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ABSTRACT 

Muscular Dystrophy (MD) is characterized by varying severity and time-of-onset 

by individuals afflicted with the same forms of MD, a phenomenon that is not well 

understood. MD affects 250,000 individuals in the United States and is characterized by 

mutations in the dystroglycan complex. gmppb encodes an enzyme that glycosylates 

dystroglycan, making it functionally active; thus, mutations in gmppb cause 

dystroglycanopathic MD1. The zebrafish (Danio rerio) is a powerful vertebrate model for 

musculoskeletal development and disease. Like human patients, gmppb mutant zebrafish 

present both mild and severe phenotypes. In order to understand the molecular mechanisms 

involved, we performed high-throughput RNA Sequencing (RNA-Seq) and small RNA 

Sequencing at 4 and 7 days-post-fertilization (dpf) in mild and severe gmppb mutants and 

controls. We hypothesize that variable phenotypes in gmppb mutants are due to differences 

in gene regulation; therefore, we identified differentially expressed (DE) long non-coding 

RNAs (lncRNAs) and microRNAs (miRNAs) - both potent genetic regulators. We 

identified “MD-relevant” DE Ensembl-annotated genes involved in cell cycle regulation, 

the immune response, neural development and maturation, and skeletal muscle atrophy. 

We identified DE miRNAs that regulate these DE genes in the 4dpf severe mutants – 

identifying 55 of these interactions. We utilized a novel method of visualizing gene 

expression networks by generating co-expression networks of miRNAs and subsequently 

removing miRNA nodes to identify important miRNAs. We identified 95 potential 

lncRNAs for further analysis. By integrating analyses of both coding and non-coding 

genes, we contributed towards the understanding of the molecular mechanisms of 

Dystroglycanopathy, highlighting potential phenotypic modulators.
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1. INTRODUCTION 

1.1 Muscular Dystrophy 

Muscular Dystrophy (MD) is a group of debilitating musculoskeletal disorders that 

affects 250,000 individuals in the United States1. At the moderate end, MD symptoms can 

develop during late adulthood and be characterized by weak, but still functional muscles 

(Appendix A, Table A1). At the more severe end of the spectrum, symptoms can develop 

prenatally and consist of severe brain and eye abnormalities which often lead to miscarriage 

of the developing fetus2. To some extent, symptoms are related to the form of MD an 

individual has. There are nine main forms of MD (Appendix A, Table A1); each caused by 

mutations in dozens of different genes encoding the protein subunits of the dystroglycan 

complex, or in some cases, mutations in enzymes involved in post-transcriptional 

modification of these subunits.  

Mutations in any of the protein components of the dystroglycan complex can cause 

MD (Figure 1). This complex is essential in skeletal muscle as it provides structural 

stability to the sarcolemma by linking the cells to one another, resulting in long, robust 

fibrils. The dystroglycan complex consists of the transmembrane β-dystroglycan complex 

which is bound to ɑ-dystroglycan. On the intracellular end of β-dystroglycan, dystrophin 

subunits polymerize and are eventually linked to the cytoskeleton. The sarcoglycans 

provide increased stability to the complex and help mediate the strong connection between 

ɑ and β dystroglycan3. ɑ-dystroglycan is a ligand for laminin 2 which links the complex to 

the extracellular matrix. This interaction is crucial during muscle contraction, where 

impediment of this complex leaves muscle fibers more susceptible to damage. Two of the 
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most common forms of MD, Becker MD (BMD) and Duchenne's MD (DMD) are caused 

by mutations in dystrophin, the intracellular tether that links the dystroglycan complex to 

the cytoskeleton. Generally, the more severe phenotype of DMD is attributed to genetic 

mutations that results in premature termination of dystrophin whereas BMD is the result of 

missense or frameshift mutations which do not majorly impact the length of the protein4–6. 

As stated previously, mutations in any of these protein subunits can lead to MD; however, 

mutations in genes associated with post-transcriptional modification of these subunits can 

also cause MD. 

 

Figure 1. The dystroglycan complex consists of multiple protein subunits that connect the 
extracellular matrix to the cellular cytoskeleton. Figure taken from Barresi, 20182.  
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1.2 Dystroglycanopathies 

Dystroglycanopathies include two forms of MD: Congenital MD (CMD) and Limb 

Girdle MD (LGMD). They are caused by improper glycosylation of the protein subunits 

composing the dystroglycan complex, a post-transcriptional modification. The ɑ and β 

dystroglycan subunits are derived from the same gene - the transcribed dystroglycan 

mRNA is split into two mRNAs prior to translation7. Mutations in dystroglycan lead to 

decreased muscle fiber strength, similar to the result of mutations in dystrophin. Besides 

being involved in muscle fiber strength, the α-dystroglycan subunit is also involved in 

signaling pathways. Under certain conditions, it inhibits survival signaling in muscle cells 

via caspase activation, leading to muscle cell apoptosis8, another characteristic result of 

MD. In addition, the dystroglycan complex serves as a node in the signal transduction 

pathway that leads to activation of STAT3 (signal transducer and activator of transcription 

3).  STAT3 plays an important role in regulating satellite cell self-renewal, and inducing 

expression of Interleukin 6, a cytokine that acts as an anti-inflammatory myokine9. Thus, 

improper formation of dystroglycan leads to multiple abnormal regulatory pathways. As 

stated before, for dystroglycan to be functional, it must be glycosylated. There are 17 genes 

many of which are enzymes that have been implicated in dystroglycan glycosylation (Table 

1). Even within dystroglycanopathies, the symptom severity and time of onset varies 

greatly - even within individuals with mutations in the same genes, a perplexity that is not 

well understood2. This phenotypic complexity warrants further studies to understand the 

genetic basis behind these differences.  
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Table 1. Genes Associated with Dystroglycanopathic Muscular Dystrophy10. 

 

 

1.3 Skeletal Muscle Structure  

Skeletal muscle is one of the three major muscle types. It consists of striated muscle 

tissue controlled voluntarily via the somatic nervous system. Skeletal muscle is attached to 

bones via bundles of collagen and its rigidity comes from the fractal arrangement of 

subunits (Figure 2). The muscle is composed of multiple muscle fascicles lined up in a 

parallel fashion, wrapped in a connective tissue sheath called the epimysium, which is 

surrounded by an outer connective tissue layer, called the fascia. The muscle fascicles are 

composed of multiple muscle fibers surrounded by another connective sheath called the 

perimysium; blood vessels and nerves are dispersed between the fascicles. The muscle 

fibers are cylindrical, multinucleated cells, with a sarcolemma cell membrane that result 
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from fusion of multiple cells during myogenesis, or muscle development. The muscle 

fibers are surrounded by another connective tissue layer called the endomysium. Muscle 

fibers themselves consist of multiple myofibrils aligned in an organized parallel fashion 

with abundant mitochondria dispersed throughout. The myofibrils are composed of 

myofilaments, sarcomere-based structures composed of thin actin filaments and thick 

myosin filaments that shrink for muscle contraction and stretch for muscle relaxation11,12.  

Neuromuscular junctions (NMJ) are sites where a motor neuron meets a muscle fiber. 

Excitation signals travel from the brain down the neuron to the muscle fiber. The muscle 

fiber is surrounded by the sarcoplasmic reticulum, which upon exposure to acetylcholine 

provided by the action potential, opens up sodium channels that allow for an influx of 

sodium into the cell. This signal propagates, causing voltage sensitive calcium channels to 

open, allowing for an influx of calcium into the myofilaments which allows myosin to 

bring the actin filaments closer together via the sliding filament model, initiating muscle 

contraction13.  

Exercise and repeated use of muscles leads to structural changes in the muscle 

fibers. Some of these changes include angiogenesis - formation of more extensive capillary 

networks to meet the oxygen needs of the muscle, increased production of mitochondria, 

hypertrophy - increasing the diameter of the muscle fibers, and changes in the proportions 

of slow oxidative (SO), fast oxidative (FO), and fast glycolytic (FG) fibers14.  Strenuous 

exercise can cause muscle fiber damage via overstretching of sarcomeres, leading to 

inflammation and damage to the connective tissue layers of the muscle.  Overall, this leads 

to necrosis, that peaks 48 hours after strenuous activity or overuse. Healthy exercising 

persons undergo this process constantly and can regenerate the damaged muscle fibers 
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through satellite cell proliferation and differentiation. Satellite cells are found underneath 

the basal lamina of muscle fibers15 and begin proliferating when exposed to signals derived 

from damaged fibers and infiltrating immune cells. Following proliferation, they 

differentiate into myoblasts which through fusion replace the damaged muscle fibers16. 

Notch signaling is thought to play an important in role in stimulating this process17. In 

individuals with Muscular Dystrophy, regeneration after muscle fiber damage is impeded 

due to satellite cell depletion16.  

 

Figure 2.  Skeletal Muscle Structure12.  
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1.4 Zebrafish as a model organism for Skeletal Muscle Development  

The zebrafish (Danio rerio) is a well-established vertebrate model organism that 

has been used to study neurological diseases including Alzheimer’s and Parkinson’s 

disease as well as musculoskeletal disorders. Zebrafish development is much faster than in 

mice models, and they are cheaper and require less physical space to grow. Zebrafish have 

70% of genes conserved with humans18. Structurally, they have many of the same organs 

and systems that humans have, including a heart, brain, spinal cord, various types of 

musculature, blood, and both an innate and adaptive immune system. Several methods, 

including CRISPR/Cas9, can be used to develop transgenic zebrafish where specific 

mutations can be introduced.  

Zebrafish skeletal muscle structure closely resembles that of humans, making them 

good models for musculoskeletal development. Using zebrafish, precursors to slow and 

fast twitch muscles have been identified and observed during development19. Additionally, 

the interaction between the muscle fibers attachment to the cytoskeleton and the 

extracellular matrix and how it relates to muscle rigidity has been determined20, and the 

molecular mechanism of muscle cell contraction has been elucidated21. Of course, these 

are but a few of the discoveries that zebrafish models of skeletal muscle development have 

unraveled.  

1.5 Zebrafish as a model organism for dystroglycanopathy 

To better understand the complexity of dystroglycanopathy, accurate and useful 

model organisms are required. Most models for MD are mice models. In fact, mouse 

models of dystroglycanopathy exist that accurately represent the phenotypes of patients. 
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These mutants have mutated genes earlier presented in Table 1 including large22, pomt123, 

dag1 24, and others. Unfortunately, similar zebrafish glycosylation mutants are still in 

development; current mutants exist for ispd25, but most mutants are created transitively 

using morpholino knockdowns. While morphants are useful in some contexts, the need 

exists for stable zebrafish lines. A zebrafish model for Duchenne’s Muscular Dystrophy 

(DMD) with mutated dystrophin exist which displays similar phenotypes as DMD human 

patients, including myofiber atrophy, immune cell infiltration into skeletal muscle, and 

abnormally shaped myofibrils20. Therefore, zebrafish have the potential to be an accurate, 

convenient, and fast-growing model for dystroglycanopathy research. The Henry lab at the 

University of Maine has been working on developing zebrafish with mutations in each of 

the genes listed in Table 1.  

