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Abstract: Parseval’s identity is an equality from Fourier analysis that relates
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the exact value of the Riemann zeta function at the positive even integers
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1. INTRODUCTION

It is a well-known fact that the sum of the infinite series
∑∞

n=1
1
n2 is equal to π2

6
. The Basel

problem, which is to find the value of this series, was initially solved by Euler in 1735, but

his proof contained a logical gap. However, Euler’s result was later rigorously proven by

Weierstrass, as well as others [3], [10]. Of the numerous ways to solve the Basel problem, one

is to use Parseval’s identity, which states that for a particularly “nice” function f , it holds

that ∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 =

∫ 1

0

|f(x)|2 dx,

where f̂(n) =
∫ 1

0
f(x)e2πinx dx for every integer n is its Fourier transform. Consider f(x) =

−2πi
(
x− 1

2

)
, whose Fourier transform is f̂(n) = 1/n for n 6= 0 and f̂(0) = 0. Observe that

1/n2 is an even function of n, so

∞∑
n=1

1

n2
=

1

2

∑
n6=0

1

n2
=

1

2

∑
n6=0

∣∣∣f̂(n)
∣∣∣2 .

By Parseval’s identity, ∣∣∣f̂(0)
∣∣∣2 +

∑
n6=0

∣∣∣f̂(n)
∣∣∣2 =

∫ 1

0

|f(x)|2 dx,

so

∞∑
n=1

1

n2
=

1

2

∫ 1

0

∣∣f(x)
∣∣2 dx− 1

2

∣∣∣f̂(0)
∣∣∣2 =

1

2

∫ 1

0

(
4π2x2 − 4π2x+ π2

)
dx− 0 =

π2

6
.

This thesis explores the extent to which Parseval’s identity can be used to evaluate other

infinite series. We will show that Parseval’s identity can be used to compute the exact value

of
∑∞

n=1
1
n2k for any k ∈ N, as well as series of form

∑
n∈Z g(n), where g ∈ R(x) is summable

over the integers. For instance, we can use Parseval’s identity to find the exact value of series

like
∑

n∈Z
1

n2+1
,
∑

n∈Z
1

(0.5−n)2 , and
∑

n∈Z
1

(3n+1)3
.
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2. PARSEVAL’S IDENTITY

There is plenty of theory behind how the sum of a series over Z can be evaluated using

an integral over [0, 1]. After all, such a claim that
∑

n∈Z |f̂(n)|2 =
∫ 1

0
|f(x)|2 dx for certain

functions f is not obvious. We shall prove this identity, but we start by discussing which

functions are considered “nice” for the identity to work. These functions arise from the space

we call L2([0, 1]).

2.1. The Space of Functions L2([0, 1]).

Definition 2.1. We define L2([0, 1]) to be the space of all C-valued measurable functions f

on [0, 1] such that
∫ 1

0
|f(x)|2 dx is finite. We identify two functions in this space if they agree

almost everywhere.

The space L2([0, 1]) has an inner product defined to be

〈f, g〉 =

∫ 1

0

f(x)g(x) dx

for f, g ∈ L2([0, 1]). Moreover, L2([0, 1]) is a normed space whose norm is given by

‖f‖2 = 〈f, f〉 =

∫ 1

0

|f(x)|2 dx. [9], p. 139

With this inner product and norm, L2([0, 1]) becomes a complete inner product space, also

known as a Hilbert space, over C ([6], p. 321, Theorem 5.59). Despite the elements of L2([0, 1])

being equivalence classes, we will still refer to a function f as an element of this space because

we are not concerned with two functions that differ by a set of Lebesgue measure zero. Since

‖f‖2 =‖g‖2 if any two functions f, g ∈ L2([0, 1]) differ by a set of measure zero (that is, they

agree almost everywhere), we will focus only on functions that are continuous on [0, 1].
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2.2. Orthonormal Basis for L2([0, 1]).

Definition 2.2. A nonempty subset S of a Hilbert space H is orthonormal if the inner

product of any two elements x, y ∈ S is given by

〈x, y〉 =


0, x 6= y

1, x = y,

and such a set S is an orthonormal basis if its span is dense in H.

For our purposes of establishing the theory, we will show that the set {e2πinx | n ∈ Z} is an

orthonormal basis of the Hilbert space L2([0, 1]). Let us call this set B. We show that B is

orthonormal using the Fundamental Theorem of Calculus, but we use the Stone-Weierstrass

Theorem to show that it is an orthonormal basis.

Theorem 2.3 (Stone-Weierstrass, [4], p. 823). Suppose the set E is a vector-subspace of the

space of continuous functions C(S,C), where S is a compact, Hausdorff space. If:

(i) for each point x ∈ S there exists an element f ∈ E such that f(x) 6= 0,

(ii) for every pair of distinct points x, y ∈ S there exists an element f ∈ E such that

f(x) 6= f(y), and

(iii) E is closed under multiplication and complex conjugation,

then E is dense in C(S,C) under the max norm.

Proposition 2.4. The set B is an orthonormal basis for L2([0, 1]); that is,

〈e2πimx, e2πinx〉 =


1, if m = n

0, if m 6= n,

and the span of B is dense in L2([0, 1]).
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Proof. We first show that the set B is orthonormal. If m 6= n, then

〈e2πimx, e2πinx〉 =

∫ 1

0

e2πimxe2πinx dx

=

∫ 1

0

e2πi(m−n)x dx

=
e2πi(m−n)x

2πi(m− n)

∣∣∣∣1
0

=
1

2πi(m− n)
− 1

2πi(m− n)
= 0.

If m = n, then the integral evaluates to
∫ 1

0
e2πi(m−n)x dx =

∫ 1

0
1 dx = 1. This shows that

〈e2πimx, e2πinx〉 = 0 for each m 6= n, and
∥∥e2πinx∥∥ = 1.

We next show that span(B) is dense in L2([0, 1]). Since the space of continuous complex-

valued functions C([0, 1]/{0, 1},C), where the points 0 and 1 are identified, is dense in

L2([0, 1]) ([9], p. 153, Theorem 12), it suffices to show span(B) is dense in C([0, 1]/{0, 1},C)

by showing that it satisfies the hypotheses of Theorem 2.3. Observe that span(B) is a

vector-subspace of C([0, 1]/{0, 1},C), as well as the fact [0, 1]/{0, 1} is a compact, Hausdorff

space. Since the constant function e2πi(0)x = 1 is in span(B), criterion 2.3(i) is satisfied. For

2.3(ii), consider the exponential function e2πix ∈ span(B). Let x1, x2 ∈ [0, 1]/{0, 1} such

that x1 6= x2. Then e2πix1 6= e2πix2 by comparing real and imaginary parts, satisfying 2.3(ii).

Lastly, expanding the product of two finite linear combinations of exponential functions

from B shows that the product is in span(B), and span(B) is clearly closed under complex

conjugation; these satisfy 2.3(iii). With all criteria of Theorem 2.3 satisfied, span(B) is dense

in C([0, 1]/{0, 1},C) with respect to the max norm. Since the L2-norm is no larger than

the max norm ([9], p. 142, Corollary 3), span(B) is dense in C([0, 1]/{0, 1},C) with respect

to the L2-norm and is therefore dense in L2([0, 1]) because C([0, 1]/{0, 1},C) is dense in

L2([0, 1]). We conclude that B is an orthonormal basis of L2([0, 1]). �
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We lastly define the Fourier transform of a function f ∈ L2([0, 1]) to be

f̂(n) = 〈f(x), e2πinx〉

=

∫ 1

0

f(x)e−2πinx dx

for every n ∈ Z. Now all the pieces are in place to prove Parseval’s identity.

