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Radiometric dating is a common technique used to estimate the age of sediment and ice

core samples. Lead-210 is widely used for dating sediment samples less than 150 years old.

The two most commonly used lead-210 dating techniques rely on the assumption that the

amount of lead-210 that is deposited in lake beds and other waterways remains constant

over time. However, this assumption may not always be physically realistic, and if the rate

is not constant, then age estimates derived using the constant rate assumption may not be

accurate.

A new dating technique allowing for non-constant lead-210 supply rates (the NCRS

model) was developed. It was implemented on 34 di�erent sediment samples. Of these

samples, 10 exhibited apparent sinusoidal �uctuations. Discrepancies in age estimates

between models were most pronounced for the upper sediment layers. For the data sets

which varied sinusoidally, the period was also computed and analyzed.



PREFACE

If my physics journey were a mathematical function, it would be the cosine. My foray into

this discipline began auspiciously enough, with a course in calculus-based Advanced

Placement (AP) Physics at Bangor High School, taught by Dr. Simon Wesley. The subject

matter was challenging; I remember scoring in the 50s on my �rst try at a kinematics test.

However, my instructor's enthusiasm for the subject was contagious. Through his lectures,

I saw something beautiful hidden behind the complexity, something exciting, and I

grabbled through the material, taking in what �eeting glances I could garner of that

elegance. By the end of the spring semester, I was determined to major in the discipline

when I started college the following fall.

I ended up earning my Bachelor's in Mathematics and Women's Studies1 instead, with

a minor in Physics, as well as one in Ethics and Social and Political Philosophy. There are

many factors that in�uenced my departure from the physics major, some unique and

personal, while others perhaps more common among those who leave physics. After

earning my Master's in Mathematics, I returned to physics to pursue my Ph.D. My

primary reason for choosing physics was that I wanted to remain close to home and the

University of Maine did not o�er a Ph.D. in any of the other disciplines I had studied. My

retention is thus a �uke in many ways, the con�uence of an atypical set of circumstances.

The journey to my Ph.D. involved countless tears, hours of listening to Kesha's

�Praying� on repeat, and many tough decisions. However, I am immensely grateful that I

was a�orded this opportunity to advance science and human knowledge, and also to better

understand myself. I am a small person, physically weak, and grapple with chronic anxiety

which can be incredibly limiting, physically as well as mentally. However, I was blessed

1The precursor to the Women's, Gender, and Sexuality Studies program.
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with my father's work ethic, and this journey has shown me that I am stronger and more

determined that I had thought possible.

While I persisted, many others, particularly students from marginalized backgrounds,

have not. I want to speak brie�y on this subject, as it is dear to my heart. We, and here I

mean society as a whole, as well as members of the physics community, like to view physics

as objective and free of bias. However, what we study in physics, what we choose to

consider physics, and who counts as a physicist are decisions made by humans who are

inherently subjective. It matters who is doing physics.

Astrophysicist Jocelyn Bell Burnell credits her di�erence both in terms of her gender as

well as the geographical location she grew up in as a contributing factor in her discovery of

pulsars. Coming from outside the mainstream physics tradition, she was willing to

investigate anomalies in radio telescope data which other scientists may have neglected.

Making physics an inclusive space is not merely a nice thing to do; it will make for better

science.

Di�erence made this document possible, although the ways in which it shaped my

dissertation are subtle, if not indistinguishable. The most obvious di�erence that comes

into play here is my mathematical training; the required math which was o� putting to

previous graduate students is what drew me in. Di�erences in disciplinary background may

seem untethered to identity facets like gender or social class, but I have always experienced

the sciences as a woman from a working class background, and my appreciation for math is

inevitably intertwined with my experiences as a woman studying math. I have often felt �at

home� in math, whereas in physics it took years of metaphorical couch sur�ng before I

managed to build a place of my own. While not solely due to gender, I think my gender

had its hand in making one discipline seem inviting and the other foreboding.

I want to acknowledge that most of the individuals I have met along my physics journey

have been kind, many supportive, and there are but few examples I can point to as

instances which have actively thwarted my interest in physics. I am also slower to
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comprehend physics than I am math, and my comparative underperformance in physics

has not been kind to a self which is already full of doubt. However, there is something

about physics as a discipline, what I can describe best as a cultural di�erence, this feeling

of je ne sais quoi, which permeates seemingly every facet. Each time I breathe in, it is

there, not enough to su�ocate, but its prevalence irritates my lungs. These days it is but a

minor nuisance, but there have been times when it was all I could feel.

I am not the only person who has struggled to �nd a place in physics. Women, black

and indigenous students, and working class students, among others, are vastly

underrepresented in this discipline. In my discipline. The percentages of individuals from

marginalized backgrounds receiving physics degrees has remained stagnant for years, even

as the shares in other STEM �elds like mathematics and chemistry have grown.

The question of how to make physics more inclusive is one that I regularly grapple

with. I don't have all the answers, but I do know that ignoring this question because it is

challenging will not make the situation better. We owe it to our students and to our �eld

to foster a learning environment in which individuals from a multiplicity of backgrounds

feel welcome.

My primary aim in writing this preface is to provide a sense of who the author of this

document is.2 However, in re�ecting on my trajectory, I see all of the places along my

path where I left or nearly left physics, and think of the others who have stood at that

same juncture and found it too much, and my heart breaks. While a minority in physics

due to my gender and, to a lesser extent, my socioeconomic status growing up, I still

bene�t from many privileges which have made my success possible, privileges that not

everyone studying physics has. I felt like this document would be incomplete without some

acknowledgment of the fact that not everyone is able to experience physics in the same

way. Although I struggled to reach this point, my struggles likely pale in comparison to

2If your takeaway is that I am an anxious mess of a woman with low self esteem, you are not wrong.
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what other marginalized students have had to overcome. Anything we can do to make

physics more accessible will give us a step in the right direction.

I doubt this preface will be read by more than a handful of individuals,3 but if you

happen to be someone who is struggling in physics, I want you to know that you are

enough. The �eld may feel rigid and con�ning at times, but it can grow and expand to �t

you. You don't have to stick with physics; I don't want to force you to stay somewhere

you're not happy. But if you're feeling insecure, know that my insecure self has just earned

a Ph.D. in physics. Your insecure self can do incredible things too.

Amber Hathaway

April 28, 2020

3Hi committee!
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CHAPTER 1

A BRIEF HISTORY OF RADIOMETRIC DATING

Current radiometric dating techniques are often implemented with the assumption that

the amount of a radioisotope deposited annually remains roughly constant over time.

However, there is evidence (e.g., [1]) to suggest that the concentration of certain

radioisotopes may �uctuate. The goal of this research is to develop a radiometric dating

technique that does not rely on the assumption that the rate of supply of a radioisotope

remains constant.

Before this new technique can be introduced, it may be useful to have an understanding

of the history of radiometric dating, as well as current dating techniques. A brief history of

radiometric dating will be outlined in this chapter, while current dating techniques will be

discussed in the following chapter.

1.1 The Discovery of Radiation

The existence of radioactivity as a distinct physical phenomenon was �rst demonstrated

by Henri Becquerel (1852-1908) in 1896 [2]. His work was inspired by a 1895 discovery

made by Wilhelm Conrad Röntgen (1845-1923), in which Röntgen demonstrated the

existence of x rays [3, 4]. Röntgen was studying the �uorescence of cathode ray tubes. He

noticed that a line appeared on a coated cardboard screen lying near his apparatus when

he ran a current through the apparatus. He had shielded the tube in such a way that no

visible light could pass through, so he could not attribute the �uorescence to escaped light.

Subsequent experiments showed that the rays, for example, could not be polarized or

separated with a prism, further suggesting that he had happened upon a new type of

electromagnetic radiation.

Röntgen placed various objects such as wood and thin sheets of metal in front of the

newfound �uorescence and found that it passed through many, although the thicker and
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denser an object was, the harder it was for the radiation to pass through. Lead, he found,

was almost impenetrable, and thus made a good shield against these new rays. Röntgen

chose the name �x ray� for his discovery because the odd behavior of these rays was unlike

anything else known to science at the time.

What x rays have become most well known for is the ability to image the human skeletal

system without cutting the �esh. Röntgen discovered this ability while experimenting on

himself, observing that when he placed his hand between the device and a screen, a

silhouette of his hand bones appeared on the screen [5]. After conducting his experiments

in secret for weeks, he told his wife Anna Bertha (Ludwig) Röntgen (1839-1919) [4] of his

discovery on December 22nd, 1895 and took an x-ray photograph of her hand. Upon seeing

the bones of her hand, she is reported to have said, �I have seen my death!� [5].

Not long after entrusting Bertha with the news of his discovery, Wilhelm Röntgen

decided to publish his work. The �rst print of his manuscript appeared in the

Sitzungsberichte of the �Physikalisch-Medizinische Gesellschaft� (session reports of the

Würzburg Medical Society) on December 28, 1895 [5, 4]. Soon translations and reprints

began appearing in publications all across the world (see, e.g., [6]). While the initial

publication contained only a written account of Röntgen's discovery, subsequent prints

often included a copy of the image Wilhelm had taken of Bertha's hand [5]. This image

became the �rst published medical x-ray photograph [4].

After the discovery of x rays, researchers began investigating whether sources of

�uorescence other than the cathode ray tube could produce x rays [3]. Henri Becquerel

began experimenting with a uranium salt. He placed the salt on a photographic plate

which he had covered in black paper to block out visible light and found that the plate had

blackened in the spot upon which he had placed the salt. He extrapolated from his

experiment that the rays came from the source of �uorescence, the uranium salt. There

remained the question as to whether the uranium salt somehow garnered its abilities from

illumination by the sun. In subsequent experiments, he found that regardless of whether he

2



Figure 1.1. X-ray image of Anna Bertha Röntgen's hand and ring.
Photoprint from radiograph by W. K. Röntgen, 1895. Credit: Wellcome Collection. CC

BY
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had exposed the salt to sunlight, the salt still blackened the photographic plate, suggesting

that the salt itself was creating the rays.

Marie Skªodowska Curie (1867-1934), who would end up coining the term

�radioactivity,� took interest in Becquerel's discovery and chose it as the subject of her

doctoral work [3]. She wanted to test all known elements and compounds, some of which

were rare and hard to obtain, to see which ones gave o� this mysterious radiation. Röntgen

and Becquerel had both shown that the rays they observed caused the air to become

electrically conducive. Curie used an electrometer with a piezoelectric crystal that her

husband Pierre had built and modi�ed to suit her work to determine which elements

exhibited this property and found that in addition to uranium, thorium also emitted

radiation.

Marie Curie also observed that when testing pitchblende, an ore from which the

uranium had been removed, it gave o� more radiation than uranium itself. Similarly, she

found that calcite was more active than pure thorium [7]. Thus, she hypothesized that

there was some yet unknown element in the uranium ore that was also emitting radiation.

She also discovered that radiation was a property of an element itself, as the radioactivity

remained unchanged when a sample was, for example, heated or exposed to light. She wrote

up her �ndings, using the name radioactivity for the phenomenon she had investigated.

Her results were presented on her behalf at the Academy of Sciences in April of 1898.

It was at this point that Pierre joined her in her studies, and together they worked to

discover the properties of the unknown element. The Curies chemically separated

pitchblende and by 1898 had found evidence of a metal which they believed to be similar to

bismuth. They called it polonium, after Marie's homeland, Poland. However,

demonstrating its existence proved di�cult, as traditional spectral analysis techniques

failed to show anything new, since there was too little polonium in the samples to be

observed through this technique. Later that year they found evidence of a radioactive

substance di�erent from polonium, which they called radium. A chemist colleague,
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Eugène-Anatole Demarçay (1852-1903), was able to demonstrate a unique spectral line for

radium [7]. While this evidence was enough to convince many physicists that radium was

in fact a distinct element, chemists required a measurable quantity of the substance.

Marie thus set out to isolate radium [7]. She proposed using slag, minerals residual

after extracting the uranium from pitchblende in the production of uranium. It was from

this slag that, over the course of several years, she was �nally able to extract su�cient

quantities of radium to demonstrate its existence as a distinct radioactive element.

The nature of radioactivity remained elusive, although Marie had a theory regarding its

nature. In a manuscript published in Revue Scienti�que, she put forth the idea that

radiation came from the separation of atoms [8]. She stated,

La matière radioactive serait donc de la matière où règne un état de

mouvement intèrieur violent, de la matière en train de se disloquer. S'il en est

ainsi, le radium doit perdre constamment de son poids. Mais la petitesse des

particules est telle que bien que la charge électrique envoyée dans l'espace soit

facile à constater, la masse correspondante doit être absolument insigni�ante ;

on trouve par le calcul qu'il faudrait des millions d'années pour que le radium

perde un équivalent en milligrammes de son poids. La véri�cation est

impossible à faire.

La théorie matérialiste de la radioactivité est très séduisante. Elle explique

bien les phénomènes delà radioactivité. Cependant, en adoptant cette théorie, il

faut nous résoudre à admettre que la matière radioactive n'est pas à un état

chimique ordinaire; les atomes n'y sont pas constitués à l'état stable, puisque

des particules plus petites que l'atome sont rayonnées. L'atome, indivisible au

point de vue chimique, est divisible ici, et les sous-atomes sont en mouvement.

La matière radioactive éprouve donc une transformation chimique qui est la

source de l'énergie rayonnée ; mais ce n'est point une transformation chimique

ordinaire, car les transformations chimiques ordinaires laissent l'atome
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invariable. Dans la matière radioactive, s'il y a quelque chose qui se modi�e,

c'est forcément l'atome, puisque c'est à l'atome qu'est attachée la radioactivité

(Curie, 70).

Her statement loosely translates as:

The radioactive material is therefore matter in which there is a state of

violent internal movement, of material being dislocated. If this is so, radium

must constantly lose its weight. But the smallness of the particles is such that

although the electric charge sent into space is easy to notice, the corresponding

mass must be absolutely insigni�cant; it is calculated that it would take

millions of years for radium to lose an equivalent in milligrams of its weight.

Veri�cation is impossible to do.

The materialistic theory of radioactivity is very seductive. It explains the

phenomena of radioactivity well. However, by adopting this theory, we must

resolve to admit that the radioactive material is not in an ordinary chemical

state; the atoms are not constituted in the stable state, since particles smaller

than the atom are radiated. The atom, indivisible from the chemical point of

view, is divisible here, and the sub-atoms are in motion. The radioactive

material thus experiences a chemical transformation which is the source of the

radiated energy; but it is not an ordinary chemical transformation, for ordinary

chemical transformations leave the atom invariable. In the radioactive material,

if there is something that changes, it is necessarily the atom, since it is to the

atom that the radioactivity is attached.

It is unclear whether Marie fully ascribed to this belief at the time. Pierre was greatly

opposed to this view, and a paper the couple jointly a�xed their names to published two

years later would caution against the hasty adoption of such an assertion [7, 9].

Nevertheless, Marie's suggestion that radiation was caused by the splitting of atoms would

be validated a couple of years later.
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Marie had noted in her article that there seemed to be at least two distinct types of

radiation, x-ray radiation, known today also as γ radiation, and what she referred to as

cathode rays, known today as β radiation. The two behaved di�erently; while the cathode

rays were de�ected by a magnetic �eld, the x rays were not [8].

The Curies were not the only researchers to notice distinctions between types of

radiation. In 1899, about a year before Mare Curie published the manuscript in which she

laid out her theory of radiation, Ernest Rutherford (1852-1908) had commented upon two

types of radiation he had observed in his laboratory, which he referred to as α radiation

and β radiation [3]. The α radiation, he observed, was readily absorbed, while the β

radiation could travel deeper into an object. Paul Villard (1860-1934) discovered a third

type of radiation coming from radium which behaved like Röntgen's x rays. This radiation

he termed as γ radiation, following Rutherford's naming convention.

The nature of β particles was determined by Becquerel in 1900, when he demonstrated

that they had the same charge to mass ratio as an electron [3]. However, α particles

remained elusive. It was shown that they, like β particles, were de�ected by a magnetic

�eld, but in a di�erent direction and to a lesser extend, suggesting that α particles had

opposite charges and were heavier than electrons. Although speculation that α particles

were related to helium was published as early as 1903 [10], it was not until 1908 when

Rutherford and Thomas Royds (1884-1955) showed de�nitively that α particles were

helium ions [11].

The Curies, Rutherford, Becquerel, and others observed that radioactive elements

seemed to emit radioactive particles distinct from the original element [3]. The progeny of

radium and thorium, which would come to be known during that era as radon, thoron, and

actinon,1 were radioactive, but not nearly as radioactive as the elements they had

originated from. While the radioactivity of radium and thorium remained roughly

unchanged over the duration of an experiment, scientists began noticing that activities of

1thoron and actinon are now known to be isotopes of radon

7



radon, thoron, and actinon decreased with time. This decrease seemed to follow an

exponential trend, �rst decaying rapidly and then tapering o� as the quantities of radon,

thoron, and actinon were reduced.

In 1902, Rutherford and his assistant Frederick Soddy (1877-1956) formalized this

decrease in the number of particles over time in the nuclear decay equation, [12]:

N(t) = N(0)e−λt, (1.1)

where t is time, λ is the decay constant, N(t) is the number of atoms of a given

radioisotope2 at time t, and N(0) is the initial concentration.3 The decay constant was

found to be unique to a given radioisotope and governed how fast a sample of that

radioisotope would decay. This paper has largely been credited as the publication that

established the �disintegration of the elements� (known today as nuclear decay). Certainly,

Rutherford and Soddy make a strong case for it in their paper. However, it is worth noting

that a rough concept of nuclear decay existed prior to the 1902 publication, such as

articulated by Marie Curie [8].

Although they did not use the term secular equilibrium in their paper, Rutherford and

Soddy noticed that if thorium and one of its progeny, which they termed thorium X,4 were

kept together, the activity of thorium X would remain roughly constant after some time

had elapsed. This observation supplied an important insight, namely that more atoms of a

given isotope could be introduced into a sample through radioactive decay. For example, if

thorium-234 was decaying in the presence of other radioisotopes including uranium-238,

the creation of new thorium-234 particles through uranium-238 decay would have to be

accounted for.

2The term radioisotope had not yet been coined at the time of Rutherford and Soddy's publication, and
thus is not utilized in their manuscript.

3Rutherford and Soddy stated the equation in a slightly di�erent format in their paper: It
T0

= e−λt,
where I0 and It are the initial activity and the activity after time t, respectively [12].

4Thorium X is known today as radium-224.
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1.2 Radiometric Dating and the Age of the Earth

Rutherford is credited with �rst suggesting that radioactivity could be used to estimate

the ages of minerals [2]. Prior to the discovery of radioactivity, William Thompson

(1824-1907), perhaps better known as Lord Kelvin, had estimated the age of the earth

based upon the premise that the earth's temperature was due to its molten origins [13].

Over time, the earth had cooled, and he estimated how long it would take for the earth to

cool from its presumed original state to the surface temperature he experienced. In 1862

Thompson estimated that the earth had formed between 20 and 400 million years prior [13].

Pierre Curie and his student, Albert Laborde (1878-1968), discovered in 1903 that

radium generates heat [13]. Rutherford, along with Howard T. Barnes (1873-1950),

determined that the generation of heat was a direct consequence of the decay process [14].

Rutherford recognized that Thompson had not accounted for the generation of heat

through radioactive decay in his calculations of the age of the earth and started looking for

alternative avenues to estimate the age of the earth. Using a sample containing uranium

that he had on hand, Rutherford estimated the age of the sample to be on the order of 500

million years [2], older than Thompson's estimate. Rutherford presented his �ndings in a

lecture in 1904 [2, 15].

Although the exact nature of α particles was not yet understood, Rutherford speculated

that they were related to helium. Sir William Ramsay (1852-1916) and Soddy had recently

provided an estimate as to how fast radium, a product in the uranium decay series,

produced alpha particles [10]. Since helium does not decay, as long as no helium leaves the

sample through natural processes, Rutherford speculated that the amount of helium in a

uranium sample could be used to estimate the age of the sample. This is how he made his

1904 estimate [2].

Rutherford was not the only scientist to attempt to date samples using their helium

concentrations. Robert Strutt (1842-1919) conducted numerous dating experiments

between 1908 and 1910 using this method [16]. A problem with this dating method soon
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became apparent, however, as Strutt's estimates did not align with the accepted geological

ages of his samples. It became apparent that helium was somehow escaping from the

samples.

Another element used in these early dating attempts was lead. Rutherford had

suggested to American radiochemist Bertram Boltwood (1870-1927) that lead was the end

product of uranium decay and thus might be used to estimate the age of a sample

[2, 13, 16]. Although Boltwood began investigating this idea in 1905, his �rst published

results did not appear until 1907, as his initial age estimates proved to be inaccurate [13].

One issue with Boltwood's initial dating attempts was that the radioactive decay constants

had not been accurately determined yet. Estimates of the half-life of radium in particular

changed several times between 1905 and 1907, and each updated value altered Boltwood's

predictions.

A reliable half-life for uranium5 had not yet been established, so Boltwood used the

half-life of radium to provide an estimate [17]. At the time, the best estimate for the

half-life of radium was 2600 years, an estimate Rutherford had come up with. Since

half-life is computed as

t 1
2

=
ln[2]

λ
, (1.2)

to �nd the decay constant λ,6 Boltwood divided ln[2] by 2600 years to obtain the estimate

that in a given year, the fraction of all radium isotopes that would decay would be

λ = 2.7× 10−4. Rutherford and Boltwood had previously estimated that for every gram of

uranium in a sample, there were about 3.8× 10−7 grams of radium [18]. In other words,

mRa

mU

= 3.8× 10−7. (1.3)

To provide a rough estimate for the half-life of uranium, Boltwood recognized that the

radium and uranium in his samples should be in secular equilibrium,7 so that at any

5Isotopes were not yet understood, but uranium-238 is the most commonly occurring isotope, so it is
likely that Boltwood's samples contained uranium-238 primarily.

6Boltwood used few symbols or equations in his original paper. His process has been rewritten using
contemporary mathematical expressions and notation to make it easier to follow

7Boltwood used the term �radio-active equilibrium.�
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moment in time, equal amounts of uranium and radium atoms should be decaying. That is,

λUNU = λRaNRa. (1.4)

Instead of using the atomic masses of radium and uranium to extrapolate the number of

particles of each type, he assumed that the masses were the same. If the atomic masses

were the same, then the ratio he and Rutherford had computed of radium to uranium in a

sample would be the same as the ratio between the number of particles in each. In other

words,

mRa

mU

≈ NRa

NU

(1.5)

and thus

λU = λRa
NRa

Nu

≈ λRa
mRa

mU

. (1.6)

Multiplying λRa by mRa

mU
, he arrived at the conclusion that the decay constant for uranium

was on the order of 10−10 decays per year [17]. This implied that the half-life of uranium

was on the order of 1010 years.