1.6 A gmppb mutant model of dystroglycanopathy 

One of the dystroglycanopathic zebrafish models that has been successfully 

established by the Henry lab is a GDP-mannose Pyrophosphorylase (gmppb) mutant. The 

protein product of gmppb catalyzes the conversion of mannose-1-phosphate and GTP to 

GDP-mannose, a reaction involved in the production of N-linked oligosaccharides. These 

sugars are produced in the Golgi Apparatus and then are subsequently attached to a-

dystroglycan as a post-translational modification.  Mutations in gmppb have been 

associated with Limb Girdle MD and Congenital MD due to hypo-glycosylated α-

dystroglycan26. As of 2018, 81 MD patients worldwide have been described with mutated 

gmppb2,26–28. The low number of documented cases may be based on a lack of screening. 

Astrea et al. tested this hypothesis, screening 73 Italian individuals with genetically 

unidentified forms of Congenital MD and α-dystroglycan hypoglycosylation for gmppb 
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mutations2. Thirteen cases of gmppb biallelic mutations were identified in which seven 

novel mutations in gmppb were revealed: all leading to highly variable phenotypes from 

congenital clubfoot, seizures, neurodevelopmental abnormalities and autism spectrum 

disorders2.  

Zebrafish gmppb mutants were engineered by the Henry Lab using a CRISPR/Cas9 

system previously described by Gagnon et. al29. Primers were designed using 

CHOPCHOP29 with the intention of inserting a stop cassette in exon three of gmppb. 

CRISPR/Cas9 was performed in one cell stage AB zebrafish embryos (F0 generation) and 

the resulting fish were crossed to form the F1 generation which was similarly crossed to 

form the F2 generation. Data presented in this thesis is from the F2 generation and 

subsequent generations. Generation of the mutant line was done by the the Henry Lab30. 

The Henry Lab’s gmppb mutant presents variable phenotypes, in a similar manner to 

human patients with gmppb mutations. The mutants display muscular atrophy, decreased 

muscle density, and disorganized muscle fibers (Figure 3), and can be classified by those 

with either severe or mild phenotype.   

 

Figure 3. Differences in severity of MD phenotypes in gmppb mutant zebrafish at two days 
post-fertilization (2df). Control is gmppb wild type whereas mild and severe are 
homozygous gmppb mutants. The bottom figure of each zebrafish shows the birefringence 
which indicates skeletal muscle organization3. Figures courtesy of C. Henry lab. 
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1.7 Long non-coding RNAs 

LncRNAs are regulatory genes located in regions of the genome previously termed 

“junk DNA” that provide a novel lens to view physiological processes and diseases31. 

These genes are transcribed into RNA, but not translated; thus, existing as RNA 

intermediates that regulate gene expression through diverse, uncharacterized mechanisms 

in both the nucleus and cytoplasm. For example, the lncRNA XIST directly interacts with 

DNA, signaling the condensations of one of the X-chromosomes in mammalian females, 

forming a barr body31. LncRNAs can also form secondary and tertiary structures that aid 

in their mechanism of action. The lncRNA HOTAIR is a repressor of tumor repressor and 

metastasis genes. It forms an intricate structure consisting of 56 helical segments, 38 

terminal loops, 34 internal loops, and 19 junction regions32.  LncRNAs are also able to 

regulate gene expression by hybridizing with mRNA gene transcripts to signal mRNA 

degradation, decreasing protein expression31. For example, the lncRNA α-HIF is a natural 

antisense transcript of hypoxia-inducible factor 1 alpha (HIF-1α) that binds to HIF-1a 

based on sequence similarity. When it does so, it exposes AU-riches elements present in 

the 3’UTR of the HIF-1α mRNA, increasing the speed of mRNA degredation33. Alterations 

in protein expression becomes much more complex when one considers the plethora of 

interactions that a single protein can have, thus lncRNAs act as essential nodes in a complex 

map of physiological processes. LncRNAs are considered the most functionally diverse 

and numerous classes of RNAs34, yet their regulatory roles in the majority of processes and 

diseases is not well understood. They even have proposed hypothetical roles in MD35, but 

have yet to be experimentally investigated in this context.  
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1.8 MicroRNAs 

MicroRNAs (miRNAs) are another class of non-coding regulatory genes, who, in 

contrast to lncRNAs, have well understood mechanisms of action. Additionally, miRNAa 

are more conserved than lncRNAs with humans, and over 400 miRNAs are annotated by 

Ensembl36 in the zebrafish. The biogenesis of miRNAs follows a conserved processing 

pathway. Following transcription by RNA Polymerase II or III, the pri-miRNA is cleaved 

by Drosha, a ribonuclease, to form a pre-miRNAs which is then able to exit the nucleus via 

export by Exportin 5/RanGTP. Next, it is bound by Dicer, another ribonuclease, which 

cleaves the hairpin structure such that the ~21 nucleotide fragment can be complexed with 

Argonaut to form the RNA-induced silencing complex (RISC complex)37,38. Once the 

complex is formed, miRNAs can post-transcriptionally modify gene expression through a 

number of mechanisms. Based on the 4-9nt “seed sequence” of the miRNA complex, 

complementary base-pairing of target mRNA transcripts can occur. This may lead to 

cleavage of the target mRNA, poly-A-tail shortening, or blockage of the ribosome binding 

site, preventing translation etc. In vertebrates, miRNAs primarily function by degrading 

target mRNAs39. Currently, the specific role miRNAs play in MD is under-investigated. 

MiR-188 has been identified as a biomarker of Duchenne’s MD, but it is unclear if this 

miRNA might be contributing towards the phenotype40. Moreover, numerous miRNAs 

have been shown to modulate apoptosis, regeneration, cell growth and organization: 

processes that are likely pertinent to MD. Thus, investigating both miRNAs and lncRNAs 

is a necessary step towards a better understanding of the genetic pathways involved in this 

disease, and may have implications on the range of phenotypic severity and lifespan MD 

patients display. By incorporating protein-coding gene expression, miRNA expression, and 
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lncRNA expression in genetic regulatory pathways, treatments could emerge that target 

specific pathways to treat resulting symptoms, informing and advancing our understanding 

of MD.  

1.9 RNA sequencing to measure gene expression  

RNA sequencing (RNA-Seq) is a high-throughput method to determine gene 

expression. It can be used to identify differentially expressed genes, genes that are turned 

on or off in certain situations and in response to stimuli, which can be used to answer 

numerous research questions. RNA-Seq can also be used to examine alternative splicing 

where exon usage may vary in different tissues or samples.  

Illumina high-throughput RNA sequencing begins with isolation of RNA transcripts. Since 

total RNA recovered using standard procedures contains >80% ribosomal RNA (rRNA)41, 

standard protocol includes selection for poly-adenylated sequences using magnetic beads 

or cellulose coated with oligo-dT molecules, a process that removes most of the rRNA. 

Next, the transcripts are fragmented and converted to cDNA with ligated adapters used for 

next generation sequencing (NGS). To ensure proper removal of rRNAs, rRNA depletion 

is performed. Multiple strategies for rRNA depletion exist, but most utilize rRNA probes 

that target rRNA transcripts, signaling them for degradation. For example, Roche’s KAPA 

RNA HyperPrep Kit with Riboerase utilizes rRNA DNA probes that hybridize to rRNA 

fragments, forming RNA-DNA hybrids, that are targeted by RNase H for degradation. This 

method has less off-targets and preserves a higher proportion of non-coding RNAs than 

other strategies for rRNA depletion42. 
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Samples are then sequenced using Next Generation Sequencing (NGS). Following 

this, a workflow is performed that utilizes multiple software to assemble and align reads, 

annotate genes, and calculate gene expression. The output of sequencing is typically two 

FASTQ files for each sequenced sample, one for forward reads and another for reverse 

reads. First, these files are checked using FastQC43 which determines the read length and 

quality. Next, the two FASTQ files are concatenated into one file, trimmed of the adapters 

used for sequencing, and aligned to a given genome using either HISAT244 or BowTie45. 

If one is interested in identifying novel transcripts, Stringtie46 is run to align the transcripts 

to genes and identify ensembl-annotated genes. The bam file that is the result of BowTie 

or HISAT2 is run through HTSeq247 which counts the number of transcripts that align to 

each of the genes, and then DESeq248 can be used to identify differentially expressed genes.   

Small RNA sequencing allows for the preferential sequencing of microRNAs (miRNAs). 

It selects miRNAs using bead or gel-based size selection. Unlike most cellular RNAs, 

mature miRNAs possess both a 3’ hydroxyl and a 5’ phosphate which allows for 

preferential adapter ligation49. From there, cDNA preparation using reverse transcriptase, 

sequencing, and transcript alignment and annotation occur as would in traditional RNA 

Sequencing.  

RNA Sequencing provides information about the expression of protein coding 

genes which account for a mere 2% of the genome, as well as non-protein coding like long 

non-coding RNAs (lncRNAs) and microRNAs (miRNAs). A relatively newer view of the 

molecular mechanisms that lead to phenotype is that the way protein-coding gene are 

regulated, where they are expressed and when, is just as important as the protein-coding 

genes themselves. Therefore, traditional sequencing that excludes non-coding genes, 
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potent genetic regulators of protein-coding genes, excludes a plethora of valuable 

information. Non-coding regulatory genes are severely under investigated in MD, thus, we 

aimed to emphasize them in our analysis.  

1.10 MiRNA Network Attack 

Co-expression networks are used to understand large genetic networks. In the 

context of gene expression, they can be used to identify possible interactions between 

genes. In these networks, the nodes represent individual genes, and edges between them 

indicates that two genes are correlated – that their levels of expression are similar i.e. r2 

>0.75). These co-expression networks can then be used for further analyses to identify gene 

candidates. 

Network attack models are a computational method of modeling a network’s 

vulnerability in response to removal of nodes or edges. This is used for identification of 

the most important edges or nodes, those that contribute most towards the network 

stability50. They have been used to model social networks, identify key players in criminal 

organizations51, and model power grids52, and have proposed benefits in modelling 

relationships from large datasets generated from biological research50.  

