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ABSTRACT 
 
 
 

 Marine fungi play a crucial role in recycling nutrients and channeling energy to 

higher trophic levels in the world oceans. Despite their critical role, their distributions and 

community composition, particularly in the Arctic, are largely unknown. This study reveals 

depth-related trends of abundance, diversity, and community composition of Arctic marine 

fungi through analysis of data obtained in the Tara Oceans expedition. With samples from 

surface (0-50 m), deep chlorophyll max (50-200 m), and mesopelagic (200-1000 m) depths, 

relative abundance, operational taxonomic unit (OTU) richness, and diversity were found 

to increase as a function of depth. Basidiomycota and Ascomycota were found to to be the 

most dominant OTUs in Arctic water samples. This study provides potential causes for 

depth-related trends and yields insight into the biogeographic distribution of Arctic  

marine fungi. 
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INTRODUCTION 
 
 
 
 The study of marine fungi is a confluence of three fields: marine science, 

microbiology, and mycology. Within the marine science community, the most well-known 

microplankton are a few varieties of phytoplankton such as diatoms, coccolithophores, 

dinoflagellates, and cyanobacteria and a few varieties of zooplankton such as 

foraminiferans, radiolarians, and copepods. Fungi, however, have been largely overlooked 

and are rarely discussed in classroom settings. Approximately 20 years ago, chytrids were 

isolated and identified as a fungal parasite in aquatic and marine environments (Longcore, 

1999). Since then, this group of zoosporic fungi has gained notoriety, but the global 

distribution and composition of fungal communities remains largely unexplored. Whereas 

mycology has historically been limited to terrestrial ecosystems, marine ecosystems have 

begun to garner attention only recently. Thanks to developments in eDNA recovery and 

DNA sequencing technologies, researchers have adopted metagenomic- and 

metabarcoding-based approaches to resolving fungal diversity independent of isolating 

cultures. 

 One such metabarcoding study is the Tara Oceans expedition, a geographically 

expansive study which analyzed water samples from the Arctic Ocean. The Arctic was of 

interest to the present study because it is a region warming twice as fast as any other region 

on the planet (NOAA, 2017). Therefore, establishing a baseline of fungal biogeography to 

determine how it changes over time is critical. Additionally, the massive fluvial input and 

stratified input from other world oceans lead to an environment where mycoplankton from 

distinct bodies of water can mix within one ecosystem. Furthermore, the nutrient 
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limitations of the Arctic Ocean create an environment where the cycling of nutrients from 

dead phytoplankton to higher trophic levels via fungal plankton is of increased importance 

for providing nutrients to zooplankton. This upcycling of otherwise exported energy into 

higher trophic levels has been termed the “mycoloop” (Amend et al., 2019). 

 The mycoloop is driven by fungi having diverse functional roles. Initially, marine 

fungi were thought to be primarily limited to parasitizing algae, but recent studies have 

found them in every ocean setting ranging from sea ice to sediments (Hassett & Gradinger, 

2016) and everywhere in between (Amend et al., 2019). Fungi in marine ecosystems can 

be either unicellular or filamentous and can feed as saprotrophs, parasites, or mutualist. 

Some species are generalist. Others have been found to be very specific in their selection 

of host cells (Grossart et al., 2016). 

 The primary goals of my study were to identify the most universally distributed 

fungal OTUs of the Arctic and ascertain trends of OTU richness as they relate to depth. A 

paper overviewing the state of the field (Amend et al., 2019), highlighted most marine 

fungi identified to date are Dikarya (Basidiomycota or Ascomycota). Many studies (Bass 

et al., 2007; Richards et al., 2012; Morales et al., 2019; Li et al., 2019) reported Ascomycota 

and Basidiomycota as the most dominant fungal taxa. Modern DNA-sequencing methods 

have allowed for the detection of many poorly resolved and uncultured early-diverging 

fungi (Picard, 2017), often referred to as “dark matter fungi” (Grossart et al. 2015). Due to 

the dominance of Dikarya in genomic databases and the high recovery rate of Dikarya in 

other studies, it was hypothesized Ascomycota and Basidiomycota would account for the 

majority of sequences recovered from the Tara Ocean expedition’s sampling of the Arctic 