To estimate the age of the minerals in his sample, he took the ratio of lead to uranium

in each sample and multiplied it by 1010. Boltwood did not explain why this should yield

the age of the sample. His approach was perhaps more heuristic than what follows, but the

same equation can easily be derived mathematically using appropriate approximations.

From the nuclear decay equation,

NU(t) = NU(0)e−λU t ≈ (NU(t) +NPb(t))e
−λU t, (1.7)

where NPb is the number of lead atoms in the sample. The latter part of the equation relies

on the assumption that all of the uranium in the sample that has decayed has decayed to a

stable isotope of lead that has remained in the sample, and that there is no lead in the

sample from other sources. Rearranging,

NU(1− e−λU t) = NPbe
−λU t (1.8)
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and thus

NPb

NU

= eλU t − 1. (1.9)

Using a Taylor series expansion,

NPb

NU

≈ (1 + λU t)− 1 = λU t. (1.10)

Ignoring the atomic mass di�erences between lead and uranium,

mPb

mU

≈ λU t. (1.11)

By his estimates, his samples ranged in age from 410 million to 2.2 billion years. This

implied that the earth had to be at least 2.2 billion years old, signi�cantly older than

previous radiometric dating e�orts had suggested.

There were several problems with Boltwood's approach. The biggest issue was that

many of his samples contained thorium as well as uranium. Thorium also decays to lead,

but Boltwood assumed that it did not [17]. His �awed assumption was premised on the

fact that, while he found roughly constant uranium to lead ratios in his mineral samples

from a given location, the thorium to lead ratios varied substantially from one sample to

another. By assuming that all of the lead in his samples came from uranium, his results for

samples with high thorium to uranium ratios were necessarily skewed. Furthermore, the

samples likely contained various isotopes of both lead and uranium. While this could not

have been accounted for at the time, as isotopes had not yet been identi�ed, it may have

skewed his results, as di�erent isotopes have di�erent half-lives and come from di�erent

decay chains. Boltwood also made many simpli�cations, such as ignoring mass di�erences

between uranium and radium, which denied the method the rigor that would be needed for

accurate age estimates. Nonetheless, Boltwood had provided the framework that would

lead to modern lead-uranium dating.

While Boltwood and Rutherford occasionally toyed with the question of the age of the

earth, neither one published extensively on the subject following Boltwood's 1907 paper.
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Arthur Holmes (1890-1965), one of Strutt's students, was inspired by Boltwood's work and

set out to improve upon Boltwood's techniques. His �rst publication, in 1911, utilized

Boltwood's basic technique, using equation [1.11] to compute the age of his sample, but

with a newly calculated half-life of uranium of 8.2 billion years [19]. While this value does

not match the currently accepted value, Holmes's half-life calculation was closer than

Boltwood's 10 billion year estimate. Two years later, Holmes published a book examining

the di�erent methods that were being used at the time to estimate the age of the earth

[20]. Using a further re�ned half-life of uranium of 5.4 billion years, he estimated that one

of his samples was 1.6 billion years old.

Discoveries during the 1910s led to complications in the radiometric dating technique

established by Boltwood and re�ned by Holmes [13]. One issue was that it was discovered

that lead was a decay product of thorium, thus adding challenge to dating samples

containing both uranium and thorium. In 1913, Soddy introduced the concept of the

isotope, showing that there existed atoms with the same proton number but di�erent

neutron numbers. The term isotope was suggested to Soddy by the physician Dr. Margaret

Todd8 (1859-1918), from the Greek iso topos, which means �same place� [22]. The term

was �tting because isotopes of an element occupy the same place on the periodic table. It

was found also that isotopes of the same radioactive element had di�erent half-lives.

Recognizing that there were di�erent isotopes of both uranium and lead, and that di�erent

isotopes of uranium decayed into di�erent isotopes of lead meant that Boltwood's method

could no longer be expected to provide a reliable age estimate. Although Holmes was forced

8Todd is an intriguing �gure in the history of medicine. She did not show much of a passion for medicine,
but rather seemed to pursue it because medical school was one of the highest educational attainments
available to women [21], becoming one of the �rst students at the Edinburgh School of Medicine for Women.
There she met the woman who would become her life partner, Dr. Sophia Jex-Blake, a physician and one
of the founders of the school. While attending medical school, Todd wrote and published the novel Mona

Maclean, Medical Student under a male pseudonym. The novel was signi�cant in part because it received
much praise as well as support for the movement to integrate women into the medical profession. Although
she did practice medicine at times, it was her writing that seemed to compel her, as she went on to publish
several more books and stories. She died by suicide in 1918, three months after her �nal book, a biography
of Dr. Jex-Blake, had been published.
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to leave academia for years at a time due to low wages o�ered to him as a student and later

as an instructor [15], he continued to pursue a reliable technique for lead-uranium dating.

It was not until the late 1930s when American physicist Alfred Nier (1911-1994)

provided the insight which would make accurate radiometric dating possible. Previously,

due to the observed unchanging atomic weight of lead in various samples, it was assumed

that lead isotopes existed in roughly the same ratios in all samples. Nier examined the

abundance of lead isotopes in various samples and found that the lead composition was not

uniform [23, 24]. Since di�erent lead isotopes have distinct half-lives, the assumption of

uniform abundance led to incorrect notions regarding the age of samples. Nier's work

provided the insight to account for variations in lead isotopes between samples. Arthur

Holmes used the ideas put forth by Nier to estimate the age of the Earth. He concluded

that the Earth was about 3 billion years old [25], much closer to the currently accepted 4.5

billion years than any previous calculations. At about the same time, German physicist

Fritz Houtermans (1903-1966) independently produced a similar estimate of the age of the

Earth based upon Nier's work [2, 26].

The current estimate for the age of the Earth was determined by American geochemist

Clair Patterson (1922-1995) in 1956 not by dating terrestrial samples, but rather by dating

meteorites [27, 13]. Patterson analyzed the lead compositions of �ve di�erent meteorites,

two iron meteorites and three stone meteorites. Iron meteorites do not contain uranium, so

the lead composition should theoretically remain unchanged over time. The two iron

meteorites in Patterson's study had almost identical compositions. Using the idea that all

three stone meteorites had started with the same lead composition, he estimated the age

for each of the stone meteorites and found the age estimates ranged from 4.5 billion to 4.6

billion years [27].
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1.3 Radiometric Dating on Shorter Timescales

While early radiometric dating e�orts focused on objects which had existed for

hundreds of millennia, interest soon turned to using radioactivity to determine the age of

more recent samples. Carbon-14, which was �rst proposed as a radioactive dating tool in

the late 1940s by American nuclear chemist Willard Libby (1908-1980) [28, 29], has a

half-life of 5730 years, much shorter than the half-lives of uranium-238, uranium-235, and

thorium-232. This shorter half-life makes it useful for dating objects which have existed for

a few millennia, such as archaeological artifacts and glaciers.

Carbon-14 is produced when cosmic rays collide with nitrogen [30]. It, along with stable

carbon-12, is taken in and released by organisms during their lifetime, for example by

inhalation and exhalation. Thus, living organisms typically have the same ratio of

carbon-14 to carbon-12 as the atmosphere. When an organism dies, it no longer takes in

new carbon-14 and the carbon-14 present in its system slowly decays. Carbon-12, which is

not radioactive, will also be present in the organism's system and the carbon-12 levels will

remain the same as time elapses. Thus, the ratio of carbon-14 to carbon-12 will decrease

over time. By examining the ratio of carbon-14 to carbon-12, an estimate of the age of the

organism or artifact can be made. Mathematically, this works as follows. From the decay

equation,

NC14(t) = NC14(0)e−λC14t, (1.12)

where λC14 = 1.21× 10−4 decays per year. The amount of carbon-14 remaining at the

present time, NC14 can be measured directly from the sample. To determine the initial

amount of carbon-14, the atmospheric ratio of carbon-14 to carbon-12 at the time of the

organism's death must be known. Multiplying the atmospheric ratio by the amount of

carbon-12 in the sample can provide an estimate of how much carbon-14 was present in the

organism's system at the time of its death, NC14(0). Once that �nal quantity has been

determined, equation [1.12] can be solved for time.
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While carbon-14 has many uses, its half-life is still long enough that it may be di�cult

to date very recent phenomena due to the fact that very little carbon-14 will have decayed.

Other radioisotopes with still shorter half-lives can be useful for this purpose. One of the

most widely used of these radioisotopes is lead-210.

Lead-210 is a naturally occurring isotope of lead which is a product of the uranium-238

decay series [31], with a half-life of about 22.3 years [32]. Lead-210 was �rst used in

radiometric dating in 1963 by E. D. Goldberg, who used it to estimate the age of glacier ice

[33]. Almost a decade later, it was used by Krishnaswamy et al. to date lake sediment

samples [34]. Dating lake sediment samples remains one of its most common uses in

radiometric dating.

The method of dating lake cores or ice cores di�ers from artifact dating in a signi�cant

way. It is generally assumed that the entirety of an artifact was constructed at a particular

instance in time, so the date that is estimated from the analysis of a sample of the object

can often be understood to stand for the age of the artifact as a whole. With core samples,

however, layers of sediment or ice build up over time. Thus, the sediment at the bottom of

a lake core sample would be expected to be older than the sediment at the top of the

sample. To estimate the age, certain assumptions must be made regarding the manner in

which the sediment was deposited.

To utilize Krishnaswamy et al.'s model, it must be assumed that the rate of supply of

lead-210, that is, the �ux of lead 210 reaching the surface of the sediment, and the

sedimentation rate remain constant in time [34, 35]. While these assumptions work

reasonably well for many samples, they may be too restrictive to be used to analyze others.

A new technique for lead-210 dating, known as the constant rate of supply (CRS) model,

was introduced in 1978 by Appleby and Old�eld [36]. This model required only that the

rate of supply remain constant. The CRS model will be discussed in detail in a subsequent

chapter.
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Krishnaswamy et al. also investigated the possibility of using several other

radioisotopes for dating, namely cesium-137 and iron-55 [34]. Many dating techniques such

as those used in carbon-14 and lead-210 dating rely on the assumption that deposits of the

radioisotope have remained roughly constant over time, but this assumption must often be

eschewed when using cesium-137 for radiometric dating. Cesium-137 is a product of

nuclear �ssion [2] and has a half-life of about 30.2 years [32], indicating that cesium-137

could be used on timescales similar to the ones lead-210 is used for. Since cesium-137 is

part of the fallout from nuclear testing, it would be expected that in regions where nuclear

testing has occurred, increases in the cesium-137 content of the soil can be mapped to the

time period in which the testing occurred. However, in practice, cesium-137 dating has

proven inconsistent [37]. Davis et al. examined the cesium-137 pro�les of lakes in northern

New England and Scandinavia. Lead-210 dating was performed on 14 of the 16 New

England lakes and the chronostratigraphic pollen markers of the New England lakes were

analyzed as well. Cesium-137 was observed at depths corresponding to dates that the

lead-210 and pollen markers estimated were prior to the fallout. These results suggest that

cesium-137 may be more mobile than lead-210, moving through the sediment layers instead

of remaining stationary, which could make it di�cult to extrapolate accurate ages from the

cesium-137 pro�le of a sample.

Another fallout radionuclide used in radiometric dating is strontium-90 [38]. As with

cesium-137, prior to the testing of nuclear weapons, very little strontium-90 would be

expected to be found in the soil. Strontium-90 was deposited in the Great Lakes region

from 1953 through 1964 through fallout from weapons testing and precipitation. After

1964, major above ground nuclear weapons testing was discontinued, thus diminishing the

amount of Sr-90 deposited in the region annually. Some Sr-90 could still be expected to be

observed in post-1964 samples, as radioactive remnants of nuclear weapons testing would

be delivered via precipitation, but the amount of Sr-90 being added would show a

signi�cant decrease compared to the nuclear testing years.
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Lerman examined the Sr-90 concentration in the Great Lakes between 1954 and 1969

[38]. Because the Great Lakes are interconnected, the Sr-90 concentration could be

decreased by out�ow as well as radioactive decay and increased by in�ow from multiple

sources, requiring a more complicated mathematical relation than is used to describe

isolated lakes. Lerman proposed a system of di�erential equations describing the

concentration of Sr-90 in the Great Lakes as a function of time. The di�erential equations

took into account the various sources of in�ow and out�ow for each lake, as well as loss due

to radioactive decay. Lerman's model did not �t the collected concentration completely. He

was able to obtain a better �t for three of the Great Lakes by increasing the input for the

years 1962-1964 by a small amount and increasing the out�ow by 6− 8%. The need to

increase the out�ow suggested that there were additional mechanisms by which Sr-90 was

removed, although what those mechanisms would be was not immediately clear.
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CHAPTER 2

A DEEPER LOOK AT LEAD-210 DATING

2.1 The Lead-210 Decay Process

Lead-210 is part of the uranium-238 decay series [31], as shown in Figure 2.1. It has a

half-life of about 22.26 years [32], and can decay to bismuth-210 through electron emission

or to mercury-206 through α emission. Compared to many other naturally occurring

radioisotopes, lead-210 has a relatively long half-life, which makes it useful for dating

sediment samples that are no more than 100-150 years old.

Since lead-210 is part of the uranium-238 decay chain, if uranium-238 or one of its

progeny, such as radon-222, are present in a sample, new lead-210 atoms will be continually

introduced into the sample through radioactive decay. If the system is in secular

equilibrium, the amount of lead-210 in the sample will remain nearly unchanged as time

passes. Since the amount of lead-210 stays constant, it is not useful for radiometric dating.

This type of lead is referred to as supported lead-210 because there is a source that

replenishes it.

If, however, lead-210 is separated from its source, then over time, the lead that is

present in the sample will decay. There are multiple mechanisms by which this separation

occurs in nature. It may, for example, be swept away by wind or be deposited in

precipitation. Some lead-210 particles separated in such a manner may reach the bed of a

lake. Over time, sediment will accumulate atop this lead-210, sealing it into the lake bed.

This lead is referred to as unsupported lead-210 and it is this lead which is used to date

samples.
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Figure 2.1. The uranium-238 decay series.
For isotopes that have two possible decays, the most common decays are shown with solid
arrows, while less frequently occurring decays are represented with dashed arrows. Some

infrequent decays have been omitted from the chart for readability.

2.2 Obtaining and Counting a Lead-210 Sample

To begin the dating process,1 a core sample must be taken. The site for the core

sample may be chosen for a variety of reasons. However, there are several features that

1Although this chapter refers primarily to the lead-210 dating process, because all radioisotopes decay
similarly, many steps of the process of radiometric dating are the same, regardless of the isotope used for
dating. Variations may exist in, for example, what type of detector is used to count the particles. However,
the general process of collecting a core sample, counting the decays of radioisotope, and modeling the age of
the sample follows similarly.
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may make for a more ideal sample site [39]. Relatively undisturbed bodies of water2 are

preferable because if there is too much mixing of the upper sediment layers, the lead that

exists in these sediments may migrate between layers, making it di�cult to estimate the

surface concentration accurately. In a naturally formed lake, cores are often taken from the

center of the lake to minimize disturbances caused by shoreline activity. Choosing bodies of

water with other geological or temporal markers that can corroborate age estimates can

also be useful.

In reservoirs, it is advisable to take core samples that reach the layers of sediment that

existed prior to the creation of the reservoir. Since the reservoir was created in a speci�c

time frame, the creation of the reservoir can serve as a check on age estimates provided by

radiometric dating. Samples with higher sedimentation rates are desirable because a higher

sedimentation rate decreases the amount of mixing of the sediment after it has been

deposited [40] and also minimizes the adverse e�ects of diagenesis on the sample [41].

Nonetheless, bodies of water with less desirable attributes may be of interest to scienti�c

study, and with the appropriate mathematical tools, it may be possible to analyze these

samples as well.

The core samples analyzed by the Environmental Radiation Lab (ERL) at the

University of Maine are sometimes provided by external agents, while at other times are

collected by students. The coring tools used vary depending on the department or

institution that is collecting the core sample. For a brief discussion of which coring tools

are desirable for what types of bodies of water, see [39].

When a lake core sample is taken, it is cut into thin slices, often half an inch in

thickness. The slices are weighed once when wet to �nd the wet weight and again when

dried to �nd the dry weight, M [1]. The individual slices are then ground and placed inside

tubes to be analyzed for their lead-210 content.

2Most ideal are lakes containing varved sediment, that is, a collection of thin sediment layers that
alternate in color. In such bodies of water, there is so little mixing of the sediment that each strati�cation
corresponds to the summer or winter of a given year. Thus, the age of the sediment can be determined by
counting the layers.
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Figure 2.2. An example spectrum produced by MAESTRO.

In the Environmental Radiation Lab, germanium detectors are used to count gamma

particles. Germanium is an optimal material for gamma counting because its large

absorption coe�cient makes it useful for detecting a wide range of particle energies [42].

The tube containing the sediment sample is placed in one of the germanium detectors and

counted for 12-24 hours. While lead-210 is of primary interest to our laboratory, the

detector counts γ emissions at all energies within the energy range of the detector, making

it possible to determine counts for other radioisotopes, such as cesium-137.

The germanium detectors are connected to a computer running the MAESTRO

software program.3 MAESTRO provides data for the number of counts obtained at

various energies, producing a spectrum of energies, such as shown in Figure 2.2. There may

be multiple energy peaks corresponding to di�erent radioisotopes present in the sample, as

Figure 2.2 demonstrates, so before analysis can begin, the peak corresponding to the

desired radioisotope must be determined. Common gamma energy peaks can be found in

[43].

3MAESTRO is a multichannel analyzer produced by ORTEC
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Table 2.1. Example counting data.
Energy (keV ) Counts)

505 26
506 25
507 30
508 27
509 85
510 177
511 234
512 110
513 34
514 25
515 19
516 20

Once the appropriate energy peak has been identi�ed, the peak area must be computed.

For example, suppose the �ctional data presented in Table 2.1 were the counts collected for

energies around 510 keV (Note that lead-210 has a peak around 47 keV and thus this

�ctional data is not meant to be representative of lead-210).

This data is represented graphically in Figure 2.3. As the histogram shows, while there

is a clear peak at 511 keV , the counts at 510 keV and 512 keV are also higher than the

background radiation counts. To calculate the value of the peak, the �rst step is to

compute the gross area corresponding to the energies from 510 keV to 512 keV . This is

done by adding the individual counts, i.e.,

G =
512∑
i=510

ci = 177 + 234 + 110 = 521, (2.1)

where G denotes the gross area and ci denotes the count at the ith energy. In general, for a

peak starting at some energy L and ending at some energy R, where L and R stand for left

and right, respectively, the gross area is given by [42]

G =
R∑
i=L

ci. (2.2)

However, the gross count G is not the value of the peak, as the background radiation has

not been taken into account. We will assume that the background radiation does not have
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a peak at the location of the peak of interest and thus is approximately constant

throughout the peak, a reasonable assumption in many situations. (For instances in which

there is signi�cant overlap between the peaks of the sample and background radiation, see

e.g., [42].)

To determine the background count, m channels immediately to the left and m

channels immediately to the right will be selected. For the purposes of this example, we

will choose m = 4. In general, as long as the background counts are close to uniform,

choosing three to �ve channels on either side of the peak should generally be su�cient to

estimate the background counts [42]. To �nd the background count under the peak, the

background counts are averaged and then multiplied by n, the number of channels under

the peak. In this case, n = 3. In general, the background counts are given by [42]

B =
n

2m
[
L−1∑

i=L−m

ci +
R+m∑
i=R+1

ci]. (2.3)

Note that 2m, the averaging factor, has been moved to the front of the equation for ease of

notation. The background counts in this example are then given by

B =
3

2 · 4
[

510−1∑
i=510−4

ci +
512+4∑
i=512+1

ci] =
3

8
[

509∑
i=506

ci +
516∑
i=513

ci] = 77.25 ≈ 77. (2.4)

To then �nd the area of the peak, the background must be subtracted from the gross peak.

In other words, the area N , which represents the total number of counts, is given by [42]

N = G−B =
R∑
i=L

ci −
n

2m
[
L−1∑

i=L−m

ci +
R+m∑
i=R+1

ci]. (2.5)

In this particular example, N = 521− 77 = 444.

Once the number of counts in the peak has been determined, the uncertainty of the peak

must be computed. Since each peak tends to form a distribution that is close to a Poisson

distribution, a rough estimate for the uncertainty would be ∆N =
√
N [1]. However,

because there is also some uncertainty in the estimation of the background counts, that

uncertainty must be accounted for as well. For this reason, the uncertainty is given by [1]

∆N =

√
N +

B

m
. (2.6)
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Figure 2.3. A graphical representation of the sample counts.

One thing to be aware of is that the number of counts measured by the detector in a

given time interval is not the same as the number of decays that have happened in that

time interval. Only a fraction of lead-210 decays produce a γ ray, which means that most

decays will be unable to be detected. Furthermore, no detector is perfectly e�cient,

meaning that the detector itself will fail to account for some of the decays that have

occurred. Thus, corrections must be made to estimate the number of decays that have

occurred in a given time interval.

Lead-210 has a low branching ratio of about 4% [44], meaning that only about 4% of

the decays produce a γ ray. Thus, to estimate the number of decays that have occurred

during an interval of time, the number of counts must be divided by .04. Suppose, for

example, that N = 781. Then

Ne =
N

.04
=

781

.04
= 19525. (2.7)

However, the e�ciency of the detector must also be accounted for. The e�ciency depends

upon the geometry of the detector as well as the energy peak and can be determined by

calibrating with a known source. This process is described in [45]. Once the e�ciency of
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the detector has been determined for the given energy peak, the total number of decays can

be determined by dividing the modi�ed number of counts Ne by the e�ciency γe,

Nt =
Ne

γe
. (2.8)

For the example above, assuming a detector with e�ciency γe = .25, the total number of

decays in the given time interval would be

Nt =
19525

.25
= 78100. (2.9)

Thus, for our hypothetical example, while the detector measured only N = 781 counts,

about Nt = 78100 lead-210 decays occurred during time interval in which the data was

collected.

For radiometric dating, it is not the actual activity at each depth that is essential, but

rather a proportional representation of how many counts there are at each depth. In other

words, it does not matter so much whether we use the 50 and 25 count estimate without

the e�ciency at two depths or the 200 and 100 counts that would be expected once

e�ciency is taken into account; the ratio between the two depths is the same. As long as

all measurements are taken using the same detector, all measurements will be reduced by

the same e�ciency factor γe. For this reason, the e�ciency of the detector is sometimes

omitted from the activity calculations. That is, Ne is used in place of Nt in activity

calculations. Making this change will not a�ect age estimates, but the calculated �activity"

will not be a true activity, and thus could not be used for comparing against activity

calculations from other detectors.

