation in Appendix B), 

 

Figure 3.4. Measured (black circles) and fitted (blue line, 𝑅2 = 0.992) wave heights (𝐻) normalized by the 

incident wave height (𝐻𝐼0) along the model kelp farms for Case 1. The calculated incident wave height 

decay with fitted 𝐻𝐼0 and 𝑘𝐷 is denoted by red dashed line. The horizontal distance is normalized by canopy 

length as 𝑥/𝐿𝑣. 

 

𝐻(𝑥) = √(
𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥
)

2
+ (

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝐿𝑣
(𝐿𝑣−𝑥)

)
2

+ 2
𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝐿𝑣
(𝐿𝑣−𝑥)

cos(2𝑘𝑥 + 𝜖),     (3.25) 

where 𝐻𝐼0 is the incident wave height at 𝑥 = 0, 𝐻𝑅𝐿𝑣
 is the reflected wave height at 𝑥 = 𝐿𝑣, 𝜖 is the phase 

lag. The spatial oscillation period of the wave height is 1/2 wavelength as shown in the term cos (2𝑘𝑥 + 𝜖). 

Equation (3.25) provided a good fit (𝑅2 > 0.99) for the incident wave height and decay coefficient as 

shown on Figure 3.4. 
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The model kelp farms consisted of 20 rows (rods) of blades. The rods were 20 cm apart, which was 

more than four times of the amplitude of the blade deflection. For each rod, 31 aggregates of blades were 

attached separately with 1 aggregate/cm (Figure 3.3a). For each aggregate, 10 blades were mounted together 

so that the front blades sheltered the blades behind them. The sheltering effects between rods were not 

considered in this study. However, the significant sheltering effects between the blades in the same 

aggregate were significant were considered using a sheltering factor 𝛼𝑆, which is defined as the force ratio 

of the sheltered and unsheltered blades and given by 

𝛼𝑆 =
𝐹𝑥,𝑟𝑚𝑠

𝑛𝑆𝑓𝑥,𝑟𝑚𝑠
.                                                              (3.26) 

In (3.26), 𝐹𝑥,𝑟𝑚𝑠 is the root-mean-square (RMS) of the measured horizontal force on aggregates of sheltered 

blades, 𝑓𝑥,𝑟𝑚𝑠 is the RMS of the measured horizontal force on unsheltered single blades, and 𝑛𝑆 is the ratio 

of the number of sheltered blades to the number of unsheltered blades with 𝑛𝑆 = 10 in this study. A smaller 

𝛼𝑆 indicates more sheltering. The horizontal forces on one row of blades were measured at 2000 Hz for 1 

min with two submerged load cells fixed to both ends of the rod (Figure 3.3d). 

3.3. Results 

3.3.1. Morphological and mechanical properties of S. latissima compared with the model blade 

To evaluate the design of model kelp blade, the results section begins with understanding the 

morphological and mechanical properties of real cultivated S. latissima in Saco Bay, Maine of the USA. 

The kelp blade length (𝑙) showed a quasi-linear relationship with the averaged blade width (𝑏) as  

𝑏 = (0.090 ± 0.003)𝑙 + 1.406 ± 0.197,                                           (3.27) 

with 𝑅2 = 0.898 (Figure 3.5a), where 𝑙 and 𝑏 are in cm. The blade width has the following relation with 

the maximum thickness (𝑑max  ) at the center of the blade width,  

𝑑𝑚𝑎𝑥 = (0.040 ± 0.007)𝑏 + 0.386 ± 0.078,                                           (3.28) 
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Figure 3.5. Morphological and mechanical properties of S. latissima. (a) Relation between the averaged 

blade width (𝑏) and the blade length (𝑙). (b) Relation between the maximum thickness (𝑑max  ) and the 

averaged blade width. (c) The distribution of the normalized blade thickness ( 𝑑/𝑑max   ) along the 

normalized distance (𝑠𝑏/𝑏) from the blade center. (d) Bending elastic modulus (𝐸). 

 

with 𝑅2 = 0.750 (Figure 3.5b), where 𝑑𝑚𝑎𝑥 is in mm while 𝑏 is in cm. The blade thickness (𝑑) showed a 

normal-like distribution along the blade width following 

𝑑

𝑑𝑚𝑎𝑥
= (0.797 ± 0.011)𝑒

−
1

2
(

𝑠𝑏/𝑏

0.118±0.003
)

2

+ 0.203 ± 0.011,                           (3.29) 
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with 𝑅2 = 0.944 (Figure 3.5c), where 𝑠𝑏 is the distance from the center of the blade width toward the blade 

edge. 

The bending elastic modulus increases along the blade length from near the stipe to near the tip 

(Figure 3.2a). As more mature elements of the blade are near the tip, 𝐸 is expected to relate to the maturity 

of the kelp tissue. The relation between 𝐸 and 𝑑 is 

𝐸 = (2.294 ± 1.233)𝑑15.853±7.111 + 5.545 ± 0.673,                           (3.30) 

with 𝑅2 = 0.406 (Figure 3.5d), where 𝑑 is in mm and 𝐸 is in MPa. The measured 𝐸 from all specimens 

ranges from 2.71±1.37 to 22.20±5.88 MPa (Figure 3.5d). The measurements in Vettori and Nikora (2017) 

and Fredriksson et al. (2020) with 3.73 ± 2.71 MPa and 1.28±0.43 MPa, respectively, are also in this range.  

The measured mass density of S. latissima is 1.053±0.031 g/cm3, which is smaller than the 

measurement in Fredriksson et al. (2020) with 1.26±0.27 g/cm3, but comparable to the value of 1.092±0.091 

g/cm3 in Vettori and Nikora (2017). The difference may be caused by the “wetness” of the kelp sample 

since the measured mass of wetter kelp is larger, resulting in a larger mass density. The measurements are 

summarized in Table 3.1 along with measurements from published literature. 

The designed properties of the full-scale model kelp blade are also shown in Table 3.1 to compare 

with the measurements in this study and from published literature. Based on the measurements, for a given 

blade length 𝑙 = 101.6 cm, the expected blade width is 𝑏 = 10.5 ± 0.5 cm using (3.27), the maximum 

blade thickness is 𝑑max  = 0.81 ± 0.17 mm using (3.28), and the bending elastic modulus is 𝐸 = 5.63 ±

1.11 MPa using (3.30). The designed width (𝑏 = 9.5 cm) of the full-scale model blade is slightly smaller 

than the calculated averaged width (𝑏 = 10.5 ± 0.5 cm) of S. latissima with the same blade length, while 

the maximum thickness (𝑑max  = 1 mm) is slightly larger than that (𝑑max  = 0.81 ± 0.17 mm) of the real 

S. latissima. However, the designed dimensions of the full scale kelp blade are within the range of the 

measurements as shown in Table 3.1. The designed mass density (𝜌𝑣 = 1.23 g/cm3) of the full-scale model 

blade is larger than the measured value of 1.053 ± 0.031 g/cm3, but comparable to the measurement in 

Fredriksson et al. (2020) with 1.26 ± 0.27 g/cm3 for cultivated S. latissima in Maine. The designed bending 
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elastic modulus 𝐸 = 21 MPa of the full-scale model kelp blade is large but still within the range of the 

measurements (2.71±1.37 to 22.20±5.88 MPa). The designed plant density 100 plants/m is smaller than the 

measured value of 405 plants/m.  

 

Table 3.1. Morphological and mechanical properties of cultivated S. latissima and model kelp blades. 

 

Study sites 

Mass 

density 

𝜌𝑣 

(g/cm3) 

Elastic 

modulus 

𝐸 (MPa) 

Blade 

length 

𝑙 (cm) 

Blade 

width 

𝑏 (cm) 

Maximum 

blade 

thickness 

𝑑𝑚𝑎𝑥  (mm) 

Blades 

per meter 

(m-1) 

Model kelp 

blade 

(scale:1:10) 

 

1.2 2.04 10.16 0.95 0.1 1000 

Full scale kelp 

blade 

 
1.23 21 101.6 9.5 1 100 

Measured in 

this study 

Saco, 

Maine, US 

1.053
± 0.031 

5.63 ±
1.11*** 

(2.71 ±
1.37 

~22.20 ±
5.88) 

101.6 

(3~177.7) 

10.5 ±
0.5* 

(1~18.5) 

0.81 ± 0.17** 

(0.44~1.08) 
405 

Fredriksson et 

al. (2020) 

Maine, US 1.26
± 0.27 

1.28
± 0.43 

Up to 300  0.4 ± 0.1  

Vettori and 

Nikora (2017) 

Loch Fyne, 

Scotland, 

UK 

1.092
± 0.091 

3.73
± 2.71 

15~65 3.6~13.1 0.42~1.8  

Augyte et al. 

(2017) 

Bristol, 

Maine, US 

  220.4 4.67  330 

  56.9 8.72   

Sorrento, 

Maine, US 

  147.4 2.76  400 

  71.4 7.38   

Peteiro and 

Freire (2013) 

Ares, Spain   152.9 12.1  745 

Sada, Spain   123.2 11.4  728 

* Calculated 𝑏 using (3.27) for the given 𝑙 = 101.6 cm. ** Calculated 𝑑max   using (3.28) for given 𝑏 =

10.5 ± 0.5 cm. *** Calculated 𝐸 using (3.28) for given 𝑑 = 0.81 ± 0.17 mm. 

 

3.3.2. Wave-induced motion of suspended blades 

To understand the wave-induced dynamics of suspended blades as well as the blade to blade 

sheltering effects, the motion of a single suspended blade is compared with that of an aggregate of 

suspended blades on Figure 3.6, where the waves propagate from left to right with a period of 1.4 s at 40 

cm water depth. Due to high flexibility, the blade shows a higher-mode (>3) motion (Figure 3.6a and c) 

with large asymmetry (Figure 3.6a5 and c5). Unlike submerged vegetation inclining to the wave  
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Figure 3.6. Postures for (a, c, and e) a single blade and (b and d) a row of blades in waves with wave heights 

of (a and b) 1.5 cm, (c and d) 2.8 cm, and (e) 3.3 cm. The wave period is 1.4 s and water depth is 40 cm. 

The blade is fixed at 11 cm below the still water level. The waves propagate from left to right. In (a5, b5, 

c5, d5 and e), the black line indicates the posture at the given time (𝑡) while the gray lines indicate the 

previous postures in that wave period (𝑇𝑤). For wave amplitude of 3.3 cm in (e), the single blade starts to 

wrap up and roll over the rod after 17 wave periods.  

 

propagation direction (Zhu et al., 2020b), the suspended blade fixed at the upper end inclines to the opposite 

direction of wave propagation. For waves propagating to the right, the action of the vertical wave orbital 

velocity on the blade provides clockwise momentum that drives the submerged blade also to the right (Zhu 
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et al., 2020b) but drives the suspended blade to the left. The asymmetry of blade motion increases with 

blade deflection and wave height (Figure 3.6a and c). More information about the mechanisms and 

properties of asymmetric blade motion in waves can be found in Zhu et al. (2020b).  

The motion of the blade in an aggregate of blades shows a smaller-amplitude motion than a single 

blade in the same wave conditions (e.g., Figure 3.6a and b). This is caused by the sheltering from 

neighboring blades in the same aggregate, which reduces the flow velocity to the sheltered blades. 

Therefore, the deflection of a sheltered blade is smaller than that of an unsheltered single blade. 

Accordingly, the motion asymmetry of the sheltered blade is also smaller than that of the unsheltered single 

blade (e.g., Figure 3.6a and b). 

The blade was observed to wrap up and roll over the longline when the wave height exceeded a 

critical value (Figure 3.6e). The unsheltered single blade rolled over when the wave height reached 2.8 cm 

for 𝑇𝑤 = 2 s, 3.3 cm for 𝑇𝑤 = 1.4 s (Figure 3.6e), 3.7 cm for 𝑇𝑤 = 1 s, and 3.5 cm for 𝑇𝑤 = 0.8 s. Due to 

sheltering effects, the threshold values increased for the sheltered blades in an aggregate, especially for the 

blade in the center of the aggregate that was sheltered by more blades. The mechanisms for the rolling over 

will be discussed in section 3.4.1. 

3.3.3. Horizontal force and wave attenuation 

The measured sheltering factor 𝛼𝑆, wave decay coefficient 𝑘𝐷, wave transmission ratio (𝐻𝑇𝑅 =

𝐻𝐼0/𝐻𝐿𝑣
, where 𝐻𝐿𝑣 is the wave height at the ending edge of the canopy), and wave energy dissipation ratio 

(𝐸𝐷𝑅 = 1 − 𝐻𝐿𝑣
2 /𝐻𝐼0

2 ) are listed in Table 3.2. For this study, 𝛼𝑆 ranges from 0.526 to 0.991 with mean 

value of 0.728. The numerically calculated horizontal force (𝐹𝑥,𝑟𝑚𝑠) for a row of blades and 𝑘𝐷 for the 

canopy are compared with the measurements (Figure 3.7). With the averaged sheltering factor, the 

calculated 𝐹𝑥,𝑟𝑚𝑠 and 𝑘𝐷 show good agreement with the experiments with normalized root-mean square-

errors (NRMSE) of 0.197 (Figure 3.7a) and 0.184 (Figure 3.7b), respectively. The overestimation of 𝑘𝐷 is 

11% (calculated using the slope of the linear fitting line), indicating that the constant averaged sheltering 

factor is appropriate to predict the wave attenuation in this study. 
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Table 3.2. Sheltering factor and wave attenuation measured in the experiments and projections to full 

scale. 

Case 

# 

Experiments (1:10) Sheltering 

factor 

𝛼𝑆 

Projections to full scale 

𝐻𝑇𝑅 𝐸𝐷𝑅 𝑑1 

(cm) 

ℎ 

(cm) 

𝑇 

(s) 

𝐻𝐼0 

(cm) 

𝜆 

(cm) 

𝑘𝐷 

(m-2) 

𝑑1 

(m) 

ℎ 

(m) 

𝑇 

(s) 

𝐻𝐼0 

(m) 

𝜆 

(m) 

𝑘𝐷 

(m-2) 

1 11 40 1.4 1.8 247 1.21 0.552 1.1 4 4.5 0.18 24.7 0.0121 0.92 15% 

2 6 30 2.0 2.9 325 1.28 0.760 0.6 3 6.3 0.29 32.5 0.0128 0.88 23% 

3 11 40 1.4 2.4 244 0.84 0.537 1.1 4 4.5 0.24 24.4 0.0084 0.93 14% 

4 6 30 1.4 2.9 219 1.19 0.739 0.6 3 4.5 0.29 21.9 0.0119 0.88 22% 

5 11 40 1.0 3.1 149 1.18 0.616 1.1 4 3.2 0.31 14.9 0.0118 0.88 23% 

6 11 40 2.0 3.5 370 0.39 0.679 1.1 4 6.3 0.35 37.0 0.0039 0.95 10% 

7 16 40 2.0 3.8 369 0.25 0.986 1.6 4 6.3 0.38 36.9 0.0025 0.97 7% 

8 11 40 2.0 3.7 368 0.24 0.526 1.1 4 6.3 0.37 36.8 0.0024 0.97 6% 

9 16 40 1.4 3.2 248 0.62 0.848 1.6 4 4.5 0.32 24.8 0.0062 0.93 14% 

10 11 40 1.4 3.2 247 0.70 0.672 1.1 4 4.5 0.32 24.7 0.0070 0.92 15% 

11 11 40 1.0 3.6 150 1.04 0.887 1.1 4 3.2 0.36 15.0 0.0104 0.87 23% 

12 6 30 0.8 3.2 102 2.34 0.991 0.6 3 2.6 0.32 10.2 0.0234 0.78 39% 

13 16 40 0.8 3.2 104 0.94 0.722 1.6 4 2.6 0.32 10.4 0.0094 0.90 20% 

14 11 40 0.8 3.2 105 1.43 0.677 1.1 4 2.6 0.32 10.5 0.0143 0.85 28% 

Note, 𝑑1 is the vertical distance from the still water line to the longline, ℎ is the water depth, 𝑇 is the wave 

period, 𝐻𝐼0  is the incident wave height, 𝜆  is the wavelength, 𝑘𝐷  is the wave decay coefficient, 𝛼𝑆  is 

sheltering factor, 𝐻𝑇𝑅 is the wave height transmission ratio, and 𝐸𝐷𝑅 is the wave energy dissipation ratio. 

 

The designed model kelp canopy can reduce up to 39% of the wave energy when the canopy 

occupied a larger portion of the water column (𝑙/ℎ = 0.34), was located at higher position (𝑑1/ℎ = 0.2), 

covered more wavelengths ( 𝐿𝑣/𝜆 = 3.72) and featured larger amplitude waves (𝐻𝐼0/ℎ = 0.107) as shown 

in Table 3.2.  

The measured wave decay coefficients 𝑘𝐷 for the suspended model kelp canopy in different wave 

conditions and with different canopy vertical positions are shown on Figure 3.8 as a function of the 

dimensionless parameters, 𝑘ℎ, 𝐻𝐼0/ℎ, 𝑙/ℎ, and 𝑑1/ℎ. The numerically calculated 𝑘𝐷 using (3.20) is also 

shown on Figure 3.8 to help analyze the trend of 𝑘𝐷. It is noted that 𝑘𝐷 increases with 𝑘ℎ (Figure 3.8a) 

showing a different behavior from submerged canopies, where 𝑘𝐷 decreases with 𝑘ℎ (e.g., Figure 3.6c in  
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Figure 3.7. Comparisons for the measured and calculated (a) horizontal force (𝐹𝑥,𝑟𝑚𝑠) for a row of blades 

and (b) wave decay coefficient (𝑘𝐷). The vertical error bars indicate two standard deviations (2𝜎) for the 

measurements while the horizontal bars indicate the computation uncertainty induced by using the 

minimum and maximum sheltering factors. The normalized root mean square error (NRMSE) for the 

calculated values is shown in the legend. The solid gray line in (b) is the linear fit for the calculated 𝑘𝐷 with 

expressions and 𝑅2 nearby. 

 

Luhar et al., 2017). 𝑘𝐷 decreases with 𝐻𝐼0/ℎ (Figure 3.8b), but increases with 𝑙/ℎ (Figure 3.8c). Increasing 

incident wave height may increase the amplitude of the blade motion and therefore decrease the relative 

velocity, resulting in smaller drag and 𝑘𝐷. The canopy occupies less of the water column in deeper water 

so that 𝑘𝐷 decreases. It should be noted that 𝑘𝐷 decreases with increasing incident wave height, but the 

wave attenuation of the canopy does not because the total wave attenuation depends on 𝑘𝐷𝐻𝐼0𝐿𝑣 based on 

(3.19). For example, 𝑘𝐷 decreases by 42% when 𝐻𝐼0/ℎ increases by 77% from 0.046 to 0.081 (Figure 3.8b), 

but 𝑘𝐷𝐻𝐼0𝐿𝑣 increases by 3.4%. The results also demonstrate that moving the canopy upward (reducing 

𝑑1/ℎ) can improve the wave attenuation (Figure 3.8d) as expected. The numerical calculations have shown 

a small overestimation for 𝑘𝐷 for most cases (Figure 3.8). This may be because the numerical solution (3.20) 

uses the incident wave orbital velocity to calculate the wave attenuation without considering the flow 
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reduction in the canopy (Lowe et al., 2005). Ignoring the flow reduction in the canopy would result in an 

overestimation of the wave attenuation. 

 

Figure 3.8. Measured and calculated wave decay coefficient (𝑘𝐷) for the suspended model kelp canopy as 

a function of (a) 𝑘ℎ, (b) 𝐻𝐼0/ℎ, (c) 𝑙/ℎ, and (d) 𝑑1/ℎ. The water depth is ℎ, the wave number is 𝑘, the 

incident wave height is 𝐻𝐼0, the blade length is 𝑙 and the vertical distance from the longline to the still water 

line is 𝑑1. The measured 𝑘𝐷 is shown in black dots with error bars indicating two standard deviation (2𝜎). 

The calculated 𝑘𝐷 with averaged sheltering factor is denoted by read lines, where the shaded areas indicate 

the computation uncertainty induced by using the minimum and maximum sheltering factors. 

 

3.3.4. Bulk drag coefficient and effective blade length 

For convenience in implementing kelp farms into in large scale models and to improve 

computational efficiency, the bulk drag coefficient and the effective blade length of the suspended canopy 

for wave attenuation were fitted based on the datasets. The blade length (𝑙) includes a rigid (𝑙𝑟) and flexible 

part (𝑙𝑓) with wave decay coefficients 𝑘𝐷𝑟 and 𝑘𝐷𝑓, respectively. The 𝑘𝐷𝑟 of the rigid part is calculated 

using (3.21). The measured 𝑘𝐷𝑓 is obtained by subtracting 𝑘𝐷𝑟 from the measured 𝑘𝐷. With measured 𝑘𝐷𝑓, 
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the bulk drag coefficient (𝐶𝐷) and the effective blade length (𝑙𝑓,𝑒) for the flexible part of the blades are 

solved from (3.22) and (3.23), respectively. For unsteady flow, 𝐶𝐷 is better fitted as a function of 𝐾𝐶 (Van 

Veelen et al., 2020). The fitted relation between 𝐶𝐷 and 𝐾𝐶 for the suspended model kelp canopy is 

𝐶𝐷 = (0.34 ± 0.02)𝐾𝐶−0.25±0.05,                                         (3.31) 

with 𝑅2 = 0.80 (Figure 3.9a). Based on the scaling analysis with linear blade motion, Luhar and Nepf 

(2016) argued that 𝑙𝑒 is proportional to (𝐶𝑎𝐿)−0.25. However, the blade motion is nonlinear since the large-

amplitude blade motion induces geometrical nonlinearity. Thus, 𝑙𝑒 is fitted with a varying power of 𝐶𝑎𝐿. 

The best fit for 𝑙𝑒 is 

𝑙𝑓,𝑒

𝑙𝑓
= (20.37 ± 13.32)(𝐶𝑎𝐿)−0.54±0.07,                                         (3.32) 

with 𝑅2 = 0.90 (Figure 3.9b).  

 

Figure 3.9. (a) Measured bulk drag coefficients (𝐶𝐷) as a function of Keulegan-Carpenter number (𝐾𝐶) for 

the flexible part of the blade. (b) Measured effective blade length (𝑙𝑓,𝑒) for the flexible part (𝑙𝑓) of the blade 

length as a function of the product of Cauchy number (𝐶𝑎) and length ratio (𝐿). (c) Comparisons between 

the measured wave decay coefficient 𝑘𝐷  and the calculations using (3.20) without fitting (denoted by 

magenta filled circles), using (3.22) with fitted 𝐶𝐷 (denoted by red ×), and using (3.23) with fitted 𝑙𝑓,𝑒 

(denoted by blue +). The normalized root mean square error (NRMSE) is shown in the legend. 
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To evaluate the performance of the fitted formulas for 𝐶𝐷 and 𝑙𝑓,𝑒, the calculated 𝑘𝐷 using (3.22) 

with fitted 𝐶𝐷 in (3.31) and using (3.23) with fitted 𝑙𝑓,𝑒 in (3.32) are compared with the measured 𝑘𝐷 as 

well as the numerically calculated 𝑘𝐷 using (3.20) as shown on Figure 3.9c. The NRMSE for the calculated 

𝑘𝐷 with fitted 𝐶𝐷 is 0.123, which is larger than the calculations with fitted 𝑙𝑓,𝑒 (NRMSE = 0.072). The 

improved performance of the effective blade length method is due to the better fit for 𝑙𝑓,𝑒 with a larger 𝑅2 =

0.90 than the bulk drag coefficient method (𝑅2 = 0.80). This may be because 𝑙𝑓,𝑒 is expressed as a function 

of 𝐶𝑎𝐿, which incorporates the blade flexural rigidity. Both the bulk drag coefficient and the effective blade 

length methods have shown a smaller NRMSE than that of the numerical calculations without fitting 

(NRMSE=0.184). This indicates that the simplified methods using the bulk drag coefficient (𝑅2 = 0.80) 

and effective blade length (𝑅2 = 0.90) that are fitted with experiments are successful for considering the 

influences of blade motion on wave attenuation. In fact, they performed even better than the numerical 

methods (3.20) that resolves the blade motion. This is because the fitted values incorporated all the 

uncertainties, such as the velocity reduction in the canopy (Lowe, 2005), that the numerical methods did 

not consider. 

3.4. Discussion 

The blade roll-over phenomenon is expected to influence wave attenuation, therefore, 

understanding the wave induced dynamics is important to assess if this is anticipated in the field. 

Additionally, it is critical to analyze if simplified methods (i.e. the bulk drag coefficient and effective blade 

length) can be used to enhance computational efficiency in wave attenuation simulations. Before kelp farms 

can be implemented as nature-based coastal protection measures, it is essential to identify the key 

parameters affecting wave attention. 

3.4.1. Roll-over of suspended flexible blades 

The suspended blade fixed at the upper end exhibited different dynamics compared to the 

submerged blade fixed at the sea floor. The differences are represented by the opposite asymmetric motion 

and roll-over property of the suspended blade. The opposite asymmetric motion of suspended blades is 
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mainly induced by the asymmetric action of the vertical wave orbital velocity. In waves propagating to the 

right as an example, the wave orbital motion provides a clockwise momentum that drives submerged blade 

to incline to the right while drives suspended blades to incline to the left. Similarly, the rolling over motion 

of the suspended blades also results from the interaction of the blade with wave orbital motion. 

The blade motion is driven by the wave orbital motion. For a long flexible blade in transitional and 

deep water waves, the blade motion is asymmetric (Zhu et al., 2020b). When the wave height increases to 

a critical value, the asymmetry becomes so large that the blade is almost horizontal, providing conditions 

for the onset of rolling over. For example on Figure 3.10, the blade is almost horizontal at the 17th period. 

At time 𝑡 = 17.25𝑇𝑤 (Figure 3.10d), the wave orbital velocity points upward and drives the blade to bend 

upward and exceeds where the fixed end is located. After 𝑡 = 17.5𝑇𝑤, the wave orbital velocity points to 

the right and drives the blade to the right (Figure 3.10e) to pass over the attachment (Figure 3.10f). Then at 

𝑡 = 17.75𝑇𝑤 (Figure 3.10g), the wave orbital velocity points downward and drives the blade downward. 

Therefore, the portion of the blade that passed over the attachment moves down below the attachment. 

Although the wave orbital velocity changes direction back toward after 𝑡 = 17.75𝑇𝑤, the blade does not 

unravel due to the presence of the longline (Figure 3.10h). After 𝑡 = 18.375𝑇𝑤, the restoring force induced 

by the second curvature of the blade acts clockwise in the same direction of the wave orbital motion. Thus, 

the blade passes the longline in a shape like a “fly casting loop” (Figure 3.10k to p). The whole blade rolls 

over the longline by the 18th period. In the following time, the blade rolls over the blade again. 

For aquaculture farms, the blades are closely seeded as an aggregate. The sheltering effects and 

blade-blade interaction may inhibit the rolling over cycle by cycle. In the experiments, only waves were 

considered. In the field, the strong background currents can streamline the blade and therefore inhibit rolling 

over. However, the rolling over can still happen for sparsely seeded kelp in large wave conditions. The 

blade roll-over induces a large curvature resulting in a large inner stress that increases the risk of blade 

breakage. Long-term roll-over is expected to also impact kelp growth and morphology. The blade roll-over 

reduce canopy height and increase blade-blade sheltering and interaction that may decrease wave 

attenuation. However, the roll-over effects may reduce the blade motion amplitude and move the lower part 
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of the blade upward that may enhance wave attenuation. The roll-over effects are still unclear that warrant 

further investigation in the future.  