Ocean. 
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Furthermore, it was hypothesized fungal community composition would display 

dramatic shifts between the epipelagic and mesopelagic layers; similar to trends seen in 

bacterial communities (Giovannoni and Stingl, 2005). This hypothesis was principally 

predicated on first principles pertaining to the stratification of Arctic waters. Whereas the 

epipelagic is a layer where energy is gained though photoautotrophy and the mesopelagic 

is a layer where energy is channeled to higher trophic levels via feeding on sinking 

particles, the fundamental ecologic strategies change between these two layers. The 

presence of distinct layers of water from the Atlantic and Pacific within the mesopelagic 

layer was suspected to further increase diversity and richness in comparison to the Polar 

layer at the surface. 
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METHODS 
 
 
 

Tara Oceans Expedition 

 The data used in my study were collected and partially processed as part of the Tara 

Oceans expedition. This section provides an overview of the methods used in the Tara 

Oceans expedition as outlined in Pesant and coworkers (2015). The Tara Oceans expedition 

was a global survey of planktonic ecosystems in the world’s oceans. From 2009 to 2013, 

more than 35,000 water samples from nine ocean regions were collected to study the 

ecology, genomics, and functional diversity of viruses, prokaryotic, and eukaryotic 

plankton in the world oceans. The survey was conducted on a 35-meter schooner (SV Tara) 

with a rotating team of five sailors and six scientists: one chief scientist, one optics 

engineer, two oceanographic engineers, and two biology engineers. The ship was equipped 

with state-of-the-art sampling technology including a 2,400-meter winched cable for 

deploying instruments, a CTD Rosette, Niskin bottles, optics equipment, peristaltic and 

vacuum pumps, and dry and wet labs. 

The Arctic region sample set consisted of 19 stations from which water samples 

were collected (Figure 1). The samples from these stations were obtained from the surface 

(SRF, 3m-15m), deep chlorophyll max (DCM, 15m-200m), and mesopelagic (MES, 200m-

1000m) depths. Water samples from these depths were collected in Niskin bottles and 

subsequently fractionated by filtration (0.8-2000 μm, 0.22-3 μm, 3-20 μm, 20-180 μm, and 

180-2000 μm). 

The details pertaining to nucleotide extraction and sequencing are outlined by 

Alberti and coworkers (2017). An overview of the relevant portions of that paper are 
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provided here. All filter samples were preserved in liquid nitrogen on board SV Tara and 

sent to the European Molecular Biology Laboratory approximately every 6 weeks. There, 

the samples underwent a cryogenic grinding process followed by RNA and DNA extraction 

with NucleoSpin RNA kits and DNA Elution buffer kits (Macherey-Nagel). The 

optimization of these RNA and DNA extraction methods were validated at the de Vargas 

laboratory at the Station Biologique de Roscoff. 

To reveal the taxonomic assignments of eukaryotic sequences, the hypervariable 

V9 loop of the small sub-unit rRNA 18s gene was targeted as an amplicon for PCR. This 

gene was chosen due to its conserved length across diverse taxa, simple secondary 

structure, the presence of both highly conserved and variable regions, as well as prevalence 

in reference databases. Following PCR, the DNA was processed with an Illumina 

sequencer. After performing quality controls, the metabarcodes were assigned a eukaryotic 

taxonomy as determined by an in-house database. This in-house database was formed via 

global similarity analysis with around 80,000 reference sequences. 

 

Data Analysis 

 The laboratory of Colomban de Vargas (Roscoff) shared a data set of all fungi 

metabarcodes from the Tara Oceans Expedition. Subsequent analysis included writing 

Matlab codes to read the data and extract the Arctic samples from the global data set. This 

reduced the number of samples from 1191 to 169. From a collection of files, I extracted 

the following variables for each sample: sample ID, date of sample, sample name, ocean 

region, latitude, longitude, OTU-list, average depth, minimum depth, maximum depth, 
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water density, temperature, salinity, oxygen concentration, chlorophyll concentration, and 

total number of reads. 

  I then used the list of OTUs to build a matrix with each row corresponding to a 

sample and each column corresponding to an OTU. The taxa from the OTU-list were 

grouped into one of twelve broader OTUs: unidentified core-fungi, unidentified Dikarya, 

unidentified Ascomycota, Pezizomycotina, Saccharomycotina, Taphrinomycotina, 

unidentified Basidiomycota, Agaricomycotina, Pucciniomycotina, Ustilaginomycotina, 

Chytridiomycota, and Microsporidia. To yield the OTU composition of each sample I 

counted the number occurrence for each OTU in the sample and divided by the total 

number of OTUs in the sample. This normalized the data by displaying each OTU as a 

percentage of the total number of OTUs present in the sample. 