From the number of total decays Nt, the activity can be determined. The activity is

de�ned as the number of decays per unit time [45],

A =
dN

dt
=

d

dt
N(t) = −λN0e

−λt = −λN(t). (2.10)

In practice, activity is generally obtained by taking the number of decays Nt and dividing it

by the time that elapsed as the detector counted. For example, if it took 12 hours (or 43200
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s) for the detector to complete its counting, then, continuing with the example above,

A =
Nt

t
=

78100

43200
= 1.8079. (2.11)

Thus the activity would be 1.81 Bq.

The speci�c activity is what is used for radiometric dating. The speci�c activity is the

activity per unit mass of a sample [45], or

C =
A

M
, (2.12)

where M is the dry mass of the sample, as mentioned previously.

Beyond a certain depth, the concentration of lead-210 will remain roughly unchanged.

The speci�c depth at which this occurs varies from one body of water to the next, and can

be approximated by looking for a point in the data beyond which the �uctuations in

lead-210 are small. The tail of the data is averaged to determine an estimate of the

supported lead-210 in the sample.4 Once the speci�c activities have been computed, an

estimate of the speci�c activity of supported lead-210 is determined by averaging the

speci�c activities for depths deeper than the chosen cut o� depth. This activity estimate is

then subtracted from the speci�c activities to obtain an estimate of the unsupported

lead-210 present in each layer of the sample. A plot of concentration of unsupported

lead-210 versus depth can then be constructed.

Although the rationale may not become clear until the CRS model has been described,

a modi�ed activity Am in units of Bq
cm2 must also be computed. This value is obtained by

multiplying the speci�c activities by what is called the dry mass, Md, which itself a mass

but rather has units of g
cm2 . The process of obtaining the dry mass is described below.5

4To use this technique, it is worth noting that the deviation between di�erent data points in the tail of
the curve should be fairly small. If the standard deviation is greater than about 10 %, then another technique
may be needed. Dr. James Kaste recommends calculating the radium-226 content in each sediment layer
and using that to determine a unique supported lead-210 value for each data point.

5The following technique is the one which was outlined to me. Dr. Kaste suggests a more straightforward
approach. His recommendation is to use the thickness of the layer and the radius of the core tube to determine
the volume of the core slice. Dividing the dry mass by the volume will then yield the bulk density.
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The loss on ignition must also be computed to determine how much of the sample is

composed of organic versus inorganic matter. The samples are sent to the Sawyer

Environmental Chemistry Laboratory at the University of Maine, where the are heated to

500◦C [1]. The organic sediment in the sample will burn o�, while the inorganic matter will

remain. Since the organic and inorganic constituents of the samples have di�erent densities,

the percentages of each will be needed to determine the dry mass densities of the samples.

It is assumed that the organic matter has a density of 1.6 g
cm3 and that the inorganic

sediment has a density of 2.5 g
cm3 [1]. The solid density S is the sum of the organic and

inorganic densities by their respective percentages, given mathematically as [1]

S = 1.6O + 2.5I, (2.13)

where O and I denote the percentages of organic and inorganic matter in the sample,

respectively.

The presence of water in the sediment sample must be accounted for. To begin with,

the percent sediment by weight is computed. If the dry weight is denoted by d and the wet

weight by w, then the percent sediment by weight, sw, will be the ratio of the two

multiplied by 100%, i.e.

sw =
d

w
· 100%. (2.14)

Likewise, since the sample is made up of sediment and water, the percent water by weight

is given by

fw = 100%− sw. (2.15)

From here, the percentages of sediment and water by volume must be computed so that

the mass density and ultimately the dry mass can then be determined. The percent water

by volume fv is given by [1]

fv =
fw

fw + sw
S

. (2.16)

The percent sediment by volume sv is thus

sv = 100%− fv. (2.17)
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Table 2.2. Cumulative Activity.
Depth (cm) Modi�ed Activity ( Bq

cm2 ) Cumulative Activity ( Bq
cm2 ))

1 .48 1.29
3 .37 .81
5 .21 .44
7 .16 .23
9 .07 .07

The mass density ρM is given by [1]

ρM = S · sv. (2.18)

Once the mass density has been calculated, the dry mass Md can be determined. The dry

mass is the solid density of the sample in g
cm3 multiplied by the depth of the interval, D, in

cm. From [1],

Md = S ·D. (2.19)

Observe that the units of Md are g
cm2 .

Now that Md has been determined, the desired conversion can be made. The speci�c

activities S are multiplied by Md to obtain a modi�ed activity in units of Bq
cm2 ,

A = S ·Md. (2.20)

Note that although Am had been previously used in this paper to distinguish the activities

from the modi�ed activities, the subscript is omitted from the above equation as well as

throughout the remainder of this document to remain consistent with conventional

notation.

One �nal calculation remains to be computed, namely the cumulative activities. To

obtain cumulative activities, the modi�ed activities of a layer are summed with all of the

modi�ed activities of lower depths. As an example, consider the �ctionalized activity data

given in Table 2.2. The lowest depth is 9 cm, with a corresponding modi�ed activity of .07

Bq
cm2 . Since there are no sediment layers beneath this layer, the cumulative activity is the

same as the modi�ed activity. The 7 cm sediment layer has one layer beneath it, so the
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cumulative activity is the sum of the modi�ed activities of the 7 cm and 9 cm layers, or

Ac = .07 + .16 = .23 Bq
cm2 . Similarly, the cumulative activity of the 5 cm layer is the sum of

the modi�ed activities of the 5, 7, and 9 layers, the cumulative activity of the 3 cm layer is

the sum of the modi�ed activities of the 3, 5, 7, and 9 cm layers, and the cumulative

activity of the 1 cm layer is the sum of all of the modi�ed activities. The sum of all

modi�ed activities is generally used as the initial condition A(0) when estimating the age

of a sample. More detail on the typical dating technique used will be presented in the

following section.

As mentioned in the introductory chapter, there are two commonly used methods for

dating samples based on their lead-210 content. The Constant Flux, Constant

Sedimentation (CFCS) model was introduced by Goldberg [33] and re�ned by

Krishnaswamy [34]. As the name suggests, this model assumes that, for a given sample, the

�ux and the sedimentation rate are constant. A second model, the Constant Rate of

Supply (CRS) model, proposed by Appleby and Old�eld, assumes that the lead-210 �ux is

constant. This assumption means that the dry mass sedimentation �ux multiplied by the

activity per gram is constant. Derivations of the CFCS model can be found in many

sources (e.g., [34, 35, 1]), but since it is more restrictive than the CRS model, it will not be

analyzed in detail here. A derivation of the CRS model will be provided in the following

section.

2.3 The Constant Rate of Supply Model

In 1978, Appleby and Old�eld introduced a mathematical model for dating sediment

samples assuming a constant supply rate of lead-210, which they termed the Constant Rate

Supply (CRS) Model [36]. Their derivation is as follows: Suppose that the initial

concentration of unsupported lead-210 C0 in Bq
g

satis�es the equation

C0(t)r(t) = ζ, (2.21)
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where ζ is constant and r(t) g
cm2yr

is the dry mass sedimentation rate at time t. If x is the

depth of the sediment of age t, then the concentration of lead-210 at depth x, in

accordance with the nuclear decay equation, is given by

C(x) = C0(t)e
−kt, (2.22)

where

k =
ln 2

22.26
= .03114 (2.23)

is the radioactive decay constant of lead-210 in inverse years. Then, rearranging the

concentration equation,

C0(t) = C(x)ekt. (2.24)

If the sediment is laid down during a small period of time δt, then the thickness of this

layer is given by

δx =
r(t)

ρ(x)
δt, (2.25)

where ρ(x) is the dry mass per unit wet volume of the sediment at depth x in g
cm3 . Then

the rate of change of depth is

ẋ =
r

ρ
. (2.26)

Solving for r,

r(t) = ρ(x)ẋ. (2.27)

Substituting (2.24) and (2.27) into (2.21),

C(x)ektρ(x)ẋ = ζ, (2.28)

or

C(x)ρ(x)ẋ = ζe−kt. (2.29)

Consider the function

A(x) =

∫ ∞
x

ρ(x)C(x)dx, (2.30)
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where A is the total residual unsupported lead-210 beneath sediments of depth x. By the

Fundamental Theorem of Calculus,

Ȧ =
d

dt
(

∫ ∞
x

ρ(s)C(s)ds) = [ρ(s)C(s)]s=∞ − ρ(x)C(x)ẋ. (2.31)

Since the unsupported lead-210 concentration decreases with depth, [ρ(s)C(s)]s=∞ = 0,

and thus

Ȧ = −ρ(x)C(x)ẋ = −ζe−kt. (2.32)

Hence,

A = −
∫ t

−∞
ρ(x)C(x)ẋds = −

∫ t

−∞
ζe−ksds. (2.33)

Using the negative sign to �ip the limits of integration,

A = −
∫ t

−∞
ζe−ksds =

∫ ∞
t

ζe−ksds (2.34)

and thus

A(x) =
ζ

k
e−kt. (2.35)

Given the initial condition A(0),

A(x) = A(0)e−kt. (2.36)

Solving (2.36) for t,

t =
1

k
ln
A(0)

A(x)
, (2.37)

where t is the age in years of the layer of depth x. For a given sample, the age can thus be

estimated from A(x), assuming that the �ux of unsupported lead-210 is nearly constant.

2.4 Problems with Current Dating Techniques

Both the CFCS and CRS models work relatively well in certain situations, but neither

one applies universally to all sediment samples. Consider the following data, used by

Douglas Cahl in his master's thesis [1] and presented in Figure 2.4. Under the CRS model,

the relationship between activity and depth should follow an exponential decay curve, but
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Figure 2.4. Data presented in Douglas Cahl's master's thesis of unsupported lead-210 vs.
depth.

there appear to be sinusoidal �uctuations as well. Neither the CRS model nor the CFCS

model account for periodic �uctuations in activity such as the one observed here.

While this project was initiated with lead-210 in mind, since all radioisotopes decay in

accordance with the nuclear decay equation, with slight modi�cations it could be applied

to many other radioisotopes. Of particular interest is cesium-137, which exists in the

environment primarily as fallout from nuclear weapons testing. Cesium-137, which has a

half-life of about 30.2 years [32], theoretically should be usable for estimating the age of

samples on similar timescales to those dated using lead-210. However, it has proven an

unreliable dating source due in part to an ability to permeate the soil layers in a manner

that other radioisotopes generally do not demonstrate [37].

The behavior of cesium-137 varies considerably from one lake to another, depending on

the biological, chemical, and geological properties of the lake [46]. For example, the type of

water in a lake has been shown to in�uence the mobility of cesium-137 [47]. In a study of

Lake St. Clair in Michigan, it was found that sorbed cesium-137 was more mobile in anoxic

soft water, that is, soft water with depleted levels of dissolved oxygen, and less mobile in
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oxic, or oxygen rich, soft water [47]. Hard water was found to fall between oxic and anoxic

soft waters in terms of cesium-137 mobility, although there was little di�erence between

oxic and anoxic hard water. Other factors such as the composition of the lake bed may also

in�uence the mobility of cesium-137, as it is readily absorbed by some minerals such as clay

and mica [47, 48].

Although cesium-137 may sometimes provide unreliable age estimates under the CRS

and CFCS models, it can play a crucial role in radiometric dating. Due to losses from the

top of a core sample that may occur in coring, lead-210 age estimates may fail if not

calibrated against another radioisotope such as cesium-137 [49]. Additionally, in regions in

which the watershed and lake bed have undergone disturbances, using lead-210 alone can

provide inaccurate age estimates [50], so an additional radioisotope such as cesium-137 may

be needed to con�rm the estimates. While a piecewise approach employing CRS techniques

and comparing against chronostratigraphic markers has been been applied to a sampling of

cesium-137 samples with some success [49], a model that handles all cesium-137 samples

remains elusive. If the mobility of cesium-137 could be modeled mathematically, then a

more comprehensive model for cesium-137 dating which does not require a constant rate of

supply of cesium-137 could perhaps be devised.

Additional radioisotopes of interest could include beryllium-7 and strontium-90.

Beryllium-7 deposits have been shown to vary seasonally [51]. With a half-life of about

53.3 days [32], it might not be as useful for dating lake core samples, but it could provide

information for short timescale analyses. Like cesium-137, strontium-90 is a radionuclide

introduced into the environment primarily as fallout from nuclear weapons testing [38].

With a half-life of 28.8 years [32], it can be used for aging samples of similar timescales to

those aged using lead-210. In particular, changes in concentration of strontium-90 in the

Great Lakes over time have been studied in some detail by Lerman [38]. While Lerman

devised a model speci�c to the Great Lakes, a more general model that could encompass

strontium-90 dating might be useful.
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Devising a general model that can be used for cesium-137 and strontium-90 is a

pressing matter in North America. Very little cesium-137 and strontium-90 present in lake

sediment samples is naturally occurring. Nuclear weapons testing in the United States

introduced large quantities of these radioisotopes into the environment beginning in 1952

and continuing through the mid-1960s [50]. In the years since above ground nuclear

weapons testing ended, little new cesium-137 and strontium-90 has been introduced into

North American lake beds. Since these two radioisotopes have half-lives on the order of 30

years, much of the cesium-137 and strontium-90 introduced into the environment through

weapons testing has decayed. These diminishing levels have added an additional layer of

di�culty to cesium-137 dating [52]. Thus, it is imperative to develop techniques to

accurately age sediment samples using these radioisotopes while the levels of these isotopes

are still detectable in North American sediment samples.

In addition, for lead-210 samples exhibiting sinusoidal �uctuations, the period of the

oscillations will be calculated and analyzed. It is hypothesized that the oscillations are

caused by changes in wind and rainfall due to climate cycles, such as perhaps the North

Atlantic Oscillation, which has been speculated to create periodic �uctuations in

atmospheric lead-210 in parts of Europe [53]. However, further study would be needed to

assess the nature of the sinusoidal behavior.

The aim of the following chapters is to devise a mathematical model for radiometric

dating that does not require a constant rate of supply of a given radioisotope. The hope is

that in doing so, more samples will be able to analyzed and with better accuracy than

current models provide. Additionally, for samples that show sinusoidal oscillations, I aim to

examine the period of oscillations and investigate the physical signi�cance of the period.

Chapter 3 will provide a derivation of this new model, called the Non-Constant Rate of

Supply (NCRS) model. The CRS and NCRS models will be implemented on a �ctitious

data set to demonstrate the utility of the NCRS model. In Chapter 4, the NCRS model

will be applied to four existing data sets and compared against the CRS model. Chapter 5
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will examine 30 additional sediment samples. For the samples with sinusoidal oscillations,

the period will be computed. Climate cycles will be considered as a potential cause of the

oscillations. In Chapter 6, I will draw some conclusions and o�er recommendations for

future work.
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CHAPTER 3

A NEW TECHNIQUE FOR RADIOMETRIC DATING

3.1 Deriving the Non-Constant Rate of Supply Model

I developed a Non-Constant Rate of Supply (NCRS) model in an e�ort to expand the

scope of samples that can be analyzed using radiometric dating. The method closely

follows the techniques used by Appleby and Old�eld in the development of their CRS

model [36]. The main di�erence between the two approaches is the initial assumption.

Instead of assuming that the rate of supply of lead-210 is constant, I assumed that it was

allowed to �uctuate.

Suppose that instead of a constant supply rate, the lead-210 rate varies by some known

functions of time. In other words,

C0(t)r(t) = ζ + f1(t) + f2(t) + · · ·+ fn(t), (3.1)

where ζ in Bq
cm2yr

is constant, C0 in Bq
g

is the initial concentration of unsupported lead-210

in the sediment, r(t) in g
cm2yr

is the dry mass sedimentation rate at time t, and

f1(t), f2(t) · · · fn(t) in Bq
cm2yr

are arbitrary functions of time. If x is the depth of the

sediment of age t, then the concentration of lead-210 at depth x is given by

C(x) = C0(t)e
−kt, (3.2)

where k = .03114 is the radioactive decay constant of lead-210 in inverse years. Then,

rearranging the concentration equation,

C0(t) = C(x)ekt. (3.3)

For the same reason as outlined in Chapter 2 in the derivation of the CRS model, the rate

of change of depth is given by

ẋ =
r(t)

ρ(x)
, (3.4)
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where ρ(x) is again the dry mass per unit wet volume of the sediment at depth x in g
cm3 .

Solving for r(t),

r(t) = ρ(x)ẋ. (3.5)

Substituting (3.3) and (3.5) into (3.1),

C(x)ektρ(x)ẋ = ζ + f1(t) + f2(t) + · · ·+ fn(t) (3.6)

or, rearranging,

C(x)ρ(x)ẋ = e−kt(ζ + f1(t) + f2(t) + · · ·+ fn(t)). (3.7)

Let

A(x) =

∫ ∞
x

ρ(s)C(s)ds, (3.8)

where A in Bq
cm2 is the total residual unsupported lead-210 beneath sediment layers of depth

x. Observe that, by the Fundamental Theorem of Calculus,

Ȧ =
d

dt
(

∫ ∞
x

ρ(s)C(s)ds) = [ρ(s)C(s)]s=∞ − ρ(x)C(x)ẋ. (3.9)

The unsupported lead-210 concentration decreases with depth, meaning that

[ρ(s)C(s)]s=∞ = 0, and hence

Ȧ = −ρ(x)C(x)ẋ = −e−kt(ζ + f1(t) + f2(t) + · · ·+ fn(t)). (3.10)

Thus,

−
∫ t

−∞
ρ(x)C(x)ẋds = −

∫ t

−∞
e−ks(ζ + f1(s) + f2(s) + · · ·+ fn(s))ds. (3.11)

Absorbing the negative sign into the limits of integration,

−
∫ t

−∞
e−ks(ζ + f1(s) + f2(s) + · · ·+ fn(s))ds

=

∫ ∞
t

e−ks(ζ + f1(s) + f2(s) + · · ·+ fn(s))ds (3.12)
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and thus

A(x) = ζ

∫ ∞
t

e−ksds+

∫ ∞
t

f1(s)e
−ksds+

∫ ∞
t

f2(s)e
−ksds+ · · ·+

∫ ∞
t

fn(s)e−ksds

= −ζ[−1

k
e−ks]∞t +

∫ ∞
t

f1(s)e
−ksds+

∫ ∞
t

f2(s)e
−ksds+ · · ·+

∫ ∞
t

fn(s)e−ksds. (3.13)

In general,

A(x) =
ζ

k
e−kt +

∫ ∞
t

f1(s)e
−ksds+

∫ ∞
t

f2(s)e
−ksds+ · · ·+

∫ ∞
t

fn(s)e−ksds, (3.14)

where t is the age in years of the sediment layer of depth x.1 Given an initial condition

A(0) and functions f1, f2, · · · fn, this equation can be written explicitly, as demonstrated in

the following sections. For a given sample, the age can be estimated from A(x), although if

the rate of supply is non-constant, that is, fi 6= 0 for any i, numerical techniques may be

required to determine t.

3.2 The NCRS Model with Sinusoidal and Linear Terms

If the rate of supply of a radioisotope is assumed to be non-constant, the natural

question would be what sort of functions may describe it. Some data, such as shown in

Figure ??, suggest that the rate of supply may �uctuate sinusoidally. The potential causes

of these sinusiodal �uctuations are not fully understood, but will be discussed in later

chapters. Another possible non-constant change would be a linear change. Such a change

may occur, for example, if there is in�ow or out�ow to the body of water from which the

core sample was collected, or if the radioisotope is able to migrate through the layers of soil.

Suppose that a plot of concentration versus depth for a given sample suggests that in

addition to exponential decay, the concentration rate shows both sinusoidal and linear

�uctuations. In other words,

C0(t)r(t) = ζ + a sin (bt+ c) + gt, (3.15)

1Note that A(x) is used here to be consistent with Appleby and Old�eld's notation, since their notation
was used for the CRS derivation. However, A(t) might make more sense. While the accumulation of lead-210
does vary with depth, that variation is a direct consequence of the nuclear decay process, which progresses
with time.
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where a, b, c, g, and ζ are constant. Then

C0(t)r(t) = C(x)ρ(x)ẋekt = ζ + a sin (bt+ c) + gt (3.16)

and therefore

C(x)ρ(x)ẋ = e−kt(ζ + a sin (bt+ c) + gt). (3.17)

Then

A(x) =

∫ ∞
t

C(x)ρ(x)ẋds =

∫ ∞
t

e−ks(ζ + a sin (bs+ c) + gs)ds. (3.18)

Thus,

A(x) = ζ

∫ ∞
t

e−ksds+ a

∫ ∞
t

sin (bs+ c)e−ksds+ g

∫ ∞
t

se−ksds

=
ζ

k
e−kt + a

∫ ∞
t

sin (bs+ c)e−ksds+ g

∫ ∞
t

se−ksds. (3.19)

Integrating,

A(x) =
ζ

k
e−kt +

a

k2 + b2
(k sin (bt+ c) + b cos (bt+ c))e−kt + g(

t

k
+

1

k2
)e−kt

= e−kt(
ζ

k
+

g

k2
+
gt

k
+

a

k2 + b2
(k sin (bt+ c) + b cos (bt+ c)). (3.20)

If a sample has only sinusoidal variance in the rate of supply of the radionuclide, then

g = 0 in [3.20]. If it displays only linear variance, then a = 0 in [3.20]. While sinusoidal and

linear changes to the concentration are some of the more common changes that might be

observed, this method will work for many mathematical functions.

3.3 Modeling a Pulse

Another possible occurrence that could a�ect the rate of supply would be if a large

quantity of a radioisotope was introduced into a lake in a short amount of time. This may

be found, for example, in a body of water into which nuclear reactor e�uent is released,

such as was shown in [54]. Mathematically, such an in�ux might be modeled with a delta

function.
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Suppose that a pulse is released at some time t0. Assume that

C0(t)r(t) = ζ + hδ(t− t0), (3.21)

where h in Bq
cm2yr

is constant. Then

C0(t)r(t) = C(x)ρ(x)ẋe−kt = ζ + hδ(t− t0), (3.22)

and thus

C(x)ρ(x)ẋ = e−kt(ζ + hδ(t− t0)). (3.23)

Therefore

A(x) =

∫ ∞
t

C(x)ρ(x)ẋdt =

∫ ∞
t

e−ks(ζ + hδ(s− t0)ds). (3.24)

Integrating,

A(x) =
ζ

k
e−kt + h

∫ ∞
t

e−ksδ(s− t0)ds. (3.25)

The results of integration depend on whether the depth (or, correspondingly, the time) at

which the pulse was released is included in the limits of integration. For older sediment,

which accumulated before the pulse was released, there will be no contribution from the

pulse term, as is consistent with the mathematical de�nition of an integral over a delta

function. For newer sediment which has accumulated after the pulse, however, recalling

that ∫ ∞
−∞

f(s)δ(s− t0) = f(t0), (3.26)

then

h

∫ ∞
t

e−ksδ(s− t0)ds = he−kt0 . (3.27)

Therefore,

A =


ζ
k
e−kt t > t0

ζ
k
e−kt + he−kt0 t < t0.

