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 Abstract 
Fractures play an important role in the geological related processes such as hydraulic 

fracturing, water-water disposal, and volcanic earthquake. Seismic waves can provide 

useful information from fractures at a relatively low cost. In particular, the acoustic 

property of fractures containing magmatic or hydrothermal fluids can provide useful 

information about the fracture size and the fluid composition within the fracture. For 

instance, in volcanology, the resonant frequency of long-period events that are linked to 

crack interface waves is used to obtain fluid properties of cracks in magmatic systems. 

However, in order to rely on seismic data, they should be precisely characterized in 

advance. Experimental studies are one of the most important resources to describe and 

understand physical systems. They are even used to validate analytical and numerical 

methods. In this dissertation, I aim to gain more insight into the crack waves that are slow 

guided waves in fluid-filled fractures and are characterized by their dispersive and 

resonating nature. We will develop two experimental setups. Using the first apparatus that 

employs the photoelasticity technique, we will visualize the stress regime of the fracture 

due to the motion, transmission, and reflection pattern of the crack wave. Using the second 

apparatus which is an acoustic data acquisition system, we extend the fracture of two 

parallel plates to a more complex and realistic fracture by modifying the fracture stiffness, 

saturated fluid and fracture geometry, and fracture surface roughness. We evaluate the 

dispersion and resonance properties of the crack waves under different environments. In 

addition, some present analytical and numerical models will be evaluated.  
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1 Introduction  
1.1 The background and motivation  

Fractures have a significant influence on the seismic signature of the reflected and 

transmitted seismic wave and fluid-filled cracks can serve as seismic sources. The complex 

geometry of fractures can govern the physical properties such as elastic wave velocity, 

seismic anisotropy, and permeability of formations. Pressure disturbances in a fluid-filled 

fractures can create a low frequency seismic wave that is called the crack wave (Chouet, 

1985). The crack wave is highly dispersed with a low velocity that is much lower than the 

sound speed in the fluid in the fractures (Krauklis, 1962; Korneev, 2008; Frehner, 2014). 

The crack wave has back and forth movements and cause the fracture to behave as a 

resonating source whose signature is recorded as long period (LP) events (Ferrazzini and 

Aki, 1987; Ferrazzini et al.1990; Frehner and Schmalholz, 2010).  

Tary and Van (2012) and Tary et al. (2014) identified the resonance characteristics of the 

crack waves in fluid-filled cracks which can be used to gain a better understanding of 

reservoir deformation or dynamic fluid flow perturbation during fluid injection into 

hydrocarbon and geothermal reservoirs, CO2 sequestration, or volcanic eruptions. Since 

crack waves and LP events are generated from fluid-filled fractures, they can reveal crucial 

information about fractures and their fluid properties (Chouet, 1986, 1988; Kumagai and 

Chouet, 1999; Taguchi et al., 2018). Chouet (1986, 1988) presented a finite-difference 

method to model the dynamics of an expanding fluid-filled crack. Chouet (1986, 1988) 

introduced two dimensionless parameters to characterize the crack waves and LP events. 

One parameter is the crack stiffness C=(b/µ)(L/d) and the other viscous damping ratio 
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F=12ƞL/𝛼𝛼𝛼𝛼2𝜌𝜌𝑓𝑓, where b is the bulk modulus of the fluid, µ is the rigidity of the solid, and 

L and d are the crack length and crack thickness, respectively, ƞ is the viscosity, α is the 

compressional wave velocity in solid, ρf is the fluid density. Chouet (1986, 1988) showed 

that the crack wave velocity decreases when the crack stiffness increases. In addition, he 

noted that cracks with a higher damping factors generate crack waves with lower resonant 

frequencies. 

All the published experimental and analytical models have been based on a parallel flat 

and oversimplified crack as the standard model (Figure 1-1) (Paillet and White, 1982; Tang 

and Cheng, 1988; Hasson and Nagy, 1997; Kumagai et al., 2005; Nakano and Kumagai, 

2005; Nakano et al., 2007; Maeda and Kumagai, 2013; Syahbana et al., 2014; Taguchi et 

al., 2018). Using this model, all properties regarding fracture size and fluid properties have 

been inferred from crack wave and LP events. For instance, Taguchi et al. (2018) estimated 

the size of crack in Kusatsu-Shirane volcano, Japan and Galeras volcano, Colombia. In 

addition, Taguchi et al. (2018) estimated the volume of mist and dust in those cracks. These 

estimates are important to understand fluid dynamics and scale of fluid transport in 

hydrothermal and magmatic systems. Furthermore, the crack waves can obtain important 

data about the tensile fracture development in the hydraulic fracturing surveys. Hu et al. 

(2017) developed a method to localize the source locations of LP events from hydraulic 

fracturing data to obtain tensile fracture development. Recently, Seismos that is a 

consulting company in Austin, TX has developed an industrial platform to characterize 

fractures from the crack wave data obtained from hydraulic fracturing. 
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Figure 1-1. Standard crack model. L is the length, W width, d aperture, and α P-wave 
velocities in the matrix and fluid respectively, and ρs and ρs the matrix and fluid density 
respectively. 

Although the effects of many parameters including crack length, aperture, and fluid 

viscosity have been investigated on the characteristics of the crack waves (Korneev, 2008; 

Kumagai and Chouet 1999, 2001; Groenenboom and Falk, 2000; Frehner and Schmalholz, 

2010; Taguchi el al., 2018), to the best of my knowledge, little has been done to investigate 

the effect of crack geometry on crack wave properties. Real fractures have much more 

complex geometries in nature. For instance, fractures have roughness and are 

interconnected through joints. To obtain more realistic estimates about fracture size and 

fluid properties from crack waves, we have to consider these complexities in our numerical 

and analytical models. Numerical and analytical studies  

Ferrazzini and Aki (1987) derived the equation of dispersion of the slow wave trapped in 

crack to determine the phase velocity that is inverse proportion to the wavelength. 

Following the pioneer works of Krauklis (1962) and Lloyd and Redwood (1965), a number 
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of analytical studies have been conducted to characterize the crack waves in fractures with 

varying degrees of complexity in models. Groenenboom and Fokkema (1998) and Korneev 

(2008) have reported the high amplitude of the crack waves and their dominant influence 

on the propagation of waves in a fracture filled with fluids. Laperre and Thys (1994) 

investigated the elastic wave dispersion in symmetric and asymmetric systems that consist 

of two solids containing fluid.  Coulouvrat et al. (1998) confirmed the low frequency mode 

that is dependent of the thickness of the fluid layer. Korneev (2008) obtains the analytical 

solution for phase velocity of crack waves in an infinite fracture filled with viscous fluids 

suggesting the possibility of differentiating between oil and water at low frequencies.  In a 

system of multiple alternating fluid-solid layers, two waves propagate (Brekhovskikh, 

1980); one is associated with the fluid layers exhibiting strong dispersion when propagating 

as the crack wave and the other with the solid layers that has little dispersion (Korneev, 

2011). Korneev et al. (2014) used a fracture filled with a non-viscous fluid to evaluate the 

low frequency symmetric mode and confirmed the existence of crack in both thin and thick 

fracture regimes allowing us to study field-scale frequency at laboratory-scale dimensions. 

In addition to analytical studies, several numerical studies have been carried out about the 

crack waves. Aki et al. (1977) numerically investigated the dynamics of cracks filled with 

fluids. By modeling the dynamic of an expanding fluid-filled crack using finite-difference 

method, Chouet (1986) found that the crack wave mode propagates slower than that of the 

acoustic velocity of the fluid. Groenenboom and Falk (2000) numerically modeled 

hydraulic fractures combining with laboratory data and generated the crack wave with a 

slow, dispersive property. Yamamoto and Kawakatsu (2008) used a simple and efficient 
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frequency-domain boundary integral method to simulate the fluid motions in a fracture and 

computed both the frequency and the attenuation quality factor of the resonance for the 

crack. Frehner and Schmalholz (2010) studied the reflection and radiation of crack waves 

at the crack tip using two different geometries (elliptical and rectangular) filled with 

different fluids (oil, water and gas), and obtained numerical results with high resolution. 

Frehner (2014) showed that these waves can be initiated by the passing body waves in a 

fluid filled fracture. S-waves generate crack waves with higher amplitudes than those 

initiated from the P-wave, and the initiation strongly depends on the orientation of the 

fracture. 

1.2 Experimental studies 

Following Chouet’s numerical simulation of crack wave and their associated resonance 

property with respect to crack stiffness and viscous damping ratio (Chouet 1986, 1988), 

Tang and Cheng (1988) first investigated the crack propagation in lab scale using two thick 

cylinder to mimic two half-space. While Hassan and Nagy (1997) used ultrasonic 

measurements to study crack waves over a frequency range of 15 kHz – 150 kHz in an 

aluminum – water – aluminum trilayer model. The results of the phase velocity variation 

with frequency suitably match with the theoretical prediction of the phase velocity of the 

crack wave. However, an estimated error ±7% was obtained which was attributed to the 

spurious interference that coupled the two transducers used in the experiment. Shih and 

Frehner (2015) observed the resonance effect of the crack wave in their experimental study 

and verified the laboratory results using an analytical solution. They also found that S-

waves can initiate the crack waves with higher amplitudes than the P-wave, which is 



6 

consistent with the numerical results of Frehner (2014). Nakagawa et al. (2016) carried out 

an experimental study using frequencies below 1 kHz which is relevant to geophysical 

fracture characterization in field and observed a very low velocity in a fluid filled fracture. 

He found that the phase velocity and attenuation measured in the laboratory can be as much 

as one order of magnitude smaller than in the field observations when the compliance of 

the fracture is small. 

