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Remote sensing data is useful for selection of aquaculture sites because it can provide

water-quality products mapped over large regions at low cost to users. However, the

spatial resolution of most ocean color satellites is too coarse to provide usable data

within many estuaries. The Landsat 8 satellite, launched February 11, 2013, has both

the spatial resolution and the necessary signal to noise ratio to provide temperature, as

well as ocean color derived products along complex coastlines. The state of Maine (USA)

has an abundance of estuarine indentations (∼3,500 miles of tidal shoreline within 220

miles of coast), and an expanding aquaculture industry, which makes it a prime case-

study for using Landsat 8 data to provide products suitable for aquaculture site selection.

We collected the Landsat 8 scenes over coastal Maine, flagged clouds, atmospherically

corrected the top-of-the-atmosphere radiances, and derived time varying fields (repeat

time of Landsat 8 is 16 days) of temperature (100m resolution), turbidity (30m resolution),

and chlorophyll a (30m resolution). We validated the remote-sensing-based products at

several in situ locations along the Maine coast where monitoring buoys and programs

are in place. Initial analysis of the validated fields revealed promising new areas for oyster

aquaculture. The approach used is applicable to other coastal regions and the data

collected to date show potential for other applications in marine coastal environments,

including water quality monitoring and ecosystem management.

Keywords: remote sensing, Landsat 8, oyster aquaculture, atmospheric correction, habitat suitability index, sea

surface temperature, turbidity, chlorophyll

INTRODUCTION

Oyster aquaculture of the American oyster, Crassostrea virginica, is an expanding industry in
coastal Maine, USA, with landings worth $4.8 million dollars in 2015, up from $0.6 million in
2003 and increasing by 250% between 2011 and 2015 (Maine DMR commercial landings 2016,
www.maine.gov/dmr/). To meet the growing demand for high quality oysters, identification of
new sites with the most optimal biophysical conditions for oyster growth is needed. To decrease
the risk of choosing an unproductive site, it is crucial that growers have the right tools for site
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selection. Currently, the method for selecting a suitable site for
bivalve aquaculture is largely based on proximity to existing sites
or trial and error. These methods are inefficient because they may
not consider the specific temperature and nutritional conditions
needed for the species to grow, each of which affect how fast it
takes to reachmarket size (Rheault and Rice, 1996; Hawkins et al.,
2013b). Recent advances in remote sensing techniques enable
satellite imagery to help in site selection (e.g., Thomas et al.,
2011). By visually inspecting information products calculated
from processed Landsat 8 satellite images, estuaries that reach
relatively warm temperatures (above 20◦C), support high levels of
chlorophyll in the summer (above 1 µg Chl l−1), and exhibit low
turbidity (below 8 NTU) can be efficiently identified as potential
oyster growing areas.

The spatial resolution of standard global ocean color satellites
(typically 1 × 1 km) is too coarse to provide usable data within
the many estuaries and embayments along coastal Maine where
much of the suitable habitat for oyster aquaculture is located.
The Thermal Infrared Sensor (TIRS) and the Operational Land
Imager (OLI) are sensors on the Landsat 8 satellite, launched
February 11, 2013. These sensors have both the spatial resolution
(100m for infrared data and 30m for multi spectral visible
data) and the necessary signal to noise ratio to provide useful
temperature as well as ocean color derived products along
the Maine coastline (Vanhellemont and Ruddick, 2014). In
this paper, we used a combination of empirical and analytical
approaches to derive temperature, turbidity and chlorophyll
products from Landsat 8 data for the coast of Maine.

Although, it was designed for terrestrial monitoring, Landsat
8 data was shown to be useful for marine applications, provided
that a reliable atmospheric correction is applied (Pahlevan et al.,
2014; Franz et al., 2015). An atmospheric correction is necessary
for satellite remote sensing because in the visible wavelengths,
the majority of the signal observed by the satellite is from gas
and aerosol particles in the atmosphere (e.g., Mobley et al., 2016).
We used the NASA1 software platform SeaDAS, and algorithms
implemented within it, together with an empirical approach to
derive chlorophyll a and turbidity.

As with any instrument, there are limitations to using Landsat
8 imagery for coastal monitoring. Compared to other space-
borne instruments such as AVHRR and MODIS, that have
daily coverage, the temporal resolution of Landsat 8 is low.
The 16 day repeat coverage makes it insufficient to observe
short-term changes (due to weather, storm events, etc.), but
it is useful for describing patterns such as seasonal changes,
which is informative for monitoring long-term conditions and
relative spatial differences between sites. Additionally, cloud
cover decreases the probability of clear overpasses; most of the
clear images we retrieved come from summer and fall months
(June through November), the seasons with the least amount of
cloud cover. Fortunately, this is also the critical time of year for
oyster aquaculture as it overlaps the growing season.

