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Subsurface maxima of phytoplankton and chlorophyll: Steady-state solutions from a
simple model

Katja Fennel1

Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey

Emmanuel Boss
School of Marine Sciences, University of Maine, Orono, Maine

Abstract

In oligotrophic lakes and oceans, the deep chlorophyll maximum may form independently of a maximum of
phytoplankton biomass, because the ratio of chlorophyll to phytoplankton biomass (in units of carbon) increases
with acclimation to reduced light and increased nutrient supply at depth. Optical data (beam attenuation as proxy
for phytoplankton biomass and chlorophyll fluorescence and absorption as proxies for chlorophyll concentration)
and conventional measurements of biovolume, particulate organic carbon, and chlorophyll from two oligotrophic
systems (Crater Lake, Oregon, and Sta. ALOHA in the subtropical North Pacific Ocean) are presented and show a
vertical separation of the maxima of biomass and chlorophyll by 50–80 m during stratified conditions. We use a
simple mathematical framework to describe the vertical structure of phytoplankton biomass, nutrients, and chloro-
phyll and to explore what processes contribute to the generation of vertical maxima. Consistent with the observa-
tions, the model suggests that biomass and chlorophyll maxima in stable environments are generated by fundamen-
tally different mechanisms. Maxima in phytoplankton biomass occur where the growth rate is balanced by losses
(respiration and grazing) and the divergence in sinking velocity, whereas the vertical distribution of chlorophyll is
strongly determined by photoacclimation. A deep chlorophyll maximum is predicted well below the particle max-
imum by the model. As an interpretation of these results, we suggest a quantitative criterion for the observed
coexistence of vertically distinct phytoplankton assemblages in oligotrophic systems: the vertical position at which
a species occurs in highest abundance in the water column is determined by the ‘‘general compensation depth’’—
that is, the depth at which specific growth and all loss rates, including the divergence of sinking/swimming and
vertical mixing, balance. This prediction can be tested in the environment when the divergence of sinking and
swimming is negligible.

Subsurface maxima of phytoplankton biomass and/or
chlorophyll often occur in clear waters in the ocean and in
lakes—for example, the deep chlorophyll maximum at the
base of the euphotic zone is a ubiquitous feature (Riley et
al. 1949; Steele and Yentsch 1960; Venrick et al. 1973; Cul-
len and Eppley 1981; Cullen 1982). A basic understanding
of the generating mechanisms for these vertical maxima is
important for the assessment of the functioning of the pe-
lagic food web and for the application of remote sensing
techniques to infer vertically integrated values of biomass
and primary productivity. Current textbooks in biological
oceanography (e.g., Jumars 1993; Mann and Lazier 1996)
do not provide a consistent explanation for the existence of
subsurface pigment and/or phytoplankton biomass maxima.
In the present article, we provide a mathematical framework
that is consistent with observations and revisit explanations
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that have been given in the past. Our approach is based
largely on the insightful analyses of Riley et al. (1949),
Steele and Yentsch (1960), and Steele (1964), three impor-
tant studies that unfortunately have been largely ignored.

A variety of different explanations for the creation and
maintenance of subsurface maxima of phytoplankton bio-
mass or chlorophyll have been given since the 1950s (see
Cullen 1982). Riley et al. (1949) combined photosynthesis,
respiration, grazing, and sinking in a simple mathematical
model to describe the vertical structure of phytoplankton
biomass, with no clear distinction made between phyto-
plankton biomass and chlorophyll. The model produced sub-
surface phytoplankton maxima at or above the daily mean
compensation depth (where growth and community respi-
ration rates balance, significantly above the observed deep
chlorophyll maximum). A number of studies focused on a
reduction of the sinking velocity with depth as a mechanism
that could result in vertical maxima of biomass below the
compensation depth at the base of the euphotic zone (Steele
and Yentsch 1960; Lerman et al. 1974; Bienfang et al. 1983).
Steele and Yentsch (1960) suggested a reduction of the sink-
ing rate in the dark, nutrient-rich waters near the nutricline.
Bienfang et al. (1983) reported that low light levels alone
could reduce the sinking velocity. Lerman et al. (1974) sug-
gested a decrease in the sinking velocity with depth due to
dissolution of the sinking particles.

In 1964, Steele postulated a qualitatively different, phys-
iological mechanism for the creation of the deep chlorophyll
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maximum. He argued that sinking is unlikely to be an im-
portant factor in the oligotrophic ocean, where phytoplank-
ton are often motile and where large downward fluxes by
sinking particles appear as an inefficient response to the sta-
ble, nutrient-limited conditions. He suggested that, in those
oligotrophic waters, the chlorophyll maximum does not rep-
resent a biomass maximum but is due to increased chloro-
phyll per biomass at low light levels (i.e., photoacclimation
of phytoplankton), and he presented supporting data from
the Gulf of Mexico.

Recent advances in optical measurements provide high-
resolution profiles of beam attenuation and chlorophyll fluo-
rescence and absorption. The beam attenuation has been
used as a proxy of particulate organic carbon (POC; e.g.,
Bishop 1999; Gardner et al. 2000), and chlorophyll fluores-
cence and absorption have been used as proxies of chloro-
phyll concentration (e.g., Cullen 1982). These new data con-
firm that a subsurface particle maximum often exists
separated from the deep chlorophyll maximum (Pak et al.
1988; Kitchen and Zaneveld 1990).

Here, we present data that demonstrate the existence and
separation of persistent vertical particle and chlorophyll
maxima in two stable environments: Crater Lake, Oregon,
and Sta. ALOHA in the Pacific Ocean. We revisit the dif-
ferent explanations for the vertical distributions of phyto-
plankton biomass and chlorophyll concentration and suggest
that the mechanisms for the maintenance of the deep chlo-
rophyll maximum and the subsurface particle maxima in
clear waters are fundamentally different. Following the
methods of Riley et al. (1949), Steele and Yentsch (1960),
and Steele (1964), we use a phytoplankton conservation
equation that allows the inspection of the different mecha-
nisms responsible for a vertical maximum of phytoplankton
biomass. We add a nutrient conservation equation, to show
how the dynamics of nutrients may influence the phyto-
plankton distribution. The addition of a photoacclimation
model provides a mechanism for the creation of a chloro-
phyll maximum separated from the phytoplankton maxi-
mum. We support our conclusions by qualitative compari-
sons with field data and demonstrate that the basic features
of the vertical distribution of phytoplankton particles, chlo-
rophyll, and dissolved nutrients are captured in our simple
model.

Materials and methods

Data—Optical measurements of in vivo fluorescence or
absorption and beam attenuation can yield estimates of phy-
toplankton pigment concentrations and POC concentrations
with much higher vertical and temporal resolution than con-
ventional bottle determinations alone. Fluorescence and ab-
sorption are frequently used to determine chlorophyll con-
centrations (see below). Transmissometer measurements of
the beam attenuation have been used successfully in a num-
ber of studies to estimate POC concentrations in the open
ocean (see below).