In this dissertation, on one hand I study the propagation of crack waves propagation using 

the dynamic photoelasticity technique.  I will focus on monitoring the stress pattern of the 

crack wave from which the movement, and transmission pattern of crack waves. In other 

words, this set up helps to visualize crack wave propagation from which a better 

understanding about crack wave attenuation and group velocity as important factors can be 

achieved. On the other hand, an analogue fracture constructed by an aluminum-fluid-

aluminum trilayer model is adopted to for acoustic measurement of Krauklis wave 

dispersion property (the dependency of the velocity on the frequency), attenuation, and 

resonance frequencies under different conditions such as the variations of the fracture 

thickness, fluid viscosity, fracture compliance and fracture geometries and roughness. 

In this dissertation, by considering different geometries, I will investigate the effect of 

crack geometry on the resonance, dispersion, and attenuation of the crack wave. This 

understanding is crucial to further modify the standard rectangular crack model to procure 

more realistic estimates about crack sizes and fluid properties from the crack waves. In 

addition, I will explore the effect of temperature on the crack waves. Understanding the 

effect of temperature on the crack waves might help us to link the temporal variations that 
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we observe on LP events to changes in temperature in hydrothermal and magmatic systems. 

To this aim, I have developed a rock physics setup. In this set up, using pressure transduces, 

I record crack waves propagating in lab-scale crack models. These models are made from 

aluminum in which different crack geometries have been precisely machined.  

Apart from the rock physics set up, I will study the crack wave propagation using an optical 

apparatus that is based on the photo-elasticity technique. This technique has been used to 

visualize seismic wave propagation. Using this technique, not only will I visualize crack 

wave propagation, but also I will investigate the effect of fluid viscosity on the attenuation 

and group velocity of the crack waves. This visualization can help us to better understand 

the mechanism of attenuation in cracks. 
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2 Experimental observation of Fluid-Filled Fractures 
Using the Dynamic Photoelasticity Technique 

2.1 Abstract 

We have developed an optical apparatus based on the dynamic photoelasticity technique 

to visualize and analyze the propagation of the Krauklis wave within an analog fluid-filled 

fracture. Although dynamic photoelasticity has been utilized by others to study seismic 

wave propagation, this study adds a quantitative analysis addressing dispersion properties. 

We physically modeled a fluid-filled fracture using transparent photoelastic-sensitive 

polycarbonate and non-sensitive acrylic plates. Then we used a pixel-based framework to 

analyze the dispersion of a Krauklis wave excited in the fracture. Through this pixel-based 

framework, we thus demonstrated that the dynamic photoelasticity technique can 

quantitively describe seismic wave propagation with a quality similar to experiments using 

conventional transducers (receivers) while additionally visualizing the seismic stress field. 

We also showed the capability of the method to analyze seismic data in the case of complex 

geometry by modeling a saw-tooth fracture. Using the saw-tooth fracture data, we observed 

that an increase in the fluid viscosity results in a decrease of the velocity of the Krauklis 

wave. Moreover, the fracture’s geometry can strongly affect the characteristics of the 

Krauklis wave as we noted a higher Krauklis wave velocity for the saw-tooth case, as well 

as greater perturbation of the stress field.  

2.2 Introduction  

Fractures contribute significantly to fluid flow in many low-permeability rocks. In 

exploration for and development of unconventional reservoirs, it is crucial to identify 
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highly fractured zones. Seismic methods provide critical information about subsurface 

fractures with relatively low cost, and therefore, are widely used for identifying fractures 

and monitoring their development during hydraulic fracturing. The Krauklis wave is a slow 

wave that can be initiated in a fluid-filled fracture, with a velocity lower than the speed of 

sound in the fracture fluid (Krauklis, 1962). Because the Krauklis wave exists only in fluid-

filled fractures, it can provide fundamental information about the fracture size and the fluid 

involved (Lipovsky and Dunham, 2015; Liang et al., 2017; Sicking and Malin, 2019) 

suggesting that Krauklis wave analysis can be applied to fracture characterization. 

The Krauklis wave is dispersive; that is, its velocity is a function of frequency. At low 

frequency, the phase velocity is near zero, and it increases with frequency to an upper limit 

close to the speed of sound in the fracture fluid.  As a result, the Krauklis-wave group 

velocity, which is the velocity of a small wave packet spanning a bandwidth of frequencies 

(Askari and Ferguson, 2012; Askari and Hejazi, 2015), is larger than the phase velocity 

(velocity of a single frequency component). Because the fracture is, of course, embedded 

in a medium with higher velocities, the Krauklis wave’s low velocity causes the fracture to 

act as a seismic source within that medium; the far-field signature is recognized in volcanic 

and hydraulic-fracturing data as long-period events (Chouet, 1986; 1988; Ferrazzini and 

Aki, 1987).  

Tang and Cheng (1988) created an analog fracture using two thick aluminum cylinders as 

half-spaces, with a narrow flat gap filled with water between them, conclusively verifying 

the existence of the Krauklis wave. Following that approach, Hasson and Nagy (1997) 

developed a three-layer aluminum model and demonstrated that the Krauklis wave could 



10 

also be initiated between two plates of finite thickness. While the frequencies used in the 

Tang and Cheng (1988) and Hasson and Nagy (1997) studies were on the order of 

megahertz, Nakagawa et al. (2015) developed an experimental apparatus to study the 

Krauklis wave at low frequencies (0-200 Hz).  

For Krauklis waves to be useful in an exploration and development sense, there must be 

some method of remotely exciting them in fractures in the earth’s crust. Shih and Frehner 

(2016) showed that the Krauklis wave could be generated from a body wave striking a 

fracture wall. Frehner and Schmalholz (2010) simulated the Krauklis wave reflection and 

scattering into the host medium at the tips of fluid-filled fractures using the finite-element 

method. Note that in all previous laboratory or numerical studies, the Krauklis wave was 

produced by initiating a pressure disturbance directly on the fracture plane.  

In addition to these numerical and experimental studies, significant theoretical advances 

have been made in recent years. For instance, Korneev (2008) obtained the phase velocity 

of the Krauklis wave for inviscid and viscous fluids bounded between two half spaces (a 

thick fracture-wall model). Korneev et al. (2014) derived a phase velocity formulation for 

a thin fracture-wall model (finite thickness of walls in the host medium) and showed that 

the velocity of the Krauklis wave in a thin-wall fracture is lower than that in a thick-wall 

counterpart. Nakagawa and Korneev (2014) obtained the phase velocity of the Krauklis 

wave for compliant fractures (the clamping force is not infinite) and demonstrated that the 

phase velocity decreases when the clamping weakens.  



11 

However, most of the studies assumed idealized fracture geometry with flat surfaces for 

modeling convenience. Dynamic photoelasticity is a technique that can be employed to 

obtain the stress distribution and dynamic response of material to applied forces, and is 

particularly useful for studying complex geometries. This technique has been utilized to 

visualize seismic wave propagation, but not for the Krauklis wave. For instance, Riley and 

Dally (1966) studied seismic wave propagation in layered models and identified different 

waveforms using photoelastic models. Rossmanith and Shukla (1981) investigated stress 

wave diffraction at crack-tips to understand the interaction between stress waves and the 

crack. Shukla and Prakash (1990) measured seismic wave velocity and seismic wave 

attenuation in porous media as a function of fluid saturation. Xia et al. (2004) developed a 

photoelastic model to simulate earthquake rupture processes and examined the physical 

conditions under which ruptures could propagate at speeds greater than the host rock’s 

shear-wave velocity. Namiki et al. (2019) developed a soft-rock analogue to investigate 

how fractures are developed when high-pressure air is injected into soft rocks. The 

promising results of these photoelastic studies motivated us to develop a trilayer apparatus 

to study seismic wave propagation in fluid-filled fractures through the use of 

photoelasticity. Using a pixel-based framework based on images made during wave 

propagation, we visualized the stress field of the Krauklis wave and analyzed its dispersive 

properties. 

There are many parameters that likely affect Krauklis wave properties and a number of 

them have already been investigated (e.g., fracture fluid, fracture width, and fracture 

compliance; see Bayuk and Goloshubin, 2018 and Nakagawa and Korneev, 2014), but the 
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effect of crack geometry on the Krauklis wave has remained untested. Using our 

photoelastic setup, we investigated the effects of fluid viscosity and crack geometry on the 

dispersion properties of Krauklis waves. Our results showed that the Krauklis wave 

velocity decreases with increasing viscosity, a result consistent with a previous study by 

Nakagawa et al. (2015) based on conventional transducers. In addition, we noted that 

fracture geometry could have strong effect on the Krauklis wave using saw-tooth geometry. 

2.3 Method 

2.3.1 Dynamic photoelasticity technique  

Some materials are optically isotropic when they are not under stress yet become optically 

anisotropic under anisotropic stress (Pandya and Parey, 2013). The induced anisotropy or 

birefringence is proportional to the stress applied to the object (Pandya and Parey, 2013), 

and the fringe patterns can be correlated to the stress distribution (Ecault et al., 2013); a 

denser fringe pattern corresponds to a highly stressed area. To observe the fringe patterns 

and infer the correlated stress states, a polariscope is needed. As light enters an optically 

anisotropic material (called birefringent in the literature) it is split into fast and slow 

components due to the different refractive indexes of the material along the two principal 

stress directions. When the rays are recombined as they exit the birefringent material, the 

polarization state changes due to the phase difference resulting from the time delay between 

the fast and slow arrivals. That time delay is related to the difference in the refractive 

indices for the fast and slow arrivals, which in turn is proportional to the difference between 

the principal stresses.  
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Figure 2-1. Schematic diagram of our optical apparatus. The specimen is placed between 
two L-shaped steel support brackets mounted on an optical table.  The focal lengths f of 
each lens and diameters Ø of each optical component are indicated. σ1 and σ2 are two 
principal stresses of the sample. Details of the lenses are shown in Table 2-1. 