Theorem 2.5 (Parseval’s Identity). If f ∈ L2([0, 1]), then

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 =‖f‖2 .

Proof. Let f ∈ L2([0, 1]), and let (PNf)(x) =
∑N

n=−N f̂(n)e2πinx be the orthogonal projection

of f(x) onto span{e2πi(−N), ..., e2πiN}. Since span(B) is dense in L2([0, 1]) by Proposition 2.4,

for every ε > 0, there exists g ∈ span(B) such that ‖g − f‖ < ε. With g ∈ span(B), there

exists some N such that g ∈ span{e2πi(−N), · · · , e2πiN}. It follows that

∥∥Pm(f)− f
∥∥ ≤‖g − f‖ < ε

for all m ≥ N . This shows that

f(x) = lim
N→∞

N∑
n=−N

f̂(n)e2πinx.

Then by the Pythagorean Theorem ([6], p. 576),

‖f‖2 =
∥∥PN(f)

∥∥2 +
∥∥f − PN(f)

∥∥2 =
N∑

n=−N

|f̂(n)|2 +
∥∥f − PN(f)

∥∥2 .
Letting N approach infinity,

∥∥f − PN(f)
∥∥ approaches 0 by what we have just shown, so

‖f‖2 = lim
N→∞

N∑
n=−N

|f̂(n)|2.

Since the series converges absolutely, it therefore follows that ‖f‖2 =
∑

n∈Z |f̂(n)|2. �
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3. FINDING THE POSITIVE EVEN ZETA VALUES

Back in the introduction where we used Parseval’s identity to calculate ζ(2) =
∑∞

n=1
1
n2 ,

where ζ(s) =
∑∞

n=1
1
ns

for any s ∈ C is the Riemann zeta function, observe that our choice of

function f(x) = −2πi
(
x− 1

2

)
contains the expression x− 1

2
. This expression is also known

as the first Bernoulli polynomial, denoted B1(x). Given how the Fourier transform of f is

conveniently 1/n for all nonzero n, and f is a constant multiple of B1(x), we look to use

any given Bernoulli polynomial Bk(x) to construct a polynomial whose Fourier transform

is 1/nk for all nonzero n. We will then use this polynomial to evaluate ζ(2k) =
∑∞

n=1
1
n2k

(similar approaches were taken in [2] and [5]). We begin with a definition of the Bernoulli

polynomials.

Definition 3.1 (cf. [8], p. 19). We define the Bernoulli polynomial Bk(x) for any integer

k ≥ 0 as the polynomial with rational coefficients resulting from the following recurrence

relation:

(i) B0(x) = 1,

(ii) B′k(x) = kBk−1(x), for all k ∈ N,

(iii)
∫ 1

0
Bk(x) dx = 0, for all k ∈ N.

We further define Bk := Bk(0) to be the kth Bernoulli number.

From criteria 3.1(ii) and 3.1(iii), we immediately find that Bk(1) = Bk(0) for all integers

k ≥ 2:

0 =

∫ 1

0

Bk−1(x) dx

=

∫ 1

0

1

k
B′k(x) dx

=
1

k
Bk(1)− 1

k
Bk(0).

By criterion 3.1(i), we further have B0(1) = B0(0) = 1. However, B1(1) = 1
2

= −B1(0), so

Bk(1) = Bk(0) for all non-negative integers k 6= 1. Observe that criterion 3.1(iii) fails for

B0(x), since
∫ 1

0
B0(x) dx = 1 is nonzero.
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Suppose we attempt to use B1(x) = x− 1
2

to prove ζ(2) = π2

6
. Observe that the Fourier

transform of B1(x) is −1
2πin

, so we would have to account for the constant −1
2πi

from the Fourier

transform, adding a rather inconvenient extra step to our calculation of the series. We would

like to adjust any given Bernoulli polynomial Bk(n) for any k ∈ N so that its Fourier transform

becomes 1/nk for all nonzero n and thus removing any adjustments to our calculation.

Theorem 3.2. Define f ∗k (x) := (2πi)k

−k! Bk(x) for every k ∈ N and 0 ≤ x ≤ 1. Then f̂ ∗k (0) = 0,

and f̂ ∗k (n) = 1/nk for every n 6= 0.

Proof. The equality f̂ ∗k (0) = 0 follows from Definition 3.1(iii). We prove f̂ ∗k (n) = 1/nk for

every n 6= 0 by showing the Fourier transform of Bk(x) is −k!
(2πi)k

· 1
nk

using induction on k. For

k = 1, the Fourier transform of B1(x) is∫ 1

0

B1(x)e−2πinx dx =

∫ 1

0

(
x− 1

2

)
e−2πinx dx =

−1

2πin
=
−(1)!

(2πi)1
· 1

n
.

Now assume that
∫ 1

0
Bk−1(x)e−2πinx dx = −(k−1)!

(2πi)k−1 · 1
nk−1 for any k ≥ 2. Then

∫ 1

0

Bk(x)e−2πinx dx =
−Bk(x)

2πin
e−2πinx

∣∣∣∣1
0

+
k

2πin

∫ 1

0

Bk−1(x)e−2πinx dx

= Bk(1)

(
−1

2πin

)
−Bk(0)

(
−1

2πin

)
− k!

(2πi)k
· 1

nk

=
−k!

(2πi)k
· 1

nk
.

This shows −k!
(2πi)k

· 1
nk

is the Fourier transform of Bk(x) for every n 6= 0, and therefore the

Fourier transform of f ∗k (x) = (2πi)k

−k! Bk(x) is 1/nk for every such n. �

Consider, as another example, finding the value of ζ(6) =
∑∞

n=1
1
n6 . Since 1

n6 is an even

function of n,
∑∞

n=1
1
n6 = 1

2

∑
n6=0

1
n6 . The summand 1

n6 =
∣∣ 1
n3

∣∣2, so we require the function

f ∗3 since its Fourier transform is 1/n3 for every nonzero n. The third Bernoulli polynomial

is B3(x) = x3 − 3
2
x2 + 1

2
x, so f ∗3 (x) = 4

3
π3ix3 − 2π3ix2 + 2

3
π3ix. Furthermore, f̂ ∗3 (0) = 0 by

Theorem 3.2. We now have by Parseval’s identity,

ζ(6) =
1

2

∑
n6=0

1

n6
=

1

2

∫ 1

0

∣∣f ∗3 (x)
∣∣2 dx =

1

2

∫ 1

0

(
4

3
π3x3 − 2π3x2 +

2

3
π3x

)2

dx =
π6

945
.
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Suppose we wish to find the value of ζ(2k) for every k ∈ N. Then we can use the following

corollary to Theorem 3.2.

Corollary 3.3. For all k ∈ N, the following equality holds:

ζ(2k) =
1

2

∥∥f ∗k (x)
∥∥2 .