Network stability is defined by multiple parameters including the characteristic 

path length, the degree of separation, and the network size.  The characteristic path length 

is the shortest path (the least number of edges) between two nodes. Nodes or edges that are 

most important to the network stability, cause relatively large changes in the characteristic 

path length upon removal. Another factor to consider in network attack graphs is the 

degrees of separation. The value of the degrees of separation defines the number of nearly 

independent networks, those with relatively few connections to other networks. An 
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example of this could be the social activities of people worldwide. If the nodes were people, 

and the edges were interactions, one would expect that each continent would have its own 

relatively independent network that would consist of far fewer edges connecting nodes 

between different continents than nodes within the same continent. Thus, the degree of 

separation would be six, based on the number of inhabited continents. Moreover, if you 

repeatedly selected edges that were transcontinental, after removing the last 

transcontinental edge, a huge change in the characteristic path length would occur. The 

network size is another useful parameter in finding important nodes. By repeatedly 

removing nodes, large jumps in network size can be used to pinpoint nodes that contribute 

to network stability.  

Network attack has been used to model miRNA networks to compare miRNA 

expression in different forms of cancer53.  In the context of miRNA expression, nodes 

represent individual miRNAs and edges connect the distinct miRNAs if they show similar 

patterns of expression between different timepoints, treatments, etc. These co-expression 

networks can identify miRNAs that are controlled by the same transcriptional pathway or 

functionally related54. Furthermore, by attacking the network through removal of miRNAs, 

nodes can be identified that cause large changes in characteristic path length or network 

size. These nodes are thus important in maintaining the structure of the network and are 

interesting candidates for further investigation. 

1.11 MiRNA gene target analysis  

MiRNAs recognize mRNA targets based on complementary base pairing of the 

seed sequence of the miRNA with the mRNA transcript. TargetScanFish55 (version 6.2) is 

a database with lists of zebrafish mRNAs targeted by zebrafish miRNAs that can be used 
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in combination with differential gene expression to predict miRNA/mRNA relationships. 

If a miRNA is differentially expressed and it is targeting a specific mRNA transcript, it 

would be expected that the mRNA transcript would be differentially expressed in an 

opposite direction of the miRNA, since most miRNAs cause degradation of their targets. 

The relationship between miRNAs and their mRNA targets can be used to identify 

upstream putative pathways that lead to biological differences. 

1.12 Research Objectives   

The primary goal of this research is to construct genetic regulatory networks that link 

miRNAs, lncRNAs, and protein-coding genes to cellular processes implicated in 

dystroglycanopathy phenotypes. We will do so with the following objectives: 

1. Identify previously annotated lncRNAs and miRNAs that are differentially 

expressed in the mutants.  

a. Predict miRNA targets  

2. Identify candidate novel lncRNAs via de-novo analysis from unannotated 

transcripts that are differentially expressed in the gmppb mutants. 

a. Characterize these lncRNAs and the adjacent genes to determine if they are 

relevant to MD.  

3. Incorporate lncRNA, miRNA, and protein-coding gene expression to construct a 

genetic regulatory network that may contribute towards our understanding of the 

molecular pathways involving MD phenotype.  

4. Characterize the different types of mutations that were induced in the gmppb 

mutants through Polymerase Chain Reaction (PCR) amplification of gmppb 

mutants and subsequent sequencing.   
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2. MATERIALS AND METHODS:   

2.1 Overview of the experimental design 

Four biological replicate samples of each treatment at each timepoint were 

submitted for rRNA depletion, followed by small RNA sequencing and mRNA sequencing 

(Figure 4). This included four samples of heterozygous gmppb mutants, four samples of 

homozygous gmppb mutants that displayed mild phenotypes, and four samples of 

homozygous gmppb mutants that displayed severe phenotypes. Each sample consisted of 

total RNA made from homogenizing three embryos (as described in section 2.2). The two 

timepoints included were 4 and 7 days post fertilization (dpf). For the small RNA 

Sequencing, only 3 samples were submitted for each treatment due to insufficient total 

RNA quantity.  

 

Figure 4. Experimental overview of RNA Sequencing and small RNA Sequencing in 
gmppb+/- controls and gmppb-/- mutants exhibiting mild or severe phenotypes.  
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2.2 RNA extraction 

Homozygous mutant and sibling control embryos were raised to the specified time 

point (4 or 7 days post fertilization), and then the mutants were classified based on 

birefringence using a confocal microscope in the Henry Lab. Birefringence was quantified 

using FIJI as previously described20. Mutants with a percent area and a percent Mean Gray 

Value at 85% or higher were classified as mild mutants; mutant embryos that did not meet 

this standard were classified as severe30. Zebrafish were segregated into separate tubes 

based on this classification system, euthanized via tricane, and preserved in 300 µL of trizol 

by the Henry Lab following an approved University of Maine IACUC protocol. To obtain 

sufficient RNA for RNA Sequencing, small RNA Sequencing, and quantitative Polymerase 

Chain Reaction (qPCR), each sample consisted of 3 zebrafish embryos.  

Samples were defrosted and homogenized using a Fisher PowerGen 125 (Fisher 

Scientific, Waltham, MA) mechanical homogenizer. RNA Extraction was performed using 

a Quick-RNA MicroPrep kit from Zymo following the manufactures protocol (Zymo 

Research, Irvine, CA). Samples were centrifuged at 12,000xg for 1 minute and the 

supernatant was removed and placed into a clean test tube. One volume ethanol (95-100%) 

was added to each sample, mixed well, and then the mixture was transferred to a Zymo-

Spin IC column with a collection tube. The column was centrifuged 30 seconds at 12,000xg 

and the flow through was discarded. The column was washed with 400 µL RNA Wash 

Buffer, centrifuged for 30 seconds at 12,000xg, and flow through was discarded. A DNase 

I Mastermix was prepared in an RNase free tube with 5 µL DNase I and 35 µL DNA 

Digestion buffer per sample. The master mix was mixed via gentle inversion. Next, the 

column was washed with 400 µL of RNA Prep Buffer followed by 700 µL RNA Wash 
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Buffer, each time centrifuging for 30 seconds at 14,000xg and discarding the supernatant. 

Next, the column was washed with 400 µL RNA Wash Buffer and centrifuged 2 minutes, 

then placed into a new RNase free tube. 10 µL of DNase/RNase Free Water was added to 

the center of the column and the sample was eluted via centrifugation for 30 seconds at 

14,000xg. The eluted RNA quality and concentration was immediately read by a Thermo 

Scientific NanoDrop OneC Spectrophotometer (Waltham, MA) and then samples were 

stored in a -80C freezer. The Zymo protocol is available online at https://files.zymo 

research.com/protocols/_r1050_r1051_quick-rna_microprep_kit.pdf. 

2.3 RNA sequencing and small RNA Sequencing  

Samples were submitted for RNA sequencing at QuickBiology in Pasadena, 

California. Total RNA samples were assayed for quality using an Agilent Bioanalyzer 2100 

(Agilent Technologies, San Francisco, CA) by QuickBiology.  

Libraries for RNA-seq were prepared with a KAPA Stranded RNA-Seq Kit with a 

RiboErase (KAPA Biosystems, Wilmington, MA) system. Final library quality and 

quantity were analyzed by Agilent Bioanalyzer 2100 (Agilent Technologies, San 

Francisco, CA) and Life Technologies Qubit 3.0 Fluorometer (Life Technologies, 

Carlsbad, CA), respectively. The RNA Sequencing was performed on a HiSeq 4000 

Illumina Sequencer (Illumina Inc, San Diego, CA) with 150 base paired end reads.  

The same total RNA samples were submitted for small RNA Sequencing. The 

library was prepared according to Qiagen QIAseq miRNA library kit (Qiagen Inc, 

Germantown, MD) using 100 ng total RNA as input. Final library quality and quantity was 

analyzed by Agilent Bioanalyzer 2100 and Life Technologies Qubit 3.0 Fluorometer. The 
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Small RNA Sequencing was performed on an Illumina NextSeq 500 (Illumina Inc, San 

Diego, CA) with 75 base paired end reads.  

 

2.4 RNA sequencing annotation workflow  

FastQC version 0.11.943 was used to verify the quality of the RNA Sequencing 

reads prior to further analyses. All analyses were performed using Galaxy 

(https://usegalaxy.org) and the histories of analyses be accessed through Galaxy upon 

request. 

Following FastQC diagnostic analyses, each of the FASTQ files were concatenated 

tail-to-head to produce a single set of Forward (R1) and Reverse (R2) FASTQ files per 

sample. FASTQ files were then trimmed using Trimmomatic version 0.38.056 which 

removes the sequencing adapters, and low quality bases. The forward and reverse reads 

were mapped to the GRCz11/danRer11 (May 2017) zebrafish genome assembly 

(https://www.ncbi.nlm. nih.gov/assembly/ GCA_000002035.4/) using HISAT2 version 

2.1.044. The resulting BAM (binary alignment and mapping) file for each sample was then 

used to develop gene models using StringTie version 3.1.6 and the GRCz11 Ensembl 

(version 98) GTF annotation file. The GTF file for each sample was combined using 

StringTie Merge to produce a single GTF annotation file. A FASTA formatted sequence 

file for each transcript in the GTF file was produced using GFFread from within Cufflinks 

version 2.1.1.257. Next, the BAM files were run through HTSeq version 0.9.147 to count 

the number of reads that map to exons of genes in the GTF annotation file.  Read counts 

per gene per sample were analyzed using DESeq2 version 2.11.40.648. Four different 
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pairwise sample group comparisons were made to determine which genes were 

differentially expressed. These comparisons included: 4dpf sibling vs. 4dpf mild, 4dpf 

sibling vs. 4dpf severe, 7dpf sibling vs. 7dpf mild, and 7dpf sibling vs. 7dpf severe. For 

each pairwise comparison, the normalized expression across all samples, log2 Fold Change 

(log2FC), log ratio statistic, p-value, and false-discovery rate (FDR) adjusted p-value were 

computed for each gene using DESeq2. After merging the DESeq2 files with the Ensembl 

annotation, genes were subset based on gene type (i.e protein-coding, long non-coding 

RNAs, miRNAs, etc.). Additionally, a script was run to annotate un-annotated transcripts 

that were structurally similar to other annotated transcripts. Finally, GffCompare was used 

to identify unannotated transcripts that were used for novel lncRNA identification.  

Below is a pictorial example of this workflow using triplicate wildtype and 

triplicate gmppb mutants (Figure 5). 
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2.5 Small RNA sequencing workflow 

Analysis of differentially expressed miRNAs was performed using miRExpress 

version 2.058 using only the read 1 (R1) FASTQ files for each of the three biological 

replicate samples profiled using small RNA sequencing. MiRExpress was used to trim 

adapters and then align the trimmed reads to precursor miRNA sequences provided by 

miRGeneDB version 2.059. The number of aligned reads to the 5p- or 3p-ends of the 

precursor miRNA sequences were reported. These read counts for the mature miRNAs 

were analyzed using DESeq2 to perform the same four pairwise comparisons done for the 

RNA sequence described above.  