We developed a linear polariscope apparatus (Figure 2-1) to visualize the stress field within 

the fluid-filled fracture. Our linear polariscope is composed of three parts: (i) a collimated 

light also known as a shadowgraph system, (ii) a linear light polarizer, and (iii) a high-

speed camera. We built a custom beam expender that is composed of (i) a 150W 21V 

halogen light source, (ii) a plano-convex focusing lens with a focal length of 50.8 mm and 

a diameter of 25.4mm, (iii) a pinhole with adjustable aperture, and (iv) two collimated 

lenses with focal lengths of 273 mm and 127 mm, respectively (Table 2-1). In the first part, 

the pin hole after the convex lens (Figure 1) helps to minimize spherical aberration, a major 

issue in optical setups with spherical lenses (Yoshida, 1982). The second part includes two 

linear polarizers with the specimen in between. (In the photoelastic literature, the polarizer 

that is placed after the specimen is called the analyzer, and is labelled as such in Figure 

2-1.) The directions of these two polarizers are set perpendicular to each other. In the third 

part, we used a high-speed camera with a capability of recording up to 250,000 frames per 

second (fps), but in this study, in order to allow more light flux into the camera for each 
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frame, we selected recordings at 10,000 fps and optimizing spatial resolution. Our entire 

setup is mounted on a floating table to minimize noise.  

Table 2-1. Parameters of the optical components 

Lens Lens 1  (mm) Lens 2 (mm) Lens 3 (mm) 

Focal length 50.8 273 127 

Diameter 25.4 60 90 

The current linear polariscope provides a series of sample-wide images of photoelastic 

fringes over time. The brightness of each fringe is linearly related to the strain in the 

medium, such that the brighter a pixel is, the stronger the stress to which that element is 

subjected in each frame (Voloshin and Burger, 1983; Daniels and Hayman, 2008). In 

digital image processing, the brightness of a grayscale image is represented by pixel 

intensity values, which for our 8-bit system are integers ranging from 0 (black) to 255 

(white). Therefore, the pixel values are qualitatively related in a linear manner to the stress 

levels at locations within the plate (Tercero et al., 2010). The pixel intensity values 

extracted from the photoelastic images are therefore adequate to estimate the dispersion 

properties of the Krauklis waves within the specimen. Quantitative calculation of stress 

levels requires additional optical components including two quarter-wave plates and one 

monochromatic filter to build what is called a circular polariscope; this is beyond the scope 

of this study, and not necessary to achieve our goals. 
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2.3.2 Trilayer model  

 

Figure 2-2. The (a) Transparent trilayer held by aluminum plate. (b) and (c) Cross-length 
and width views of the trilayer. (d) Flat smooth fracture model in the middle layer. (e) 
Saw-tooth fracture model with enlarged saw-tooth geometry details. In (d) and (e), the 
circles along the edges of the plates are the locations of screws. The pressure pulse is 
initiated by striking a hammer to the aluminum piston with a rubber O-ring in a bronze 
tube. (a) (c) and (d) are the view in xy plane. The area in the red rectangular are the 
locations of images to be analyzed.  
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In our experiment, we developed a trilayer fracture model by combining two photoelastic 

insensitive acrylic plates and one photoelastic sensitive polycarbonate plate. Both 

polycarbonate and acrylic plates are transparent and homogeneous, and the area containing 

the “fracture” is visible through an opening in the metal housing (Figure 2-2a). The top and 

middle layers of our model in Figure 2-2(b) are acrylic plates with a dimension of 

152.4×47.6×1.58 mm whereas the bottom layer is a polycarbonate plate with a dimension 

of 152.4×47.6×0.79 mm. Therefore, the trilayer model is not symmetric because of the 

different layer thickness. The middle layer (acrylic) contains the “fracture.” The bottom 

layer (polycarbonate) provides birefringence when stressed. We choose a thin 

polycarbonate layer because, according to Dally and Riley (1991), thinner photoelastic 

materials deform more significantly for a given external load, and thus, they yield a higher 

phase shift producing larger photoelastic fringes.  

Table 2-2. The physical parameters of the solid medium of the trilayer. 

Medium ρ (g/cm3) Vp (m/s) Vs (m/s) E (Gpa) 
Poisson 

ratio 

Acrylic 1.19 2710 1391 2.76 0.32 

Polycarbonate 1.19 2106 931 2.20 0.37 

The physical properties of the two plates are shown in Table 2-2. In the middle layer, a 

machined slot is created to be filled by fluid. We considered the flat and saw-tooth slot 

models (Figure 2-2c,d) in which the slots have a dimension of about 127 mm×10 mm×1.58 

mm; however, the saw-tooth crack is 0.3 mm larger in width due to the machined triangles 

(see Figure 2-2e for more details). The acrylic and polycarbonate plates are held together 

by two aluminum plates whose thickness is 5 mm (one at the top and the other at the 
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bottom, Figure 2-2a). The two aluminum plates are tightened by eight screws along the 

edges of the specimen (Figure 2-2a). Compared with the dimension of the fracture length 

(127 mm), the polycarbonate plate used in our experiment is thin (0.79 mm) reducing the 

deformation and stress in the plate to a two-dimensional problem (Brown and Srawley. 

1966). In addition, the wavelength estimated from the following experimental result is 

much larger than the plate thickness; this warrants treating the trilayer model with classical 

plate theory. 

2.4 Experiments  

To investigate the effects of viscosity and fracture geometry on the Krauklis wave, we 

performed three experiments, using water as the fracture fluid in the flat fracture model 

and shampoo in both the flat and saw-tooth models. (In addition, we performed an 

experiment with water in the saw-tooth fracture; this resulted in strong cavitation effects 

which overwhelmed the images, precluding an accurate visualization of the stress field 

associated with the Krauklis wave. Therefore, we present only the results of the three 

experiments for which the results were interpretable.) Table 2-3 summarizes the 

experiments and major observations. 
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Table 2-3. Experiments and major observations. 

Experiment Fracture Fracture Major Observation 

1 Flat Water 

Highest-frequency spectra and velocity of the 

Krauklis wave compared to Experiments 2 and 

3. 

2 Flat Shampoo 
Lowest velocity and lowest frequency spectra of 

Krauklis wave. 

3 Saw-tooth Shampoo 

Higher velocity (almost twice) compared to 

Experiment 2. High perturbation of the stress 

field. 

To initiate the Krauklis wave, a sharp pressure load was applied by a hammer striking on 

an aluminum piston, surrounded by a rubber O-ring, in a bronze tube connected 

perpendicularly to the specimen to the right side of the trilayer (as viewed in Figure 2a). 

Unfortunately, this source is not repeatable with precision, and as discussed later, it is one 

of the major issues to be modified for future studies. Some studies of stress wave 

propagation have, in the past, used small dynamite explosions as a source (Shukla, 1991); 

however, current lab regulations preclude such use of explosive material. On the other 

hand, we were able to obtain relatively good-quality data from this source.  
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Figure 2-3. An example of a photoelastic image from the flat fracture filled with water. 
Two bright zones (superimpositions of fringes) are noticeable, highlighted by the box. 
These fringes indicate deformation associated with the Krauklis wave as it travelled 
along both solid-fluid interfaces from the source out of the image to the right. The points 
shown as bright squares are “receiver” locations at which we recorded the temporal stress 
field (waveform) by tracking the pixel values at one point using an image sequence. The 
overall image length (width) is about 5.715 cm (2.85 cm) and contains 512 pixels (256 
pixels) in each dimension for a pixel size of 0.112 mm. 

The original photoelastic images are typically displayed in grey scale. Figure 2-3 shows an 

example photoelastic image from the flat fracture filled with water in which the bright 

zones are under-stress regions. For our image processing, we use the “imread” command 

in MATLAB to read each of the raw grayscale images as a 512×256 matrix of unit8 (8-bit) 

values (integers 0-255). Then, in order to improve visualization, we applied a spline 

interpolation of 10 points between each neighboring pixel value to smooth the extracted 

raw waveform; this interpolation requires conversion to double precision. Thus, each image 

provides a high-resolution “map” of the stresses associated with the Krauklis wave as it 

propagates along the fracture (and eventually is reflected). These images, from frame to 

frame, can be used to map the wave’s propagation. A trace was extracted by tracking the 

pixel values over time at one point (“receiver”) (see Figure 2-3) for each frame. To obtain 
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the phase velocity dispersion curve of the Krauklis wave, we applied a high-resolution 

linear Radon transform (HRLRT) to these waveforms (Luo, 2009). 

2.5 Results 

For ease of visualization, a series of photoelasticity images (512×256) are shown in Figure 

2-4, this time in pseudo-color, for Experiment 1 (flat fracture filled with water). We clearly 

observed the Krauklis wave traveling slowly along the fracture (in the orientation of this 

image, from left to right). By mapping the locations of the maximum stress and noting their 

corresponding times, we obtained a group velocity of 34 m/s, which is quite low compared 

to the speed of sound in water (1500 m/s). We did not observe a “direct” water wave 

because the thickness of the fracture layer is very small compared with the wavelengths of 

the spectral components, as will become evident later. 
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Figure 2-4. Pseudo-color photoelastic images of Experiment 1 (flat fracture filled with 
water), shown every 0.1 ms. The white dashed lines correspond to the areas with the 
maximum stress of the Krauklis wave. The color bar shows the pixel intensity value.  

For Experiments 2 and 3, using a viscous shampoo in both the flat and saw-tooth fractures, 

we obtained the group velocities of 14.6 m/s and 28.3 m/s from Figure 2-5 and Figure 2-6 

respectively. Given the higher viscosity of the shampoo (910 to nearly 9600 mPa·s 

according to AlQuadeib et al (2018) compared to water 1.0 mPa.s), a lower velocity of the 

Krauklis wave is expected, according to Korneev (2008). However, the velocity of the 

Krauklis wave in the saw-tooth fracture (Figure 2-6) is almost double that in the flat 
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fracture (Figure 2-5), which might imply the importance of fracture geometry on the 

Krauklis wave. We note that the amplitude of the saw-tooth themselves is a significant 

fraction of the width of the overall fracture, and, as is apparent in Figure 2-6, comparable 

to the wavelength of the major spectral components of the Krauklis wave.  Thus, 

Experiment 3 appears to demonstrate the effect of large-scale heterogeneous fracture 

structure, complete with internal reflections. 

