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Uncertainties of inherent optical properties obtained
from semianalytical inversions of ocean color

Peng Wang, Emmanuel S. Boss, and Collin Roesler

We present a method to quantify the uncertainties in the in-water constituent absorption and backscat-
tering coefficients obtained from an inversion of remotely sensed reflectance (rrs). We first find a set of
positive inversion solutions within a given uncertainty range around the values of the inverted rrs. The
uncertainties of the solutions are then computed based on the statistics of these solutions. We demon-
strate the uncertainty calculation algorithm using a specific semianalytic inversion model applied to both
a field and a simulated data set. When the associated uncertainties are taken into account, the inverted
parameters are generally within the uncertainties of the measured (or simulated) parameters, highlight-
ing the success of the inversion and the method to obtain uncertainties. The specific inversion we use,
however, fails to retrieve two spectral parameters within a usable range. The method presented is general
and can be applied to all existing semianalytical inversion algorithms. © 2005 Optical Society of
America

OCIS codes: 010.4450, 280.0280.

1. Introduction

The inherent optical properties (IOPs; the optical
properties that are independent of the ambient light
field1) with appropriate boundary conditions, deter-
mine the Sun-illuminated aquatic light field. IOPs
include the absorption and backscattering coeffi-
cients. The apparent optical properties1 (AOPs) are
connected to the IOPs by the equation of radiative
transfer.1–2 Approximations to the radiative transfer
equation (RTE) indicate that remotely sensed reflec-
tance (rrs, also referred to as ocean color, an AOP, see
notations in Table 3 for symbols and definitions used
in this paper) depends to first order on the absorption
and backscattering coefficients.3–4 One goal in using
ocean color inversions is to obtain the absorption and
backscattering coefficients due to different in-water
constituents by inverting rrs. The three main compo-
nents of IOPs that are currently retrievable are phy-
toplankton absorption, combined absorption of
colored dissolved organic matter (CDOM) and nonal-
gal particles (NAP), and particulate backscattering.

Obtaining these IOPs is of importance as they relate
to standing stocks and rate processes of important
aquatic carbon pools.5–8

Semianalytical ocean-color inversion algorithms9–13

are based on approximate solutions to the RTE (the
analytical part) and assumptions regarding the spec-
tral shapes of IOPs (the empirical part). Unlike purely
empirical algorithms, semianalytical algorithms are
not limited to certain geographical regions or water
type.

Currently, no accepted method exists for quanti-
fying the uncertainties associated with the inver-
sion products of semianalytical models, and their
output has been reported without the associated
error bars. Some general confidence intervals (e.g.,
not associated with each inverted rrs) have been es-
timated on the basis of sensitivity analysis on a sub-
set of the data9,11–12 or the basis of the magnitude of
residuals between the measured spectra and that
constructed from the inverted IOPs.14 Without an
estimate of the uncertainties in inversion products
(e.g., IOPs) it is impossible either to propagate errors
when inversion products are used as inputs into pri-
mary production and carbon models or to assess
whether closure between remotely sensed estimates
of IOPs and in-water IOPs has been achieved. In this
paper we present a procedure to obtain uncertainty
estimates for inverted IOPs obtained by semianalyti-
cal inversions.
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2. Data and Methods

A. Data Sets

1. Simulated Data Set
We demonstrate our approach using a synthetic data
set developed by Z. P. Lee15 as part of the activities of
the International Ocean Color Coordination Group
(IOCCG) Ocean-Color Algorithms coordinating
group.16 This data set contains both spectral IOPs
based on observations and theoretical analysis of field
data and the corresponding rrs derived from the IOPs
in which a radiative transfer model (Hydrolight, Se-
quoia Scientific) for a Sun at 30° zenith angle was
used. In total, there are 500 IOP and rrs spectra in the
synthetic data set that are freely available on the
WWW.17 Wavelengths used for inversion of simu-
lated data vary from 400 to 650 nm with a 10-nm
interval (number of wavelength, m � 26). We assume
the IOPs of the simulated data set to be error free.