Proof. Let k ∈ N. Then

ζ(2k) =
∞∑
n=1

1

n2k

=
1

2

∑
n6=0

∣∣∣∣ 1

nk

∣∣∣∣2

=
1

2

∫ 1

0

∣∣f ∗k (x)
∣∣2 dx,(1)

where line (1) is by Parseval’s identity and Theorem 3.2. �

This shows Parseval’s identity is capable of finding the exact value of ζ(s) for every positive

even integer s = 2k. Furthermore, the relationship f ∗k (x) = (2πi)k

−k! Bk(x) combined with

Corollary 3.3 both allow us to prove the formula for the positive even zeta values in terms of

the Bernoulli numbers.

Corollary 3.4. For all k ∈ N, one has

ζ(2k) =
(−1)k−1(2π)2kB2k

2 · (2k)!
.

Proof. Let k ∈ N, and let f ∗k (x) be as in Theorem 3.2. Then

ζ(2k) =
1

2

∫ 1

0

∣∣f ∗k (x)
∣∣2 dx

=
1

2

∫ 1

0

∣∣∣∣∣(2πi)k−(k)!
·Bk(x)

∣∣∣∣∣
2

dx

=
(2π)2k

2 · (k!)2

∫ 1

0

Bk(x)2 dx
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=
(2π)2k

2 · (k!)2

(
(−1)k−1(k!)2B2k

(2k)!

)
(2)

=
(−1)k−1(2π)2kB2k

2 · (2k)!
. �

The identity
∫ 1

0
Bk(x)2 dx = (−1)k−1(k!)2B2k

(2k)!
on line (2) is proved in [1], p. 11, Proposition 1.

As a side note, one may construct these f ∗k (x) directly by the use of a recurrence relation

modeled after that of the Bernoulli polynomials. That way, knowledge of the Bernoulli

polynomials is not required.

Proposition 3.5. We may construct the functions f ∗k for any k ∈ N via the following

recurrence relation:

(i) f ∗1 (x) = −2πi
(
x− 1

2

)
,

(ii) f ∗k+1(x) = 2πi
(∫ x

0
f ∗k (t) dt+

∫ 1

0
xf ∗k (x) dx

)
.

Proof. Criterion 3.5(i) follows from Theorem 3.2 for k = 1. For 3.5(ii), observe that Definition

3.1(ii) shows that f ∗
′

k+1(x) = 2πif ∗k (x) for any k ∈ N, and hence f ∗k+1(x) = 2πi
∫ x
0
f ∗k (t) dt+C

for some constant C. Since
∫ 1

0
f ∗k (x) dx = 0, we may find the value of C:

0 =

∫ 1

0

f ∗k+1(x) dx

=

∫ 1

0

(
2πi

∫ x

0

f ∗k (t) dt+ C

)
dx

= 2πi

∫ 1

0

(∫ x

0

f ∗k (t) dt

)
dx+ C

=

(
2πix

∫ x

0

f ∗k (t) dt

)∣∣∣∣1
0︸ ︷︷ ︸

=0

−2πi

∫ 1

0

xf ∗k (x) dx+ C,

so C = 2πi
∫ 1

0
xf ∗k (x) dx. This constructs criterion 3.5(ii). �
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4. NON-NEGATIVE RATIONAL FUNCTIONS

Finding the exact value of the positive even zeta values utilizes ideally adjusted Bernoulli

polynomials to apply Parseval’s identity to. For this section, we transition from series over N

to series over Z as we find another class of series we are able to calculate using Parseval’s

identity. To do so, we first compute the Fourier transform of a general function different from

f ∗k .

4.1. Infinite Series for Non-negative Rational Functions. We consider a function

defined by the product of a monomial and an exponential: fA,r(x) = xAerx, where A ≥ 0 is

an integer and r ∈ C. We first find the Fourier transform f̂A,r(n), and then we rewrite the

summand of a series over Z as the squared modulus of a linear combination of the transformed

functions. That way, the sum of the series is equal to the integral of the squared modulus of

a linear combination of functions xmerx over [0, 1]. We will use M to denote the span of all

functions of form xmerx, where m = 0, 1, ..., A and r ∈ C such that r
2πi

is not an integer.

Lemma 4.1. Let fA,r(x) = xAerx where A ∈ N ∪ {0} and r ∈ C such that r
2πi

is not an

integer. Then

f̂A,r(n) =
(−1)A+1A!

(r − 2πin)A+1
+ er

A∑
m=0

(−1)mA!

(A−m)!(r − 2πin)m+1

for all n ∈ Z.

Proof. We prove Lemma 4.1 by induction. For A = 0, we have

f̂0,r(n) =

∫ 1

0

f0,r(x)e−2πinx dx

=

∫ 1

0

erx−2πinx dx

=
1

r − 2πin

(
er−2πin − 1

)
=

(−1)0+10!

(r − 2πin)0+1
+ er−2πin

0∑
m=0

(−1)m1!

(0−m)!(r − 2πin)m+1
.
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For the inductive step, assume∫ 1

0

xA−1e(r−2πin)x dx =
(−1)A(A− 1)!

(r − 2πin)A
+ er−2πin

A−1∑
m=0

(−1)m(A− 1)!

(A−m− 1)!(r − 2πin)m+1
.

Then

f̂A,r(n) =

∫ 1

0

xAe(r−2πin)x dx

=
xAe(r−2πin)x

r − 2πin

∣∣∣∣1
0

− A

r − 2πin

∫ 1

0

xA−1e(r−2πin)x dx

=
er−2πin

r − 2πin
+

(−1)A+1A!

(r − 2πin)A+1
+ er−2πin

A−1∑
m=0

(−1)m+1A!

(A−m− 1)!(r − 2πin)m+2

=
(−1)A+1A!

(r − 2πin)A+1
+

er−2πin

r − 2πin
+ er−2πin

A∑
m=1

(−1)mA!

(A−m)!(r − 2πin)m+1

=
(−1)A+1A!

(r − 2πin)A+1
+ er−2πin

A∑
m=0

(−1)mA!

(A−m)!(r − 2πin)m+1
. �

The Fourier transform of fA,r is a finite series whose sum includes terms that are rational

functions of n. The structure of these rational functions of n is a fraction with a coefficient

(depending on A and r) in the numerator, and the expression (r−2πin)m+1 in the denominator.

When m = A, we reach the largest degree denominator, so we next look to find a function in

M that depends on A, t, where t = r
2πi

is not an integer, whose Fourier transform is 1
(n−t)A+1 .

Lemma 4.2. For all t ∈ C− Z and A ∈ N ∪ {0}, there exists a function FA,t ∈ M , where

r = 2πit, such that F̂A,t(n) = 1
(n−t)A+1 .

Proof. Let us multiply 1
(n−t)A+1 by the quantity (−2πi)A+1

(−2πi)A+1 to obtain the equivalent expression

(−2πi)A+1 · 1
(2πit−2πin)A+1 . Assign r = 2πit, and we have an expression that resembles a

summand of the finite series in Lemma 4.1. Our goal is to find a function of form

FA,t(x) = (−2πi)A+1

A∑
m=0

amx
me2πitx

= (−2πi)A+1

A∑
m=0

amx
merx
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such that F̂A,t(n) = 1
(n−t)A+1 . We make use of the fact that the finite series in said lemma

includes the term 1/(r − 2πin)A+1 along with the other 1/(r − 2πin)m terms from m = 1 to

m = A. The following (A+ 1)× (A+ 2) augmented coefficient matrix represents the linear

system

F̂A,t(n) = (−2πi)A+1

A∑
m=0

amf̂m,r(n) =
1

(n− t)A+1
,

where the f̂m,r(n) are as in Lemma 4.1:



er − 1 er er · · · er er er 0

0 er − 1 2er · · · (A− 2)er (A− 1)er Aer 0

0 0 2(er − 1) · · · (A− 2)(A− 3)er (A− 1)(A− 2)er A(A− 1)er 0

..