 

Figure 2-5. Pseudo-color photoelastic images of Experiment 2 (flat fracture filled with 
viscous shampoo). The stress is more concentrated along the fracture boundary than in 
Experiment 1. Some residual stress is noticeable at the lower part of the fracture that 
may be due to some experimental weakness: (i) inadequate or over-tightening of screws 
or (ii) manufacturing flaws in the fracture model.  In spite of that residual stress, the 
propagation of the Krauklis wave is clearly defined. 
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Figure 2-6. Pseudo-color photoelastic images of Experiment 3 (saw-tooth fracture filled 
with shampoo). The red dashed lines correspond to the maximum stress field initiated 
by the Krauklis waves. Due to the residual stress (either from screwing or manufacturing) 
at the bottom of the frames, the identification of the stress field of the Krauklis wave at 
the lower part of the specimen is difficult. Internal reflections of the Krauklis wave are 
noticeable that cause perturbation in the stress field. It is clear that the wave is strongly 
disrupted by the saw-tooth nature of the fracture boundary. 
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Figure 2-7. The temporal stress field of the Krauklis wave of Experiments 1, 2, and 3, in 
(a), (b) and (c), respectively. The waveforms of Experiments 1 and 2 are obtained from 
the seven fixed points indicated in Figure 3 whereas those of Experiment 3 are from the 
six tooth of the saw-tooth fracture. The dashed arrow follows the maximum stress field 
of the Krauklis wave from which we estimate the group velocity. Comparing the first 
and last traces, we note that the duration of signals increases as the Krauklis wave travels, 
implying that the high frequencies are significantly attenuated. 
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Figure 2-8. The amplitude spectra of the first and last traces of the temporal stress fields 
of Experiments 1, 2, and 3, shown in (a), (b), and (c), respectively, from the traces in 
Figures 7a-c. As the Krauklis wave travels, the high frequencies are attenuated. The 
Krauklis wave from Experiment 1 (a) is richer in high frequencies than Experiments 2 
and 3, due to the lower viscosity of water (Experiment 1). Note that the data from 
Experiment 3 (shampoo in saw-tooth fracture, shown in c) contains higher frequencies 
(> 1000 Hz) than present in Experiment 2 (shampoo in flat fracture, shown in b), which 
likely implies the effect of the large-scale geometric heterogeneities. 
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The waveforms extracted from the images at several points near the fracture boundary are 

shown (normalized) in Figure 2-7; dispersion is noticeable all three experiments as the 

waveforms change shape over time. As the Krauklis wave travels, the temporal stress field 

is stretched out in time, which implies the attenuation of high frequencies, also observable 

from the amplitude spectra of the first and last traces, shown in Figure 2-8. (To provide 

high resolution of the amplitude spectra we applied a Hanning window and zero-padded 

the raw data.) In addition, from Figure 2-8b and c, we note that the frequencies higher than 

1000 Hz are better retained in the saw-tooth fracture than in the flat fracture. The 

waveforms extracted from the data are then used to determine phase velocities from 

dispersion curves. 
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Figure 2-9. Dispersion curves extracted by high-resolution linear Radon transform for 
Experiments 1, 2, and 3 in (a), (b), and (c), respectively. The black markers represent the 
picked dispersion curves. The poor resolution at frequencies below 500 Hz is due to the 
short length of the array over which the dispersion analysis is conducted. In addition, we 
note that the dispersion curve is not continuous in (c) due to the large-scale perturbation 
of the stress field in Experiment 3. Due to the lack of high frequencies in Experiment 2 
(see Figure 9b), no velocity trend at frequencies higher than 900 Hz was obtained for 
that experiment. 
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Dispersion curves of phase velocities are shown in Figure 2-9, where phase velocity trends 

at frequencies above 500 Hz are recognizable; at frequencies below 500 Hz, the resolution 

is poor. The primary reason for the poor phase velocity resolution at the low frequencies is 

the short aperture over which traces were analyzed, therefore only a fraction of a wave 

cycle across the array is captured, but limited trace numbers and spacing also contribute to 

the resolution. The dispersion curve is not continuous in Figure 2-9c (viscous shampoo in 

saw-tooth fracture) because of the perturbation of the stress field, which as mentioned, is 

due to the internal reflections and scattering of the Krauklis wave within and between each 

“tooth” of the saw-tooth fracture. To verify this last point, we calculate the spectral 

decomposition of the series of waveforms (from Figure 2-7c) using the Sparse S transform 

(see Figure 2-10); highly perturbed energy at the frequencies of 750 Hz and 1100 Hz is 

noticeable after spectral decomposition on the time-frequency plane.  
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Figure 2-10. Spectral decomposition of the waveforms from Experiment 3 as shown in 
Figure 7c. The dashed lines correspond to the general trend of the stress field of the 
Krauklis waves. We note that high frequencies arrive earlier, which is consistent with 
the theory. Some perturbation has been highlighted by arrows.  The first three traces 
show that the high-frequency contents attenuate faster than the low frequency contents. 
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Figure 2-11. The dispersion curve of the Krauklis wave for the three experiments. Note 
that the flat water filled fracture has the highest velocity. The velocity significantly 
increased in the saw-tooth fracture filled with shampoo (Experiment 3 compared to 
Experiment 2), which implies the possible effect of the geometry on the dispersion of 
the Krauklis wave. 

The phase velocities of the three experiments are compared in Figure 2-11. As expected, 

the highest velocity belongs to the experiment in which the fluid is water, with its low 

viscosity (Experiment 1). By increasing the viscosity through the use of shampoo, the phase 

velocity significantly decreased in Experiment 2; in addition, the phase velocity is not 

estimable at frequencies higher than 900 Hz because those frequencies are highly 

attenuated in this high-viscosity environment. The most interesting observation is the 

dramatic increase of the phase velocity in Experiment 3 compared with Experiment 2, in 

which the same high-viscosity fluid is contained in either a flat fracture (Experiment 2, 

lower velocity) or a saw-tooth fracture (Experiment 3, higher velocity). Our observation 
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indicates that the fracture geometry is an important factor that should be considered when 

we interpret the Krauklis wave or long-period (LP) events data. 

2.6 Repeatability  

 
Figure 2-12. The photoelastic images of a manually repeated Experiment 1 (flat fracture 
filled with water). The white dashed lines correspond to the areas with the maximum 
stress of the Krauklis wave.  
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To show the repeatability of our experiment, which depends on manually striking a piston, 

the procedure was re-applied to the flat fracture filled with water (Experiment 1). 

Photoelastic images of the Krauklis wave motion on the upper fracture boundary are 

observed in Figure 2-12, and the extracted temporal waveform and the dispersion curve in 

Figure 2-13 demonstrate the experiment repeatability. Due to the difficulty of the 

experiment, multiple repetitions were not deemed worthwhile. 

 

Figure 2-13. (a) The temporal waveform of the Krauklis wave of the repeated 
Experiment 1. The dashed arrow shows the maximum stress field of the Krauklis wave 
of the image sequence. (b) The dispersion curve extracted by high-resolution linear 
Radon transform for the repeated Experiment 1. 

2.7 Discussion  

The phase 𝑉𝑉𝑝𝑝ℎ and group velocities 𝑉𝑉𝑝𝑝ℎ are linked to the frequency (𝑓𝑓) and wavenumber 

(𝑘𝑘) respectively by  

                                                                𝑉𝑉𝑝𝑝ℎ = 𝑓𝑓/𝑘𝑘,                                  (1) 

and                                         
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                                                                𝑉𝑉𝑔𝑔 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑.                                (2) 

Therefore, the phase velocity is linked to the group velocity (e.g., Askari and Ferguson, 

2012) via  

                                                         𝑉𝑉𝑔𝑔 =
𝑉𝑉𝑝𝑝ℎ
2

𝑉𝑉𝑝𝑝ℎ−𝑓𝑓
𝑑𝑑𝑉𝑉𝑝𝑝ℎ
𝑑𝑑𝑑𝑑

.                                   (3) 

Because the phase velocity of the Krauklis wave increases with frequency, 𝑑𝑑𝑉𝑉𝑝𝑝ℎ
𝑑𝑑𝑑𝑑

 > 0, the 

group velocity will be greater than the phase velocity, 𝑉𝑉𝑔𝑔 > 𝑉𝑉𝑝𝑝ℎ.  This “inverse dispersion” 

property of the Krauklis wave is consistent with our results as all the experiments noted a 

higher group velocity than phase velocity for nearly all frequencies; the highest 

frequencies, at which 𝑉𝑉𝑝𝑝ℎ> 𝑉𝑉𝑔𝑔 , are presumably low-enough amplitude that the simple 

calculation of 𝑉𝑉𝑔𝑔 is not sufficiently weighted to them.  

The phase velocity we obtained in Figure 9(a) for the flat fracture filled with inviscid and 

incompressible water can be validated using the width-averaged theoretical model 

(Dunham and Ogden, 2012). The polycarbonate plate is subject to internal pressure from 

the constrained fluid pulse and the coupling effects at the solid-fluid interface cause the 

polycarbonate plate to bend. The wavelength calculated from the dispersion curve in Figure 

9(a) is 25-58 mm, much larger than the plate thickness, allowing us to treat the trilayer 

model with plate theory. Therefore, the shear stress components within the polycarbonate 

layer can be neglected. The governing equation for the dynamic deflection of the plates on 

the two side of the fluid layer (Timoshenko and Woinowsky-Krieger, 1959) 
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                                                          𝑃𝑃 = −(𝐷𝐷1+𝐷𝐷2)𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4

              (4) 

                                                       𝐷𝐷 =  𝐸𝐸ℎ3

12(1−𝜈𝜈2)
                     (5) 

Where ∆𝑃𝑃 is pressure change in the fluid (normal traction on plate walls), D is bending 

stiffness (𝐷𝐷1 for polycarbonate plate and 𝐷𝐷2 for acrylic plate), 𝑤𝑤 is displacement normal to 

plate walls, E is Young’s modulus, h is plate thickness and 𝜈𝜈 is Poisson ratio.  