Ocean color measurements can be used to describe
components of water quality, such as turbidity and chlorophyll-a
(Chl a) concentration (O’Reilly et al., 1998). Algorithms

1NASA (2016). Available online at: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/

have been developed that can estimate concentrations of these
components by (1) retrieving radiant flux from the satellite which
includes both target surface and atmosphere components, (2)
correcting for the signal from the atmosphere, (3) transforming
radiant energy collected by the satellite sensor into remote
sensing reflectance (Rrs), and (4) converting Rrs values into
products. Reflectance in the red wavelengths of light is used
to estimate suspended particulate matter (Vanhellemont and
Ruddick, 2014; Dogliotti et al., 2015), while reflectance in the
blue and green wavelengths is used to estimate Chl a biomass
(a proxy of phytoplankton biomass) (Franz et al., 2015; Mobley
et al., 2016). Remote sensing products have been used for
monitoring in several sites around the world (Radiarta et al.,
2008; Wang et al., 2010; Thomas et al., 2011; Aguilar Manjarrez
and Crespi, 2013; Gernez et al., 2014) to assess the impacts of
turbidity and Chl a on aquaculture.

Optimal conditions for oyster growth have been determined
primarily through the use of various types of ecophysical models.
Habitat suitability models were first applied to the restoration
of the American oyster, Crassostrea virginica, on the warm
southeast Atlantic coast of the U.S. (Cake, 1983; Soniat and
Brody, 1988; Barnes et al., 2007). These models considered
bottom substrate and suitable salinities to maximize oyster
survival in relation to siltation and protozoan parasites. More
recently, Carrasco and Barón (2010) used satellite imagery
to map temperatures which defined the potential range for
Pacific oyster populations in South America. Statistical models
relating organism growth, biomass and economic yield illustrate
the importance of site specific environmental variables (water
velocity, food concentration) on farm yields (Pérez-Camacho
et al., 2014). Powell et al. (1992) and Hoffmann et al. (1992)
modeled American oyster filtration rate and growth as a function
of animal size, water temperature and total particulate matter,
with a negative effect at high suspended loads, although selection
for organic matter by the oyster when producing pseudofeces
(Newell and Jordan, 1983) was not considered. Gernez et al.
(2014) used 300m pixel-size suspended particulate distributions
derived from MODIS to assess the impact of suspended
particulate matter concentration on oyster farming sites, and
Gernez et al. (2017) improved on this study by using Sentinel 2
with a 10m resolution.

Crassostrea virginica is somewhat unusual in that its filtration
rate is a strong function of temperature (from 8◦C to a maximum
at 30◦C; Loosanoff, 1958) compared to other bivalves where the
filtration rate is relatively independent of water temperature.
Therefore, temperature is of primary importance in site selection
for oyster aquaculture in the relatively heterogeneous and
strongly seasonal sea surface temperature regime of the colder
Maine waters. Bivalve feeding and growth is also a positive
function of phytoplankton concentration (Hawkins et al., 2013b),
so chlorophyll a is considered the next most important factor
for site selection. In general, total suspended particulate matter
has a negative effect on bivalve growth by diluting the organic
matter at high levels (Widdows et al., 1979; Barillé et al.,
1997). For bivalves, the proportion of phytoplankton in the
suspended particles is a key aspect of site suitability (Newell et al.,
1989).
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Another important factor in oyster site selection is water
velocity, which delivers food to populations of oysters and
other bivalves at commercial-scale densities. Congleton et al.
(1999) developed a GIS system that included water velocity and
intertidal elevation to predict optimal locations for clam (Mya
arenaria) mariculture. Within a coastal bay, ShellGIS (Newell
et al., 2013) used the growth model Shellsim (Hawkins et al.,
2013a) to predict oyster growth and yield as a function of
water quality (temperature, salinity, and food concentration),
husbandry and seeding density, and water velocity on a 50m
farm scale. Water velocity is not a limiting factor in the coast of
Maine where tidal amplitudes and currents are large. Hence, the
primary screening variables of temperature, chlorophyll a, and
turbidity are effective tools to identify suitable locations on the
scale of bays and estuaries, and provide novel opportunities for
mapping potential zones for aquaculture development over large
and complex coastal regions such as Maine.

In this paper, we demonstrate a methodology to obtain
SST and calibrated water quality products from the TIRS
and OLI sensors on board Landsat 8, and validate them
with measurements in coastal Maine waters. We compute
uncertainties based on match-ups between local data and that
derived from satellites and discuss how temporal and spatial
sampling and adjacency effects affect the accuracy of remote
sensing products. These processed satellite products are then
used to establish an oyster suitability index and its distribution
in mid-coast Maine. The consistency between high values of the
index and sites of existing oyster farms provides validation for the
oyster suitability index derived here.