2.5 Splicing analysis of gmppb mutants 

To verify incorporation of the STOP cassette in the gmppb homozygous mutants, 

gDNA hotshot extractions were performed based on the procedure described by Gagnon 

et. al29. One 4dpf embryo was placed in a PCR tube per sample in non-lethal tricane. Once 

the embryo appeared to be asleep, the liquid was removed and 20 µL of 50mM NaOH was 

added. The sample was heated in a PCR machine for 20-30 minutes at 95C and then cooled 

to 4C. 2 µL 1M TrisCl, Ph 8.0 was added and mixed via pipetting up and down. Samples 

were frozen at 4C prior to Polymerase Chain Reactions.  

To amplify the gmppb target region, PCR was performed with the reverse primer 

(TGAAAGCTCTGATTCTTGTCGGTG) and the forward primer (CTGGTGGAACTTG 

AGCATGTCGT). The genomic DNA was spun down on a bench top centrifuge and then 

2 µL was added to each reaction tube in a 96 well PCR plate. To the reaction each of the 

following were added: 1 µL of 20 uM primer (forward + reverse mixed), 0.125 µL Taq 
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Polymerase (5000 Units/mL, New England Biological Laboratory, Ipswich, MA), 0.5 µL 

of 10mM dNTPs, and 21.375 µL DI water -to bring the total volume to 25 µL. Samples 

were quickly mixed via inversion, spun down, and placed in the PCR machine with the 

following cycle temperatures and times: 

Step 1: 95 degrees 3 minutes initial denaturing 
Step 2: 95 degrees 20 seconds denature 
Step 3: 60 degrees 25 seconds anneal 
Step 4: 68 degrees 30 seconds extend 
Step 5: Repeat steps 2-4 34 more times 
Step 6: 68 for 5’ final extension 
Step 7: Hold samples at 4C  
 

The samples were submitted for sequencing at 10ng/mL and then the resulting 

forward and reverse reads were aligned with wildtype gmppb and the STOP cassette using 

Basic Local Alignment Search Tool (BLAST version 2.10.0)60. Mutants were categorized 

based on the types of mutations that were present and the degree of and location of stop 

cassette insertion. Mutated reads were analyzed using Open Reading Frame Finder (ORF 

Finder) to validate whether stop codons were present in all possible reading frames. Finally, 

the RNA Sequencing data was aligned based on the results and categorization of different 

mutations found via qPCR analysis, to attempt to categorize the mutants based on their 

gmppb mutations.
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2.6 Identification and characterization of differentially expressed novel and previously 

annotated lncRNAs and nearby genes 

Previously annotated differentially expressed lncRNAs were subset from the 

annotated genes as described previously in section 2.4. Unannotated transcripts were also 

subset as described in section 2.4.  Fasta Sequences for each of the transcripts were 

generated using GFFread57. To identify novel potential lncRNAs, the un-annotated 

sequences were run through Coding Potential Assessment Tool (CPAT version 1.2.2)61 and 

then RepeatMasker (version 4.1.0) to identify transcripts with high coding potential and 

highly repetitive transcripts, respectively. A perl script was used to subset transcripts with 

a coding potential less than 0.38. The RepeatMasker results were compiled to generate a 

ratio of repetitive bases per transcripts (Appendix B, Section B.2), and transcripts were 

subset based on a threshold of less than 50% repetitive bases.  

2.7 Characterization of differentially expressed protein coding genes 

Protein coding genes were subset from the annotated DESeq files generated in 

section 2.4. Differentially expressed genes are defined as those with either adjusted or non-

adjusted p-values less than 0.05. Information about each of the genes was gathered using 

Ensembl Biomart66, including the gene name and description. Venny 2.0 

(https://bioinfogp.cnb.csic.es/tools/venny/) was used to subset genes based on temporal 

and sample dependent expression. Enriched gene sets with Gene Ontology annotations 

were determined using David67,68 and Panther69. Additional functional information about 

genes was obtained from GeneCards64 and AmiGO70,71.   
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2.8 Characterization of differentially expressed miRNA and network attack  

Differentially expressed miRNAs were subset from the small RNA Sequencing 

data based on an adjusted p-value less than 0.05. An R script was generated to determine 

the predominantly expressed miRNA based on expression, thus, the non-predominantly 

expressed miRNA arm (otherwise known as the passenger strand) was discluded from 

future analyses (Appendix B, section B.1). Venny 2.0 was used to look for trends in 

expression across multiple samples and time points.  

Network attack plots were generated using a combination of R and python scripts 

to better understand the robustness of the networks present in the 4dpf/7dpf siblings, 

4dpf/7dpf mild mutants, and 4dpf/7dpf severe mutants. Scripts to generate these plots can 

be requested. Networks were imported into and visualized with Cytoscape version 3.7.272. 

 

2.9 miRNA target analysis 

MiRNA mRNA targets were identified from TargetScanFish55. The MirBase IDs 

present in the TargetScanFish files were converted to MirGeneDB59 IDs using 

MiRExpress58 which are the IDs present in the DESeq2 data. MiRNAs in the small RNA 

Sequencing dataset that were differentially expressed at 4dpf in the severe mutants were 

subset according to an adjusted P value < 0.05. Only the predominant strand of each 

miRNA was included in the analyses, the passenger strand was excluded from the data. 

Ensembl annotated genes from RNA sequencing that were differentially expressed at 4dpf 

in the severe gmppb mutants according to an unadjusted p value < 0.05 were also subset. 

These two lists were merged to look for differentially expressed miRNAs with 
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differentially expressed mRNA targets. Finally, since miRNAs typically induce 

degradation of their mRNA targets, miRNA and mRNA targets were subset based on an 

opposite pattern of differential gene expression (i.e. miRNA was downregulated, and 

mRNA was upregulated OR miRNA was upregulated, and mRNA was downregulated). 

This data was used to generate networks in Cytoscape version 3.7.272.  

2.10 Comparison of gene expression to cardiac regeneration 

To highlight genes that might be involved in muscle-related phenotypes, protein-

coding and miRNA gene expression was compared to that of a previous study exploring 

differentially expressed genes involved in cardiac regeneration in zebrafish73. Venny 2.0 

was used for comparison and gene ontologies for the protein-coding genes were determined 

as described in section 2.7.  
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3. RESULTS 

3.1 mRNA sequencing of gmppb mutants  

3.1.1 Identifying differentially expressed Ensembl annotated genes.  

To identify potential gene candidates involved in modulating phenotypic severity, 

differentially expressed gene transcripts were determined by comparing expression 

between pairs of sample groups (Figure 6). The gene transcripts analyzed were those 

annotated by Ensembl. As expected, using adjusted p-values, a more stringent significance 

threshold decreases the number of genes defined as differentially expressed. At both 

timepoints, severe mutants compared to sibling controls had a greater number of 

differentially expressed genes relative to the mild mutants compared to sibling controls. 

Next, a comparison of sets of differentially expressed genes from the four pairwise 

comparisons was performed to determine the temporal and sample-specific expression of 

the Ensembl annotated genes (Figure 7). 

 

Figure 6. From mRNA sequencing, a list of differentially expressed gene transcripts 
defined by a threshold of p<0.05, or adjusted p<0.05 were subset. Those with Ensembl 
annotations are included in this figure. The table shows the number of differentially 
expressed genes in each sample according to the threshold definition of differentially 
expressed. 
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Figure 7. Venn diagrams of differentially expressed Ensembl annotated genes. Panel A 
includes genes with unadjusted p-values < 0.05 while panel B includes genes with 
adjusted p-values < 0.05. Regions of overlap indicates genes that are differentially 
expressed at the multiple specified timepoints or phenotypes. Percentages are included to 
indicate the number of genes in each category over the total number of differentially 
expressed genes.  
 

Next, to characterize genes differentially expressed in the severe mutants at both 

4dpf and 7dpf, Gene Ontology annotations were performed using PANTHER and DAVID. 

Of the 82 differentially expressed genes (p-value < 0.05) common between 4dpf and 7dpf, 

but not shared with 4dpf or 7dpf mild, only 47 were mapped to genes represented in 

PANTHER or DAVID. Gene Ontology terms of interest included muscle organization, 

extracellular matrix, cell adhesion, mitochondrial function, the immune system, and 

transcriptional regulators (Tables 3 and 4).  

The ten most differentially expressed Ensembl annotated genes were subset as 

indicated by the largest positive or negative fold change (log2 FC) and an adjusted p-value 

< 0.05. Eight of these genes came from the 7dpf severe mutants and two came from the 
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4dpf severe mutants (Table 2). Three of these genes lack gene descriptions, and two of 

them were not annotated as protein-coding genes.  

It is important to note that in these analyses, all Ensembl genes, regardless of 

whether they were protein-coding or not, were included. Therefore, non-coding genes, 

including miRNA precursors and annotated lncRNAs, were present. Of the 881 total genes 

differentially expressed across all pairwise comparisons, 22 were annotated as lncRNAs 

and two as miRNA precursors. Of just the 82 genes differentially expressed in both the 

severe mutants, one was annotated as a lncRNA and there were no annotated miRNA 

precursors.  
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Table 3.  Differentially expressed (unadj p <0.05) genes with selected Gene Ontology 
annotations at 4 and 7dpf in the severe mutants.  
 

Gene ID Name Gene Description  4dpf Severe 7dpf Severe 

Muscle Organization Base  log2FC P Val Base log2FC P Val 

ENSDARG 
00000000563 

ttn.1 titin, tandem duplicate 
1 

52 0.83 0.039 46 -0.98 0.042 

ENSDARG 
00000028213 

ttn.2 titin, tandem duplicate 
2 

47 0.73 0.047 42 -0.92 0.030 

ENSDARG 
00000045302 

smpx small muscle protein X-
linked 

124 -0.70 0.001 131 -0.41 0.027 

Extracellular Matrix 
ENSDARG 
00000042816 

mmp9 matrix 
metallopeptidase 9 

43 1.00 0.001 36 -0.85 0.008 

ENSDARG 
00000061904 

fhod3b formin homology 2 
domain containing 3b 

24 -0.97 0.012 90 -2.56 0.000 

Cell Adhesion 
ENSDARG 
00000093008 

adgrf3b adhesion G protein-
coupled receptor F3b 

13 -1.36 0.005 30 -0.87 0.024 

Immune System 
ENSDARG 
00000042816 

mmp9 matrix 
metallopeptidase 9 

43 1.00 0.001 36 -0.85 0.008 

Mitochondrial Function 
ENSDARG 
00000038643 

alas2 aminolevulinate, delta-, 
synthase 2 

258 -1.62 0.001 733 -1.31 0.002 

ENSDARG 
00000063922 

mt-nd6 NADH dehydrogenase 
6, mitochondrial 

581 0.87 0.000 374 -0.55 0.041 

ENSDARG 
00000069852 

lipt2 lipoyl(octanoyl) 
transferase 2 

75 0.58 0.013 70 -0.64 0.006 

Developmental Pathways 
ENSDARG 
00000074148 

RAS 
rbpjl 

recombination signal 
binding protein for ig 
kappa J region 

1073 0.53 0.001 587 1.81 0.000 

ENSDARG 
00000040959 

NOTCH 
rabl3 

RAB, member of RAS 
oncogene family-like 3 

126 0.48 0.033 65 1.34 0.000 
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Table 3 Continued 
Gene ID Name Gene Description  4dpf Severe 7dpf Severe 