The mass and moment balance of an incompressible inviscid fluid is 

                                                         𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑤𝑤0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0               (6) 

                                                         𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0                  (7) 

where 𝑤𝑤0 is thickness of fluid layer and ρ is fluid density.  

The complex notation for the fluid velocity is 

                                                      𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔)        (8) 

Combining equations from (4) to (7) results in 

                  𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝑤𝑤0((𝐷𝐷1 + 𝐷𝐷2)
𝜕𝜕6𝑢𝑢
𝜕𝜕𝑥𝑥6

= 0         (8) 

 

And applying the Fourier transform yields the following the dispersion relation 
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                                                                    𝜔𝜔2 = 𝑘𝑘6𝑤𝑤0(𝐷𝐷1+𝐷𝐷2)
𝜌𝜌

              (9) 

Therefore, the phase velocity of the Krauklis wave is 

                                                                    𝑉𝑉𝑝𝑝ℎ = 𝑘𝑘2�𝑤𝑤0(𝐷𝐷1+𝐷𝐷2)
𝜌𝜌

          (10) 

Using an example wavelength of 40 mm at around 700 Hz and reported fluid and solid 

properties in Table 2, the phase velocity calculated 𝑉𝑉𝑝𝑝ℎ= 32.9 m/s. This result is close to 

our estimated phase velocity in Experiment 1 (water in a flat fracture) that is about 28.5 

m/s.   

To summarize our observations, the dispersion properties of the stress fields obtained from 

our experiments are consistent with the characteristics of the Krauklis wave as (i) the 

estimated velocities are lower than the speed of sound in the fracture fluid, (ii) the phase 

velocities increase with increasing frequency, (iii) the group velocities are higher than the 

phase velocity, and (iv) our estimate of the phase velocity in Experiment 1 is consistent 

with the theoretical value. Therefore, we conclude that what we have recorded is the 

Krauklis wave.  

The higher phase and group velocities in Experiment 3 (viscous shampoo in a saw-tooth 

fracture), and the qualitative observation that extremely high strains occurred in an 

experiment using low-viscosity water in the saw-tooth fracture, require additional 

explanation.  One could look more closely at the stress distributions (Figure 6) and 

conclude that the Krauklis wave may, in fact, be scattering at each saw-tooth, effectively 
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as body waves propagating in the acrylic saw-tooth bounding the fracture, only to be re-

excited at the next saw-tooth, and so on. The phenomenon of Krauklis wave excitation by 

passing body waves was presented by Frehner (2014). Therefore, the total travel time is 

significantly reduced due to the presence of the convex saw-tooth allowing the body waves 

propagation. This explains why the saw-tooth fracture, with its large-scale heterogeneity, 

results in the nearly doubled group and phase velocities. 

Although the major advantage of conventional photoelasticity technique is to measure the 

stress, particularly for complex objects (Smith, 1980) as we showed in this study, this 

technique can also be used to study the dispersion properties of the Krauklis wave similarly 

to studies usually applied to experiments using a series of conventional transducers. 

Therefore, such physical models as ours can provide additional information about the state 

of stress of seismic wave within fluid-filled fractures, something difficult to arrange with 

physical transducers, and can yield additional understanding of the physics of the Krauklis 

wave.  

One could further improve our physical model by addressing some of the issues we have 

discovered in the current apparatus.  One problem is how to screw the aluminum plates 

(Figure 2a) evenly, in a controlled manner, so that the screws apply a uniform stress to the 

specimen that warrants the even stiffness throughout the fracture. We should also be able 

to measure the stress from the screws (for example, using a stress/strain gauge) so that the 

data could be studied with respect to the theoretical models (e.g., Nakagawa and Korneev, 

2014). Using a larger lens and polarizers, one could model larger specimens. This would 

allow one to obtain the temporal stress fields at more points, and for a greater distance, 
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along the specimens, and thus a higher-resolution of dispersion curves, particularly at low-

frequencies, could be achieved. In addition, one could use photoelastic materials with 

higher stress-optic coefficients and lower manufactured residual stresses to further improve 

the results. 

2.8 Conclusion  

We demonstrated the possibility of visualizing the propagation of the Krauklis wave using 

the dynamic photoelasticity method. Using a pixel-based framework, we quantitatively 

processed and analysed the dispersion properties (phase and group velocities) of the 

Krauklis wave. Our results for the dispersion properties of the Krauklis waves are 

consistent with those studies conducted using conventional transducers. Therefore, we 

conclude that the dynamic photoelasticity has a potential to be used for more detailed 

quantitative analyses, particularly if further improvements are applied to the setup 

introduced in this study, as discussed previously. 

Using the saw-tooth fracture, we showed the capacity of the photoelasticity method to 

analyze seismic wave propagation for complex geometries. In addition, we note that the 

geometry has a salient effect on the characteristics of the Krauklis wave, as a higher phase 

velocity compared to Experiment 2 and more perturbations in the stress field were 

observed.  
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3 Effect of Geometry and Fluid Viscosity on Dynamics of 
Fluid-Filled Cracks: Insights from Analogue 
Experimental Observations 

3.1 Abstract 

Fluid-filled volumes in geological systems can change the local stress field in the host rock, 

and may induce brittle deformation as well as fracture propagation. Although the 

mechanisms relating fluid pressure perturbations and seismicity have been widely studied, 

the fluid-solid interaction inside the fracture of a host rock is still not well understood. An 

analogue experimental model of fluid intrusion in fractures between planar layers has been 

developed to study stress conditions at the margins and tips. A combined high-speed 

shadowgraph and a photoelasticity imaging system is used to visualize the fluid dynamics 

and induced stresses on the solid matrix. Cavitation, as well as bubble growth and collapse, 

occur along the saw-tooth fracture margins, which produces a highly localized stress 

concentration to initiate new sub-fracture systems. The presence of the bubbles at the 

fracture tip during fluid pressure perturbation can enhance fracture propagation. 

3.2 Plain Language Summary  

Fractures serve as important fluid pathways in the crust, so their characteristics and density 

strongly influence fluid flow. At the same time, fracture properties are also affected by 

fluid flow, as their dimensions and connectivity might change under pressures from fluids. 

Many analytical and experimental studies have been conducted to investigate the effect of 

subsurface flow on fracture dynamics. However, some complexities of fracture geometries 

and fluid properties, in particular when bubbles are present, remain poorly understood. We 
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developed a laboratory analogue experiment using an optical imaging system to visualize 

the induced stresses on a fracture. Fluid cavitation and collapse occurs at the margins of a 

rough fracture boundary are observed. In addition, gas bubbles at fracture tips significantly 

contribute to the fracture opening. Both observations may help explain fracture propagation 

in underground geological systems. 

3.3 Introduction  

    Understating the dynamics of magmatic crack growth is crucial for estimating magma 

transport and eruption precursors. Crack propagation is strongly affected by the stress field 

caused by the external stress and internal pressure (Sahimi, 2003; Watanabe et al., 2002). 

Through analytical, numerical and experimental studies, researchers have evaluated 

various factors that contribute to the dynamics of crack growth in magmatic systems. Such 

factors include fluid buoyancy (Weertman, 1971a, 1971b, 1973), reservoir pressure (Lister 

& Kerr, 1991), magma compressibility (Dahm, 2000), pre-existing cracks (Dahi-Taleghani 

& Olson, 2011; Zhang et al., 2009), fluid viscosity (Heimpel & Olson, 1994), rock 

heterogeneities (Rivalta et al., 2015), layer rigidities (Kavanagh et al., 2006; Maccaferri et 

al., 2010; Rivalta et al., 2005), free surface (Rivalta & Dahm, 2006), density gradient 

(Lister & Kerr, 1991), external stress (Acocella & Tibaldi, 2005; Kervyn et al., 2009; 

Menand et al., 2010; Watanabe et al., 2002), crack–crack interaction (Ito & Martel, 2002; 

Takada, 1994), and crack–fault interaction (Le Corvec et al., 2013).   

     Recently, several works have been published to investigate volatile bubble expansion 

as a major force to drive the magma movement and intrusion (Carey et al., 2012; Chernov 
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et al., 2014; Lyakhovsky et al., 1996; Navon et al., 1998; Nishimura, 2004; Proussevitch 

& Sahagian, 1998). However, such phenomena as fluid cavitation, which can trigger shock 

waves to initiate sub-fractures, is yet to be understood. Cavitation is an important 

phenomenon, which has been extensively studied in the fluid dynamics, e.g., (Brennen, 

2014; Moholkar & Pandit, 1997; Singhal et al., 2002; Zarantonello, 1957; Zwart et al., 

2004) and its damages to pipelines and hydraulic systems has been frequently reported 

(Tijsseling, 1996). Cavitation occurs when the pressure in the fluid phase suddenly drops 

below its vapor pressure forming a vapor bubble. As the pressure on the fluid phase returns 

to the original state, the bubble collapses abruptly and, hence, shock waves are generated. 

When the shock wave reaches the solid surface, it can induce high stress that sometimes 

exceed the material plastic limit and, thus, cause surface damage. Figure 3-1 shows a 

possible process for the generation of cavity bubbles and consequent shock waves during 

dike propagation.  In confined systems like geological fractures or pores, the direction of 

the dike and sill propagation might be deflected or altered due to the localized stress 

concentration stemming from the sudden bubble collapse (Joseph, 1995). 