At Sta. 13 in Crater Lake, measurements of beam atten-
uation and chlorophyll absorption were made during June
and September 2001. Using a 25-cm path-length WetLabs

ac-9, we measured beam attenuation by particles at 650 nm
and estimated the chlorophyll concentration from the differ-
ence in absorption at 676 and 650 nm (Davis et al. 1997;
Chang and Dickey 2001). Conventional measurements of
phytoplankton biovolume and chlorophyll concentration
were obtained from bottle samples as described in McIntire
et al. (1996) and are available for biweekly periods from
1989 to 2000 for June–September. Measurements of nitrate
and organic nitrogen were obtained as described in Larson
et al. (1996) for the same period.

At Sta. ALOHA in the subtropical North Pacific, beam
attenuation measurements were made between August 1991
and July 1995 using a SeaTech 25-cm path-length transmis-
someter measuring at 660 nm. In vivo fluorescence data,
bottle determinations of chlorophyll, POC, nitrate, and dis-
solved organic nitrogen (DON), and measurements of pri-
mary production are available for the same period on a near-
ly monthly basis (e.g., Letelier et al. 1996). For these data,
we establish relationships between the beam attenuation and
the POC measurements from the bottle samples and between
the in vivo fluorescence and bottle determinations of chlo-
rophyll, respectively.

Fluorescence, absorption, and chlorophyll—Ideally, fluo-
rescence and absorption would be expected to increase lin-
early with chlorophyll concentration. In reality, however,
fluorescence per unit of chlorophyll varies in response to
changes in nutritional status of phytoplankton, species com-
position, and time of the day. Fluorescence represents a
small and variable fraction of the light absorbed by the pho-
tosynthetic apparatus. The fluorescence yield (the ratio of
fluorescence to absorption) is very responsive to the ambient
light and can change rapidly when shifts in irradiance are
experienced by the phytoplankton (e.g., Cullen 1982). Non-
photochemical quenching of fluorescence has been observed
near the surface, and diurnal changes occur (e.g., Falkowski
and Raven 1997, their fig. 9.6). Absorption of chlorophyll
does not suffer from nonphotochemical quenching. For
many processes, including primary production, the in vivo
pigment absorption (including packaging) is the relevant
measure, as opposed to the extracted pigment concentration.

Pairs of fluorescence and extracted chlorophyll data, mea-
sured between August 1991 and July 1995 at Sta. ALOHA,
are shown in Fig. 1. To account for possible changes in the
instrument performance (due to changes in either its me-
chanical properties or the electronics), a vicarious calibration
was performed in which all profiles were corrected by sub-
tracting the mean signal over the 250–300 m depth interval.
This procedure changes the calibration offset but does not
affect the multiplicative constant provided by the manufac-
turer (which may have also changed). The extracted chlo-
rophyll a data were determined by the fluorometric method.
The data points appear to be grouped in two distinct branch-
es in the fluorescence-chlorophyll phase plane, representing
data from above and below the fluorescence maximum. This
grouping might be due to an underestimation of extracted
chlorophyll at depth by the fluorometric method, which oc-
curs in the presence of chlorophyll b (Gibbs 1979; B. Bi-
digare pers. comm.). Using a robust linear regression model
(geometric mean model II; Laws 1997), we found fluores-
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Fig. 1. Fluorescence versus bottle chlorophyll concentration at
Sta. ALOHA. The regression for data above 120 m depth is given.

Fig. 2. Beam attenuation coefficient versus POC bottle concen-
trations at Sta. ALOHA and regression.

Table 1. Our regression cp 5 aPOC 1 b in comparison with
other published relationships.

Location

Slope a
[m21(mmol C

m23)21]
Intercept b

(m21)

Station ALOHA (present
study) 0.019 20.006

Equatorial Pacific (Bishop
1999) 0.006 0.010*

Subarctic Pacific (Bishop et
al. 1999) 0.006 0.005*

Arabian Sea (Gunderson et al.
1998)† 0.031 20.007

Southern Ocean (Gardner et
al. 2000)† 0.019 0.010

* Published relationship contains attenuation component due to water. For
this comparison, 0.358 m21 was subtracted

† Independent relationships were determined for different cruises. Values are
given for the summer cruise in the Southern Ocean and the late north-
eastern monsoon period in the Arabian Sea.

cence and bottle chlorophyll to be highly correlated (r2 5
0.91) above the chlorophyll maximum (120 m) (Fig. 1).

Beam attenuation and particulate organic matter—The
beam attenuation coefficient c is the sum of two dominant
components, attenuation due to particles, cp, and attenuation
due to water, cw (Zaneveld et al. 1994). cw is constant, and
its contribution is usually subtracted from c to obtain cp.
Calibrations of cp versus bulk measurements of POC gave
good linear correlations (e.g., Gardner et al. 2000), but there
is no universal correlation between POC and cp. Published
POC versus cp relationships show variability that can be in-
troduced by variations in particle size distribution or com-
position (e.g., Morel 1973; Boss et al. 2001).

We determined cp from the measured beam attenuation
profiles by subtracting the mean value of beam attenuation
over the depth interval from 250–300 m, which we consider
as being representative of the beam attenuation value of par-
ticle free water (this value can be interpreted as a depth-
independent, nonphytoplankton, background value). In all
cases, the determined mean values were close to the value
for particle-free water (as per calibration of the Sea-Tech
transmissometer). The correlation between cp and bottle
measurements of POC was examined using a robust linear
regression routine (geometric mean model II; Laws 1997).
cp and POC are highly correlated (r2 5 0.91, Fig. 2), with a
relationship that lies in the range of previously reported re-
lationships (Table 1).

Results

Illustrative examples—Profiles of density, inorganic and
dissolved organic nitrogen, beam attenuation and POC, and
chlorophyll fluorescence and concentration at Sta. ALOHA
(North Pacific) are shown in Fig. 3. Figure 4 shows profiles
of density, beam attenuation, and chlorophyll absorption at
Sta. 13 in Crater Lake.

At Sta. ALOHA, the water column is stratified with a
weak pycnocline at 50 m depth (Fig. 3). Nitrate is depleted
in the upper water column and starts to increase at 140 m
depth. The DON is high in the upper water column (;5
mmol N m23). Despite the low nitrate concentrations, POC
is high in the upper 80 m (;2 mmol C m23) and decreases
below 80 m (to ;1 mmol C m23 at the fluorescence maxi-
mum). The beam attenuation shows a maximum at 50 m
depth. The chlorophyll concentration and fluorescence are
low at the surface and increase with depth. The maximum
chlorophyll concentration is located at 100 m depth, whereas
the chlorophyll fluorescence is at maximum at ;120 m. Note
that the relationship between the chlorophyll concentration
and fluorescence changes below the maximum of chloro-
phyll concentration (see Materials and Methods).