 

Figure 3.10. Suspended blade postures with flow field. The waves propagate from left to right with wave 

height of 3.3 cm and wave period 𝑇𝑤 = 1.4 s at water depth of 40 cm. The flow field is calculated using 

linear wave theory (Dean & Dalrymple, 1991). The blade is fixed at 11 cm below the still water level. The 

blade starts to roll over the longline at time 𝑡 = 17.5𝑇𝑤 for this case (e). The shaded regions indicate the 

position of the supporting frame above 0.75 cm. The part of the blade in the shaded region was plotted 

using a smoothing curve that connect the visible blade segments. This does not impact the analysis on the 

mechanisms for the rolling over of suspended blades.  
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3.4.2. Methods to predict wave attenuation 

The aquaculture kelp blades are seeded closely together on the longline for economic benefits. High 

plant density (e.g., 745/m in Peteiro and Freire, 2013) is also beneficial for wave attenuation. However, the 

sheltering effects from neighboring blades and the blade-blade interaction present uncertainties for wave 

attenuation prediction. A simple sheltering factor defined as the force ratio in (3.26) is acceptable since the 

numerical calculations with the sheltering factor present a small NRMSE of 0.184 (Figure 3.7b). As the 

plant density and blade configurations influence the sheltering effects, a more sophisticated sheltering factor 

as a function of plant density and blade properties as well as wave conditions is warranted. 

Compared to the numerical wave decay coefficient calculated with (3.20), the bulk drag coefficient 

and effective blade length methods have improved the calculations by reducing the NRMSE by 33% and 

61%, respectively. The improvements are attributed to the fits for 𝐶𝐷  (𝑅2 = 0.80) and 𝑙𝑒  (𝑅2 = 0.90) 

because the fitted values have incorporated all the uncertainties influencing wave attenuation that are not 

fully considered in the numerical solution (3.20). The bulk drag coefficient and effective blade length 

methods are simple and convenient to implement into large-scale models. The effective blade length method 

is better than the bulk drag coefficient method due to an improved fitted value that considers the blade 

flexural rigidity. Incorporating the blade flexural rigidity in the fitting formula for the bulk drag coefficient 

is expected to improve the bulk drag coefficient method. Although the bulk drag coefficient and effective 

blade length methods could provide favorable results with fitted 𝐶𝐷  and 𝑙𝑒 , physical experiments are 

required to calibrate 𝐶𝐷 and 𝑙𝑒. Thus, the numerical solution (3.20) could be an alternative when reliable 

𝐶𝐷 and 𝑙𝑒 are not available. 

3.4.3. Suspended kelp aquaculture farms as nature-based coastal protection 

The model kelp canopy has shown the capacity for wave attenuation in the laboratory experiments. 

In the full scale, a suspended kelp aquaculture farm consisting of 20 longlines with 100 plants per meter in 

3 to 4 m-deep water is expected to reduce 6% to 23% energy of coastal waves with a period of 6.3 s and 

wave height between 0.29 to 0.38 m (Table 3.2). Though, this anticipated wave attenuation is overestimated 

because the model blade thickness is 𝑑 = 𝑑max   as constant while the thickness of real kelp reduces towards 
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the blade edge (Figure 3.5c). Based on the thickness distribution in (3.29), the second momentum of the 

cross section of S. latissima is 

𝐼 = ∫ 2|𝑠𝑏| (
𝑑

2
)

2
d𝑑

1

2
𝑑max  

−
1

2
𝑑max  

≈ 0.2
𝑏𝑑max  

3

12
,                                         (3.33) 

indicating that the flexural rigidity of the real S. latissima blade is only 20% of the same wide plate but with 

the maximum thickness. To reduce the overestimation and obtain more reliable results for the wave 

attenuation in the field, an effective blade width 𝑏𝑒 = 0.2𝑏 is used in the following discussion. By removing 

the overestimation due to using maximum thickness, the wave energy dissipation ratio (EDR) drops from 

10% to 2.3% (Figure 3.11a) for Case 6 in Table 3.2. In addition, the bending elastic modulus (𝐸) of the full 

scale model blade is designed as 21 MPa, which is near the largest measured 𝐸. The measured 𝐸 ranges 

from 2.71 ± 1.37 to 22.20 ± 5.88 MPa (Table 3.1) and varies along the blade length (Figure 3.2a). For the 

given blade thickness of 0.81 mm, the expected bending elastic modulus is 𝐸 = 5.63 MPa based on (3.30). 

However, the numerical results show that 𝐸 has a small influence on wave attenuation (Figure 3.11). For 

example in Case 6, the EDR reduces from 2.3% to 1.9% by 17% when 𝐸 decreases from 21 MPa to 5 MPa 

(Figure 3.11a). 

The plant density is 100 plants/m for the model kelp longline, which is smaller than the measured 

value of 405 plants/m. In fact, the plant density can be as large as 745 plants/m (Peteiro and Freire, 2013), 

which can significantly enhance the wave attenuation. Assuming the measured sheltering factor is 

applicable for larger plant density, the simulated EDR for Case 6 increases to 7.1% with 400 plants/m and 

to 11.9% with 700 plants/m with effective blade width 𝑏𝑒 = 0.2𝑏 and 𝐸 = 5 MPa (Figure 3.11a). As the 

growth of kelp, the blade length increases yielding larger wave attenuation. For instance with 400 plants/m 

and 𝐸 = 5 MPa, the EDR increases from 7.1% to 24.6% when the blade length grows from 1 m to 2 m. 

The increase of EDR is even more significant (37.6%) for a greater plant density of 700 plants/m. 

The wave attenuation of suspended aquaculture kelp is dependent on the growth of kelp including 

the blade size and plant density, where a denser longline with longer kelp yields more wave attenuation. 

Another important parameter determining the wave attenuation of a suspended kelp farm is the number of 
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longlines. For the suspended kelp farm with 200 longlines with 100 plants/m in the same conditions with 

Case 6, the EDR are 16.4% for 1 m-long blades with 𝐸 = 5 MPa and 47.5% for 2 m-long blades with 𝐸 =

5 MPa (Figure 3.11b). If the plant density increases to 400 plants/m as measured in this study, the EDR 

increase to 47.1% and 84.3% (Figure 3.11c), respectively. The plant density and number of longlines are 

key design parameters that can maximize the wave attenuation performance of suspended kelp aquaculture 

farms in practice.  

 

 

Figure 3.11. (a) Effects of the bending elastic modulus (𝐸) and the length (𝑙) of the blade as well as number 

of plants per meter on the wave energy dissipation ratio (EDR) of suspended kelp aquaculture farms. Wave 

attenuation as a function of the number of kelp longlines with (b) 100 plants/m and (c) 400 plants/m. The 

water depth is 4 m, wave height is 0.35 m, and wave period is 6.3 s. The kelp longline is 1.1 m beneath the 

still water line. The blade thickness is 𝑑 and the maximum thickness is 𝑑max  . 

 



71 
 

3.4.4. Limitations 

This preliminary study has proposed simple methods to quantify the wave attenuation of suspended 

kelp aquaculture structures. However, there are still some limitations of these methods due to the 

complexity of the kelp morphology and flow environment in the field. The kelp blade morphology is more 

flat in exposed sites and more ruffled in sheltered sites (Koehl et al., 2008). The ruffle and thickness 

variance of the blade may impact the hydrodynamic coefficients. Like kelp stipe and holdfast, these small 

morphological features cannot be fully considered in the downscaled model and the effects of these small 

morphological features on wave attenuation are unclear. In the field, there would be a background current 

in addition to waves that may have significant influences on the wave attenuation, which is not considered 

in the current study. When the current exceeds a critical value, the kelp becomes streamlined so that the 

drag force decreases and the friction dominates (Fredriksson et al., 2020), after which a smaller wave 

attenuation is anticipated. At this point, the energy conservation equation (3.17) should be modified by 

using friction rather than drag. Gaylor et al. (2003) observed that the alongshore currents decrease the wave 

attenuation of Nereocystis luetkeana. However, the reconfiguration of kelp in waves and currents can 

enhance the survival rate and reduce the effects of wave attenuation service on the biomass productivity 

(Gerard, 1987). Lastly, the kelp longline mooring system and the motion of the longline were not considered 

due to the small width of the flume, which may lead to overestimation of the wave attenuation.  

3.5. Summary 

The wave attenuation by suspended kelp canopies was investigated with a set of physical model 

experiments with dynamic similarity to the cultivated S. latissima at Saco, Maine in the USA. A full-scale 

model kelp canopy reduced up to 23% of the energy of 6.3 s waves. The motion of the blades was 

asymmetric, similar to submerged blades, but yielded a blade inclination that opposed the direction of wave 

propagation. In waves propagating to the right, the clockwise motion of water particles induces a clockwise 

momentum that drive submerged blades to incline to the right while driving suspended blades to the left. 

This strong asymmetric motion promoted a roll over motion of the suspended blades in large wave heights, 

which has not been previously reported. A simple wave attenuation model based on the blade dynamic 
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model in Zhu et al. (2020b) was developed and showed good agreement with the experiments, with a slight 

overestimation of 11%. The numerical model results indicated that plant density and the number of 

longlines are the key design parameters that can significantly improve wave attenuation performance. 

Furthermore, the empirical formulas for the bulk drag coefficient and effective blade length of suspended 

kelp canopy for wave attenuation were also developed, which are convenient to implement in large-scale 

models to examine the role of kelp farms as nature-based coastal protection measures on coastal 

morphology, inner shelf circulation and material transport. Though this study focused on waves without 

currents, a natural extension of this work would be to include background currents, which likely streamline 

the kelp blades and influence the wave attenuation performance.  
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CHAPTER 4 

ANALYTICAL MODEL FOR WAVE ATTENUATION BY FLEXIBLE CANOPIES 

4.1. Background  

Coastal communities are exposed to the increasing risks from coastal erosion and flooding from 

storm tides and sea level rise (Izaguirre et al., 2011; Tebaldi et al., 2012; Ondiviela et al., 2014; Weinkle et 

al., 2018). As conventional hard structures are recognized to have adverse impacts on the environment and 

become less sustainable in a changing climate (Syvitski et al., 2009; Currin et al., 2010; Pace, 2011; 

Temmerman et al., 2013; Sutton-Grier et al., 2015), a more ecological approach that uses nature-based 

infrastructure for coastal defense is in growing need (Morris et al., 2017; Möller, 2019). Nature-based 

infrastructure include wetland plants, mangroves, aquatic vegetation, kelp beds, coral reefs, and shellfish 

reefs. Based on the vertical position of the biomaterial in the water column, nature-based infrastructure is 

classified as either submerged (e.g., submerged aquatic vegetation located at the seafloor), emerged (e.g., 

saltmarsh and mangroves located at the seafloor and emerged out of the water surface), suspended (e.g., 

kelp and mussel aquacultures suspended in the water column with gaps below and above the canopy), or 

floating (e.g., floating wetland) canopies. These canopies have the potential to protect coastal regions by 

damping wave energy while reducing the adverse effects of hardened shorelines.  

The wave attenuation by canopies has been investigated with laboratory and field experimental 

techniques as well as analytical and numerical models. Many of these methods are based on the wave 

attenuation theories developed by Dalrymple et al. (1984) and Kobayashi et al. (1993) assuming a rigid 

canopy component (referred to as ‘blade’ herein and after) without motion. Wave dissipation is dependent 

on the work of the canopy drag, which is proportional to the square of the relative velocity between the 

flow and the blade. Neglecting the blade motion can overestimate drag and therefore wave attenuation. In 

an effort to represent these uncertainties, a bulk drag coefficient (𝐶𝐷) approach has been applied (e.g., 

Kobayashi et al., 1993; Mendez and Losada, 2004). Alternatively, Luhar et al. (2017) proposed a technique 

that considers the effects of blade motion by using a reduced effective blade length (𝑙𝑒) rather than reducing 
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the original drag coefficient (𝐶𝑑). The effective blade length (𝑙𝑒) is defined as the length of a rigid blade 

that dissipates the same wave energy as the flexible blade with the original length (𝑙). The bulk drag 

coefficient and effective blade length methods reduce the complexity to model the wave-vegetation 

interaction so that these models are computationally efficient and convenient to implement in large-scale 

models. However, numerous experiments are required to calibrate 𝐶𝐷  and 𝑙𝑒 . Conventionally, 𝐶𝐷  is 

expressed as a function of Reynolds number (Re) or Keulegan–Carpenter number (KC) independent from 

vegetation flexural rigidity. Thus, the Re- and KC-based empirical formulas for 𝐶𝐷  are different for 

vegetation with different flexibilities, e.g., the different formulas in Mendez and Losada (2004), Sanchez-

Gonzalez et al. (2011), Jadhav et al. (2013), Anderson and Smith (2014), and Ozeren et al. (2014) as 

summarized in Chen et al. (2018) and van Veelen et al. (2020). The empirical formula for 𝑙𝑒 is expressed 

as a function of the Cauchy number (Ca) incorporating vegetation flexural rigidity. Accurate 

parameterizations of 𝐶𝐷 and 𝑙𝑒 are important to predict wave attenuation (Fringer, 2019), which requires a 

full understanding of wave-vegetation interaction. 

To quantify the blade motion, the blade is modeled as a cantilever beam using Euler-Bernoulli 

beam approach. By simplifying the blade motion as a balance between drag force and blade bending 

resistance, Mullarney & Henderson (2010) obtained linear normal mode solutions for the blade 

displacement along the length. The model was recently extended to include the effects of buoyancy by 

Henderson (2019). With the normal mode technique, Zhu et al. (2020a) obtained frequency dependent 

analytical solutions for blade displacements in random waves considering the effects of inertial forces. As 

the analytical solutions are limited to small-amplitude blade motion, a more precise solution for the large-

amplitude blade motion can be obtained with numerical techniques (e.g., Zeller et al., 2014; Zhu and Chen, 

2015; Luhar and Nepf, 2016; Leclercq and de Langre, 2018; Zhu et al., 2018; Chen and Zou, 2019; Zhu et 

al., 2020b). The consistent-mass cable model described in Zhu et al. (2020b) was able to capture asymmetric 

‘‘whip-like’’ blade motion. These analytical solutions are useful to describe the mechanisms that influence 

blade motion related to wave attenuation. The benefit of analytical solutions are that they are easier to 
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implement into large-scale models to analyze the influences of wave attenuation on coastal morphology, 

inner shelf circulation and material transport. The analytical wave attenuation model is developed based on 

the small-amplitude blade motion and the nonlinearity effects induced by the large-amplitude blade motion 

on the wave attenuation model, as well as its application has not yet been understood. 

Wave attenuation by vegetation is determined by wave conditions and vegetation characteristics 

including morphological (e.g., plant density and blade length, width and thickness) and mechanical 

properties (e.g., blade flexural rigidity). The vegetation characteristics depend on the growth of vegetation 

and therefore show a seasonal variation (Moller and Spencer, 2002; Moller, 2006; Koch et al., 2009). Most 

salt-marsh grasses, such as Spartina alterniflora (Marsooli et al., 2017), Spartina anglica (Schulze et al., 

2019), Spartina foliosa (Foster-Martinez et al., 2018), Salicornia pacific (Foster-Martinez et al., 2018), and 

Elymus athericus (Schulze et al., 2019), contribute more wave energy during summer than winter and spring 

due to larger plant stem stiffness, canopy height, and aboveground biomass in summer than other seasons. 

Most seagrasses, such as Ruppia maritima (Chen et al., 2007), Zostera marina (Hansen and Reidenbach, 

2013), and Zostera noltii (Paul and Amos, 2011), also show a similar pattern to dissipate more wave energy 

in summer with larger blade length, blade width, canopy height, and canopy density in summer than other 

seasons. In winter, more vegetation break or die off that may also reduce the wave attenuation capacity 

(Marsooli et al., 2017; Vuik et al., 2018). Therefore, Ondiviela et al. (2014) proposed that the large, long 

living and slow growing seagrass species, such as Posidonia oceanica, with biomass being largely 

independent of seasonal fluctuations may provide a favorable coastal protection. Like vegetation, kelp, 

especially for cultivated kelp, also grow seasonally with seasonal impacts on wave attenuation, which are 

not fully understood. The seasonal variation of natural materials used to attenuate waves is essential to 

understand, so that the appropriate species and design strategies can be selected for nature-based coastal 

protection.  

The objectives of this study are to develop an analytical wave attenuation model with resolving the 

blade motion and investigate the seasonal wave attenuation capacity of cultivated kelp canopies as well as 

its implications for nature-based coastal protection. The analytical model was compared with the 
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experiments by Luhar et al. (2017) and Lei and Nepf (2019a) for submerged aquatic vegetation and the 

experiments in Chapter 3 for suspended kelp canopies. The analytical model was also compared with the 

numerical model in Chapter 3 to analyze the effects of the nonlinearity of large-amplitude blade motion. 

With the analytical model, the analytical solutions for the bulk drag coefficient and effective blade length 

were derived and compared with the fitted values from the datasets. After the data-model comparison, the 

model was then used to analyze the seasonal impacts on the wave attenuation capacity of submerged 

vegetation and suspended canopies. 

4.2. Methodology 

4.2.1. Model set-up 

To derive the wave attenuation model for suspended canopies, the three-layer model is used (Figure 

4.1). The horizontal coordinate (𝑥) is positive in the direction of wave propagation with 𝑥 =  0 at the 

leading edge of the canopy and 𝑥 = 𝐿𝑣 at the ending edge. The vertical coordinate (𝑧) is positive upward 

with 𝑧 =  0 at the still water level (SWL). The canopy height (𝑑2) is defined as the average submerged 

length of the canopy blades. The thicknesses of the water layers above and below the canopy are 𝑑1 and 

𝑑3, respectively. The water depth from the SWL is ℎ = 𝑑1 + 𝑑2 + 𝑑3, where the seafloor is located at 𝑧 =

−ℎ and assumed horizontal. This generalized three-layer model can be used to analyze the wave attenuation 

characteristics of (i) submerged (𝑑1 ≠ 0 and 𝑑3 = 0), (ii) emerged (𝑑1 = 0 and 𝑑3 = 0), (iii) suspended 

(𝑑1 ≠ 0 and 𝑑3 ≠ 0), and (iv) floating (𝑑1 = 0 and 𝑑3 ≠ 0) canopies. 

Based on linear wave theory (Dean and Dalrymple, 1991), the horizontal wave orbital velocity (𝑢) 

is given by 

𝑢 =
𝐻

2
ωΓ(𝑧) cos(𝑘𝑥 − 𝜔𝑡),                                                       (4.1) 

where 𝐻 is the wave height, 𝜔 is the wave angular frequency, 𝑡 is the time, Γ = cosh 𝑘(ℎ + 𝑧) / sinh 𝑘ℎ 

is the vertical decay factor, and 𝑘  is the wave number obtained from the dispersion relation, 𝜔2 =

𝑔𝑘 tanh 𝑘ℎ, with 𝑔 being the gravitational acceleration. 
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Figure 4.1. Sketch of the three-layer model for wave attenuation by suspended canopies (a) fixed at the 

bottom end and (b) fixed at the tip end. The coordinate (𝑥, z) is originated at the leading edge of the canopy 

(𝑥 =  0) and the still water level (SWL, 𝑧 = 0). The distance from the fixed end of the blade is 𝑠. The 

canopy length is 𝐿𝑣 and the canopy height is 𝑑2. The thicknesses of the layers above and below the canopy 

are 𝑑2 and 𝑑3, respectively. The water depth from the SWL is ℎ = 𝑑1 + 𝑑2 + 𝑑3. 

 

4.2.2. Blade motion 

The blade is modeled as a cantilever beam with the simplified governing equation for the horizontal 

blade displacement (𝜉), 

𝜌𝑣𝐴𝑐�̈� + 𝐸𝐼𝜉′′′′ = 𝑓𝑥,                                                               (4.2) 

where 𝜉 is a function of time (𝑡) and the distance 𝑠 along the blade length (𝑙) from the fixed end (𝑠 = 0), 

the dot ( ̇ ) indicates derivative with respect to 𝑡, the prime (′) indicates derivative with respect to 𝑠, 𝜌𝑣 is 

the blade mass density, 𝐴𝑐 is the blade cross section area, and 𝐸𝐼 is the blade flexural rigidity with 𝐸 being 
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the elastic modulus and 𝐼 being the second moment of the cross section. The relation between 𝑠 and 𝑧 

(Figure 4.1) is 

𝑧 = {
−𝑑1 − 𝑑2 + 𝑠, blade fixed at the bottom end,
−𝑑1 − 𝑠,                      blade fixed at the tip end.

                                    (4.3) 

The right-hand side of equation (4.2) is the hydrodynamic force per unit length (𝑓𝑥) consisting of virtual 

buoyancy (𝑓𝑉𝐵), drag (𝑓𝑑), and added mass force (𝑓𝐴𝑀) given by the modified Morison equation (Morison 

et al., 1950),  

𝑓𝑥 = 𝛼𝐹(𝑓𝑉𝐵 + 𝑓𝑑 + 𝑓𝐴𝑀),                                                         (4.4) 

where 𝛼𝐹  is the sheltering factor to consider the sheltering effects between blades, 𝑓𝑉𝐵 = 𝜌𝑤𝐴𝑐�̇�, 𝑓𝑑 =

1

2
𝐶𝑑𝜌𝑤𝑏|𝑢 − �̇�|(𝑢 − �̇�), 𝑓𝐴𝑀 = 𝐶𝑚𝜌𝑤𝐴𝑐(�̇� − �̈�), 𝜌𝑤 is the water density, 𝑏 is the projected width of the 

blade, 𝐶𝑑 is the drag coefficient, and 𝐶𝑚 is the added mass coefficient. The drag coefficient (𝐶𝑑) and added 

mass coefficient ( 𝐶𝑚 ) are 𝐶𝑑 = max (10𝐾𝐶−1/3, 1.95)  and 𝐶𝑚 = min(𝐶𝑚1, 𝐶𝑚2) , respectively, with 

𝐶𝑚1 = {
1 + 0.35KC2/3, KC < 20

1 + 0.15 KC2/3, KC ≥ 20
 and 𝐶𝑚2 = 1 + (KC − 18)2/49 (Luhar, 2012; Luhar and Nepf, 2016). 

The formulas for 𝐶𝑑 and 𝐶𝑚 are obtained from the experiments for rigid flat plates in oscillatory flows 

(Keulegan and Carpenter, 1958; Sarpkaya and O’Keefe, 1996) with 1.7 ≤ 𝐾𝐶 = 𝑢𝑇/𝑏 ≤ 118.2. To obtain 

an analytical solution, the nonlinear drag is linearized as 

𝑓𝑑 =
1

2
𝐶𝑑𝜌𝑤𝑏|𝑢 − �̇�|(𝑢 − �̇�) ≈ 𝑐(𝑢 − �̇�),                                           (4.5) 

where the linearization coefficient (𝑐) is obtained from the Lorentz’s condition of equivalent work (Sollitt 

& Cross, 1972). This requires that the nonlinear and linear drag accounts for the same amount of energy 

dissipation averaged over one wave period such that ∫
1

2
𝛼𝐹𝐶𝑑𝜌𝑤𝑏|𝑢 − �̇�|(𝑢 − �̇�)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑑𝑧 

−𝑑1

−𝑑1−𝑑2
=

∫ 𝑐(𝑢 − �̇�)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑧
−𝑑1

−𝑑1−𝑑2
 , yielding 

𝑐 =
∫ 𝛼𝐹

1

2
𝐶𝑑𝜌𝑤𝑏|𝑢−�̇�|(𝑢−�̇�)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑧 

−𝑑1
−𝑑1−𝑑2

∫ (𝑢−�̇�)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑧
−𝑑1

−𝑑1−𝑑2

,                                                      (4.6) 
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where the overbar indicates the time average over one wave period. The linearization of the drag force in 

random waves is typically done using the Borgman (1967) method based on the distribution of the wave 

orbital velocity resulting in a different expression of the linearization coefficient (detailed in Zhu et al., 

2020b). 

Substituting (4.1), (4.4) with linearized drag (4.5) into (4.2) yields 

𝑚�̈� + 𝑐 �̇� + 𝐸𝐼𝜉′′′′ =
𝐻

2
𝜔𝛤[𝑐 cos(𝑘𝑥 − 𝜔𝑡) + 𝜔𝑚𝐼 sin(𝑘𝑥 − 𝜔𝑡)],                    (4.7) 

where 𝑚 = (𝜌𝑣 + 𝛼𝐹𝐶𝑚𝜌𝑤)𝐴𝑐  and 𝑚𝐼 = (1 + 𝐶𝑚)𝛼𝐹𝜌𝑤𝐴𝑐 . The boundary conditions for a cantilever 

beam are set as 𝜉(0, 𝑡) = 0, 𝜉′(0, 𝑡) = 0, 𝜉′′(𝑙, 𝑡) = 0, and 𝜉′′′(𝑙, 𝑡) = 0. Solving (4.7) with the normal 

mode approach (Rao, 2007) yields 

ξ =
𝐻

2
Γ[𝛾𝑠 sin(𝑘𝑥 − 𝜔𝑡) + 𝛾𝑐 cos(𝑘𝑥 − 𝜔𝑡)].                                      (4.8) 

In (4.8), 𝛾𝑠 and 𝛾𝑐 are the transfer functions and expressed as 

𝛾𝑠 =
𝜔

Γ
∑ 𝜙𝑛

𝜔𝐼𝑛(𝜆𝑛
2 −𝜔2)−𝐷𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
n=1                                               (4.9) 

and 

𝛾𝑐 =
𝜔

Γ
∑ 𝜙𝑛

𝐷𝑛(𝜆𝑛
2 −𝜔2)+𝜔𝐼𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
n=1 ,                                             (4.10) 

where 𝜙𝑛 = (𝑐𝑜𝑠 𝜇𝑛𝑙 + 𝑐𝑜𝑠ℎ 𝜇𝑛𝑙)(𝑠𝑖𝑛 𝜇𝑛𝑠 − 𝑠𝑖𝑛ℎ 𝜇𝑛𝑠) + (𝑠𝑖𝑛 𝜇𝑛𝑙 + 𝑠𝑖𝑛ℎ 𝜇𝑛𝑙)(𝑐𝑜𝑠ℎ 𝜇𝑛𝑠 − 𝑐𝑜𝑠 𝜇𝑛𝑠)  is 

the 𝑛th normal mode of the cantilever beam with 𝜇𝑛 being the 𝑛th solution of 1 + cos 𝜇𝑙 cosh 𝜇𝑙 = 0, 𝜆𝑛 =

𝜇𝑛
2√𝐸𝐼/𝑚  is the 𝑛th natural frequency of the blade, 2ζnλn = 𝑐/𝑚, 𝐷𝑛 = 𝑐/𝑚 ∫ 𝛤𝜙𝑛𝑑𝑠

𝑙

0
/ ∫ 𝜙𝑛

2𝑑𝑠
𝑙

0
 and 

𝐼𝑛 = 𝑚𝐼/𝑚 ∫ 𝛤𝜙𝑛𝑑𝑠
𝑙

0
/ ∫ 𝜙𝑛

2𝑑𝑠
𝑙

0
. Since 𝛤 is expressed in 𝑧 and 𝜙𝑛 is expressed in 𝑠, the relation between 𝑠 

and 𝑧 in (3) is required to calculate the integral ∫ 𝛤𝜙𝑛𝑑𝑠
𝑙

0
. Substituting (4.8) into (4.6) yields the expression 

of the linearization coefficient in terms of the transfer functions, 

𝑐 =
1

2
𝛼𝐹𝐶𝑑𝜌𝑤𝑏

𝐻

2
𝜔

8

3𝜋

∫ 𝛤3[(1+𝛾𝑠)2+𝛾𝑐
2]

3/2−𝑑1
−𝑑1−𝑑2

𝑑𝑧

∫ 𝛤2[(1+𝛾𝑠)2+𝛾𝑐
2]

−𝑑1
−𝑑1−𝑑2

𝑑𝑧
.                                   (4.11) 
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The linearization coefficient can be obtained iteratively. Starting from a static blade, an initial 𝑐  is 

calculated from equation (4.11) by assuming 𝛾𝑠 = 0 and 𝛾𝑐 = 0. Once the transfer functions are obtained 

from (4.9) and (4.10), 𝑐 can be updated from (4.11). The procedure is repeated until a convergent solution 

is obtained. 