METHODS

Study Area
The coast of Maine includes a series of fjards (shallow and
broad fjords) and jagged embayments carved by receding glaciers
during the Pleistocene epoch. In situ samples were collected
and monitoring buoy systems were maintained in two of these
estuaries, the Damariscotta River and Harpswell Sound, over the
course of several years and we used them here to validate Landsat
8-derived products on the Maine coast (triangles on Figure 1).
We chose to focus on the Damariscotta River because it has
existing aquaculture operations (currently 75% of the oysters
produced in Maine, Maine DMR, 2015) and suitable sampling
access. The Damariscotta River Estuary is 29 km long, has a mean
summer flushing time of 4–5 weeks, and is dominated by strong
tides with amplitudes of up to 3.35m (McAlice, 1977). Sediment
resuspension in this estuary is highest at low tide, and lowest at
high tide. The estuary is highly saline, ranging from 25 to 32.5
psu, with a small amount of fresh water input from Damariscotta
Lake into Salt Bay at its northern reach. The bottom substrate is
a soft mud, composed of clay to sandy silts with an average water
depth of 15.25 m. These attributes, combined with suitable water
temperatures, turbidity, and Chl a concentrations, make the
Damariscotta River an ideal place for growingmarket-size oysters
and other bivalve species, andmake it an excellent reference point
for expanding the aquaculture industry along the coast of Maine.

FIGURE 1 | Sea surface temperature on the coast of Maine, USA, on July 14,

2013 from Landsat 8 infrared data. Triangles indicate locations of validation

buoys. Freshwater lakes used for the atmospheric correction are circled at

∼44′N, −69.5′E.

Processing of Sea Surface Temperature
All applicable raw data from Landsat 8 were downloaded from
the USGS Earth Explorer website from the period 2013 to 2016
(USGS, 2016). To calculate SST, we used brightness temperature
values from Landsat 8’s Thermal Infrared Sensor (TIRS) Band
10. There are stray light issues associated with the two TIRS
bands (Band 10 and Band 11) due to the curvature of the
optical lens (Montanaro et al., 2014). Of these two bands, we
chose to use thermal Band 10 because it has lesser issues of
the two (see Discussion Section). Each image was processed in
the NASA SeaDAS platform up to level 2 to retrieve latitude
and longitude arrays, a geo-registered image, and the associated
land/cloud mask (georeferencing is maintained, as it is provided
from USGS).

Regressions between coincident, atmospherically corrected
NOAA AVHRR satellite derived SST and that derived from
Landsat 8’s brightness temperature were used to create an SST
product from each Landsat 8 image (similar to Thomas et al.,
2002). This regression process, de-facto, acts as the atmospheric
correction for the Landsat SST product assuming that (1)
the atmosphere does not change in the time interval between
AVHRR and Landsat data acquisition and (2) the atmosphere
is homogenous across the Landsat scene. Example results from
this procedure are displayed on Figure 1 above. Of the four to
eight AVHRR images captured on the same day as each Landsat
8 overpass, we subjectively chose the image with the least amount
of cloud cover, best geolocation, and most realistic SST patterns,
for the regression (see Section A in Supplementary Material for
detailed description). The data for the regression were selected
from cloud free and offshore areas to accommodate the lower
AVHRR resolution (1 km vs. Landsat 8 100m resolution). The
best results were achieved using cloud free areas with a high
dynamic range in SST. The resulting regression equation between
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the signal of Landsat’s Band 10 and the AVHRR-based SST was
then applied to the full resolution Landsat 8 image.

On average, there are approximately four AVHRR images
per day. Due to changing cloud cover and orbit configuration
between available AVHRR images, it was sometimes necessary
to use an image more distant in time (but less cloudy) from the
Landsat 8 overpass, despite a temporally more proximate one
being available. However, because Gulf of Maine SST patterns
change relatively slowly (<0.4◦C over 12 h at buoy 44005,
www.neracoos.org), we consider this an acceptable tradeoff to
maximize the number of quality AVHRR pixels that were used
in the regression. The mean offset time between the Landsat 8
and AVHRR overpasses was 6.8 h, with a minimum of 2.3 h,
a maximum of 30.2 h, and a standard deviation of 5.8 h. The
entire area of spatial overlap between AVHRR ocean pixels and
Landsat 8 ocean pixels is used for most scenes. Landsat 8 images
were subsampled to every 10th pixel in both x and y dimensions
to reduce the data volume for the regressions. Depending on
the distribution of clouds, the regression area was restricted to
areas without cloud contamination (or poorly masked clouds) in
some instances. Cloud and land were dilated by two pixels in the
AVHRR image to reduce occurrences of cloud ringing artifacts
and nearshore land contamination. The regression process was
iterative. After each iteration, all Landsat 8 and coincident
AVHRR pixels that were >1 standard deviation from the linear
best fit line of the relationship were removed and the regression
was re-calculated with the remaining data. The iteration process
was repeated until the Pearson correlation coefficient for the
two datasets stabilized or started to worsen (which is due to
uncertainties in the approach). The final regression equation was
then applied to each Landsat 8 B10 pixel to obtain a Landsat SST
image.