(3.28)

Recall that A(x) is de�ned as the accumulation of all sediment layers below the depth x.

The pulse contributes excess radionuclides only to the sediment layer corresponding to the
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time t0, but because A is cumulative, the introduction of the pulse of radioisotopes will be

re�ected in the A values for the upper sediment layers.

3.4 Restating the NCRS Model

Before an attempt is made at modeling the data, it is important to demonstrate the

equivalency between the approach outlined in previous sections and the one that will be

utilized in the following sections. Observe that

C0(t)r(t) = ζ + a sin (bt+ c) + gt = ζ(1 +
a

ζ
sin (bt+ c) +

g

ζ
t). (3.29)

Note that a
ζ
and g

ζ
are constant, so they could be renamed in some fashion such as this:

C0(t)r(t) = ζ(1 + a1 sin (bt+ c) + g1t). (3.30)

By equations (3.3) and (3.5),

C(x)ρ(x)ẋ = ζe−kt(1 + a1 sin (bt+ c) + g1t). (3.31)

Next, suppose that

C0(t)r(t) = ζ. (3.32)

Suppose also that

C(x) = (C0 + a sin (bt+ c) + gt)e−kt = C0e
−kt(1 +

a

C0

sin (bt+ c) +
g

C0

). (3.33)

Once again, since a
C0

and g
C0

are constants, the equation can be rewritten thusly:

C(x) = C0(t)e
−kt(1 + a1 sin (bt+ c) + g1t). (3.34)

This is an equivalent way of stating that the rate of supply is not constant, as can be seen

by substituting (3.34) and (3.5) into (3.32),

C(x)ρ(x)ẋ = ζe−kt(1 + a1 sin (bt+ c) + g1t). (3.35)
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The equation for A(x) will then have a slightly modi�ed form,

A(x) = ζe−kt(
1

k
+
g1
k2

+
g1t

k
+

a1
k2 + b2

(k sin (bt+ c) + b cos (bt+ c)). (3.36)

One further clari�cation must be made before the modeling can begin. The data that was

measured directly was lead-210 concentration versus depth, as you see in Figure 2.4. To be

able to use the NCRS model, the depth data must be related to time. It will be assumed

that there is a linear relation between the two. The rationale behind this assumption will

be discussed in Section 3.6.

3.5 Testing the NCRS Model with Simulated Data

Before the NCRS model is applied to experimental data, it may be useful to see how it

performs on a simulated data set. To generate this data set, it will be assumed that the

concentration of lead-210 in a sample is given by the equation

c(x) = .5e.4x(1 + .1 sin (x) + .8x) (3.37)

Note that equation [3.37] has no physical signi�cance and is merely used for illustrative

purposes.

R was used to generate the simulated data. R is a statistical software package that is

frequently used in the �elds of mathematics and statistics. I chose it for much of the

research I have done in this paper primarily because of its nonlinear modeling capabilities,

which I will demonstrate in this section. While R does have some downsides in areas such

as memory management, none of its weaknesses have seemed to adversely a�ect its

performance regarding the �tting and generation that I have needed to do for this paper.

Depths 1 cm through 11 cm were chosen in .5 cm increments and substituted into

equation [3.37] to obtain concentration values, given in Table 3.1. R gave concentration

values to eight signi�cant digits. However, to introduce some variability into the data so

that the equation �tted by R would not be a perfect �t, only one or two signi�cant digits

were used in the simulated data, which are given in Table 3.1. The data are shown in
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Table 3.1. Simulated concentration data.
Depth (cm) Concentration from R ( Bq

cm2 ) Rounded Concentration ( Bq
cm2 )

1.0 .63149078 .63
1.5 .63106464 .63
2.0 .60455634 .60
2.5 .56282744 .56
3.0 .51415539 .51
3.5 .46420913 .46
4.0 .41634290 .42
4.5 .37210821 .37
5.0 .33184939 .33
5.5 .29525972 .30
6.0 .26181466 .26
6.5 .23104698 .23
7.0 .20267078 .20
7.5 .17678975 .18
8.0 .15283658 .15
8.5 .13148816 .13
9.0 .11259029 .11
9.5 .09611026 .10
10.0 .08192217 .08
10.5 .06981963 .07
11.0 .05954510 .06

Figure 3.1 in red. After simulating the data, the curve �tting principles behind the CRS

and NCRS models were used to �t the data. First, to �nd the CRS model �t, an

exponential curve of the form

C(x) = ae−bx (3.38)

was �tted to the data using the nonlinear �t function in R (see Appendix C for sample R

code), with initial parameters a = .63 and b = .4. The resulting curve was given as

C(x) = .8746e−.2050x, (3.39)

shown in Figure 3.1 in green.

To estimate the error, the residual sum of squares (RSS) will be used. Mathematically,

the RSS is de�ned as

RSS =
n∑
i=1

(yi − f(x))2, (3.40)
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where yi is the measured value and f(xi) is the value that would be predicted by the

equation [55]. The RSS works well to compare between models on the same data set. The

smaller the RSS value, the lower the deviation from the model. However, it cannot

necessarily be used to compare models across data sets because the number of data points

greatly in�uences the RSS value. The more non-zero terms there are, the larger the

resulting RSS value. Thus, if the RSS values are larger for one set of data than for another,

it does not necessarily mean that the model is a better �t in one case than in the other.

However, throughout this paper, the goal will be to test the performance of the NCRS

model against the CRS model on a given data set. Since the models are being compared on

the same data set, the RSS will work �ne for this purpose.

The qprC package was installed in R. This allowed for utilization of the RSS function.

For the CRS model, the RSS value was found to be RSS = .01895.

For the NCRS model �t, a curve of the form

C(x) = ae−bx(1 + d sin (x) + fx) (3.41)

was �tted to the data using the initial parameters a = .5, b = .4, d = .1, and f = .8. The

resulting �t was

C(x) = .5137e−.3978x(1 + .0822 sin (x) + .7585x), (3.42)

shown in Figure 3.1 in blue. Observe that the coe�cients in this equation are close to the

coe�cients in equation [3.37], as would be expected. The RSS value given was

RSS = .0001246. Since the RSS value for the NCRS model was much lower than the RSS

value for the CRS model, this suggests that the NCRS model is a better �t for the data.

To obtain the CRS solution, the cumulative activity must �rst be determined. To do so,

all of the activities in Table 3.1 must be summed, which yields A(0) = 6.38 Bq
cm2 . (For the

purposes of this exercise, it was assumed that Md = 1 g
cm2 for each data point, so the

activities and modi�ed activities are interchangeable, save for units.) Substituting this
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Figure 3.1. Plot of the simulated data with CRS and NCRS �ts.

initial condition into equation [2.36],

A(t) = 6.38e−.03114t, (3.43)

which is shown in Figure 3.2 in green.

To estimate the age using the NCRS model, a conversion between x and t must be

made. Equation [3.42] can be rewritten as

C(x) = e−.6661−.3978x(1 + .0822 sin (x) + .7585x). (3.44)

Assuming that x and t are linearly related,

−.6661− .3978x = −.03114t+ ct. (3.45)

To convert between depth and time, we need an initial condition. Since the top layer of

sediment corresponds to the accumulation of sediment during a small window of time that

dates to approximately the time at which the core sample was taken, this layer of sediment

is considered to correspond to t = 0. There is some ambiguity as to what the corresponding

depth should be, since each sediment layer has some thickness to it. Generally the
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Figure 3.2. Age estimates of the simulated data with CRS and NCRS �ts.

midpoint of the slice is used for the depth, as the researcher is looking for the average age

of the sample. For example, if a slice is .5 cm thick, it would be considered to have a depth

of .25 cm. Using the x = 1 cm depth as the depth at t = 0,

−.6661− .3978(1) = −.03114(0) + ct, (3.46)

and hence

ct = −1.064. (3.47)

Furthermore,

x =
1

−.3978
(−.03114t− 1.064 + .6661) = .07828t+ 1 (3.48)

Thus,

C(x) = e−1.064−.03114t(1 + .0822 sin (.07828t+ 1) + .7585(.07828t+ 1)) (3.49)

= e−1.064−.03114t(1.759 + .0822 sin (.07828t+ 1) + .05938t)

= C0e
−.03114t(1 + .0467 sin (.07828t+ 1) + .03376t),

where

C0 =
1

1.759
e−1.064. (3.50)
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Table 3.2. RSS and age estimates for the CRS and NCRS Models with simulated data.
CRS NCRS

RSS .01895 .0001246

Age (A = 4 Bq
cm2 ) 15.0 years 25.8 years

Age (A = 3 Bq
cm2 ) 24.2 years 39.9 years

Age (A = 2 Bq
cm2 ) 37.3 years 58.5 years

Age (A = 1 Bq
cm2 ) 59.5 years 87.7 years

Thus, by equation [3.36],

A(x) = ζe−.03114t(32.11 + 34.81 + 1.084t+ 6.580(.03114 sin (.07828t+ 1)

+.07828 cos (.07828t+ 1)))

= ζe−.03114t(66.92 + 1.084t+ .2049 sin (.07828t+ 1) + .5151 cos (.07828t+ 1)). (3.51)

Using the initial condition A(0) = 6.38,

6.38 = ζ(66.92 + .2049 sin (1) + .5151 cos (1)) = ζ(67.37) (3.52)

and hence

ζ = .09470. (3.53)

Thus,

A(x) = .09470e−.03114t(66.92 + 1.084t+ .2049 sin (.07828t+ 1) + .5151 cos (.07828t+ 1)).

(3.54)

This age estimate is shown in Figure 3.2 in blue. While the sinusoidal terms do not have

much of an e�ect on the age estimate due to their small coe�cients, Figure 3.2 shows that

the linear term does in fact noticeably change the age estimate. Table 3.2 includes a

comparison of the approximate age of the sample for four di�erent cumulative activities for

the two models, and the results di�er by decades, in some cases. For example, a sample

with cumulative activity of 3 Bq
cm2 would be estimated to be about 24 years old using the

CRS model, but with the NCRS model, that same sample would be estimated to be about

40 years old. Thus, the CRS model may in fact be a poor �t for samples with linear

changes in the concentration of the radioisotope that is being used for dating.
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3.6 Assessing the Linearity Assumption

Before delving into the linearity assumption, it is worth noting that the linearity

assumption is implicitly built into the CRS and CFCS models. Recall that the

concentration data is obtained as a function of depth, and that C(x) is plotted versus x,

not t. Thus, the equation for C(x) could be written as

C(x) = C
′

0e
−αx+β, (3.55)

where α and β are constant. By invoking

C(x) = C0e
−kt, (3.56)

this necessarily means that x and t are related through some linear transformation, as each

one appears in the exponent of the exponential and C0 is constant.

As was mentioned in a previous section, it is assumed that x and t are linearly related.

However, it is reasonable to wonder whether this assumption is necessarily true. The linear

assumption is perhaps the most natural starting assumption, as it seems probable that in

many environments, the amount of sediment deposited during each time step should

remain constant. Each .5 cm thick slice of a core sample includes the sediment

accumulation over a period of several years. For this reason, what matters to the linearity

assumption is whether the volume of sediment deposits in a sample region remain constant

from one year to the next.

Precipitation is one source of sediment deposits. Although precipitation may vary

widely on short timescales such as from day to day, on larger timescales it often remains

relatively constant. One step which may be useful to assess whether the linearity

assumption is reasonable is to look up precipitation accumulations for a region over a

period of several years. To access precipitation data, we will use the NOWData feature

provided by the National Oceanic and Atmospheric Administration (NOAA), accessed via

the site https://w2.weather.gov/climate/xmacis.php?wfo=gyx. The graph shown in Figure

3.3 is the precipitation data for Augusta, Maine.
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Figure 3.3. A graph showing the all time precipitation accumulation in Augusta, Maine
from January 1, 1950 to July 17, 2017.

Graph obtained from NOAA's NOWData feature, available at
https://w2.weather.gov/climate/xmacis.php?wfo=gyx

Figure 3.3 shows the all time accumulation of precipitation in Augusta, Maine.

Although one line is partially obscured, there are two lines on the graph, one in brown and

one in green. The green line shows the actual accumulation while the brown line shows the

expected accumulation. While the green line does deviate slightly in places, as would be

expected since weather does not behave in a perfectly predictable fashion, it very nearly

�ts the linear brown line. While this data does not go back for the 100-150 year period

that might be represented in a lake core sample, it does provide evidence that the average
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precipitation remains roughly constant over time. Thus it seems reasonable for lakes in the

Augusta area to assume that the precipitation is not signi�cantly altering the amount of

sediment that is being deposited in a given time step.

Augusta, Maine was chosen for this demonstration because of its proximity to

Monmouth, Maine, the location of Cochnewagon Lake. It is worth noting that the

NOWData feature does not di�erentiate between types of precipitation. Since di�erent

forms of precipitation carry sediment di�erently, it is reasonable to ask whether rainfall

and snowfall individually remain constant over time. This may be especially important

since the changing climate is a�ecting the forms of precipitation in some geographical

locations. Although perhaps not as easily accessible, data di�erentiating between rain and

snow accumulations does exist for many locations and can likely be acquired by contacting

a local National Weather Services branch o�ce. However, unless there have been

noticeable shifts in the types of precipitation in a location, it may be reasonable to assume

that the annual occurrences of rain and snow remain roughly constant if the annual

precipitation remains constant.

In�ow and out�ow to a body of water may also carry in and remove sediment. If a

barrier is created that restricts the in�ow or out�ow, or if there are changes to the climate

that could signi�cantly a�ect the �ow of the waterways, such as rapid melting of glaciers,

then it may be worth examining whether the change has a�ected the rate of sediment

deposit. However, in relatively stable environments, in�ow and out�ow should not a�ect

the rate at which sediment accumulates.

While wind is harder to quantify than precipitation, it is again reasonable to assume

that over a su�ciently long period of time, wind will deposit the same amount of sediment

into the body of water each time step. What tends to occur with wind is that it changes

direction. Since di�erent soils are made up of di�erent types of organic and inorganic

matter, changes in wind direction may change the type of matter that is being deposited,

but it may not change the overall amount of matter that is being deposited. It may, for
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example, increase or decrease the amount of lead-210 being introduced into the lake bed

without a�ecting the overall sediment depositions. Since several years are represented in a

.5 cm thick core sample, as long as there are not sustained, large scale changes in the wind

patterns, the wind likely will not change the sediment deposition rate.

Generally, a linear assumption is likely warranted. However, in cases in which there are

changes that would a�ect the rate at which sediment is being deposited, the question

remains whether the NCRS model could still be implemented. As long as the change could

be mathematically modeled, the NCRS model will still work. For example, assume that a

dam is constructed that reduces the amount of sediment that is being deposited annually.

The relationship between depth and time will likely still be linear in the years after the

dam is constructed, although the coe�cients will be di�erent. To take into account the

e�ect of the dam, two distinct calculations would have to be made, one for the years prior

to the introduction of the dam and one for the years following the dam's completion. Even

in instances in which the linearity assumption would not hold, the NCRS model could still

be used, just with a di�erent assumption.
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CHAPTER 4

IMPLEMENTING THE NCRS MODEL

4.1 Testing the CRS Model on the Cochnewagon Lake Data

Consider the data presented in Figure 2.4 of the concentration of unsupported lead-210

as a function of depth, taken from Cochnewagon Lake. Cochnewagon Lake, also known as

Cochnewagon Pond, is a body of water located in Monmouth Township, Maine.

The CRS model assumes that the concentration of lead-210 decays exponentially, so to

�nd an equation for the data, the natural logarithm of concentration can be plotted against

depth and a best �t line can be determined. The resulting plot is shown in Figure 4.1.

Mathematica was used to generate the best �t line,1

log(C) = −.513− .244x. (4.1)

Exponentiating,

C(x) = e−.513−.244x. (4.2)

This equation is shown in Figure 4.4 in green. R was used to calculate the RSS value to

determine the �tness of the CRS model for the Cochnewagon Lake data. It was found that

RSS = .01263.

Assuming that depth and time have a linear dependence,

−.513− .244x = −.03114t+ ct, (4.3)

where ct is constant. Using the assumption that the �rst data point is the concentration at

t = 0,

−.513− .244(.25) = −.03114(0) + ct, (4.4)

1Note that all coe�cients in the following sections have been rounded to three signi�cant digits. The
actual equations produced by Mathematica and R included more digits, which were retained until the end
of the calculations, at which point the coe�cients were rounded.
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and thus

ct = −.574. (4.5)

Hence,

−.513− .244x = −.03114t− .574. (4.6)

Substituting equation [4.6] into equation (4.2),

C(x) = e−.574−.03114t = .563e−.03114t = C0e
−.03114t. (4.7)

From equation (3.14), using the initial condition that A(0) = .1501 in Bq
cm2 ,

A(x) = .150e−.03114t. (4.8)

4.2 Implementing the NCRS Model with Sinusoidal Terms on the

Cochnewagon Lake Data

R was used to �nd the best �t curve including sinusoidal �uctuations. The curve was

given by the equation

C(x) = .519e−.197x(1 + .150 sin(1.79x+ 3.13)). (4.9)

Figure 4.1. Natural logarithm of unsupported lead-210 vs. depth.
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Figure 4.2. A comparison of CRS and NCRS model with no linear term.

Equation (4.9) is shown in Figure 4.2 in blue. The RSS value was found using R to be

RSS = .006966.

C(x) can be rewritten as

C(x) = .519e−.197x−.655(1 + .150 sin (1.793x+ 3.13)). (4.10)

Using the same technique as outlined in the previous sections, it was found that

−.197x− .655 = −.03114t+ ct, (4.11)

and thus,

ct = −.704. (4.12)

Thus,

x = .158t+ .25 (4.13)

and hence,

C(x) = .519e−.03114t−.0493(1 + .150 sin (.283t+ .448)) (4.14)

= C0e
−.03114t−.0493(1 + .150 sin (.283t+ .448)).
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Figure 4.3. A comparison of CRS and NCRS model results with no linear term.

By equation (3.36),

A(x) = ζe−.03114t(32.1 + 1.84(.0311 sin (.283t+ .448) (4.15)

+.283 cos (.283t+ .448).))

Using the initial condition A(0) = .1501 in Bq
cm2 ,

ζ = .00460 (4.16)

and thus,

A(x) = .00460e−.03114t(32.1 + .184(.0311 sin (.283t+ .448) (4.17)

+.283 cos (.283t+ .448).))

Equation (4.17) is shown in Figure 4.3 in blue. In this case, the two models seem to be in

good agreement. This is not unexpected, as the sinusoidal term is small due to the small

coe�cients, and with the exponential term necessarily the same, the linear term was the

only term signi�cantly shifting the estimate. Note, however, that there are places where

the two models diverge. For example, for a concentration of .11 Bq
cm2 , the CRS model
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estimates the age to be 9.98 years, while the NCRS model estimates the age to be 9.43

years, a di�erence of about half a year. The sine term is particularly muted in this lake,

however. In subsequent examples, more pronounced sinusoidal e�ects will be seen.

Observe also that the NCRS model shows some small, periodic oscillations that the

CRS model does not account for. This too will merit further study in subsequent sections.

4.3 Implementing the NCRS Model with Sinusoidal and Linear Fluctuations

Several small streams, including Wilson Stream, �ow into or out of Cochnewagon Lake

[56]. Since there is in�ow and out�ow, it is possible that the lead-210 deposits could be

�uctuating linearly. It is also possible that there is some other mechanism in the lake that

is causing a linear change. For this reason, the NCRS model was redone including both

sinusoidal and linear terms.

The nonlinear regression feature in R was used to �nd best �t curve for the

unsupported lead-210 data using the following model equation:

C(x) = C0e
k1x(1 + a1 sin (bx+ c) + g1x). (4.18)

The given best �t curve was

C(x) = .348e−.401x(1 + .269 sin (2.16x+ 1.39) + .694x). (4.19)

Equation (4.19) is shown in Figure 4.4 in blue. The RSS value was found using R to be

RSS = .002180, which is less than a �fth of the size of the RSS value found using the CRS

model, suggesting that the NCRS model is a better �t.

Equation [4.19] can be rewritten in the following form:

C(x) = e−.401x−1.05(1 + .269 sin (2.16x+ 1.39) + .694x). (4.20)

Assuming again that depth and time are linearly related,

−.401x− 1.05 = −.03114t+ ct, (4.21)
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Figure 4.4. Data from Douglas Cahl's thesis with CRS and NCRS �t lines.

where ct is an arbitrary constant distinct from the constant determined in the previous

section. Using the same assumption as previously that when t = 0, x = .25,

−.401(.25)− 1.05 = ct, (4.22)

and hence

ct = −1.16. (4.23)

Solving for x,

x = .0778t+ .25. (4.24)
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Thus,

C(x) = e−.401x−1.05(1 + .269 sin (2.16x+ 1.39) + .694x) (4.25)

= e−.401(.0778t+.25)−1.05(1 + .269 sin (2.16(.0778t+ .25) + 1.39)

+.694(.0778t+ .25))

= e−.03114t−.955(1.17 + .269 sin (.168t+ 1.92) + .0540t)

= .385e−.03114t(1.17 + .269 sin (.168t+ 1.92) + .0540t)

= .452e−.03114t(1 + .230 sin (.168t+ 1.92) + .0460t)

= C0e
−.03114t(1 + .230 sin (.168t+ 1.92) + .0460t)

By equation (3.36),

A(x) = ζe−.03114t(
1

.03114
+

.0460

.031142
+
.0460t

.03114
(4.26)

+
.230

.031142 + .1682
(.03114 sin (.168t+ 1.92)

+.168 cos (.168t+ 1.92)))

= ζe−.03114t(32.1 + 47.4 + 1.48t+ 7.87(.03114 sin (.168t+ 1.92)

+.168 cos (.169t+ 1.92)))

= ζe−.03114t(79.5 + 1.48t+ 7.87(.03114 sin (.168t+ 1.92)

+.168 cos (.168t+ 1.92))).

Given the initial condition A(0) = .1501 Bq
cm2 ,

.150 = ζ(79.5 + 7.87(.03114 sin (1.92) + .168 cos (1.92))). (4.27)

Thus,

ζ = .00189. (4.28)
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Figure 4.5. A comparison of CRS and NCRS age estimates.

Therefore,

A(x) = .00189e−.03114t(79.5 + 1.48t (4.29)

+7.87(.03114 sin (.168t+ 1.92)

+.168 cos (.168t+ 1.92))).

Equation (4.29) is shown in Figure 4.5 in blue, compared to the CRS solution, which is

shown in green. This model deviates quite a bit from the CRS solution. Since a mechanism

that would cause linear changes in the rate of supply of lead-210 has not yet been

established for Cochnewagon Lake (although in�ow and out�ow are potential contenders),

the results presented in this section should not necessarily be taken as a better estimate for

the age of Cochnewagon Lake data. However, should such a mechanism be con�rmed, then

the NCRS model should be considered seriously as a potential better �t.