 
Figure 3-1. Four stages of cavity collapse in a dike. (a) The magma pushes the rock at 
the tip of the dike. (b) Once the rock is opened, a pressure pulse drop is initiated at the 
tip and travels down through the dike. The pressure drop creates small cavity bubbles 
within the dike. (c) The bubbles continue to grow until reaching their maximum sizes, 
and (d) They collapse quickly, and shock waves are created. 
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Another important aspect of fluid-driven fractures in geological systems that might affect 

fracture propagation is the geometry of the fracture and its tip (Desroches et al., 1994; 

Lenoach, 1995). The shape of the fracture tip influences the stress distribution near the tip 

and the size of the plastic zone. Therefore, the fluid pressure near the tip region in a fluid-

filled fracture varies with respect to the geometry of the tip. This is particularly important 

since the stress distribution around the fracture highly depends upon the stress condition at 

the tip, as illustrated in the numerical model of fractures with various geometries, reported 

by Nilson (1988) and Lecampion et al. (2018). The challenges in modeling fluid-filled 

fractures include the computational cost and the complexity of mechanisms affecting 

fracture propagation, which makes their mathematical analyses difficult. 

In this experiment, a laboratory analogue experiment is developed to study stress 

conditions at the margins and tips of two-phase fluid-filled fractures in homogeneous and 

layered media. We show that fracture geometry and its tip contribute to fracture growth, 

and that cavitation develops in a fracture with rough margins. Our apparatus visualizes 

fluid flow and stress distribution on fracture walls simultaneously. Such visualization at 

the fracture tip and solid-fluid boundary during abrupt pressure changes can improve the 

current understanding of the dynamic of fracture propagation. 
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3.4 Method  

3.4.1 Experimental Setup 

 
Figure 3-2. Schematic diagram of the combined high-speed shadowgraph imaging 
system and linear polarizer setup. The specimen is placed between two steel L-shaped 
support brackets that are mounted on an optical table. Ø is the lens diameter and f the 
focal length. σ1 and σ2 are principal stresses of the sample.  

A linear (planar) polariscope is used to visualize the dynamics of the liquid-solid 

interaction in the filled fractures, subject to a pulse pressure wave originated in the liquid 

phase; see Figure 3-2 for more details. The polariscope measures simultaneously the stress 

wave velocity on the fracture wall and visualizes the fluid dynamics. The polariscope can 

be divided into three parts: a collimated light, also known as shadowgraph system; two 

linear light polarizers, and a high-speed camera. The light collimation was achieved using 

a 150W 21V halogen light source, followed by a focusing lens with a focal length of 50.8 

mm and a diameter of 25.4 mm, a pinhole and two collimated lenses of focal lengths of 

273 mm and 127 mm, respectively. Two linear polarizers were used to polarize light in a 

preferred direction, confined to a single plane of oscillation, while all other light oscillation 

directions are absorbed by the polarizer. When a pair of polarizers are set at orthogonal 

angle (90 degrees), no light is transmitted through. Some transparent materials, such as 
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polycarbonate, are photoelastic, meaning that when they are under applied stress, they 

become optically anisotropic (also called birefringent in the literature) and, hence, light is 

polarized along the two principal stress directions of the sample. Phase shift of the light 

rays due to the birefringence is proportional to the applied stress (Tada et al., 2000). If we 

place the photoelastic material between the two orthogonal polarizers, there will be no 

orthogonally polarized light until the material is stressed and, thus, we can qualitatively 

infer the stress level at each point of the sample under load based on the light passing 

through the system. The fringe envelope that we observe from the linear polariscope is the 

superposition of the isochromatic and isoclinic fringes. A high-speed camera capable of 

recording up to 250,000 frames per second (fps) is used to capture the dynamic state of 

stress in the material, induced by a pressure wave in the liquid phase. In this study we chose 

to record at 10,000 fps in order to increase the resolution of the individual frames. The 

high-speed camera was triggered electronically with controlled delay times for taking 

specific image sequences out of the overall fluid motion. 

3.4.2 Analogue Fracture – Trilayer Model  

Table 3-1. Six Experiments to Visualize the Fluid-Filled Fracture Dynamics 

Experiment Fracture model Fluid type 

1 Flat water 

2 Saw-tooth water 

3 Saw-tooth viscous fluid 

4 Flat, single narrow tip water 

5 Flat, double narrow tip water 

6 Flat, triangle tip water 
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The experimental apparatus was used to visualize the solid-fluid interactions along the 

fracture main body and at the fracture tips in the following six trilayer models (Table 3-1. 

Six Experiments to Visualize the Fluid-Filled Fracture Dynamics), each consisting of two 

photoelastic insensitive acrylic plates and one photoelastic sensitive polycarbonate plate, 

as shown in Figure 3-3(a). This trilayer fracture model is developed to analogue the sill 

intrusion where the liquid intrude between parallel geological layers The density of the 

acrylic is 1190 kg/m3, with Vp = 2710 m/s and Vs = 1391 m/s, while that of the 

polycarbonate is 1190 kg/m3, with Vp = 2106 m/s and Vs = 931 m/s. The two acrylic layers 

are 152.4×47.6×1.58 mm in size, whereas the polycarbonate plate has a dimension of 

152.4×47.6×0.79 mm. The reason we adopt a thinner polycarbonate plate is based on the 

stress-optic law (Tada, et al., 2000) stating that thinner photoelastic materials possess 

higher photoelastic sensitivity and, thus, smaller external stress is required to generate 

photoelastic fringes:  

                      𝜎𝜎 =
𝑁𝑁𝑓𝑓𝜎𝜎
ℎ

                              (1) 

where 𝑓𝑓𝜎𝜎 is a constant material fringe, N is the fringe order that depends on relative 

retardation, and ℎ is the specimen’s thickness. 

The three layers are held together by two 5 mm thick aluminum plates and clamped by 

bolts along the plates’ edges (Figure 3-3a). Fractures were machined in the middle acrylic 

layer. The reference fracture has flat boundaries (sides) with semi-cylindrical tips, as 

shown in Figure 3-3(b), which was used to study solid-fluid interaction and stress 

propagation on a smooth fracture surface. The second fracture geometry consists of the 
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same size channel and tips; its boundaries (sides) have, however, a saw-tooth pattern where 

the bottom and height of a triangle is 0.6 and 0.3 cm, respectively, as shown in Figure 

3-3(c). The saw-tooth fracture wall is common in models of fracture morphology that has 

been used to study fracture toughness and fatigue strength (Carpinteri et al., 2019). This 

saw-tooth fracture was used as an analogue to study the effect of an irregular fracture 

surface on the stress propagation.  

 

Figure 3-3. (a) The trilayer model and its schematic side view, which consists of one 
polycarbonate and two acrylic plates, fastened by two aluminum plates. The pressure 
pulse is produced by applying a sudden load to the aluminum piston. (b) Flat fracture 
model in the middle layer used as a reference. (c) Saw-tooth fracture model and enlarged 
details of its geometry. The circles along the edges of plates are the locations for 
clamping bolts. 

Additionally, three types of fracture tips were designed to study the fluid-filled fracture 

dynamics in its plastic zone: single narrow tip, double parallel narrow tips, and a triangular 

tip, as shown in Figure 3-4(a), 3(b), and 3(c), respectively. The three fracture models are 

also made of acrylic in which the dimensions of the main channels are the same as that of 

the reference flat fracture model. The single narrow and triangle tips shown in Figure 3-4(a) 
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and 1(c), were proposed by Pelloux (1970) and Bowles and Schijve (1983) to study the 

effect of fatigue in fractures grown for different fracture tip geometries. The double narrow 

tips in Figure 3-4(b) were analyzed to study bifurcation performance of a complex fracture 

network in hydraulic fracturing, based on the fractal geometry (Zhou et al., 2017). The 

analogue fracture model was filled with distilled water. An experimental test was initiated 

by striking the aluminum piston held by a bronze tube, located at one end of the fracture in 

Figure 3-4(a). The impulse on the piston triggers a pressure wave in the liquid phase. The 

pressure pulse propagates through the confined liquid in the fracture and reflects back and 

forth until it dissipates. 

 

Figure 3-4. The fracture models used to study the fluid-filled fracture dynamics in the 
plastic zone. (a) Single narrow tip with 1 cm length and 2 mm width. (b) Double narrow 
tips with 1 cm length and 2 mm width each.  (c) Triangle tip with 1 cm side length. In 
fracture propagation linear elasticity is valid far from the tip, it breaks down near the tip, 
where one has a highly nonlinear plastic zone. 

3.5 Experimental Results 

We utilize the reference fracture to investigate how the liquid pressure wave is transferred 

to the solid walls of the fracture. The stress wave on the fracture walls manifests itself as 

bright patterns, also known as photoelastic fringes, traveling from one end of the fracture 
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to the other along the solid-fluid interface (Figure 3-5). Due to the limited stress transferred 

from the stress wave to the polycarbonate plate, the fringe pattern does not manifest a 

number of well separated fringes. The velocity of the overall envelope of the stress wave’s 

amplitude (group velocity), measured based on the location of peak pixel intensity of the 

photoelastic fringes, was 33.95m/s. Such wave speed in fluid-driven fractures are 

commonly observed during hydraulic fracturing and in volcanic tremors known as crack 

waves (Aki et al., 1977; Chouet, 1986; Lipovsky & Dunham, 2015). 