Ocean Color
Ocean color multispectral data, which responds to the effects
of oceanic particles and dissolved matter, are measured from
space by theOperational Land Imager (OLI) radiometer on board
Landsat 8. The radiance measured includes contributions from
the target (the surface water column), the air-water interface,
and the background (particles and gases from nearby pixels
and particles in the atmosphere) (Mobley et al., 2016). To
obtain information on the oceanic constituents, the atmospheric
contribution to the signal needs to be removed (a process known
as “atmospheric correction,” see below). From the corrected
water-leaving radiance, we computed the reflectance (denoted as
Rrs) from which the products of turbidity and Chl a are derived.

Atmospheric Correction for Rrs
Given the low turbidity in our area of investigation (see Section
Retrieval of Turbidity below), we chose to use a combination
of the Near Infrared (NIR) and Short Wave Infrared (SWIR)
channels for atmospheric correction in SeaDAS. The NIR was
important to use because of its higher signal/noise ratio (NIR
band had a ratio of 67 in low turbidity waters, while SWIR bands
had ratios of 9 and 10), and the SWIR was important because it
has the strongest absorption for water which helps differentiate
in-water sediments from atmospheric aerosol particles (Franz

et al., 2015; Pahlevan et al., 2017). Applying this atmospheric
correction over a scene resulted in a per-pixel correction, each
with its own angstrom coefficient. The angstrom coefficient is
the exponent of a power-law fit to the spectral aerosol optical
thickness. We adjusted this coefficient because the automatic
per-pixel retrievals provided by SeaDAS resulted in negative
reflectance values at several freshwater bodies that were used
as black body targets for our atmospheric correction scheme.
These lakes should have near-zero or positive retrievals at the
443 nm band. The primary reason for adjusting the angstrom
coefficient is that the aerosol models used for processing data
from satellites such as SeaWiFs andMODIS (Ahmad et al., 2010),
do not represent the aerosol conditions for our study area, the
coast of Maine (Pahlevan et al., 2017). We then chose a single
angstrom coefficient per scene (from within the distribution of
inverted angstrom values), by requiring that the minimal value
of Rrs(443) in a scene, measured in a very humic lake, be zero.
Most freshwater lakes on the coast of Maine are humic and have
high levels of chromophoric dissolved organic matter, CDOM,
which gives them a brown hue and attenuates light quickly
(Rasmussen et al., 1989; Roesler and Culbertson, 2016) and are
not turbid. Several freshwater lakes with high CDOM within our
study region (Muddy Pond, Biscay Pond, andDamariscotta Pond
circled in Figure 1) were selected as suitable reference targets to
correct the entire Landsat 8 scene. In each individual satellite
image, the darkest lake (where Rrs(443) is near zero) was used
to determine the angstrom coefficient. Analysis of a sample of
water from one of these lakes verified that the expected Rrs(443)
is zero within the uncertainty of the satellite retrieval (Table B1 in
Supplementary Material). We subsequently applied the retrieved
angstrom in SeaDAS to the entire scene to recalculate Rrs at every
wavelength. Resulting Rrs values were then used to compute
turbidity and Chl a.

Retrieval of Turbidity
Turbidity, T, [note that 1mg l−1 of suspended particulate
matter, SPM, is similar, within the range of values found in
our study area, to a turbidity of 1 NTU (Pfannkuche and
Schmidt, 2003)], was calculated over the entire satellite scene
using atmospherically corrected Rrs(655) following Nechad et al.
(2010):

T = Aρ
ρw

1− ρw/Cρ
[gm−3] (1)

where ρw = Rrs(655)*π is the atmospherically corrected and
derived water leaving reflectance, Aρ

= 289.1 and Cρ
= 16.86

(Nechad et al., 2010).