In Crater Lake, the vertical stratification is weaker than
that at Sta. ALOHA (Fig. 4). A pycnocline exists at 20 m



1524 Fennel and Boss

Fig. 3. Vertical profiles of density, nitrate and DON, beam attenuation cp (solid line), POC
(asterisks), fluorescence (solid line), and chlorophyll concentration (asterisks) at Sta. ALOHA on 9
August 1991.

Fig. 4. Vertical profiles of density, beam attenuation cp, partic-
ulate matter (asterisks), absorption-based chlorophyll, and extracted
chlorophyll (asterisks) in Crater Lake on 28 June (upper panels) and
19 September (lower panels) 2001.

depth. In June, a pronounced maximum in beam attenuation
occurs at ;80 m depth, and the maximum of chlorophyll
absorption is located at 150 m depth (Fig. 4, upper panels).
In September, the beam attenuation is at maximum at 80 m
depth, and a second maximum exists in the upper 20 m of
the water column. The chlorophyll maximum is located at
130 m (Fig. 4, lower panels). Nitrate is depleted in the upper
200 m in June and in the upper 100 m in September. Esti-
mates of the DON concentration from deep-water measure-

ments of organic nitrogen yield a value of 0.7 mmol N m23

(Larson et al. 1996).
In the above examples, the vertical maxima of chlorophyll

fluorescence/absorption and beam attenuation are separated
by 50–70 m, and beam attenuation is highest in the upper
80 m of the water column. We argue that the vertical struc-
ture of phytoplankton biomass (in units of carbon) can be
inferred from the vertical distribution of beam attenuation
(proxy for POC) and that these examples show typical ver-
tical distributions of phytoplankton biomass and chlorophyll
in oligotrophic systems with a stable water column.

POC includes, in addition to phytoplankton carbon, the
carbon biomass fractions of zooplankton, heterotrophic bac-
teria, and detritus. The relative contributions of phytoplank-
ton, zooplankton, bacteria, and detritus to POC are hard to
separate in measurements, because the different functional
groups overlap in size. Optical measurements of the shape
of the absorption spectrum could potentially help to separate
the algal and nonalgal fraction of POC (Morrow et al. 1989;
Roesler et al. 1989). Although we note that changes in the
ratio of algal to nonalgal carbon may contribute to variation
in the Chl : POC ratio (e.g., Loisel and Morel 1998), we ne-
glect this component in the following discussion and assume
that the vertical distribution of POC resembles that of phy-
toplankton biomass at Sta. ALOHA. Reported values for the
contribution of phytoplankton carbon to POC range from
;30% (Beers et al. 1975; picoplankton not included) and
50% (Eppley et al. 1988) to 70% (Letelier et al. 1996) for
the subtropical North Pacific and average 33% at the Ber-
muda time-series station in the North Atlantic (DuRand et
al. 2001). At Sta. 13 in Crater Lake, time-series data of phy-
toplankton biovolume are available and allow a direct com-
parison of phytoplankton biomass and chlorophyll (see Fig.
7 below). The vertical distribution of biovolume is similar
to the beam attenuation and POC profiles shown in Fig. 4.

The vertical structure of particulate matter, chlorophyll,
and the chl : C ratio—We now analyze the vertical structure
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Fig. 5. Chlorophyll versus POC concentrations at Sta. ALOHA.
Isolines of Chl : POC in g Chl (g C)21 are given as dashed lines.
Chlorophyll and POC concentrations were obtained from daily
mean profiles of fluorescence and beam attenuation. Each profile
represents an average of ;10 casts. Data collected between August
1991 and July 1995 in the upper 120 m are shown.

Fig. 6. Profiles of beam attenuation, chlorophyll fluorescence,
and the fluorescence to cp ratio at Sta. ALOHA during stratification
(see text for details).

of phytoplankton biomass, chlorophyll, and the chloro-
phyll : biomass ratio at Sta. ALOHA and in Crater Lake in
a systematic way using time-series data from both stations.
In Crater Lake, we used bottle determinations of chlorophyll
and phytoplankton biovolume and calculated the mean ver-
tical distributions for June 1989–September 2000. At Sta.
ALOHA, we used daily mean fluorescence and beam atten-
uation profiles to estimate POC and chlorophyll concentra-
tions. We calculated daily mean profiles, to minimize the
effects of nonphotochemical quenching and internal waves.
The chlorophyll and POC concentrations in the upper 120
m of the water column were not correlated, and their ratio
varied between 0.002 and 0.02 g Chl (g C)21 (Fig. 5). These
values are consistent with Chl : C ratios reported elsewhere
for the subtropical North Pacific by Sharp et al. (1980) and
Eppley et al. (1988) and Chl : C ratios from laboratory stud-
ies. Eppley et al.(1988) found phytoplankton Chl : C ratios
of 0.011–0.023 g Chl (g C)21 in the deep chlorophyll max-
imum, and Sharp et al. (1980) reported values of 0.0025–
0.0156 g Chl (g C)21 in the upper 80 m of the euphotic zone.
Chl : C ratios reported from laboratory studies vary between
0.0013 and 0.1 g Chl (g C)21 (Falkowski and Owens 1980;
Laws and Bannister 1980; Raps et al. 1983; Geider et al.
1985, 1986; Sakshaug et al. 1989).

It is known that the cellular Chl : C ratio in phytoplankton
acclimates to changes in irradiance, nutrient availability, and
temperature (Falkowski 1980; Laws and Bannister 1980;
Cullen 1982; Geider et al. 1987; Sakshaug et al. 1989). Ac-
climation to changes in irradiance (photoacclimation) has
been observed to be rapid (within a few hours) in laboratory
studies (Falkowski 1980), which suggests that the pigment
metabolism is highly dynamic. In an actively mixed water
column, where cells are displaced vertically on time scales
smaller than the time it takes to acclimate to the experienced

light shift, the response to the cell’s recent light history is
affected by the mixing regime. The Chl : C characteristics of
these rapidly mixed cells will not reflect the current light
condition. In this case, there is no large discrepancy between
biomass and pigment distribution (Loisel and Morel 1998).
We discuss the vertical Chl : C structure only for profiles
with a stratified water column and consider the water column
as stratified if a density gradient Dst . 0.02 kg m24 occurs
at a depth of ,50 m.

At Sta. ALOHA, the vertical structures of chlorophyll and
particulate matter (Fig. 6) were qualitatively different. The
particulate concentrations were at maximum and were rela-
tively constant with depth in the upper 80 m of the water
column, slightly decreasing below 100 m. Most of the var-
iation in particulate concentrations (between 1.5 and 3.5
mmol C m23) occurred between profiles. The chlorophyll
concentrations showed little variation between profiles but
did show a pronounced increase with depth from ;0.06 mg
m23 at the surface to up to 0.3 mg m23 at 120 m in all
profiles. The Chl : POC ratio increased exponentially with
depth and showed a striking agreement between profiles
(Fig. 6).