 
Figure 3-5. The photoelastic image of the reference smooth flat fracture used to show the 
solid-fluid interaction due to the input pressure pulse on the liquid phase under no surface 
irregularities. The bright dashed line trend represents direction of the stress wave 
propagation, which is the result of the photoelastic effect on the polycarbonate layer. The 
bright patterns near the crack tip are due to the residual stress, caused by clamping bolts. 
The color bar shows the pixel intensity value of the images. Stressed area is in white and 
unstress is in black.  
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In contrast to the idealized smooth fracture surface, experiments considering a fracture with 

saw-tooth surface representative of fracture surface roughness were conducted. the most 

striking difference between the smooth and saw- tooth fracture models is the appearance 

of cavitation in the latter (Figure 3-6). We repeated this experiment three times, each of 

which produced the cavitation phenomenon. Figure 3-6(h) shows how the pixel values 

variation at a location in the saw-tooth fracture indicates by the arrow in Figure 3-6 during 

the cavitation process. The pixel values are qualitatively related to the stress, as a higher 

pixel value implies greater stress. We observed that before the bubble initiation, there was 

no photoelastic fringes, meaning no wave-induced stress on the saw-tooth. The images in 

Figure 3-6 were acquired after the crack wave had decayed so that by 0 ms at T0 the crack 

wave-induced strain had diminished.  Therefore, the pressure on the liquid decreased and 

the small-scale bubbles began to expand, photoelastic fringes appeared at the fracture 

surface. This implies that the fracture surface is subjected to an intense increase in the 

tensile stress due to the bubble expansion from 0 to around 1.9 ms. The emergence of 

cavitation might be due to the shape of the solid-liquid interface and can induce surface 

self-degradation. The initiation of cavitation bubbles within liquid requires the presence of 

nuclei that in our system can stem from dissolved gases. As the pressure wave in the liquid 

phase advances, it reaches a peak value and, then, starts to decrease. As the pressure 

decreases below a certain threshold, the microscopic air bubble due to the dissolved gases 

expand and bubbles emerge. Then, as the pressure in the liquid increases again, the bubbles 

collapse violently from around 17.5 to 18 ms, which initiates local shock waves. At the 

emergence of the bubbles, the stress at the fracture surface increases reaching a maximum. 

This intense stress increase due to cavitation at saw-tooth fracture surface did not develop 



53 

at the smooth fracture’s wall. The valley of the saw-tooth seems to be of importance to the 

bubble growth, enhancing the formation of large bubbles and generating a state of stress 

on the fracture wall. During the bubble collapse, on the other hand, the pressure in the fluid 

recovers and the associated tensile stress on the fracture surface disappears after 18 ms. 

 
Figure 3-6. Image sequence of the bubbles expansion and collapse for the saw-tooth 
fracture model. (a) Before the bubble initiation, there is no stress on the saw-tooth. (b-f) 
As the pressure on the liquid decreases, the small-scale bubbles expand and photoelastic 
fringes (bright patterns) appear on the fracture surface, implying that the fracture surface 
is subjected to a tensile stress due to the bubble expansion. (g) The photoelastic fringes 
and the associated stress on the fracture surface disappear after the pressure in the fluid 
recovered. (h) The tracked pixel brightness intensity at the saw-tooth location indicated 
by white arrow in (a-g). This cavitation phenomenon was not observed in the reference 
fracture in Figure 3-5. 
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To investigate the effect of viscosity on cavitation, we used transparent viscous shampoo 

as the crack fluid in the saw-tooth fracture.  Note that the shampoo viscosity is 103-104  

higher than water viscosity (1 mPa⋅s) at room according to AlQuadeib et al (2018). Galland 

et al. (2006) conducted an analogue experiment to study the low-viscosity basaltic magma 

intrusion in crust using vegetable oil whose dynamic viscosity is around 20 mPa⋅s. While 

most highly mobile magma should have a viscosity ranging from 4×10-6 to 75,000 mPa⋅s 

(Galland et al., 2006). Figure 3-7 shows the stress wave traveling along the saw tooth 

fracture filled with shampoo. The stress wave velocity measured in Figure 3-7 is 28.3 m/s 

which is slightly smaller compared to the wave velocity 33.95m/s in Figure 3-6 due to the 

viscous effect. No cavitation is observed because the increase of viscosity enhances the 

intermolecular forces within the fluid and thus prevent the cavitation (Vernès et al., 2020).  
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Figure 3-7. The photoelastic images of the stress wave propagation in the saw-tooth 
fracture filled with shampoo. The bright dashed line trend represents direction of the 
stress wave propagation as in Figure 3-5. Cavitation phenomenon is not observed in this 
shampoo filled fracture.  
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Apart from the expansion and collapse of the bubbles due to the cavitation phenomenon 

that is likely to produce sub-fractures along solid boundaries, the bubbles can enhance the 

opening and propagation of fractures through other mechanisms acting at the crack tip. The 

pressure distribution at the tip of a fracture is a key factor for controlling fracture 

propagation. For example, in some deep geothermal systems, it is widely accepted that the 

fracture tip is occupied by magmatic volatiles (Garagash & Detournay, 2000; Rubin, 1993). 

The typical analytical methods to compute the stress field surrounding the fracture tip are 

based on solving a system of coupled equations for the elastic deformation of the host rock 

and the viscous fluid flow within the fracture. However, the behavior of the fracture tip is 

much more complex due to its geometry (Paskin et al., 1985; Zhou et al., 2017).  
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Figure 3-8. The image sequences the process of bubbles emergence at the fracture tip. 
These narrow fracture tips were purposely not filled with water to mimic trapped 
bubbles. The pressure wave in the fluid phase forces the bubble to intrude into the tip, 
forcing a delamination of the layers of the trilayer model. 

In order to investigate and visualize the fracturing behavior at the tips for complex 

geometries when the bubbles are present, the three aforementioned fracture models were 

used, shown in Figure 3-4(a-c). The tips were purposely not completely filled with water 

in order to mimic the trapped gas. When the pressure pulse travels through the liquid phase, 

it compresses and pushes the trapped bubbles forward into the tips. As the bubble pressure 

increases, the stress on the tip also increases and causes a deformation that resembles a 

fracture opening and the propagation scenario shown in Figure 3-8. For the single narrow 

tip in Figure 3-8(a-d), the pressure wave in the fluid phase forces the bubble to intrude into 

the tip that creates delamination of the layers of the trilayers model (Figure 3-8c, d). This 

process is dominated by a wedge-like delamination where the largest opening happens at 
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the gas-fluid interface (Figure 3-8c). As the liquid pressure keeps pushing and compressing 

the bubble, the delamination keeps moving forward together with the bubble, leaving 

behind some smaller bubbles trapped in between the delaminated layers. This is 

particularly important because if solid particles were present, they could become trapped 

between the layers, effectively forcing fracture expansion and propagation. The double 

narrow fracture tip case shown in Figure 3-8(e-h) shows similar dynamics as the single 

narrow tip, except that the extent of delamination and, therefore, tip expansion and 

propagation are significantly enhanced, as indicated by the large lateral opening trailing 

behind the intruded fluid in Figure 3-8(g).  

In the model with the triangular tip, on the other hand, the delamination effect due to the 

bubble being compressed and pushed by the liquid interface is the least severe of the three 

cases. This is shown in Figure 3-8(i-l). We attribute this to two factors related to the 

bubbles. First, the size of the bubble is smaller than in the previous cases, which leads to a 

lower compressed volume and smaller stress on the tip bubble-solid interface. Second, the 

triangular shape induces a gradual compression of the bubble as the menisci moves 

forward, as compared with the piston-like compression of the previous two cases, resulting 

in a maximum compression when the bubble is reduced to the very end of the tip. This 

gradual compression is then followed by burst of the bubble through the delaminated 

layers, as seen in Figure 3-8(k) and Figure 3-8(l). It is important to note that if the bubbles 

had not been there, the delamination of the trilayer model representing a fracture opening 

and propagation would not have happened. The gas compression provides the necessary 

stress concentration to initiate this process. 
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3.6 Discussion  

Here, we present the effects of the geometry of fracture wall (i.e., roughness) and tip on 

the fracture mechanics of fluid-filled fractures using analogue models. We observed that 

in a fracture with a rough interface, bubble cavitation occurs when a transient stress passes 

through, and collapses after an analogue injection. The cavitation yields an extra intense 

tensile stress on the fracture wall. Because shock waves are commonly generated during 

bubble collapse within a very short time (in the 10-6 second time scale), they can potentially 

provide sufficient energy to create new sub-fractures (Supponen et al., 2017). Thus, we 

conclude that not only the state of the stress within the fracture, but also fracture roughness 

contribute to fracture opening and delamination. The restrictions for capturing the shock 

waves include the limited number of frames per second (10000 fps in our experiment) 

captured by the digital camera, and light source. In other words, a more capable digital 

camera and a stronger light source (laser) that could allow enough light crossing through 

the sample would be needed for a better resolution of the shock wave. 

The fracture in the trilayer model is machined in the brittle acrylic plate which is an 

isotropic and linear elastic material for which typically linear elastic fracture mechanics 

(LEFM) is valid except in the small area in vicinity of the crack tip (plastic zone). However, 

the plastic zone size at the tip can be estimated approximately as (Irwin, 1968): 

                      𝑅𝑅 = �
1

2𝜋𝜋�
�
𝐾𝐾𝐼𝐼𝐼𝐼
𝜎𝜎𝑦𝑦𝑦𝑦

�
2

                          (2)       
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where the typical critical stress intensity factor 𝐾𝐾𝐼𝐼𝐼𝐼  and yield stress 𝜎𝜎𝑦𝑦𝑦𝑦 of acrylic is 1.5 

MPa·m0.5 (Efimov & Sher, 2001) and 64.8 MPa respectively and R is the radial distance 

ahead of the crack tip. 

From equation 2, the plastic zone radius is 0.08 mm which is much smaller compared to 

the size of the fracture in our case exhibiting the small-scale yielding at the crack tip, 

therefore LEFM is still applicable if no bubble effect occurs at the crack tip as shown in 

Figure 3-4. This plastic zone relieves high stress from the fracturing fluid which results in 

the difficulty in fracturing. 

Compared to the fracture length, the polycarbonate used in our experiment were thin, 

implying the plane stress condition. The typical critical stress intensity factor KIc and yield 

stress σys of polycarbonate is 2.24 MPa·m0.5 and 68 MPa, respectively (Williams, 1977). 