Retrieval of Chlorophyll- a
Chl a was calculated using the OC3 algorithm (O’Reilly et al.,
1998) from the NASA Ocean Biology Processing Group, using
the above-calculated Rrs:

log10
(

Chl a
)

= a0 +
4
∑

i=1

ailog10

(

Rrs (λblue)

Rrs
(

λgreen
)

)i

(2)
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where a0 and ai are sensor specific coefficients, and Rrs (λblue) and
Rrs
(

λgreen
)

are the greatest of values from 443> 483 and 555 nm,
respectively, on the OLI sensor aboard Landsat 8 (NASA, 2016)1.
(Note: SeaDAS applies coefficients to convert broad band Landsat
8-based Rrs to 11 nm narrow bands for which this equation was
developed).

Validation with In situ Data
Validation was carried out for SST, turbidity, and Chl a,
using data from water samples and three oceanographic buoy
observing systems. Historical data was downloaded from the
NERACOOS (Northeastern Regional Association of Coastal
Ocean Observing Systems) buoys E01 and I01 operated by
the University of Maine in the Gulf of Maine, a Land/Ocean
Biogeochemical Observatory (LOBO) buoy operated by Bowdoin
College in Harpswell Sound, and two LOBO buoys at the
University of Maine’s Darling Marine Center in the Damariscotta
River (Figure 1. Note: NERACOOS Buoy I01 is outside the map).
The LOBO buoys were equipped with sensors that remain at a
depth of 1.5m and maintained and cleaned to prevent biofouling
approximately every 2 weeks. Temperature data were collected
from all three observing systems and compared to Landsat 8 SST.
A total of 52 matchups were identified originating from 31 clear
overpasses from 2013 to 2016.

In situ turbidity measurements were used to validate satellite-
derived turbidity during eight overpasses in 2015 and 2016. Data
were collected from the LOBO buoys in the Damariscotta River,
and were measured by a WETLabs WQM sensor capable of
measuring turbidity from 0 to 25 NTU (using a backscattering
sensor measuring light scattered in the back direction at a 20
nm bandwidth around 700 nm). This sensor was vicariously
calibrated against a Hach turbidity sensor (which conform to the
ISO 7027:1999 turbidity standard). The buoy data were calibrated
using a regression betweenHach turbidity samples and the LOBO
turbidity using a factor of 1.58 (Table B2 in Supplementary
Material).

In situ Chl a was used to validate satellite-derived Chl
a during the same eight overpasses in 2015 and 2016. In
situ Chl a data were measured by the Damariscotta River
LOBO buoys’ WETLabs fluorescent sensor capable of measuring
Chl a concentrations from 0 to 50µgl−1. The buoy data
were calibrated using a regression between extracted Chl a
samples and the LOBO Chl a using a factor of 1.71. Water
samples were collected in triplicate, at the surface, and in
opaque bottles within 30 min of each overpass and filtered
for extraction on a Turner 10 AU fluorometer per standard
protocol (Holm-Hansen and Riemann, 1978). Statistics were
calculated for regressions between the in situ and satellite-derived
data: Root mean square difference, RMSD, root mean square
relative difference, RRMSD, and coefficient of determination, r2

(see Figures 2–4 below).

Satellite Imagery for Oyster Suitability
Index
An Oyster Growth Suitability Index (OSI) was designed using
the satellite-derived SST, turbidity, and Chl a. A weighting
and indexing procedure of these three physical parameters
described ideal, moderate, and poor conditions for growing

FIGURE 2 | Type II linear regression (black line) between Landsat 8-derived

SST and SST measured by sensors on oceanographic buoys. Different

symbols represent measurements by the three different observing systems.

Vertical error bars are the standard deviation of a 5 × 5 pixel box. Horizontal

error bars are the standard deviation of daily temperature at each buoy.

Dashed gray line is 1:1.

market sized oysters in surface culture. The criteria for the index
were chosen based on published studies of environmental effects
on oyster growth, recognizing that the concentration of organic
detritus, known to be an important component of oyster diet,
was not available. Temperature is the most important variable
for oyster growth, especially in the cold waters of coastal Maine
as it controls the filtration rate of oysters [and therefore given
an importance weight factor of 80% in our OSI; (Loosanoff,
1958; Hoffmann et al., 1992; Ehrich and Harris, 2015)]. Oyster
clearance of algae is a positive function of algae concentration,
as large amounts of pseudofeces are produced at high algal
concentrations. Because of this, we weighted Chl a at 15%, with
poor conditions as <1 or >10 µg Chl l−1, moderate conditions
as 1 to 3 µg Chl l−1, and ideal conditions as 3 to 10 µg Chl l−1

(Epifanio and Ewart, 1977; Hawkins et al., 2013b). Turbidity, an
index of suspended particulate matter, has a negative effect on
oyster feeding when at high concentrations, by diluting algal cells
with largely inorganic matter. Haven and Morales-Alamo (1966)
observed large amounts of pseudofeces production by Eastern
oysters at concentrations of suspended particulate matter above
10mg l−1. Thus, we gave turbidity a weight of 5% and designated
poor conditions as >10mg l−1, moderate conditions between 8
and 10mg l−1 and ideal conditions <8mg l−1. Hoffmann et al.
(1992) also modeled oyster filtration as a positive function of
water temperature and a negative function of high suspended
loads.