In Crater Lake, the mean distribution of phytoplankton
biovolume has two distinct vertical maxima (Fig. 7). A shal-
low subsurface maximum is located in the upper 20 m. This
shallow maximum is a reoccurring feature in August and is
due to subsurface blooms of the diatom Nitzschia gracilis
(McIntire et al. 1996). A deeper, more pronounced maximum
in biovolume is located between 80 and 100 m. The mean
vertical chlorophyll profile is qualitatively similar to those
at Sta. ALOHA, with low values at the surface and mono-
tonically increasing concentrations at depth to a maximum
concentration at ;120 m. The vertical distribution of the
chlorophyll to biomass ratio is similar to the Chl : POC pro-
files at Sta. ALOHA, with monotonically increasing ratios
to a maximum at ;120 m depth (Fig. 7).

In summary, these observations show that chlorophyll
concentrations in these oligotrophic systems do not represent
phytoplankton biomass (in units of carbon), because the ratio
of chlorophyll : phytoplankton biomass changes dramatically
with depth; phytoplankton grow in the upper part of the eu-
photic zone, despite the depletion of inorganic nutrients; and,
because the maxima of phytoplankton biomass and chloro-
phyll are separated, the mechanisms for their generation are
likely to be different.
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Fig. 7. Mean profiles of chlorophyll and phytoplankton biovolume (mean distributions for all
data from 1989 to 2000 and August values only) and mean chlorophyll per phytoplankton volume
ratios (for all data and August data only).

Mathematical framework

We formulate a set of general, one-dimensional differen-
tial equations for phytoplankton biomass, dissolved nutri-
ents, and chlorophyll and discuss steady-state solutions for
nutrient-saturated and -limited growth of phytoplankton. The
model is deliberately simple and is based on the fundamental
physical and biochemical processes that determine the ver-
tical distribution of phytoplankton biomass and chlorophyll.
We use parameterizations of phytoplankton growth and loss-
es, sinking, and vertical diffusion but neglect much of the
complexity in natural systems. We consider this simplicity
valuable, because only a few ‘‘tunable’’ parameters have to
be specified. A simple model can elucidate dependencies that
are not easily seen in observations and suggest the likely
regulating processes. The only spatial dimension in our mod-
el is depth, z. We neglect horizontal processes, although the
vertical distribution of phytoplankton can be affected by
such processes (e.g., Franks 1995).

In the case of nutrient-saturated growth, we assume that
nutrient supply is sufficient to support optimal growth of
phytoplankton. We discuss the effects of a variable sinking/
swimming velocity and a vertical mixing structure that in-
cludes a surface mixed layer. We then generalize to allow
nutrient limitation by including an explicit equation for nu-
trients. In this case, the phytoplankton growth rate is de-
pressed at nutrient levels below the saturating concentra-
tions. Finally, we include an equation for chlorophyll to
allow for photoacclimation.

A simple phytoplankton model with nutrient-saturated
growth—The main processes determining the vertical distri-
bution of phytoplankton are growth, biological losses (due
to respiration, mortality, and grazing), sinking, and vertical
mixing. A general, one-dimensional phytoplankton equation
that includes the above processes can be written as

]P ](w P) ] ]Ps1 5 (m 2 R)P 1 k (1)z1 2]t ]z ]z ]z

where P is the phytoplankton biomass (in units of carbon or
nitrogen), ws is the settling velocity of phytoplankton, m is

the growth rate, R is the rate of biological losses (including
grazing, respiration, and mortality), and kz is the eddy dif-
fusion coefficient (Riley et al. 1949). ws, m, R, and kz are
functions of the depth z and time t. z is defined as increasing
toward the sea surface. A comprehensive list of symbols is
given in Table 2.

We solved Eq. 1 for steady-state, time-averaged distribu-
tions because we want to explain persisting features in the
vertical structure of phytoplankton. A system could be as-
sumed to be in steady state if the timescale of adjustment of
the system to perturbations is smaller than the timescale at
which the system is perturbed. The timescales for adjustment
in this problem are on the order of days to a week, as based
on dimensional analysis (with the length scale being 1/kd,
the timescales are 1/[wskd], 1/R, 1/mmax, and 1/[kzk ]; see Ta-2

d

ble 3). Thus, steady state is a reasonable assumption for
nonbloom conditions in the oligotrophic ocean and in higher
latitudes between the spring and the autumn blooms and be-
low the atmospherically forced mixed layer. In the steady-
state case, the first term in Eq. (1) can be neglected, and the
equation is simplified to the second-order ordinary differ-
ential equation (ODE)

d(w P) d dPs 5 (m 2 R)P 1 k (2)z1 2dz dz dz

Equation 2 was derived by Riley et al. (1949), who ana-
lyzed it for constant ws, kz, and a step function of m. Steele
and Yentsch (1960) analyzed Eq. 2 for variable m and ws.
Although these two studies did not distinguish between phy-
toplankton biomass, which is represented by Eq. 2, and chlo-
rophyll concentration, Steele (1964) drew attention to the
potential importance of photoacclimation, implying that a
maximum in chlorophyll does not necessarily correspond to
a maximum in phytoplankton biomass.

Riley et al. (1949) noted that Eq. 2 does not have a non-
trivial solution for all sets of parameters. There exist com-
binations of sinking velocity, growth and loss parameters,
and diffusion coefficients, which will yield negative values
of phytoplankton concentration and for which no physical
solution exists. We refer the reader to Riley et al. (1949),
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Table 2. List of symbols.

Notation

z Depth
t Time
P Phytoplankton concentration
P0 Phytoplankton boundary condition
N Nutrient concentration
N0 Nutrient boundary condition
C Chlorophyll concentration
m Phytoplankton growth rate
mmax Maximum phytoplankton growth rate
R Phytoplankton loss rate (including mortality, respira-

tion, and grazing)
ws Phytoplankton sinking velocity
kN Half-saturation concentration for nutrient uptake
kz Vertical eddy diffusion coefficient
kd Diffuse attenuation coefficient of PAR
zmax Depth of phytoplankton maximum
L Length scale (here, euphotic depth)
â Ratio of initial slope of photosynthesis-irradiance

curve and maximum rate of photosynthesis
( 5 /P )Bâ a max

E0,PAR Scalar photosynthetically active radiation
g Gravitational acceleration
rp Density of particle
rw Density of water
R Radius of particle
h Kinematic viscosity
G Mixing efficiency
« Energy dissipation rate
N2 Brunt-Väisälä frequency
rchl Fraction of chlorophyll synthesis
F Ratio of chlorophyll to phytoplankton biomass
Fm Maximum ratio of chlorophyll to phytoplankton

biomass
achl Chlorophyll-specific initial slope of photosynthesis-

irradiance curve

Table 3. Model parameters. Where parameters do not apply to all numerical examples, references to the respective figures are given.