4.4 Modeling SS15 in Greenland: The Physically Unrealistic Linear Term

The next body of water we will analyze is lake SS15 in Greenland. I obtained the data

for this lake from the ERL computer amongst a collection of lake data that had been
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Figure 4.6. A comparison of CRS and NCRS �ts for the lake SS15 in Greenland lead-210
data.

analyzed previously. I selected SS15 because it appeared to show evidence of sinusoidal

�uctuations similar to the �uctuations seen in the Cochnewagon Lake data.

The lead-210 data collected from lake SS15 is shown in Figure 4.6 in red. Note that

error bars are absent from this graph. This is because the error estimates were too small to

be visible on the graph. Error estimates for this sample are included in Table A.3.

To begin the analysis, CRS and NCRS �ts of the data were obtained using R. The

unsupported lead-210 data was imported into R and two nonlinear models were

implemented, one for the CRS model and the other for the NCRS model. For the CRS �t,

the exponential decay equation

C(x) = eax+b (4.30)

was used. R generated the optimal coe�cients, resulting in the �t equation

C(x) = e−2.64−.367x. (4.31)

This equation is shown in Figure 4.6 in green. The residual sum of squares for the CRS �t

was calculated to be RSS = .0001788.
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For the NCRS model, equation [4.18] was inputted into the nonlinear �t function in R.

R outputted the optimal coe�cients, resulting in the equation

C(x) = .0595e−.165x(1 + .202 sin(2.71x− .459)− .104x). (4.32)

This equation is shown in Figure 4.6 in blue. The residual sum of squares was found to be

RSS = 2.431× 10−5. Comparing the ratios of the two RSS values, the NCRS model's error

estimate is more than 7 times smaller than the CRS model's error estimate, suggesting

that the NCRS model is a better �t for the data.

To obtain the CRS solution, the cumulative activity at the surface layer must be

known. For the data presented in this chapter, the cumulative accumulations were

provided in the spreadsheet from which the concentration data was obtained. The

cumulative activity was given to be A(0) = .1372 Bq
cm2 . The CRS solution is thus obtained

by substituting this initial condition into the exponential decay equation

A(x) = A(0)e−.03114t. (4.33)

Thus, age estimates for the CRS model can be obtained from the equation

A(x) = .137e−.03114t. (4.34)

This CRS age estimate is shown in Figure 4.7 in green.

Before the NCRS solution can be obtained, Equation [4.32] must be rewritten so that a

conversion between depth and time can be made. Note that

C(x) = .0595e−.165x(1 + .202 sin(2.71x− .459)− .104x) (4.35)

= e−2.81−.165x(1 + .202 sin(2.71x− .459)− .104x),

and thus to switch from x to t,

−2.82− .165x = −.03114t+ ct. (4.36)

Using the initial depth x = .5 as the depth estimate for t = 0,

−2.82− .165(.5) = −.03114(0) + ct, (4.37)
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and hence

ct = −.290. (4.38)

Solving equation [4.37] for x,

x = .5 + .188t. (4.39)

Rewriting equation [4.35] in terms of time,

C(x) = e−.2.90−.03114t(1 + .202 sin(2.71(.5 + .188t)− .459) (4.40)

−.104(.5 + .188t))

= e−2.91−.03114t(.948 + .202 sin(.496t+ .894)− .0195t)

= .948e−2.90−.03114t(1 + .213 sin(.496t+ .894)− .0206t).

Thus,

C(x) = C0e
−.03114t(1 + .213 sin(.496t+ .894)− .0206t). (4.41)

Now that equation [4.41] is in the correct form, the coe�cients can be substituted into

equation [3.36]. This results in the model equation,

A(x) = ζe−.03114t(
1

−.03114
+
−.0206

.031142
+
−.0206t

.03114
(4.42)

+
.213

.031142 + .4962
(.03114 sin(.496t+ .894) + .496 cos(.496t+ .894)).

Simplifying,

A(x) = ζe−.03114t(10.9− .662t+ .864[.03114 sin(.496t+ .894) (4.43)

+.496 cos(.496t+ .894)]).

The constant ζ remains to be determined. Using the initial condition A(0) = 0.1372 Bq
cm2 ,

0.137 = ζ(10.9 + .864(.03114 sin(.894) + .496 cos(.894))) = 11.3. (4.44)

Then

ζ =
.137

11.3
= .0121. (4.45)

63



Therefore equation [4.32] becomes

A(x) = .0121e−.03114t(10.9− .661670t+ .864[.03114 sin(.496t+ .894) (4.46)

+.496 cos(.496t+ .894)]).

Equation [4.46] is shown in Figure 4.7 in blue. Due to the decreasing linear term, the

initial NCRS �t would seem to suggest that the entire sample is less than 20 years old,

which is not consistent with the generally accepted age estimates for lake sediment samples

of a similar depth. For this reason, the NCRS model was recomputed without the linear

term.

Using R, the coe�cients for the best �t curve were recalculated excluding the linear

term. The resulting equation was

C(x) = .0608e−.316x(1 + .278 sin(2.78x− .669)). (4.47)

Figure 4.7. A comparison of CRS and NCRS age estimates for the lake SS15 in Greenland
lead-210 data including a linear term in the NCRS model.
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The RSS value was calculated to be RSS = 6.77× 10−5. While not as close a �t as the

original NCRS model, this modi�ed model is still a better �t than the purely exponential

CRS �t. Equation [4.47] is shown in Figure 4.8 in blue.

Equation [4.47] can be rewritten as

C(x) = e−2.80−.316x(1 + .278 sin(2.78x− .669)). (4.48)

Assuming that x and t are linearly related,

−2.80− .316x = −.03114t+ ct. (4.49)

Using the condition that x = .5 cm when t = 0 s, ct = −2.96. Therefore,

x = .5 + .0985t, (4.50)

and thus

C(x) = e−.03114t−2.96(1 + .278 sin(2.78(.5 + .0985t)− .669)) (4.51)

= e−.03114t−2.96(1 + .278 sin(.274t+ .721))

Figure 4.8. A comparison of CRS and NCRS �ts for the lake SS15 in Greenland lead-210
data excluding a linear term from the NCRS model.
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Therefore,

C(x) = C0e
−.03114t(1 + .278 sin(.274t+ .721)). (4.52)

Substituting the coe�cients of equation [4.52] into equation [3.36],

A(x) = ζe−.03114t(32.1 + .278(.03114 sin(.274t+ .721) (4.53)

+.274 cos(.274t+ .721))).

Solving for ζ in the same manner as before, using the initial condition A(0) = .1372

Bq
cm2 , ζ = .00416, and hence

A(x) = .004164e−.03114t(32.1 + .278(.03114 sin(.274t+ .721) (4.54)

+.274 cos(.274t+ .721))).

Equation [4.54] is shown in Figure 4.9 in blue, compared to the CRS �t, shown in green.

While the sinusoidal �uctuations are relatively small, the age estimates di�er by about a

year in places. For example, for a concentration of .095 Bq
cm2 , the NCRS model estimates the

age to be about 10.9 years, while the CRS model estimates the age to be about 11.8 years.

A di�erence of a year on a time scale of about 10 years is not insigni�cant.

Figure 4.9. A comparison of CRS and NCRS models for the lake SS15 in Greenland
lead-210 data, excluding a linear term from the NCRS model.
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Further, as mentioned previously, the NCRS model does provide information that the

CRS model does not. The period of the oscillations can easily be obtained from the NCRS

model, the signi�cance of which will be discussed in Section 5.2.

4.5 Modeling Gardner Pond

The next body of water I selected for modeling was Gardner Pond in Gardner, Maine.

This sample's data was included in a set of lake sample data contained on the computer in

the ERL. I selected it because it appeared to have some data points that did not lie along

an exponential decay curve. The data for this pond is shown in Figure 4.10 in red.

R was used to obtain the CRS and NCRS �ts. For the CRS �t, an exponential model

was used. The coe�cients of the best �t exponential were generated in R, resulting in the

equation

C(x) = e.671−.625x. (4.55)

Equation [4.55] is shown in Figure 4.10 in green. The RSS value was found to be

RSS = .0196. Using the initial condition A(0) = .408 Bq
cm2 , the CRS solution is

A(x) = .408e−.03114t. (4.56)

Equation [4.56] is shown in Figure 4.11 in green.

For the NCRS model, an initial �t including both a sinusoidal and a linear term was

implemented in R. The coe�cients generated in R corresponded to the equation

C(x) = 1.39e−.451x(1 + .244 sin(1.64x+ .0959)− .0257x). (4.57)

This model was a much better �t than the initial model, with an RSS value RSS = .00214.

A secondary NCRS �t without the linear term was also considered. The coe�cients for

this equation were generated in R, producing the equation

C(x) = 1.37e−.474x(1 + .263 sin(1.66x+ .0202)). (4.58)
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Figure 4.10. A comparison of CRS and NCRS �ts for Gardner Pond lead-210 data

This equation was about as good a �t as the model including the linear term, with

RSS = .00215. Since the linear term did not seem to improve the �t of the model any, it

was omitted, and equation [4.58] was used. Equation [4.58] is shown in Figure 4.10 in blue.

Equation [4.58] can be rewritten as

C(x) = e−.315−.474x(1 + .263 sin(1.66x+ .0202)). (4.59)

A conversion between depth and time can then be made, using

.315− .474x = .03114t+ ct. (4.60)

Since the depth x = 1 cm corresponds to t = 0, ct = −.158. Therefore,

x = .0658t+ 1. (4.61)

Equation [4.10] can thus be rewritten as

C(x) = e−.159−.03114t(1 + .263 sin(1.66(.0658t+ 1) + .0202)), (4.62)

which reduces to

C(x) = C0e
−.03114t(1 + .263 sin(.109t+ 1.68)). (4.63)
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Figure 4.11. A comparison of CRS and NCRS models for Gardner Pond lead-210 data

Substituting the coe�cients of equation [4.63] into [3.36],

A(x) = ζe−.03114t(32.1 + 20.3(.03114 sin(.109t+ 1.68) (4.64)

+.109 cos(.109t+ 1.68))).

Using the initial condition A(0) = .4080 Bq
cm2 , it can be determined that ζ = .0125, and

hence

A(x) = .0125e−.03114t(32.1 + 20.3(.03114 sin(.109t+ 1.68) (4.65)

+.109 cos(.109t+ 1.68))).

Equation [4.65] is shown in Figure 4.11 in blue. Here we see a fairly large divergence in

the two models for some of the upper sediment samples. For example, for a concentration

of .23 Bq
cm2 , the NCRS model yields an age estimate of about 15.5 years, while the CRS

model provides an age estimate of about 18.4 years. A nearly three year di�erence between

estimates on such a short time scale suggests that oscillatory behavior must be considered

to obtain an accurate age estimate for the upper sediment layers.

Another point of interest for the Gardner Pond model is the period of oscillations. Note

that a longer period was needed to �t the concentration versus depth data compared to the
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two previously discussed models, and correspondingly, the oscillations in the time estimate

have a longer period. The potential signi�cance of this will be discussed in Section 5.2.

4.6 Modeling Golden Lake

The next body of water we will analyze is Golden Lake. This was another data set from

the ERL computer that appeared to show �uctuations in the data points. The lead-210

data collected from Golden Lake is shown in Figure 4.12 in red. No error bars are present

because the measurement uncertainty was too small to be represented on this graph.

After initial �tting attempts were made for the Golden Lake data using both the CRS

and NCRS models, it became clear that the �rst data point deviated from the trend

followed by the remaining points in the series. The �rst data point corresponds to the

lead-210 in the surface layer of sediment. There are many issues that could potentially lead

to inaccurate measures in the surface layer of sediment, since this is the sediment that

comes into direct contact with plants and animals in the lake, as well as moving water

currents. Since this data point was so di�erent from the remaining points, it was omitted

from the later �tting attempts.

The lead-210 speci�c activities were imported into R and two nonlinear �t models were

implemented. The �rst was an exponential �t,

C(x) = eax+b, (4.66)

which was used for the CRS �t. R outputted the optimal coe�cients for a and b, yielding

C(x) = e−.303x−2.83. (4.67)

This curve is shown in Figure 4.12 in green. The RSS value for this curve was computed as

RSS = 5.579× 10−5. For the NCRS �t, equation [4.18] was used. R outputted the optimal

coe�cients, which yielded the equation

C(x) = .0510e−.142x(1 + .0950 sin(2.37x− 1.79)− .0899x). (4.68)
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Figure 4.12. A comparison of CRS and NCRS �ts for the Golden Lake lead-210 data.

This curve is shown in Figure 4.12 in blue. The RSS value was RSS = 1.465× 10−5. Note

that the NCRS �t is almost four times better a �t by the RSS metric. Note also that the

NCRS model seems to match the periodicity of the data well, something that the CRS

model cannot account for.

Once the CRS and NCRS �ts were obtained, the age estimates could be computed. For

the CRS model, equation [2.36] will be utilized. For the initial condition A(0) = 0.289 Bq
cm2 ,

A(x) = .289e−.03114t. (4.69)

Equation [4.69] is shown in Figure 4.13 in green.

To estimate the age using the NCRS model, �rst a conversion between depth and time

must be made. Rewriting equation [4.68],

C(x) = e−2.98−.142x(1 + .0950 sin(2.37x− 1.79)− .0899x). (4.70)

Employing the linearity assumption,

−2.98− .142x = −.03114t+ ct. (4.71)
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Figure 4.13. A comparison of CRS and NCRS estimates for the Golden Lake lead-210 data
including a linear term in the NCRS model.

Since the depth x = .5 cm corresponds to t = 0,

−2.98− .142(.5) = −.03114(0) + ct, (4.72)

and thus

ct = −3.05. (4.73)

Substituting equation [4.73] into equation [4.71] and solving for x,

x = .220t+ .5. (4.74)

Now equation [4.70] can be rewritten in terms of time:

C(x) = e−2.98−.142x(1 + .0950 sin(2.37x− 1.79)− .0899t) (4.75)

= e−2.98−.142(.220t+.5)(1 + .0950 sin(2.37(.220t+ .5)− 1.79)

−.0899(.220t+ .5))

= e−.03114t−3.05(.955 + .0950 sin(.520t− .611)− .0198t)

= .955e−.03114t−3.05(1 + .0995 sin(.520t− .611)− .0198t)

= C0e
−.03114t(1 + .0995 sin(.520t− .611)− .0198t).
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Figure 4.14. A comparison of CRS and NCRS �ts for the Golden Lake lead-210 data
excluding the linear term from the NCRS model.

Now that equation [4.75] is in the correct form, the coe�cients can be substituted into

equation [3.36], yielding

A(x) = ζe−.03114t(
1

.03114
− .0198

(.03114)2
− .0198t

.03114
(4.76)

+
.0995

(.03114)2 + (.520)2
(.03114 sin(.520t− .611) + .520 cos(.520t− .611)))

= ζe−.03114t(11.7− .635t+ .366(.03114 sin(.520t− .611)

+.520 cos(.520t− .611))).

Using the initial condition A(0) = 0.2892 Bq
cm2 , it was determined that ζ = .0244, and thus

A(x) = .0244e−.03114t(11.7− .635t+ .366(.03114 sin(.520t− .611) (4.77)

+.520 cos(.520t− .611))).

Equation [4.77] is shown in Figure 4.13 in blue.

Since the linear term seems to yield an unrealistic age estimate, the NCRS model was

recomputed in R without the linear term. R generated coe�cients, resulting in the equation

C(x) = .0551e−.287x(1 + .126 sin(2.47x− 2.21)). (4.78)
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The RSS value was found to be RSS = 3.19× 10−5, which is better than the CRS �t,

although not as close as the original NCRS �t. Equation [4.78] is shown in Figure 4.14 in

blue.

Using the same process as outlined in the previous examples, it was found that the

linearity condition is given by

x = .109t+ .5, (4.79)

and thus

C(x) = e−2.04−.03114t(1 + .126 sin(.262t− 1.01)). (4.80)

Therefore,

C(x) = C0e
−.03114t(1 + .126 sin(.262t− 1.01)). (4.81)

Substituting the coe�cients from [4.81] into [3.36],

A(x) = ζe−.03114t(32.1 + 1.81(.03114 sin(.262t− 1.01) (4.82)

+.262 cos(.262t− 1.01))).

Using the initial condition A(0) = .2892 Bq
cm2 , ζ = .00895, and hence

A(x) = .00895e−.03114t(32.1 + 1.81(.03114 sin(.262t− 1.01) (4.83)

+.262 cos(.262t− 1.01))).

Equation [4.83] is shown in Figure 4.15 in blue.

4.7 The NCRS Model: A Discussion

In this chapter, the NCRS model was tested against the CRS model on four di�erent

lake sediment samples. Upon analyzing these four lake samples, several distinctions become

apparent. The �rst is that when a linear term is introduced into the NCRS model, the age

estimates of the CRS and NCRS models can diverge by as much as several decades. This

may suggest that the linear term is not generally useful for estimating the age of sediment
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Figure 4.15. A comparison of CRS and NCRS models for the Golden Lake lead-210 data
excluding the linear term from the NCRS model.

samples. However, it is worth noting that many age estimates made using the CRS model

are not veri�ed by alternative means, such as pollen markers. Thus, it remains to be

determined whether the CRS models are indeed accurate age models for the given bodies of

water. Potential validation techniques will be discussed in Chapter 6.

It may be that linear increases or decreases are more gradual than would be predicted

by a curve �tting function, and more information about the body of water in question

would be needed to determine an accurate coe�cient for the linear term. Because the

linear term has the ability to change the age estimates so drastically, it would be worth

pursuing whether its inclusion is in fact warranted.

When the linear term is omitted from the NCRS model, the CRS and NCRS age

estimates align more closely. However, for the upper sediment layers, the two models can

yield age estimates that di�er by several years. Since the upper sediment layers are

relatively new, such a discrepancy is nontrivial and suggests that for bodies of water which

seem to exhibit oscillatory behavior, such behavior needs to be incorporated into the

models to yield accurate age estimates.
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Further, the NCRS model provides some information that the CRS model cannot. The

sinusoidal �uctuations in the NCRS model could be used to estimate the period of

oscillations for each body of water. If the periods are similar, this may suggest a common

physical phenomenon is responsible for creating the oscillations.

In the following chapter, data from additional samples will be �tted using the NCRS

model without the linear term. While su�cient details will be provided such that the

equations can be checked, intermediary steps will be omitted in the interest of readability.

Once a critical number of bodies of water have been analyzed, the periods of each, as well

as of the lakes considered in this chapter, will be estimated and analyzed.
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CHAPTER 5

FURTHER INVESTIGATIONS OF THE NCRS MODEL

5.1 Testing the NCRSFitModelSoftware on More Lead-210 Data

An algorithm, NCRSFitModelSoftware, was developed to compute approximate

coe�cients for the NCRS model. The algorithm was developed by Dr. Brian Toner, in

conjunction with the author. The code is included in Appendix

Although NCRSFitModelSoftware was developed such that a linear term could be

included, it was not utilized in these models. The rationale was that because the linear

term can drastically alter the age estimates, it should only be included when there is clear

physical evidence that it is needed.

NCRSFitModelSoftware was run on the data for the four lakes investigated in Chapter

4 and produced similar results to those presented previously. The results were not

identical, and varied slightly for di�erent runs of the algorithm on the same data set. This

is due to the inherent di�culty associated with nonlinear �tting, where the initial

parameters in�uence the �t that is chosen. There may be many locally good �ts, but

�nding a universal best �t can be challenging. Thus a good �t that agreed closely with, but

perhaps not identically to, the model produced by the �tting mechanisms devised in

Chapter 4 was what was sought.

The data used in this section was core data that had been obtained by members of the

Environmental Research Lab (ERL) previously. Di�erent samples may have been acquired

and processed by di�erent individuals. While the ERL has data for many of the lake cores

analyzed in the lab over the years, not all data sets proved useful for this analysis. Some of

the lake core data appeared to follow a pure exponential decay curve, while others

demonstrated erratic behavior that did not appear to be sinusoidal in nature. However, the

NCRSFitModelSoftware was run on most samples (33 in total), regardless of the perceived
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Table 5.1. Bodies of water modeled by the NCRSFitModelSoftware and their
classi�cations.

Failure on CRS Failure on NCRS Questionable Fit Reasonable Fit
Laguna Negra Black Pond Bullen Merri Barsjon
Laguna Schmoll Furbosjon Damariscotta River 1 Bracey Lake
Laguna Toncek Lilla Damariscotta River 2 Gardner Pond
Laguna Verde Long Lake Greenland Golden Lake
Second Pond 2 Damariscotta River 3 HiddenBT Highland Lake

Ysjon Pike Jellison Pond Lake Purrumbete
SS32 Michi Lake Salmon Pond

Seal Cove Pond SS15
Second Pond 1 Warner Lake
Tilden Pond
Tunk Lake

�t, to see what the software would do when the chosen model was likely a poor �t for the

data. Of the data sets tested by the NCRSFitModelSoftware, 9 of the 33 data samples

were able to be reasonably �t using the NCRS model with sinusoidal �uctuations.

(Cochnewagon Lake was also able to be modeled using NCRSFitModelSoftware, but it

came from a di�erent set of data sets and thus was not included in the 33.)

There were three issues that could arise when the NCRSFitModelSoftware was run.

The algorithm could error out when attempting to �t the data using a purely exponential

�t (the CRS �t). The algorithm could also perform the exponential �t, but error out when

implementing the NCRS �t. In both of these cases, the algorithm failed to produce a

result. The other issue that cropped up was questionable �tting of the data. In some

instances, the NCRS�tModelSoftware produced a NCRS �t that visibly seemed to be a

poor �t for the data, such as by �tting a sinusoidal curve to a data set for which there

appeared to be no oscillatory behavior. Table 5.1 shows the distribution of bodies of water

in terms of �t failure or success. Some of the curves for which the NCRSFitModelSoftware

produced a good sinusoidal �t were discussed in Chapter 4, and thus will not be revisited

in this section. The remainder of the reasonable sinusiodal �ts, as well as some examples of

data sets for which the NCRSFitModelSoftware did not produce a reasonable sinusoidal �t,
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will be considered in the subsequent subsections. While for each of the samples considered

below the NCRS model appeared to be a better �t than the CRS model based on the RSS

value, in some cases neither appears to be a particularly good �t, suggesting that a

di�erent set of curves may be needed.

5.1.1 Highland Lake

The Highland Lake data appeared to show some �uctuations, although it did not have

the clear sinusoidal trend that the lake samples considered in Chapter 4 showed.

Nonetheless, NCRSFitModelSoftware was run on the data. The CRS model equation was

found to be

C(x) = e−0.216x+2.17, (5.1)

shown in Figure 5.1 in black, while the NCRS �t was

C(x) = exp−0.275x+ 2.40(1− 0.335 sin(1.93x+ 0.231)), (5.2)

shown in Figure 5.1 in blue. The RSS value for the CRS model computed by the

NCRSFitModelSoftware was RSS = 16.70, while for the NCRS model it was RSS = 8.009.