2. Field Data Set
The field data set was collected during the summers
of 2000 and 2001 as part of the Hyperspectral Cou-
pled Ocean Dynamics Experiments (HyCODE) field
experiment at the Mid-Atlantic Bight in the vicinity
of the Long-term Ecological Observatory site (LEO-
15) off the coast of New Jersey in water depths of less
than 25 m.18

Radiometric quantities were collected with a Sat-
lantic, Inc. HyperTSRB (Tethered Spectral Radiome-
ter Buoy) that measured upwelling radiance at 0.66 m
below the sea surface, Lu��, 0.66 m�, and down-
welling irradiance just above the sea surface,
Ed��, 0� m� between wavelengths of 400 and 800 nm
at 1-nm resolution. To avoid the chlorophyll fluores-
cence contribution near 680 nm, only rrs between
wavelengths of 412 and 650 nm are used as input for
the inversion preformed in the current paper (num-
ber of wavelengths, m � 239). Here we use a total of
31 independent IOP-rrs match-up stations. A subset
(year 2000) of these data (IOP and rrs) was used in
previous studies.18,19

IOPs were measured with a free-falling slow de-
scent rate optics platform (Slowdrop20). Absorption
by dissolved and particulate materials and back-
scattering data were collected with 2 WETLabs
ac-9s (one ac-9 with a 0.2-�m prefilter, the other
unfiltered) and a HOBILab Hydroscat-6, respec-
tively. Data were collected and processed according to
standard protocols.21 At each station the IOPs were
collected as a series of consecutive vertical profiles.
For match-up IOPs we chose the IOPs profile with
least variability from the surface down to a depth
equal to �absorption��1, from which approximately
90% of the signal emanates.22 For that profile the
difference between maximum and minimum values is
used to quantify the uncertainty in the observed IOP
with the median being the expected value.

We use a simple analytical model for converting the
radiance as measured by a TSRB to water-leaving
radiance.23 Above-surface remote-sensing reflec-

tance, Rrs, is then computed with the following rela-
tion:

Rrs �
Lw(�, 0�)

Ed(�, 0�)
� C(�)

Lw(�, 0.66m)

Ed(�, 0�)
,

C(�) �
t

n2 exp�0.66kL(�)�, (1)

where the diffuse attenuation kL is approximated by
a����cos�s, a��� is the absorption coefficient, n �
1.34 is the index of refraction of seawater, t � 0.98 is
the radiance transmittance across the air–water in-
terface, and �s is the in-water solar zenith angle. We
convert above-surface remote-sensing reflectance
spectra Rrs to below-surface spectra using a relation
from Lee et al.24:

rrs �
Rrs

0.52 � 1.7*Rrs
. (2)

B. Inversion Model

Semianalytical IOP inversion models9–12 are based
on three assumptions.

The relation between rrs and the absorption and
backscattering coefficients is known.

The absorption and backscattering coefficients for
pure seawater are known.

The spectral shapes of the absorption and back-
scattering coefficients for in-water constituents are
known.

These models often vary in their choice of the
rrs–IOPs relation, the assumed spectral shape of the
component IOPs, the wavelength range used in the
inversion, and the specifics of the mathematical
method of inversion. Below is the description of the
specific model used in this paper.

1. Relation between rrs and Inherent Optical
Properties
The relation between rrs��� and the backscattering to
absorption coefficients is approximated by25

rrs(�) �
Lu(�, 0�)

Ed(�, 0�)

� 0.0949
bb(�)

a(�) � bb(�) � 0.0794 � bb(�)
a(�) � bb(�)	2

,

(3)

where Lu��, 0�� and Ed��, 0�� are the upwelling radi-
ance and downwelling irradiance just beneath the
sea surface. The quadratic term is significant
(�4%) when bb��a � bb� � 0.2, for example, in ex-
tremely turbid waters in green wavelengths.
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2. Assumed Spectral Shapes of the Constituent
Inherent Optical Properties
The total absorption coefficient is partitioned as fol-
lows:

a(�) � asw(�) � aph(�) � aCDOM�NAP(�), (4)

where the subscripts sw, ph, and CDOM � NAP
designate seawater, phytoplankton and the combined
contribution of CDOM and NAP. CDOM and NAP
absorption is not separated owing to the similarities
in their spectral shapes.9,12 The spectral absorption
coefficient asw��� for seawater is computed for a given
salinity and temperature.26,27

The spectral absorption coefficient of phytoplank-
ton, aph���, is parameterized as a function of a size
parameter describing the relative contributions of
two spectral shapes associated with picophytoplank-
ton and microphytoplankton28:

aph(�) � aph(�0)[Sf apico(�) � (1 � Sf)amicro(�)], (5)

where apico��� and amicro��� are the shapes correspond-
ing to the normalized absorption spectral for the
smallest and largest cells (values provided in Ciotti et
al.28), �0 is the reference wavelength, and the size
parameter Sf varies between zero and one. We chose
this parameterization of aph based on the success of
Ciotti et al.28 in fitting spectra of aph measured in a
wide range of natural waters.