Symbol Parameter Value Units

mmax Nutrient-saturated growth rate (Figs. 8–12) 0.44 d21

kN Half-saturation concentration (Figs. 11, 12) 0.5 mmol N m23

â Ratio of initial slope of P-I curve and maximum rate of
photosynthesis (Figs. 8–11)

0.02 (W m22)21

achl Chlorophyll-specific initial slope of growth versus irra-
diance curve (Fig. 12)

0.1 mol N (g chl)21 3
(W m22)21

Fm Maximum chlorophyll to nitrogen ratio (Fig. 12) 2 g chl (mol N)21

R Loss rate (Figs. 8–12) 0.41 d21

ws Sinking velocity 1 m d21

kd Attenuation of downwelling radiation 0.04* m21

kz Vertical eddy diffusivity (Figs. 8, 9) 1025 m2 s21

rp Particle density (Fig. 10) 1,500† kg m23

h Kinematic viscosity (Fig. 10) 0.001 kg m21 s21

R Particle radius (Fig. 10) 10 mm
P0 Phytoplankton concentration at z 5 0 (Figs. 8–10) 0.1 mmol N m23

N0 Nutrient concentration at z → 2` (Fig. 11) 30 mmol N m23

* Mean value of the observed vertical attenuation (Ricardo Letelier, pers. comm.)
† Value adapted from Lerman et al. (1974).

who derived the conditions for the existence of a physical
solution for a semiconstant growth rate (step function).

Lande et al. (1989) described a method to estimate the net
population growth rate—that is, the reproductive rate minus
the mortality rate (m 2 R), based on Eq. 2. Under the as-
sumption that neutrally buoyant cells (ws 5 0), Lande and
colleagues estimated the net population growth rate in situ
from measurements of vertical distributions of phytoplank-
ton abundance and physical measurements of turbulent dif-
fusion rates as

1 d dP
m 2 R 5 kz1 2P dz dz

Lande and Wood (1987) estimated the average time a par-
ticle remains in the euphotic zone by analyzing stochastic
trajectories of individual particles. They showed that the
sinking rate of particles within the mixed layer—that is, the
region of high turbulent diffusivity—has little effect on the
average time particles remain in the mixed layer. However,
in the region of low diffusivity below the mixed layer, the
sinking rate has a major influence on the average time par-
ticles remain in the euphotic zone.

Condition for the existence of a phytoplankton biomass
maximum—Examination of Eq. 2 yields a condition for the
existence and location of a particle maximum. The condition
for a maximum P(zmax) (e.g., Steele and Yentsch 1960) is

2dP dw d P(z )s max5 0 ⇒ m 2 R 2 P(z ) 1 k 5 0 (3)max z 2) 1 2dz dz dzzmax

and

2d P 1 dws5 R 1 2 m P(z ) , 0max2 ) 1 2dz k dzzzmax

dws⇒ m 2 R 2 . 0 (4a)1 2dz
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In regions of low diffusivity, the particle maximum is usu-
ally located below the mixed layer. More specifically, this
occurs when kz K wsL, where L is the length scale of the
problem, (e.g., the euphotic depth). In this case, we can ne-
glect the diffusive flux term in Eq. 3 and obtain

dwsm 2 R 2 5 0 (4b)
dz

at the particle maximum. In other words, at the particle max-
imum the community growth rate m equals the sum of the
biological losses R (due to respiration and grazing) and the
divergence of particles due to changes in the settling veloc-
ity. Note that this argument is also valid, with minor chang-
es, if grazing and growth are not proportional to the phyto-
plankton concentration. Although the second derivative of P
is zero in this case, it can be shown that the fourth derivative
is negative in most relevant cases and, therefore, that a max-
imum exists.

For passive particles, the settling/rising velocity is pro-
portional to the difference between the density of the parti-
cles and the surrounding water. It follows that a gradient in
the settling/rising velocity occurs at pycnoclines—that is, the
settling/rising of particles contributes to the condition for an
extreme in Eq. (3) only at a pycnocline. However, for real-
istic density profiles, this contribution is not significant, as
we will see in the next subsection (see also Steele and
Yentsch 1960; Pak et al. 1980). It has been suggested that
variations in the settling velocity due to physiological re-
sponses of phytoplankton to light or nutrient conditions can
contribute to vertical phytoplankton maxima in a significant
way (Steele and Yentsch 1960; Bienfang et al. 1983). A di-
vergence in the settling velocity is, however, neither suffi-
cient nor necessary for the existence of a particulate maxi-
mum. The balance among all the terms (growth, biological
losses, and the divergence in sinking velocity) determines
the position of the subsurface particle maximum (Eq. 4b).

The condition for a phytoplankton maximum (Eqs. 3 and
4) is general and also applies if we assume a community
comprised of phytoplankton cells with different growth, loss,
and sinking characteristics. If we assume that each of a num-
ber of j different groups of phytoplankton obey

d(w P ) dPdsj j j
5 (m 2 R )P 1 k ,j j j z1 2dz dz dz

summation of the j equations and definition of the commu-
nity growth, loss, and settling rates as

1 1
w [ w P , m [ m P , andO Os sj j j jP Pj j

1
R [ R PO j jP j

where P 5 Sj Pj yields Eq. 2.

Process parameterizations—For illustrative purposes, we
define parameterizations of growth, biological losses, sink-
ing, and vertical diffusion, which allow us to discuss nu-
merical solutions of Eq. 2. The growth rate is assumed to
follow

m 5 m [1 2 exp(2â E )]max 0,PAR

where mmax is the nutrient-saturated phytoplankton growth
rate, E0,PAR is the scalar photosynthetically active irradiance,
and is the ratio of the initial slope of the photosynthesis-â
irradiance curve (usually denoted as a) and the maximum
rate of photosynthesis (often denoted as P ). The scalarB

max

irradiance as function of depth is parameterized by

E (z) 5 E (z 5 0)exp(k z)0,PAR 0,PAR d

with kd as the diffuse attenuation coefficient of the photo-
synthetically available radiation (PAR). This formulation ne-
glects the change in attenuation for the different spectral
components of the downwelling light (Morel 1988). For the
sake of simplicity, we also ignore the effects of the dissolved
and particulate material on the attenuation coefficient kd.

Because phytoplankton respiration and grazing rates are
poorly constrained parameters and are hard to separate in
field measurements, we assume R to be constant with depth
for the numerical solutions presented in the present article.

For low Reynolds numbers (Re K 1), the sinking of par-
ticles is described by the Stokes’ law (Gibbs et al. 1971).
The settling velocity of a spherical particle can be parame-
terized by

r 2 rP w 2w 5 2g r (5)s 9h

where g is the gravitational acceleration; rp and rw are the
densities of the particle and the surrounding water, respec-
tively; h is the kinematic viscosity; and r is the particle
radius (Lerman et al. 1974). For spherical particles, the
Reynolds numbers are low in the size range 0.3–30 mm in
radius. The settling velocity depends primarily on the density
and size of the settling particles and also on the viscosity of
the surrounding water, which is a function of temperature,
and on the particle shape. The density of algal cells varies
depending on their physiological status, and active buoyancy
regulation has been observed (e.g., Villareal et al. 1993).
Richardson and Cullen (1995) reported near-neutral density
in a culture of the diatom Thalassiosira weissflogii under
nutrient-replete conditions and an increasing cell density and
sinking rate subsequent to nutrient depletion. Contradicting
evidence about the connection between nutritional status and
sinking rates has been found in natural populations that in-
clude various types of phytoplankton (e.g., Bienfang and
Harrison 1984), which suggests that not all phytoplankton
respond to nutrient depletion in the same way. For the pre-
sent study, we do not attempt to parameterize the effect of
physiological changes in cell density on sinking rates but
consider idealized cases of vertically varying sinking veloc-
ities.