.
..
.

...
. . .

...
...

...
...

0 0 0 · · · (A− 2)!(er − 1) (A− 1)!er A!
2
er 0

0 0 0 · · · 0 (A− 1)!(er − 1) A!er 0

0 0 0 · · · 0 0 (−1)AA!(er − 1) 1



.

Row-reducing this upper-triangular matrix gives us the column vector of coefficients [am]Am=0

necessary to construct FA,t. �

In general, a rational function h(n) with complex coefficients is not of form 1
(n−t)A+1 .

Although, by using partial fraction decomposition, h can be written as a linear combination

of these 1
(n−t)A+1 .

Lemma 4.3. For all h ∈ C(x) in which limn→∞ h(n) = limn→−∞ h(n) = 0, there exists a

function f ∈M such that f̂(n) = h(n).

Proof. We decompose such h(n) into its partial fractions

h(n) =
L∑
j=1

Cj
(n− tj)Aj+1

,

where Cj, tj ∈ C, Aj ∈ N∪{0}, and L is the number of partial fractions in the decomposition.

By Lemma 4.2, there exists some function FA,t ∈ M whose Fourier transform is 1

(n−tj)Aj+1 .
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We now use linearity to construct the function

f(x) =
L∑
j=1

CjFAj ,tj(x)

whose Fourier transform is

f̂(n) =
L∑
j=1

CjF̂Aj ,tj(n) = h(n). �

In order to use Parseval’s identity, we require functions of form |h(n)|2, which is certainly

non-negative. We therefore show that any non-negative rational function of real coefficients

has this form for some h as in Lemma 4.3.

Lemma 4.4. For all non-negative g ∈ R(x), there exists h ∈ C(x) such that g(n) = |h(n)|2.

Proof. Since g is non-negative, g does not have real zeros or real poles of odd order. Thus,

by the Fundamental Theorem of Algebra, g(n) factors as

α(n− r1)(n− r1)(n− r2)(n− r2) · · · (n− rp)(n− rp)
(n− s1)(n− s1)(n− s2)(n− s2) · · · (n− sq)(n− sq)

=
α|n− r1|2|n− r2|2 · · · |n− rp|2

|n− s1|2|n− s2|2 · · · |n− sq|2

=

∣∣∣∣∣
√
α(n− r1)(n− r2) · · · (n− rp)
(n− s1)(n− s2) · · · (n− sq)

∣∣∣∣∣
2

where α ≥ 0 is a constant, and each rj, sk ∈ C with j = 1, 2, ..., p and k = 1, 2, ..., q. Observe

that the real zeros and real poles of even order are listed as rj = rj and sk = sk, respectively.

Define h(n) =
√
α(n−r1)(n−r2)···(n−rp)
(n−s1)(n−s2)···(n−sq) . �

All the pieces are in place to establish the following result.

Theorem 4.5. Given g ∈ R(x) everywhere non-negative and vanishing at infinity, there

exists a function f ∈M such that g(n) = |f̂(n)|2.

Remark. If g is summable over the integers, then combining Theorem 4.5 with Parseval’s

identity shows that ∑
n∈Z

g(n) =

∫ 1

0

|f(x)|2 dx.
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Hence, this theorem gives us a way to find the exact sum of the series using an integral over

[0, 1].

Proof. Since g is non-negative, there exists a function h ∈ C(x) such that g(n) = |h(n)|2

by Lemma 4.4. By Lemma 4.3, there exists a function f ∈ M such that f̂(n) = h(n), so

g(n) = |f̂(n)|2. �

Suppose we would like to determine the sum of
∑

n∈Z g(n) for a given non-negative rational

g summable over Z. By Theorem 4.5, we can find a function f(x) =
∑L

n=1Cnx
Anernx such

that g(n) = |f̂(n)|2. Then the value of the infinite series is given by∫ 1

0

|f(x)|2 dx =

∫ 1

0

f(x)f(x) dx

=
L∑
n=1

L∑
m=1

(
CnCm

∫ 1

0

xAn+Amex(rn+rm) dx

)

=
L∑
n=1

L∑
m=1

CnCm · f̂An+Am,rn+rm(0).(3)

The value f̂An+Am,rn+rm(0) is computed in Lemma 4.1.

If we are given such a function g, then the latter three lemmas and Theorem 4.5 provide

us with a method to find f such that g(n) = |f̂(n)|2:

1) Express g(n) as |h(n)|2 with h ∈ C(x) by factoring g.

2) Decompose h(n) into its partial fractions.

3) Construct FAj ,tj(x) as seen in Lemma 4.2 for the jth partial fraction by row-reducing the

corresponding matrix from said lemma.

4) Further construct f(x) =
∑L

j=1CjFAj ,tj(x), where L is the number of partial fractions

and Cj are coefficients. This gives us f̂(n) = h(n).

5) By Parseval’s identity,
∑

n∈Z g(n) =
∫ 1

0
|f(x)|2 dx.

Due to the length of time it takes to find the required function of x, as well as computing

the integral
∫ 1

0
|f(x)|2 dx, the value of these infinite series are best found using software. As

a result of the research, we have developed a code package for the mathematics software
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system SageMath [11]. The package, called “ParsevalSum,” inputs a rational function of n

and outputs the exact sum of the series. The value of
∫ 1

0
|f(x)|2 dx given by the finite series

in equation (3) is the operation used to evaluate the integral. ParsevalSum also computes

the even zeta values, and it determines the function f ∈ M such that g(n) = |f̂(n)|2. The

software package can be accessed via GitHub:

https://github.com/JamesRPoulin/ParsevalSum.

4.2. Example: Sum of 2
n2+1

Over Z. For a simple example, consider the series

∑
n∈Z

2

n2 + 1
.

One may take the constant 2 outside the summation, but we incorporate it into the example

to demonstrate that the following works nicely with constants. Observe that

∑
n∈Z

2

n2 + 1
=
∑
n∈Z

(
√

2)2

(n− i)(n+ i)

=
∑
n∈Z

∣∣∣∣∣
√

2

n+ i

∣∣∣∣∣
2

,

so we will look for a function f such that f̂(n) =
√
2

n+i
. The denominator has form (n− t)A+1

from Lemma 4.2, where t = −i and A = 0. Hence, our r = 2πit = 2π and A = 0, so we

row-reduce the matrix [
e2π − 1 1

]
to obtain

[
1 1

e2π−1

]
.

Thus, our f̂(n) is equivalent to

f̂(n) = (−2πi)

( √
2

e2π − 1

)
f̂ 0,2π(n).

Therefore, by linearity, our required function f is

f(x) =

(
−2πi

√
2

e2π − 1

)
e2πx.

https://github.com/JamesRPoulin/ParsevalSum
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Finally, the exact sum of the infinite series is therefore

∑
n∈Z

2

n2 + 1
=

∫ 1

0

|f(x)|2 dx

=
2π(e2π + 1)

e2π − 1
≈ 6.3067.

4.3. Example: Sum of 289
(n2+4)(n−1/2)2 Over Z. For an example that requires partial fractions,

consider ∑
n∈Z

289

(n2 + 4)(n− 1/2)2
.