4.2.3. Wave attenuation 

The wave energy dissipation is assumed to be attributed to the work of canopy drag following Zhu 

et al. (2020a). The drag force described in Section 4.2.2 is derived assuming a small-amplitude blade motion 

with linear beam theory. In fact, the blade motion is large-amplitude with geometrical nonlinearity. To 

consider the effects of geometrical nonlinearity on wave attenuation, a factor 𝛼𝑁 is induced in the energy 

conservation equation such that 

𝜕𝐸𝑐𝑔

𝜕𝑥
= − ∫ 𝑁𝛼𝑁𝛼𝑆𝑓𝑑(𝑢 − �̇�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅−𝑑1

−𝑑1−𝑑2
𝑑𝑧,                                            (4.12) 

where 𝐸 = 𝜌𝑤𝑔𝐻2/8 is the local wave energy per unit horizontal area, 𝑐𝑔 = 𝜔(1 + 2𝑘ℎ/ sinh 2𝑘ℎ)/2𝑘 is 

the wave group velocity, N is the canopy density defined as the number of blades per unit horizontal area, 

and 𝛼𝑆  is the sheltering factor to consider the sheltering effects between blades. The factor 𝛼𝑁  can be 

calibrated through numerical methods or experiments. In this study, 𝛼𝑁  is fitted through numerical 

methods. Substituting the quadratic drag force (4.5) into (4.12) yields the transmitted wave height at 

distance 𝑥 in relation to the incident wave height 𝐻0 at 𝑥 = 0, 

𝐻(𝑥)

𝐻0
=

1

1+𝑘𝐷𝐻0𝑥
,                                                            (4.13) 

where the wave decay coefficient (𝑘𝐷) is expressed as 

𝑘𝐷 =
4𝛼𝑁𝛼𝑆𝐶𝑑𝑏𝑁𝑘2

3𝜋 sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
∫ [√(1 + 𝛾𝑠)2 + 𝛾𝑐

2]
3

cosh3 𝑘(ℎ + 𝑧) 𝑑𝑧
−𝑑1

−𝑑1−𝑑2
.       (4.14) 

It should be noted that equation (4.13) is obtained using a quadratic drag. Using the linearized drag (4.5) 

yields an exponential decayed wave height as 𝐻 = 𝐻0𝑒−𝑘𝐷𝐻0𝑥, which is also often used in practice (e.g., 

Kobayashi et al., 1993; Mendez et al., 1999; Zhu & Zou, 2017). The two wave decay forms are linked 

through a piecewise method (Appendix C). The piecewise method indicates that the exponential decay form 



81 
 

with linearized drag would overestimate the wave attenuation. Therefore, the fractional decay form in (4.13) 

is recommended. However, for weak wave attenuation such that 𝑘𝐷𝐻0𝑥 < 0.5, the difference between 

1/(1 + 𝑘𝐷𝐻0𝑥) and 𝑒−𝑘𝐷𝐻0𝑥 is less than 10%. 

For a rigid canopy with unsheltered blades such that 𝛼𝑁 = 1, 𝛼𝑆 = 1, 𝛾𝑠 = 0, and 𝛾𝑐 = 0, the 

solution (4.14) reduces to the solution of Zhu and Zou (2017), i.e., 

𝑘𝐷,𝑅 =
𝐶𝑑𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
.                (4.15) 

For bottom rooted vegetation such that 𝑑3 = 0, solution (4.15) can be further reduced to the solutions by 

Dalrymple et al. (1984) and Kobayashi et al. (1993). 

4.2.4. Bulk drag coefficient and effective blade length 

The wave dissipation ratio is proportional to ∫ 𝑓𝑑(𝑢 − �̇�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑑1

−𝑑1−𝑑2
𝑑𝑧 ∝ ∫ 𝐶𝑑|𝑢𝑟|3𝑑𝑠

𝑙

0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 with 𝑢𝑟 = 𝑢 −

�̇� being the relative velocity. This requires computing the relative velocity to consider the wave-blade 

interaction. To reduce the computation for the relative velocity with resolving the blade motion, the bulk 

drag coefficient and effective blade length methods with a rigid blade assumption are often used, especially 

for implementation into large-scale models. The bulk drag coefficient (𝐶𝐷) is a reduced drag coefficient 

such that ∫ 𝐶𝐷|𝑢|3𝑑𝑠
𝑙

0
= ∫ 𝐶𝑑|𝑢𝑟|3𝑑𝑠

𝑙

0
 while the effective blade length (𝑙𝑒) is a reduced blade length such 

that ∫ 𝐶𝑑|𝑢|3𝑑𝑠
𝑙𝑒

0
= ∫ 𝐶𝑑|𝑢𝑟|3𝑑𝑠

𝑙

0
 as shown on Figure 4.2. Traditionally, 𝐶𝐷  and 𝑙𝑒  are calibrated with 

experiments. However, with the analytical model developed in this study, the analytical solutions for 𝐶𝐷 

and 𝑙𝑒 can be obtained. 

Replacing 𝐶𝑑 in (4.15) by 𝐶𝐷 and substituting the result into (4.14) yields the bulk drag coefficient, 

𝐶𝐷 =
12𝑘𝛼𝑁𝛼𝑆 ∫ cosh3 𝑘(ℎ+𝑧)[√(1+𝛾𝑠)2+𝛾𝑐

2]

3

𝑑𝑧
−𝑑1

−𝑑1−𝑑2

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3
𝐶𝑑.                         (4.16) 

For shallow water waves with 𝑘ℎ < 0.1𝜋, (4.16) reduces to 

𝐶𝐷 =
𝛼𝑁𝛼𝑆

d2
∫ [√(1 + 𝛾𝑠)2 + 𝛾𝑐

2]
3

𝑑𝑧
−𝑑1

−𝑑1−𝑑2
𝐶𝑑.                              (4.17) 
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Figure 4.2. Concept sketch for bulk drag coefficient (𝐶𝐷) and effective blade length (𝑙𝑒) methods. The bulk 

drag coefficient method is denoted by blue patch such that ∫ 𝐶𝐷|𝑢|3𝑑𝑠
𝑙

0
= ∫ 𝐶𝑑|𝑢𝑟|3𝑑𝑠

𝑙

0
 while the effective 

blade length method is denoted by red patch such that ∫ 𝐶𝑑|𝑢|3𝑑𝑠
𝑙𝑒

0
= ∫ 𝐶𝑑|𝑢𝑟|3𝑑𝑠

𝑙

0
, where 𝑢  is flow 

velocity, 𝑢𝑟 is the relative velocity between the blade and flow, 𝐶𝑑 is the original drag coefficient, 𝑠 is the 

distance along the blade length, and 𝑙 is the blade length. 

 

Replacing 𝑑2  in (4.15) by 𝑙𝑒  and substituting the result into (4.14) yields the solution for the 

effective blade length, 

9 sinh 𝑘(𝑙𝑒 + 𝑑3) + sinh 3𝑘(𝑙𝑒 + 𝑑3) = 9 sinh 𝑘𝑑3 + sinh 3𝑘𝑑3 + 12𝑘𝛼𝑁𝛼𝑆 ∫ cosh3 𝑘(ℎ +
𝑙

0

𝑧) [√(1 + 𝛾𝑠)2 + 𝛾𝑐
2]

3
𝑑𝑠.      (4.18) 

For submerged vegetation with 𝑑3 = 0, (4.18) reduces to 

9 sinh 𝑘𝑙𝑒 + sinh 3𝑘𝑙𝑒 = 12𝑘𝛼𝑁𝛼𝑆 ∫ cosh3 𝑘(ℎ + 𝑧) [√(1 + 𝛾𝑠)2 + 𝛾𝑐
2]

3
𝑑𝑠

𝑙

0
,          (4.19) 

If 𝑙𝑒 is far less than wave length with 𝑘𝑙𝑒 < 0.1𝜋 (𝑙𝑒 < 0.05𝜆), (4.19) reduces to 

𝑙𝑒 = 𝛼𝑁𝛼𝑆 ∫ cosh3 𝑘(ℎ + 𝑧) [√(1 + 𝛾𝑠)2 + 𝛾𝑐
2]

3
𝑑𝑠

𝑙

0
.                            (4.20) 

For shallow water waves with (𝑘ℎ < 0.1𝜋 or ℎ < 0.05𝜆), (4.18) reduces to 

𝑙𝑒 = 𝛼𝑁𝛼𝑆 ∫ [√(1 + 𝛾𝑠)2 + 𝛾𝑐
2]

3
𝑑𝑠

𝑙

0
.                                                (4.21) 
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4.3. Results 

4.3.1. Model-Data comparison 

The analytical model is compared with the experiments for suspended kelp canopy in Chapter 3 as 

well as the experiments for submerged vegetation in Luhar et al. (2017) and Lei and Nepf (2019b). The 

numerical model in Chapter 3 is used to calibrate the factor 𝛼𝑁 for the analytical model to consider the 

effects of the geometrical nonlinearity induced by large-amplitude blade motion. 

In the experiments for suspended kelp canopies, the kelp blade was made of silicon film with 𝜌𝑣 =

1.2 g/m3 and 𝐸 = 2.04 MPa. The model blade was 10.16 cm long, 0.95 cm wide and 0.1 mm thick. The 

suspended kelp canopy consisted of 20 rows of blades and the rows were 20 cm apart. For each row, there 

were 31 aggregates of blades with 1 aggregate/cm. For each aggregate, 10 blades were fixed together at the 

top end with the fixed part of the blade being 0.5 cm and the flexible part being 9.66 cm. The sheltering 

effects between the blades in an aggregate were considered using a sheltering factor 𝛼𝑆 = 0.728, proposed 

in Chapter 3. The canopy length was 3.8 m and the canopy density was 𝑁 = 5263 blades/m2. Three vertical 

positions of the suspended canopy beneath the SWL with 𝑑1 = 6, 11, 16  cm were compared in the 

experiments. The incident wave height was 1.8~3.8 cm, wave period was 0.8~2 s, and water depth was 

30~40 cm with 𝑘ℎ = 0.58~2.41, 𝐻𝐼0/ℎ = 0.05~0.11, 𝐶𝑎 = 35~13930, 𝐿 = 6~284, 𝐾𝐶 = 0.2~10.8 

and 𝑅𝑒 = 24~488. The details of the experiments can be found in Chapter 3. 

In the experiments for submerged vegetation (Luhar et al., 2017; Lei and Nepf, 2019b), the 

vegetation was modeled using a 14 cm-long, 3 mm-wide, and 0.1 mm-thick low-density polyethylene 

(LDPE) film with 𝜌𝑣 = 0.92 g/cm3 and 𝐸 = 0.3 GPa. The rigid part of the blade was 1 cm while the 

flexible part was 13 cm. The blades were located separately such that the sheltering factor 𝛼𝑆 = 1. The 

canopy density was 280~1800 stems/m2 with 1680~10800 blades/m2. The wave height was 1 to 11.2 cm, 

wave period was 0.8 to 2 s, and the water depth was 16 to 45 cm with 𝑘ℎ = 0.44~2.7, 𝑙/ℎ = 0.29~0.8, 

𝐾𝐶 = 10.3~138 , 𝐶𝑎 = 87~3764 , and 𝐿 = 2~26 . Details of the experiments for the submerged 
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vegetation can be found in Luhar et al. (2017) and Lei and Nepf (2019b). The canopy characteristics and 

wave conditions are summarized in Table 4.1. 

 

Table 4.1. Canopy characteristics and wave conditions. 

 Canopy characteristics Wave conditions 

Suspended kelp 

canopy in Chapter 3 

Silicon film blade 

Mass density: 1.2 g/cm3 

Elastic modulus: 2.04 MPa 

Dimensions: 10.16 cm long, 0.95 cm wide, and 0.1 mm 

thick with rigid part of 0.5 cm and flexible part of 13 cm 

Canopy density: 526.3 bunches/m2 and 5263 blades/m2 

Fixed at the top end of blade with 6, 11, 16 cm below the 

still water line 

Sheltering factor: 𝛼𝑆 = 0.728 

Water depth: 30~40 cm 

Wave height: 1.8~3.8 cm 

Wave period: 0.8~2 s 

Wave length: 1.03 ~ 3.70 m 

Submerged 

vegetation in Luhar 

et al. (2017) and Lei 

and Nepf (2019) 

Low-density polyethylene (LDPE) blade 

Mass density: 0.92 g/cm3 

Elastic modulus: 0.3 GPa 

Dimensions: 14 cm long, 0.3 cm wide, and 0.1 mm thick 

with rigid part of 1 cm and flexible part of 13 cm 

Canopy density: 280~1800 bunches/m2 and 1680~10800 

blades/m2 

Fixed at the bottom end of blade 

Sheltering factor: 𝛼𝑆 = 1 

Water depth: 16~45 cm 

Wave height: 1~11.2 cm 

Wave period: 0.8~2 s 

Wave length: 0.90~3.88 m 

 

The analytical model with linearization of the blade motion underestimates the wave decay 

coefficient 𝑘𝐷𝐵  for the flexible part of the blades as shown on Figure 4.3a. To compensate for the 

linearization-induced underestimation in wave attenuation, the nonlinear effects coefficient 𝛼𝑁 to consider 

the nonlinearity is developed by comparing the nonlinear numerical results and linear analytical results. 

The nonlinear results are found to be averagely 1.63 times of the linear results (Figure 4.3a). Thus, the 

nonlinear effects coefficient is set as 𝛼𝑁 = 1.63 for this study. The modified analytical solutions for 𝑘𝐷 

with 𝛼𝑁 = 1.63 showed good agreement with the experiments with underestimation of 10% (Figure 4.3b). 
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Figure 4.3. (a) Comparisons between the numerical and analytical calculations for the wave decay 

coefficient 𝑘𝐷𝐵  for the flexible part of the blades. (b) Comparisons between the modified analytical 

solutions and the measurements for the wave decay coefficient 𝑘𝐷. The solid gray lines are the linear fits 

for the comparisons with expressions and 𝑅2 nearby. The normalized root mean square error (NRMSE) is 

shown in the legend and text. 

 

4.3.2. Bulk drag coefficient and effective blade length 

Bulk drag coefficient and effective blade length methods are simple ways to consider the effects of 

blade motion on wave attenuation. The values of 𝐶𝐷 and 𝑙𝑒 are for the flexible part of the blade with length 

of 𝑙𝑓. The analytically calculated 𝐶𝐷 is compared with the fitted and measured 𝐶𝐷 on Figure 4.4, where 𝐶𝐷 

is expressed as a function of 𝐾𝐶. As 𝐾𝐶 does not include all the parameters governing the blade motion, 

there might be several values of 𝐶𝐷 for different blade motions with the same 𝐾𝐶. Thus, 𝐶𝐷 is scattered, 

especially for the submerged vegetation dataset that has more cases with more wave conditions and more 

types of blade motions (Figure 4.4c). For 𝐾𝐶 -based 𝐶𝐷 , the analytically calculated 𝐶𝐷  has a similar 

NRMSE of 0.202 to the fitted 𝐶𝐷  with NRMSE=0.187 for suspended kelp canopy (Figure 4.4a). For 

submerged vegetation (Figure 4.4c), the NRMSE of analytically calculated 𝐶𝐷 is 0.202 and also similar to 

the fitted 𝐶𝐷 with NRMSE=0.190. For the comparisons between the decay coefficient (Figure 4.4b and d), 

the results calculated with the analytically calculated 𝐶𝐷 (NRMSE=0.123 for the suspended kelp and 0.051 
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for the submerged vegetation) also showed a similar precision to those with the fitted 𝐶𝐷 (NRMSE = 0.139 

for the suspended kelp and 0.052 for the submerged vegetation). 

  
Figure 4.4. Comparisons for the bulk drag coefficients (𝐶𝐷) of the flexible part of the blade between the 

measured, calculated using the analytical solution (4.16), and the fitted value for (a) suspended and (c) 

submerged canopies. Comparisons for the decay coefficient ( 𝑘𝐷 ) calculated by fitted 𝐶𝐷  and the 

analytically calculated 𝐶𝐷 for (b) suspended and (d) submerged canopies. 
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Figure 4.5. Comparisons for the normalized effective blade length (𝑙𝑓,𝑒/𝑙𝑓) of the flexible part of the blade 

(𝑙𝑓) between the measured, calculated using the analytical solution (4.18), calculated using the empirical 

formula by Luhar and Nepf (2019b), and the fitted value for (a) suspended and (c) submerged canopies. 

Comparisons for the decay coefficient (𝑘𝐷) calculated by the fitted 𝑙𝑓,𝑒, the empirical formula in Lei and 

Nepf (2019b), and the analytically calculated 𝑙𝑓,𝑒 for (b) suspended and (d) submerged canopies. 

 

The analytically calculated effective blade length of the flexible part of blade (𝑙𝑓,𝑒) is compared 

with the fitted and measured 𝑙𝑓,𝑒 as well as the empirical formula by Lei and Nepf (2019b) on Figure 4.5, 

where 𝑙𝑓,𝑒 is expressed as a function of 𝐶𝑎𝐿. As 𝐶𝑎𝐿 does not include all the parameters governing the 



88 
 

blade motion, there might be several values of 𝑙𝑓,𝑒 for different blade motions with the same 𝐶𝑎𝐿. Thus, 

𝑙𝑓,𝑒 is also scattered, especially for the submerged vegetation datasets that has more cases with more wave 

conditions and more types of blade motions (Figure 4.5c). For 𝐶𝑎𝐿-based 𝑙𝑓,𝑒, the analytically calculated 

𝑙𝑓,𝑒  has a slightly larger NRMSE of 0.183 than the fitted 𝑙𝑓,𝑒  with NRMSE=0.117 for suspended kelp 

canopies. For submerged vegetation, NRMSE is nearly 0.2 for all the methods. For the comparisons 

between the decay coefficients (Figure 4.5b and d), the results calculated with the analytically calculated 

𝑙𝑓,𝑒 (NRMSE=0.139 for suspended kelp and 0.051 for submerged vegetation) show less precision than those 

with the fitted 𝑙𝑓,𝑒 (NRMSE = 0.072 for the suspended canopy and 0.048 for the submerged vegetation). 

Compared to the 𝑙𝑓,𝑒  (NRMSE = 0.095) from the formula developed by Lei and Nepf (2019b), the 

analytically calculated 𝑙𝑓,𝑒 has improved the NRMSE by 46%.  

4.3.3. Case study for wave attenuation in different seasons  

The validated analytical model is used to investigate the seasonal wave attenuation capacity of kelp 

farms compared with seagrass. The designed length of the kelp blade is following the measured data by 

Augyte et al. (2017) for Saccharina latissima (sugar kelp) at coastal Maine, USA. The corresponding blade 

width, thickness and elastic modulus are calculated using (3.27) to (3.30) in Chapter 3 (Figure 4.6a). The 

effective blade width with 𝑏𝑒 = 0.2𝑏 based on (3.33) is used to consider the effects of thickness variance 

along the blade width. The designed mass density of kelp is 1053 kg/m3 (Table 3.2 in Chapter 3) and plant 

density is 330 plants/m (Augyte et al., 2017). The sheltering factor of 0.728 from the laboratory experiments 

in Chapter 3 is assumed applicable for this case study. The kelp longline is designed at 1.2 m below the still 

water level and 4 m apart in 8 m-deep water.  

Regarding the parameters of seagrass, the designed length of the seagrass blade is following the 

measured data by Gaeckle and Short (2002) for the Zostera marina (eelgrass) at coastal Maine, USA. The 

corresponding blade width and thickness as well as the length and width of the sheaths are calculated based 

on the formulas in Abdelrhman (2007) and shown on Figure 4.6b. The designed mass density and elastic 

modulus are 700 kg/m3 (Abdelrhman, 2007) and 0.26 GPa (Fonseca et al., 2007), respectively. The designed 
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shoot density is 335 shoots/m and the leaf number is 3 for each shoot (Mattila et al., 1999). Two water 

depths of 8 m (at the same water depth with kelp) and 5 m are designed for the seagrass for comparison. 

The wave energy dissipation rate (EDR) is used to evaluate the wave attenuation performance of 

the canopies and is defined as 

𝐸𝐷𝑅 = 1 −
𝐻(𝐿𝑣)2

𝐻(0)2 = 1 − (
1

1+𝑘𝐷𝐻0𝐿𝑣
)

2
,                                        (4.22) 

where 𝐿𝑣 is the canopy length in the direction of wave propagation. The calculated EDR of the designed 

kelp and seagrass canopies are shown on Figure 4.7. The designed wave height is 1 m. 

 

Figure 4.6. Design parameters for (a) kelp and (b) seagrass canopies over a year. The parameters include 

blade length (𝑙), blade width (𝑏), blade maximum thickness (𝑑max  ), and elastic modulus (𝐸). The length 

and width for the seagrass sheets are 𝑙𝑠 and 𝑏𝑠. 

 

The growth period of kelp has a significant impact on the wave attenuation. The kelp is usually 

seeded in December and grows slowly over the first few months, resulting in a small EDR (<10%) during 
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this time. When the kelp length exceeds 1 m after April, the wave attenuation is considerably larger with 

EDR>10%, reaching up to 21% with 25 longlines (𝐿𝑣 = 100 m) and 36% with 50 longlines (𝐿𝑣 = 200 m) 

for coastal waves with 6 s periods. For longer waves with a period of 10 s, the EDR decreases to 15% and 

27% for 25 longlines and 50 longlines, respectively. This is consistent with the wave attenuation 

characteristics of suspended canopies that are better attenuating shorter waves (Zhu et al., 2020b). The wave 

attenuation improves with more longlines and as kelp growth continues until it is harvested in June.  

 

Figure 4.7. Wave energy dissipation rate (EDR) for the designed kelp (red lines) and seagrass (blue lines) 

canopies in a year around. Two wave periods (𝑇𝑤) and water depths (ℎ) are compared. The canopy lengths 

(𝐿𝑣) for the canopies are shown in the legend. 
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Unlike the newly seeded kelp with blade growing from millimeters to meters in the growing season, 

the averaged blade length for a perennial seagrass meadow changes from 15 to 61 cm (Figure 4.6). 

Therefore, seagrass is less impacted by seasonal growth patterns that are typical of kelp farms. Due to the 

short blade length, the EDR of the seagrass in the same water depth of kelp is small (<6% for 6 s waves in 

Figure 4.7a and <9% for 10 s waves in Figure 4.7b). However, when the seagrass is located in shallower 

water at a 5 m depth, the EDR can increases to up to 17% for 6 s waves (Figure 4.7c) and 21% for 10 s 

waves (Figure 4.7d).  

4.4. Discussion 

4.4.1. Blade motion and the nonlinear effects 

The discussion begins with blade dynamics, which has a significant influence on the wave 

attenuation performance. The results show that the linearized analytical solution is smaller than the 

nonlinear numerical solutions (Figure 4.3). The underestimation is attributed to neglecting the nonlinearity 

of the blade motion. To investigate the nonlinearity effects on wave attenuation, the linear analytical 

solutions and nonlinear numerical solutions for the blade postures, the relative velocities (𝑢𝑟), and the drag 

force flux (𝑓𝑑𝑢𝑟) are compared on Figure 4.8.  

The wave dissipation is determined by the drag flux (𝑓𝑑𝑢𝑟 ∝ |𝑢𝑟|3) as shown in (4.12), which is 

proportional to the cubic of relative velocity. Not considering the nonlinear effects induces a larger 

amplitude blade motion, particularly near the fixed end (Figure 4.8a1 and b1), resulting in a smaller 

amplitude relative velocity (Figure 4.8a2, a3, b2 and b3). Consequently, neglecting the nonlinear effects 

underestimates wave attenuation. The asymmetry of the blade motion (Figure 4.8b1) induced by the 

interaction between the blade and wave orbital motion (Zhu et al., 2020a) is not considered in the linear 

model. 

The blade is so flexible that the free tip moves passively with the flow, resulting a small relative 

velocity. Thus, that section of the blade has little contribution to wave dissipation. For example on Figure 

4.8b, the blade locations 𝑠 > 0.26𝑙 have a small |𝑢𝑟| < 0.4 max(|𝑢𝑟|) (Figure 4.8b2) yielding 𝐹𝑑𝑢𝑟 <

5% max(𝐹𝑑𝑢𝑟) (Fig 4.8b4), indicating little contribution to wave dissipation. In other words, only the  
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Figure 4.8. Comparisons between the analytical (linearized blade motion) and numerical (nonlinear blade 

motion) calculations for the (a1 and b1) blade postures (𝑥, 𝑧), (a2, a3, b2, and b3) relative velocity (𝑢𝑟), 

and (a4 and b4) time averaged drag flux (𝑓𝑑𝑢𝑟) of the (a) suspended model kelp blade and (b) submerged 

model vegetation. The global coordinates (𝑥, 𝑧) and local coordinate (𝑠) are normalized by blade length (𝑙). 

The time (𝑡) is normalized by wave period (𝑇𝑤). The horizontal lines indicate the vertical position where 

𝑓𝑑𝑢𝑟 = 5% max(𝑓𝑑𝑢𝑟) with numerical calculations in red dashed lines and analytical calculations in blue 

dash dotted lines. 

 

blade location near the fixed end (𝑠 < 0.19𝑙 on Figure 4.8a and 𝑠 < 0.26𝑙 on Figure 4.8b) contributes to 

the wave dissipation. That is why the linear analytical model provides a good estimate for wave attenuation 

although the asymmetric large-amplitude blade motion is not well captured. To incorporate the nonlinear 

effects, a factor 𝛼𝑁 = 1.63 fitted from the comparison between the linear and nonlinear solutions is used. 