Figure 5.1. Unsupported lead-210 versus depth for Highland Lake.
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Figure 5.2. Age estimates for Highland Lake.

For the NCRS model, the linear transformation between depth and time was

−0.275x+ 2.40 = −.03114t+ 2.26, (5.3)

and thus

C(x) = C0e
−0.03114t(1− 0.335 sin(0.218t+ 0.116)). (5.4)

A(x) for the CRS and NCRS models were found numerically and are shown in Figure 5.2

in black and blue, respectively.

5.1.2 Salmon Pond

For Salmon lake, the CRS �t was found to be

C(x) = e−0.284x+0.0960, (5.5)

shown in Figure 5.3 in black, while the NCRS �t was

C(x) = e−0.379x+0.415(1 + 0.408 sin(2.96x− 3.84)), (5.6)
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Figure 5.3. Unsupported lead-210 versus depth for Salmon Pond.

shown in Figure 5.3 in blue. The RSS values were computed to be RSS = 0.1707 for the

CRS model and RSS = 0.001978 for the NCRS model.

The conversion between depth and time was given as

−0.379x+ 0.415 = −.03114t+ 0.130, (5.7)

leading to

C(x) = e−0.03114t(1 + 0.408 sin(0.243t− 2.88)). (5.8)

A(x) plots for the CRS and NCRS estimates are shown in Figure 5.8 in black and blue,

respectively.

5.1.3 Lake Purrumbete

For Lake Purrumbete, for the CRS model,

C(x) = e−0.427x−0.465, (5.9)

shown in Figure 5.5 in black, and for the NCRS model,

C(x) = e−0.533x−0.172(1 + 0.514 sin(4.08x+ 0.992)), (5.10)
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Figure 5.4. Age estimates for Salmon Pond.

shown in Figure 5.5 in blue. The RSS values were RSS = 0.0137 for the CRS model and

RSS = 0.00267 for the NCRS model.

For the NCRS model, it was determined that

−0.533x− 0.172 = −.03114t− 0.838, (5.11)

and thus,

C(x) = C0e
−0.03114t(1 + 0.514 sin(0.239t+ 1.24)). (5.12)

The A(x) curves are shown in Figure 5.6, with the CRS �t in black and the NCRS �t in

blue.
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Figure 5.5. Unsupported lead-210 versus depth for Lake Purrumbete.

Figure 5.6. Age estimates for Lake Purrumbete.
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5.1.4 Warner Lake

Once it had been con�rmed that NCRSFitModelSoftware produced results similar to

those obtained in Chapter 4, it was implemented on the data for Warner Lake in Peru.

While there are some �uctuations present in the data, it is not clear that they are

necessarily sinusoidal in nature. Nonetheless, the NCRSFitModelSoftware was run to see if

a �t including sinusoidal �uctuations better �t the data than a purely exponential model.

The �rst data point had inadvertently been excluded in the initial run, but this exclusion

seemed to provide a good �t for the potential periodic behavior, so it was excluded from

successive runs as well. For the exponential �t, NCRSFitModelSoftware produced the

equation

C(x) = e−0.609x+3.45, (5.13)

shown in Figure 5.7 in black, and for the NCRS �t with sinusoidal �uctuations it produced

the equation

C(x) = e−0.405x+2.97(1 + 0.589 sin(2.80x− 0.942)), (5.14)

Figure 5.7. Unsupported lead-210 versus depth for Warner Lake in Peru.
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Figure 5.8. Age estimates for Warner Lake in Peru.

shown in Figure 5.7 in blue. For the relationship between x and t, it determined that

−0.405x+ 2.97 = −.03114t+ 2.77, (5.15)

resulting in the equation

C(x) = C0e
−0.03114t(1 + 0.589 sin(0.215t− 0.471)) (5.16)

A(x) was determined numerically for the CRS and NCRS �ts. The results are shown in

Figure 5.8, with the CRS �t in black and the NCRS �t in blue. Note that because

NCRSFitModelSoftware was developed using R, the �gures are produced in R rather than

Mathematica, which is why the images appear di�erent than in previous sections.
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5.1.5 Bracey Lake

The NCRSFitModelSoftware was then implemented on the Bracey Lake lead-210 data.

The CRS �t was found to be

C(x) = e−0.239x−0.0722, (5.17)

shown in Figure 5.9 in black, while the NCRS �t was found to be

c(x) = e−0.245x−0.0418(1 + 0.113 sin(1.86x+ 1.50)), (5.18)

shown in Figure 5.9 in blue. The linearity condition was found to be

−0.245x− 0.0418 = −.03114t− 0.226, (5.19)

and thus

C(x) = C0e
−0.03114∗t(1 + 0.589 sin(0.215t− 0.236)). (5.20)

A(x) was determined numerically. The CRS and NCRS results are shown in Figure 5.10 in

black and blue, respectively.

Figure 5.9. Unsupported lead-210 versus depth for Bracey Lake.
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Figure 5.10. CRS and NCRS Age estimates for Bracey Lake.

5.1.6 Barsjon Lake

Barsjon Lake in Sweden also seemed to be modeled reasonably well using the

NCRSFitModelSoftware. The algorithm produced the CRS �t

C(x) = e−0.179x−2.74, (5.21)

shown in Figure 5.11 in black, and the NCRS �t

C(x) = e−0.211x− 2.58(1 + 0.239 sin(2.82x+ 2.51)), (5.22)
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Figure 5.11. Unsupported lead-210 versus depth for Barsjon Lake.

shown in Figure 5.11 in blue. The RSS values were computed to be RSS = 0.0001681

and RSS = 7.372× 10−5 for the CRS and NCRS �ts, respectively.

The linearity condition was found to be

−0.211x− 2.58 = −.03114t− 2.68, (5.23)

yielding the equation

C(x) = e−0.03114t(1 + 0.239 sin(0.417t+ 1.25)). (5.24)

The CRS and NCRS age curves were computed numerically and are shown in Figure 5.12

in black and blue, respectively.
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Figure 5.12. CRS and NCRS Age estimates for Barsjon Lake.

5.1.7 Laguna Negra: Failure in Modeling CRS Fit

While the NCRSFitModelSoftware produced an output for many of the data sets, in

some instances it failed to produce a result. The �rst place where it could run into trouble

was in modeling the exponential �t, which would be used for the CRS model. One such

example of this is the sample from Laguna Negra in Argentina. As shown in Figure 5.13,

the data appears to follow an exponential curve reasonably well, although the tail of the

curve skews upward a little.

When NCRSModelFitSoftware was run on the data, an error message appeared, shown

in Figure 5.14. The message stated, �Missing value or an in�nity produced when evaluating

the model." The x and y data values were checked and no missing data points were found,

so presumably the algorithm ran into issues with an in�nite value somehow.

The data was able to be �tted with an exponential curve using the nls function in R,

the solution of which is shown plotted against the data points in Figure 5.13. Since the

data does not seem to exhibit any clear oscillatory behavior, no attempt was made to

manually �t it using the NCRS model with sinusoidal �uctuations.
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Figure 5.13. Unsupported lead-210 versus depth for Laguna Negra in Argentina.

90



Figure 5.14. Error message received when modeling Laguna Negra data.
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5.1.8 Long Lake: Failure to Produce the NCRS Fit

Another possible outcome was that the NCRSModelFitSoftware would produce a result

for the exponential �t, but not for the NCRS �t. An example of this can be seen in the

modeling of Long Lake. The Long Lake data is shown in Figure 5.15.

When the NCRSFitModelSoftware was run on the Long Lake data, an exponential

solution was produced. However, when the algorithm searched for an NCRS �t, an error

was produced, as shown in Figure 5.16. The following message was given, �number of

iterations exceeded maximum of 50." This issue can arise when the set of initial conditions

chosen for the nls function are not well suited to the data, and sometimes can be remedied

by a di�erent choice of initial conditions. However, it can also arise when the function is

not well suited to the data. Note that one data point deviates quite a bit from the others,

which likely made it di�cult for the software to �t the data with a curve. Aside from one

errant initial data point, the Long Lake data appears fairly close to exponential decay, so a

manual �t using the nls function was not attempted at this time.

Figure 5.15. Unsupported lead-210 versus depth for Long Lake.
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Figure 5.16. Error message received when modeling Long Lake data.

5.1.9 Bullen Merri: A Questionable Fit

Lake Bullen Merri is a lake in Australia. It is not clear from the distribution of the data

points that a sinusoidal �t is the ideal choice here. However, because the

NCRSFitModelSoftware was able to �t a sinusoidal curve to the data that �t well, it was

included anyway. It seems likely that the �t is coincidental, since the data appears

exponential with the exception of one discrepant data point, and when the discrepant data
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Figure 5.17. Unsupported lead-210 versus depth for Lake Bullen Merri in Australia.

point was removed, the algorithm gave an error message. Nonetheless, it is worth

examining how the modeling software handles such situations.

The NCRSFitModelSoftware determined the CRS �t to be

C(x) = e−0.252∗x−0.864, (5.25)

shown in Figure 5.17 in black, while the NCRS �t was found to be

C(x) = e−0.210x−0.993(1− 0.278 sin(7.38x− 13.6)), (5.26)

shown in Figure 5.17 in blue. The RSS values were RSS = 0.00513 for the CRS �t and

RSS = 0.000369 for the NCRS �t.

The conversion between depth and time was found to be

−0.210x− 0.993 = −.03114t− 1.31, (5.27)

and thus the NCRS �t in terms of time was

C(x) = C0e
−0.03114t(1− 0.278 sin(1.10t− 20.4)). (5.28)
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Figure 5.18. CRS and NCRS Age estimates for Lake Bullen Merri in Australia.

The A(x) curves were computed numerically and plotted in Figure 5.17, with the CRS

curve in black and the NCRS curve in blue.

While a �t curve and age estimate were able to be produced using the

NCRSFitModelSoftware, the �t here does not appear to be a particularly good �t. Thus,

discretion must be used when implementing the NCRSFitModelSoftware. If a �t does not

look reasonable, it is worth questioning whether it is useful for the data set in question.

5.1.10 Other Questionable Fits

While Lake Bullen Merri provides a good example of a �t provided by the

NCRSFitModelSoftware that upon closer inspection does not seem to �t the data well, I

thought it might be useful to provide a few more examples. Some of these data sets may in

fact have some periodic behavior, but due to some discrepancies in the data, the algorithm

was not able to correctly deduce the periodic nature. These data sets may bene�t from a

manual �tting. Others, like Lake Bullen Merri seem to exhibit no clear periodic trend at

all. The Damariscotta River core 1 data sample (Figure 5.19) appears to follow an

exponential curve fairly well. There is one data point at x = 7.5cm that does deviate from
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Figure 5.19. Unsupported lead-210 versus depth for the Damariscotta River Core 1.

the exponential curve, but it is not �tted any better by the sinusoidal curve the algorithm

chose. The second Damariscotta River core sample (Figure 5.20) does not �t an

exponential curve quite as well as the �rst core seems to. However, the �uctuations in the

data do not really appear to be sinusoidal in nature, suggesting that the NCRS model with

a sinusoidal term is not the best choice for a �t curve.
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Figure 5.20. Unsupported lead-210 versus depth for the Damariscotta River Core 2.

The next sample (Figure 5.21) was labeled only with the country of origin, Greenland,

so it is not clear which body of water it came from. For this sample, while it appears that

there may be some periodic behavior, the peaks of the data do not match with the peaks of

the selected function, and the period of the �t function seems shorter than the one

exhibited by the data. This may be an instance in which manual �tting could potentially

provide a more informative result.
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Figure 5.21. Unsupported lead-210 versus depth for a body of water in Greenland.

For the next data set (Figure 5.22), labeled Hidden BT, the NCRS �t seems to �t the

�rst three data points well. However, for the remaining data points, it does not seem to �t

at all, although the exponential �t isn't particularly good either. It is not clear that this

data is periodic, and thus the NCRS �t with sinusoidal �uctuations is likely not the

optimal choice of �t function here.

5.2 Examining the Period of Oscillations

One potential bene�t of the NCRS model is that it allows for an estimation of the

period of oscillations for data exhibiting sinusoidal �uctuations. If the periods of several

models fall within a similar range, it may suggest that a common phenomenon is

responsible for the oscillations. Being able to provide an approximate number for that

period could potentially help to narrow down the cause of the oscillatory behavior.

To determine the period, the C(x) equation solved for time was used. That is, the

equation of the form

C(x) = C0e
−kt(1 + c sin dt+ f). (5.29)
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Figure 5.22. Unsupported lead-210 versus depth the Hidden BT data set.

The period was computed by dividing 2π by the coe�cient of the time term inside the sin

function. Using the notation above, this could be described mathematically as

T =
2π

d
. (5.30)

For the bodies of water considered in Chapter 5, the period was computed using

NCRSFitModelSoftware.

Table 5.2. Period of oscillations for bodies of water considered in Chapters 4 and 5.
Body of Water Period (years) Equation

Cochnewagon Lake 22 4.14
SS15 23 4.52

Gardner Pond 57 4.63
Golden Lake 24 4.81
Highland Lake 29 5.4
Salmon Pond 26 5.8

Lake Purrumbete 26 5.12
Warner Lake 29 5.16
Bracey Lake 27 5.20
Barsjon Lake 15 5.24
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The period of oscillations for each of the bodies of water described in Chapters 4 and 5

which had a reasonable NCRS �t was computed and compiled in Table 5.2. All but two of

the bodies of water, Barsjon Lake and Gardner Pond, have periods between 20 and 30

years. Before we examine the potential implications of the computed periods, however, it is

worthwhile to consider the uncertainty in the period calculations.

5.2.1 Estimating the Error in the Period of Oscillations

While there historically have been trends in weather data, there also is some variance,

some noise. Thus obtaining a precise equation for the deposition of lead-210 in a lake core

sample is infeasible. Thus there is no �true" value to which the generated equations can be

compared. However, an estimate of the error could be obtained through simulations using

noisy data.

To estimate the error properly, the experimental error for each data point must be

known. This could be obtained by taking multiple cores from the same body of water,

analyzing the slices, and determining the mean and standard deviation of the lead-210

content at each depth. However, none of these ten bodies of water had multiple cores taken,

so the experimental error could not be determined. An alternate approach was needed.

To estimate the error, I chose a generating equation to create a set of �true" data

points. The equation I chose was

C(x) = .5e−.2x(1 + .15 sin (1.8x+ 3)). (5.31)

You may notice that this model equation is close to the generated concentration equation

for Cochnewagon Lake. I wanted to use an equation with physically realistic parameters, so

I opted to use Cochnewagon Lake's concentration equation as my starting point and then

round the coe�cients a little.

I generated eleven data points by substituting eleven depth values into the model

equation and rounding the output to two signi�cant digits. The values are shown in Table

5.3.
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Table 5.3. Simulated concentration data without noise
Depth (cm) Concentration (Bq

g
)

.25 .454

.75 .370
1.25 .339
1.75 .345
2.25 .352
2.75 .332
3.25 .282
3.75 .241
4.25 .184
4.75 .169
5.25 .172

Table 5.4. Simulated concentration data with noise
Depth (cm) Concentration (Bq

g
)

.25 .493

.75 .360
1.25 .323
1.75 .343
2.25 .395
2.75 .334
3.25 .285
3.75 .259
4.25 .231
4.75 .147
5.25 .162

The next step was to use R to add some noise to the generated data points. To generate

the noise, I modi�ed the runif function to generate random numbers between 1 and -1. I

then scaled these random numbers by .05 and added them to the original data points. The

results are given in Table 5.4. The code used for this process is given in Appendix C.2.

The coe�cient used to determine the amplitude of the noise depends largely on the

sample in question. For some samples, the data points almost perfectly �t a curve, so it

would be anticipated that there is little noise in the data. For other data sets, the data

points may deviate quite a bit from the best �t curve, and thus it would be expected that
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Figure 5.23. The �t function for the simulated concentration data without noise.

the data is noisier. To estimate the coe�cient, then, one method would be to determine

the mean error for all of the data points in a sample and multiply that number by 2. The

error is doubled because, taking the magnitude of the random numbers generated, the

mean of these random numbers would be on average about .5. Thus by doubling the

random numbers, the mean error of the simulated data points should be comparable to the

mean error of the original data points. I did not use this process for the purposes of this

example. Rather, I chose a coe�cient, .05, that visually looked like it produced an

appropriately large error. However, for the error estimates for the ten bodies of water

considered in this section, I took the more rigorous approach.

Once I had obtained the two sets of data, one without noise and one with, I ran the

NCRSFitModelSoftware on both data sets. Plots of the �t functions for the simulated

concentration data without and with noise are shown in Figures 5.23 and 5.24, respectively.

The software produced the equation for the concentration as a function of time for the

simulated data without noise:

C(t) = e−0.03114t(1 + 0.147 sin(0.280t+ 0.752)). (5.32)

102



Figure 5.24. The �t function for the simulated concentration data with noise.

For the data with noise, the equation was given as

C(t) = e−0.03114t(1− 0.187 sin(0.260t− 0.0509)). (5.33)

The periods for these two data sets were thus TWO = 22.4 years and TW = 24.1. Thus the

two period values di�ered by a little less than two years.

It is possible that a singular trial may produce larger or smaller deviations from the

original data than would be expected on average. For this reason, I ran twenty-nine more

simulations of data with noise and computed the period. The values of all thirty trials are

given in Table 5.5. It is worth noting that I ran more than 30 trials to accrue this data.

There were a couple of instances in which NCRSFitModelSoftware produced an error

message and did not provide a period estimate. There were also a few instances in which

the graph produced looked like a questionable �t, with a lot of small oscillations between

data points that did not appear warranted. These �ts were not included in the listed

simulations.

I used R to compute the mean and standard deviation of these 30 simulations. The

mean was µ = 21.7 years, while the standard deviation was 3.51 years. Since the mean
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Table 5.5. Thirty simulations with random noise and the resulting period
Data run Period (Y ears)
Original 22.4

Simulation 1 24.1
Simulation 2 16.7
Simulation 3 26.4
Simulation 4 27.4
Simulation 5 19.9
Simulation 6 28.7
Simulation 7 27.8
Simulation 8 15.9
Simulation 9 18.7
Simulation 10 18.8
Simulation 11 17.0
Simulation 12 23.4
Simulation 13 19.3
Simulation 14 22.4
Simulation 15 22.4
Simulation 16 25.5
Simulation 17 16.7
Simulation 18 26.2
Simulation 19 23.0
Simulation 20 18.9
Simulation 21 22.0
Simulation 22 21.1
Simulation 23 23.3
Simulation 24 19.0
Simulation 25 24.6
Simulation 26 19.6
Simulation 27 21.4
Simulation 28 20.0
Simulation 29 20.6
Simulation 30 19.8

was generated from simulated data, it is not a better estimate of the period, and is useful

primarily as a check to make sure the simulation process is running correctly. For 30

simulations, we would expect to see that the mean is similar to the �original" period (the

period determined from the NCRSModelFitSoftware), but because of the small sample size,

we would not expect them to be close to identical. Since the original period was 22.4
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Table 5.6. Period of oscillations for bodies of water considered in Chapters 4 and 5.
Body of Water Period (years)

Cochnewagon Lake 22.4± 6.7
SS15 22.9± 3.1

Gardner Pond N/A±N/A
Golden Lake 24.0± 4.1
Highland Lake 28.9± 11
Salmon Pond 25.9± 1.5

Lake Purrumbete N/A±N/A
Warner Lake 29.2± 8.5
Bracey Lake 26.6± 5.4
Barsjon Lake 15.1± 6.3

years, the mean of the simulated period data 21.7 years seems reasonably close, given that

for a 95% con�dence interval around the simulation mean, the original value falls within

that range.

There are many techniques that can be used to estimate the error of a sample. I opted

to use twice the standard deviation as my error estimation technique. My preference is to

overestimate the error rather than potentially underestimate it, which this technique

should accomplish. Thus for this example, the error would be about 7.0 years, meaning

that the period for this �ctional data set would be 22.4± 7.0 years.

5.2.2 Results

I ran 30 simulations for each of the 10 bodies of water considered in this section. The

results of these simulations are shown in Appendix B. I used these simulations to compute

the error in the same manner outlined for this example, by computing the standard

deviation and doubling it. The results of these computations are shown in Table 5.6. For

two of the bodies of water, Gardner Pond and Lake Purrumbete, the means of the

simulations were di�erent enough (using a 95% con�dence interval) from the period values

obtained from the actual data that the two means could not be said to be the same. For

both of these bodies of water, a handful of the trials yielded periods on the order of 50− 60

105



years that visually appeared to �t the data well. Interestingly, even though the Gardner

Pond simulated data was generated using a curve that should have produced a 57 year

period, once the noise was introduced, the majority of the trials yielded periods on the

order of 20− 30 years. Because the noisy simulations were so di�erent from the periods

generated from the data, I decided that we do not have enough information to say what

the period of oscillations is for these two lakes.

For the remaining eight bodies of water, the period generated from the data did fall

within a 95% con�dence interval around the mean of the simulated noisy data. The

uncertainty, which was computed by doubling the standard deviation, varied widely from

one lake to the next. This is unsurprising, given that some lake data appeared to be noisier

than the other lakes. Once uncertainty was accounted for, seven of the bodies of water had

periods that overlapped with one another. The one exception was Barsjon, which had a

period that overlapped with some, but not all, of the lakes.

One thing to be aware of is that these results are only as good as the original �t curves.

Because of the conversion between depth and time, it is not only the sinusoidal piece but

also the exponential piece that have to be �t well to get an accurate estimate for the

period. Improved curve �tting techniques could yield better period estimates.

5.3 Oceanic Oscillations

For the bodies of water considered in the previous section, almost all had a period

between 20− 30 years. This raises the question as to what could be causing such

oscillations in lead-210 sediment content.

One possibility is that such �uctuations could be caused by climate cycles. Climate

cycles are periodic changes in things such as atmospheric temperature, air pressure, winds,

ocean surface temperature, and precipitation amounts. In particular, since the majority of

the bodies of water considered are in proximity to the Atlantic Ocean, for such bodies of

water, it is possible that one or more of the oceanic climate cycles is in�uencing lead-210
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deposits. Despite extensive research, oceanic oscillations are still not fully understood.

Recently, e�orts have been made to estimate the period of oceanic oscillations (e.g.,

[57, 58]). Rather than exhibiting a single distinct period, it has been shown that the

processes behind such oscillations may have several distinct periods.

Of particular interest to this research are the North Atlantic Oscillation (NAO), the

Atlantic meridional overturning oscillation (AMOC), and the Atlantic mutidecadal

oscillation (AMO), which will be collectively referred to as the North Atlantic Oscillations

(NAOs). Each of these oscillations operates in the North Atlantic Ocean.