We parameterized the eddy diffusivity using the Brunt-
Väisälä frequency N2, suggested by Gargett (1984) and
Gregg et al. (1986), as

G« 2g drw2k 5 , where N 5 (6)z 2N r dzw

where G is the mixing efficiency, « is the energy dissipation
rate, g is the gravitational acceleration, and rw is the water
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Fig. 8. Profiles of (A) phytoplankton P for a constant settling
velocity and (B) growth minus losses. Variations in the phytoplank-
ton loss rate lead to variations in the phytoplankton maximum, be-
cause its location occurs where m 2 R 5 0 (the dashed curve cor-
responds to R 5 0.39 d21 and the dash-dotted curve to R 5 0.43
d21).

Fig. 9. Profiles of (A) phytoplankton concentration P for different settling velocities ws, (B)
growth minus losses and divergence in settling velocity, and (C) settling velocities. Solid lines
represent the case where the settling velocity is based on Stokes’ law and a realistic density profile.
The dashed and dash-dotted lines correspond to hypothetical settling profiles with a strong gradient
at 30 and 70 m depth, respectively.

density. Gregg et al. (1986) estimated a mean value of G«
at the thermocline to be 3.7 3 10210 W kg21.

Numerical solutions for nutrient-saturated growth—To
solve Eq. 2, which is a second-order ODE, two boundary
conditions need to be specified. We set P 5 P0 at the surface
and P → 0 for z → 2`. The specification of the phytoplank-
ton concentration P0 at the surface might appear as a con-
straint to the solution, but this boundary condition is nec-
essary to specify one of an infinite number of solutions. Note
that every distribution P̂ :5 c 3 P where c is an arbitrary
constant solves Eq. 2 if P is a solution. We solved the bound-
ary value problem using the two-point boundary value rou-
tine in MATLAB. The model coefficients were chosen to
represent the system at Sta. ALOHA and are given in Ta-
ble 3.

Solutions for a vertically constant sinking velocity and a
vertically constant diffusivity, but different loss rates R, are
shown in Fig. 8. Each solution displays a subsurface maxi-
mum at the depth where the growth rate m equals the losses

R as predicted by Eq. 4a,b. For nutrient-saturated conditions,
the growth rate of phytoplankton is monotonically decreas-
ing with depth (we assume that no inhibition of growth oc-
curs near the surface). Hence, growth exceeds the losses
above the particulate maximum and losses exceed growth
below (for negligible divergence in the settling velocity).
This suggests that the loss by community respiration and
grazing can be estimated if the phytoplankton growth rate
and the location of the phytoplankton maximum are known
and no vertical variations in sinking velocity occur.

We illustrate the effect of a vertically variable sinking ve-
locity in Fig. 9. If the settling velocity ws is calculated on
the basis of a realistic density profile and constant particle
density using the parameterization in Eq. 5, the resulting
divergence in settling velocity is small. The density profile
(with a density jump from 1,020 to 1,028 kg m23 at 50 m
depth) leads to a decrease in settling velocity by ,2%. This
has virtually no effect on the particle distribution and the
location of the particle maximum (compare the solid lines
in Figs. 8 and 9, which represent the constant sinking ve-
locity and the sinking velocity based on Eq. 5, respectively).
This is in line with dimensional arguments presented by
Steele and Yentsch (1960) and Pak et al. (1980) that Stokes’
settling in connection with realistic density gradients does
not produce a significant divergence in sinking rate. On the
other hand, Steele and Yentsch (1960) and Bienfang et al.
(1983) provided experimental evidence that settling rates de-
crease because of physiological responses at low light levels
in two diatom species. They found that settling rates were
reduced by a factor of two at light levels corresponding to
the base of the euphotic zone. Richardson and Cullen (1995)
observed, in their experiments, an increase in settling rates
of a diatom on nutrient depletion that was probably due to
the production of ‘‘ballast’’ carbohydrates in the cells. In
model calculations, they showed that a ballast-related change
of sinking rate by 1.1 m d21 could be explained by the
change in carbohydrate to protein ratios inferred from their
batch cultures. We constructed profiles of settling rates that
decrease from 1.5 to 0.5 m d21 at 30 and 70 m depth, re-
spectively, and calculated the resulting particle distributions
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Fig. 10. (A) Particle distributions for (B) different profiles of
vertical eddy diffusivity. The solid line represents the vertically con-
stant diffusivity profile and the dashed and dash-dotted lines rep-
resent two vertically varying diffusivity profiles. Data-based esti-
mates of the eddy diffusivity (shown as filled gray circles in panel
B) are based on the Brunt-Väisälä frequency N2 (see text for de-
tails).

(Fig. 9). In this case, the divergence of the sinking rate con-
tributes to the condition for the particle maximum (Eq. 3) in
a significant way but only if it is located above the compen-
sation depth (the depth where m 5 R). In general, we do not
expect a significant divergence in settling velocity in oligo-
trophic environments. Phytoplankton there are dominated by
small, slow-sinking organisms of ,3 mm (e.g., Bienfang et
al. 1983), and, as argued by Steele (1964), sinking appears
to be an inefficient strategy for phytoplankton under these
stable, nutrient-limited conditions. Note that neither stratifi-
cation nor a divergence in the settling velocity is necessary
for the existence of a particle maximum. In addition, we note
that the prediction that m 5 R at the phytoplankton maxi-
mum can be tested in the environment (e.g., with primary
production and grazing dilution experiments).

So far, all calculations have assumed a vertically constant
diffusivity. We can generalize our calculations by including
a vertically variable profile of eddy diffusivity. This allows
us to simulate a surface mixed layer and to demonstrate how
the eddy diffusivity contributes to the location of the particle
maximum (second term in Eq. 3). On the basis of Eq. 6 and
profiles of the Brunt-Väisälä frequency from Sta. ALOHA
(13 casts; 17 February 1993), we estimated vertical eddy
diffusivities kz and constructed two profiles of kz with a sur-
face mixed layer of 20 and 80 m, respectively (Fig. 10B).
The resulting particle distributions (Fig. 10A) show that even
strong gradients in kz do not affect the location of the particle
maximum if it is located above the compensation depth
(dash-dotted line). Only if the mixed layer extends below
the compensation depth does mixing become an important
term in Eqs. 2 and 3 and is the location of the particle max-
imum shifted (dashed line).