The 169 samples were further placed into subgroups based on depth and size 

fraction to generate community composition graphs. Furthermore, I used these groupings 

to generate box and whisker plots displaying OTU richness, total reads per sample, and 

Shannon index (where applicable). Shannon index values were calculated in Matlab using 

element operators on a larger matrix comprised of the relevant samples data. 
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RESULTS 
 
 

 Within the Arctic subset of data, the total number of reads per sample ranged from 

0 to 82,330. The five samples with zero reads were omitted from community composition 

analysis but were included in all other portions of data analysis. Additionally, several 

samples registered one read resulting in those community compositions being represented 

solely by one OTU. The decision was made to include samples registering an arbitrarily 

low number of reads as long as that number was not zero. Although the maximum number 

of reads was 82,330, 168 of 169 samples had fewer than 1600 reads. The mean and median 

number of reads per sample increased with depth. Excluding the outlier of 82,330, the mean 

number of reads for the SRF, DCM, and MES samples were 30.21, 59.92, and 889.03, 

respectively. The medians were 10, 13, and 176, respectively. This trend was seen while 

grouping samples by depth; however, more nuanced patterns emerged when samples were 

further grouped by filter size. 

 Specifically, the median number of reads per sample increased as a function of 

depth for samples obtained with the 0.8-2000 µm and 3-20 µm size fraction. The median 

number of reads were highest at the DCM for the 0.22-3 µm size fraction. For filter sizes 

where only SRF and DCM measurements were taken (20-180 µm and 180-2000 µm), no 

conclusive trend was revealed. Boxplots were generated to provide a visual distribution of 

the total number of reads for each size fraction at each depth (Figure 2). In the figure, each 

depth is shown as a subplot with the number of reads per sample for each filter being shown 

as its own box and whisker plot. Although finer details are difficult to see, a standard value 

of 1600 was chosen for the y-axis to clearly show changes across depth. The 0.22-3 µm 
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and 3-20 µm size fractions are shown to consistently have the highest median reads for 

each depth (Figure 2). 

 OTU richness displayed trends similar to the total number of reads. Boxplots 

showing OTU richness for various filter sizes and depths are shown in Figure 3. Across all 

depths, more OTUs were detected with the 0.22-3 µm and 3-20 µm filters than any other 

filter sizes. Again, these values increased as a function of depth, indicating a positive 

correlation between reads per sample and OTU richness. The number of OTUs detected 

ranged from 0 to 63. OTU richness changed more dramatically between the DCM and MES 

layers than between the SRF and DCM layers. This is reflected in the mean number of 

OTUs detected at each depth: 7.5, 9.8, and 29.0 at the SRF, DCM, and MES respectively. 

 Although 0.8-2000 µm, 0.22-3 µm, and 3-20 µm filters were used across all three 

depths, only two stations utilized the same filter size in all three depths. Between those two 

stations, were five occurrences where SRF, DCM, and MES samples were processed with 

the same filter size across all depths. Specifically, only TARA 158 (3-20 µm) and TARA 

201 (0.8-2000 µm, 0.22-3 µm and 3-20 µm) obtained measurements from all three depths. 

The Shannon diversity index was calculated for each of these series (Figure 4). For four of 

the five scenarios, the Shannon diversity index was found to increase as a function of depth 

with the more pronounced change occurring between the SRF and DCM layer as opposed 

to the DCM and MES layer. 

Further analysis was conducted to determine the most pan-Arctic OTU. Of the total 

2059 OTUs registered, the three most dominant were associated with Pucciniomycotina, 

Pezizomycotina, and Saccharomycotina. More broadly, Basidiomycota, Ascomycota, and 

unidentified Dikarya were the three most dominant OTUs. To account for the imbalance 
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in the number of samples per depth, the most prevalent OTU for each depth and filter size 

was calculated individually. This helped to elucidate bias resulting among different filter 

sizes fractions. The next section of results explores the trends and findings of each depth 

individually including the calculation mentioned in this paragraph. 