Seip et al. [57] found cycles for the NAOs with lengths of 7, 13, 20, 26, and 34 years.

Observe that, after accounting for uncertainty, almost all of the bodies of water considered

in the previous section had a period of 20 or 26 years, the one exception being Barsjon,

which could be said to have a period of 13 or 20 years. It is possible, then, that one

particular mechanism behind the oscillations with a period of 20− 26 years governs the

lead-210 deposits. It is also possible that all of the mechanisms a�ect lead-210 deposits to

some degree, some perhaps more so than others, and that if multiple sinusoidal functions

were used in the NCRS model instead of a single one, that a better �t could be found.

Such a process would require more sophisticated modeling software than the default

nonlinear �t function in R, but could be a good avenue for future research.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this paper, I have derived a new model for radiometric dating, the non-constant rate

of supply (NCRS) model. It is a generalized model such that the commonly used constant

rate of supply (CRS) model could be viewed as a special case of the NCRS model when the

rate of supply of a given radionuclide is constant. It can be utilized whenever the

concentration data for a radioisotope in a given sample can be modeled by a combination

of mathematical functions (e.g., the concentration data may be modeled as an exponential

decay curve with sinusoidal �uctuations).

6.1 Summary and Conclusions

I applied the NCRS model to lead-210 data for 34 bodies of water. For four of these

bodies of water, I performed the NCRS analysis by hand (see Chapter 4). Initially I

included both sinusoidal and linear �uctuations in my concentration modelings. While the

inclusion of the linear term provided a better �t than sinusoidal and exponential terms

alone, it soon became apparent that the linear term signi�cantly shifted the age estimates,

in some cases by decades. While it would be expected that the linear term should a�ect

the age estimates some, in a couple of cases the age estimates it provided appeared to be

physically unrealistic. Thus, for future applications of the NCRS model, I removed the

linear term. Even though the linear term proved troublesome in certain cases, it did raise

some important questions for radiometric dating. If there is downward migration of

lead-210 in the soil, then conventional dating techniques may not accurately estimate the

age of the sediment. The linear term may still be useful in some instances, particularly in

bodies of water in which there is signi�cant migration of lead-210, but more information

about the body of water would be needed so that an accurate linear term could be

appended to the concentration equation.
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To model the other bodies of water, Dr. Brian Toner and I developed the

NCRSModelFitSoftware, which automated the NCRS modeling process. Although the

software has the capability to include a linear term, I included only sinusoidal �uctuations

in addition to exponential decay. I pulled 33 bodies of water (including three that I had

modeled by hand previously) from a collection of processed data contained on the ERL

computer. While not all bodies of water exhibited sinusoidal �uctuations, for nine of the

samples, the NCRSModelFitSoftware was able to produce a �t curve with sinusoidal

�uctuations that appeared to �t the data reasonably well. Cochnewagon Lake was also

able to be �t by the software, but it came from a separate collection of data. In total, this

left 10 bodies of water with sinusoidal �uctuations to be further analyzed.

The sinusoidal oscillations did shift the age estimates, in some instances by a matter of

years. This e�ect was most pronounced for the upper layers of sediment, as the exponential

decay dampened out much of the sinusoidal term's e�ect in deeper sediment. On such a

short timescale, a di�erence of a few years matters when it comes to estimating the age of

the sediment. If there truly are sinusoidal �uctuations, which the data seems to support in

at least some bodies of water, it is imperative that these are considered in dating models.

An important future step will be to validate the model using samples of known age.

Often validation is done using a secondary radioisotope such as cesium-137 or hallmark

features of the sediment, such as pollen markers. While the cesium-137 content for each

sample is collected in the ERL, for many if not most of the bodies of water considered in

this paper, the lead-210 and cesium-137 dates do not align when the CRS model is used.

This issue was explored in [37], and was part of the inspiration for this paper, to reconcile

the two estimates by accounting for the potential downward migration of cesium-137. The

di�culties with direct application of the NCRS model to cesium-137 will be discussed later

in this chapter, but if those di�culties can be accounted for, this may be a fruitful avenue

for future research.
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Since the CRS and NCRS models produce similar estimates for the deeper sediment

layers when considering only sinusoidal �uctuations, however, using a fallout radionuclide

as a calibration tool may not be a �ne grained enough technique to see di�erences between

the two models. Physical markers, such as pollen markers, could potentially be useful here,

if they could be located in the upper sediment layers. However, this would likely require

the introduction of a new plant species to a geographic region within the past 15-20 years

in order to see di�erences between the age estimates of the two models. This requirement

limits the number of available bodies of water from which the data could be extracted, but

if such bodies of water can be found, then they may prove useful for testing the utility of

the NCRS model.

Perhaps the best physical validation tool would be a varved lake. In such bodies of

water, there is so little sediment mixing that the season in which a sediment layer was

formed can be distinguished based on the color of the sediment. Thus, the age can be

determined by counting the stripes of color in the sediment. Obtaining varved lake data is

di�cult, as few such lakes exist. To retain the sediment strati�cation, there must be

virtually no plant or animal activity in the lake. However, if varved lake data could be

obtained, it could provide a robust validation tool, assuming the sediment had nonconstant

trends in the lead-210 data which would require the use of the NCRS model.

Another key factor I investigated was the period of oscillations. I computed the period

for all 10 samples with sinusoidal �uctuations. Eight of the 10 had period values on the

order of 20− 30 years. Of the remaining two bodies of water, Barsjon had a period of

about 15 years, while Gardner Pond had a period of about 57 years. Two of the bodies of

water, one of which was Gardner Pond, ended up being removed from the sample because

the uncertainty was too high for the age estimate to be considered meaningful. Of the

remaining eight bodies of water, all but Barsjon overlapped with the periods of one another.

Barsjon's period overlapped with some, but not all, of the bodies of water in the sample.
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Since the majority of the bodies of water in the sample seemed to share a common

period, the natural question was, what could cause such a phenomenon? Since the

introduction of lead-210 into sediment is conducted through factors such as precipitation

and wind, climate cycles, which are cyclic in nature, seemed to be a probable contender. In

particular, since most of the bodies of water in the sample are close to the Atlantic Ocean,

I looked up the period of oscillations for the North Atlantic Oscillations (NAOs). Instead

of having one period, each of these oscillations has several distinct periods. Recent research

[57] suggests that the periods have lengths of about lengths of 7, 13, 20, 26, and 34 years.

With uncertainty, all of the bodies of water except Barsjon have periods of about 20 or 26

years, while Barsjon has a period of about 13 or 20 years. While this does not de�nitively

prove that climate cycles are responsible for the sinusoidal �uctuations in sediment

samples, it does suggest that climate cycles could be a potential cause.

6.2 Improvements and Further Work

To build upon this work, one of the best avenues for future research would be the

inclusion of more sediment samples. While it is encouraging to see that the bodies of water

in this study had periods that were roughly the same, it is possible that the observed

phenomenon is merely a �uke. More samples could provide further evidence that there is

indeed a phenomenon leading to oscillatory behavior in some sediment deposits.

The �t of the concentration versus depth data is crucial to the success of the NCRS

model. Both the exponential and sinusoidal pieces of the model must be �t well in order to

determine an accurate estimate of the period of oscillations. However, the nonlinear �t

function in R, which was what I used for the �ts, did not always produce sensible �ts (see

Sections 5.1.7-5.1.10). While in some cases, this was due to either the data being purely

exponential or too noisy, in other instances it was likely due to an issue with the function

itself.
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The function is relying on mathematical optimization alone. There may be only a small

di�erence between two di�erent �t curves, but the function always picks the one that has

the smallest deviation from the data points, even if that �t makes less physical sense. I ran

into an issue several times, of which Damariscotta River Core 2 is a good example (see

Figure 5.20), where, to obtain the best possible �t, the software would produce a sinusoidal

function with a very short period and thus lots of oscillations. In the case of the

Damariscotta River Core 2, the data appears to be exponential, with one data point that

deviates from the exponential shape. Since it is expected that there will be some amount of

noise in the data, a human researcher would likely determine that a sinusoidal function was

not needed and that a pure exponential function would produce the most physically

realistic �t. The software, however, produced a curve that hits the outlier and comes close

to hitting the other points, but which does not seem like a good �t for the general trend of

the data. With enough oscillations, a function can reach nearly every data point, but the

necessity of so many oscillations is often not re�ected in the general shape of the data.

At present, there is no objective system for determining which �ts are reasonable and

which ones are not. It si up to the researcher to visually inspect the �ts and discard any

that seem unreasonable. In Sections 5.1.9 and 5.1.10 I have provided you with examples of

the types of �ts that I thought were unreasonable, but it would be better if unrealistic �ts

were ruled out by the �t function itself. If a better �t function could be devised, perhaps

one with noise reduction, then it could make the �tting process easier and reduce chances

of erroneously discarding a valid �t.

The cause of the sinusoidal oscillations could also prove to be a fruitful avenue for

research. While it seems probable that climate cycles could be the cause of such

�uctuations, the particular climate cycles and mechanisms that could be responsible remain

an open question. Since the bodies of water considered here come from various geographic

regions, investigations of individual lakes and their climates could help to better understand
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the phenomenon. It is also possible that another cause aside from climate cycles is

responsible for the oscillations. Alternate explanations may be worth consideration.

6.3 Cesium Dating and Other Fallout Radionuclides

One of the goals at the outset of this project was to use the NCRS model to estimate

the age of samples using cesium-137. However, due to the unique shape of cesium curves,

the model must be adapted to �t cesium-137, which proved to be more di�cult than

initially anticipated. Consider the activity data for Golden Lake, shown in 6.1, for lead-210

and cesium-137, obtained from one of the old data sheets in the ERL. (Note that total

lead-210 activity, rather than unsupported lead-210 activity, is shown. Note also that

activity, rather than speci�c activity, is on the y axis, allowing lead-210 and cesium-137 to

be plotted on the same graph.) Unlike lead-210, which primarily exhibits exponential

decay, the cesium-137 data has almost a bell shape, although what happens in the very

middle of the graph is unclear. Unlike lead-210, which is constantly being produced,

cesium-137 was introduced into the environment during the above ground nuclear weapons

testing in the 1950s and 1960s. The presence of cesium-137 in pre-nuclear testing sediment

suggests that the cesium has been able to migrate through the layers of sediment. After the

weapons testing ended, cesium-137 continued to be deposited into waterways through wind

and precipitation, but at decreasing rates. The cesium-137 data must therefore be modeled

piecewise for the time prior to above ground nuclear weapons testing, the years of testing,

and the years post-testing. Let's suppose that the start of testing corresponds to depth x1

and the ending of testing corresponds to depth x2. For the years preceding the testing, we

will have approximately a decay curve, with starting amplitude S1, as well as potentially a

sinusoidal function to account for the oscillations visible in the data. For the years

post-testing, we have what looks like an increasing exponential function, going from a

relatively small value to maximum value S2. To model this, what we could do would be �ip

the data horizontally so that it looks like an exponential decay curve (meaning that we can
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Figure 6.1. Unsupported and supported lead-210 and cesium-137 activity in Golden Lake.

have a starting value of S2 at depth x2). Then the depth data will correspond to rising

through the layers of sediment rather than descending. Because this data is ��ipped," it

would have to be treated separately from the weapons testing and pre-testing years,

because the information that would come from it would be in a sense reversed. The depths

and times generated from this curve would be measuring from the depth at concentration

S2, so calculations would have to be performed to transform the axis back to the origin.

When considering the testing years, however, we run into some di�culties. Since

cesium-137 was introduced into the atmosphere in large quantities over relatively short

intervals of time, one way to model the process by which it was introduced would be

through a series of pulse functions. However, since the sediment sample slices correspond

to several year intervals, even if the precise dates of the pulses were known, the data isn't

�ne grained enough to determine information about the individual pulses. Rather, what we

see is an accumulation of the e�ects of multiple pulses and their corresponding decays, the

shape of which we cannot precisely model with our limited information.

My initial thought was that perhaps we could ignore what was happening during the

testing years, since we know the dates of nuclear testing. However, because cesium-137 is

able to migrate through the soil, the sharp peaks that we see in the data may not

correspond exactly to the years of nuclear testing. We should be able to estimate the age of

sediment on the left side of the graph from the post-testing information, but the right half
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we cannot determine an accurate age from without the information for the testing years.

We could make an estimate based on when nuclear testing began, but that estimate could

be o� by several years, introducing a large amount of uncertainty into our age estimates.

There are likely many more optimal approaches which could be taken, and it should be an

interesting question to be considered in future research.

Since other fallout radionuclides like strontium-190 were introduced into the

environment in the same fashion as cesium-137, similar models would be used. However,

for fallout radionuclides that have less ability to migrate through the soil layers, there may

not be as much di�culty in modeling as there is with cesium-137. There may not even be a

right half to the graph if the radioisotopes are nearly stationary, since these isotopes are

not naturally occurring. While cesium-137 is likely the most commonly collected and

utilized of the fallout radionuclides for radiometric dating, it would be interesting to apply

the NCRS model to other radioisotopes as well.

6.4 Conclusion

The research presented here provides much promise for future research endeavors. It is

intriguing to see that of the small sample of bodies of water considered, many exhibited

sinusoidal oscillations. Of the bodies of water with sinusoidal oscillations, almost all had

the same period, once uncertainty was accounted for. It is also notable that this period

seems to line up with the period of some of the processes behind the NAOs, suggesting

that perhaps climate cycles could be behind the periodic behavior.

There are many possibilities for improvement, particularly in regards to the �tting

process, which could yield better results. There are also many avenues to explore, such as

the cause of the oscillations and adapting the NCRS model for fallout radioisotopes.

Hopefully this work will be but the start of new research in radiometric dating and will

help us to better understand the world around us.

115



REFERENCES

[1] D. L. Cahl, �Di�usion coe�cients calculated using Cs 137 pro�les applied to Pb 210
dating in lake core samples,� Master's thesis, University of Maine, 2012.

[2] H. R. von Gunten, �Radioactivity: A tool to explore the past,� Radiochimica Acta 71
(1995) 305�316.

[3] B. Lindell, Pandora's Box: The History of radiation, radioactivity, and radiological
protection. Nordic Society for Radiation Protection, Sweden, 1st ed., 1996. Translated
from Swedish by Helen Johnson.

[4] G. Rosenbusch and A. Knect-van Eekelen, Wilhelm Conrad Röntgen: The Birth of
Radiology. Springer, Switzerland, 1st ed., 2019.

[5] T. J. Jorgensen, Strange Glow: The Story of Radiation. Princeton University Press,
Princeton, N.J., 1st ed., 2016.

[6] W. C. Röntgen, �On a new kind of rays,� Science 3 no. 59, (1896) 227�231. Translated
from German by Arthur Stanton.

[7] B. Goldsmith, Obsessive genius: The inner world of Marie Curie. WW Norton &
Company, 2005.

[8] M. S. Curie, �Les nouvelles substances radioactives,� Revue Scienti�que 37 no. 2,
(1900) 65�71.

[9] M. Malley, �The discovery of atomic transmutation: Scienti�c styles and philosophies
in france and britain,� Isis 70 no. 2, (1979) 213�223.

[10] W. Ramsay and F. Soddy, �Experiments in radio-activity, and the production of
helium from radium,� Nature (1903) 354�355.

[11] E. Rutherford and T. Royds, �Spectrum of the radiun emanation,� Philosophical
Magazine 16 no. 2, (1908) 313�317.

[12] E. Rutherford and F. Soddy, �The cause and nature of radioactivity - Part I,� The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21
no. 4, (1902) 370�396.

[13] L. Badash, �The age-of-the-Earth debate,� Scienti�c American 261 no. 2, (1989)
90�97.

[14] E. Rutherford and H. T. Barnes, �Heating e�ect of the radium emanation,� Nature 68
no. 1774, (1903) 622.

[15] D. R. Prothero, The Story of the Earth in 25 Rocks: Tales of Important Geological
Puzzles and the People who Solved Them. Columbia University Press, Columbia, N.Y.,
1st ed., 2018.

116



[16] J. L. Powell, Four Revolutions in the Earth Sciences: from Hersey to Truth. Columbia
University Press, Columbia, N.Y., 1st ed., 2015.

[17] B. B. Boltwood, �On the ultimate disintegration products of the radioactive elements:
Part II. the disintegration products of uranium,� American Journal of Science 23
no. 134, (1907) 77�88.

[18] E. Rutherford and B. B. Boltwood, �The relative proportion of radium and uranium in
radio-active minerals,� American Journal of Science 22 no. 127, (1906) 1.

[19] A. Holmes, �The association of lead with uranium in rock-minerals, and its application
to the measurement of geological time,� Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character 85 no. 578,
(1911) 248�256.

[20] Arthur Holmes, The Age of the Earth. Harper & Brothers, 1913.

[21] K. Swenson, Medical women and Victorian �ction. University of Missouri Press, 2005.

[22] M. C. Nagel, �Frederick Soddy: From alchemy to isotopes,� The Journal of Chemical
Education no. 9, (1982) 739�740.

[23] A. O. Nier, �Variations in the relative abundances of the isotopes of common lead from
various sources,� Journal of the American Chemical Society 60 (1938) 1571�1576.

[24] A. O. Nier, R. W. Thompson, and B. F. Murphey, �The isotopic composition of lead
and the measurement of geological time, iii,� Physical Review 60 no. 2, (1941) 112�116.

[25] A. Holmes, �An estimate of the age of the earth,� Nature 157 (1946) 680�684.

[26] F. G. Houtermans, �Die Isotopen-Häu�gkeiten im natürlichen Blei un das Alter des
Urans,� Naturwissenchaften 33 (1946) 185�186.

[27] C. Patterson, �Age of meteorites and the earth,� Geochimica et Cosmochimica Acta 10
no. 4, (1956) 230�237.

[28] W. F. Libby, �Atmospheric helium three and radiocarbon from cosmic radiation,�
Physical Review 69 (1946) 671�672.

[29] W. F. Libby, Radiocarbon Dating. University of Chicago Press, 1952.

[30] M. Hedman, The Age of Everything: How Science Explores the Past. University of
Chicago Press, 2007.

[31] B. R. R. Persson and E. Holm, �Poloniun-210 and lead-210 in the terrestrial
environment: a historical review,� Journal of Enviromental Radioactivity 102 (2011)
420�429.

[32] K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, New York, 1st ed.,
1988.

117



[33] E. D. Goldberg, �Geochronology with Pb-210 in radioactive dating,� in International
Atomic Energy Agency Symposium Proceedings, pp. 121�131. 1963.

[34] S. Krishnaswamy, D. Lal, J. M. Martin, and M. Meybeck, �Geochronology of lake
sediments,� Earth and Planetary Science Letters 11 (1971) 407�414.

[35] J.A. Sanchez-Cabeza and A.C. Ruiz-Fernández, �210pb sediment radiochronology: an
integrated formulation and classi�cation of dating models,� Geochimica et
Cosmochimica Acta 82 (2012) 183�200.

[36] P. G. Appleby and F. Old�eld, �The calculation of lead-210 dates assuming a constant
rate of supply of unsupported Pb-210 to the sediment,� Catena 5 (1978) 1�8.

[37] R. B. Davis, C. T. Hess, S. A. Norton, D. W. Hanson, K. D. Hoagland, and D. S.
Anderson, �Cs-137 and Pb-210 dating of sediments from soft-water lakes in New
England (U.S.A.) and Scandinavia, a failure of Cs-137 dating,� Chemical Geology 44
(1984) 151�185.

[38] A. Lerman, �Strontium-90 in the Great Lakes: Concentration-time model,� Journal of
Geophysical Research 77 no. 18, (1972) 3256�3264.

[39] P. Van Metre, J. T. Wilson, C. C. Fuller, E. Callender, and B. J. Mahler, �Collection,
analysis, and age-dating of sediment cores from 56 us lakes and reservoirs sampled by
the us geological survey, 1992-2001,� tech. rep., US Geological Survey, 2004.

[40] J. A. Robbins, �A model for particle-selective transport of tracers in sediments with
conveyor belt deposit feeders,� Journal of Geophysical Research: Oceans 91 no. C7,
(1986) 8542�8558.

[41] E. Callender, �Geochemical e�ects of rapid sedimentation in aquatic systems: minimal
diagenesis and the preservation of historical metal signatures,� Journal of
Paleolimnology 23 no. 3, (2000) 243�260.

[42] G. Gilmore and J. D. Hemingway, Practical gamma-ray spectroscopy. John Wiley &
Sons, 1st ed., 1995.

[43] R. B. Firestone, C. M. Baglin, and S. Y. F. Chu, Table of Isotopes: 1999 update. John
Wiley & Sons, 8th ed., 1999.

[44] P. A. Tanner, S. M. Pan, S. Y. Mao, and K. N. Yu, �γ-ray spectrometric and
α-counting method comparison for the determination of pb-210 in estuarine
sediments,� Applied Spectroscopy 54 no. 10, (2000) 1443�1446.

[45] G. F. Knoll, Radiation Detection and Measurement. John Wiley & Sons, Inc., 3rd ed.,
2000.

[46] V. Putyrskaya, E. Klemt, and S. Röllin, �Migration of Cs-137 in tributaries, lake water
and sediment of Lago Maggiore (Italy, Switzerland) - analysis and comparison with
Lago di Lugano and other lakes,� Journal of Environmental Radioactivity 100 (2009)
35�48.

118



[47] J. Wang, M. Baskaran, and J. Niedermiller, �Mobility of Cs-137 in freshwater lakes: A
mass balance and di�usion study of Lake St. Clair, Southeast Michigan, USA,�
Geochimica et Cosmochimica Acta 218 (2017) 323�342.

[48] J. M. Zachara, S. C. Smith, C. Liu, J. P. McKinley, R. J. Serne, and P. L. Gassman,
�Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA,�
Geochimica et Cosmochimica Acta 66 (2002) 193�211.

[49] P. G. Appleby, �Three decades of dating recent sediments by fallout radionuclides: a
review,� Holocene 18 no. 1, (2008) 83�94.

[50] M. Baskaran, J. Nix, C. Kuyper, and N. Karunakara, �Problems with the dating ot
sediment core using excess (210)Pb in a freshwater system impacted by large scale
watershed changes,� Journal of Environmental Radioactivity 138 (2014) 355�363.

[51] M. Yoshimori, �Production and behavior of beryllium 7 radionuclide in the upper
atmosphere,� Advances in Space Research 36 (2005) 922�926.

[52] J. Z. Drexler, C.C. Fuller, and S. Arch�eld, �The approaching obsolescence of Cs-137
dating of wetland soils in North America,� Quaternary Science Review 199 (2108)
83�96.

[53] J. Paatero, B. Veleva, and J. Hatakka, �Long-term trends of lead-210 concentrations in
ground-level air in Finland and Bulgaria,� in Global Environmental Change: Challenges
to Science and Society in Southeastern Europe: Selected Papers presented in the
International Conference held 19-21 May 2008 in So�a Bulgaria, V. Alexandrov,
M. F. Gajdusek, C. G. Knight, and A. Yotova, eds., pp. 229�234. Springer, 2010.