A simple phytoplankton-nutrient model—Thus far, we
have assumed that nutrient levels are sufficient to support
nutrient-saturated growth of phytoplankton. However, in the
oligotrophic ocean, inorganic nutrient levels are low in the
euphotic zone, and the particle maximum is usually located

in the low nutrient zone above the nutricline. Therefore, we
generalize our model to allow nutrient limitation by includ-
ing the nutrient N as an additional state variable. N repre-
sents the dissolved form of the model’s nutrient currency
available to phytoplankton (N includes the bioavailable or-
ganic and inorganic forms). The steady-state nutrient con-
servation equation is written as

d dN
0 5 (R 2 m)P 1 k (7)z1 2dz dz

The nutrient and phytoplankton Eqs. 2 and 7 are coupled
through the phytoplankton growth rate

N
m 5 m [1 2 exp(2âE )]max 0,PAR k 1 NN

where kN is the half-saturation coefficient for nutrient uptake.
To solve the two second-order ODEs, Eqs. 2 and 6, numer-
ically, four boundary conditions have to be specified. We
can simplify the system by the following consideration. At
steady state, the downward flux of particulate material at any
given depth has to be balanced by an upward flux of the
dissolved nutrient—that is

dP dN
w P 2 k 5 k (8)s z zdz dz

This condition can simply be derived by adding Eqs. 2 and
6 and integrating vertically with the provision that the flux
approaches zero at infinite depth.

Now the problem is simplified to solving the system of
the coupled ODEs, Eqs. 2 and 8, and the specification of
only three boundary conditions. Like in the case of nutrient-
saturated growth, the phytoplankton concentration should
approach zero at infinite depth, P → 0 for z → 2`. We also
impose a no-flux condition for nutrients and phytoplankton
at the surface. For phytoplankton this is written as ws 2
kz(dP/dz) 5 0 at z 5 0. The no-flux condition for phyto-
plankton implies no-flux for the nutrient, dN/dz(z 5 0) 5 0
(following from Eq. 8). As the third boundary condition, we
pose that the nutrient concentration at depth is specified—
that is, N → N0 for z → 2`. We prefer the specification of
a deep nutrient concentration N0 over the specification of a
surface phytoplankton concentration P0, which was neces-
sary in the case of nutrient-saturated growth, because, for
application to real systems, information about the deep nu-
trient concentrations will be more readily available. An im-
plication of Eq. 8 is that the sum of N and P will increase
monotonically below the surface until it equals N0 at depth,
because d(N 1 P)/dz 5 (ws/kz)P , 0 for the positive definite
P and kz and sinking cells (ws , 0). Note that the opposite
is true when the cells are buoyant (ws . 0).

A numerical solution for this case is shown in Fig. 11 in
comparison with mean profiles of particulate organic nitro-
gen (PON), nitrate, and total dissolved nitrogen (TDN) from
Sta. ALOHA. A maximum of phytoplankton P is predicted
similar to the case with nutrient-saturated growth (compare
Figs. 8–10). The simulated nutrient N is low at the surface
and increases rapidly at the location of the maximum phy-
toplankton concentration until the deep nutrient concentra-
tion N0 is reached (Fig. 11). Although the simulated and
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Fig. 11. (A, B) Model-predicted phytoplankton and nutrient
profiles in comparison with (C, D) mean observations at Sta. ALO-
HA. Asterisks in panel D show mean nitrate concentrations, and
open circles represent mean TDN.

observed mean profiles agree qualitatively, there are differ-
ences that we attribute to the simplicity of our model. The
observed mean PON profile displays constant values at the
surface and decreases monotonically below 100 m, whereas
our simulated phytoplankton P shows a pronounced subsur-
face maximum. The shape of the simulated and observed
nutrient profiles differs mainly in steepness, thickness, and
location of the nutricline. These discrepancies are not sur-
prising, considering that we assume a single phytoplankton
group and neglect the microbial loop and the dynamics of
the dissolved organic matter and detritus pools.

Chl a equation—The relationship between chlorophyll
and phytoplankton biomass (in units of nitrogen or carbon)
is nonlinear and nonmonotonic (e.g., Fig. 5), because the
ratio of chlorophyll to phytoplankton carbon or nitrogen is
variable. Changes in chlorophyll content per cell are due to
a physiological response of the photosynthetic apparatus to
changes in the light level as well as to nutrient conditions
and temperature (Falkowski 1980; Laws and Bannister 1980;
Sakshaug et al. 1989). In stable environments, this process
determines the vertical chlorophyll profile (Figs. 6 and 7;
Pak et al. 1988; Kitchen and Zaneveld 1990). To determine
the vertical chlorophyll distribution in our model framework,
we include the chlorophyll concentration as an additional
state variable (Taylor et al. 1997). The effects of photoac-
climation are calculated based on the model of Geider et al.

(1996, 1997). The steady-state conservation equation for
chlorophyll, C, is formulated as

d(w C) d dCs 5 (r m 2 R)C 1 k (9)chl z1 2dz dz dz

where rchl represents the fraction of phytoplankton growth
devoted to chlorophyll synthesis. Following the method of
Geider et al. (1997), rchl is defined as

mP
r 5 F (10)chl m1 2a E Cchl 0,PAR

where Fm is the maximum ratio of chlorophyll to phyto-
plankton biomass, P, in units of carbon or nitrogen, and achl

is the chlorophyll-specific initial slope of the photosynthesis
irradiance curve. rchl is regulated by the ratio of achieved-
to-maximum potential photosynthesis (mP)/(achlE0,PARC)
(Geider et al. 1997). The phytoplankton growth rate, m, is
determined by

2a E Cchl 0,PARm 5 m 1 2 exp (11)m 1 2[ ]m Pm

with

N
m 5 mm maxk 1 NN

For our purposes, we omit the temperature dependence of
mm that is incorporated in the formulations of Geider et al.
(1997) and Taylor et al. (1997). Note that our steady-state
equations for phytoplankton biomass, P, and chlorophyll, C
(Eqs. 2 and 9) are coupled through the dependencies in rchl

and m.
The numerical solution of Eq. (9) requires the specifica-

tion of two additional boundary conditions. Analogous to
the boundary conditions for phytoplankton, the chlorophyll
concentration should approach zero at infinite depth, C → 0
for z → 2`, and there will be no flux of chlorophyll across
the surface—that is, wsC 1 dC/dz 5 0 for z 5 0. The re-
sulting chlorophyll profiles are shown in Fig. 12. The max-
ima of phytoplankton and chlorophyll are vertically separat-
ed by ;50 m. The vertical structure and the magnitude of
the phytoplankton and chlorophyll concentrations agree with
the observations from Sta. ALOHA (Fig. 6). The simulated
ratios of 0.012–0.025 g Chl (g C)21 in the deep chlorophyll
maximum and 0.0038 g Chl (g C)21 at the surface compare
well with the ratios observed in the North Pacific subtropical
gyre of 0.011–0.023 g Chl (g C)21 at the deep chlorophyll
maximum (Eppley et al. 1988) and 0.0025–0.0156 g Chl (g
C)21 for the upper 80 m (Sharp et al. 1980).