The spectral dependence of the combined absorp-
tion by CDOM and NAP is assumed to be

aCDOM�NAP(�) � aCDOM�NAP(�0)exp��S(� � �0)�, (6)

where S is the combined CDOM and NAP spectral
slope. This function has been found to be an adequate
representation of observed CDOM and NAP29,30 with
S ranging between 0.008 and 0.023.

The total backscattering coefficient, bb���, is ap-
proximated by

bb(�) � bbsw(�) � bbp(�), (7)

where the subscripts sw and p represent water and
particulate backscattering, respectively. The spectral
backscattering coefficient bbsw��� for seawater is com-
puted for a given salinity.31–32

The spectral particle backscattering coefficient is
assumed to obey

bbp(�) � bbp(�0)(���0)
�Y, (8)

consistent with many previous studies,9–12 though
without in-water validation.33,34

To account for variability in space and time of the
spectral shapes of the IOP we perform the rrs inver-
sion allowing the shape parameters (Sf for phyto-
plankton absorption, spectral slope S for the
combined absorption by CDOM and NAP and spec-

tral slope Y for the particulate backscattering) to vary
within most of their observed range of variability (0
� Sf � 1, 0.01 � S � 0.02, 0 � Y � 2). For each
parameter we use 11 different values with equal in-
tervals between their maximum and minimum, re-
sulting in 113 � 1331 different inversion
computations for each rrs spanning all the possible
combinations of the shape parameters.

3. Inversion Technique
Following Hoge and Lyon,11 we define

X 

bb

a � bb
→ a � bb�1 �

1
X	� 0, (9)

where X is computed as the one positive quadratic
solution of Eq. (3). Denoting v 
 1 � 1�X and sepa-
rating the known seawater IOP, we obtain an equa-
tion for the unknown IOPs at each wavelength �i,
where i � 1, . . .m (m is the number of wavelengths):

aph(�i) � aCDOM�NAP(�i) � bbp(�i)v(�i) � ��asw(�i)
� bbsw(�i)v(�i)�. (10)

With the known right-hand side (RHS) denoted as
h��i� 
 ��asw��i� � bbsw��i�v��i��, Eq. (10) becomes

aph(�i) � aCDOM�NAP(�i) � bbp(�i)v(�i) � h(�i). (11)

Equation (11) contains three unknowns for each spec-
tral radiance measurement. The substitution of Eqs.
(5)–(7) into (11) yields

aph(�0)[Sfapico(�i) � (1 � Sf)amicro(�i)]
� aCDOM�NAP(�0)exp��S(�i � �0)�

� v(�i)bbp(�0)(�i��0)
�Y � h(�i). (12)

Equation (12) contains six unknowns for each wave-
length; three amplitudes aph��0�, aCDOM�NAP��0�, bbp��0�
and three spectral shape parameters: Sf, S, and Y
(which are not solved for but assumed for each inver-
sion). For each choice of the spectral shape parame-
ters we solve Eq. (12) by matrix inversion to obtain
aph��0�, aCDOM�NAP��0�, and bbp��0�. A basic difference
between our method compared with that of Hoge and
Lyon’s11 is that in the current study we solve Eq. (12)
using more wavelengths than unknowns. This makes
Eq. (12) an overconstrained system for which the so-
lution is the best solution in a least-squares sense.35

C. Criteria for Selection of Acceptable Solutions

For each measured rrs, Eq. (12) is solved with a dif-
ferent combination of Sf, S, and Y, resulting in 1331
solutions. We select acceptable solutions by one, re-
quiring that the values of all the amplitudes be pos-
itive or zero, and two, requiring that the difference
between the rrs constructed from the solution and the
rrs measured is constrained. Here we chose this con-
straint to be that the relative difference is less than
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10% at all wavelengths. This constraint is based on
an analysis of the following uncertainties:

Uncertainties in the measured rrs due to instru-
mental drift. All radiometers were field-calibrated at
least every 3 days against a stable light source. The
drifts in the measured radiometric quantities were
found to be less than 3% for both the irradiance and
the radiance sensors.18

Uncertainties caused by the assumed relation be-
tween rrs and IOPs [Eq. (3)]. To evaluate this uncer-
tainty, we input the locally measured IOPs into Eq.
(3) and compared with the measured (or Hydrolight
derived) rrs for the field and simulated data set, re-
spectively. The median relative difference for the
simulated data set varies from 2.66% to 9.98% at all
the wavelengths with the difference increasing from
blue to red and is less than 8% for all the IOP bands
measured in situ (not shown).

Uncertainties caused by the assumed shape of
IOPs. To assess the uncertainties caused by the cho-
sen IOP shapes, we calculate how well the assumed
spectral shape fit the input data. The uncertainty of
a given IOP shape is quantified by a cost function:

	 �
1
N��

i�1

N �input � fit
input 	21�2

. (13)

We find that for 75% of the aCDOM�NAP and all the bbp
data, 	 
 0.01. For aph, only 3% of the data has 	

 0.01. However, for 98.2% of aph and 100% of
aCDOM�NAP and bbp, 	 
 0.1. The median value of the
relative difference between fit and observed or as-
sumed bbp and aCDOM�NAP in all wavelengths is less
than 4% , whereas it varies from 3% to 20.7% for aph.
The largest relative differences in aph are in the red
part of the spectra (� � 570 nm), where the signal is
smallest.

On the basis of the above discussion we choose a
criterion for acceptance of an inversion solution if the

reconstructed rrs from the inverted IOPs was within
10% of the measured rrs at all wavelengths (see Fig. 2
for a schematic of the algorithm) and had positive
IOP amplitudes. Each acceptable solution has a
corresponding set of IOP amplitudes [ap]h��0�,
aCDOM�NAP��0�, bbp��0�] and spectral shape parameters
(S, Sf, Y). An example of a family of solutions is pro-
vided in Fig. 1. For the hundreds of solutions that are
within the acceptance criterion, we calculate the me-
dian and the 5 and 95 percentiles of the amplitude
and shape parameters to provide an estimate of the
most likely solution, and to quantify the uncertainty
of this solution (see Fig. 3 for an example of a histo-
gram of amplitude distribution for all acceptable so-
lutions). We refer to the 90% confidence interval as
the interval separating the 5 and 95 percentiles (Ta-
ble 1). In a few cases (4% of the simulated data set
and 11% for the in situ data set) no solution was
found that was within the chosen acceptance crite-
rion, which means that no solution was found for
which the reconstructed rrs was within 10% of the
input rrs at all wavelengths or that the solution found
has negative IOP amplitudes. Such cases may occur
owing to larger errors resulting from errors in the
input rrs, in our inversion model (IOPs–rrs relation
and/or IOP shapes), or in both. These cases are not
discussed further.

3. Results and Discussion

To compare with other published inversion algo-
rithms and for the sake of brevity, we primarily dis-
cuss the inversion results at 410, 440, and 490 nm for
absorption and 550 nm for backscattering (555 nm
for the in situ data set). We denote by ap�CDOM the
sum of particulate and dissolved absorptions, aph
� aNAP�CDOM. We refer to the outputs of the inversion
model as ’inverted’ even when obtaining the shape
factors (Sf, S, and Y) that are assumed in the inver-
sion. We provide a wide range of realistic values for
these parameters and provide the statistics of these
parameters from all possible solutions, a procedure
similar to inversions in which the output is con-
strained.

A. Simulated Data Set

Comparing the optical properties between those de-
rived from the inversion and those used to compute rrs
suggests that the inversion scheme is successful (Fig.
4). Both the high linear correlations and the low me-
dian relative and absolute difference show that the
inverted apg�410, 440, 490� and bbp�550� match their
input values well (Table 2). For example, for the en-
tire data set �0.01 
 ap�CDOM�440� 
 3.17 m�1�, the
correlation coefficient for ap�CDOM�440� is 0.99, and
the median relative and absolute differences are
7.75% and 0.014 m�1, respectively. The correlation
coefficient is 0.99 for bbp�550�, 0.99 for aNAP�CDOM�440�,
0.94 for aph�440�. Absorptions by phytoplankton and
by CDOM and NAP are well retrieved. The median of
the relative difference is 20% and 14% higher com-

Fig. 1. Comparison of a measured rrs (7�23�2001, bold curve) with
the median values of all the inversion solutions (526) for which the
reconstructed rrs is within 10% of the measured rrs at all wave-
lengths (thin line) and the 5th and 95th percentiles of those solu-
tions (dotted curves).
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pared with their total combined absorption. This is
likely because both have spectral shapes that gener-
ally decrease from blue to red and thus are hard to
separate.