This constant factor works well for a wide range of 𝑘ℎ = 0.44~2.7, 𝑙/ℎ = 0.25~0.8, 𝐾𝐶 = 0.22~138, 

𝐶𝑎 = 35~13930, and 𝐿 = 2~284 for the experiments used in this study. One benefit of using a constant 

factor is that it can be directly used for random waves without modification to match wave components 

with different frequencies.  
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4.4.2. Evaluations of the methods to obtain bulk drag coefficient and effective blade length 

Bulk drag coefficient (𝐶𝐷 ) and effective blade length (𝑙𝑒 ) methods are simple approaches to 

consider the effects of blade motion on wave attenuation. Without resolving the blade motion as well as the 

wave-blade interaction, these methods are computationally efficient and more convenient to implement in 

large-scale models. Conventionally, 𝐶𝐷 and 𝑙𝑒 are fitted from experimental datasets. Since the complicated 

wave-blade interaction is not fully understood, sophisticated parameters to obtain good fits (e.g., 𝑅2 > 0.8) 

of 𝐶𝐷 and 𝑙𝑒 for a wide range of wave conditions and blade properties are difficult to achieve. Therefore, 

𝐶𝐷 and 𝑙𝑒 are traditionally fitted based on 𝐾𝐶 and 𝐶𝑎𝐿 without incorporating all the information for wave-

blade interaction, resulting in a small 𝑅2. The results showed that the analytical solutions for 𝐶𝐷 and 𝑙𝑒 

developed in this paper showed similar precision to the fitted 𝐶𝐷 and 𝑙𝑒 based on 𝐾𝐶 and 𝐶𝑎𝐿, respectively. 

Therefore, the analytical solutions for 𝐶𝐷  and 𝑙𝑒  can be an alternative when reliable 𝐶𝐷  and 𝑙𝑒  are not 

available. The analytical solutions for 𝐶𝐷 and 𝑙𝑒 are also convenient to implement in large-scale models. 

As the analytical solutions for 𝐶𝐷  and 𝑙𝑒  have given the parameters that govern 𝐶𝐷  and 𝑙𝑒 , which may 

provide insight in the appropriate parameters and relations to obtain a good fit for 𝐶𝐷 and 𝑙𝑒. 

4.4.3. Nature-based coastal protection strategies 

The case study showed the wave attenuation capacity of S. latissima is significantly influenced by 

the growing age. After about 5 months from seeding, the kelp blade grows longer than 1 m and can provide 

considerable wave attenuation. The large wave conditions (with significant wave height greater than Hs>1.5 

m) with storm events usually occurs in the Gulf of Maine in winter and spring from October to May (data 

from Maine EPSCoR SEANET Buoy C0502 in Saco Bay). To develop large kelp blades to provide 

considerable wave attenuation in winter, the kelp can be seeded earlier in May. As kelp grows faster in cold 

water, the kelp can be submerged near to the seafloor during summer and then move upward to the surface 

in winter. To keep considerable wave attenuation of kelp farms for coastal protection around the year, the 

harvesting can be changed from once per year to once per two years. As a result, the kelp older than one 

year can be several meters long, which could provide more favorable wave attenuation. One recommend 
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strategy is to harvest every other longline every other year. However, the kelp may get biofouled and ragged 

through the summer months that may impact the quality of the harvest. Thus, efforts can be paid to explore 

the methods to remove the biofouling or explore other seaweed species that can grow throughout the year 

without detrimental effects to the quality of the product.  

Compared to cultivated kelp, the wave attenuation capacity of seagrass is less impacted by 

seasonality. Due to large canopy density, seagrass in shallow water showed considerable wave attenuation 

for long waves. Zhu et al. (2020a) demonstrated the advantages of suspended aquaculture structures to 

damp shorter waves over seagrass and proposed that implementing suspended aquaculture structures 

offshore could improve the wave attenuation capacity of seagrass for a wider ranges of wave periods and 

water levels. Therefore, planting seagrass nearshore and cultivating seaweed offshore is an attractive 

alternative for coastal protection. 

4.5. Summary 

In this study, an analytical wave attenuation model that resolves blade motion was developed by 

linearizing the blade motion. To compensate for the linearization-induced underestimation in wave 

attenuation, a factor 𝛼𝑁 = 1.63 fitted from the comparisons between the analytical linear solutions and 

numerical nonlinear solutions was used to improve the analytical model. Compared with a wide range of 

experiments for both suspended and submerged flexible canopies with 𝑘ℎ = 0.44~2.7, 𝑙/ℎ = 0.25~0.8, 

𝐾𝐶 = 0.22~138, 𝐶𝑎 = 35~13930, and 𝐿 = 2~284, the analytical model showed good agreement with 

the experimental data with NRMSE=0.05 and underestimation of 10%. With the analytical model, the 

analytical solutions for bulk drag coefficient (𝐶𝐷) and effective blade length (𝑙𝑒) are derived. The analytical 

solutions for 𝐶𝐷 and 𝑙𝑒 showed similar precision with the experimentally fitted 𝐶𝐷 and 𝑙𝑒. Therefore, the 

analytical solutions are an effective way to obtain these values. A case study showed the wave attenuation 

of S. latissima is impacted by growth age. Only large kelp blade provide considerable wave attenuation. To 

keep the considerable wave attenuation around the year, the kelp harvesting should be postponed or changed 

to once per two years rather than annually. In this study, the effects of background currents are not 

considered, which likely significant impacts on blade posture and wave attenuation. Therefore, a natural 
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extension of this work should focus on incorporating the effects of currents on blade motion in the analytical 

model. 
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CHAPTER 5 

AQUACULTURE FARMS AS NATURE-BASED COASTAL PROTECTION: RANDOM WAVE 

ATTENUATION BY SUSPENDED AND SUBMERGED CANOPIES2 

5.1. Background  

Approximately 40% of the world’s population lives within 100 kilometers of the coast (MEA, 2005; 

Ferrario et al., 2014), and 71% of the coastal population lives within 50 kilometers of an estuary (UNEP, 

2006). While coastal communities benefit from proximity to seascapes, they are more vulnerable to natural 

coastal hazards and extreme events from the sea. For example, from 1900 to 2017, 197 hurricanes with 206 

landfalls in the USA caused about 2 trillion USD damage (normalized to 2018 value by considering the 

effects of inflation, wealth, and population), or annually about 17 billion USD (Weinkle et al., 2018). Due 

to climate change, more frequent and severe storms and rising sea level are likely to occur (Izaguirre et al., 

2011; Tebaldi et al., 2012; Ondiviela et al., 2014). 

To mitigate storm damage, hard structures such as seawalls, breakwaters, and bulkheads have been 

used as coastal defenses. These structures, however, may aggravate land subsidence due to soil drainage, 

inhibit natural accumulation of sediments by tides and waves, adversely impact water quality, and cause 

coastal habitat loss (Syvitski et al., 2009; Currin et al., 2010; Pace, 2011; Temmerman et al., 2013; 

SuttonGrier et al., 2015). Additionally, these conventional hard engineering defenses are also seriously 

challenged due to their continual and costly maintenance, as well as their reconstruction and reinforcement 

to keep up with increasing flood risk are becoming unsustainable (Temmerman et al., 2013). Natural and 

nature-based infrastructure may be a viable alternative to hardened shoreline protection system with added 

economic and ecological benefits and ability to adapt to sea level rise and climate change (Borsje et al., 

2011; Gedan et al., 2011; Temmerman et al., 2013). 

                                                           
2 Zhu, L., Huguenard, K., Zou, Q., Fredriksson, D. W., & Xie, D. (2020). Aquaculture farms as nature-based coastal 

protection: Random wave attenuation by suspended and submerged canopies. Coastal Engineering, 103737. 

https://doi.org/10.1016/j.coastaleng.2020.103737 
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As an example of nature-based infrastructure, living shorelines including a variety of wetland 

plants, aquatic vegetation, kelp beds and oyster reefs have become a complement to hardened shoreline 

stabilization. Unlike many hardened coastal protection techniques, living shorelines can mitigate storm 

damage and erosion while enhancing productive habitat, improving water quality, producing food and 

adapting to rising sea level (Currin et al., 2010; Scyphers et al., 2011; Davis et al., 2015; Bilkovic et al., 

2016; Gittman et al., 2016; Saleh and Weinstein, 2016; Vuik et al., 2016; Moosavi, 2017; Leonardi et al., 

2018; Möller, 2019). The protection of coastal ecosystems by wave attenuation is more effective in areas 

with relatively small tidal ranges (Bouma et al., 2014). Living shorelines at exposed, high-energy sites 

require structure such as breakwater or sill offshore to damp incident wave energy to sustain health growth 

of the living organisms (McGehee, 2016). 

Aquaculture systems may also act as nature-based infrastructure to attenuate wave energy and 

produce food at the same time. For example, Plew et al. (2005) observed that a 650 m × 2450 m mussel 

farm reduced wave energy by approximately 5%, 10%, and 17% at wave frequencies of 0.1, 0.2, and 0.25 

Hz, respectively at low sea state. It was found that densely grown kelp may have advantageous wave 

attenuation characteristics (Mork, 1996). For instance, Mork (1996) observed a 70% to 85% wave energy 

reduction across a 258 m long kelp bed (dominated by Laminaria hyperborea) with the highest wave 

attenuation observed during low tide. Unlike the natural kelp beds rooted at the seabed, cultivated kelp is 

suspended near the surface from a longline (Peteiro and Freire, 2013; Peteiro et al., 2016; Walls et al., 2017; 

Campbell et al., 2019; Grebe et al., 2019; Zhu et al., 2019), as shown on Figure 5.1. Near surface cultivated 

kelp may damp more wave energy than bottom-rooted kelp since the wave motion decreases towards the 

bottom. Kelp can also absorb carbon to mitigate climate change impacts and reduce nutrients to improve 

water quality, therefore, increase the growth rate of marine species (Duarte et al., 2017; Campbell et al., 

2019). Other environmental benefits of kelp and seaweed farming include recycling inorganic nutrients and 

preventing eutrophication conditions (Yang et al., 2015; Stévant et al., 2017; Xiao et al., 2017; Campbell 

et al., 2019). 
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Both mussels and kelp are often farmed near the surface on a horizontal type mooring system 

(Figure 5.1). The wave attenuation characteristics of these aquaculture farms can be modeled in a similar 

way as natural, bottom-rooted submerged and emergent canopies such as kelp forests, seagrasses and salt 

marshes. In this study, the aquaculture structures are treated as suspended canopies according to the 

classification shown on Figure 5.1. The classification is based on the vertical position in the water column 

and the ‘‘plant’’ height relative to the water depth (e.g., Plew, 2011; Huai et al., 2012; Chen et al., 2016; 

Zhu and Zou, 2017). The horizontal mussel and kelp farms shown on Figure 5.1 are placed at an elevation 

with optimum light, temperature and nutrient conditions within the water column to achieve maximum 

growth. Figure 5.1 also shows a row of nature-based floating wetlands and natural submerged and emergent 

plants. 

 
Figure 5.1. Canopy classification (from left to right): suspended aquaculture farms, floating wetlands, 

submerged plants, and emergent plants (figure credit: Yu-Ying Chen). 

 

Extensive studies have been dedicated to better understanding and predicting wave attenuation by 

submerged and emergent vegetation as reviewed later in Section 5.2.1. To model the wave attenuation by 

suspended canopies, Plew et al. (2005) developed a two-layer analytical solution for a floating longline 

mussel farm based on energy conservation equation with linear wave theory (Dalrymple et al., 1984). They 
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represented random wave conditions using root-mean square wave height and peak wave period. Zhu and 

Zou (2017) extended the two-layer solution by Kobayashi et al. (1993) for submerged vegetation to a 

generalized three-layer theoretical solution for suspended and submerged vegetation. Zhu and Zou (2017) 

found that the wave attenuation by a submerged canopy decreases while the wave attenuation by a floating 

canopy increases with increasing wave frequency. The wave attenuation by a suspended canopy first 

increases and then decreases with increasing wave frequency. Combining an OpenFOAM (Higuera et al., 

2013) hydrodynamics model with an immersed element vegetation model, Chen and Zou (2019) observed 

a strong jet formed at the top of a submerged flexible canopy in the opposite direction as the wave. Using 

a SWASH (Simulating WAves till SHore, Zijlema et al., 2011) model, Chen et al. (2019) investigated the 

wave-driven circulation cell induced by suspended canopies and found that the vertical position of the 

canopy also has significant effects on the wave-driven current in the canopy. Recently, SWASH was 

improved by Suzuki et al. (2019) to consider the drag of horizontal vegetation stems, vegetation canopy 

porosity and vegetation inertia, which can influence the wave dissipation. The effects of vegetation porosity 

on wave dissipation is of importance for dense vegetation. As time domain numerical models, OpenFOAM 

and SWASH are able to simulate waves with arbitrary frequency shape. However, the existing analytical 

models developed for suspended canopies in single characteristic frequency waves still need to be extended 

to frequency dependent models for random waves, which are a better representation of field conditions.  

The objective of this study is to develop a generalized three-layer frequency dependent theoretical 

model for random wave attenuation by submerged and suspended canopies. The analytical wave attenuation 

model is coupled with cantilever-beam and buoy-on-rope vegetation models to consider the motion of 

canopies with different type components. The coupled flow and vegetation model is validated with 

laboratory experimental datasets for submerged canopies (Jacobsen et al., 2019a) and laboratory and field 

datasets for suspended canopies (Seymour and Hanes, 1979). The validated coupled model is then applied 

in the field near Saco, Maine in the Northeastern USA to investigate the potential of a mussel farm to damp 

storm during the January 2015 North American blizzard. The effectiveness of using a suspended 



100 
 

aquaculture farm alone and in combination with submerged aquatic vegetation (SAV) close to shore for 

wave attenuation is also investigated.  

5.2. Theory 

5.2.1. Background on analytical wave attenuation models 

Theoretical models have been developed to study the wave attenuation characteristics of submerged 

and emergent canopies by Dalrymple et al. (1984) and Kobayashi et al. (1993). Both studies represented 

the canopy as arrays of rigid, homogeneous cylinders subject to monochromatic wave action. Assuming the 

wave energy loss as the work performed by the drag of vegetation, Dalrymple et al. (1984) obtained the 

wave decay coefficient by solving the energy conservation equation using linear wave theory. By solving 

the linearized incompressible Euler equations with assumptions of exponentially decayed wave height 

along the canopy and linearized drag, Kobayashi et al. (1993) obtained the same wave decay coefficient as 

Dalrymple et al. (1984). The wave decay coefficient is an explicit function of hydrodynamic conditions and 

canopy characteristics including blade length, width, and canopy density (defined as blade number per unit 

area).  

Both these analytical solutions have been widely used for calculating wave attenuation by 

submerged vegetation. The solution by Dalrymple et al. (1984) was modified by Mendez and Losada (2004) 

to consider random non-breaking and breaking waves propagating over a mildly sloped vegetation seabed 

by using the unmodified Raleigh distribution method and assuming a narrow-banded wave spectrum. The 

modification developed by Mendez and Losada (2004) has been implemented in the SWAN (Simulating 

WAves Nearshore) model by Suzuki et al. (2012), and the MDO (Mellor-Donelan-Oey) wave model for 

wind-generated waves and swells in deep and shallow waters by Marsooli et al. (2017). Recently, Losada 

et al. (2016) extended Mendez and Losada (2004) solution for combined wave and currents. The solution 

by Mendez and Losada (2004) was also used by Garzon et al. (2019) to analyze the wave attenuation by 

Spartina Saltmarshes in the Chesapeake Bay under storm surge conditions. These models based on the 

Mendez and Losada (2004) approach are limited to ideal narrowbanded waves. If applied to wide-banded 

waves, the Mendez and Losada (2004) based models would overestimate the dissipation for the wave 
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components with higher frequency than the characteristic peak frequency and underestimate the dissipation 

for the wave components with lower frequency than the characteristic peak frequency (Jacobsen et al., 

2019a). 

To investigate the spectral distribution of energy dissipation, Chen and Zhao (2012) developed two 

analytical frequency dependent wave attenuation models for random waves and rigid vegetation by 

implementing the energy dissipation of random waves in Hasselmann and Collins (1968) and the joint 

distribution of wave heights and wave periods proposed by Longuet-Higgins (1983). To derive the wave 

attenuation solution based on the random waves in Hasselmann and Collins (1968), Chen and Zhao (2012) 

used the root mean square velocity to linearize the drag force following Madsen et al. (1988) such that 

|𝑢| ≈ √2𝜎𝑢, where 𝜎𝑢 is the horizontal wave velocity and 𝜎𝑢  is the standard deviation of 𝑢. Recently, 

Jacobsen et al. (2019a) obtained a frequency distributed wave dissipation model by linearizing the drag 

force such that |𝑢| ≈ √8/𝜋𝜎𝑢 estimated from 270,000 numerical cases under JONSWAP spectrum so the 

linearization-induced mean error ||𝑢|/(√8/𝜋𝜎𝑢) − 1| is less than 0.01%. Borgman (1967) obtained the 

same result |𝑢| ≈ √8/𝜋𝜎𝑢 by minimizing the mean square of the difference between the nonlinear drag 

and linearized drag for 𝑢 in normal distribution. The Borgman (1967) method for the drag linearization can 

also be used for other probability distributions of 𝑢. 

Since most vegetation are flexible, the wave-induced motion of vegetation would reduce the 

relative velocity between wave-induced flow and vegetation and therefore the drag force, yielding less wave 

attenuation than rigid vegetation (Mullarney and Henderson, 2010; van Veelen et al., 2020). To consider 

the effects of vegetation motion, one common practice is using a reduced bulk drag coefficient (e.g., Paul 

and Amos, 2011; Jadhav et al., 2013; Pinsky et al., 2013; Anderson and Smith, 2014; Hu et al., 2014; Zeller 

et al., 2014; Möller et al., 2014; Losada et al., 2016; Wu et al., 2016; Marsooli et al., 2017; Nowacki et al., 

2017; Garzon et al., 2019; van Veelen et al., 2020). The bulk drag coefficient should be dependent on the 

Cauchy number (𝐶𝑎) incorporating the blade flexural rigidity related to vegetation motion. However, most 

of the empirical formulas in literature for the bulk drag coefficient of flexible vegetation are expressed as a 
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function of Reynolds number (𝑅𝑒) or Keulegan–Carpenter number (𝐾𝐶) without incorporating the blade 

flexural rigidity. Consequently, the empirical formulas of bulk drag coefficient have different expressions 

for vegetation with different flexural rigidities for the same set of 𝑅𝑒 and 𝐾𝐶 numbers. This introduces 

uncertainty in modeling wave attenuation by flexible vegetation. To apply the original (unreduced) drag 

coefficient as previous studies and incorporate the effects of blade motion at the same time, Luhar et al. 

(2017) proposed a reduced, effective blade length instead of a reduced drag coefficient to incorporate the 

effects of blade motion. The empirical formula for the effective blade length is dependent on blade flexural 

rigidity, therefore, can be readily applied to vegetation of various flexural rigidities. The formula for the 

effective blade length was recently modified by considering the effects of rigid sheath of seagrass (Lei and 

Nepf, 2019b) and applied to combined waves and currents conditions (Lei and Nepf, 2019a). These 

empirical approaches do not need to resolve blade motion and therefore improve the computational 

efficiency by reducing the iterative computation for coupling wave and vegetation motion. These 

approaches, however, require numerous datasets to derive the formulas for bulk drag coefficient and 

effective blade length. If the blade motion is directly resolved by the model, then the original unreduced 

drag coefficient and blade length can be used directly without modification. Therefore, the number of 

experiments and model runs to calibrate the bulk drag coefficient and the uncertainty associate with the 

bulk drag coefficient are reduced. 

To resolve the blade motion, Asano et al. (1992) simplified the blade motion as an oscillator with 

one degree of freedom by assuming blade deflection is linearly distributed along the length and also 

averaging deflection along the length. This method was then extended to consider irregular waves, wave 

reflection, and evanescent modes by Méndez et al. (1999) for submerged vegetation. To analyze the depth 

dependence of the blade deflection as well as its effects on wave dissipation, Mullarney and Henderson 

(2010) modeled the blade as a continuous beam with Euler–Bernoulli techniques, where the governing 

equation for the blade motion is simplified as a balance between the flexural rigidity-induced restoring force 

and the drag force, assuming the inertia force and buoyancy are negligible. Recently, Henderson (2019) 

extended this model by including buoyancy but still neglected the inertia force, therefore the model is valid 
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only for blades with small cross sectional area. In addition, the mass of vegetation influences the natural 

frequency of the vegetation and further impacts the blade motion as well as the resonant conditions. To 

fully consider the gravity, buoyancy, structural damping, bending stiffness, virtual buoyancy, friction, drag 

and inertia forces, numerical models are often used to simulate the blade dynamics (e.g., Zeller et al., 2014; 

Zhu and Chen, 2015; Luhar and Nepf, 2016; Leclercq and de Langre, 2018; Zhu et al., 2018; Chen and 

Zou, 2019; Zhu et al., 2020). Recently, Zhu et al. (2020) used a cable model to capture the asymmetric 

‘‘whip-like’’ blade motion and proposed mechanisms for the asymmetric blade motion in symmetric waves. 

To derive a generalized wave attenuation model for suspended and submerged canopies, the water 

column is divided into 3 layers with model set-up in Section 5.2.2. The effects of canopy motion are 

incorporated by resolving the motion of individual canopy component using a cantilever-beam model or a 

buoy-on-rope model based on the type of the canopy component in Section 5.2.3. These two structural 

dynamics models consider inertia force and are therefore applicable for large diameter structure such as 

mussel droppers. The frequency dependent theoretical wave attenuation model incorporating canopy 

motion is developed in Section 5.2.4. 

5.2.2. Model set-up 

The mathematical approach is based on the three-layer model set-up shown on Figure 5.2. As 

shown on Figure 5.2, the horizontal coordinate, 𝑥, is positive in the direction of wave propagation (assumed 

to be perpendicular to the coast), with 𝑥 = 0 at the leading edge of the canopy. The horizontal length of the 

canopy is defined as 𝐿𝑣 such that 𝑥 = 𝐿𝑣 at the end of the canopy. The vertical coordinate, 𝑧, is positive 

upward with 𝑧 = 0 at the still water level (SWL). 

The water column is divided into three layers with Layer 1 above the canopy, Layer 2 within the 

canopy, and Layer 3 below the canopy. The initial static thicknesses for each layer are denoted by 𝑑1, 𝑑2, 

𝑑3, respectively. The thickness of Layer 2 (𝑑2) also named the canopy height, is defined as the average 

submerged length of the canopy components. The water depth from the SWL is defined as ℎ = 𝑑1 + 𝑑2 +

𝑑3, where the seafloor is located at 𝑧 = −ℎ and assumed to be horizontal. This generalized three-layer 
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model can be used to analyze the wave attenuation characteristics of the following four types of canopy 

configurations: (3.1) submerged (𝑑1 ≠ 0 and 𝑑3 = 0), (2) emergent (𝑑1 = 0 and 𝑑3 = 0), (3) suspended in 

the water column (𝑑1 ≠ 0 and 𝑑3 ≠ 0), and (4) floating on the surface (𝑑1 = 0 and 𝑑3 ≠ 0). 

 

Figure 5.2. Definition sketch of variables and coordinate system for the three-layer theoretical model of 

waves propagating over a canopy. The coordinate system (𝑥, 𝑧) with the origin at the leading edge of the 

canopy (𝑥 = 0) and the still water level (SWL, 𝑧 = 0), where x is positive in the wave propagation direction 

from left to right and z is positive upward. The water column is divided into three layers by the canopy. 

The thicknesses of layer 1, 2, and 3 are denoted as 𝑑1, 𝑑2, and 𝑑3, respectively. The canopy length is 𝐿𝑣. 

The water depth from the SWL is defined as ℎ = 𝑑1 + 𝑑2 + 𝑑3. 

 

At many sites, sea surface profiles are better represented by random waves, which can be 

formulated as a superposition of monochromatic waves with a set of random phases. Thus, the water 

elevation can be expressed as 

𝜂 = ∑ 𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜓𝑖)∞
𝑖=1 ,                                                    (5.1) 

where 𝑡 is time, 𝑎𝑖 is the wave amplitude, 𝑘𝑖 is the wave number, 𝜔𝑖 is the angular frequency and 𝜓𝑖 is the 

random phase of the ith monochromatic wave component. As a sum of infinite independent random 

variables, the water elevation tends toward a normal distribution according to the central limit theorem. 

Assuming that the random phase is distributed uniformly on (0, 2𝜋), the water elevation is normally 
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distributed with a zero mean (〈𝜂〉 = 0, where 〈 〉 indicates expected value) and a variance of 𝜎𝜂
2 = 〈𝜂2〉 =

∑ 𝑎𝑖
2/2∞

𝑖=1 = ∫ 𝑆𝜂𝜂(𝜔, 𝑥)𝑑𝜔
∞

0
, where 𝑆𝜂𝜂(𝜔, 𝑥) is the wave spectrum. For the convenience of expression, 

the index of summation 𝑖 is omitted and 𝜔 is used to indicate the summation such that 

𝜂 = ∑ 𝑎(𝑘𝑥 − 𝜔𝑡 + 𝜓)𝜔 .                                                          (5.2) 

According to linear wave theory (Dean and Dalrymple, 1991), the wave number and angular frequency 

satisfy the dispersion relation, 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ , where 𝑔  is the gravitational acceleration. The wave 

orbital velocity (𝑢) at a given level 𝑧 is then written as 

𝑢 = ∑ 𝑎 𝜔Γ cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) 𝜔 ,                                                   (5.3) 

where Γ = cosh 𝑘(ℎ + 𝑧) / sinh 𝑘ℎ when 𝑧 ≤ 𝜂 and Γ = 0 when 𝑧 > 𝜂. 

5.2.3. Models for the motion of canopy components 

The wave-induced motion of a canopy component is simulated by different models depending on 

the morphology and physical properties of the species. In this paper, we introduce cantilever-beam and 

buoy-on-rope models. The cantilever-beam model is applicable for slender species such as vegetation 

blades, kelp blades, and mussel droppers (Figure 5.3). The buoy-on-rope model is applicable for species 

with concentrated mass and buoyancy supported by a tethered stipe whose mass and stiffness can be 

ignored, e.g., the bull kelp, Nereocystis luetkeana (Figure 5.3). 

 

Figure 5.3. Sketch for the cantilever-beam model and buoy-on-rope model for different species. 
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5.2.3.1. Cantilever-beam model 

The individual component of the canopies such as seagrass meadow, kelp forest and mussel farms 

is modeled as a slender cantilever beam (Figure 5.3), referred as a blade hereinafter. A typical blade having 

the averaged geometrical and physical properties of the canopy components is used to represent the canopy 

components. To simulate the large-amplitude deflection of a flexible blade, Zhu et al. (2020) introduced a 

cable model that can capture the asymmetric “whip like” motion of a flexible blade (Luhar & Nepf, 2016). 

To obtain the analytical solution for the horizontal displacement (𝜉) of the blade, the governing equations 

in Zhu et al. (2020) are linearized by assuming a small-amplitude motion such that the vertical displacement 

of the blade is negligible. The horizontal displacement, 𝜉(𝑠, 𝑡) is a function of time 𝑡 and the distance 𝑠 

along the blade length from the fixed end. The relation between the local coordinate 𝑠 and the global 

coordinate 𝑧 is given by 

𝑧 = {
−𝑑1 − 𝑑2 + 𝑠,         blade fixed at the bottom end,
−𝑑1 − 𝑠,                            blade fixed at the tip end.