Again, the constant 289 can be taken out, but the partial fraction decomposition is more

convenient with the constant. Observe that

∑
n∈Z

289

(n2 + 4)(n− 1/2)2
=
∑
n∈Z

172

(n+ 2i)(n− 2i)(n− 1/2)2

=
∑
n∈Z

∣∣∣∣ 17

(n+ 2i)(n− 1/2)

∣∣∣∣2 ,
so we will look for a function f such that f̂(n) = 17

(n+2i)(n−1/2) . Using partial fraction

decomposition, we get

f̂(n) =
−2 + 8i

n+ 2i
+

2− 8i

n− 1/2
.

The denominator of each partial fraction has form (n− t)A+1 from Lemma 4.2. The quantity

1
n+2i

shows that the corresponding A = 0 and t = −2i, hence r = 2πit = 4π. Thus, we

row-reduce the matrix [
e4π − 1 1

]
to obtain

[
1 1

e4π−1

]
.

Similarly, the quantity 1
n−1/2 shows that the corresponding A = 0 and t = 1/2, hence

r = 2πit = πi. Thus, we row-reduce the matrix[
eπi − 1 1

]
to obtain

[
1 −1

2

]
.
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Thus, our f̂(n) is equivalent to

f̂(n) = (−2πi)

(
−2 + 8i

e4π − 1

)
f̂ 0,4π(n) + (−2πi)(−1 + 4i)f̂ 0,πi(n).

Therefore, by linearity, our required function f is

f(x) =

(
16π + 4πi

e4π − 1

)
f 0,4π(x) + (8π + 2πi)f 0,πi(x)

=

(
16π + 4πi

e4π − 1

)
e4πx + (8π + 2πi)eπix.

Finally, the exact sum of the infinite series is therefore

∑
n∈Z

289

(n2 + 4)(n− 1/2)2
=

∫ 1

0

|f(x)|2 dx

= 68π2 − 30π(e4π + 1)

e4π − 1
≈ 576.8847.

4.4. Example: Sum of 1
(n2+1)(n2+4)2

Over Z. For an example that uses a larger matrix,

consider ∑
n∈Z

1

(n2 + 1)(n2 + 4)2
.

Observe that

∑
n∈Z

1

(n2 + 1)(n2 + 4)2
=
∑
n∈Z

12

(n+ i)(n− i)(n+ 2i)2(n− 2i)2

=
∑
n∈Z

∣∣∣∣ 1

(n+ i)(n+ 2i)2

∣∣∣∣2 ,
so we will look for a function f such that f̂(n) = 1

(n+i)(n+2i)2
. Using partial fraction decompo-

sition, we get

f̂(n) = − 1

n+ i
+

1

n+ 2i
+

i

(n+ 2i)2
.

The denominator of each partial fraction has form (n − t)A+1 from Lemma 4.2. The first

quantity 1
n+i

shows that the corresponding A = 0 and t = −i, and hence our r = 2πit = 2π.
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Thus, we row-reduce the matrix[
e2π − 1 1

]
to obtain

[
1 1

e2π−1

]
.

The second quantity 1
n+2i

shows that the corresponding A = 0 and t = −2i, hence r = 2πit =

4π. We then row-reduce the matrix[
e4π − 1 1

]
to obtain

[
1 1

e4π−1

]
.

The third quantity 1
(n+2i)2

shows that the corresponding A = 1 and r = 4π. We then

row-reduce the 2× 3 matrix e4π − 1 e4π 0

0 −(e4π − 1) 1

 to obtain

 1 0 e4π

(e4π−1)2

0 1 − 1
e4π−1

 .
Thus, our f̂(n) is equivalent to

f̂(n) = (−2πi)

(
− 1

e2π − 1

)
f̂ 0,2π(n) + (−2πi)

(
1

e4π − 1

)
f̂ 0,4π(n)

+ (−2πi)2

(− i

e4π − 1

)
f̂ 1,4π(n) +

(
ie4π

(e4π − 1)2

)
f̂ 0,4π(n)

 .

Therefore, by linearity, our required function f is

f(x) =
2πie2πx

e2π − 1
− 2πie4πx

e4π − 1
+

4π2ixe4πx

e4π − 1
− 4π2e4πie4πx

(e4π − 1)2
.

Finally, the exact sum of the infinite series is therefore

∑
n∈Z

1

(n2 + 1)(n2 + 4)2
=

∫ 1

0

|f(x)|2 dx

=
5πe8π + 32πe6π − 24π2e4π − 32πe2π − 5π

144e8π − 288e4π + 144
≈ 0.1104.
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Note that there are multiple choices of f̂ in each of these examples, especially this one.

We could have chosen, for instance,

f̂(n) =
1

(n+ i)(n− 2i)(n+ 2i)

for this example. With this choice, our corresponding function f is

f(x) =
πie4πx

2(e4π − 1)
− 2πie2πx

3(e2π − 1)
+

πie−4πx

6(e−4π − 1)
.

Nonetheless, the integral
∫ 1

0
|f(x)|2 dx has the same value as the previous integral. This

shows that some choices of f̂ may be better than others. In this case, the second choice of f̂

only requires row-reducing augmented 1× 2 matrices within Theorem 4.5, and integration by

parts or computing a triple sum in equation (3) are both not required when evaluating the

integral.

4.5. More Interesting Identities. Theorem 4.5 provides us with some interesting identities.

Proposition 4.6. For all t ∈ R− Z, one has

∑
n∈Z

1

(n− t)2
= π2 csc2(πt).

Proof. Suppose t ∈ R− Z. With 1
(n−t)2 =

∣∣∣ 1
n−t

∣∣∣2, our choice of f̂(n) is 1
n−t , which means our

A = 0 and r = 2πit. We thus find that f(x) = −2πi·e2πitx
e2πit−1 . Now we apply Parseval’s identity:

∑
n∈Z

1

(n− t)2
=

∫ 1

0

∣∣∣∣∣−2πi · e2πitx

e2πit − 1

∣∣∣∣∣
2

dx

=

∫ 1

0

(
2π

|e2πit − 1|

)2

dx

=
4π2

2− 2 cos(2πt)

= π2 csc2(πt),

with the last equality holding by the half-angle identity of sin2(πt). �
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This identity makes sense since adding 1 (or any integer) to n in the summand does not

change the value of the series. Let us next consider the same series, but for t a complex

number.

Proposition 4.7. More generally, for all t ∈ C such that Im(t) 6= 0, one has

∑
n∈Z

1

|n− t|2
=

π − πe−4πIm(t)

Im(t)(e−4πIm(t) − 2e−2πIm(t) cos(2πRe(t)) + 1)
.

Proof. With f(x) = −2πi·e2πitx
e2πit−1 from before, now our integral becomes

∑
n∈Z

1

|n− t|2
=

∫ 1

0

∣∣∣∣∣−2πi · e2πitx

e2πit − 1

∣∣∣∣∣
2

dx

=

∫ 1

0

∣∣∣∣∣−2πi · e2πix(Re(t)+iIm(t))

e2πi(Re(t)+iIm(t)) − 1

∣∣∣∣∣
2

dx

=

∫ 1

0

4π2e−4πIm(t)x

|e−2πIm(t) cos(2πRe(t))− 1 + ie−2πIm(t) sin(2πRe(t))|2
dx

=

∫ 1

0

4π2e−4πIm(t)x

e−4πIm(t)−2e−2πIm(t) cos(2πRe(t))+1
dx

=
π − πe−4πIm(t)

Im(t)(e−4πIm(t) − 2e−2πIm(t) cos(2πRe(t)) + 1)
. �

Proposition 4.8. For all k ∈ R×, one has

∑
n∈Z

k2

n2 + k2
= πk · coth(πk).