The total absorption at 440 nm is found with fewer
than 18% of the point outside the 90% confidence
intervals, 43% for backscattering, 10% for absorption
by dissolved materials, and 20% for absorption by
phytoplankton. The percentage of input values cov-
ered by the uncertainty range is high except for the
backscattering coefficients (Table 2).

The relative difference among the inverted
aCDOM�NAP, aph, and bbp and their input values at all
wavelengths were also calculated (not shown). The
inverted aCDOM�NAP and aph values fit their input val-
ues better in the blue wavelengths; the aCDOM�NAP
percentage of the relative difference smaller than 10
is nearly 40% from 400 to 550 nm, and nearly 30% for
aph from 400 to 490 nm. That percentage decreases
with increasing wavelengths (7.5% for aCDOM�NAP and

7.9% for aph at 650 nm) as signals decrease. For bbp,
the inverted results fit best in the middle wavelength
at 490–530 nm (more than 75% have a relative dif-
ference less than 10%).

Relative magnitude of uncertainties in absorption
by phytoplankton and by CDOM�NAP and backscat-
tering by particles is relatively uniform as a function
of amplitude (Fig. 4), suggesting that the algorithm
used here can be used with the same degree of success
within waters of high chlorophyll, CDOM, or both as
well as in relatively clear waters.

Comparison of spectral shape parameters suggest
that they are harder to invert than the amplitudes,
in particular because of their limited dynamic
range. Both medians of the inverted S and Y values
are overestimated [Figs. 5(a) and 5(b)]. The corre-
lation coefficients are high especially given the low
dynamic range of these parameters (r � 0.8 for S
and r � 0.9 for Y; the median of the relative differ-
ence for S and Y is 0.17 and 0.37, respectively).

Fig. 2. Schematic flow chart of the inversion scheme and determination of the uncertainty in the inverted parameters.
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Inversion uncertainties are high, indicating the in-
ability to obtain these shape parameters with high
certainty.

For the phytoplankton absorption, we attempt to
correlate the size factor (Sf) with the blue�red ratio
of phytoplankton absorption, since size and pigment
packaging are correlated.36,37 The correlation be-
tween the size factor (Sf) for phytoplankton and the

ratio of aph at 440 to 680 nm [Fig. 5(c)] is low (r
� 0.18), indicating that the attempt to relate the
phytoplankton size factor with the blue-to-red
phytoplankton absorption ratio is not successful.
Given that the input aph was not well represented by
the model aph (see Subsection 2.C) it may not be
surprising that the spectral shape is not retrieved
well.

Table 1. Comparison between the Inverted and the Input IOP Values of the Simulated Data Set

Compared
Quantity

Dynamic Range
(m�1)

Median
Relative

Difference
(%)

95%
Relative

Difference
(%)

Median
Absolute

Difference
(m�1)

95%
Absolute

Difference
(m�1) R

Percentage of
the Data Inside
90% Confidence

Interval

ap�CDOM�410� 0.0095 � 4.53 8.95 37.9 0.0194 0.671 0.988 82.9
ap�CDOM�440� 0.0095 � 3.17 7.75 30.9 0.0138 0.438 0.989 83.1
ap�CDOM�490� 0.0051 � 1.92 6.78 21.8 0.0047 0.157 0.992 85.8
bbp�550� 0.00052 � 0.13 7.55 15.9 0.0006 0.0082 0.993 56.8
aph�410� 0.0034 � 0.42 20.5 63.4 0.0068 0.0977 0.911 84.8
aph�440� 0.0056 � 0.42 19.8 61.2 0.0092 0.134 0.937 80.6
aph�490� 0.0031 � 0.32 22.1 66.4 0.0064 0.0829 0.946 87.7
aCDOM�NAP�410� 0.0060 � 4.17 14.5 43.9 0.0218 0.628 0.988 81.8
aCDOM�NAP�440� 0.0039 � 2.75 14.4 40.1 0.0119 0.330 0.99 90.0
aCDOM�NAP�490� 0.0012 � 1.63 14.7 61.1 0.0077 0.0939 0.991 89.1