                                    (5.4) 

Neglecting tension and buoyancy, the linearized governing equation is given by 

𝜌𝑣𝐴𝑐�̈� + 𝐸𝐼𝜉′′′′ = 𝜌𝑤  𝐴𝑐�̇� +
1

2
𝐶𝑑𝜌𝑤𝑏|𝑢 − �̇�|(𝑢 − �̇�) + 𝐶𝑚𝜌𝑤𝐴𝑐(�̇� − �̈�),                         (5.5) 

where the dot ( ̇ ) indicates derivative with respect to 𝑡, the prime (′) indicates derivative with respect to 

𝑠, 𝜌𝑤 is the water density, 𝜌𝑣 is the blade mass density, 𝑏 is the projected blade width, 𝐴𝑐 is the blade cross 

sectional area, 𝐸 is the Young’s modulus of the blade, 𝐼 is second moment of the blade cross sectional area, 

𝐶𝑑 is the drag coefficient and 𝐶𝑚 is the added mass coefficient. The terms on the right-hand side of (5.5) 

are virtual buoyancy, drag and added mass force per unit length modified from the Morison formula 

(Morison et al., 1950). To obtain an analytical solution to (5.5), the nonlinear drag 1/2𝐶𝑑𝜌𝑤𝑏|𝑢 − �̇�|(𝑢 −

�̇�) is linearized as 𝑐(𝑢 − �̇�), where the linearization coefficient (𝑐) is calculated using the Borgman (1967) 

method. Substituting (5.3) into (5.5) yields 

𝑚�̈� + 𝑐�̇� + 𝐸𝐼𝜉′′′′ = ∑ 𝑎𝜔Γ[𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝑚𝐼 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔  ,              (5.6) 
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where 𝑚 = (𝜌𝑣 + 𝐶𝑚𝜌𝑤)𝐴𝑐 and 𝑚𝐼 = (1 + 𝐶𝑚)𝜌𝑤𝐴𝑐. The boundary conditions for a cantilever beam are 

given by 𝜉(0, 𝑡) = 0, 𝜉′(0, 𝑡) = 0, 𝜉′′(𝑙, 𝑡) = 0 and 𝜉′′′(𝑙, 𝑡) = 0. Using a normal mode approach (Rao, 

2007), the solution for the blade displacement is obtained in Appendix E as 

𝜉 = ∑ 𝑎Γ[𝛾𝑠 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝛾𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔 ,                              (5.7) 

where 𝛾𝑠 and 𝛾𝑐 are the transfer functions given by 

 

𝛾𝑠 =
𝜔

Γ
∑ 𝜙𝑛

𝜔𝐼𝑛(𝜆𝑛
2 −𝜔2)−𝐷𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
𝑛=1                                           (5.8) 

and  

𝛾𝑐 =
𝜔

Γ
∑ 𝜙𝑛

𝐷𝑛(𝜆𝑛
2 −𝜔2)+𝜔𝐼𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
𝑛=1 .                                          (5.9) 

where 𝜙𝑛 = (cos 𝜇𝑛𝑙 + cosh 𝜇𝑛𝑙)(sin 𝜇𝑛𝑠 − sinh 𝜇𝑛𝑠) + (sin 𝜇𝑛𝑙 + sinh 𝜇𝑛𝑙)(cosh 𝜇𝑛𝑠 − cos 𝜇𝑛𝑠)  is 

the 𝑛th normal mode of the cantilever beam with 𝜇𝑛 being the nth solution of 1 + cos 𝜇𝑙 cosh 𝜇𝑙 =  0, 

𝜆𝑛 = 𝜇𝑛
2√∫ 𝐸𝐼𝜙𝑛

2𝑑𝑠
𝑙

0
 / ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
 is the 𝑛 th natural frequency of the blade, 2 𝜁𝑛𝜆𝑛 = ∫ 𝑐𝜙𝑛

2𝑑𝑠
𝑙

0
/

∫ 𝑚𝜙𝑛
2𝑑𝑠

𝑙

0
 , 𝐷𝑛 = ∫ 𝑐Γ𝜙𝑛𝑑𝑠

𝑙

0
/ ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
, and 𝐼𝑛 = ∫ 𝑚𝐼Γ𝜙𝑛𝑑𝑠

𝑙

0
/ ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
. Since Γ  is expressed in 

terms of 𝑧 and 𝜙𝑛 is expressed in terms of 𝑠, the relation between 𝑠 and 𝑧 in (5.4) is required to calculate 

the integral ∫ Γ𝜙𝑛𝑑𝑠
𝑙

0
. 

The relative velocity of flow to blade 𝑢𝑟 = 𝑢 − 𝜉 is given by 

𝑢𝑟 = ∑ 𝑎𝜔Γ[(1 + 𝛾𝑠) cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝛾𝑐 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔 .                      (5.10) 

According to the central limit theorem, the relative velocity also asymptotically approaches a normal 

distribution with zero mean (〈𝑢𝑟〉 = 0) and the variance 

𝜎𝑢𝑟
2 = 〈𝑢𝑟

2〉 = ∫ 𝜔2Γ2[(1 + 𝛾𝑠)2 + 𝛾𝑐
2]𝑆𝜂𝜂(𝜔, 𝑥)𝑑𝜔

∞

0
.                              (5.11) 

Hence, the probability density function of 𝑢𝑟 is given by 

𝑝(𝑢𝑟) =
1

𝜎𝑢𝑟√2𝜋
𝑒

−
𝑢𝑟

2

2𝜎𝑢𝑟
2

.                                                             (5.12) 
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Using the Borgman (1967) method, the linearization coefficient (𝑐) is obtained by minimizing the mean 

square difference between the nonlinear and linearized drag so that 𝜕 ∫ (1/2 𝐶𝑑𝜌𝑤𝑏|𝑢𝑟|𝑢𝑟 −
∞

−∞

𝑐𝑢𝑟)2𝑝(𝑢𝑟)𝑑𝑢𝑟 /𝜕𝑐 = 0, yielding 

𝑐 =
1

2
𝐶𝑑𝜌𝑤𝑏

∫ |𝑢𝑟|𝑢𝑟
2𝑝(𝑢𝑟)𝑑𝑢𝑟

∞

−∞

∫ 𝑢𝑟
2𝑝(𝑢𝑟)𝑑𝑢𝑟

∞

−∞

=
1

2
𝐶𝑑𝜌𝑤𝑏√

8

𝜋
𝜎𝑢𝑟

.                                             (5.13) 

The linearization coefficient can be obtained iteratively through the following procedure. Starting from a 

static blade, an initial c is calculated from equation (5.13) with (5.11) by assuming 𝛾𝑠 = 0 and 𝛾𝑐 = 0. Once 

the blade displacement is obtained, 𝑐 can be recalculated from (5.13) and (5.11) with (5.8) and (5.9). Using 

the new value of 𝑐, the blade displacement can be updated. The procedure is repeated until a convergent 

solution is achieved. 

5.2.3.2. Buoy-on-rope model 

The bull kelp (Nereocystis luetkeana) is used as an example to describe the buoy-on-rope model 

(Denny et al., 1997), which is also used for other species such as Macrocystis pyrifera (Utter and Denny, 

1996). The pneumatocyst (the ball-shape “float” structure) of Nereocystis luetkeana is modeled as a buoy 

and the stipe is modeled as a rope (Figure 5.3). Therefore, the canopy component is modeled as a buoy 

attached to seabed by a thin, straight, non-buoyant rope. The inertia, drag and buoyancy act at the buoy 

center, 𝑧𝑐 = −𝑑1 − 𝑑2/2 , where the canopy height 𝑑2  is the diameter of the buoy. The horizontal 

displacement of the buoy and the fluid velocity at the buoy center is used to calculate the forces. The 

governing equation for buoy-on-rope model is given by 

𝜌𝑣𝑉�̈� +
(𝜌𝑤−𝜌𝑣)𝑉𝑔

𝑅
𝜉 = 𝜌𝑤𝑉 �̇�(𝑧𝑐) +

1

2
𝐶𝑑𝜌𝑤𝐴𝑝|𝑢(𝑧𝑐) − �̇�|[𝑢(𝑧𝑐) − �̇�] + 𝐶𝑚𝜌𝑤𝑉[�̇�(𝑧𝑐) − �̈�],     (5.14) 

where 𝑅 is the length of the tethered rope, 𝑉 is the volume of the buoy with projected area of 𝐴𝑝. Similarly, 

the nonlinear drag force 1/2𝐶𝑑𝜌𝑤𝐴𝑝|𝑢(𝑧𝑐) − �̇�|[𝑢(𝑧𝑐) − �̇�]  is linearized as 𝐶[𝑢(𝑧𝑐) − �̇�] , where 𝐶  is 

obtained using the Borgman (1967) method. Substituting (5.3) into (5.14) yields 

𝑀 �̈� + 𝐶 �̇� + 𝐾𝜉 = ∑ 𝑎𝜔Γ(𝑧𝑐)[𝐶 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝑀𝐼 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔 ,               (5.15) 

where 𝑀 = (𝜌𝑣 + 𝐶𝑚𝜌𝑤)𝑉, 𝐾 = (𝜌𝑤 − 𝜌𝑣)𝑉𝑔/𝑅, and 𝑀𝐼 = (1 + 𝐶𝑚)𝜌𝑤𝑉. The solution for (5.15) is 
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𝜉 = ∑ 𝑎Γ[𝛾𝑠 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝛾𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔 ,                                (5.16) 

where 𝛾𝑠 and 𝛾𝑐 are the transfer functions given by 

𝛾𝑠 =
Γ(𝑧𝑐)𝜔

Γ𝑀
 
𝜔𝑀𝐼(𝜆2−𝜔2)−𝐶(2𝜁𝜆𝜔)

(𝜆2−𝜔2)2+(2𝜁𝜆𝜔)2                                                          (5.17) 

and  

𝛾𝑐 =
Γ(𝑧𝑐)𝜔

Γ𝑀
 
𝐶(𝜆2−𝜔2)+𝜔𝑀𝐼(2𝜁𝜆𝜔)

(𝜆2−𝜔2)2+(2𝜁𝜆𝜔)2 ,                                                         (5.18) 

where 𝜆 = √𝐾/𝑀 and 2𝜁𝜆 = 𝐶/𝑀. Similarly, the relative velocity 𝑢𝑟 = 𝑢 − �̇� asymptotically approaches 

a normal distribution with zero mean and the variance 𝜎𝑢𝑟
2  in a similar expression as (5.11) except for the 

transfer functions 𝛾𝑠 and 𝛾𝑐, which are calculated using (5.17) and (5.18). Thus, the linearization coefficient 

(𝐶) is given by 

𝐶 =
1

2
𝐶𝑑𝜌𝑤𝐴𝑝√

8

𝜋
𝜎𝑢𝑟

,                                                           (5.19) 

which is obtained iteratively using the same procedure for the cantilever-beam model. 

5.2.4. Solutions for random wave attenuation 

Following Dalrymple et al. (1984), Kobayashi et al. (1993), and Mendez and Losada (2004), the 

wave attenuation is assumed to come from the work of the canopy-induced drag force. The inertia force has 

a negligible contribution to wave attenuation since the mathematical expectation of the work due to the 

inertia force is zero because the relative acceleration and the relative velocity are out of phase in linear 

waves. The vertical frictional force is assumed negligible when compared with the horizontal drag force. 

The wave reflection from the canopy is also assumed negligible since the wave reflection has limited 

contributions to the wave attenuation for both submerged vegetation (Mendez and Losada, 2004) and 

suspended canopies (Seymour and Hanes, 1979). Some wave energy is converted into the kinematic and 

potential energy of the canopy at the beginning. However, once the canopy motion becomes steady, the 

energy needed to maintain the steady motion can be assumed negligible because the structural damping of 

the canopy components is negligible (Asano et al., 1992; Méndez et al., 1999). Lacking data, the velocity 

reduction in the canopy (Lowe, 2005), the sheltering effects (Raupach and Thom, 1981; Abdelrhman, 2007; 
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Etminan et al., 2019), and the porosity effects (Mei et al., 2011; Nepf, 2011; Liu et al., 2015; Arnaud et al., 

2017; Suzuki et al., 2019) are not considered. Using the linearized drag force, the energy conservation 

equation can be written as 

𝜕

𝜕𝑥
∫ 𝜌𝑤𝑔𝑆𝜂𝜂(𝜔, 𝑥)𝑐𝑔𝑑𝜔

∞

0
= − ∫ 〈𝑁

1

2
𝐶𝑑𝜌𝑤𝑏 √

8

𝜋
𝜎𝑢𝑟

𝑢𝑟
2〉 𝑑𝑧

−𝑑1

−𝑑1−𝑑2
,                            (5.20) 

where 𝑐𝑔 = (𝜔/𝑘)(1 + 2𝑘ℎ/ sinh 2𝑘ℎ)/2  is the group velocity and 𝑁  is the number of canopy 

components per unit horizontal area (also referred to as the canopy density). Substituting (5.11) into (5.20) 

yields the transmitted wave spectrum at distance 𝑥 in relation to the incident wave spectrum at 𝑥 = 0, 

𝑆𝜂𝜂(𝜔, 𝑥) = 𝑆𝜂𝜂(𝜔, 0)𝑒−2𝛽(𝜔)𝑥,                                                   (5.21) 

where the frequency dependent decay coefficient (𝛽) is given by 

𝛽(𝜔) =
2√2𝑁𝑘2 sinh2 𝑘ℎ

√𝜋𝜔(2𝑘ℎ+sinh 2𝑘ℎ)
∫  𝐶𝑑𝑏𝜎𝑢𝑟

Γ2[(1 + 𝛾𝑠)2 + 𝛾𝑐
2]𝑑𝑧

−𝑑1

−𝑑1−𝑑2
.                          (5.22) 

The transfer functions 𝛾𝑠 and 𝛾𝑐 are selected based on the structural dynamics model used for the canopy 

motion. To evaluate the effect of the canopies on wave attenuation, the wave spectral dissipation ratio 

(𝑆𝐷𝑅) and wave energy dissipation ratio (𝐸𝐷𝑅) are used and defined as 

𝑆𝐷𝑅 = 1 −
𝑆𝜂𝜂(𝜔,𝐿𝑣)

𝑆𝜂𝜂(𝜔,0)
                                                                (5.23) 

and 

𝐸𝐷𝑅 = 1 −
∫ 𝑆𝜂𝜂(𝜔,𝐿𝑣)𝑑𝜔

∞

0

∫ 𝑆𝜂𝜂(𝜔,0)𝑑𝜔
∞

0

,                                                         (5.24) 

respectively. 

5.3. Model-data comparison 

5.3.1. Submerged canopy 

The model results were first compared with the laboratory experiments by Jacobsen et al. (2019a) 

for a submerged canopy consisting of artificial vegetation. The wave conditions were based on a single 

peaked JONSWAP spectrum with a peak enhancement factor 𝛾 = 3.3 and peak wave period 𝑇𝑝 = 1.15 s. 
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The incident significant wave height at the leading edge of the canopy was 𝐻𝑠0 = 3.7 cm. The water depth 

was ℎ = 0.685 m. 

The artificial vegetation was made of 4 mm-wide polypropylene blades with 𝜌𝑣 ≈ 920 kg/m3 and 

𝐸 ≈ 0.3 GPa (Ghisalberti & Nepf, 2002). Four blades were taped to a 6 mm-diameter PVC dowel and 60 

mm above the bed. The canopy was 7.5 m long with a density of 566 dowels/m2 therefore 2264 blades/m2. 

The blade length was 20, 40, and 60 cm such that 𝑑2/ℎ = {0.38, 0.67, 0.96}. The blade thickness was 0.12, 

0.2, 0.5 and 1.0 mm for the 20 cm-long blade and 0.5 mm for the other blades. More details of the 

experiments can be found in Jacobsen et al. (2019a). 

Based on the datasets for rigid flat plates in oscillatory flows (Keulegan and Carpenter, 1958; 

Sarpkaya and O’Keefe, 1996) with 1.7 ≤  𝐾𝐶 ≤  118.2 , Luhar and Nepf (2016) derived the drag 

coefficient and added mass coefficient, 

𝐶𝑑 = max(10𝐾𝐶−1/3, 1.95)                                                     (5.25) 

and 

𝐶𝑚 = min(𝐶𝑚1, 𝐶𝑚2),                                                         (5.26) 

respectively, where 𝐶𝑚1 = {
1 + 0.35𝐾𝐶2/3,    𝐾𝐶 < 20

1 + 0.15𝐾𝐶2/3,    𝐾𝐶 ≥ 20
 and 𝐶𝑚2 = 1 + (𝐾𝐶 − 18)2/49 as described in 

Luhar (2012). Equations (5.25) amd (5.26) are robust in calculating the hydrodynamic forces acting on 

flexible blades in regular waves (Zhu et al., 2020). To apply (5.25) amd (5.26) to random waves, the 𝐾𝐶 

number is calculated using the significant relative velocity (2𝜎𝑢𝑟
) as 𝐾𝐶 = 2𝜎𝑢𝑟

𝑇𝑝/𝑏. 

The vegetation blade is modeled as a cantilever beam so that the wave attenuation model 

incorporating the cantilever beam model is used to calculate the wave decay coefficient, 𝛽. The model 

results using frequency dependent 𝐶𝑑 and 𝐶𝑚 in (5.25) amd (5.26) as well as constant 𝐶𝑑 = 1.95 and 𝐶𝑚 =

1 are compared with the datasets of Jacobsen et al. (2019a) on Figure 5.4. It is noted that 𝐶𝑑 = 1.95 is the 

minimum drag coefficient for (5.25). 

The model results are in a good agreement with the data with the root-mean-square-error (RMSE) 

of about 0.002 for the 20 cm-long blades (𝑙/ℎ = 0.38) with thickness 𝑑 ≤  0.5 mm (Figure 5.4a-c). For the 
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thickest blades with 𝑑 = 1 mm, the decay coefficient is slightly overestimated for the lower frequency wave 

components (𝑓 < 0.8 Hz) resulting in a larger RMSE of 0.0032 (Figure 5.4d). One possible reason is that 

the drag coefficient calculated using equation (5.25) might be overestimated for the thicker blades whose 

thickness-width ratio has reached 0.25 and much larger than the thickness-width ratio (< 0.1) of the 

experimental plates for the formula (5.25). The thicker blades are expected to have a smaller drag coefficient 

due to increased Reynolds number. Thus, the model results can be improved by using a smaller drag 

coefficient. For instance, the RMSE for the 1 mm-thick blades is reduced to 0.0016 by using 𝐶𝑑 = 1.95 

(Figure 5.4d). 

For the longer blades that are nearly emergent (𝑙/ℎ ≥  0.67), the model results calculated with 

frequency dependent hydrodynamic coefficients underestimate the observation with RMSE=0.0046 and 

0.0073 for 𝑙 = 40 cm (𝑙/ℎ = 0.67) and 60 cm (𝑙/ℎ = 0.96), respectively, as shown on Figure 5.4(e and 

f) possibly due to the simplification of the cantilever beam model. Neglecting the large deflection-induced 

geometrical non-linearity, net buoyancy, and the net buoyancy-induced tension would underestimate the 

restoring capacity of the blades. Thus, the simplified model may overestimate the blade motion resulting in 

a smaller wave attenuation. This underestimation of wave attenuation is more obvious for longer blades 

because the effects of the large deflection-induced geometrical non-linearity, the net buoyancy and the net 

buoyancy-induced tension are more significant for longer blades. Compared to the shorter blade (𝑙 = 20 

cm), the longer blade (𝑙 ≥  40 cm) is more flexible, therefore, the blade motion follows the flow more 

closely so that the relative velocity between the longer blade and flow is smaller, resulting in a larger 𝐶𝑑. 

Therefore, using a smaller 𝐶𝑑 = 1.95 enhances the underestimation as indicated by RMSE=0.0055 and 

0.0177 for the 𝑙 = 40 cm (𝑙/ℎ = 0.67) and 60 cm (𝑙/ℎ = 0.96), respectively on Figure 5.4(e and f). A 

more precise formula for the hydrodynamic coefficients in random waves is desired for the nearly emergent 

canopies with 𝑙/ℎ ≥  0.67. However, the hydrodynamic coefficients in (5.25) and (5.26) as well as the 

constant hydrodynamic coefficients work well for the submerged vegetation (𝑙/ℎ ≤ 0.38) with a small 

RMSE of about 0.002.  
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Figure 5.4. Comparisons of calculated frequency (f) dependent wave decay coefficient (𝛽) by the present 

model and the data (black dotted lines) from Jacobsen et al. (2019a). The model results using frequency 

dependent and constant drag coefficient (𝐶𝑑) and added mass coefficient (𝐶𝑚) are denoted by red solid and 

blue dashed lines, respectively. The submerged canopies with blade lengths (𝑙) of 20, 40 and 60 cm and 

thicknesses (𝑑) of 0.12, 0.20, 0.5 and 1.0 mm are subjected to random waves of JONSWAP spectrum with 

peak enhancement factor 𝛾 = 3.3, peak wave period 𝑇𝑝 = 1.15 s (vertical dashed black line) and incident 

significant wave height of 3.7 cm at a water depth ℎ = 0.685 m with normalized blade length (𝑙/ℎ) of 0.38 

(a-d), 0.67 (e) and 0.96 (f). The canopy density is 566 shoots/m2 (2264 blades/m2). 
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5.3.2. Suspended canopy 

The model results were also compared with the laboratory and field experiments by Seymour and 

Hanes (1979) for a suspended canopy consisting of spherical buoys. The field experiments for a suspended 

canopy consisting of arrays of tethered sphere buoys (Figure 5.5) were conducted in San Diego Bay, 

California, USA. The half-scale model tests for the field experiments were conducted in the 40-m long 

Wind Wave Channel at the Hydraulics Laboratory of Scripps Institution of Oceanography (Seymour and 

Hanes, 1979). The properties of the canopies in the laboratory and field experiments are shown in Table 

5.1. 

 

Figure 5.5. Sketch of the suspended canopy consisting of sphere components according to the description 

of Seymour and Hanes (1979). 

 

For the laboratory experiments, the incident significant wave height was 0.069-0.176 m and the 

peak frequency was 0.19-0.883 Hz. For the field experiments, two storms were observed on Jan 22, 1976 

and Feb 9, 1976. The measured significant wave height was 0.17 - 0.44 m. The drag coefficient and added 

mass coefficient for the tethered spheres are assumed as 𝐶𝑑 = 0.5 and 𝐶𝑚 = 0.5, respectively. 

The calculated transmitted wave spectrum and spectral dissipation ratio (𝑆𝐷𝑅) are shown on Figure 

5.6. The calculated transmitted wave spectrum follows the shape of the incident wave spectrum. The 𝑆𝐷𝑅 

for the suspended canopy first increases and then decreases with increasing wave spectrum as expected. 
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Table 5.1. Properties for the suspended canopies consisting of sphere components in the laboratory and 

field experiments (Seymour and Hanes, 1979). 

 In the lab In the field 

 (half scale) (full scale) 

Sphere mass density [kg/m3] 40 85 

Sphere diameter [cm] 15.8 29.2 

Depth of sphere center [cm] 7.36-15.24 21.9 

Effective tether length [cm] 83.8 168.0 

Sphere spacing (along canopy length) [cm] 31.6 58.41 

Sphere spacing (along canopy width) [cm] 31.6 58.41 

Canopy width (perpendicular to wave direction) [m] 2.39 46 

Canopy length (along wave direction) [m] 23 6 

Water depth [m] 1.78 8 

 

 
Figure 5.6. Comparisons between calculated and measured transmitted wave spectrum (𝑆𝜂𝜂) as well as 

spectral dissipation ratio (𝑆𝐷𝑅) versus wave frequency (f) for suspended canopies with spheres in (a) 

laboratory and (b) field experiments by Seymour and Hanes (1979). The incident significant wave height 

is 𝐻𝑠0 and the peak period is 𝑇𝑝. 
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The comparison between the calculated and measured energy dissipation ratio (EDR) is shown on 

Figure 5.7. Good agreement (RMSE=0.073) between model and data indicates that the present generalized 

analytical solutions are also applicable to suspended aquaculture farms with simple structures in other 

forms, such as cylinders, as long as the appropriate hydrodynamic coefficients are available. 

5.4. Case study at the field site 

The present frequency dependent theoretical model is now applied to analyze the wave attenuation 

capacity of suspended aquaculture farms at a field site and compared with that of submerged aquatic 

vegetation, as well as a combination of these two nature-based shore protection schemes. 

 
Figure 5.7. Comparisons between the calculated and measured wave energy dissipation ratio (𝐸𝐷𝑅) for 

laboratory (blue +) and field experiments (red \times) by Seymour and Hanes (1979). 

 

The study site (42∘28′2′′ N, 70∘21′2′′ W) is located at Saco Bay, Maine, USA as shown on Figure 

5.8 with a water depth of about 10.6 m. The January 2015 North American blizzard was a powerful and 

destructive extratropical storm that swept across the Saco Bay and along the coast of the Northeastern 

United States in January of 2015. To assess coastal flood risk and sea level rise effects during this storm 

event, Xie et al. (2019) constructed an integrated atmosphere-ocean-coast and overtopping-drainage 

modeling framework based on the coupled tide, surge and wave model, SWAN+ADCIRC. The wave 



117 
 

spectrum and water level conditions output from the SWAN+ADCIRC model (Xie et al., 2019) are used to 

drive the present theoretical model. The canopies are oriented to be parallel to the dominant wave direction 

so that the present 1-D solutions can be applied. 

5.4.1. Properties for the mussel farm and submerged aquatic vegetation 

The mussel farm is simplified as arrays of cylinders which represent the mussel droppers. The 

cylinders have similar mechanical and hydrodynamic performances to the actual droppers. In this study, 

the geometric and physical properties of the cylinders are based on the measurements of the live droppers 

at the University of New Hampshire nearshore multi-trophic aquaculture site in the Gulf of Maine, USA 

(Knysh et al., 2019). The measured dropper diameter was 0.13 m, mass per unit length was 7.53 kg/m, and 

flexural rigidity was 0.79 N/m2 on July 3 (Knysh et al., 2019), which was about 160 days (years are not 

considered) after the January 2015 North American blizzard arrived at the study site. The geometrical 

properties of the droppers in January were estimated by assuming a growth rate of 7.5% per 40 days 

(Lauzon-Guay et al., 2006; Gagnon and Bergeron, 2017), which indicates that the diameter of the mussel 

dropper in January was about 75% of that in July. Therefore, the cylinder diameter was taken as 𝑏 = 0.10 

m, the mass per unit length was assumed as 𝜌𝑣𝐴𝑐 = 4.46 kg/m, and the flexural rigidity was assumed as 

𝐸𝐼 = 0.28 N/m2. The cylinders are assumed to be submerged half meter below the water surface so that 

𝑑1 = 0.5 m. The length of the mussel dropper is assumed as 𝑙 = 8 m following Plew et al. (2005) and 

Stevens et al. (2007) for a similar water depth. A sparse configuration with 0.06 droppers/m2 (Plew et al., 

2005; Gagnon and Bergeron, 2017) and a dense configuration with 0.125 droppers/m2 (e.g., mussel 

droppers are 0.5 m apart and the longline interval is about 16 m) are compared. Following Plew et al. (2009), 

Dewhurst (2016) and Knysh et al. (2020), the drag coefficient and added mass coefficient are assumed as 

𝐶𝑑 = 1.3 and 𝐶𝑚 = 1, respectively, which are also comparable to the values in Raman-Nair and Colbourne 

(2003), Raman-Nair et al. (2008), Stevens et al. (2008), Plew et al. (2009), Gagnon and Bergeron (2017) 

and Landmann et al. (2019). 
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Figure 5.8. The study site at Saco Bay, Maine, USA (Sources: Esri, GEBCO, NOAA, National Geographic, 

DeLorme, HERE, Geonames.org, and other contributors). 