Proof. Let k be any nonzero real number. Observe that the summand factors as k2

(n+ik)(n−ik) ,

so ∑
n∈Z

k2

n2 + k2
=
∑
n∈Z

∣∣∣∣ k

n+ ik

∣∣∣∣2 .
Thus, our choice of f̂(n) is k

n+ik
. We see that our A = 0 and t = −ik, so r = 2πk. We then

find that f(x) = −2πik·e2πkx
e2πk−1 .
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By Parseval’s identity,

∑
n∈Z

k2

n2 + k2
=

∫ 1

0

∣∣∣∣∣−2πik · e2πkx

e2πk − 1

∣∣∣∣∣
2

dx

=
4π2k2

(e2πk − 1)2

∫ 1

0

e4πkx dx

=
πk(e4πk − 1)

(e2πk − 1)2

=
πk(e2πk + 1)

e2πk − 1

= πk · coth(πk). �

This identity, in particular, is very interesting. The sum of k2

n2+k2
as n ranges through all

the integers is analogous to the integral∫ ∞
−∞

k2

x2 + k2
dx = k · arctan

(
x

k

)∣∣∣∣∞
−∞

= π|k|

where x ranges through all real numbers.
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5. GENERAL RATIONAL FUNCTIONS

Theorem 4.5 provides a way to find the exact sum of a non-negative rational function over

Z, but most rational functions are not non-negative. Of course, we can handle non-positive

rational functions by simply factoring out −1 from the summand, which results in a non-

negative summand, but how would we handle rational functions that are neither non-negative

nor non-positive? Such an expression cannot be written in the form |h(n)|2, but we may

instead consider a difference of such expressions. Such a difference can be determined for

any rational function by using the following lemma, and thus extending Theorem 4.5 even

further.

5.1. Infinite Series for General Rational Functions.

Lemma 5.1. Any rational function with real coefficients is a difference of two non-negative

rational functions.

Proof. Let p(n)
q(n)

be a rational function of n with polynomials p and q of real coefficients.

Multiplying both the numerator and denominator by q(n) yields p(n)q(n)
(q(n))2

, for which the

denominator is a non-negative polynomial. Considering the numerator, it is a polynomial

of form
∑deg(pq)

k=0 akn
k where ak ∈ R is the coefficient of the nk term. For k even, nk

(q(n))2
is a

non-negative rational function. For k odd, observe that

nk

(q(n))2
=
nk+1 + nk + nk−1

(q(n))2
− nk+1

(q(n))2
− nk−1

(q(n))2

is a linear combination of non-negative rational functions since k + 1 and k − 1 are even, and

nk+1 + nk + nk−1 = nk−1(n2 + n+ 1) ≥ 0 for all real n. Lastly, add the non-negative rational

functions together, and then add the non-positive rational functions together. Factoring out

−1 from the non-positive quantity, we are left with a difference of two non-negative rational

functions. �

We now have an immediate corollary to Theorem 4.5 that gives us a means to calculate

the exact sum of any summable rational function over the integers using Parseval’s Identity.
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Corollary 5.2. Suppose g ∈ R(x). There exist functions u, v ∈M such that

g(n) =
∣∣û(n)

∣∣2 − ∣∣v̂(n)
∣∣2 .

Remark. Recall that M is the span of all functions of form xmerx, where m = 0, 1, ..., A with

non-negative integer A, and r ∈ C such that r
2πi

is not an integer. If g is summable over the

integers, then the exact value of
∑

n∈Z g(n) is that of the difference of integrals∫ 1

0

|u(x)|2 dx−
∫ 1

0

|v(x)|2 dx.

Proof. By Lemma 5.1, g(n) is a difference of two non-negative rational functions of n, each

of which we know has form |f̂(n)|2 for some function f ∈M by Theorem 4.5. Denote this

difference as g(n) = |û(n)|2 − |v̂(n)|2 for functions u, v ∈M . �

Remark. It should be noted that a more standard method for finding the sum of an infinite

series for a general rational function over Z involves contour integration. By taking a contour

integral of the function g(z) cot(πz), where z is a complex variable and g is a rational function

summable over Z, we can use the residue theorem to calculate the contour integral and write

the resulting value in terms of
∑

n∈Z g(n). Our method uses Parseval’s identity instead of

contour integration, and thus provides flexibility to how we may find the exact value of∑
n∈Z g(n) for such g.

5.2. Application: Dirichlet L-Functions. A useful application to Corollary 5.2 is finding

certain special values of Dirichlet L-functions.

Definition 5.3. A Dirichlet character χ of modulus k, where k ∈ N, is a group homomorphism

χ : (Z/kZ)× → C×. By defining

χ(n) :=


χ(n mod k), gcd(n, k) = 1

0, gcd(n, k) > 1,

the domain of χ is extended to Z. Furthermore, we define the Dirichlet L-function as the
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infinite series

L(s, χ) =
∞∑
n=1

χ(n)

ns

for any s ∈ C. Lastly, we say that χ is odd if χ(−1) = −1, and we say it is even if χ(−1) = 1.

Remark. Since χ is a group homomorphism, we automatically find that χ(1) = 1.

Consider the sum S(A; q, k) defined to be

S(A; q, k) :=
∑
n∈Z

n≡q mod k

1

nA
=
∑
n∈Z

1

(kn+ q)A
,

where q, k ≥ 1 and A ≥ 2 are integers. Observe that Theorem 4.5 allows us to compute this

sum for even A, and Corollary 5.2 allows us to compute this sum for odd A. If A has the

same parity as χ, meaning that either both A and χ are even or they are both odd, then we

have the following proposition to relate S with L:

Proposition 5.4. Let k ≥ 3 be an integer, χ a Dirichlet character of modulus k, and A ≥ 2

an integer with the same parity as χ. Then

L(A,χ) =

bk/2c∑
q=1

χ(q)S(A; q, k).

Proof. With such k, 2, and χ, the right-hand side of the equation is

bk/2c∑
q=1

χ(q)
∑
n∈Z

n≡q mod k

1

nA
=

bk/2c∑
q=1

 ∞∑
n=1

n≡q mod k

χ(q)

nA
+

−1∑
n=−∞

n≡q mod k

χ(q)

nA



=

bk/2c∑
q=1

 ∞∑
n=1

n≡q mod k

χ(n)

nA
+

∞∑
n=1

n≡−q mod k

χ(−n)

(−n)A



=

bk/2c∑
q=1

 ∞∑
n=1

n≡q mod k

χ(n)

nA
+

∞∑
n=1

n≡−q mod k

χ(−1)

(−1)A
· χ(n)

nA

(4)
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=

bk/2c∑
q=1

 ∞∑
n=1

n≡q mod k

χ(n)

nA
+

∞∑
n=1

n≡−q mod k

χ(n)

nA

(5)

=
∞∑
n=1

χ(n)

nA

= L(A,χ).