These weights are subjective and were chosen as a starting
point for an OSI. They could be refined in the future (Gong
et al., 2012), based on sensitivity analysis of the relative
importance of these factors measured simultaneously with
growth measurements in situ. The resulting OSI is the sum of
the weighted conditions on a scale from 0 to 1, where pixels with
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FIGURE 3 | (A) Landsat 8-derived turbidity along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8-derived turbidity and

turbidity measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement. Horizontal error bars are

the standard deviation of turbidity for 4 h at each buoy. Dashed gray line is 1:1.

FIGURE 4 | (A) Landsat 8-derived chlorophyll-a along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8 derived

chlorophyll-a and chlorophyll-a measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement.

Horizontal error bars are the standard deviation of chlorophyll-a for 4 h at each buoy. Buoy chlorophyll-a was calibrated with chlorophyll extraction samples. Dashed

gray line is 1:1.

a value of 1 represent waters where an oyster is likely to grow to
market size within 2 years:

OSI =
n
∑

i=1

SIi × wi (3)

where SIi is the value of the environmental variable i, wi is the
weight of the variable i, and n is the number of environmental
variables (three in our case). At any location where one of the

three indices reported poor conditions, the OSI was set to zero.
We combined images from each year during the same month to
create a monthly averaged index.

RESULTS

Validation with In situ Data
The Landsat 8 SST retrievals correlated well with in situ
temperatures (RMSD is 0.82◦C, RRMSD is 4%, r2 = 0.94)
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with, on average, 1◦C higher SST values than those measured
by the buoy sensors, especially in warmer waters (Figure 2).
However, variability of the buoy measurements is larger at higher
temperatures when horizontal gradients in temperature were also
larger.

The Landsat 8 turbidity estimates correlated well with in
situ turbidities (RMSD 0.49 NTU, RRMSD 3%, max absolute
deviation is 0.96 and maximal relative deviation is 15%,
r2 = 0.88), with an uncertainty of 0.5 NTU, on average
(Figures 3A,B). Uncertainties are larger at higher turbidities for
both the buoy and the satellite algorithm.

Landsat 8 based Chl a did not correlate well with in situ Chl
a (RMSD is 1.75 µg Chl l−1, RRMSD is 110%, max absolute
deviation is 3.14 µg Chl l−1, max relative deviation is 156%,
r2 = 0.31). Below 5 µg Chl l−1, the OC3 algorithm produced
higher Chl a values than those measured by the buoy sensors
(Figures 4A,B). Above 5 µg Chl l−1, the buoy measurements
were higher than the satellite-derived Chl a. Uncertainties are
larger at higher Chl a for the buoys and the satellite algorithm.
Out of the three parameters derived from Landsat 8, this
algorithm has the highest relative deviation of 156%, with an
average relative difference of 110%, which is significantly worse
than the average relative difference of 30% for chlorophyll
algorithms in the open ocean (but see Discussion).

Satellite Imagery for Oyster Growth
Conditions
Monthly maps of Oyster Suitability Index (Figure 5) were
created using averaged monthly satellite images (Section B
in Supplementary Material). Most existing oyster aquaculture
areas (indicated by red stars on Figure 5) fall within the
highest suitability index during the month of July. Suitability
maps for August and September exhibit a similar pattern of
ideal, moderate, and poor growing areas as the map for July
(Figure 5), but, in general, with slightly lower values due to
colder temperatures (average monthly temperatures were highest
during July). The Oyster Suitability Index map provides two
important findings: (1) it is consistent in its finding that the
Damariscotta River as a suitable place to grow oysters in
aquaculture and therefore an important test and verification
site for using remote sensing tools, and (2) it maps many new
locations along the coast that host similar conditions (Table B2 in
Supplementary Material).

DISCUSSION

Satellite Imagery
The correspondence between the Landsat 8 satellite-derived
products and in situ measurements demonstrates the capability
of generating SST, turbidity, and Chl a maps along the jagged
coast of Maine. While these data show encouraging results, there
are several factors from our study that could improve the present
algorithms. Stray light issues arise if the temperature from an
object outside of the field of view of the imager affects the pixel
within the field of view. Fortunately, most water along the coast
of Maine is vigorously tidally mixed (∼3m tidal range), and
thus data from the center of channels can be used to infer SST

FIGURE 5 | Oyster suitability map based on Landsat 8-derived SST, turbidity,

and chlorophyll-a. Map is an average of all images in the month of July. Yellow

areas indicate ideal conditions, green areas indicate moderate conditions, and

blue areas indicate poor conditions. Red stars indicate existing oyster farms.