 

The SAV is modeled as a rectangular plate based on the properties of Zostera marina, which is a 

common SAV in the Gulf of Maine, USA (Mattila et al., 1999; Gaeckle and Short, 2002; Beal et al., 2004; 

Neckles et al., 2005; Beem and Short, 2009; Newell et al., 2010). The length of Zostera marina ranges from 

10 to 150 cm and the shoot density is about 50-1100 shoots/m2 with 3-7 blades per shoot (Abdelrhman, 

2007; Beem and Short, 2009; Boström and Bonsdorff, 1997; Gaeckle and Short, 2002; Mattila et al., 1999; 

Ondiviela et al., 2014). In January, however, the averaged blade length of Zostera marina is about 16 cm 

(Gaeckle and Short, 2002; Ondiviela et al., 2014). Thus, the SAV blade length is assumed as 16 cm. The 

corresponding blade width and thickness as well as the sheath length and width are estimated using the 

empirical formula provided by Abdelrhman (2007), which yields a blade width of 3.7 mm, blade thickness 

of 0.11 mm, sheath length of 8 cm and sheath width of 3.4 mm. Following Abdelrhman (2007), the mass 

density is assumed 𝜌𝑣 = 700 kg/m3. The Young’s modulus is assumed 𝐸 = 0.26 GPa for the blades based 

on the measurements by Fonseca et al. (2007). The sheath is considered rigid following Lei and Nepf 

(2019b). A sparse SAV meadow with 200 shoots/m2 and a dense meadow with 400 shoots/m2 are used in 

the study to investigate the variation of wave attenuation with vegetation density. The number of blades per 

shoot is assumed to be 5 so that there are 1000 blades/m2 for the sparse configuration and 2000 blades/m2 

for the dense configuration. Due to small blade width and large significant wave height and peak period in 
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a storm event, the calculated 𝐾𝐶 number is greater than 135, yielding a constant drag coefficient of 1.95 

based on equation (5.25) The data comparison in section 5.3.1 has shown that 𝐶𝑑 = 1.95 and 𝐶𝑚 = 1 work 

well for submerged vegetation with 𝑙/ℎ < 0.38 (Figure 5.4). Therefore, the drag coefficient and added 

mass coefficient are assumed 𝐶𝑑 = 1.95 and 𝐶𝑚 = 1, respectively, for this case study. The properties of 

the mussel farm and SAV meadow are summarized in Table 5.2. In this study, both mussel droppers and 

SAV are modeled as cantilever beams. 

5.4.2. Mussel farm and SAV at the same water depth 

The time evolution of tide, storm tide, storm surge at the study site during the January 2015 North 

American blizzard is given by the SWAN+ADCIRC model (Xie et al., 2019) and shown on Figure 5.9(a). 

The tidal range is around 3.3 m and the largest storm surge is about 0.8 m at the study site. The incident 

significant wave height (𝐻𝑠0) and corresponding peak wave period (𝑇𝑝) for every 30 minutes are shown 

on Figure 5.9(b). At the study site during the storm, the significant wave height reached 3.6 m with peak 

wave periods ranging from 5.2 s to 13.5 s. 

 

Table 5.2. Properties of the mussel farm and submerged aquatic vegetation (SAV) meadow. 

 Mussel farm SAV 

Canopy component Mussel dropper Zostera marina 

Component properties Length: 8 m Blade length: 0.16 m 

 Diameter: 0.10 m 

Flexural rigidity: 

𝐸𝐼 = 0.28 Nm2 

Mass per length: 

𝜌𝑣𝐴𝑐 =4.46 kg/m 

Blade width: 3.7 mm 

Blade thickness: 0.11 mm 

Young’s modulus: 0.26 GPa 

Mass density: 700 kg/m3 

Sheath length: 8 cm 

Sheath width: 3.4 mm 

Canopy density Sparse: 0.060 droppers/m2 Sparse: 200 shoots/m2 (1000 blades/m2) 

 Dense: 0.125 droppers/m2 Dense: 400 shoots/m2 (2000 blades/m2) 

Drag coefficient (𝐶𝑑) 1.3 1.95 

Added mass coefficient (𝐶𝑚) 1 1 
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Figure 5.9. Time evolution of (a) tide, storm tide and storm surge during the January 2015 North American 

blizzard, (b) significant wave height 𝐻𝑠0 and the corresponding peak wave period 𝑇𝑝, (c) and (d) calculated 

wave energy dissipation ratio (𝐸𝐷𝑅) by the suspended mussel farm (blue lines) and submerged aquatic 

vegetation (SAV, red lines) using the wave spectrum data. The canopy lengths are 𝐿𝑣 = 100 m in (c) and 

𝐿𝑣 = 200 m in (d). The canopy densities are shown in the legend. 

 

The wave attenuation by the mussel farm and SAV at the same still water depth of 10.6 m during 

the storm is calculated with the wave spectral data from the SWAN+ADCIRC model. The calculated wave 

energy dissipation ratio (𝐸𝐷𝑅) is shown on Figure 5.9 (c and d). The 𝐸𝐷𝑅 of both SAV and mussels 

increases with incident significant wave height. However, the 𝐸𝐷𝑅 decreases with water level resulting in 

an oscillating wave attenuation with the same period of the tidal cycle. This periodic behavior is more 
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obvious for SAV because the mussels are less influenced by the tidal change since the mussels can move 

up and down with the buoys. The largest wave attenuation value occurs at the highest wave height during 

low tide. The larger ( 𝐿𝑣 = 200  m) and denser (0.125 droppers/m2) mussel farm provides a more 

pronounced wave attenuation with 𝐸𝐷𝑅 up to 0.32 (Figure 5.9d), which is a bit more than that of the same 

size (𝐿𝑣 = 200 m) but sparse (200 shoots/m2) SAV with 𝐸𝐷𝑅 up to 0.26. However, for the denser (400 

shoots/m2) SAV with the same size (𝐿𝑣 = 200 m), the 𝐸𝐷𝑅 can reach to 0.45. For the shorter period waves 

with 𝑇𝑝  <  9 s as shown on Figure 5.9 (c and d), the mussel farm can damp more wave energy than the 

same size SAV since SAV at the ocean bottom has little effect on wave attenuation for short period waves 

whose energy is concentrated near the ocean surface. 

The comparisons for the selected wave spectrum as well as the associated spectral dissipation ratio 

(𝑆𝐷𝑅) at 10:00 UTC (high tide with 𝐻𝑠0 = 2.9 m and 𝑇𝑝 = 9.2 s), 16:00 UTC (low tide with 𝐻𝑠0 = 3.5 m 

and 𝑇𝑝 = 13.5 s), and 22:00 UTC (high tide with 𝐻𝑠0 = 3.5 m and 𝑇𝑝 = 13.5 s) on Jan 27 are shown on 

Figure 5.10. The SDR of the suspended mussel farm increases with wave frequency until reaching the 

maximum value, while the SDR of SAV decreases with wave frequency. As a result, the suspended mussel 

farm shows the advantage of reducing higher frequency (shorter period) wave components over SAV. For 

example on Figure 5.10 (a2) with smaller 𝐻𝑠0 and 𝑇𝑝, the 𝑆𝐷𝑅 of the dense suspended mussel farm (0.125 

droppers/m2) is larger than that of dense SAV (400 shoots/m2) for 𝑓 > 0.12 Hz (wave period 𝑇 < 8.3 s) 

and sparse SAV (200 shoots/m2) for wave frequency 𝑓 > 0.055 Hz (𝑇 < 18 s). The 𝑆𝐷𝑅 of the sparse 

suspended mussel farm (0.06 droppers/m2) is larger than that of the dense SAV for wave frequency 𝑓 >

0.16 Hz (𝑇 < 6.25 s) and sparse SAV for 𝑓 > 0.12 Hz (𝑇 < 8.3 s). As 𝐻𝑠0 and 𝑇𝑝, increases, the threshold 

value of the wave frequency where the SDR of suspended mussel farm is larger than that of SAV increases 

to 𝑓 > 0.167 Hz (𝑇 < 6 s) for the dense mussel farm and the dense SAV, 𝑓 > 0.1 Hz (𝑇 < 10 s) for the 

dense mussel farm and the sparse SAV, 𝑓 > 0.21 Hz (𝑇 < 4.8 s) for the sparse mussel farm and the dense 

SAV, and 𝑓 > 0.17 Hz (𝑇 < 5.9 s) for the sparse mussel farm and the sparse SAV as shown on Figure 

5.10(b2). For the same 𝐻𝑠0 and 𝑇𝑝 at high tide, the 𝑆𝐷𝑅 of both the mussel farm and SAV decreases due to 
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the increase of water level. The threshold value of the wave frequency where the 𝑆𝐷𝑅 of suspended mussel 

farm is larger than that of SAV decreases to 𝑓 > 0.147 Hz (𝑇 < 6.8 s) for the dense mussel farm and the 

dense SAV, 𝑓 > 0.095 Hz (𝑇 < 10.5 s) for the dense mussel farm and the sparse SAV, 𝑓 > 0.18 Hz (𝑇 <

5.5 s) for the sparse mussel farm and the dense SAV, and 𝑓 > 0.15 Hz (𝑇 < 6.7 s) for the sparse mussel 

farm and the sparse SAV as shown on Figure 5.10 (c2). 

 

Figure 5.10. Comparisons of wave spectrum (𝑆𝜂𝜂) and wave spectral dissipation ratio (𝑆𝐷𝑅) versus wave 

frequency (f) between the suspended mussel farm and submerged aquatic vegetation (SAV) with different 

canopy densities (shown in legend) at 10:00 UTC (a), 16:00 UTC (b), and 22:00 UTC (c) on Jan 27. The 

canopy length is 200 m for both canopies. The incident significant wave height and peak period are denoted 

by 𝐻𝑠0, and 𝑇𝑝, respectively. 
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5.4.3. Mussel farm and SAV at different water depths 

The previous section shows the advantages of suspended mussel farms on damping high frequency 

wave energy over SAV at the same water depth. Usually, SAV colonizes in shallower water as shown on 

Figure 5.1. To compare the performances of the suspended mussel farm and the shallow water SAV 

meadow, the water depth for SAV is set at 6 m so that maximum 𝐻𝑠0/ℎ = 0.79 to avoid wave breaking. 

The water depth for the suspended mussel farm keeps the same at 10.6 m. The wave shoaling is incorporated 

using shoaling coefficient 𝐾𝑠(𝜔) = √𝑐𝑔𝑑(𝜔)/𝑐𝑔𝑠(𝜔) (Dean and Dalrymple, 1991), where 𝑐𝑔𝑑(𝜔) and 

𝑐𝑔𝑠(𝜔) are the wave group speed at deeper and shallower water depths, respectively. Correspondingly, 

𝐸𝐷𝑅 and 𝑆𝐷𝑅 are calculated using the shoaled wave energy and wave spectrum. The canopy density is set 

as 200 shoots/m2 (1000 blades/m2) for SAV meadow and 0.125 droppers/m2 for the mussel farm. The 

canopy length for SAV meadow is set as 𝐿𝑣 = 100 m. For the mussel farm, two canopy lengths of 100 m 

and 200 m are designed for comparison. 

The wave attenuations of SAV and mussel farms as well as their combinations are shown on Figure 

5.11. The wave attenuation by SAV decreases dramatically with increasing water level while the suspended 

mussel farm is less affected by the water level change. For example (Figure 5.11a), the 𝐸𝐷𝑅 of SAV 

decreases by 49% from 0.51 at low tide (Jan 27 16:00 UTC) to 0.26 at high tide (Jan 27 22:00 UTC) with 

water level increment of 2.5 m while the 𝐸𝐷𝑅 of the suspended mussel farm decreases by 29%. The 

combination of the suspended mussel farm and SAV provides a larger wave attenuation, especially for 

smaller significant wave period and low tide (Figure 5.11a). For example at 10:00 UTC on Jan 27 with 

𝑇𝑝 = 9.2 s and 𝐻𝑠0 = 2.9 m, the 𝐸𝐷𝑅 of SAV and a large mussel farm (𝐿𝑣 = 200 m) is 0.37, which is 1.5 

times of the 𝐸𝐷𝑅 = 0.15 of SAV. Adding a small mussel farm (𝐿𝑣 = 100 m) to SAV can also favorably 

improve the 𝐸𝐷𝑅 of SAV to 0.27 by 80%. As 𝐻𝑠0 and 𝑇𝑝 increases to 𝐻𝑠0 = 3.5 m and 𝑇𝑝 = 13.5 s, the 

improvements of the wave attenuation of SAV by adding mussel farms are reduced because the mussel 

farm is more effective for reducing shorter period waves. However, the improvements still can reach up to 

31% by adding a small mussel farm and 54% by adding a large mussel farm. The improvements of 
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combined SAV and mussels hold for wave energy at all frequencies by taking the advantage of the canopy 

density of SAV and the vertical position of the suspended mussel as shown on  Figure 5.11 (b2, c2 and d2). 

 

Figure 5.11. (a) Comparisons of wave energy dissipation ratio (𝐸𝐷𝑅) between the suspended mussel farm 

and submerged aquatic vegetation (SAV). The canopy densities are 0.125 droppers/m2 for the suspended 

mussel farm and 200 shoots/m2 (1000 blades/m2) for the SAV meadow, respectively. The canopy length is 

100 m for the SAV meadow. The canopy length for the mussel farm is shown in the legend. (b1, c1, d1) 

The incident wave spectrum (𝑆𝜂𝜂) and (b2, c2, d2) Comparisons of wave spectral dissipation ratio (𝑆𝐷𝑅) 

versus wave frequency (𝑓) at 10:00 UTC (A), 16:00 UTC (B) and 22:00 UTC (C) on Jan 27. The incident 

significant wave height and peak wave period are denoted by 𝐻𝑠0, and 𝑇𝑝, respectively. 
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5.5. Discussion 

5.5.1. Wave attenuation characteristics of suspended aquaculture farms and SAV 

Wave attenuation occurs through the drag force which is determined by the horizontal wave orbital 

velocity. In shallow water waves, the amplitude of the horizontal wave orbital velocity is almost uniform 

with depth. Thus, the vertical position of the canopy has little effect on attenuating shallow water waves. 

Taking the advantages of canopy density, SAV can dissipate more wave energy than suspended mussel 

farms for long period waves. However, the wave attenuation of SAV is influenced by changes of water 

level. In shallow water, the wave attenuation of SAV decreases dramatically during high tide, storm surge, 

or storm tide (tide plus storm surge), which highlights the weakness of SAV in protecting coastlines during 

large storm tide conditions. This implies that severe erosion by storms may occur during high storm tide 

levels (in addition, higher waves may arrive at the shore without breaking during high tide). Therefore, 

living shorelines represented by SAV would be less effective during extreme events. 

Suspended aquaculture farms can work as living breakwaters to protect the coast due to their 

capacity for wave attenuation. The wave attenuation capacity of suspended aquaculture farms is mainly 

dictated by the canopy density and the size (length) in the wave direction. Unlike SAV, which is limited by 

water depth due to light and nutrients, the vertical locations of suspended aquaculture farms can be adjusted 

to optimize their growth. Consequently, there is no depth restriction for suspended farms and they can be 

quite large, e.g., the suspended mussel aquaculture farm off Gouqi Island in East China Sea has an area of 

about 8 km2 (Lin et al., 2016). In theory, the size of suspended aquaculture farms can be designed to achieve 

optimal wave attenuation. For example, for the incident significant wave height (𝐻𝑠0) to be reduced to the 

transmitted significant wave height (𝐻𝑠𝑇) that will allow the living shorelines to thrive and mitigate coastal 

erosion, the size of the aquaculture farms can be designed as 

𝐿𝑣 >
1

𝛽(𝜔𝑐)
ln

𝐻𝑠0

𝐻𝑠𝑇
,                                                              (5.27) 

where 𝜔𝑐  is the critical angular frequency such that ∫ 𝑆𝜂𝜂(𝜔, 0)𝑒−2𝛽(𝜔)𝐿𝑣𝑑𝜔
∞

0
=

𝑒−2𝛽(𝜔𝑐)𝐿𝑣 ∫ 𝑆𝜂𝜂(𝜔, 0)𝑑𝜔
∞

0
. The existence of 𝜔𝑐 is guaranteed according to the mean value theorem for 
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definite integrals. For narrow-banded waves, 𝜔𝑐  can be approximated using the peak wave angular 

frequency, 𝜔𝑐 ≈ 𝜔𝑝 = 2𝜋/𝑇𝑝. The external factors such as the water depth and the vertical position of 

aquaculture farms should also be considered during the design. For places that are not suitable to establish 

living shorelines, such as low-nutrient seabeds, the suspended aquaculture farms offer a viable alternative 

to SAV for nature-based coastal defense. 

This work has shown that suspended aquaculture farms can supplement SAV in wave attenuation. 

Suspended aquaculture farms attenuate shorter peak period waves and high frequency wave components 

more than SAV. Hence, adding suspended aquaculture farms to SAV-based living shorelines can 

compensate for the limitations of SAV for attenuating shorter period waves (such as boat wake) and enhance 

the wave attenuation capacity of SAV-based living shorelines for a wider range of wave frequency. The 

wave attenuation by SAV decreases during high tide or storm surge due to the increase in water level. The 

water level, however, has fewer influences on suspended aquaculture farms since they are located near the 

surface and move up and down with water level. Therefore, suspended aquaculture farms can enhance the 

wave attenuation capacity of SAV-based living shorelines during extreme events. The combination of 

suspended aquaculture farms and traditional living shorelines (such as SAV) is therefore a desirable nature-

based coastal defense strategy. 

5.5.2. Simplified analytical solutions 

The generalized three-layer frequency dependent theoretical wave attenuation model developed in 

this paper is applicable to analyze the wave attenuation capacity of submerged, emerged, suspended, and 

floating canopies for random waves including narrow-banded and wide-banded wave conditions. The 

present analytical model provided a more precise consideration of the blade motion by incorporating the 

effects of inertia (neglected in Mullarney and Henderson, 2010; Henderson, 2019) and the mode shape (not 

considered in Asano et al., 1992; Méndez et al., 1999). 

The present model can reduce to previous models for submerged rigid vegetation without motion 

by setting the transfer functions 𝛾𝑠 and 𝛾𝑐 as 0. Therefore, the decay coefficient 𝛽 in (5.22) reduces to the 

solution for rigid blades and given by 
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𝛽𝑅(𝜔) =
2√2𝑁𝑘2

√𝜋𝜔(2𝑘ℎ+sinh 2𝑘ℎ)
∫  𝐶𝑑𝑏𝜎𝑢[cosh 𝑘(ℎ + 𝑧)]2𝑑𝑧

−𝑑1

−𝑑1−𝑑2
,                          (5.28) 

where 𝜎𝑢
2 = ∫ [𝜔 cosh 𝑘(ℎ + 𝑧) / sinh 𝑘ℎ]2𝑆𝜂𝜂(𝜔, 0)𝑑𝜔

∞

0
. If 𝑑3 = 0, the solution in (5.28) reduces to the 

solution by Jacobsen et al. (2019a) for submerged rigid vegetation. In this model, the nonlinear drag is 

linearized using the Borgman (1967) method such that |𝑢| ≈ √8/𝜋𝜎𝑢 . If using the root mean square 

velocity to linearize the drag force following Madsen et al. (1988) such that |𝑢| ≈ √2𝜎𝑢 , the solution 

reduces to the Hasselmann and Collins (1968) based solution in Chen and Zhao (2012) for submerged rigid 

vegetation. For idealized narrow-banded waves such that 𝑆𝜂𝜂 ≈ 0 when 𝜔 ≠ 𝜔𝑝, the damping coefficient 

in (5.28) 

𝛽𝑅𝑁 =
1

12√𝜋
𝐶𝑑𝑏𝑁𝑘𝑝𝐻𝑟𝑚𝑠0

9 sinh 𝑘𝑝(𝑑2+𝑑3)−9 sinh 𝑘𝑝𝑑3+sinh 3𝑘𝑝(𝑑2+𝑑3)−sinh 3𝑘𝑝𝑑3

(sinh 2𝑘𝑝ℎ+2𝑘ℎ) sinh 𝑘𝑝ℎ
,             (5.29) 

where 𝐻𝑟𝑚𝑠0 = √8 ∫ 𝑆𝜂𝜂(𝜔, 0)𝑑𝜔
∞

0
  is the root mean square incident wave height and 𝑘𝑝 is the peak wave 

number calculated by solving 𝜔𝑝
2 = 𝑔𝑘𝑝 tanh 𝑘𝑝ℎ. For bottom-rooted rigid vegetation such that 𝑑3 = 0, 

𝛽𝑅𝑁 in (5.29) reduces to the solution of Mendez and Losada (2004). The relationship between the present 

and previous models are shown on Figure 5.12. 

 
Figure 5.12. Relationship between the present solutions (5.22), (5.28), (5.29) and previous solutions by 

Chen and Zhao (2012), Jacobsen et al. (2019a), and Mendez and Losada (2004), where 𝛾𝑠 and 𝛾𝑐 are the 

transfer function for the motion of canopy component, 𝑑3 is the thickness of the gap between the canopy 

and sea bed, 𝑢 is the horizontal wave velocity and 𝜎𝑢 is the stand deviation of 𝑢. 
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5.6. Summary 

A generalized three-layer frequency-dependent theoretical model for the wave attenuation by 

submerged and suspended canopies subjected to random waves was derived and validated with laboratory 

and field data. This model incorporates the motion of canopies using a cantilever-beam model for slender 

canopy components and a buoy-on-rope model for canopy components with concentrated mass and 

buoyancy. This frequency-dependent solution was used to demonstrate the shoreline protection capability 

of suspended mussel farms alone and in combination with submerged aquatic vegetation (SAV) to damp 

wave energy at a field site in Saco Bay, Maine, USA during a January 2015 Blizzard. The results showed 

that both suspended mussel farms and SAV have the potential to damp wave energy considerably during 

storm events. Suspended mussel farms are more effective at damping shorter waves and high frequency 

wave components of the wave spectrum while dense SAV colonized in shallower water have the advantages 

of damping longer waves and lower frequency wave components more effectively. However, the wave 

attenuation of SAV in shallow water decreases dramatically at the peak of storm tide due to increased water 

level, which decreases the wave motion reaching the ocean bottom. In contrast, suspended aquaculture 

farms can move up and down with water level change and are less affected by water level change. As a 

consequence, the combination of suspended aquaculture farms and traditional SAV-based living shorelines 

provide an optimized nature-based shore protection scheme that can damp more wave energy for a wider 

wave frequency and water level range. 

The research of wave attenuation by suspended and floating canopies is still in its infancy. More 

laboratory and field experiments data for the hydrodynamic properties of suspended aquaculture farms (e.g., 

mussels and kelp) as well as wave attenuation are desirable. The present theoretical model assumed the 

blade motion as a linear vibration with small-amplitude. However, as long as the nonlinear effects of large-

amplitude blade motion is negligible, the present theoretical model remains valid. In addition, the bottom 

friction, bedforms, bottom slope as well as wave-driven currents, wave and current conditions may also be 

significant for certain types of bottom rooted vegetation (e.g., Jensen et al., 1989; Myrhaug, 1995; Zou, 

2004; Zou and Hay, 2003; Smyth and Hay, 2002; Maza et al., 2019; Abdolahpour et al., 2017; van Rooijen 
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et al., 2020). Therefore, it is worthwhile to investigate the nonlinear effects of large-amplitude blade motion 

on the wave damping capacity of suspended canopies as well as the effects of bottom properties and wave-

current conditions in the future work. 
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CHAPTER 6 

CONCLUSIONS 

6.1. Chapter summary 

In this thesis, the wave attenuation capacity of suspended aquaculture structures were investigated 

using the comprehensive approaches described in each of the chapters. Firstly, the blade dynamics in waves 

was investigated using a cable model with focus on the asymmetric blade motion as described in Chapter 

2. The cable model was then used to develop a scale frame for the physical model for S. latissima to consider 

dynamical similarity as described in Chapter 3. Chapter 3 also described the physical model experiments 

for wave attenuation by suspended kelp farms. To predict the wave attenuation by suspended canopy, an 

analytical wave attenuation model incorporating blade motion was developed as described in Chapter 4. 

Chapter 5 described the extension of the analytical wave attenuation model to random waves and the 

application of aquaculture structures as nature-based solutions with a case study.  

6.2. Findings and academic contributions 

6.2.1. Chapter 2: Asymmetric blade motion in waves 

The mass-consistent cable model approach described in this chapter has improved the blade motion 

modeling, especially for “second-normal-mode-like” blade motion. The improvements were achieved by 

incorporating (i) the effects of the blade-motion-induced rotations of local Lagrangian coordinates along 

the blade on inertial force, (ii) the compatibility relations for geometrical continuity of the blade segments, 

and (iii) the spatial variation of wave orbital velocity encountered by the blade due to blade displacements. 

The accurate blade posture predictions are required to fully resolve the flow-vegetation interaction, wave-

driven currents in a canopy, and the wave attenuation by canopies. This model can also be used to estimate 

the internal stress of the blade and the total force at the bottom of the blade in order to analyze the breakage 

and the sediment holding properties of the vegetation. 

With this cable model, two major factors were found to influence asymmetric blade motion other 

than wave orbital motion asymmetry. These factors are (i) the spatial asymmetry of the encountered wave 
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orbital velocities induced by the blade displacements and (ii) the asymmetric action on the blade by the 

vertical wave orbital velocities. When near symmetric motion exists, conditions are (i) the blade length is 

much smaller than the wavelength, (ii) in shallow water waves or (iii) the blade length is much smaller than 

the water depth in finite-depth-water waves. Peak asymmetry occurs when the ratio of blade length to 

wavelength reaches the critical value. Peak asymmetry was found to increase with wave height and blade 

length but decrease with increasing blade flexural rigidity. The asymmetric blade motion can be utilized in 

coastal erosion control since the inclination of the blade provides ‘shelter’ that could inhibit sendiment 

suspension. 

6.2.2. Chapter 3: Physical model experiments for wave attenuation by suspended kelp canopies 

In this chapter, the morphological and mechanical properties of the cultivated S. latissima in Saco, 

Maine, USA were presented. Based this data, a set of 1:10 scale physical model experiments were 

conducted to investigate the wave attenuation by suspended kelp canopies. The results showed that the 

designed model kelp canopy can reduce up to 39% wave energy in the experiments. A numerical wave 

attenuation model based on the cable model described in Chapter 2 was developed and validated by the 

experiments. The numerical results indicated that 200 longlines of 1 m-long kelp blades with 400 plants/m 

could reduce 50% wave energy of 6.3 s waves in 4 m-deep water, indicating the potential of suspended kelp 

aquaculture farms on coastal wave attenuation. Wave attenuation increases with wave frequency, wave 

height, and the vertical positions and size of the aquaculture farms. Empirical formulas for the bulk drag 

coefficient and effective blade length of the suspended kelp canopy for wave attenuation were fitted with 

𝑅2 = 0.80 and 𝑅2 = 0.90, respectively. The bulk drag coefficient and effective blade length methods with 

the fitted empirical formulas have improved the numerical results by 33% and 61%, respectively. The bulk 

drag coefficient and effective blade length formulas are convenient to implement in large-scale models. 