Beginning with the SRF samples, the community composition for each sample is 

shown in Figure 5. Among these samples, is a qualitatively high degree of inter-sample 

variance, a direct result of the low number of reads per sample as shown in Figure 2. Note 

that 0.22-3 μm has the highest median reads per sample. For SRF samples, the rates of 

detection are shown in Table 1. Pucciniomycotina is the most prevalent OTU across all 

filter size fractions. For 0.22-3 μm, Saccharomycotina and unknown Dikarya were the 

second most prevalent OTU. For 3-20 μm the second most prevalent OTU was 

Saccharomycotina, though the detection rates of unknown Dikarya were considerably 

lower. Unknown Basidiomycota had the lowest prevalence among all samples with 0% in 

all filter size fractions. 

For DCM samples, the inter-sample variance of community composition (Figure 

6) was distinctly lower than that of SRF stations. Ustilaginomycotina’s contributions to 

community composition in DCM samples was 21% of detected OTUs on average, the 

highest of any depth. The increased inter-sample consistency among DCM samples is 

matched with an increase in the number of reads per sample which are shown in Figure 2. 

Again, the 0.22-3 μm filter fraction size shows the highest median reads per sample for this 

depth. Looking at prevalence of OTUs in DCM samples (Table 2), Pucciniomycotina is 

the most prevalent OTU for all filter size fractions except for 0.22-3 μm which had 100% 
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occurrence for unknown Dikarya, Pezizomycotina, and Agaricomycotina. Pezizomycotina 

prevalence decreases as a function of filter size fraction. 

The MES stations display the lowest degree of inter-sample variability with regards 

to the community composition as is evident in Figure 7. With the consistent community 

composition of the MES samples, a typical distribution of OTUs in the water samples 

emerges. Mesopelagic samples were primarily comprised of two subgroups of Ascomycota 

(Pezizomycotina and Saccharomycotina) and two subgroups of Basidiomycota 

(Agaricomycotina and Pucciniomycotina). These 4 OTUs account for more than 83% of 

OTUs in each MES sample regardless of filter size. In tandem with this increased inter-

sample consistency, the MES stations yield the highest number of reads per sample of any 

group, as shown in Figure 2. Although the 0.22-3 μm filter returned the highest number of 

reads per sample in SRF and DCM samples, the 3-20 μm filter had a median number of 

reads approximately 3 times higher than the 0.22-3 μm filter in MES samples. In looking 

at the prevalence of occurrence of each OTU in the MES stations (Table 3), 

Pezizomycotina and Pucciniomycotina were found in all samples. Saccharomycotina and 

Agaricomycotina were found in all samples from the 0.22-3 μm and 3-20 μm size fractions, 

but a markedly smaller proportion were found in 0.8-2000 μm size fractions. Unidentified 

Dikarya, unidentified Ascomycota, and Taphrinomycotina all showed a distinct increase 

in occurrence frequency as a function of increasing filter size fraction. 

Some of the most apparent trends emerge from looking at the community 

composition graphs (Figure 5, Figure 6, Figure 7) together. The most apparent trend seen 

in comparing these three figures is the consistency of community composition obtained 

with the 0.22-3 μm size fraction in all three depths. In contrast, samples obtained with the 
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0.8-2000 μm filter size fraction reveal largely different community compositions as a 

function of depth. 

Chytrids, which were previously reported as seasonally abundant in the Arctic 

Ocean (Hassett & Gradinger, 2016) were found in only a few stations. TARA 188, 193, 

194 and 196 found chytrids with multiple size fractions. TARA 158 (MES 0.22-3 μm), 173 

(DCM 3-20 μm), 206 (MES 3-20 μm), and 209 (MES 3-20 μm) found chytrids with one 

size fraction. TARA 193, 194, and 196 are the three stations nearest the Bering Strait as 

shown in Figure 1. Microsporidia were found even more rarely. This OTU was only found 

in SRF samples from TARA 180. 
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DISCUSSION 
 

 

Reads Per Sample 

The high number of reads in the 0.22-3 µm and 3-20 µm filter samples draws 

attention to the potential variance in fungal cell sizes. Despite the narrow size range, these 

filters performed better than the broad range (0.8-2000 µm) filter. One explanation for the 

success of the smaller filter sizes is that the average fungal cell falls within the range of 

0.22-20 µm. Yeast typically range from 2.5 µm to 6.0 µm (Maldonado, 2011). Fungi that 

were detected with larger filter size fractions were likely fixed on larger particles, such as 

larger phytoplankton cells or fragments of animal detritus which exceeded 20 µm, as 

opposed to free floating cells in the water column. The decreased detection of unidentified 

Dikarya and unidentified Ascomycota for 20-180 µm and 180-2000 µm filters suggest 

smaller filters are more likely to yield discoveries of novel species in the future. Little 

research has been done on the discrimination of varying cell sizes by filter size fractions; 

however, most of the marine fungal studies referenced in this study which size-fractionated 

water samples cited using 0.22 µm filters.  