Transcriptional Regulation Base  log2FC P Val Base log2FC P Val 

ENSDARG 
00000034300 

sema3c sema domain, 
immunoglobulin 
domain (Ig), 
(semaphorin) 3C 

93 -1.69 0.000 207 -0.87 0.000 

ENSDARG 
00000035187 

abl1 c-abl oncogene 1, non-
receptor tyrosine kinase 

111 0.39 0.042 102 -0.53 0.019 

ENSDARG 
00000036036 

mdka midkine a 83 -0.57 0.015 98 -0.45 0.045 

ENSDARG 
00000038859 

rgs20 regulator of G protein 
signaling 20 

191 -0.60 0.010 202 0.60 0.032 

ENSDARG 
00000040959 

rabl3 RAB, member of RAS 
oncogene family-like 3 

126 0.48 0.033 65 1.34 0.000 

ENSDARG 
00000053370 

eif3jb eukaryotic translation 
initiation factor 3, 
subunit Jb 

154 0.57 0.026 98 0.67 0.004 

ENSDARG 
00000055792 

foxo4 forkhead box O4 11 1.50 0.000 8 -0.89 0.047 

ENSDARG 
00000056079 

l3mbtl2 L3MBTL histone 
methyl-lysine binding 
protein 2 

38 0.99 0.001 16 1.17 0.002 

ENSDARG 
00000056590 

calca calcitonin/calcitonin-
related polypeptide, 
alpha 

31 -2.02 0.000 32 3.78 0.000 

ENSDARG 
00000071727 

si:dkey-
37o8.1 

si:dkey-37o8.1 196 -0.53 0.003 230 -0.34 0.041 

ENSDARG 
00000074148 

rbpjl recombination signal 
binding protein for ig 
kappa J region 

1073 0.53 0.001 587 1.81 0.000 

ENSDARG 
00000075670 

rereb arginine-glutamic acid 
dipeptide (RE) repeats 
b 

34 0.93 0.005 36 -1.26 0.000 

ENSDARG 
00000095332 

si:dkey-
14d8.1 

si:dkey-14d8.1 28 0.81 0.023 22 -0.95 0.010 

ENSDARG 
00000100536 

nkrf NFKB repressing 
factor 

109 0.57 0.029 83 0.46 0.029 
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Table 4.  Differentially expressed (adjusted p <0.05) genes with selected Gene Ontology 
annotations at 4 and 7dpf in the severe mutants. 

Gene ID Name Gene 
Description  

4dpf Severe 7dpf Severe  

 Base  log2FC Adj P Base log2FC Adj P 

ENSDARG 
00000005941  

clul1 clusterin-like 1 
(retinal) 

30 -2.13 0.000 121 0.25 0.000 

ENSDARG 
00000074148 

RAS 
rbpjl  

recombination signal 
binding protein for ig 
kappa J region-like  

107
3 

0.53 0.020 587 0.23 0.000 

ENSDARG 
00000038643 

alas2 
 

aminolevulinate, 
delta-, synthase 2  

258 -1.62 0.028 733 0.41 0.020 

ENSDARG 
00000034300 

sema3c  sema domain, Ig, 
secreted, semaphorin 
3C  

93 -1.69 0.000 207 0.25 0.008 

ENSDARG 
00000056079 

l3mbtl2 
 

L3MBTL histone 
methyl-lysine 
binding protein 2  

38 0.99 0.018 16 0.38 0.026 

ENSDARG 
00000056590 

calca 
 

calcitonin/calcitonin-
related polypeptide, 
alpha  

31 -2.02 0.000 32 0.48 0.000 

ENSDARG 
00000074148 

rbpjl 
 

recombination signal 
binding protein for ig 
kappa J region-like  

107
3 

0.53 0.020 587 0.23 0.000 
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3.1.2 Identifying novel transcripts for lncRNA analysis. 

The ensembl annotated gene transcripts represented only a fraction of the total 

differentially expressed genes in the gmppb mutants. It is likely that within this subset of 

differentially expressed genes, previously unidentified lncRNAs exist. To identify 

potential lncRNAs, a previously described workflow was used to subset novel transcripts 

with low coding potential and low repetitiveness (Figure 8).   

 

 

Figure 8. Identification of potential lncRNAs. A. Total genes (blue = ensembl annotated, 
yellow = unannotated) with adjusted p-values less than 0.05 in 4dpf severe mutants. B. 
Genes from panel A with Log2FC > 1 or < -1. C. Novel genes from panel B with Coding 
Potential < 0.38 as determined by CPAT. D. Novel Genes from panel C with < 50% 
repetitive bases.  
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3.2 Small RNA sequencing of gmppb mutants to identify differentially expressed 

miRNAs 

Since standard mRNA sequencing selects for poly-adenylated transcripts, and 

processed miRNA transcripts are not poly-adenylated, small RNA sequencing was 

performed to measure processed miRNA expression74. In the dataset, there were a total of 

265 miRNAs expressed across all samples. Figure 9 shows the number of differentially 

expressed miRNAs in each sample; Figure 10 shows the overlap in differentially 

expressed miRNAs between samples.   

 

 

Figure 9. Number of differentially expressed miRNA as indicated by adjusted p-value < 
0.05 and unadjusted p-values < 0.05.  
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Figure 10. Overlap of differentially expressed miRNAs. A: miRNAs that are differentially 
expressed according to an unadjusted p-value < 0.05. B: miRNAs that are differentially 
expressed according to an adjusted p-value < 0.05. Venn diagrams made with Venny 2.0. 

3.3 MiRNA co-expression networks  

Co-expression networks can be used to identify sets of miRNAs that have 

correlated expression patterns that can be used to infer common function. The topology 

of these networks can be analyzed to determine nodes and edges that contribute towards 

network stability. Number of miRNA nodes in each of the three co-expression networks 

is listed in Table 5. Both characteristic path length and resultant network size are two 

parameters used to identify important nodes (Figures M1 and M2). MiRNAs that, upon 

removal, cause relatively large changes in characteristic path length are listed in Table 6.  

 

Table 5. Number of nodes in miRNA co-expression networks. 
Sample: Number of Nodes 
Sibling 4dpf and 7dpf  221 
Mild 4dpf and 7dpf  255 
Severe 4dpf and 7dpf  264 
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Figure 11. Characteristic path length upon removal of individual nodes in miRNA 
expression.  miRNAs in each plot that upon removal cause relatively large changes in path 
length are labeled. Resultant characteristic path length upon removal of miRNA nodes in 
sibling 4dpf and 7dpf co-expression network (A), mild 4dpf and 7dpf co-expression 
network (B), and severe 4dpf and 7dpf co-expression network (C). D has all three 
networks overlaid into one graph.  
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Table 6. miRNAs that upon removal cause gaps in characteristic path length 
4dpf 7 dpf Sibling 4dpf 7dpf Mild 4dpf 7dpf Severe 
Dre-Mir-204-P2a-5p Dre-Mir_103-P3b-3p Dre-Mir-17-P2a1-5p 

Dre-Mir-15-P2a2-5p Dre-Mir-126-P1-3p Dre-Mir-132-P1a-3p 

Dre-Mir-132-p2a-5p  Dre-Mir-130-P3b1-3p 

  Dre-Mir-103-P3a-3p 

  Dre-Let-7-P1b-5 

 

 

 

Figure 12. Network size upon removal of nodes from sibling (black), mild (blue), and 
severe (red) 4dpf and 7dpf co-expression networks.  
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3.4 miRNA target prediction at 4dpf in the gmppb severe mutants 

TargetScanFish was used to predict mRNA targets of miRNAs, and analyses were 

performed to identify miRNA and mRNA targets with opposite expression at 4dpf in the 

severe mutants. Only the predominantly expressed miRNAs were included in this 

analysis. The first network with miRNAs upregulated and Ensembl annotated genes 

consists of a total of 8 upregulated miRNAs and 13 downregulated Ensembl genes, for a 

total of 37 interactions (Figure 13, Panel A). The second network has 7 downregulated 

miRNAs and 9 upregulated Ensembl genes for a total of 18 interactions (Figure 14, Panel 

B). Expression of each of the targeted genes is included in Tables 7 and 8. 
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Figure 13. MiRNA and mRNA target interactions at 4dpf in gmppb severe mutants. A: 
Each of the green nodes is an upregulated miRNA (unadjusted p <0.05); each of the red 
nodes are downregulated ensembl annotated genes (adjusted p < 0.05). B: Green nodes 
are upregulated ensembl annotated genes, red nodes are downregulated miRNAs. Edges 
are denoted by arrows and show miRNAs targeting mRNAs based on TargetScanFish 
data. The width of the edges is based on the context score of the interaction between the 
miRNA and mRNA.  
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Table 7. Upregulated mRNA targets of downregulated miRNAs in 4dpf Severe mutants.  
Gene ID Name Gene Description  4dpf Severe  
 Base  log2FC Adj P 
ENSDARG0
0000011533 

sema6dl Sema, transmembrane, 
cytoplasmic domain 
semaphorin 6D like  

124 4.99 5.3E-41 

ENSDARG0
0000044135 

cenpp centromere protein P 134 0.56 4.0E-02 

ENSDARG0
0000053062 

CR628323.2 gap junction epsilon-1 
protein-like 

84 0.73 2.0E-02 

ENSDARG0
0000055792 

foxo4 forkhead box O4 11 1.50 8.3E-03 

ENSDARG0
0000057121 

c7b complement component 
7b 

23 1.63 9.6E-03 

ENSDARG0
0000062319 

si:dkey-
103g5.3 

si:dkey-103g5.3 56 2.12 8.2E-08 

ENSDARG0
0000073711 

mmrn2b multimerin 2b 261 0.82 4.8E-04 

ENSDARG0
0000076135 

mmrn2a multimerin 2a 54 0.78 3.0E-02 

ENSDARG0
0000078059 

nudcd2 NudC domain containing 
2 

207 1.53 3.9E-10 
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Table 8. Downregulated mRNA targets of upregulated miRNAs in 4dpf Severe mutants. 
Gene ID Name Gene Description  4dpf Severe  
 Base  log2FC Adj P 
ENSDARG0
0000000183 

ptpn4b protein tyrosine phosphatase 
non-receptor type 4b 

461 -1.49 4.5E-07 

ENSDARG0
0000005941 

clul1 clusterin-like 1 (retinal) 30 -2.13 3.0E-04 

ENSDARG0
0000012030 

dnaaf1 dynein, axonemal, assembly 
factor 1 

18 -1.21 1.3E-02 

ENSDARG0
0000034300 

sema3c Sema and ig domain, 
secreted, (semaphorin) 3C  

93 -1.69 2.2E-05 

ENSDARG0
0000038643 

alas2 aminolevulinate, delta-, 
synthase 2 

258 -1.62 2.8E-02 

ENSDARG0
0000039422 

fuom fucose mutarotase 30 -1.15 2.0E-02 

ENSDARG0
0000045302 

smpx small muscle protein X-
linked 

124 -0.70 3.1E-02 

ENSDARG0
0000056590 

calca calcitonin/calcitonin-related 
polypeptide, alpha 

31 -2.02 3.1E-05 

ENSDARG0
0000070432 

ino80 INO80 complex ATPase 
subunit 

459 -1.01 1.2E-02 

ENSDARG0
0000070730 

gabra5 gamma-aminobutyric acid 
(GABA) A receptor, alpha 5 

41 -0.93 1.6E-02 

ENSDARG0
0000079013 

dpy19l
3 

dpy-19 like C-
mannosyltransferase 3 

313 -0.99 2.2E-05 

ENSDARG0
0000079366 

ppp1r9
ba 

protein phosphatase 1, 
regulatory subunit 9Ba 

135 -0.71 5.9E-03 

ENSDARG0
0000079946 

sqlea squalene epoxidase a 386 -0.71 9.2E-03 
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3.5 Splicing analysis of gmppb severe mutants  