Index criteria is given in Section B in Supplementary Material.

throughout those channels (Thornton and Mayer, 2015). Within
the estuaries, however, a TIRS pixel (which is three times as
wide as an OLI pixel) next to land may be incorrectly colder (if
the land is colder) or warmer (if the land is warmer). However,
our match-ups with temperature and turbidity products suggest
adjacency and stray light have not degraded the data significantly,
and differences are likely due to noise as opposed to systematic
bias.

Limitations in Validation Process
Validation of Landsat 8 products with in situ measurements is
necessary to assess the accuracy of the algorithms for retrieving
bio-physical products. Some of the discrepancy in matchups
between in situ data and satellite-derived products can be
explained, while others require further investigation. One reason
that Landsat 8 SST values may be higher than most buoy
measurements (Figure 2) is because the SST estimates come
from radiation emitted from the top few micrometers of the sea
surface, while the buoy sensors are located about 1.5m below
the surface. In the daytime images, the subsurface water is likely
cooler than the surface skin due to physical and environmental
factors (Donlon et al., 2002; Ward, 2006; Padula et al., 2010).
Despite this bias, the Landsat 8 SST (derived by regressing with
atmospherically-corrected AVHRR SST) performed well along
the coast of Maine and our results suggest that our approach
could be used as a tool for measuring SST where high spatial
resolution is desired.

A vigorous semi-diurnal tide characterizes the Damariscotta
River and delivers shelf water into the upper reaches of the
estuary. The tidal cycle was evident in the daily turbidity signal
(not shown) from the LOBO buoys: at low tide, there are elevated
levels of turbidity whereas at high tide there is less turbidity

Frontiers in Marine Science | www.frontiersin.org 7 June 2017 | Volume 4 | Article 190

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Snyder et al. High-Resolution Remote-Sensing for Aquaculture Siting

(due to the increase in turbidity from the mouth to the end of
the estuary). The horizontal error bars in Figure 3 represent the
variability during a 4-h period around each satellite overpass
time, and highlight the importance of simultaneous sampling
for in situ—satellite matchups. The turbidity algorithm performs
well within our uncertainties in this context.

Landsat 8-derived Chl a often differs significantly from the
LOBO buoy measurements. We note that there are significant
uncertainties associated with both measurement techniques
(Cullen, 2008). Landsat 8-derived Chl a is retrieved from Rrs
using an algorithm calibrated in the open ocean, whereas the
LOBO buoys measure Chl a fluorescence which is regressed
against chlorophyll measured on water samples. Estimating Chl
a from fluorescence is the most common way to measure Chl a
but is affected by several processes that contribute to uncertainty.
These include changes in fluorescence yield due to variability
in the algal taxonomy, nutrient stress, and photo-acclimation,
to name a few (Cullen, 1982). In addition, concentrations of
phytoplankton have been observed in the Damariscotta River
to vary on time scales of hours (Thompson and Perry, 2006)
potentially making mismatches in time problematic.

Non-photochemical quenching (NPQ; when phytoplankton
decrease their fluorescence at a maximum light harvesting
level, e.g., Cullen, 1982) contributes to variability. However,
we find nighttime measurements to be comparable to daytime
measurements (Figure B1 Supplementary Material) for the
Damariscotta River. Therefore, the offset in Chl a is likely
not due to errors induced by NPQ. Another potential error is
associated with the OC3 algorithm, which estimates Chl a as a
ratio of Rrs in the blue and green channels. The blue channel
is especially influenced by colored dissolved organic material
(CDOM). Independent changes of CDOM will affect the OC3
chlorophyll estimate (Siegel et al., 2005). Along the coast of
Maine, where there are coastal forests and marshes, CDOM
is in high concentration and variable (Roesler and Culbertson,
2016). In coastal areas and estuaries rich in CDOM it is likely
that absorption by dissolved organic matter would bias the
OC3 algorithm. It is likely that a local algorithm that takes
local CDOM concentration into account, could improve Chl a
retrievals from Landsat 8.

Oyster Suitability Index
The OSI provided in this paper is intended to supplement
other tools that determine optimal oyster growing areas. The
satellite images, due to their low temporal resolution, provide
a climatological monthly average of coastal temperature, which
does not resolve the day degree input necessary in models
for temperature-dependent shellfish growth. In addition, other
important environmental factors such as salinity, water depth,
bottom type, and water velocity (necessary for oyster growing),
are not considered (Theuerkauf and Lipcius, 2016). Organic
detritus is known to be an important component of bivalve
diets (Dame and Patten, 1981; Bayne et al., 1993; Barillé et al.,
1997), but currently cannot be measured using satellite imagery.
It is conceivable that detritus could be related to the ratio of
turbidity and Chl a, after light acclimation has been accounted
for. Our index therefore provides guidance on suitable water

quality conducive to rapid growth, but not sufficient information
to model site specific production capacity for suspended or
bottom culture.