Fig. 3. Histograms of (a) the inverted total absorption coefficient (ap�CDOM � aph � aCDOM�NAP) at 440 nm , (b) the particulate backscattering
coefficient (bbp) at 555 nm, (c) the phytoplankton absorption coefficient (aph ) at 440 nm , (d) the CDOM and NAP absorption coefficient
(aCDOM�NAP) at 440 nm for the rrs presented in Fig. 1.
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B. Field Data

Comparison of retrieved optical properties with
those measured in situ at 410, 440, and 490 nm
indicate good agreement (Fig. 6). Over the entire
data set �0.049 
 ap�CDOM�440� 
 0.828 m�1, 0.001

 bbp�555� 
 0.0343 m�1�, the correlation coefficient
for ap�CDOM�440� is r � 0.94 and the median relative
and absolute differences are 12% and 0.0488 m�1,
respectively. The correlation coefficient of bbp�555� is
0.98, and the median relative and absolute differ-
ences are 23% and 0.0026 m�1, respectively. Note
that measured IOPs are not error free (indicated by
horizontal lines in Fig. 6). The particulate and dis-
solved absorption coefficient (ap�CDOM) at 440 nm is

found with less than 15% of the point outside the 90%
confidence interval, 65% for backscattering coeffi-
cient (bbp) at 555 nm (Fig. 6).

In the in situ data set, the combined absorption by
CDOM and NAP is unavailable. Only CDOM absorp-
tion was measured, so we compare aCDOM�NAP with
aCDOM [Fig. 6(c)]. The linear correlation coefficient for
aCDOM�NAP�440� and aCDOM�440� is r � 0.86, and the
median relative and absolute differences are 18% and
0.0368 m�1, respectively. Absorption by CDOM and
NAP at 440 nm is found with less than 7% of the
points outside the 90% confidence interval. Not sur-
prisingly, 73% of inverted aCDOM�NAP values (averaged
over the three wavelengths) are higher than the mea-

Table 2. Comparison between the Inverted and the Input IOP Values of the In Situ Data Set

Compared
Quantity Inversion/

Observation
Dynamic

Range (m�1)

Median
Relative

Difference
(%)

95%
Relative

Difference
(%)

Median
Absolute

Difference
(m�1)

95%
Absolute

Difference
(m�1) R

Percentage of
the Point Inside
90% Confidence

Interval

ap�CDOM�412� 0.047 � 1.01 13.3 32.8 0.0725 0.266 0.909 85
ap�CDOM�440� 0.049 � 0.83 11.7 27.9 0.0488 0.175 0.942 87.5
ap�CDOM�488� 0.025 � 0.49 13.1 27.6 0.0347 0.107 0.958 80
bbp�555� 0.001 � 0.034 22.8 36.6 0.0026 0.0085 0.975 35.5
aph�676� 0.0041 � 0.15 14.7 145 0.0124 0.0478 0.901 87.1
adg�412��ag�412� 0.029 � 0.42 17.6 55.3 0.0573 0.208 0.934 90.3
adg�440��ag�440� 0.023 � 0.42 17.8 48.2 0.0368 0.133 0.855 93.5
adg�488��ag�488� 0.0095 � 0.14 27.9 63.4 0.0204 0.786 0.923 93.5

Fig. 4. Comparison of the inverted values of (a) ap�CDOM�440�, (b) bbp�550� , (c) aph�440�, (d) aCDOM�NAP�440� relative to the input values (x
axis) for the simulated data set. Dots denote the median inverted values, whereas the lines denote the 90% confidence interval.
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Table 3. Notation