The steady-state export flux of particulate matter in this
simulation is 0.2 mmol N m22 d21 at 100 m depth (Fig. 12).
For comparison, the mean export flux observed at Sta. ALO-
HA was 28.3 6 9.91 mg C m22 d21 (11-year mean; Karl et
al. 2001), which corresponds to 0.356 6 0.125 mmol N m23

d21 (under the assumption of a C : N ratio of 106 : 16).

Discussion

We present a simple mathematical framework to describe
the vertical structure of phytoplankton biomass, nutrients,
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Fig. 12. Model-predicted profiles of phytoplankton P, chloro-
phyll C, and the chlorophyll : phytoplankton nitrogen ratio F. To
compare the simulated values of the chlorophyll : biomass ratio F
(g Chl mol21 N) with observed ratios, we converted F to g Chl (g
C)21 by dividing by the Redfield ratio C : N 5 106 : 16 and by the
molar weight of carbon (upper axis in right panel).

and chlorophyll. The model includes phytoplankton growth,
respiratory and grazing losses, sinking/rising, vertical mix-
ing, and photoacclimation and allows one to explore which
processes contribute to the generation of vertical maxima.
Elements of our model were present already in the models
of Riley et al. (1949), Steele and Yentsch (1960), and Steele
(1964).

Our model suggests that maxima in phytoplankton bio-
mass exist at the ‘‘general compensation depth,’’ where the
growth rate is balanced by losses due to respiration and graz-
ing and the divergence in sinking velocity, provided that the
vertical diffusivity is small. According to Stokes’ Law, a
divergence in sinking velocity could be introduced by a
change in water density, but density changes at pycnoclines
in natural environments are too small to contribute to the
above balance in a significant way. Changes in settling ve-
locity have been observed as physiological response to var-
iations in environmental conditions, for example, in light or
nutrient levels (Steele and Yentsch 1960; Bienfang et al.
1983; Richardson and Cullen 1995), and the resulting di-
vergence in settling velocity can be large enough to affect
the location of the phytoplankton particle maximum. How-
ever, in stable, oligotrophic environments with a predomi-
nance of small cells, we do not expect a significant contri-
bution from the settling velocity and suggest that, in these
environments, the biomass maximum is located at the depth
where growth and losses compensate. This is a testable hy-
pothesis.

It has been observed that distinct assemblages of phyto-
plankton coexist in a given water column in oligotrophic
systems (Venrick 1982; McIntire et al. 1996; Moore and
Chisholm 1999). Our model suggests a quantitative criterion:
a species occurs in highest abundance in the vertical where
its species-specific growth and loss rates balance. This is
consistent with the findings of Moore and Chisholm (1999),
who have shown that different Prochlorococcus isolates are
photophysiologically adapted to low or high light conditions,

resulting in different relative distributions in the water col-
umn.

Vertical maxima of phytoplankton biomass (in units of
carbon) and chlorophyll are often separated (Steele 1964;
Kiefer et al. 1976; Pak et al. 1988; Kitchen and Zaneveld
1990). We provided additional observational evidence for
the vertical separation of the phytoplankton biomass maxi-
mum and the deep chlorophyll maximum from two oligo-
trophic systems (Sta. ALOHA in the subtropical North Pa-
cific and Sta. 13 in Crater Lake). In both systems during
stable, stratified conditions, phytoplankton biomass is at its
maximum concentration in the nutrient-depleted upper 80 m
of the water column, well above the chlorophyll maximum
located at ;120 m. This separation implies an increase in
the chlorophyll to biomass ratio with depth, which can be
attributed mainly to photoacclimation, although higher nu-
trient concentrations at depth can also play a role.

Results from laboratory experiments (Geider et al. 1987;
Kana and Glibert 1987) and observations from stable, oli-
gotrophic environments (e.g., Kitchen and Zaneveld 1990)
suggest that the response of the algal chlorophyll to carbon
ratio can be predicted reasonably well and is inversely re-
lated to mean irradiance (Steele 1964; Kiefer and Kremer
1981; Geider et al. 1997). The inclusion of the photoaccli-
mation model of Geider et al. (1997) in our model frame-
work predicted a vertical separation of the phytoplankton
biomass and chlorophyll maximum by 50 m, monotonically
increasing chlorophyll concentrations that agree well with
observed profiles, and chlorophyll to carbon ratios in agree-
ment with observed values from the subtropical North Pa-
cific.

Our model simplifies the functioning of the pelagic eco-
system and its temporal and spatial representation, under the
assumption that the system is strictly vertical and in steady
state. We only consider one group of ‘‘average’’ phytoplank-
ton, neglect food-web and microbial loop dynamics (detritus,
dissolved organic matter, and zooplankton are not included
explicitly), and assume the respirative and grazing losses of
phytoplankton to be constant with depth. The vertical swim-
ming of phytoplankton is also neglected (its average effect
can be lumped into the ‘‘eddy’’ diffusivity). Although these
simplifications certainly hinder a quantitative comparison of
model results and observations, they allow the investigation
of how basic processes contribute to the vertical structure of
phytoplankton biomass and chlorophyll in general. The as-
sumption of steady state will be violated during episodic
events of strong physical forcing, nutrient injection, or
blooms. The assumption of strictly vertical fluxes will not
adequately represent coastal environments. Our model also
neglects some feedback mechanisms, like the effect of bio-
mass on light attenuation. Although these are important as-
pects that could be included, their addition is unlikely to
change our conclusions qualitatively.

Chlorophyll is the most widely used index of phytoplank-
ton abundance and productivity in the ocean, mainly because
fluorometry and satellite imagery allow efficient observa-
tions with high spatial and temporal coverage. Direct mea-
surements of organic carbon or organic nitrogen, which are
ecologically more relevant units of phytoplankton biomass
(e.g., Cullen 1982), are much more complicated. Although
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the relationship between the chlorophyll pigment concentra-
tion and phytoplankton carbon content or productivity is
highly variable, it is accepted as a ‘‘pragmatic surrogate’’
(Falkowski and Raven 1997) and is used in models of pri-
mary productivity (Behrenfeld and Falkowski 1997) and for
data assimilation in ecological models (Friedrichs 2002; Nat-
vik and Evensen 2003). The plasticity in cellular chlorophyll
quotas impedes a simple conversion from chlorophyll to bio-
mass and a mechanistic description of these variations, and
their inclusion in primary productivity and ecological mod-
els is needed. We see real potential in using optically derived
measures of particle concentration like beam attenuation. For
example, productivity estimates could be improved using
measures of phytoplankton carbon derived from space and
could be assimilated into ecosystem models to constrain
model parameters.
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