6.2.3. Chapter 4: Analytical wave attenuation model for flexible canopies 

To predict the wave attenuation by suspended flexible canopies, an analytical wave attenuation 

model that resolved blade motion was developed and validated with the experiments. With the analytical 

model, solutions for bulk drag coefficient and effective blade length were obtained. The solved bulk drag 
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coefficient and effective blade length by the analytical model has the same precision with the fitted formulas 

for wave attenuation. Therefore, this approach can be an alternative to obtaining these parameters with 

reduce physical experiments. The analytical solutions were also useful to analyze the mechanisms of blade 

motion on wave attenuation and guide the selection of parameters to fit bulk drag coefficient and effective 

blade length. Similar to bulk drag coefficient and effective blade length methods, the analytical wave 

attenuation model is convenient to implement in large-scale models. 

6.2.4. Chapter 5: Random wave attenuation by flexible canopies 

A generalized three-layer frequency-dependent theoretical model for the wave attenuation by 

submerged and suspended canopies subjected to random waves was derived and validated with laboratory 

and field data. This model incorporated the motion of canopies using a cantilever-beam model for slender 

canopy components and a buoy-on-rope model for canopy components with concentrated mass and 

buoyancy. This frequency-dependent solution was used to demonstrate the shoreline protection capability 

of suspended mussel farms alone and in combination with submerged aquatic vegetation (SAV) to damp 

wave energy at a field site in Saco Bay, Maine, USA during a January 2015 Blizzard. The results showed 

that both suspended mussel farms and SAV have the potential to damp wave energy considerably during 

storm events. Suspended mussel farms are more effective at damping shorter waves and high frequency 

wave components of the wave spectrum while dense SAV colonized in shallower water have the advantages 

of damping longer waves and lower frequency wave components more effectively. However, the wave 

attenuation of SAV in shallow water decreases dramatically at the peak of storm tide due to increased water 

level, which decreases the wave motion reaching the ocean bottom. In contrast, suspended aquaculture 

farms can move up and down with water level change and are less affected by water level change. As a 

consequence, the combination of suspended aquaculture farms and traditional SAV-based living shorelines 

provide an optimized nature-based shore protection scheme that can damp more wave energy for a wider 

wave frequency and water level range. 
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6.3. Engineering implications for nature-based solutions 

The behavior of asymmetric blade motion can be used to guide planting strategies of submerged 

aquatic vegetation for sediment settlement. The asymmetric motion is expected to benefit sediment 

settlement because the “shelter” created by the blade inclination could hinder sediment suspension at the 

seabed. To take advantage of the peak asymmetry, it is recommended to choose the submerged aquatic 

vegetation species such that the ratio of the blade length and the dominant wavelength is close to the peak 

length ratio. Longer blades are preferred because they increase the peak asymmetry and provide a larger 

“shelter”. In addition, the vegetation meadow with longer blades can reduce more wave energy resulting in 

a smaller flow velocity near the bed. The low flow environment benefits the sediment settlement. 

Large suspended aquaculture farms can work as living breakwaters to protect the coast due to their 

capacity for wave attenuation. The wave attenuation capacity of suspended aquaculture farms is mainly 

dictated by the canopy density and the size (length) in the wave direction. Unlike SAV, which is limited by 

water depth due to light and nutrients, the vertical locations of suspended aquaculture farms can be adjusted 

to optimize their growth. Consequently, there is no depth restriction for suspended farms and they can be 

quite large, e.g., the suspended mussel aquaculture farm off Gouqi Island in East China Sea has an area of 

about 8 km2 (Lin et al., 2016). The size of suspended aquaculture farms can be designed to achieve optimal 

wave attenuation. The external factors such as the water depth and the vertical position of aquaculture farms 

should also be considered during the design. For places that are not suitable to establish living shorelines, 

such as low-nutrient seabeds, the suspended aquaculture farms offer a viable alternative to SAV for nature-

based coastal defense. 

Combination of onshore and nearshore submerged aquatic vegetation and offshore suspended 

aquaculture farms can be a new option as nature-based solution for coastal protection. Offshore suspended 

aquaculture farms are found to enhance the wave attenuation capacity of SAV-based living shorelines for 

a wider range of wave frequency. The shelter provided by offshore aquaculture farms can also improve the 

survival rate and benefit growth of nearshore SAV. Besides wave dissipation and flow reduction, SAV can 
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stabilize the sediment by root hosting and blade sheltering. Taking the advantages of both aquaculture farms 

and SAV would be a desirable strategy for nature-based coastal protection. 

The wave attenuation models developed in this study can be used to analyze the wave attenuation 

of nature-based infrastructures and design the nature-based infrastructures for expected wave attenuation. 

The models can also be used to calculate bulk drag coefficient and effective blade length of the nature-

based infrastructures for wave attenuation. The analytical wave attenuation models are convenient to be 

implemented into large-scale models to analyze the influences of wave attenuation on coastal morphology, 

current circulation and material transport. 

The analytical wave attenuation models developed in this study have some limitations when applied 

in practice due to some simplifications. The simplifications include the assumption of linear waves and 

linear blade motion, ignorance of the motion effects of the mooring systems of the aquaculture farms, 

simplification of the sheltering effects in a dense canopy, and without consideration of the back ground 

currents. The effects of the simplifications on wave attenuation are not fully understood and 

recommendations for future research is provided in the next section. In practice, some modification of the 

wave attenuation models should be made to consider the effects of these simplifications. 

6.4. Suggestions for future research 

Based on the limitations of this study, some suggestions are proposed for the future research as 

following. 

1. The interaction between flow and flexible blades. While the approach in Chapter 2 described 

the wave-induced dynamics of flexible blades, the influence of the blade motion on the flow is 

needs to be investigated. The future work can incorporate the cable model into a computational 

fluid dynamics (CFD) model to study the two-way interaction between the flow and flexible 

blades. It can focus on the influence of the blade motion on the variance of the flow field such 

as the turbulence, wave attenuation and wave-driven currents in a canopy.  

2. Sheltering effects among the blades in the canopy. As described in Chapter 3, the sheltering 

effects were simply considered using a sheltering factor defined as the averaged force ratio of 
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the sheltered blade and unsheltered blade. The effects of the canopy orientation, the number of 

blades, blades configuration, blade property and wave conditions on the sheltering factor need 

to be investigated. The future work can improve the sheltering factor as a function of these 

parameters based on numerous experiments or numerical simulations. Accurate consideration 

of sheltering effects can improve the prediction of the canopy drag as well as the wave 

attenuation.  

3. Full-scale experiments and field measurements. The experiments described in Chapter 3 was 

downscaled without considering the effects of small features such as blade stipe, blade ruffles 

and other morphological variance of the blade. The future work can do full-scale experiments 

to investigate the effects of kelp stipe on wave attenuation. The field measurements are also 

desired. 

4. Nonlinear effects of the large-amplitude blade motion. The analytical wave attenuation model 

described in Chapter 4 resolved the blade motion using linear beam theory and considered the 

geometrical nonlinearity using a fitted constant factor. The effects of blade deflection on the 

nonlinear effects need to be investigated. The future work can develop a more accurate factor 

as a function of blade properties and wave conditions to consider the nonlinear effects using 

experimental or numerical techniques.  

5. Hydrodynamic coefficients for random waves. As described in Chapter 5, the hydrodynamic 

coefficients for random waves were modified from the empirical formulas for regular waves. 

The hydrodynamic coefficients for random waves are in need. The future work can focus on 

developing empirical formulas for the hydrodynamic coefficients for canopies in random 

waves. The hydrodynamic coefficients for random waves are better expressed as frequency 

dependent as the wave spectrum. 

6. Current effects on wave attenuation. While this study focused on the wave attenuation by 

canopies in waves without currents, the effects of currents on wave attenuation needs to be 

investigated. The future work can investigate the current effects using experimental techniques. 
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Also the present wave attenuation models can be further improved by considering the current 

effects. 

7. Dynamics of the aquaculture longline system. In this study, the kelp longline was fixed at both 

ends without motion. The effects of the motion of the longline system on wave attenuation need 

to be investigated. The future work can do laboratory or field experiments for a whole kelp 

longline system in waves and currents. In addition, modeling the dynamics of longline system 

as well as its impact on wave attenuation is also worthy research. 

8. Orientation of aquaculture longlines. This study considered one orientation of the longline 

configuration. The influences of the orientations of aquaculture longlines on wave attenuation 

needs to be investigated. The future work can study the effects of canopy orientations on wave 

attenuations using experimental techniques. It can focuses on the effects of canopy orientation 

on the sheltering factor.   
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APPENDIX A: CONDITIONS FOR SYMMETRIC BLADE MOTION IN SYMMETRIC WAVES 

The absolute symmetric motion does not exist due to the phase differences Ψ𝑡 and Ψ𝑛. However, 

when Ψ𝑡  and Ψ𝑛  are close to 0, equations (2.28) and (2.29) hold such that 

{𝑇(𝑠, 𝑡), 𝑢(𝑠, 𝑡), −𝑤(𝑠, 𝑡), −𝜙(𝑠, 𝑡)}  is also a solution to the governing equations (2.18) and (2.19), 

resulting in a relatively symmetric motion. Therefore, the conditions for relatively symmetric motion are 

obtained, i.e., |Ψ𝑡| ≪ 1 in (2.36) and |Ψ𝑛| ≪ 1 in (2.37). 

According to equations (2.24) to (2.25) and (2.30) to (2.31), the wave orbital velocities at time 𝑡 

and 𝑡 + 𝑇𝑤/2 have the same amplitude. Therefore, the hydrodynamic coefficients 𝐶𝑑, 𝐶𝑓, and 𝐶𝑚 are the 

same at both positions, indicating that the hydrodynamic coefficients do not contribute to the generation of 

asymmetric motion. Generally, the driving forces in the normal direction dominate so that the contributions 

of Ψ𝑛 to asymmetric motion is expected to be more significant and the tangential phase difference Ψ𝑡 can 

be neglected due to the negligible forces in the tangential direction. Thus, the blade motion is symmetric 

when only equation (2.37) is satisfied.  

For bottom-rooted blade configuration such that |𝑥| ≤ 𝑙  and |𝑧| ≤ 𝑙 , it is evident that 𝑘𝑥 +

arctan(tan 𝜙 tanh 𝑘𝑧) < 𝑘𝑙 + | tan 𝜙 tanh 𝑘𝑧 | < (1 + | tan 𝜙 |) 𝑘𝑙 = 2𝜋(1 + |tan 𝜙|)𝑙/𝐿 . Since the 

blade cannot be fully horizontal, thus, |tan 𝜙| is finited. Therefore, one condition for |Ψ𝑛| ≪ 1 in (2.37) 

can be obtained,  

𝑙/𝐿 ≪ 1.                                                                         (A.1) 

In fact, if 𝑙/𝐿 ≪ 1, tanh 𝑘𝑧 ≈ 0 so that |Ψ𝑡| ≈ 2𝑘𝑥 < 4𝜋𝑙/𝐿 ≪ 1 such that equation (2.36) is also satisfied. 

Therefore, equation (A.1) is one condition for symmetric blade motion. For completely submerged blades 

such that 𝑙 ≤ ℎ, then 𝑙/𝐿 ≤  ℎ/𝐿 so that the following condition for equation (A.1) can be obtained, 

ℎ/𝐿 ≪ 1,                                                                         (A.2) 

which is also a condition for symmetric blade motion. One example of blade symmetric motion in shallow 

water waves is shown on Figure A.1. In finite-water-depth waves with ℎ/𝐿 ∼ 𝑂(1), 𝑙/𝐿 = (ℎ/𝐿) ⋅ (𝑙/ℎ) ∼

𝑂(𝑙/ℎ) so that the following condition for equation (A.1) can be obtained, 
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𝑙/ℎ ≪ 1,                                                                        (A.3) 

which is also a condition for symmetric blade motion. 

 
Figure A.1. The postures of a 20 cm-long blade (in green) in the wave flow field with wave period 𝑇𝑤 =

6.8 s and amplitude 𝑎𝑤 = 5 cm in 1 m-deep water (shallow water waves). The blade posture asymmetry is 

𝛽𝑥𝑇 = 0.04. The waves propagate from left to right. The dark thin green lines indicate the blade postures. 

The blade displacements (𝑥, 𝑧) are normalized by wavelength (𝐿). (a) The blade postures from positions 0 

to 7. (b) The upper parts (zoom in) of the blade postures labeled number 0 to 7, which indicate the blade 

positions at 8 wave phases with 𝑡/𝑇𝑤 = 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1. The black arrows indicate 

wave orbital velocity at the blade tip. (c) to (k) show the blade postures and wave flow field. The green 

solid line indicates the current blade posture and the dashed green lines indicate the blade posture at 

previous one position. The light thick green line indicates the trajectory of the blade tip. The black arrows 

indicate the wave flow field. 
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APPENDIX B: WAVE HEIGHT FITTING ALONG A CANOPY WITH REFLECTIVE WAVES 

Assuming the incident wave height (𝐻𝐼0) and reflective wave height (𝐻𝑅𝐿𝑣
) decay at the same decay 

coefficient 𝑘𝐷 following (3.12), the incident water elevation (𝜂𝐼) and reflective water elevation (𝜂𝑅) can be 

expressed as  

𝜂𝐼 =
𝐻𝐼0

2

1

1+𝑘𝐷𝐻𝐼0𝑥
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝐼)                                              (B.1) 

and 

𝜂𝑅 =
𝐻𝑅𝑙

2

1

1+𝑘𝐷𝐻𝑅𝐿𝑣(𝐿𝑣−𝑥)
cos(𝑘𝑥 + 𝜔𝑡 + 𝜖𝑅),                                          (B.2) 

respectively, where 𝜖𝐼  and 𝜖𝑅  are the incident wave phase and reflective wave phase, respectively. 

Therefore, the combined water elevation, 

𝜂 = 𝜂𝐼 + 𝜂𝑅 =
1

2
[

𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥
cos(𝑘𝑥 + 𝜖𝐼) +

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝐿𝑣(𝐿𝑣−𝑥)
cos(𝑘𝑥 + 𝜖𝑅)] cos(𝜔𝑡) +

1

2
[

𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥
sin(𝑘𝑥 + 𝜖𝐼) −

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝐿𝑣(𝐿𝑣−𝑥)
sin(𝑘𝑥 + 𝜖𝑅)] sin(𝜔𝑡) =

1

2
√(

𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥
)

2
+ (

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝑙(𝐿𝑣−𝑥)
)

2
+ 2

𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝑙(𝐿𝑣−𝑥)
cos(2𝑘𝑥 + 𝜖) cos(𝜔𝑡 + 𝜓),  (B.3) 

where 𝜖 = 𝜖𝐼 + 𝜖𝑅 , and 𝜓 = −
𝐻𝐼0(1+𝑘𝐷𝐻𝑅𝐿𝑣

(𝐿𝑣−𝑥)) sin(𝑘𝑥+𝜖𝐼)−𝐻𝑅𝐿𝑣(1+𝑘𝐷𝐻𝐼0𝑥) sin(𝑘𝑥+𝜖𝑅)

𝐻𝐼0(1+𝑘𝐷𝐻𝑅𝐿𝑣
(𝐿𝑣−𝑥)) cos(𝑘𝑥+𝜖𝐼)+𝐻𝑅𝐿𝑣(1+𝑘𝐷𝐻𝐼0𝑥) cos(𝑘𝑥+𝜖𝑅)

. Thus, the wave 

height along the canopy can be obtained, 

𝐻(𝑥) = √(
𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥
)

2
+ (

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝑙(𝐿𝑣−𝑥)
)

2
+ 2

𝐻𝐼0

1+𝑘𝐷𝐻𝐼0𝑥

𝐻𝑅𝐿𝑣

1+𝑘𝐷𝐻𝑅𝑙(𝐿𝑣−𝑥)
cos(2𝑘𝑥 + 𝜖).   (B.4) 

As the exponential decay form 
𝐻

𝐻0
= 𝑒−𝑘𝐷𝐻0𝑥 is also often used, the fitting formula for the wave height 

decay can also be obtained using a similar method, yielding 

𝐻(𝑥) = √𝐻𝐼0
2 𝑒−2𝑘𝐷𝐻𝐼0𝑥 + 𝐻𝑅𝐿𝑣

2 𝑒−2𝑘𝐷𝐻𝑅𝐿𝑣
(𝐿𝑣−𝑥) + 2𝐻𝐼0𝐻𝑅𝐿𝑣

𝑒−𝑘𝐷𝐻𝐼0𝑥−𝑘𝐷𝐻𝑅𝐿𝑣
(𝐿𝑣−𝑥) cos(2𝑘𝑥 + 𝜖).   

(B.5) 
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APPENDIX C: PIECEWISE FUNCTION METHDOD REALTING KOBAYASHI AND 

DALRYMPLE WAVE ATTENUATION MODELS 

Appendix C.1. Extension of the solution by Kobayashi et al. (1993) to suspended canopy 

In this derivation, the blade motion is not resolved but considered using bulk drag coefficient. The 

drag force of the canopy per unit water column (𝐹𝑥) can be quantified using Morison equation (Morison et 

al., 1950) so that 

𝐹𝑥 =
1

2
𝜌𝐶𝐷𝑏𝑁|𝑢|𝑢,        −𝑑1 − 𝑑2 ≤ 𝑧 ≤ −𝑑1                                           (C.1) 

where 𝜌 is water density, 𝐶𝐷 is the bulk drag coefficient, 𝑏 is blade width, 𝑁 is the number of blades per 

unit horizontal area (also referred to as the canopy density), 𝑢 is the wave orbital velocity, 𝑑1 is the distance 

above the canopy to the still water level (SWL), 𝑑2 is the length of the blade, 𝑧. Is vertical coordinate and 

positive upward with 𝑧 = 0 at SWL.  

By solving the linearized momentum equations, Kobayashi et al. (1993) derived the first-order 

approximated analytical solution for wave height decay with linearized drag for submerged canopy. To 

extend the solution to suspended canopy, the quadratic drag expressed in equation (C.1) is linearized as 

𝐹𝑥  =  𝜌𝐷𝑢,        −𝑑1 − 𝑑2 ≤ 𝑧 ≤ −𝑑1                                           (C.2) 

where 𝐷 is the constant damping coefficient and obtained from the Lorentz’s condition of equivalent work 

(Sollitt & Cross, 1972). This requires that the linear and quadratic drag from equations (C.2) and (C.1), 

respectively, accounts for the same amount of energy dissipation averaged over one wave period such that 

∫ 𝜌𝐷𝑢2𝑑𝑧
−𝑑1

−𝑑1−𝑑2
= ∫

1

2
𝜌𝐶𝐷𝑏𝑁|𝑢|𝑢2𝑑𝑧

−𝑑1

−𝑑1−𝑑2
 which can be rewritten as 

𝐷 =
∫

1

2
𝜌𝐶𝐷𝑏𝑁|𝑢|𝑢2𝑑𝑧

−𝑑1
−𝑑1−𝑑2

∫ 𝜌𝑢2𝑑𝑧
−𝑑1

−𝑑1−𝑑2

                                                     (C.3) 

where the overbar indicates time average over one wave period. To formulate the analytical solution for 

wave height decay by weak damping (𝐷/2𝜔 ≪ 1, 𝜔 = 2𝜋/𝑇 is the wave angular frequency), the local 

wave height (𝐻) is assumed to decay exponentially as a function of horizontal distance (𝑥) through the 
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canopy. Solving the linearized momentum equations and continuity equation (in Appendix D) yields the 

local wave height, 𝐻(𝑥), and given by 

𝐻(𝑥)

𝐻0
= 𝑒−𝑘𝐷𝐻𝑥,                                                                    (C.4) 

where 𝐻0 is the incident wave height such that 𝐻(0)  =  𝐻0, and 𝑘𝐷 is the decay coefficient ([m−2]) given 

by 

𝑘𝐷 =
𝐶𝐷𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
,                     (C.5) 

where 𝑘  is the wave number defined by the dispersion relation, 𝜔2  =  𝑔𝑘 tanh 𝑘ℎ , and 𝑔  is the 

gravitational acceleration. The step by step procedure to derive equation (C.5) is provided in Appendix D. 

In Appendix D, the variation of wave orbital velocities through the canopy due to damping by vegetation 

is also presented, which can be used with Morison equations (Morison et al., 1950) to calculate the 

instantaneous wave load on the canopy. It should be noted that 𝐻 on the right-hand side of equation (C.4) 

is the local wave height, which is an unknown. To obtain the explicit analytical solution, 𝐻 on the righthand 

side of equation (C.4) is approximated by 𝐻0 such that 

𝐻(𝑥)

𝐻0
= 𝑒−𝑘𝐷𝐻0𝑥,                                                               (C.6) 

However, approximating 𝐻 with 𝐻0 overestimates wave attenuation since 𝐻 ≤  𝐻0. To address this issue, 

a piecewise function method will be introduced in Appendix C.3. If 𝑑3  =  0, equation (C.5) reduces to the 

solution by Kobayashi et al. (1993) for bottom-rooted submerged and emergent canopies. 

Appendix C.2. Extension of the solution by Dalrymple et al. (1984) to suspended canopy 

Assuming linear wave theory within a submerged canopy, Dalrymple et al. (1984) derived the 

solution for wave height decay through submerged vegetation by solving the energy conservation equation. 

For suspended canopy, the energy conservation equation becomes 

𝜕𝐸𝑐𝑔

𝜕𝑥
= − ∫ 𝐹𝑥𝑢̅̅ ̅̅̅−𝑑1

−𝑑1−𝑑2
𝑑𝑧,                                                          (C.7) 

where 𝐸 =  𝜌𝑔𝐻2/8 is the local wave energy per unit horizontal area, 𝑐𝑔  =  𝑐𝑛 is the wave group velocity 

with 𝑐 =  𝜔/𝑘 being the wave celerity and 𝑛 =  (1 +  2𝑘ℎ/ sinh 2𝑘ℎ)/2. Substitution of the linearized 
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drag expressed in equation (C.2) into equation (C.7) yields the Kobayashi-based solution expressed in 

equation (C.6). Substituting the quadratic drag (C.1) into equation (C.7) yields the Dalrymple-based 

solution, 

𝐻(𝑥)

𝐻0
=

1

1+𝑘𝐷𝐻0𝑥
,                                                                    (C.8) 

where 𝑘𝐷 has the same expression of equation (C.5). For bottom-rooted submerged canopy with 𝑑3  =  0, 

equation (C.5) reduces to the solution by Dalrymple et al. (1984). 

Appendix C.3. Piecewise function method linking Kobayashi- and Dalrymple-based techniques 

To investigate the relationship between Kobayashi- and Dalrymple-based techniques, the piecewise 

function method is introduced as shown on Figure C.1. The canopy is divided into m equal segments in the 

wave direction such that the jth segment ranged between 𝑥𝑗−1 ≤ 𝑥 ≤  𝑥𝑗 (𝑗 =  1,2,··· , 𝑚) with 𝑥0  =  0. 

Assuming equation (C.4) is applicable to the jth segment with the local incident wave height 𝐻(𝑥𝑗−1), the 

local wave height can be obtained, 

𝐻(𝑥) = 𝐻(𝑥𝑗−1)𝑒−𝑘𝐷𝐻(𝑥𝑗−1)(𝑥−𝑥𝑗−1).                                             (C.9) 

 

Figure C.1. A schematic illustration showing the piecewise function method. The waves propagate from 

left to right with incident wave height of 𝐻0. The canopy is divided into m equal segments. For segment 

𝑗(𝑗 =  1,2,··· , 𝑚) with 𝑥𝑗−1  ≤  𝑥 ≤  𝑥𝑗, the local wave height is 𝐻(𝑥). At the leading edge of the canopy, 

𝑥0  =  0 and 𝐻(𝑥0)  =  𝐻0. 
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Reversing equation (C.9) and expanding the result into a series yields 

1

𝐻(𝑥)
=

1

𝐻(𝑥𝑗−1)
+ 𝑘𝐷(𝑥 − 𝑥𝑗−1) + Ο [(𝑥 − 𝑥𝑗−1)

2
].                               (C.10) 

Noting that 

1

𝐻(𝑥𝑗−1)
=

1

𝐻(𝑥𝑗−2)
+ 𝑘𝐷(𝑥𝑗 − 𝑥𝑗−2) + Ο [(𝑥𝑗−1 − 𝑥𝑗−2)

2
]   (𝑗 = 2,3,4, … ).        (C.11) 

adding equations (C.10) and (C.11) and taking the limit of the result as m approaches to infinity yields 

1

𝐻(𝑥)
=

1

𝐻(𝑥0)
+ 𝑘𝐷(𝑥 − 𝑥𝑗−1 + 𝑥𝑗 − 𝑥𝑗−2 + ⋯ + 𝑥1 − 𝑥0) =

1

𝐻0
+ 𝑘𝐷𝑥,         (C.12) 

which can be rewritten as 𝐻(𝑥)/𝐻0  =  1/(1 + 𝑘𝐷𝐻0𝑥) in the form of Dalrymplebased solution in equation 

(C.8). The piecewise function method links the Kobayashi- and Dalrymple-based solutions, where the 

Kobayashi-based solution (C.6) is the approximation with one segment while the Dalrymple-based solution 

(C.8) is the approximation with infinite segments as shown on Figure C.2 given by 𝑘𝐷𝐻0𝐿𝑣  =  1. Therefore, 

the Kobayashi-based solution provides a larger wave decay than Dalrymple-based solution. 

  

Figure C.2. Relations between the wave height decay solutions by Kobayashi- and Dalrymplebased 

techniques from the perspective of the piecewise function method, where 𝑘𝐷𝐻0𝐿𝑣  =  1. larger wave decay 

than Dalrymple-based solution. 
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To find a suitable theoretical solution for the wave attenuation by canopies, the existing 

representative analytical models, i.e., Dalrymple- and Kobayashibased techniques, were analyzed. Based 

on energy conservation equations, the Dalrymple-based technique is able to consider a quadratic drag force 

formulation but cannot be used to determine the evolution (such as phase change) of wave orbital velocity 

in the canopy. To derive the explicit expressions of wave orbital velocity in the canopy, the Kobayashi-

based technique solves the continuity and momentum equations by assuming an exponential wave decay 

and linearizing the drag force. However, the linearization of the drag force provides an overestimation in 

the wave attenuation. To address this issue, the piecewise function method was developed to link these two 

techniques and clarify their relationships. From the aspects of the piecewise function method, the 

Kobayashi-based technique overestimates the wave attenuation. However, the overestimation is less than 

10% when 𝑘𝐷𝐻0𝐿𝑣  ≤  0.5. Therefore these two techniques perform similar for the canopy having small 

size or/and small damping such that 𝑘𝐷𝐻0𝐿𝑣  ≤  0.5 . Otherwise, the Dalrymple-based technique is 

recommended. 