Across all filter sizes, the increasing number of reads per sample as a function of 

depth is indicative of an increasing abundance of fungi. Claims should not be made about 

the absolute abundance of groups of fungi due to limitations in the methodology; however, 

the uniform PCR procedures applied in the Tara Oceans expedition multiplies amplicons 

evenly across samples, and therefore, can be used as a proxy to determine which samples 

had the highest initial concentrations of DNA. PCR multiplies DNA exponentially within 

each cycle, so small differences in initial DNA concentration become more pronounced by 
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the time the sequences are processed with an Illumina Sequencer. Nonetheless, it is clear 

the MES layer had higher abundances of fungi as shown by the high number of reads. 

The increase in relative abundance of fungi as a function of depth is likely due to 

the decreased health of phytoplankton at depth and transition away from photosynthetic 

energy acquisition below the photic zone. The SRF and DCM layers are epipelagic zones 

with net positive primary productivity. The MES layer, by definition, begins at the depth 

where photosynthetically active radiation (PAR) is 1% of the initial incident light and ends 

where light is no longer detected (Del Giorgio & Daurte, 2002). This has become 

commonly approximated at 200m-1000m. The depth of 1% incident light approximates the 

compensation depth, the depth at which the rate of photosynthesis is equal to the rate of 

respiration for phytoplankton. Therefore, the MES layer begins roughly at the depth where 

a cell is expending more energy than it can generate. After a short period of time, these 

cells die, and the opportunity for degradation increases. As one study (Kagami et al., 2007) 

points out, the impact of host population growth rates is inconclusive. Numerous studies 

suggest fungal epidemics arise in phytoplankton populations exposed to ideal growth 

parameters, but a comparable number of studies suggest these infections occur more easily 

when the phytoplankton are in a stress-inducing environment, such as below the 

compensation depth. Nonetheless, there is consensus that infections occur most readily in 

situations where the parasite growth rates outpace those of the host cell (Kagami et al., 

2007), which would certainly be the case in the MES layer. 
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OTU Richness and Diversity 

The patterns for OTU richness closely followed patterns seen in the number of reads 

per sample: an increase with depth with the most dramatic changes occurring between 

DCM and MES layers. Similarly, dramatic shifts in prokaryotic community composition 

between the DCM and MES have been reported (Giovannoni & Stingl, 2005). The dramatic 

increase in OTU richness in the MES layer is likely due to the limited geographic 

dispersion of fungi in the SRF layer. The Arctic Ocean is highly stratified, with discrete 

layers usually ordered (from top to bottom) as Polar mixed layer, Pacific waters, Atlantic 

waters, Norwegian and Greenland Sea deep waters (Macdonald et al., 2005). In some 

regions of the Arctic, the MES layer contains bands of Pacific, Atlantic, and Deep Arctic 

waters -- in other regions, only Atlantic waters. Thus, fungi in the MES layer come from a 

great geographic range and are presented with as many as three distinct physicochemical 

environments to grow in. Additionally, these layers are more homogenized than the cold 

and fresh Polar layer, being that the deeper layers originate in foreign oceans. 

The increased richness and diversity of fungi as a function of depth was further 

supported by calculating the Shannon index. A group of researchers (Li et al., 2019) 

sampled waters from the epi-, meso-, bathy-, and abyssopelagic depths in the Western 

Pacific Ocean, but later categorized their samples as “upper” (5-500 m) and “deeper” 

(below 500 m). Their study found the Shannon index decreased as a function of depth in 

the upper layer but showed no correlation to depth in the deeper layer. Their findings 

conflict with the results of the Tara Oceans expedition, suggesting fungal diversity in the 

Arctic may display patterns of OTU richness with depth different from those in other 

oceans. This contrast may be reconciled with the reasoning laid out earlier. 
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Dominant OTUs 

Data from the Tara Oceans expedition supported numerous studies which suggest 

Basidiomycota and Ascomycota are the most dominant fungal groups in the world oceans. 