[54] C. T. Hess and C. W. Smith, �A mathematical model of the accumulation of
radionuclides by oysters (C. virginia) aquacultured in the e�uent of a nuclear power
reactor to include major biological parameters,� Health Physics 33 (1977) 121�130.

[55] C. Frankfort-Nachmias and A. Leon-Guerrero, Social Statistics for a Diverse Society.
Sage Publications, 4th ed., 2006.

[56] Maine Department of Inland Fisheries and Wildlife, �Cochnewagon Pond, Monmouth
Twp., Kennebec Co. U.S.G.S. Monmouth, Me.� https:
//www.maine.gov/ifw/docs/lake-survey-maps/kennebec/cochnewagon_pond.pdf,
2006.

[57] Knut Lehre Seip, Øyvind Grøn, and Hui Wang, �The North Atlantic Oscillations:
Cycle times for the NAO, the AMO and the AMOC,� Climate 7 no. 3, (2019) 43.

[58] Knut L Seip and Øyvind Grøn, �Atmospheric and ocean dynamics may explain cycles
in oceanic oscillations,� Climate 7 no. 6, (2019) 77.

119



APPENDIX A

LAKE DATA

This appendix contains the data used for the bodies of water analyzed in this paper.

Generally the data had already been processed, so the author did not need to manually

compute the speci�c activities, but rather needed only to check that the calculations

performed by previous researchers appeared to be correct, and then subtract the supported

lead-210 to obtain the unsupported lead-210 values. Below are the speci�c activities for

various lakes. Values omitted from �ts are denoted with a star.

A.1 Cochnewagon Lake

Table A.1. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for
Cochnewagon Lake.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.25 .4487 .0222
1.25 .3520 .0208
2.25 .3587 .0233
3.25 .3222 .0206
4.25 .2246 .0191
5.25 .2185 .0192
6.25 .1869 .0193
7.25 .1015 .0152
8.25 .0662 .0141
9.25 .0636 .0141
10.25 .0372 .0126
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A.2 Golden Lake

Table A.2. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for Golden
Lake.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.5* .0567 .0001570
1 .0424 .0001338
1.5 .0390 .0001306
2 .0329 .0001199
2.5 .0239 .0001136
3.5 .0234 .0001080
4.5 .0193 .0001011
5.5 .0095 .0000905
6.5 .0081 .0000851
7.5 .0041 .0000829
8.5 .0034 .0000815
9.5 .0028 .0000764
10.5 .0008 .0000856
11.5* -.0007 .0000759
12.5* .0001 .0000710
13.5* .0003 .0000778
14.5* .0003 .0000847

A.3 SS15 Greenland

Table A.3. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for SS15 in
Greenland.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.5 .0599005 .0000694
1.25 .0445720 .0000598
2.25 .0284988 .0000363
3.25 .0294943 .0000900
4.25 .0070382 .0000088
5.25 .0166277 .0000323
6.25 .0062154 .0000103
7.25 .0042522 .0000080
8.25 .0020304 .0000050
9.25 .0005493 .0000006
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A.4 Gardner Pond

Table A.4. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for Gardner
Pond.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

1 1.0757 .0017717
2 .5035 .0012802
3 .2481 .0009118
4 .2283 .0010728
5 .1615 .0010822
6 .0592 .0008481
8 .0195 .0007759
10 .0261 .0009002
12 .0443 .0009007

A.5 Highland Lake

Table A.5. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for
Highland Lake.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.5 5.8065 .0142
1.5 7.1761 .0121
2.5 7.4521 .0084
3.5 5.2343 .0017
4.5 3.7233 .0005
5.5 2.8816 .0090
6.5 .7423 .0103
7.5 .7341 .0065
8.5 .3921 .0026
9.5 .2361 .0011
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A.6 Salmon Pond

Table A.6. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for Salmon
Pond.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.75 .6756 .0010
1.5 1.0611 .0021
2.5 .4839 .0010
3.5 .4120 .0010
4.5 .2825 .0007
5.5 .1906 .0005
6.5 .1357 .0004
7.5 .0945 .0003

A.7 Warner Lake

Table A.7. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for Warner
Lake.

Depth (cm) Speci�c Activity (Bq
g
) Uncertainty (Bq

g
))

.25* 27.5130 .0142
.75 21.1710 .0121
1.25 15.6664 .0084
1.75 5.9330 .0017
2.25 3.4262 .0005
2.75 12.0525 .0090
3.25 8.7116 .0103
3.75 3.8524 .0065
4.25 .9480 .0026
4.75 .5300 .0011
5.25 .4179 .0015
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A.8 Bracey Lake

Note that uncertainty values were not given for Bracey Lake.

Table A.8. Speci�c Activity of Unsupported Lead-210 and for Bracey Lake.
Depth (cm) Speci�c Activity (Bq

g
)

.75 .87
1.0 .71
1.5 .55
2.0 .54
2.5 .53
3.0 .47
3.5 .42
4.0 .36
4.5 .30
5.0 .28
5.5 .27
6.0 .24
6.5 .22
7.0 .21
7.5 .19
8.0 .14
8.5 .08
9.0 .08
9.5 .07
10.0 .07
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A.9 Barsjon

Table A.9. Speci�c Activity of Unsupported Lead-210 and Uncertainty Values for Barsjon.
Depth (cm) Speci�c Activity (Bq

g
) Uncertainty (Bq

g
))

.50 .055342 .0002635
2.5 .047629 .0002090
4.5 .029374 .0001700
5.5 .021024 .0001610
6.0 .023316 .0001573
6.5 .023037 .0001471
7.0 .014992 .0001616
7.5 .012472 .0001415
8.5 .02062 .0001268
10.5 .007136 .0001391
12.5 .003237 .0001245
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APPENDIX B

PERIOD OF OSCILLATIONS ERROR SIMULATIONS

This appendix includes the simulation data that was used to compute the error estimates

of the periods for the bodies of water considered in Chapter 5.

B.1 Cochnewagon Lake

For Cochnewagon Lake, the mean error was found to be .02301347, so the coe�cient

used for the error estimate was twice that value, .04602694. R was used to compute the

mean and standard deviation for this simulated data. The mean was found to be µ = 21.5

years, while the standard deviation was found to be 3.35 years.

B.2 SS15

For SS15, the mean error was found to be .00226476, so the coe�cient used for the

error estimate was twice that value, .00452952. The mean of the simulations was found to

be µ = 22.8 years and the standard deviation was found to be σ = 1.55 years.

B.3 Gardner Pond

For Gardner Pond, the mean error was found to be .009766963, so the coe�cient used

for the error estimate was twice that value, .019533926. The mean of the periods of the

simulations was µ = 29.3 years, while the standard deviation was σ = 15.5 years.

B.4 Golden Lake

For Golden Lake, the mean error was found to be .001360297, so the coe�cient used for

the error estimate was twice that value, .002720594. The mean period from the simulations

was µ = 23.6 years, while the standard deviation was σ = 2.07 years.
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B.5 Highland Lake

For Highland Lake, the mean error was found to be .7209563, so the coe�cient used for

the error estimate was twice that value, 1.4419126. The mean of the simulation periods

was µ = 26.5 years, while the standard deviation was σ = 5.48 years.

B.6 Salmon Pond

For Salmon Pond, the mean error was found to be .01311514, so the coe�cient used for

the error estimate was twice that value, .02623028. The mean of the periods of the

simulations was 25.9 years, while the standard deviation was σ = .74 years.

B.7 Lake Purrumbete

For Lake Purrumbete, the mean error was found to be .006491262, so the coe�cient

used for the error estimate was twice that value, .012982524. The mean of the simulations

was µ = 33.5 years and the standard deviation was σ = 13.3 years.

B.8 Warner Lake

For Warner Lake, the mean error was found to be .006491262, so the coe�cient used for

the error estimate was twice that value, .012982524. The mean of the simulations was

found to be µ = 28.6 years, while the standard deviation was σ = 4.26 years.

B.9 Bracey Lake

For Bracey Lake, the mean error was found to be .006491262, so the coe�cient used for

the error estimate was twice that value, .012982524. The mean of the simulations was

µ = 26.4 years, while the standard deviation was σ = 2.72 years.
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B.10 Barsjon

For Barsjon, the mean error was found to be .002155469, so the coe�cient used for the

error estimate was twice that value, .004310938. The mean of the simulations was µ = 14.4

years, while the standard deviation was σ = 3.13 years.
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Table B.1. Thirty simulations with random noise and the resulting period for
Cochnewagon Lake

Data run Period (Y ears)
Original 22.4

Simulation 1 18.9
Simulation 2 19.3
Simulation 3 18.9
Simulation 4 16.0
Simulation 5 23.1
Simulation 6 20.5
Simulation 7 16.2
Simulation 8 25.5
Simulation 9 22.0
Simulation 10 24.2
Simulation 11 21.8
Simulation 12 16.6
Simulation 13 24.4
Simulation 14 17.1
Simulation 15 20.0
Simulation 16 27.4
Simulation 17 24.9
Simulation 18 23.8
Simulation 19 22.0
Simulation 20 21.6
Simulation 21 23.2
Simulation 22 16.7
Simulation 23 20.2
Simulation 24 22.8
Simulation 25 26.4
Simulation 26 15.7
Simulation 27 24.1
Simulation 28 23.9
Simulation 29 25.5
Simulation 30 22.1
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Table B.2. Thirty simulations with random noise and the resulting period for SS15
Data run Period (Y ears)
Original 22.9

Simulation 1 21.3
Simulation 2 23.5
Simulation 3 26.3
Simulation 4 19.9
Simulation 5 22.6
Simulation 6 20.2
Simulation 7 21.8
Simulation 8 21.5
Simulation 9 21.9
Simulation 10 21.3
Simulation 11 22.6
Simulation 12 23.4
Simulation 13 23.1
Simulation 14 26.7
Simulation 15 22.4
Simulation 16 23.4
Simulation 17 25.2
Simulation 18 23.7
Simulation 19 24.0
Simulation 20 20.8
Simulation 21 23.2
Simulation 22 21.8
Simulation 23 22.7
Simulation 24 22.0
Simulation 25 22.8
Simulation 26 23.9
Simulation 27 23.9
Simulation 28 22.3
Simulation 29 23.9
Simulation 30 22.9
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Table B.3. Thirty simulations with random noise and the resulting period for Gardner
Pond

Data run Period (Y ears)
Original 57.4

Simulation 1 21.4
Simulation 2 21.2
Simulation 3 57.6
Simulation 4 21.3
Simulation 5 20.9
Simulation 6 20.6
Simulation 7 22.5
Simulation 8 21.0
Simulation 9 21.2
Simulation 10 59.7
Simulation 11 19.8
Simulation 12 19.6
Simulation 13 53.4
Simulation 14 21.6
Simulation 15 59.8
Simulation 16 20.2
Simulation 17 22.0
Simulation 18 21.2
Simulation 19 53.7
Simulation 20 20.9
Simulation 21 22.2
Simulation 22 60.3
Simulation 23 20.8
Simulation 24 19.4
Simulation 25 20.8
Simulation 26 20.1
Simulation 27 53.3
Simulation 28 21.5
Simulation 29 20.2
Simulation 30 21.9
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Table B.4. Thirty simulations with random noise and the resulting period for Golden Lake
Data run Period (Y ears)
Original 24.0

Simulation 1 23.6
Simulation 2 21.7
Simulation 3 23.7
Simulation 4 24.2
Simulation 5 21.1
Simulation 6 24.1
Simulation 7 23.0
Simulation 8 22.0
Simulation 9 25.2
Simulation 10 21.3
Simulation 11 24.0
Simulation 12 23.4
Simulation 13 26.8
Simulation 14 24.4
Simulation 15 24.0
Simulation 16 22.9
Simulation 17 27.0
Simulation 18 20.5
Simulation 19 22.2
Simulation 20 22.2
Simulation 21 22.6
Simulation 22 26.8
Simulation 23 22.8
Simulation 24 30.2
Simulation 25 24.7
Simulation 26 21.2
Simulation 27 23.7
Simulation 28 22.9
Simulation 29 21.7
Simulation 30 23.1
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Table B.5. Four simulations with random noise and the resulting period for Highland Lake
Data run Period (Y ears)
Original 28.8

Simulation 1 22.2
Simulation 2 21.7
Simulation 3 17.9
Simulation 4 22.9
Simulation 5 38.4
Simulation 6 14.5
Simulation 7 19.7
Simulation 8 19.2
Simulation 9 30.3
Simulation 10 22.7
Simulation 11 23.7
Simulation 12 25.6
Simulation 13 27.0
Simulation 14 29.2
Simulation 15 30.1
Simulation 16 34.8
Simulation 17 27.0
Simulation 18 33.2
Simulation 19 28.0
Simulation 20 25.0
Simulation 21 30.7
Simulation 22 26.3
Simulation 23 37.3
Simulation 24 24.3
Simulation 25 30.0
Simulation 26 22.5
Simulation 27 26.7
Simulation 28 27.2
Simulation 29 29.9
Simulation 30 27.2
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Table B.6. Thirty simulations with random noise and the resulting period for Salmon Pond
Data run Period (Y ears)
Original 25.9

Simulation 1 24.4
Simulation 2 26.7
Simulation 3 25.7
Simulation 4 24.4
Simulation 5 26.3
Simulation 6 25.9
Simulation 7 26.5
Simulation 8 24.8
Simulation 9 25.2
Simulation 10 26.8
Simulation 11 26.6
Simulation 12 25.9
Simulation 13 25.9
Simulation 14 25.3
Simulation 15 25.8
Simulation 16 24.7
Simulation 17 26.2
Simulation 18 26.5
Simulation 19 27.4
Simulation 20 25.4
Simulation 21 26.2
Simulation 22 25.5
Simulation 23 26.4
Simulation 24 25.6
Simulation 25 26.5
Simulation 26 26.5
Simulation 27 26.5
Simulation 28 26.0
Simulation 29 25.1
Simulation 30 26.1
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Table B.7. Thirty simulations with random noise and the resulting period for Lake
Purrumbete

Data run Period (Y ears)
Original 26.3

Simulation 1 26.4
Simulation 2 52.4
Simulation 3 28.6
Simulation 4 23.9
Simulation 5 31.1
Simulation 6 25.0
Simulation 7 48.4
Simulation 8 26.6
Simulation 9 55.4
Simulation 10 26.9
Simulation 11 48.4
Simulation 12 58.0
Simulation 13 27.5
Simulation 14 55.1
Simulation 15 21.5
Simulation 16 22.2
Simulation 17 20.4
Simulation 18 56.3
Simulation 19 26.8
Simulation 20 48.5
Simulation 21 24.7
Simulation 22 20.9
Simulation 23 24.3
Simulation 24 28.8
Simulation 25 27.1
Simulation 26 22.8
Simulation 27 25.8
Simulation 28 26.2
Simulation 29 55.1
Simulation 30 20.9
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Table B.8. Thirty simulations with random noise and the resulting period for Warner Lake
Data run Period (Y ears)
Original 29.2

Simulation 1 29.3
Simulation 2 24.3
Simulation 3 25.0
Simulation 4 28.0
Simulation 5 32.4
Simulation 6 25.9
Simulation 7 38.1
Simulation 8 20.7
Simulation 9 28.9
Simulation 10 31.6
Simulation 11 30.2
Simulation 12 29.4
Simulation 13 23.5
Simulation 14 22.0
Simulation 15 25.2
Simulation 16 26.2
Simulation 17 37.2
Simulation 18 25.8
Simulation 19 37.4
Simulation 20 31.5
Simulation 21 29.3
Simulation 22 28.5
Simulation 23 29.6
Simulation 24 26.7
Simulation 25 26.3
Simulation 26 26.4
Simulation 27 26.0
Simulation 28 30.1
Simulation 29 27.2
Simulation 30 33.8
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Table B.9. Thirty simulations with random noise and the resulting period for Bracey Lake
Data run Period (Y ears)
Original 26.6

Simulation 1 21.7
Simulation 2 22.4
Simulation 3 25.7
Simulation 4 26.1
Simulation 5 29.7
Simulation 6 27.6
Simulation 7 24.1
Simulation 8 23.6
Simulation 9 24.6
Simulation 10 25.6
Simulation 11 25.0
Simulation 12 26.4
Simulation 13 27.9
Simulation 14 26.3
Simulation 15 20.2
Simulation 16 29.9
Simulation 17 32.3
Simulation 18 28.0
Simulation 19 24.2
Simulation 20 30.9
Simulation 21 29.5
Simulation 22 26.5
Simulation 23 25.5
Simulation 24 27.5
Simulation 25 28.8
Simulation 26 27.8
Simulation 27 27.8
Simulation 28 26.3
Simulation 29 23.7
Simulation 30 26.6
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Table B.10. Thirty simulations with random noise and the resulting period for Barsjon
Data run Period (Y ears)
Original 15.1

Simulation 1 17.0
Simulation 2 8.9
Simulation 3 14.6
Simulation 4 16.4
Simulation 5 12.1
Simulation 6 18.6
Simulation 7 16.4
Simulation 8 8.4
Simulation 9 11.7
Simulation 10 15.0
Simulation 11 11.5
Simulation 12 15.3
Simulation 13 14.2
Simulation 14 18.3
Simulation 15 15.8
Simulation 16 17.2
Simulation 17 15.2
Simulation 18 9.5
Simulation 19 12.9
Simulation 20 18.8
Simulation 21 14.7
Simulation 22 13.5
Simulation 23 14.5
Simulation 24 13.4
Simulation 25 9.2
Simulation 26 16.7
Simulation 27 18.1
Simulation 28 19.3
Simulation 29 10.2
Simulation 30 15.8

138



APPENDIX C

SAMPLE R CODE

C.1 Nonlinear Fitting

csvFileName = "C: /Users/Amber/Documents/Nuclear  Phys ics/

SampleDataforCheckingRFit . csv "

csvFileName

SampleData <− read . csv ( csvFileName )

SampleData

plot ( SampleData )

y = SampleData$ concent ra t i on

x = SampleData$depth

non l in_mod=n l s ( y~a∗exp(−b∗x ) , start=l i s t ( a=0.63 ,b=0.4))

summary( non l in_mod)

l ibrary (qpcR)

RSS( non l in_mod)

non l in_mod
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plot (x , y )

l ines (x , predict ( non l in_mod) , col="red" )

non l in_mod=n l s ( y~a∗exp(−b∗x )∗(1+c∗sin ( x)+d∗x ) ,

start=l i s t ( a=0.5 ,b=.4 ,c=.1 ,d=.8))

summary( non l in_mod)

RSS( non l in_mod)

non l in_mod

C.2 Simulating Data with Noise

csvFileName = "C:/ Users /Amber/Documents/Nuclear Phys ics /

SimulatedDataCochnewagonLake . csv "

SimulatedDataCochnewagonLake<−read . csv ( csvFileName )

y <− SimulatedDataCochnewagonLake$UnsupportedPb210

x <− SimulatedDataCochnewagonLake$Depth

yrnd <− y+0.05∗( r un i f (11)∗2−1)

yrnd

p lo t (x , yrnd )
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APPENDIX D

NCRSFITMODELSOFTWARE CODE

#Example f o r Aoft_simp , uncomment to run example a f t e r sourc ing

#p l o t ( Aoft_simp (0 .5194 ,0 .1970 , f unc t i on ( x )(1+0.1496∗ s in (1.7930∗x

+3 .1259 ) ) , 0 . 1501 , . 2 5 ) , t=' l ' )

#Uses the c o e f f i c e n t s to compute the a c t i v i t y over time/depth

# @param a − a exponen t i a l c o e f f i c i e n t

# @param b − b e xponen t i a l c o e f f i c i e n t

# @param fn − The func t i on in the form of (1+ f ( x ) ) ( e . g .

(1+c∗sin (d∗x+f )+gx ) ) , we are computing A( t ) for

# @param A0 − A_0 the i n i t i a l concen t ra t i on

# @param x0 − x_0 the i n i t i a l cond i t i on o f x

# @param k − The decay c o e f f i c i e n t

# @param aYears − The number o f years to i n t e g r a t e over

# @param aStep − The time s t ep to i n t e g r a t e over

Aoft_simp <− function ( a , b , fn , A0 , x0=1, k=0.03114 ,

aYears = 100 , aStep = 0 .01 ){

#Bui ld a func t i on f o r a∗e^(−b∗x )

expfn <− function ( x ) ( a∗exp(−b∗x ) )

#Solve f o r c t

ConcSolve <− function (x , t , c ) ( expfn (x)−exp(−k∗t+c ) )
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#a∗e^(−b∗x)−e^(−k∗ t+c )

ConcSolveC <− function (c ) ( ConcSolve ( x0 , 0 , c ) )

#a∗e^(−b∗x)−e^(c )

ct <− uniroot ( ConcSolveC , c (−10000 ,10000) )$ root

#Solve f o r c

#Bui ld a l i n e a r func t i on f o r x o f t

xo f t <− function ( t ) ( (−k∗t+ct−log ( a ) )/(−b) )

#x ( t ) = (−k∗ t+c−l n ( a ) )/(−b ) , t h i s i s a l i n e a r func t i on

#We have to e x t r a c t C0 l i n e a r p i e ce

#We do t h i s by f i n d i n g the i n t e r c e p t o f our (1+c∗ s in ( x∗d+f )+g∗x )

lFnPoints <− fn ( xo f t ( 0 : 1 0 0 ) )

lLM <− lm( lFnPoints~c ( 0 : 1 00 ) )

lC0Lin <− lLM$coef f ic ients [ 1 ]

#y−i n t e r c e p t o f fn , C_0

#So lve f o r z e t a

Coft <− function ( t ) (exp(−k∗t )∗ fn ( xo f t ( t ) )/ lC0Lin )

#C( t ) = e^(−k∗ t )∗(1+c∗ s in ( x ( t )∗d+f )+g∗x ( t ) )/C_0

lCInt <− i n t e g r a t e ( Coft , 0 , I n f )$value

#in t e g r a t e C( t ) d t from 0 to i n f i n i t y

lZe ta = A0/ lCInt

= A_0/SC( t )dt

#In t e g r a t e C(T) to ge t A(T) we b u i l d an array o f t_i and

use that to compute A( i )

142



#where t_i in T

lADataX <− seq (0 , aYears , aStep )

#Set o f T va l u e s

lADataY <− NULL

for ( i in lADataX){

lAo f t = lZeta∗ i n t e g r a t e ( Coft , i , I n f )$value

#A( t_i ) = lZe t a in t e g ra lC ( t ) d t from i to i n f i n i t y

lADataY <− c ( lADataY , lAo f t )

}

lAData <− cbind ( " year s " = lADataX , "A( t ) " = lADataY)

#Return the A(T) data

return ( lAData )

}
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