Although, satellite thermal data is only sensitive to the
temperature of the top fewmicrometers of water, and ocean color
is sensitive only to one optical depth (which varies, but on the
Maine coast is usually the top 1 or 2 m), these data are relevant
to the whole water column if the water column is often vertically
well-mixed. Indeed, many estuaries on the Maine coast are well-
mixed (e.g., the Sheepscot and Medomak Rivers, Mayer, 1996;
Thornton and Mayer, 2015), which makes it relevant for our OSI
(Table B2 in Supplementary Material). Finally, local knowledge is
invaluable for the expansion of an existing industry on the coast
of Maine, and stakeholder input is essential for improving such
an index with local information such as site accessibility, town
ordinances, etc.

Future Work
Continued sampling during the spring and summer of 2017 will
provide a more complete dataset for optimizing Landsat-derived
products in Maine. A local algorithm for Landsat 8-derived Chl
a along the coast of Maine could be constructed with additional
in situ samples collected during satellite overpasses. There are
several approaches to tune a local algorithm. An empirical
approach, such as the OC3 algorithm, uses a relationship between
in situ measurements and ratios of the satellite sensor bands.
A second method involves using a generalized inherent optical
properties inversion (GIOP, Werdell et al., 2013). This method
solves for Chl a, SPM, and CDOMusing known spectral shapes of
optical properties (for phytoplankton and non-algal absorption
and backscattering by particles) and known values of absorbance
and backscattering of water (which are weak functions of salinity
and temperature). Databases of collection sites located in the
Damariscotta River and Harpswell Sound could tune the shapes
of IOPs for the GIOP algorithm and provide an estimate of Chl a
in these two estuaries. Furthermore, in situ samples from various
locations along the coast will validate the local algorithm so that
its use can be expanded from the Damariscotta River to other
places along the coast.

Obtaining more parameters from Landsat 8, such as colored
dissolved organic matter (CDOM), would provide additional
information to growers and ecosystem managers. Franz et al.
(2015) and Slonecker et al. (2015) describe the potential of
using Landsat 8 for remote sensing of CDOM in conjunction
with in situ measurements. A reliable CDOM product would
also improve the algorithm for Chl a, as the presence of
CDOM often contributes to an overestimation of Chl a.
Furthermore, high levels of CDOM are correlated with low
salinity in estuaries (Carder et al., 1989; D’Sa et al., 2002; Mayer,
pers. commun.). CDOM would therefore be helpful to identify
areas with significant freshwater influx because these often bring
concentrations of bacteria that negatively affect clamming and
other fisheries (Shumway et al., 1988; Kleindinst et al., 2014).

Validation of our OSI is provided by the fact that current
farms are all located where the OSI is high. Further validation
and refinement with direct measurements of oyster growth,
will likely improve on this OSI. Note: OSI does not include
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information about site closures, bottom depth, or residential
restrictions. Future work should include this information for a
more comprehensive index.

CONCLUSION

A satellite-derived Oyster Suitability Index can act as a powerful
tool for oyster aquaculture site selection and the expansion of
the shellfish farming industry. It shows that suitable biophysical
conditions for oyster growth exist in many areas of the Maine
coast. Suitability indices for other bivalve species, such asmussels,
scallops, and finfish along the coast, or other applications
requiring high spatial resolution, can be developed based on the
algorithms presented here.

Our results show that Landsat 8-derived data are useful
for retrieving SST, turbidity, and Chl a in coastal waters of
Maine, USA, and can be applied to other narrow estuaries
around the world. The novelty of using Landsat 8 in this
context offers a unique opportunity to map and monitor coastal
waters at an unprecedented spatial resolution. Inclusion of
data from other satellites with complimentary sensor suites
such as Sentinel 2A, and the recently launched Sentinel
2B, could improve both the spatial and temporal coverage
of coastal waters, as they will provide five-day or better
coverage and more visible bands to derive products with
(unfortunately, Sentinel 2A and B do not have thermal bands),
and be used to study oyster growing facilities (Gernez et al.,
2017). SST data from Landsat 8 is especially useful for
aquaculture site prospecting. We recommend adding thermal
bands to high resolution instruments on future missions. Future
work improving biogeochemical local algorithms, refining the
atmospheric correction, and adding other parameters such as
CDOM, will further advance the use of high resolution remote-
sensing for coastal applications.
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