A study which specifically targeted fungi with AU2 and AU4 fungal-specific primers in 

combination with the hypervariable V4 region reports these two groups as the dominant 

OTU in deep-sea samples (Bass et al., 2007). Similarly, the dominance of Basidiomycota 

and Ascomycota, regardless of depth or region, was supported by a recent paper (Morales 

et al., 2019) which implemented methods more akin to the Tara Oceans expedition: 0.22 

µm filters, Illumina sequencing. Not only were their methods similar to the Tara Oceans 

expedition, but also the study reviewed forty-two metagenomes from the Tara Oceans 

expedition. This somewhat invalidates independence of data but suggests the subsequent 

analysis of data is in agreement. Furthermore, the Western Pacific Ocean study (Li et al., 

2019) found Ascomycota and Basidiomycota were the most dominant OTUs. 

Despite the support for these findings, chytrids are known to be the seasonally 

dominant fungal group in the Arctic sea-ice, sediments, and, to a lesser degree, the water 

column. (Hassett & Gradinger, 2016). Chytrid presence usually follows seasonal diatom 

blooms. Because the status of diatom blooms is unknown for the stations sampled in Tara 

Oceans study, the presence of chytrids cannot be conclusively linked to the presence of 

diatoms. Furthermore, even when using chlorophyll-A as a proxy for phytoplankton 

abundance, no clear trend emerged linking the detection of chytrids and abundance of 

phytoplankton. The previously mentioned Western Pacific study, which identified 

Basidiomycota and Ascomycota as the two most dominant OTUs, cited Chytrids as the 

third most dominant group (Li et al., 2019). That study and others (Morales et al., 2019) 
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suspected this group may be underrepresented in studies due to the lack of chytrid genomes 

in reference databases. Interestingly, three of the four stations with repeated recovery of 

chytrid sequences were nearest the Bering Strait, implying Pacific waters may have 

introduced chytrids in those samples. 

 

Bias and Blind-spots 

 Comparing the Tara Oceans expedition to other studies is hindered by the lack of 

standardized methodologies across marine fungal studies and to a large extent, a lack of 

detail surrounding those methodologies. Across 75 metabarcoding studies reviewed in one 

study, 95% of studies utilized “subjective sampling methods and inappropriate field 

methods and/or failed to provide critical methodological information” (Dickie et al., 2017). 

 Furthermore, there are few papers regarding the community composition of Arctic 

marine fungi; thus, this present study is largely explorative. Studies by Brandon T. Hassett 

and associates stand out as reliable backdrops for comparing findings in the western Arctic 

and sub-Arctic (Hassett et al., 2017) with special attention to the seasonality of chytrids 

(Hassett & Gradinger, 2016). While Hassett does an excellent job detailing methods, many 

other studies gave cause for concern. 

 For instance, some studies (Morales et al., 2019) use the MoBio Powersoil DNA 

extraction kit. The Powersoil handbook (MoBio) states, “the kit is intended for use with 

environmental samples containing a high humic acid content including difficult soil types 

such as compost, sediment, and manure.” In contrast, other studies took advantage of the 

MoBio Powerwater Sterivex DNA extraction kit (Hassett & Gradinger, 2016) or, in the 

case of the Tara Oceans expedition, used a general extraction kit such as the NucleoSpin 
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RNA kit (Alberti et al., 2017). The use of DNA extraction kits intended specifically for 

soil samples as recently as 2019 highlights the need for methods to be specialized for the 

marine environment. 

 Methodologies among studies further diverge in the application of PCR. Small 

changes to PCR protocols can dramatically alter the number of reads per sample as PCR 

doubles the number of sequences with each cycle. The Tara Oceans expedition purposely 

conducted fewer PCR cycles (25) than recommended by the kit to reduce the formation of 

chimeras (Alberti et al., 2017). Other studies utilized 34 cycles (Li et al., 2019), 29 cycles 

(Hassett et al., 2017), or do not directly clarify their PCR protocol (Morales et al., 2019). 

With 34 cycles of PCR, samples returned a minimum of 17,788 reads (Li et al., 2019). 

Despite yielding a lower number of reads per sample than the aforementioned studies, this 

adaptation by the Tara Oceans team was likely wise, as the later cycles of PCR are known 

to have higher rates of bias and error (Kagawana, 2003). 