Variable Unitsa Definition

a m�1 Total absorption coefficient: asw � ap�CDOM

asw m�1 Ocean water absorption coefficient
ap�CDOM m�1 Particulate (phytoplankton� NAP) and CDOM absorption coefficient
aCDOM�NAP m�1 CDOM � NAP absorption coefficient
aph m�1 Phytoplankton pigments absorption coefficient
bb m�1 Total backscattering coefficient: bbsw � bbp

bbsw m�1 Ocean water backscattering coefficient
bbp m�1 Particulate backscattering
S nm�1 Combined CDOM and NAP spectral slope
Sf Phytoplankton size parameter
Y Particulate backscattering spectral slope
apico m2mg�1 Phytoplankton absorption spectral shapes for the smallest cells
amicro m2mg�1 Phytoplankton absorption spectral shapes for the largest cells
Rrs sr�1 Above-surface remote-sensing reflectance spectra
rrs sr�1 Below-surface remote-sensing reflectance spectra
Lu�0��0.66� Wm�2sr�1 Upwelling radiance just beneath or at 66 cm below the sea surface
Ed�0���� Wm�2 Downwelling irradiance just below or just above the sea surface.
t Radiance transmittance of the surface
n Real index of refraction of water
�s Polar direction of the Sun’s refracted beam in water

*Blank entries denote dimensionless quantities.

Fig. 5. Comparison (a) between the directly calculated and the inverted spectral slope of CDOM�NAP(S), (b) of the spectral slope of
particle backscattering, (c) between the size parameter (Sf) for phytoplankton and the ratio of aph at 440 to 680 nm of the input
phytoplankton spectrum. Dots denote the median inverted values, whereas the lines denote the 90% confidence interval in the inverted
parameters (based on the statistics of all acceptable solutions).
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sured aCDOM values, as the in situ measurement does
not include absorption by NAP.

The field data set does not contain phytoplankton
absorption. We compute the phytoplankton absorp-
tion at 676 nm from the phytoplankton absorption
line height at 676 nm38:

aph(676) � ap�CDOM(676) � 0.6ap�CDOM(650). (14)

This procedure is designed to remove the contribu-
tion of NAP�CDOM absorption from ap�CDOM�676�.

The linear correlation of aph�676� is high; R � 0.9,
and the median relative and absolute difference are
15% and 0.0124 m�1, respectively [(Fig. 6(d)]. Absorp-
tion by phytoplankton at 676 nm is found with less
than 13% of the points outside the 90% confidence
interval.

Because we did not have information on the size of
the underlying phytoplankton during the field mea-
surements, we attempted to correlate the phyto-
plankton size factor Sf with the slope of the
particulate beam attenuation for the in situ data. The
slope of particulate beam attenuation was found to
correlate with the particle size distribution.39 The low

linear correlation (R � 0.08) indicate that the rela-
tion between the size factor for phytoplankton and
the slope of the particulate beam attenuation is not
significant.

Comparison of the inverted spectral slope of
CDOM�NAP (S) and particulate backscattering (Y)
with the calculated values for the measured spectra
yield R � 0.2 for S and R � 0.09 for Y with large
inversion uncertainties. Thus, while the amplitudes
of the IOPs are retrieved well and within the com-
puted uncertainties, the spectral shape parameters
are not retrieved within a useful range (Fig. 7).

4. Conclusions

A novel method to provide uncertainties in inverted
parameters obtained from remotely sensed reflec-
tance data was developed. This method was applied
to a specific semianalytical inversion scheme to re-
trieve the particulate backscattering coefficients and
the absorption coefficients of phytoplankton pig-
ments and CDOM and NAP, as well as the uncer-
tainties in the inverted parameters. This approach to
compute uncertainties is general and can be adapted
to all current semiempirical inversion schemes. Such

Fig. 6. Comparison for the in situ data set between (a) the inverted ap�CDOM�440� versus ac–9 measured, ap�CDOM�440�, (b) the inverted
bbp�555� versus HS6-measured bbp�555�, (c) the inverted aph�676� versus aph�676� derived from ac-9 measurements, (d) the inverted
aCDOM�NAP�440� versus ac-9-measured aCDOM�440�. Dots denote the median values, whereas the vertical lines denote the 90% confidence
interval in the inverted parameters. Horizontal lines denote the distance between maximum and minimum values of the in situ measured
parameters (when larger than the size of the dot).
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adaptation will require a discretization of all shape
factors so that a linear system can be solved as pre-
sented above.