To produce a truncated gmppb protein product, a stop cassette was designed by 

the Henry lab for incorporation into the early 5’ end of gmppb. The stop cassette had a 

total length of 75 nucleotides with homology domains on either end, each 20 nucleotides 

long; thus, the stop codons were from position 20-55. The left homology region was 

homologous to intron 2 of gmppb and the right homology region was homologous to the 

end of intron 2 and the beginning of exon 3 (Figure 14). 

 

  

Figure 14. Stop cassette structure. The stop cassette consists of a left gmppb homology 
domain and a right gmppb homology domain, with the stop codon region containing stop 
codons in every reading frame. Shown in light blue is the where the regions of homology 
share sequence with gmppb.   
 

To verify incorporation of the stop cassette into the gmppb mutants, PCR and 

sequencing of the gene gmppb was performed in 18 severe mutants. The mutants were 

categorized based on the sequencing results. Two categories of mutations were found, 

with one outlier. The first mutation, henceforth named the “partial double insertion”, was 

present in 3 of the mutants. It consisted of insertion of one full stop region and one partial 

stop region. In between the two stop cassettes was a right homology domain, and the left 



 

45 
 

homology region was truncated, with only 6 of the 20 original nucleotides (Figure 15). 

Notably, incorporation of this type of mutation resulted in a stop codon in every frame 

which would be expected to yield a truncated gmppb protein product75. 

 

Figure 15. Partial double insertion mutation structure. A. In three of the 18 sequenced 
mutants, the stop cassette insertion consisted of incorporation of a partial stop cassette 
followed by a full stop cassette. B. Shown is a simple pictorial representation of the 
mutation with a subset of the left homology, a full stop cassette, a portion of the right 
homology, a partial stop cassette, and then the right homology region.  
 

A second category of mutations was characterized by a “TG Gap” and was present 

in 14 of the 18 sequenced severe mutants (Figure 16). It was characterized by not only a 

lack of stop cassette insertion, but a truncated left homology region where 8 nucleotides 

were missing resulting in a truncated intron. ExpRESy indicated that stop codons were 

present in five of the six possible reading frames.  
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Figure 16. “TG Gap” mutation consists of an 8 base pair deletion between the left and 
right homology domains of gmppb. 
  

The findings from these analyses were next incorporated retroactively into the 

previously collected RNA Sequencing data by searching for specific subsequences of 

characteristic mutant regions in the FASTQ files. The queries “TAGTCTTACCTT” and 

“AAGGTAACACTA” were used to identify reads that represented the double stop 

cassette insertion mutation type in each of the samples (Figure QT) for both the forward 

and reverse reads. To verify that these were from the correct region of the genome (i.e. to 

confirm the were reads from gmppb), a secondary search was performed to determine the 

subset of these reads that contained six nucleotides of exonic gmppb that based on a read 

length of ~150nts should be present adjacent to the stop cassette (GGAGGC (e2) and 

GTCCGT (e3)) To find reads that represented the “TG Gap”, the subsequences 

“TGAACACCATTGGA” and “ACTTGTGGTAACCT” were searched for. In a similar 

fashion as previously described, the reads were subsequently searched for sequences from 

exon 2 and 3 of gmppb to verify that the reads were from the correct region (Figure 17).  
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Figure 17. Characterization of reads from RNA Sequencing. The number of reads were 
expressed as counts per million (CPM). A: Results from searching for 
“TAGTGTTACCTT” and “AAGGTAACACTA”, sequences representing four 
nucleotides of the right homology of the stop cassette (SC) and 4nts of the stop codons of 
the SC to either end. B: Results from searching for an additional sequence in the resulting 
reads from A, “GGAGGC” a sequence present in exon 2 of gmppb and “GTCCGT”, a 
sequence present in exon 3 of gmppb. This step ensures that the reads come from gmppb.  
C: In a similar fashion to graph A, a sequence, this time representing the TG Gap mutation 
identified from the PCR of gmppb mutants, was searched for. D: Number reads with exons 
2 and 3 subsequences.
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4. DISCUSSION & FUTURE DIRECTIONS 

4.1 mRNA Sequencing of gmppb mutants  

4.1.1 Differences in number of differentially expressed genes confirms differences in 

gmppb mild and severe mutants.  

Differentially expressed genes in the mild and severe mutants were identified using 

adjusted and non-adjusted p-values to identify genes that contributed to phenotypic 

severity. The shear difference in the number of differentially expressed genes correlates 

with the Henry’s Lab method of distinguishing between the mild and severe mutants 

(Figure 6). According to the unadjusted p-values, there are ~6 times more differentially 

expressed genes in the severe mutants as opposed to the mild mutants at 7dpf; according 

to the adjusted p-value, there are over 100 times more differentially expressed genes. 

Another interesting trend is that there are ~6 times more differentially expressed genes in 

the severe mutants at 7dpf as compared to the severe mutants at 4dpf. This could be due to 

compounding effects from irregulated pathways at early time points, leading to cellular 

responses aiming to restore the mutants to “normal” or “healthy” conditions. For example, 

multiple pathways must be activated to restore the tissue damage, and likely many of these 

are immune mediators. To better understand the gene pathways that contributed towards 

the severe phenotype, genes differentially expressed in the severe 4dpf and 7dpf mutants, 

but not the mild 4dpf and 7dpf mutants, were identified and further characterized.  
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4.1.2 Gene Ontology characterization reveals phenotype-relevant genes.  

Gene Ontology annotations for the genes differentially expressed in only the 4dpf 

and 7dpf severe mutants were determined using PANTHER and DAVID. These databases 

use manually curated and electronic annotations of Gene Ontology terms to characterize 

genes from the zebrafish model organism database, ZFIN. When examining functional 

annotation of genes, it is important to recognize that the zebrafish research community is 

smaller than the mouse and human research communities and the number of annotations 

are thereby smaller. Our entry list of 82 zebrafish genes resulted in a list of 47 genes with 

annotations. PANTHER and DAVID list Gene Ontology annotations for the genes that 

provide information about the biological processes, molecular function and cellular 

components associated with the protein products of the genes. Because of the relatively 

small number of input genes (82 for unadjusted p-values and 13 for adjusted p-values), the 

only term that was enriched was “nucleus” with a p-value of 0.005.  A list of MD relevant 

terms that appeared in the PANTHER and DAVID annotations was selected and genes 

were highlighted for further characterized based on these annotations. Terms included 

muscle organization, extracellular matrix associated, cellular adhesion, immune function, 

mitochondrial function, transcriptional regulators, and development pathways.  

The immune response to skeletal muscle disorganization and destruction is an 

important component of Muscular Dystrophy. Typically, following necrosis, the cellular 

debris is removed by macrophages and muscle satellite cells (MuSCs) migrate to the site 

of injury and proliferate to replace the lost tissue and restore muscle function. However, in 

most forms of MD, the MuSCs are unable to properly restore muscle function, and instead 

fibrotic tissue is deposited. The molecular mechanisms that modulate the immune response 
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are best characterized in Duchenne’s Muscular Dystrophy (DMD)76. In DMD, dystrophic 

muscle is invaded by CD4+ and CD8+ T cells, macrophages, eosinophils, and natural killer 

cells77,78. Depletion of myeloid and lymphoid populations decreases myonecrosis 79–81; 

depletion of B and T cells reduced fibrosis and TGF-β1(15), and ablation of inflammatory 

signals like IFNγ reduced the severity of muscle pathology82. Immunosuppressive 

medications, like the glucocorticoid prednisone, has also been shown to improve muscle 

strength in DMD patients and decrease myofiber injury83. However, the immune response 

in MD is not strictly deleterious. For example, M2 macrophages are induced by Il-4 and 

IL-13 to inhibit damaging inflammation and M1 macrophage mediated cytotoxicity84. 

Thus, the immune response is an important and delicate component of the pathology of 

MD and its role in dystroglycanopathy warrants further research.  

Multiple immune relevant genes were differentially expressed in the severe 

mutants. Of the 81 genes differentially expressed in both the 4dpf and 7dpf severe and not 

the mild mutants, only one was related to the immune system: matrix metalloproteinase-9 

(mmp9). MMPs have been shown to play an important role in myofiber functionality and 

skeletal muscle cell migration, differentiation, and regeneration. One way they do so is by 

degrading the extracellular matrix to allow for MuSC migration and differentiation to 

replace lost tissue. Inhibition of MMPs suppresses migration of MuSCs to the site of injury 

and impedes regeneration85,86. MMP-9 upregulation has been shown as a clinical biomarker 

for Duchenne’s Muscular dystrophy87. In the severe mutants, at 4dpf, mmp9 was 

upregulated, suggesting that the mutants were responding to the muscle damage by 

promoting satellite cell migration and differentiation, but at 7dpf, it was downregulated, 

suggesting a lack of response to damage (Table 3).  
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Another interesting candidate that was differentially expressed in the 4dpf and 7dpf 

with an adjusted p-value < 0.05 was clusterin-like-1 (clul1). The clusterin protein is a 

molecular chaperone that inhibits apoptosis through stabilization of the Ku70-Bax protein 

complex88. In the 4dpf severe mutants, clul1 was significantly downregulated, 

corresponding to an increase in apoptosis according to the aforementioned pathway (Table 

4). This could be a possible mechanism that results in myocyte death. However, apoptosis 

is often a response, a last resort to other cellular damage – thus, we suggest that this is a 

downstream effect of cellular damage in the MD mutants.  