As a first step to analyze the wave attenuation by suspended aquaculture farms, the models only 

considered the wave energy loss caused by the work performed by the drag force. Other wave energy loss 

sources such as wave reflection and the work by the frictional force from the canopy are neglected. In 

addition, the assumptions made during the derivation also could produce difference. For example, the drag 

coefficient should increase along the canopy length since the wave orbital velocity decreases due to wave 

decay. Therefore, the assumption of constant drag coefficient along the canopy length would underestimate 

the wave attenuation. Other assumptions, such as neglecting the advection terms, viscous stresses, 

interactions between wave components and the sheltering effects from neighbor blades could also introduce 

difference. Thus, in some cases, the Kobayashi-based solutions with slight overestimation may work better 

than Dalrymple-based solutions due to the uncertainty, which remains to be fully understood. 
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APPENDIX D: THE THREE-LAYER THEORETICAL SOLUTION FOR SUSPENDED AND 

SUBMERGED CANOPY BASED ON MOMENTUM AND CONTINUITY EQUATIONS 

Appendix D.1. Governing equations 

For the three-layer model shown on Figure 4.1, the free surface elevation above the still water level 

(SWL) is denoted by 𝜂1, the vertical displacement of the interface between Layer 1 and 2 above 𝑧 =  −𝑑1 

is denoted by 𝜂2, and the vertical displacement of the interface between Layer 2 and 3 above 𝑧 =  −𝑑1  −

 𝑑2 is denoted by 𝜂3, where 𝑑1, 𝑑2 and 𝑑3 are the thicknesses for three layers. Thus, the water depth is ℎ =

𝑑1 + 𝑑2 + 𝑑3 . In Layer 𝑗(𝑗 =  1,2,3), the horizontal fluid velocity is denoted by 𝑢𝑗 , the vertical fluid 

velocity is 𝑤𝑗 , and the dynamics pressure is 𝑝𝑗 . The total pressure is defined as 𝑝𝑗  −  𝜌𝑔𝑧, where 𝜌 is 

constant water mass density and 𝑔 is gravitational acceleration. 

Fluid motion is governed by the Navier-Stokes equations, taken as secondorder, nonlinear partial 

differential equations. To obtain the analytical solution at the first order, the second-order nonlinear 

advection terms as well as the viscous stresses are assumed to be negligible following Kobayashi et al. 

(1993). 

In Layer 1, where 𝜂2  −  𝑑1  <  𝑧 <  𝜂1 , continuity with linearized horizontal and vertical 

momentum are expressed as 

𝜕𝑢1

𝜕𝑥
+

𝜕𝑤1

𝜕𝑧
= 0,                                                                        (D.1) 

𝜕𝑢1

𝜕𝑡
= −

1

𝜌

𝜕𝑝1

𝜕𝑥
,                                                                         (D.2) 

and 

𝜕𝑤1

𝜕𝑡
= −

1

𝜌

𝜕𝑝1

𝜕𝑧
,                                                                         (D.3) 

with 𝑡 as time. The linearized kinematic and dynamic boundary conditions at the free surface are given by 

𝑤1 =
𝜕𝜂1

𝜕𝑡
     at       𝑧 =  0                                                              (D.4) 

and 

𝑝1  =  𝜌𝑔𝜂1     at     z = 0.                                                                (D.5) 
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In Layer 2, where 𝜂3  −  𝑑1  −  𝑑2  <  𝑧 <  𝜂2  − 𝑑1, continuity with linearized momentum are 

expressed as 

𝜕𝑢2

𝜕𝑥
+

𝜕𝑤2

𝜕𝑧
= 0,                                                                        (D.6) 

𝜕𝑢2

𝜕𝑡
= −

1

𝜌

𝜕𝑝2

𝜕𝑥
−

𝐹𝑥

𝜌
,                                                                         (D.7) 

and 

𝜕𝑤2

𝜕𝑡
= −

1

𝜌

𝜕𝑝2

𝜕𝑧
,                                                                         (D.8) 

where 𝐹𝑥 is the horizontal force per unit volume acting on the canopy and expressed as 

𝐹𝑥 =
1

2
𝜌𝐶𝐷𝑏𝑁|𝑢2|𝑢2,                                                               (D.9) 

where 𝑏 is the averaged diameter or width of the canopy canopy component, 𝑁 is the number of the canopy 

components per unit horizontal area, i.e., canopy density, 𝐶𝐷 is the bulk drag coefficient. The linearized 

kinematic boundary condition at the interface between the Layer 1 and 2 is given by 

𝑤2 =
𝜕𝜂2

𝜕𝑡
     at       𝑧 = −𝑑1                                                              (D.10) 

In addition, the linearized boundary conditions are also matched at the interface such that 

𝑝2  =  𝑝1      at     𝑧 =  −𝑑1                                                                (D.11) 

and 

𝑤2  =  𝑤1     at     𝑧 =  −𝑑1.                                                                 (D.12) 

In Layer 3, where −ℎ <  𝑧 <  𝜂3  −  𝑑1  −  𝑑2 , continuity and linearized momentum are 

expressed as 

𝜕𝑢3

𝜕𝑥
+

𝜕𝑤3

𝜕𝑧
= 0,                                                                        (D.13) 

𝜕𝑢3

𝜕𝑡
= −

1

𝜌

𝜕𝑝3

𝜕𝑥
,                                                                         (D.14) 

and 

𝜕𝑤3

𝜕𝑡
= −

1

𝜌

𝜕𝑝3

𝜕𝑧
,                                                                         (D.15) 
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without consideration of the bottom friction. The linearized kinematic boundary conditions at the interface 

between Layer 2 and 3 and at the horizontal, impermeable bottom are given by 

𝑤3 =
𝜕𝜂3

𝜕𝑡
     at       𝑧 = −𝑑1 − 𝑑2                                                       (D.16) 

and 

𝑤3  =  0     at     𝑧 =  −ℎ.                                                                (D.17) 

Similarly, the linearized boundary conditions are continuity equations at the interface of Layers 2 and 3 at 

the interface such that 

𝑝3  =  𝑝2      at     𝑧 =  −𝑑1 − 𝑑2                                                        (D.18) 

and 

𝑤3  =  𝑤2     at     𝑧 =  −𝑑1 − 𝑑2.                                                     (D.19) 

Appendix D.2. Linear solution 

To derive the analytical solution for the above governing equations, the local wave height (𝐻) is 

assumed to decay exponentially as a function of horizontal distance (𝑥) through the canopy following 

Kobayashi et al. (1993) and is expressed as 

𝐻(𝑥) = 𝐻0𝑒−𝑘𝑣𝑥,                                                              (D.20) 

where 𝐻0 is the incident wave height, 𝐻0  =  𝐻(0), and 𝑘𝑣 represents the rate of the exponentially decay. 

The corresponding free surface elevation is then expressed as 

𝜂1 =
𝐻0

2
𝑒−𝑘𝑣𝑥cos (𝑘𝑥 − 𝜔𝑡),                                                  (D.21) 

where 𝑘 is the wave number and 𝜔 is the angular frequency. In this context, it is convenient to introduce a 

complex wave number (𝐤) defined as 

𝐤 =  𝑘 + 𝑖𝑘𝑣,                                                               (D.22) 

where 𝑖 = √−1. Therefore, equation (D.21) can be rewritten as 

𝜂1 = 𝑅 {
𝐻0

2
exp[𝑖(𝐤𝑥 − 𝜔𝑡)]},                                                   (D.23) 
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where 𝑅{ } denotes the real part of the complex function in equation (D.23) and will be omitted hereafter. 

Therefore, the surface and interface elevations, velocities and pressures associated with equations (D.1)-

(D.19) are also proportional to the exponential term in equation (D.23). 

For Layer 1, 𝑢1 and 𝑤1 can be expressed in terms of 𝑝1 according to equations (D.2) and (D.3), 

𝑢1 =
𝐤

𝜌𝜔
𝑝1                                                                     (D.24) 

and 

𝑤1 =
1

𝑖𝜌𝜔

𝜕𝑝1

𝜕𝑧
.                                                                  (D.25) 

Substituting equations (D.24) and (D.25) into equation (D.1) and solving with boundary conditions 

equations (D.4) and (D.5) yields the expression of 𝑝1, 

𝑝1 = 𝜌𝑔
𝐻0

2
(cosh 𝐤𝑧 +

𝜔2

𝐤𝑔
sinh 𝐤𝑧) exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                  (D.26) 

Substitution of equation (D.26) into equations (D.24) and (D.25) yields the expressions of 𝑢1 and 𝑤1, 

𝑢1 =
𝐤𝑔

𝜔

𝐻0

2
(cosh 𝐤𝑧 +

𝜔2

𝐤𝑔
sinh 𝐤𝑧) exp[𝑖(𝐤𝑥 − 𝜔𝑡)]                  (D.27) 

and 

𝑤1 =
𝐤𝑔

𝑖𝜔

𝐻0

2
(sinh 𝐤𝑧 +

𝜔2

𝐤𝑔
cosh 𝐤𝑧) exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                  (D.28) 

For Layer 2, the nonlinear drag force is linearized following Kobayashi et al. (1993) to derive an analytical 

solution. The linearized drag force is  

𝐹𝑥  =  𝜌𝐷𝑢2,                                                                 (D.29) 

where 𝐷 is a constant damping coefficient in (C.3) and also shown here 

𝐷 =
∫

1

2
𝜌𝐶𝐷𝑏𝑁|𝑢2|𝑢2

2𝑑𝑧
−𝑑1

−𝑑1−𝑑2

∫ 𝜌𝑢2
2𝑑𝑧

−𝑑1
−𝑑1−𝑑2

.                                                     (D.30) 

Hence, 𝑢2 and 𝑤2 can be expressed in terms of 𝑝2 according to equations (D.7), (D.8), and (D.29), with 

𝑢2 =
𝐤

𝜌(𝜔+𝑖𝐷)
𝑝2                                                             (D.31) 

and 
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𝑤2 =
1

𝑖𝜌𝜔

𝜕𝑝2

𝜕𝑧
.                                                                  (D.32) 

Substituting equations (D.31) and (D.32) into (D.6) and solving with boundary conditions defined by 

equations (D.11) and (D.12), the expression for 𝑝2 can be obtained as 

𝑝2 = 𝜌𝑔
𝐻0

2
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) cosh 𝛾(𝑑1 + 𝑧) +

𝐤

𝛾
(− sinh 𝐤𝑑1 +

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) sinh 𝛾(𝑑1 +

𝑧)] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.33) 

where 

𝛾2 =
𝜔

𝜔+𝑖𝐷
𝐤2.                                                                  (D.34) 

Substituting equation (D.33) into (D.31) and (D.32) yields the explicit expressions of 𝑢2 and 𝑤2, 

𝑢2 =
𝐤𝑔

𝜔+𝑖𝐷

𝐻0

2
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) cosh 𝛾(𝑑1 + 𝑧) +

𝐤

𝛾
(− sinh 𝐤𝑑1 +

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) sinh 𝛾(𝑑1 +

𝑧)] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.35) 

and 

𝑤2 =
𝛾𝑔

𝑖𝜔

𝐻0

2
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) sinh 𝛾(𝑑1 + 𝑧) +

𝐤

𝛾
(− sinh 𝐤𝑑1 +

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) cosh 𝛾(𝑑1 +

𝑧)] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.36) 

For Layer 3, 𝑢3 and 𝑤3 are expressed in the same manner as 𝑢1 and 𝑤1, i.e., both in terms of 𝑝3 according 

to equation (D.14) and (D.15), 

𝑢3 =
𝐤

𝜌𝜔
𝑝3                                                                     (D.37) 

and 

𝑤3 =
1

𝑖𝜌𝜔

𝜕𝑝3

𝜕𝑧
.                                                                  (D.38) 

Substituting equation (D.37) and (D.38) into (D.13) and solving with boundary conditions as defined in 

equations (D.17) and (D.18), 𝑝3 can be obtained as 

𝑝3 = 𝜌𝑔
𝐻0

2

cosh 𝐤(ℎ+𝑧)

cosh 𝐤𝑑3
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) cosh 𝛾𝑑2 +

𝐤

𝛾
(sinh 𝐤𝑑1 −

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) sinh 𝛾𝑑2] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.39) 
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Substitution of equation (D.39) into (D.37) and (D.38) yields the explicit expressions of 𝑢3 and 𝑤3, 

𝑢3 =
𝐤𝑔

𝜔

𝐻0

2

cosh 𝐤(ℎ+𝑧)

cosh 𝐤𝑑3
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) cosh 𝛾𝑑2 +

𝐤

𝛾
(sinh 𝐤𝑑1 −

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) sinh 𝛾𝑑2] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.40) 

and 

𝑤3 =
𝐤𝑔

𝑖𝜔

𝐻0

2

sinh 𝐤(ℎ+𝑧)

cosh 𝐤𝑑3
[(cosh 𝐤𝑑1 −

𝜔2

𝐤𝑔
sinh 𝐤𝑑1) cosh 𝛾𝑑2 +

𝐤

𝛾
(sinh 𝐤𝑑1 −

𝜔2

𝐤𝑔
cosh 𝐤𝑑1) sinh 𝛾𝑑2] exp[𝑖(𝐤𝑥 − 𝜔𝑡)].                   (D.41) 

In the final step, the substitution of equations (D.36) and (D.41) into the boundary condition described by 

equation (D.19) yields the equation for the unknown complex wave number 

𝜔2 = 𝑔𝐤
tanh 𝐤𝑑1+

𝛾

𝐤
tanh 𝛾𝑑2+tanh 𝐤𝑑3+

𝐤

𝛾
tanh 𝐤𝑑1 tanh 𝛾𝑑2 tanh 𝐤𝑑3

1+
𝛾

𝐤
tanh 𝐤𝑑1 tanh 𝛾𝑑2+tanh 𝐤𝑑1 tanh 𝐤𝑑3+

𝐤

𝛾
tanh 𝛾𝑑2 tanh 𝐤𝑑3

.                     (D.42) 

Substitution of equations (D.36) and (D.41) into the boundary conditions (D.10) and (D.16), respectively, 

can yield the expressions of 𝜂2 and 𝜂3. 

Appendix D.3. First-order approximation for the linear solution 

To simplify equation (D.42), a dimensionless damping coefficient 𝜖 is introduced as 

𝜖 =
𝐷

2𝜔
.                                                                  (D.43) 

For the case of weak damping such that 𝜖 ≪ 1, substituting equation (D.43) into (D.34) and neglecting the 

higher order terms Ο(𝜖2) yields the first-order approximation of 𝛾, 

𝛾 ≈ 𝐤(1 − 𝑖𝜖).                                                        (D.44) 

Substituting equation (D.44) and (D.22) into (D.42) yields the first order approximation for the wave 

number (k), 

𝜔2  ≈  𝑔𝑘 tanh 𝑘ℎ,                                                    (D.45) 

and the decay rate, 

𝑘𝑣 ≈ 𝑘𝜖𝑐𝜖,                                                             (D.46) 

where 
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𝑐𝜖 =
2𝑘𝑑2+sinh 2𝑘(𝑑2+𝑑3)−sinh 2𝑘𝑑3

2𝑘ℎ+sinh 2𝑘ℎ
.                                    (D.47) 

The dispersion relationship described in equation (D.45) is identical to the form derived for linear waves 

without canopies. Therefore, the wave number (𝑘) and the wave phase velocity are not affected by weak 

damping (𝜖 ≪ 1). 

In a similar manner, the first-order approximation for the dynamic pressure, horizontal and vertical 

velocity in each layer can also be obtained and given by 

𝑝1 = 𝜌𝑔
𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑝1

),                                     (D.48) 

𝑢1 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑢1

),                                     (D.49) 

𝑤1 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

sinh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑤1

),                                     (D.50) 

𝑝2 = 𝜌𝑔
𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑝2

),                                     (D.51) 

𝑢2 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑢2

),                                     (D.52) 

𝑤2 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

sinh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑤2

),                                     (D.53) 

𝑝3 = 𝜌𝑔
𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑝3

),                                     (D.54) 

𝑢3 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

cosh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑢3

),                                     (D.55) 

and 

𝑤3 =
𝑔𝑘

𝜔

𝐻(𝑥)

2

sinh 𝑘(ℎ+𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑐𝑤3

),                                     (D.56) 

where 

𝑐𝑝1
= 𝑐𝜖[− sinh 𝑘ℎ sinh 𝑘𝑧 sech 𝑘(ℎ + 𝑧) + 𝑘𝑧 tanh 𝑘(ℎ + 𝑧)],                (D.57) 

𝑐𝑢1
= 𝑐𝜖[cosh 𝑘ℎ cosh 𝑘𝑧 sech 𝑘(ℎ + 𝑧) + 𝑘𝑧 tanh 𝑘(ℎ + 𝑧)],                (D.58) 

𝑐𝑤1
= 𝑐𝜖[cosh 𝑘ℎ sinh 𝑘𝑧 csch 𝑘(ℎ + 𝑧) + 𝑘𝑧 coth 𝑘(ℎ + 𝑧)],                (D.59) 

𝑐𝑝2
= 𝑐𝑝1

− sinh 𝑘(𝑑1 − ℎ) sinh 𝑘(𝑑1 + 𝑧) sech 𝑘(ℎ + 𝑧) − 𝑘(𝑑1 + 𝑧) tanh 𝑘(ℎ + 𝑧),      (D.60) 
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𝑐𝑢2
= 𝑐𝑢1

−
1

2
[3 + cosh 2𝑘(𝑑1 − ℎ) + sinh 2𝑘(𝑑1 − ℎ) tanh 𝑘(ℎ + 𝑧) + 2𝑘(𝑑1 + 𝑧) tanh 𝑘(ℎ + 𝑧)],      

(D.61) 

𝑐𝑤2
= 𝑐𝑤1

−
1

2
[1 + cosh 2𝑘(𝑑1 − ℎ) + sinh 2𝑘(𝑑1 − ℎ) coth 𝑘(ℎ + 𝑧) + 2𝑘(𝑑1 + 𝑧) coth 𝑘(ℎ + 𝑧)],      

(D.62) 

𝑐𝑝3
= 𝑐𝜖[− sinh 𝑘ℎ sinh 𝑘(𝑑3 − ℎ) sech 𝑘𝑑3 − 𝑘ℎ tanh 𝑘𝑑3 + 𝑘(ℎ + 𝑧) tanh 𝑘(ℎ + 𝑧)] +

sinh 𝑘𝑑2 sinh 𝑘(𝑑1 − ℎ) sech 𝑘𝑑3 + 𝑘𝑑2 tanh 𝑘𝑑3,              (D.63) 

𝑐𝑢3
= 𝑐𝜖[cosh 𝑘ℎ cosh 𝑘(𝑑3 − ℎ) sech 𝑘𝑑3 − 𝑘ℎ tanh 𝑘𝑑3 + 𝑘(ℎ + 𝑧) tanh 𝑘(ℎ + 𝑧)] +

sinh 𝑘𝑑2 sinh 𝑘(𝑑1 − ℎ) sech 𝑘𝑑3 + 𝑘𝑑2 tanh 𝑘𝑑3,              (D.64) 

and 

𝑐𝑢3
= 𝑐𝜖[cosh 𝑘ℎ cosh 𝑘(𝑑3 − ℎ) sech 𝑘𝑑3 − 𝑘ℎ tanh 𝑘𝑑3 + 𝑘(ℎ + 𝑧) coth 𝑘(ℎ + 𝑧)] +

sinh 𝑘𝑑2 sinh 𝑘(𝑑1 − ℎ) sech 𝑘𝑑3 + 𝑘𝑑2 tanh 𝑘𝑑3.              (D.65) 

Compared with the linear wave theory without a canopy, the influence of the canopy on the dynamic 

pressure and the velocity described in equations (D.48)-(D.56) is represented as the wave height reduction 

and a phase lag. 

Substituting equation (D.52) into (D.30), integrating and neglecting the higher order terms  ) yields 

the first order approximation of the damping coefficient, 

𝐷 ≈ 𝐻(𝑥)
2𝜔𝐶𝐷𝑏𝑁

9𝜋

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3

sinh 𝑘ℎ[2𝑘𝑑2+sinh 2𝑘(𝑑2+𝑑3)−sinh 2𝑘𝑑3]
,                     (D.66) 

where 𝐻(𝑥) is the local wave height considering decay. Substituting equation (D.66) into (D.43) yields the 

approximate expression of the dimensionless damping coefficient, 

𝜖 ≈ 𝐻(𝑥)
𝐶𝐷𝑏𝑁

9𝜋

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3

sinh 𝑘ℎ[2𝑘𝑑2+sinh 2𝑘(𝑑2+𝑑3)−sinh 2𝑘𝑑3]
,                     (D.67) 

Substituting equation (D.67) into (D.46) yields the approximate expression of the decay rate, 

𝑘𝑣 = 𝑘𝐷𝐻(𝑥),                                                                   (D.68) 

where the decay coefficient 

𝑘𝐷 =
𝐶𝐷𝑏𝑁𝑘

9𝜋

9 sinh 𝑘(𝑑2+𝑑3)−9 sinh 𝑘𝑑3+sinh 3𝑘(𝑑2+𝑑3)−sinh 3𝑘𝑑3

sinh 𝑘ℎ(2𝑘ℎ+sinh 2𝑘ℎ)
.                     (D.69) 
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To achieve constant values of 𝐷, 𝜖 , and 𝑘𝑣 , the local wave heights in equations (D.66) to (D.68) are 

approximated using the incident wave height 𝐻0 following Kobayashi et al. (1993).  
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APPENDIX E: NORMAL MODE SOLUTIONS FOR BLADE DISPLACEMENTS IN RANDOM 

WAVES 

The governing equation (5.6) for the blade displacement in random waves is given by 

𝑚�̈� + 𝑐�̇� + 𝐸𝐼𝜉′′′′ = ∑ 𝑎𝜔Γ[𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝑚𝐼 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔                   (E.1) 

with the boundary conditions 𝜉(0, 𝑡) = 0, 𝜉′(0, 𝑡) = 0, 𝜉′′(𝑙, 𝑡) = 0, and 𝜉′′′(𝑙, 𝑡) = 0 for a cantilever 

beam. The solution of (E.1) can be written as the linear superposition of components of different 

frequencies 

𝜉 = Σ𝜔𝜉𝜔,                                                                       (E.2) 

where 𝜉𝜔 is the solution of 

𝑚�̈�𝜔 + 𝑐�̇�𝜔 + 𝐸𝐼𝜉𝜔
′′′′ = 𝑎𝜔Γ[𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝑚𝐼 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)].            (E.3) 

According to normal mode approach (Rao, 2007), the solution of (E.3) can be assumed as a linear 

superposition of the normal modes of the cantilever beam as 

𝜉𝜔 = ∑ 𝜙𝑛(𝑠) 𝑞𝑛(𝑡)𝑛  ,                                                           (E.4) 

where 𝜙𝑛(𝑠) is the 𝑛th normal mode and 𝑞𝑛(𝑡) is the 𝑛th generalized coordinate or modal participation 

coefficient. The normal modes for a cantilever beam are found from the equation 

𝜙′′′′ − 𝜇4𝜙 = 0                                                                  (E.5) 

with boundary conditions 𝜙(0) = 0, 𝜙′(0) = 0, 𝜙′′(𝑙) = 0, and 𝜙′′′(𝑙) = 0. Solving (E.5) yields the nth 

normal mode, 

𝜙𝑛 = (cos 𝜇𝑛𝑙 + cosh 𝜇𝑛𝑙)(sin 𝜇𝑛𝑠 − sinh 𝜇𝑛𝑠) + (sin 𝜇𝑛𝑙 + sinh 𝜇𝑛𝑙)(cosh 𝜇𝑛𝑠 − cos 𝜇𝑛𝑠),      (E.6) 

where 𝜇𝑛 is the 𝑛th solution of 

1 + cos 𝜇𝑙 cosh 𝜇𝑙 =  0.                                                           (E.7) 

Using (E.5) associated with the boundary conditions, the normal modes are proved to satisfy the 

orthogonality conditions, 

∫  𝐺(𝑠)𝜙𝑛𝜙𝑚𝑑𝑠
𝑙

0
= {∫ 𝐺(𝑠)𝜙𝑛

2𝑑𝑠
𝑙

0
,     𝑛 = 𝑚,

0,                           𝑛 ≠ 𝑚.
                                           (E.8) 

where 𝐺(𝑠) is an arbitrary function. Substituting (E.4) into (E.3) yields 
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𝑚 ∑ 𝜙𝑛�̈�𝑛𝑛 + 𝑐 ∑ 𝜙𝑛�̇�𝑛𝑛 + 𝐸𝐼 ∑ 𝜙𝑛
′′′′𝑞𝑛𝑛 = 𝑎𝜔Γ[𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝑚𝐼 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)].     

(E.9) 

Multiplying (E.9) by 𝜙𝑚 and integrating from 0 to 𝑙 result in 

 ∑ (∫ 𝑚𝜙𝑛𝜙𝑚𝑑𝑠 �̈�𝑛
𝑙

0
+ ∫ 𝑐 𝜙𝑛𝜙𝑚𝑑𝑠 �̇�𝑛

𝑙

0
+ ∫ 𝐸𝐼𝜙𝑛

′′′′𝜙𝑚𝑑𝑠 𝑞𝑛
𝑙

0
)𝑛 = 𝑎𝜔 [∫ 𝑐 Γ𝜙𝑚𝑑𝑠 cos(𝑘𝑥 −

𝑙

0

𝜔𝑡 + 𝜓) + 𝜔 ∫ 𝑚𝐼Γ𝜙𝑚𝑑𝑠 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)
𝑙

0
].                        (E.10) 

Substituting (E.5) into (E.10) and using the orthogonality conditions (E.8) yield 

�̈�𝑛 + 2𝜁𝑛𝜆𝑛�̇�𝑛 + 𝜆𝑛
2 𝑞𝑛 = 𝑎𝜔[𝐷𝑛 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝜔𝐼𝑛 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓)],          (E.11) 

where 2 𝜁𝑛𝜆𝑛 = ∫ 𝑐𝜙𝑛
2𝑑𝑠

𝑙

0
/ ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
 , 𝜆𝑛

2 = 𝜇𝑛
4  ∫ 𝐸𝐼𝜙𝑛

2𝑑𝑠
𝑙

0
 / ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
, 𝐷𝑛 = ∫ 𝑐Γ𝜙𝑛𝑑𝑠

𝑙

0
/ ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
, 

and 𝐼𝑛 = ∫ 𝑚𝐼Γ𝜙𝑛𝑑𝑠
𝑙

0
/ ∫ 𝑚𝜙𝑛

2𝑑𝑠
𝑙

0
. The steady state solution for (E.11) is 

𝑞𝑛 = 𝑎𝜔𝑄𝑠 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝑎𝜔𝑄𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓),                           (E.12) 

where 

𝑄𝑠 =
𝜔𝐼𝑛(𝜆𝑛

2 −𝜔2)−𝐷𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

                                                       (E.13) 

and 

𝑄𝑐 =
𝐷𝑛(𝜆𝑛

2 −𝜔2)+𝜔𝐼𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

                                                       (E.14) 

Substituting (E.6) and (E.12) into (E.4) and the result into (E.2) yields the blade displacement, 

𝜉 = ∑ 𝑎Γ[𝛾𝑠 sin(𝑘𝑥 − 𝜔𝑡 + 𝜓) + 𝛾𝑐 cos(𝑘𝑥 − 𝜔𝑡 + 𝜓)]𝜔 ,                       (E.15) 

where the transfer functions 𝛾𝑠 and 𝛾𝑐 are given by 

𝛾𝑠 =
𝜔

Γ
∑ 𝜙𝑛

𝜔𝐼𝑛(𝜆𝑛
2 −𝜔2)−𝐷𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
𝑛=1                                           (E.16) 

and  

𝛾𝑐 =
𝜔

Γ
∑ 𝜙𝑛

𝐷𝑛(𝜆𝑛
2 −𝜔2)+𝜔𝐼𝑛2𝜁𝑛𝜆𝑛𝜔

(𝜆𝑛
2 −𝜔2)

2
+(2𝜁𝑛𝜆𝑛𝜔)2

∞
𝑛=1 .                                          (E.17) 
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