Line (4) uses the fact that A and χ have the same parity, thus χ(−1)
(−1)A = 1. Line (5) requires

that gcd(k, k/2) > 1 to avoid repeated terms q = k/2 whenever k is even, which is true for

k ≥ 3. �

Proposition 5.4 fails for k = 2, but since

χ(n) =


1, gcd(n, 2) = 1

0, gcd(n, 2) > 1

is the only Dirichlet character of modulus 2, and L(s, χ) = (1− 2−s)ζ(s), nothing is new for

k = 2. We may show that L(s, χ) = (1− 2−s)ζ(s) since

L(s, χ) =
∞∑
n=1

χ(n)

ns

=
∞∑
n=0

1

(2n+ 1)s
(6)

=
1

1s
+

1

3s
+

1

5s
+

1

7s
+

1

9s
+ · · ·

=

(
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

)
− 1

2s

(
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

)
(7)

= ζ(s)− 2−sζ(s)

= (1− 2−s)ζ(s).

Line (6) uses the fact that χ of modulus 2 sends positive even integers to zero and sends

positive odd integers to one. Line (7) adds and subsequently subtracts the reciprocals of

positive even integers raised to the power s.
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An example of using Parseval’s identity to calculate a Dirichlet L-Function is finding the

value of L(3, χ), where χ is an odd Dirichlet character of modulus 3. Observe that

χ(n) =


1, n ≡ 1 mod 3

−1, n ≡ 2 mod 3

0, n ≡ 0 mod 3

is the only odd Dirichlet character of modulus 3. Then by Proposition 5.4, we have that

L(3, χ) =
∞∑
n=1

χ(n)

n3
=
∑
n∈Z

1

(3n+ 1)3
.

Using Corollary 5.2 on
∑

n∈Z
1

(3n+1)3
, we find that L(3, χ) = 4

243

√
3π3.
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6. POSITIVE EVEN ZETA VALUES REVISITED

A similar method to finding the required function f given a summable rational function of

n applies to finding such f given a rational function 1/n2A for any A ∈ N. This method does

not depend on knowing f ∗1 from Proposition 3.5 nor the Bernoulli polynomials beforehand

and instead is solely dependent on the summand. Thus, we show an alternative method to

Theorem 3.2 by first finding the Fourier transform of just the monomial fA(x) = xA for any

A ∈ N and then writing 1/n2A as a linear combination of these f̂A(n). That way, we find a

polynomial function f such that f̂(n) = 1/n2A for all n 6= 0. Extra adjustments are necessary

to account for the fact that 1/n2A is undefined at n = 0, and thus the rational function is

not summable over the integers.

6.1. The Alternate Method.

Lemma 6.1. Let fA(x) = xA for any A ∈ N. Then f̂A(0) = 1
A+1

, and for all n 6= 0, one has

f̂A(n) =
A∑

m=1

−A!

(A−m+ 1)!(2πi)mnm
.

Proof. If n = 0, then ∫ 1

0

fA(x)e−2πi(0)x dx =

∫ 1

0

xA dx =
1

A+ 1
.

Suppose n 6= 0 and proceed by induction. For A = 1, we have

f̂1(n) =

∫ 1

0

xe−2πinx dx = − 1

2πin
=

−(1)!

(1− 1 + 1)!(2πi)1n1
.

For the inductive step, assume f̂A−1(n) =
∑A−1

m=1
−(A−1)!

(A−m)!(2πi)mnm
. Then

f̂A(n) =

∫ 1

0

xAe−2πinx dx

= −x
Ae−2πinx

2πin

∣∣∣∣1
0

+
A

2πin

∫ 1

0

xA−1e−2πinx dx

= − 1

2πin
+

A

2πin

A−1∑
m=1

−(A− 1)!

(A−m)!(2πi)mnm
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= − 1

2πin
+

A∑
m=2

−A!

(A−m+ 1)!(2πi)mnm

=
A∑

m=1

−A!

(A−m+ 1)!(2πi)mnm
. �

We proceed to the next lemma similarly to how we proceeded from Lemma 4.1 to Lemma

4.2.

Lemma 6.2. For all A ∈ N, there exists a polynomial function f such that f̂(n) = 1/nA for

all n 6= 0.

Proof. We look to find a function of form f(x) =
∑A

m=1 amx
m such that f̂(n) = 1/nA for

all n 6= 0. We make use of the fact that the finite series in Lemma 6.1 includes the term

1/nA along with the other 1/nm terms from m = 1 to m = A− 1. The following A× (A+ 1)

augmented coefficient matrix represents the linear system

f̂(n) =
A∑

m=1

amf̂m(n),

where the f̂m(n) are as in Lemma 6.1:



1 1 1 1 · · · 1 1 1 0

0 2 3 4 · · · A− 2 A− 1 A 0

0 0 6 12 · · · (A− 2)(A− 3) (A− 1)(A− 2) A(A− 1) 0

0 0 0 24 · · · (A− 2)(A− 3)(A− 4) (A− 1)(A− 2)(A− 3) A(A− 1)(A− 2) 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · (A− 2)! (A−1)!
2

A!
3

0

0 0 0 0 · · · 0 (A− 1)! A!
2

0

0 0 0 0 · · · 0 0 A! −(2πi)A



.

Row-reducing this matrix gives us the column vector of coefficients [am]Am=1 necessary to

construct f . �
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We now have the following result.

Theorem 6.3. For any A ∈ N, there exists a polynomial function f such that

∞∑
n=1

1

n2A
=

1

2

∫ 1

0

∣∣f(x)
∣∣2 dx− 1

2

∣∣∣f̂(0)
∣∣∣2 .

Proof. Observe that
∑∞

n=1
1
n2A is equivalent to

∑∞
n=1

∣∣ 1
nA

∣∣2. By Lemma 6.2, there exists a

polynomial function f such that f̂(n) = 1/nA for all n 6= 0. We can thus find the exact sum

of the series by instead finding the value of
∫ 1

0
|f(x)|2 dx and f̂(0). The equality by Parseval’s

identity is ∣∣∣f̂(0)
∣∣∣2 +

∑
n6=0

∣∣∣f̂(n)
∣∣∣2 =

∫ 1

0

∣∣f(x)
∣∣2 dx.

Since 1/n2A is an even function of n, we have 1
2

∑
n6=0

1
n2A =

∑∞
n=1

1
n2A , and therefore,

∞∑
n=1

1

n2A
=

1

2

∫ 1

0

∣∣f(x)
∣∣2 dx− 1

2

∣∣∣f̂(0)
∣∣∣2 . �

We may evaluate the integral
∫ 1

0

∣∣f(x)
∣∣2 dx directly to find

(8)

∫ 1

0

∣∣f(x)
∣∣2 dx =

A∑
p=1

A∑
q=1

apaq
p+ q + 1

,

where this f is as in the statement and proof of Lemma 6.3, and am is the mth coefficient of

f . Furthermore, we know f̂(0) = 1
A+1

by Lemma 6.1, so we end up with

∞∑
n=1

1

n2A
= − 1

2(A+ 1)2
+

1

2

A∑
p=1

A∑
q=1

apaq
p+ q + 1

which is no longer in terms of integrals.

This alternate method is how we programmed ParsevalSum to compute the (2A)th zeta

value, as well as find a polynomial function f such that ζ(2A) = 1
2

∫ 1

0
|f(x)|2 dx− 1

2
|f̂(0)|2.

ParsevalSum uses equation (8) to evaluate the integral.