Genes were also ranked based on the ratio of expression as indicated by the fold 

change (Log2 FC). The top 10 largest fold changes in expression were all in the severe 

mutants, eight of these were from the 7dpf severe mutants and two were from the 4dpf 

severe mutants. This is roughly the proportion we would expect based on the genes in each 

category that were differentially expressed according to the adjusted p-value (67 genes in 

the 4dpf severe and 338 genes in the 7dpf severe). Of the 10 most differentially expressed 

genes, functions were related to cell growth, nervous system development, and muscle 

contraction and relaxation.  

Antomacin 9a (ano9a) is part of the antomacin family which encodes calcium-

chloride channels and it was differentially expressed in the 7dpf severe gmppb mutants. 

There is little research characterizing ano9, however another member of this family is 

implicated in MD. Antomacin 5 (ANO5) mutations are one of the causes of Limb-Girdle 

MD. The protein product of this gene encodes a calcium-activated chloride channel that is 

most abundant in the endoplasmic reticulum (ER) of skeletal muscle89. It is predicted to be 

involved in regulating muscle contraction and relaxation. ANO5 also maintains calcium 
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homeostasis which promotes plasma membrane repair in damaged myofibrils.  Upon 

deletion of ANO5 or pharmacological inhibition of injury-triggered calcium flow form the 

ER to the cytoplasm, enabled injured patient myocytes to repair90. Although the specific 

role of ano9 is unknown, based on the role of ANO5, it is an interesting candidate for future 

research.  

Cell division cycle 23 (cdc23) was upregulated in the 7dpf severe mutants. Cdc23 

is a mitotic regulator that allows for cell cycle progression through the anaphase promoting 

complex (APC). We predict that the upregulation of this gene is likely related to an 

upregulation in cell division in an attempt to replace the lost myocytes. Interestingly, cdc23 

was the only cell division cycle gene that was upregulated in the 4dpf or 7dpf mutants.  

Finally, the sema family proteins were differentially expressed. Sema6dl was one of the 

genes with the largest fold change. It was upregulated with a Log2FC of nearly 5.0. Sema3 

was downregulated in both the 4 and 7dpf severe mutants. The sema receptors have been 

implicated in multiple signaling pathways with roles in regulating innervation. 

Specifically, sema3 has been shown to be involved in the innervation of skeletal muscle in 

the diaphragm91 and sema2 loss-of-function mutants have ectopic innervation in the 

muscle92. The loss of motor control in MD may be related to a lack of reinnervation or 

improper reinnervation after myocyte damage. In MD in general, the Neuronal Muscular 

Junctions (NMJ), the peripheral synapses that induce muscle contraction, are disorganized 

– a phenotype shared in the gmppb mutants. 

  Interestingly, two of the most differentially expressed genes were not protein 

coding – one was an antisense transcript and the other was a processed transcript, in the 
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future we would like to look at these genes in more detail, as they could be unannotated 

lncRNAs.  

Of course, there are many different lenses to view the gene expression data and 

identify candidates for future research. Another approach would be looking at genes that 

are differentially expressed in both the mild and severe mutants - but have a higher 

proportional change in expression in the severe as compared to the mild as indicated by the 

Log2 FC.  

Of the 881 annotated differentially expressed ensembl genes, 22 were annotated as 

lncRNAs and two as miRNA precursors. In the past, we have found that the Ensembl 

annotated lncRNAs tend to be highly repetitive – often exceeding 80% repetitive bases. 

Thus, we would like to analyze these lncRNAs further and search for any functional 

annotations in the literature in the future.  

4.1.4 Identifying novel transcripts for lncRNA analysis. 

To identify potential lncRNAs, novel transcripts were identified with low coding 

potential and less than 50% of repetitive bases according to a previously described lncRNA 

annotation workflow93. One thing that stands out in the 4dpf severe gmppb mutants is the 

high proportion of differentially expressed unannotated, novel genes as compared to the 

differentially expressed ensembl-annotated genes. In the past, this might have been 

considered “transcriptional noise”94, but difficulty still persists in identifying transcripts 

that are most likely to be related to the phenotype – and doing so requires extensive manual 

analysis. To characterize these 98 potential lncRNAs, ORFFinder will be used to look for 

open reading frames and BLAST will be used to identify transcripts with alignment to 

known protein coding genes. Furthermore, these transcripts will be aligned to novel 
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lncRNAs that were differentially expressed in caudal and cardiac regeneration in the 

zebrafish to look for commonly differentially expressed transcripts. Additionally, the genes 

to either side of the potential lncRNAs will be determined to indicate possible regulatory 

targets since some lncRNAs act in a “cis” mechanism. Homologous lncRNAs in humans 

will be identified. These analyses will be combined to generate a list of lncRNAs for qPCR 

validation.  

4.2 Small RNA sequencing of gmppb mutants to identify differentially  

expressed miRNAs 

To identify differentially expressed miRNAs, regulators of mRNA degradation, 

small RNA Sequencing was performed. The number of differentially expressed miRNAs 

according to an unadjusted p-value < 0.05 is similar in the 4dpf mild (55) and severe 

mutants (63) (Figure 9). However, when you consider the differentially expressed miRNAs 

according to the adjusted p-value, there were no differentially expressed miRNAs in the 

mild mutants. We suspect that there were not any miRNAs with an adjusted p-value < 0.05 

because we had only three biological replicates per sample group. Additional biological 

replicates would need to be characterized in a future experiment to more accurately 

characterize the biological variation in these sample groups. Since we only have three 

biological replicates, an unadjusted p-value can be investigated further to reveal differences 

in the phenotypic differences in the mild and severe mutants. In the analysis of the miRNAs 

using unadjusted p-values, another trend was a lower number of differentially expressed 

miRNAs in the 7dpf samples than in the 4dpf samples. This is contrasting to the trend 

observed in the Ensembl annotated genes where there were more differentially expressed 

genes in the 7dpf samples than in the 4dpf samples. Again, we suspect that this is a result 
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of only 3 biological replicates characterized by small RNA Sequencing compared to 4 

biological replicates for standard RNA sequencing.  

4.3 MiRNA co-expression networks reveal miRNAs that contribute towards network 

structural integrity.  

Three gene co-expression networks were produced using 4dpf and 7dpf siblings, 

4dpf and 7dpf mild gmppb mutants, and 4dpf and 7dpf severe gmppb mutants. Because we 

filtered out lowly expressed miRNAs, the number of co-expressed miRNAs (nodes) in each 

network was different. The number of nodes was lowest in the sibling network, 

intermediate in the mild network, and highest in the severe network (Table 5). The sibling 

showed the longest overall characteristic path length, the severe showed an intermediate 

characteristic path length, and the mild displayed the shortest characteristic path length 

(Figure M1). Network node attack analysis revealed multiple miRNAs that resulted in large 

changes in the characteristic path length after they were removed from the network (Table 

6). These miRNAs are candidates for further investigation. A shorter characteristic path 

length implies biological networks working in conjunction and synergy74. Perhaps, the 

additional stressor (the gmppb mutation), causes coordinated changes in miRNA 

expression in an attempt to combat the dysregulated pathways and processes. It is possible 

that the severe gmppb mutants have an intermediate characteristic path length because of 

an inability to respond as effectively to the physiological changes induced by the gmppb 

mutation.  However, using this type of analysis in gene networks is a novel, thus, we need 

to perform further research to determine how changes in network topology correlate with 

genetic function.  
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4.4 MiRNA target prediction at 4dpf in the gmppb severe mutants reveals an overlapping 

network of miRNAs regulating a cohort of Ensembl annotated genes  

By determining differentially expressed miRNAs with differentially expressed 

Ensembl annotated mRNA targets with opposite expression, miRNA/mRNA interactions 

can be predicted. In the 4dpf samples, a total of 55 such interactions were identified. The 

gene targets of these interactions were further characterized in relation to functions and 

processes implicated in the pathological progression of MD. 

Four of the mRNA targets were previously identified based on the 10 most 

differentially expressed analysis (calca) and differential expression (adj-p < 0.05) in the 

severe mutants at 4dpf and 7dpf (clu1 (yes1), alas2, and sema3c). This analysis therefore 

identified potential upstream regulators of potentially MD-relevant genes and pathways.  

To identify mRNA/miRNA interactions of interest, Gene Ontology annotations of 

the targeted mRNAs were analyzed, and a literature search was performed to identify 

mRNAs with MD-relevant function. From this analysis, 8 genes of interest were identified 

with functions related to cell growth regulation, immune activation, and neuron 

transmission and function.  

Cenpp and foxo4 are modulators of cell growth. Cenpp is a subunit of the CENPI-

associated centromeric complex and is required for kinetochore function and miotic 

progression96. In the severe 4dpf mutants, cenpp was upregulated - suggesting an increase 

in cell division – likely in an attempt to replace the damaged tissue. Multiple downregulated 

miRNAs are predicted to target cenpp, including dre-mir-31, dre-mir-155, and dre-mir-

34c. Forkhead box O transcription factors (foxo) are involved in cellular proliferation, 

stress resistance, and apoptosis97. Overexpression of FOXO3 is linked to skeletal muscle 
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atrophy through induction of atorign-1, a ubiquitin ligase98. Foxo4 is not well 

characterized, but based on its inclusion in the foxo family, it could play a similar role in 

inducing musclar atrophy. FOXO3 was significantly downregulated in the 4dpf severe 

mutants – suggesting an increase in muscle atrophy. This gene was predicted to be targeted 

by dre-mir-146a.  

The protein complement 7b (c7b) is a component of the complement pathway of 

the innate immune response that recruits the MAC attack complex to induce apoptosis of 

target cells. C7b was upregulated, suggesting an increase in the innate immune response in 

4dpf severe mutants that might contribute towards the loss of muscle mass in the mutants. 

C7b was predicted to be targeted by dre-mir-205 and dre-mir-155.  

The genes Protein Tyrosine Phosphatase Non-Receptor Type 4 (ptpn4b), Gamma-

Aminobutyric Acid Type A Receptor Subunit Alpha5 (gabra5), and Protein phosphatase 

1, regulatory subunit 9Ba (ppp1r9ba) are involved in neuronal function and protection. In 

the gmppb mutants, the neural muscular junctions (NMJs) are improperly formed and are 

likely related to loss of motor control in the mutant zebrafish (Figure 3). Ptpn4b has been 

shown to be involved in neural circuit formation in the brain of drosophila as it aids in 

establishing and stabilizing axonal projection patterns99. Thus, ptpn4 inhibition causes an 

increase in neuronal apoptosis100. In the 4dpf gmppb severe mutants at 4dpf severe, ptpn4b 

was downregulated – suggesting a decrease in this process. Gabra5 encodes a subunit of 

the GABA receptor, which is a ligand-gated chloride channel found in the brain. This 

receptor’s ligand is GABA, an inhibitory neurotransmitter. Another symptom related to 

MD is epilepsy which occurs in an estimated 6-7% of MD pediatric patients, as compared 

to 0.5-1% in the general population101,102. Thus, this gene’s decreased expression in the 
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4dpf severe mutants could be related to the loss of motor control inhibition in MD patients. 