 Perhaps even more important than the number of PCR cycles is the selection of a 

target gene and primers. The Tara Oceans expedition targeted the eukaryotes with the 18s 

gene of the SSU rRNA with 1389F and 1510R primers. Other studies utilized 18s and 28s 

genes with LR0R and LR5 primers (Hassett et al., 2017), ITS3 and ITS4 primers (Li et al., 

2019), or make no mention of primers (Morales et al., 2019). While the strengths and 

weaknesses of each gene and primer are too nuanced for the purposes of this paper, studies 

focused on unifying the field suggest utilizing a multiple-marker approach is a much-

needed standardization in order to reduce bias towards terrestrial fungi lineages (Reich & 

Labes, 2017). 
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CONCLUSION 
 

 

This study provides a glimpse into the diversity and community composition of 

Arctic marine fungi. Analysis of the data obtained via the Tara Oceans expedition indicates 

the wide-spread prevalence of Basidiomycota and Ascomycota in Arctic waters and 

displays depth-related trends. The increased diversity and abundance of fungi in the MES 

layer is supported by the trends of OTU richness and reads per sample as a function of 

depth. The depth-related trends revealed in this study are believed to be a result of the 

change in trophic strategy between epipelagic and mesopelagic depths as well as the 

stratification of Arctic waters from the Pacific and Atlantic oceans. Future studies of this 

nature should focus on unifying methods aimed towards eliminating bias and blind-spots 

inherent to metabarcoding studies. 
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APPENDIX 
 
 
 

 

Figure 1. The 19 stations where samples were taken during the Arctic portion of the Tara 
Oceans expedition. 
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Figure 2. A box and whisker plot of the total number of reads per sample. Red lines 
represent the median value and box size represents the interquartile range. The size of the 
box corresponds with the 25 and 75 percentiles. Whiskers represent the maximum and 
minimum values. Outliers are shown as red crosshairs. One outlier of 82,330 reads is not 
shown in the SRF 180-200 size fraction plot. 



23 
 

 

 

 

Figure 3. A whisker plot of OTU richness. Red lines represent the median value. Boxes 
represent the interquartile range (25 and 75 percentiles). Whiskers represent the maximum 
and minimum values. Outliers are shown as red crosshairs.  
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Figure 4. Grouped bar graphs showing the Shannon Index of various groupings. Bars are 
grouped by filter size. Each color corresponds to a different depth. These were the only 
sample groupings for which a sample was taken at each depth with the same filter size. 
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Figure 5. Stacked bar graphs showing the community composition of Surface Samples. 
Station numbers are shown on the y-axis. Each color corresponds to a different OTU.  

 

OTU/Filter             

0.8-2000 0 22 17 0 13 9 13 22 4 52 70 17 

0.22-3 0 80 50 0 10 0 60 80 20 70 100 50 

3-20 0 53 18 0 18 6 71 76 6 71 82 59 

20-180 0 53 0 0 20 0 20 20 7 33 73 33 

180-2000 6 31 6 0 31 0 75 63 0 44 95 63 

Average 1 48 18 0 18 3 48 52 7 54 84 44 

Table 1. The percent of SRF samples each OTU shows up in for various size fractions. 
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Figure 6. Stacked bar graphs showing the community composition of Deep Chlorophyll 
Max samples. Station numbers are shown on the y-axis. Each color corresponds to a 
different OTU. 

 

OTU/Filter             

0.8-2000 0 50 0 0 30 0 80 40 0 60 80 10 

0.22-3 0 100 25 0 50 0 100 75 50 100 80 10 

3-20 0 57 29 0 43 0 71 71 0 100 100 71 

20-180 0 33 0 0 67 0 33 67 0 0 100 33 

180-2000 0 14 0 0 29 0 14 29 0 0 95 63 

Average 0 51 11 0 44 0 60 56 10 52 85 46 

Table 2. The percent of DCM samples each OTU shows up in for various size fractions. 
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Figure 7. Stacked bar graphs showing the community composition of Surface Samples. 
Station numbers are shown on the y-axis. Each color corresponds to a different OTU. 
 
 

OTU/Filter             

0.8-2000 0 79 29 0 0 0 100 86 0 79 100 79 

0.22-3 0 83 67 0 17 0 100 100 17 100 100 83 

3-20 0 100 100 0 29 0 100 100 57 100 100 100 

Average 0 87 65 0 15 0 100 95 25 93 100 87 

Table 3. The percent of MES samples each OTU shows up in for various size fractions. 
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