6.2. How We Found f(x) for ζ(2). This provides some extra insight for how we came

up with f(x) = −2πi
(
x− 1

2

)
for our choice of function when calculating the value of ζ(2).
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However, this method instead yields f(x) = −2πix because this method constructs the

required function f with a zero constant term. Since we need to find the value of
∑∞

n=1
1
n2 ,

we first will look for the function f whose Fourier Transform is f̂(n) = 1/n for all n 6= 0.

Note that we will use the function f̂A(n) as the Fourier transform of fA(x) = xA for such n.

Following Theorem 6.3,

1

n
= a1f̂1(n)

= a1

(
−1

2πin

)
for all n 6= 0, so a1 = −2πi. Therefore, by linearity, f(x) = −2πix. With this choice of f ,

we find that 1
2

∫ 1

0
|f(x)|2 dx = 1

2

∫ 1

0
| − 2πix|2 dx = 2π2

3
and 1

2
|f̂(0)|2 = 1

2

∣∣∣∫ 1

0
−2πix dx

∣∣∣2 = π2

2
.

We then get

∞∑
n=1

1

n2
=

1

2

∫ 1

0

|−2πix|2 dx− 1

2

∣∣∣∣∣
∫ 1

0

−2πix dx

∣∣∣∣∣
2

=
2π2

3
− π2

2
=
π2

6
.

6.3. Example: ζ(4). Consider ζ(4). To compute
∑∞

n=1
1
n4 , we will look for a function f

such that f̂(n) = 1/n2 for all n 6= 0. We next row-reduce the matrix 1 1 0

0 2 −(2πi)2

 to obtain

 1 0 −2π2

0 1 2π2

 .
This shows that

f̂(n) =
1

n2

= 2π2 · f̂2(n)− 2π2 · f̂1(n),

and so our desired function is f(x) = 2π2x2 − 2π2x by linearity. The sum of the series is

therefore

∞∑
n=1

1

n4
=

1

2

∫ 1

0

∣∣2π2x2 − 2π2x
∣∣2 dx− 1

2

∣∣∣∣∣
∫ 1

0

(2π2x2 − 2π2x) dx

∣∣∣∣∣
2

=
π4

90
.
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6.4. Example: ζ(10). For a more complicated example, consider ζ(10). In order to compute∑∞
n=1

1
n10 , we will look for a function f such that f̂(n) = 1/n5 for all n 6= 0. We next

row-reduce the matrix

1 1 1 1 1 0

0 2 3 4 5 0

0 0 6 12 20 0

0 0 0 24 60 0

0 0 0 0 120 −(2πi)5


to obtain



1 0 0 0 0 2
45
π5i

0 1 0 0 0 0

0 0 1 0 0 −4
9
π5i

0 0 0 1 0 2
3
π5i

0 0 0 0 1 − 4
15
π5i


.

This shows that

f̂(n) =
1

n5

= − 4

15
π5i · f̂5(n) +

2

3
π5i · f̂4(n)− 4

9
π5i · f̂3(n) +

2

45
π5i · f̂1(n),

and so our desired function is f(x) = − 4
15
π5ix5 + 2

3
π5ix4 − 4

9
π5ix3 + 2

45
π5ix by linearity. The

sum of the series is therefore

∞∑
n=1

1

n10
=

1

2

∫ 1

0

∣∣f(x)
∣∣2 dx− 1

2

∣∣∣∣∣
∫ 1

0

f(x) dx

∣∣∣∣∣
2

=
1

2

(
2π10

93555

)
− 1

2
|0|2

=
π4

93555
.
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7. EXTENSIONS

Over the course of this paper, we have established many results that allow us to use

Parseval’s identity to calculate the exact value of an infinite series, as well as some useful

applications. There are minor extensions that take the idea of our results to introduce other

methods to finding the exact sum of an infinite series.

7.1. Exact Sums Over N. While Parseval’s identity finds the exact sum of series over Z,

we are often interested in finding the exact sum of series over N instead. Calculus already

includes a couple classes of functions for which we can compute exact sums over N, but

Theorems 3.2 and 4.5 introduce two more classes of functions. We may thus find the exact

sum of a linear combination of the following list of functions over the natural numbers:

• telescoping summands

• geometric summands

• summands of 1/n2k for any k ∈ N

• even rational summands over Z. If g is an even rational function summable over

the integers, then we may find its exact sum over the natural numbers by using∑∞
n=1 g(n) = 1

2

∑
n∈Z g(n) − 1

2
g(0) and applying Parseval’s identity to

∑
n∈Z g(n)

using either Theorem 4.5 or Corollary 5.2.

For example, one can find the value of
∑∞

n=1
2n2+n+2

n4+n3+2n2+2n
by decomposing the summand

and using linearity to obtain
∑∞

n=1
1

n2+2
+
∑∞

n=1

(
1
n
− 1

n+1

)
. The first sum may be found

by instead using Theorem 4.5 to compute 1
2

∑
n∈Z

1
n2+2

− 1
4
, and the second sum evaluates

to 1 as it is a telescoping series. Likewise, we can find
∑∞

n=1
n4+3n

n4·3n by rewriting the series

as
∑∞

n=1
1
n4 +

∑∞
n=1

1
3n

. Theorem 3.2 allows us to find the value of the first series, and the

second series is a geometric series starting at n = 1.

7.2. Exact Sums Using Fourier Series. Another way to compute the exact sum of a

series over Z is to use the Fourier series expansion of f . That is, if f is a continuously

differentiable function on (0, 1) with the endpoints identified, and the right-derivative exists at

x = 0 and the left-derivative exists at x = 1, then it is equal pointwise to its Fourier series as
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f(x) =
∑

n∈Z f̂(n)e2πinx =
∑

n∈Z f̂(n) cos(2πnx)+ i
∑

n∈Z f̂(n) sin(2πnx). If we let x = 0 and

x = 1, then f(0)+f(1)
2

=
∑

n∈Z f̂(n) provided that f̂(n) is summable ([7], p. 37, Theorem 2.3.4).

If instead x = 1/2, then we get the sum of the alternating series f(1/2) =
∑

n∈Z(−1)nf̂(n)

provided it is summable. The former gives us a way to compute the exact sum of a series over

Z whose summand is a rational function in C. If
∑

n∈Z(−1)nf̂(n) diverges because either

the real or imaginary part of (−1)nf̂(n) is not summable, but the other part is summable,

then we may instead compute only the sum of the summable part. The same thing applies

to
∑

n∈Z f̂(n).

Consider, for example, Im
(∑

n∈Z
1
n+i

)
. The real part of the summand n

n2+1
is not summable

over Z, but its imaginary part − 1
n2+1

is. Take f̂(n) = 1
n+i

, and apply Theorem 4.5 to∑
n∈Z |f̂(n)|2 =

∑
n∈Z

1
n2+1

using our initial choice of f̂(n). We then get the resulting

f(x) = −2πie2πx
e2π−1 we need to find that Im

(∑
n∈Z

1
n+i

)
= Im

(
f(0)+f(1)

2

)
= −π coth(π), which is

what we would expect from Proposition 4.8. If we instead use x = 1/2, then the alternating

series
∑

n∈Z
(−1)n
n+i

is summable in both the real and imaginary parts and has exact value

f(1/2) = − 2πeπ

e2π−1i. The real part evaluates to 0 because the real part of the summand (−1)n·n
n2+1

is a summable odd function of n by the Alternating Series Test.
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