To test the performance of the algorithm, we ap-
plied it to both a simulated and a field data set of
hyperspectral remotely sensed reflectance (rrs). The
low median absolute differences of inverted IOPs and
high linear correlation with input or measured IOPs
suggest that the specific scheme used here can ex-
tract the absorption and backscattering from rrs suc-
cessfully in both the simulated and the field data sets.

We concentrated on quantifying uncertainties in
the retrieved IOPs because of uncertainties in the
values of the radiance measurement, uncertainties in
the spectral shape of IOPs and uncertainties in the
relation between the rrs and the IOPs. Using both a
field and simulated data set, we found that the spe-
cific inversion scheme to quantify uncertainties
works well: at least 80% of the absorption amplitudes
were within the 90% confidence intervals. Separating
the component of absorption we find that more of the
measurements (or inputs) are outside the uncer-
tainty bound.

The percentage of the backscattering coefficient
within the 90% confidence interval was significantly

lower (�50%) compared with the absorption coeffi-
cients. This lower percentage may be because back-
scattering is not necessarily well described by a
power law as a function of wavelength, in particular
in waters dominated by phytoplankton.33,40

Little is known about natural variability of the
backscattering spectral slope, Y.33,34 Comparisons be-
tween the inverted and the directly calculated spec-
tral slopes of particle backscattering (Y) based on the
simulated data set suggest that the inversion algo-
rithm can provide a reliable Y prediction. The com-
parison of spectral slopes for the field data, however,
does not work well, as predicted uncertainties are too
large to be of practical use.

Attempts to link a size factor (Sf) for phytoplankton
to a measure of pigment packaging [aph�676��
aph�440�] or the spectral slope of the particulate beam
attenuation were not successful. Inversion uncertain-
ties are large and correlations with related parame-
ters from both simulated and in situ data are weak.
This failure may be due to our choice of a model for aph
[Eq. 5] not matching well the underlying phytoplank-
ton absorption and the sensitivity of Sf to the uncer-
tainties in our inversion input and procedure, as
highlighted by the large uncertainties. For the in situ

Fig. 7. (a) Comparison between the inverted spectral slope of CDOM and NAP and the calculated spectral slop of CDOM measured with
the ac-9. (b) Comparison between the inverted spectral slope of particulate backscattering and the calculated spectral slope of particulate
backscattering (Y) based on measurements with the HS-6. (c) Comparison between the phytoplankton size factor Sf and the slope of the
particulate beam attenuation for the in situ data. Uncertainties in measured spectral slopes were less than 0.002 for S, 0.1 for Y, and 0.1
for the slope of cp. Dots denote the median values, whereas the lines denote the 90% confidence interval.
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data set, the lack of correlation with the spectrum of
particulate attenuation may be an indication that
phytoplankton did not dominate attenuation in these
data (though other evidence, namely, the value of the
particulate backscattering ratio,41 suggests they did).

Possible improvements of the specific inversion
scheme used here may be the use of a library of
phytoplankton absorption rather than an analytical
expression,40 addition of wavelengths in the infrared
to better constrain bbp,42 and inclusion of inelastic
scattering effects on rrs.43

The scheme to obtain the uncertainties presented
here relies on solving a linear problem approximately
1000 times for each rrs spectra. Given advances in
linear computation techniques, this should not pose a
problem for applications with large data sets. It could
also be used, for example, on a subset of a satellite
image to provide estimates of the uncertainties while
taking into account the known spatial decorrelation
scales. In addition, the linear scheme used here al-
ways finds the one best solution (in a linear least-
squares sense35), which is not guaranteed with
nonlinear inversion schemes used currently in most
semianalytical models.9,10,12,44 In the nonlinear inver-
sion case there is no guarantee of finding the global
minimum in the search for a solution, but rather the
local minimum near a given initial guess.35 This local
minimum may be the global minimum sought, yet
there is no guarantee that it is.

The minimum number of required wavelengths is
three, given the nature of the linear problem we are
solving (solving for three amplitudes when three
shape parameters are assumed). Additional wave-
lengths provide additional constraints, reducing the
uncertainties on both amplitudes and spectral
shapes. It should therefore be possible to use the
approach outlined here with current multispectral
ocean color satellites. In that case, uncertainties in rrs
due to atmospheric correction should be added to the
uncertainty budgets.
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and an anonymous reviewer for their thoughtful and
helpful reviews of an earlier version of this
manuscript.
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