Ppp1r9b is a factor involved in promoting the formation of filopodia outgrows that can be 

further remodeled to form dendritic spines that allow for excitation of neurons in the 

brain103. Ppp1r9b was downregulated in the mutants, suggesting a decrease in formation 

of filopodia outgrowths and a decrease in neural development and function.  Ptpn4b, 

gabra5, and ppp1r9ba were each predicted to be targeted by dre-mir-734. Ptpn4b and 

gabra5 were predicted to be targeted by dre-mir-212, dre-mir-135, and dre-mir-489; 

Ptpn4b was additionally predicted to be targeted by dre-mir-2187 and dre-mir-192.  

Overall, this analysis was able to identify upstream regulators of protein-coding 

genes with functions that appear to be related to the pathology of MD. To understand the 

role of miRNAs in targeting mRNAs more thoroughly, these same interactions should be 

identified in the other samples: 7dpf severe mutants, 4dpf mild mutants, and 7dpf mutants, 

and the results should be compared.    

4.5 Splicing analysis: gmppb severe mutants are characterized by two categories of 

mutations  

The splicing analysis revealed multiple types of mutations present in the severe 

mutants, emphasizing the need to untangle how this might contribute towards the 

phenotype severity. Interestingly, both types of mutations apparently resulted in the same 

general phenotype, since all eighteen of the sequenced fish has severe phenotypes. This is 

perhaps based on the observation that even with the “TG” gap mutation type, a substantial 

deletion and frameshift mutation is induced that results in stop codons in five of the six 

reading frames. However, for this to have any major impact on the length of the resultant 

protein, the intronic region must be translated since the mutation occurs in the 3’ region of 
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the intron. Perhaps, the mutation is disrupting the normal splicing of the mRNA which 

leads to inclusion of the intron either resulting in a truncated protein via the included stop 

codon or a dysfunctional protein based on the inclusion of the intron. Spliceosomes are 

small nuclear ribonucleoproteins that carry out splicing. The vast majority of eukaryotic 

introns are U2-type introns which are marked by a “GT” at the 5’ end and a “AG” at the 3’ 

end104. However, since the STOP cassette sequence contains multiple “GT” and “AT” 

dinucleotides, predicting exactly how the mutations affect the splicing is difficult and 

would be more accurately determined via functional studies, such as determining the 

structure of the resulting protein.   

Moreover, the presence of the different types of mutations in the fish is curious. 

Why did some of them receive the double insertion while others have the “TG” gap? Some 

of this might best be explained by scientific variability, whether it be in the fish themselves 

or the handling of them. In respect to the “TG” gap, it is possible that homology directed 

repair just never happened. After the cut was induced via the CRISPR/Cas9 system, 

perhaps the stop cassette oligonucleotide was not proximal to the site so cut sequence was 

eventually ligated back together after a few nucleotides were chewed off on either end.  

Finally, of course when using a CRISPR/Cas9 system, the guide RNA must be 

carefully and precisely designed to ensure the lowest possible chance of off-target affects. 

ChopChop105, the tool that was used to generate the oligonucleotide sequences uses an 

internal algorithm that rates the specificity of the sgRNA. Furthermore, to verify this, we 

aligned the sgRNA sequence “GGACTCCAGCCTGAACACAG” against the GRCz11 

zebrafish assembly using BLAT and only found one match – suggesting proper design of 

the sgRNA. Thus, off-target affects are minimal.  
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After all this, the characteristic mutation search results were our attempt to 

incorporate our findings from the PCR into the previously collected RNA Sequencing data. 

The goal was to determine if mutation types could explain the variability in phenotype in 

the fish. What we found is that there only seems to be a small association with the stop 

cassette mutation type in the 4dpf severe mutants. They appear to have a higher percentage 

of “double partial insertions” and a lower percentage of “TG” gaps – suggesting that 

perhaps the increase in severity (as compared to the mild mutants) is partially explained by 

the different types of mutations. However, after searching for a short fragment of exon 2 

or 3 in the reads matching the mutation types, this trend seems to disappear, making us 

question whether or not the reads are from gmppb, or if they are in fact reads from a 

different region of the genome. In order to investigate this, a more robust method of 

validating the location of the reads would need to be used, likely with a method other than 

grep. Furthermore, to really understand the effect of the DNA changes on the processed 

mRNA transcript and subsequent translated amino acid sequence, a tool that can identify 

intron/exon boundaries of zebrafish transcripts is needed. This would allow for prediction 

of protein products which could be confirmed via protein isolation from mutants and amino 

acid identification.  
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APPENDIX A: COMPARISON OF MUSCULAR DYSTROPHY TYPES 

Table A1. The nine main forms of MD106. 
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APPENDIX B – SCRIPTS  

B1 Identifying predominantly expressed miRNA 

#Grace Smith. 1/16. This code will determine which miRNA end (5' or 3') is more highly 
expressed 
setwd("File/Path") 
 
# Read in miRNA expression data 
counts <- read.table("all_counts_normalized.txt",sep="\t",header=T) 
counts[is.na(counts)] <- 0 
 
#make lists of each of the arms 
counts_5p <- counts[1,]  
counts_3p <- counts[2,] 
 
#add the rows based on the 2nd column containing either 3p or 5p  
for (i in 3:550) 
  if (any(grepl("3p", counts[i,2])))  
  { counts_3p <- rbind(counts_3p, counts[i,])  
  } else {  
      counts_5p <- rbind(counts_5p, counts[i,]) } 
 
#write the tables 
write.table(counts_3p, "3p_counts.txt", sep="/t") 
write.table(counts_5p, "5p_counts.txt", sep="/t") 
 
#change the column names of each 
colnames(counts_5p) <- c("miRNA", "arm", "SIB4_5p", "MIL4_5p", "SEV4_5p", 
"SIB7_5p", "MIL7_5p", "SEV7_5p") 
colnames(counts_3p) <- c("miRNA", "arm", "SIB4_3p", "MIL4_3p", "SEV4_3p", 
"SIB7_3p", "MIL7_3p", "SEV7_3p") 
 
#now I want to compare the expression of the two arms 
merged <- merge(counts_3p, counts_5p, by.x=1, by.y=1, all.x=TRUE, all.y=TRUE) 
data <- merged[3:8]   
data <- cbind(data, merged[10:15]) 
row.names(data) <- merged[,1] 
data[is.na(data)] <- 0 
 
avg <- data.frame(rowSums(data[1:6])) 
avg <-  cbind(avg, rowSums(data[7:12])) 
row.names(avg) <- merged[,1] 
colnames(avg) <- c("3p", "5p")  
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avg <- cbind(avg, (avg$`3p`-avg$`5p`)) 
#now, if 5p is higher, col3 = -; if 3p is higher col3 = +!!!!! 
sum(avg[3]>0) #number 3p miRNAs that are expressed strand 
sum(avg[3]<0) #number 5p miRNAs that are expressed strand 
 
 
#now I want to write a file that only contains the predominantly expressed miRNAs and 
not the passengers 
predom_miRNA <- data.frame(merged[,1], stringsAsFactors=FALSE) 
 
for (i in 1:287) 
  if (avg[i,3]>0) { 
    predom_miRNA[i,2] <- "3p" 
    } else { 
    predom_miRNA[i,2] <- "5p" } 
 
colnames(predom_miRNA) <- c("miRNA", "arm") 
p <- data.frame(predom_miRNA[,2]) 
row.names(p) <- predom_miRNA[,1] 
write.table(p, "predominantly_expressed_miRNA_arm.txt", sep="") 
 
#in excel I made a file that has the correct labels and then miRNAs with and without a * 
at the end 
a <- read.table("predominantly_expressed_miRNA_arm_passenger.txt", header=T) 
b <- merge(a, counts[,2], by.x=1, by.y=1) 
write.table(b, "labeled_predominantly_expressed_miRNA_arm.txt", row.names=F) 
 
sum(grepl("\\*", b$predom_miRNA)) 
#tells you that 22 of the miRNAs that are predominantly expressed were labeled as 
passengers!     
 

B2 Repeat Masker analysis to identify candidate lncRNAs 

#Grace Smith 1/23: Script reads in repeat masked files, calculates % repetitive bases 
 
library(stringr) 
setwd("Folder") 
filenames <- list.files(pattern="masked.txt")  #repeat masked files to read in 
 
all_transcripts <- data.frame("ID", "total_bases", "repetitive_bases", "ratio_rep_bases") 
colnames(all_transcripts) <- c("ID", "total_bases", "repetitive_bases", "ratio_rep_bases") 
 
for (f in 1:length(filenames)) 
{ 
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    b <- read.table(filenames[f], sep="\t", header=F) 
    A=N=0  
    for (i in 1:nrow(b)) 
      { 
        if (grepl(">", b[i,1]))     #means new transcript encountered 
          { 
            if (i==1 & f==1)  
            { 
              tran <- grep("MSTRG.\\d*.\\d*", b[i,1], value=T)   #if 1st row & 1stfile, do 
nothing 
            } else { 
                new <- data.frame(tran, A, N, (N/A)) 
                colnames(new) <- c("ID", "total_bases", "repetitive_bases", "ratio_rep_bases") 
                all_transcripts <- rbind(new, all_transcripts) 
                tran <- grep("MSTRG.\\d*.\\d*", b[i,1], value=T)   #get next id 
                A = N = 0    #reset parameters 
            } 
          } else { 
            A = A+str_count(b[i,1]) 
            N = N+str_count(b[i,1], "N") 
          } 
    } 
    ###if the end of file is reached, add the final row 
    new <- data.frame(tran, A, N, (N/A)) 
    colnames(new) <- c("ID", "total_bases", "repetitive_bases", "ratio_rep_bases") 
    all_transcripts <- rbind(new, all_transcripts) 
    A=N=0 
} 
 
write.table(all_transcripts, "4dpf_Severe_ratio_repeat_masked_bases_adj_P.txt", 
sep="\t") 
 
Threshold <- 0.6 
threshold_transcript <- subset(all_transcripts, 
(all_transcripts$ratio_rep_bases<Threshold)) 
name <- paste(Threshold, 
"Threshold_4dpf_Severe_ratio_repeat_masked_bases_adj_P.txt", sep="_") 
write.table(threshold_transcript, name, sep="\t") 
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