According to Brown and Srawley (1966), the critical thickness Tc of polycarbonate plate 

for plane stress is given by: 

                 Tc ≤ 2.5�
KIc

σys
�
2

                       (3) 

Thus, a thickness less than 3 mm is considered as plane-stress condition. This explains the 

discrepancy between our measured crack wave group velocity of 33.95 m/s and the 

theoretical velocity using the formulation of Lipovsky and Dunham (2015), who assumed 

an idealized plane-strain condition. In addition, the presence of the free surface can partly 

account for a lower perturbation of the group velocity. Korneev et al. (2014) derived a 

formula for the velocity of the crack waves from which a velocity of crack wave 
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propagating within such a fluid-filled trilayer is lower than that in the plane-strain 

condition.  

Note that the entire clamped trilayer model may be regarded as real fractures in nature of 

low conductivity or closed fractures. The reopening of the closed fracture is by the process 

of delamination of the tight layers, due to the pressure wave and the presence of bubble at 

the fracture tip.  

3.7 Conclusion  

An analogue experimental setup combining two distinct optical techniques, shadowgraphy 

and photoelasticity, were used to visualize the fluid-solid interaction inside fractures with 

different types of fracture surfaces and tips. Among the most important and striking finding 

was the occurrence of cavitation when the fracture surface wall has a saw-tooth shape. This 

phenomenon can be an important mechanism that leads to the fracture surface degradation 

and growth. The two main causes for the fracture surface degradation and growth are, first, 

the expansion of the bubbles that causes the tensile stress on the fracture wall to increase 

and, second, the collapse of the bubble generates a shock wave, which was not observed in 

our experiment because, generally, shock wave occur very fast and, thus, it is impossible 

to capture using the current setup. We also note that higher fluid viscosity prevents the 

formation of cavity bubbles. These findings could be used to explain the possibility of 

cavitation during the magma propagation. If magma has considerable dissolved gases, i.e., 

lower viscosity, it is more susceptible to generate cavity bubbles. On the other hand, for 
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magma with a limited amount of dissolved gases, i.e., higher viscosity, cavitation will be 

unlikely. 

While we have focused on magmatic systems, the results are also applicable to other fluid-

filled crack systems. The fluid injection in hydraulic fracturing and wastewater disposal or 

fluid intrusion in natural geothermal systems could also form bubbles that consequently 

open fractures. The bubbles that can be formed could consequently move to fracture tips 

and lead to the formation of new fractures. The same analogue experimental setup was 

used to study the effects of bubbles at the fracture tip using various tip geometries. The 

pressure wave in the liquid phase compresses and pushes forward the trapped bubbles into 

the tips. The tensile stress induced by the bubbles at the fracture tip increase as the bubble 

pressure increases. The rate of strain energy release at the fracture tip increases 

significantly due to the presence of bubbles, which induce tensile stress. The energy 

produced by the bubbles overcomes the resistance of the trilayer that results in its 

delamination, which resembles a fracture opening and propagation. The effect of the 

bubble effect on the fluid-filled fractures plays an important role in fracture propagation, 

which should be incorporated in theoretical models to supplement the linear elastic fracture 

mechanics in the studies of fracture behavior. 
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4 Laboratory Measurements of the Impact of Fracture 
and Fluid Properties on the Propagation of Krauklis 
Waves 

 

4.1 Abstract 

Krauklis waves are commonly observed in fluid filled fractures and are considered to be a 

tool to study the physical properties of fractures due to their strong dispersion and resonant 

vibration natures. By analyzing the resonant frequency and quality factor of the seismic 

signals, the fracture dimension and fluid properties can be estimated. However, the 

accuracy of those estimations is highly depended on the many factors which have not been 

well studied. In this paper, we conducted laboratory experiments using a piezoelectric 

source (dominant frequency 1000 Hz) and miniature pressure transducers to investigate 

Krauklis wave propagation inside an a trilayer model that consists of two aluminum plates 

and a fluid layer in middle. We vary the fracture thickness from 1.5, 2.5, 4.5, and 8.5 mm 

for fracture with length of 30.38 mm to mimic the fracture opening process in different 

stages. In addition, we extend the fracture of two parallel plates to more complex and 

realistic fracture by modifying the fracture stiffness, saturated fluid and fracture geometry 

and fracture surface roughness. We observed that the phase velocity, resonant frequencies 

and quality factors: (1) increase with the increase of the fracture thickness; (2) decrease 

with the increase of the fluid viscosity; (3) decrease with the increase of mechanical 

compliance. In addition, an increase in the roughness of fracture surface and a change from 
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a rectangular to wedge shaped fracture both result in decreased phase velocity and resonant 

frequencies.  

4.2 Introduction  

Most of the seismicity worldwide stems from the brittle failure of rock due to tectonic 

forces. However other types of seismicity are also common in environments such as 

glaciers, geothermal systems, and active volcanoes. While brittle failure earthquakes occur 

in these areas, pressure changes in fluid-filled cavities can produce other types of signals. 

At volcanoes, where they have been studied extensively, we can consider two of these 

seismic sources: long-period (LP) events and tremor signals (Chouet & Matoza, 2013). LP 

events and tremor are generally attributed to oscillations of fluid-filled cavities (Chouet, 

1986, 1988). LP seismicity can dominate during fluid transport, and therefore, it serves as 

an important eruption precursor.  

Most interpretations of LP events have employed a model of oscillations in a fluid-filled 

crack based on Chouet’s seminal work (1986; 1988). He demonstrated numerically that a 

pressure disturbance on the crack initiates a slow dispersive wave called the crack wave 

that propagates slower than the acoustic velocity of the fluid within the crack. Because the 

theory of the crack wave was first introduced by Krauklis in 1962, the crack wave is also 

called the “Krauklis wave” in the literature (Korneev, 2008). As a consequence of the low 

speed of the Krauklis wave, the frequency characteristics of LP events are explained by 

resonance without the need for an unrealistically large magma reservoir (Ferrazzini & Aki, 

1987).  The Krauklis waves represent a gradual amplitude decay in the wave train 
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(Kumagai & Chouet, 1999, 2000, 2001; Lipovsky & Dunham, 2015). The physical origin 

of such amplitude decay lies in two mechanisms of attenuation: intrinsic absorption due to 

the fluid viscosity and seismic radiation (Aki, 1984). The quality factor Q describes the 

acoustic damping of the resonator system, which can be measured from the width of a 

spectra peak (Tary et al., 2014).  

Following Chouet (1996 and 1998), many researchers have been focused on the analytical 

developments of the Krauklis wave. For instance, Korneev (2008) derived the phase 

velocity of the Krauklis wave for a crack model with inviscid fluid bounded between two 

half-spaces (thick fracture wall model), 𝑐𝑐𝐼𝐼,  

                                       𝑐𝑐𝐼𝐼(𝑓𝑓) = (𝜔𝜔𝑑𝑑𝑑𝑑
𝜌𝜌𝑓𝑓

(1 − (𝛽𝛽
𝛼𝛼

)2))
1
3,                                                              (1)                   

where 𝛽𝛽 is the shear wave velocity in the matrix, 𝛼𝛼 P-wave velocity in the matrix, 𝜇𝜇 matrix 

rigidity, 𝑑𝑑  crack thickness, 𝜌𝜌𝑓𝑓  fluid density, and 𝜔𝜔  the angular frequency. He also 

investigated the effects of viscosity on the Krauklis wave velocity and showed that the 

phase velocity decreases with the increase of the viscosity. Korneev et al. (2014) 

analytically obtained the phase velocity, 𝑐𝑐𝐹𝐹, for trilayer crack models  

                                                 𝑐𝑐𝐹𝐹(𝑓𝑓) = (1
6
)
1
6�𝜔𝜔𝜔𝜔𝑐𝑐𝐼𝐼(𝑓𝑓)                                                              (2)                                                           

where 𝐻𝐻 is the thickness of the fracture wall. 

In addition to the analytical developments, extensive research has been conducted to 

understand the effects of the crack and fluid properties on the characteristics of the Krauklis 
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waves. Through such understanding, by analyzing the Krauklis waves, we might obtain 

valuable information about the crack and the fluid involved (e.g., crack size or fluid type). 

Chouet (1986) introduced two dimensionless parameters that are called the crack stiffness 

(𝐶𝐶𝐶𝐶) and viscous damping (𝑉𝑉𝑉𝑉) given by 

                                                         𝐶𝐶𝐶𝐶 = 𝑏𝑏
𝜇𝜇
𝐿𝐿
𝑑𝑑
                                                                    (3) 

                                                       𝑉𝑉𝑉𝑉 = 12𝜂𝜂𝜂𝜂
𝜌𝜌𝑓𝑓𝑑𝑑2𝛼𝛼

                                                                 (4) 

where 𝑏𝑏 is the fluid bulk modulus, 𝐿𝐿 crack length, and 𝜂𝜂 fluid viscosity. The crack stiffness 

and viscous damping respectively characterize the dynamic response of the crack and 

attenuation due to the fluid viscosity. Chouet (1988) shows that for a crack with high 

stiffness, the resonant frequencies of the crack wave shift toward low frequencies whereas 

for a low stiffness crack, the resonant frequencies become higher. In addition, Chouet 

(1988) shows how fluid viscosity yields the attenuation of higher frequencies.  

Nakagawa & Korneev (2014) investigated the phase velocity of the Krauklis wave when 

the clamping force between two plates is not infinite, which called the compliant crack 

model. They theoretically showed that the phase velocity increases when the clamping 

becomes stronger. Nakagawa et al. (2015) presented a glass-made trilayer experiment to 

investigate the propagation of Krauklis waves in the frequency range of 0 to 1000 Hz. In 

their experiment, Nakagawa et al. (2015) observed the effect of the fracture compliance, 

which was due to the unexpected damage of the gasket seal between the plates contact, on 

the Krauklis waves.  
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We note that there has been a great interest to understand the effect of various fluid and 

crack properties of the characteristics of the Krauklis waves. In this experimental study, 

we investigated the effects of important factors on the dissipative and dispersive 

characteristics of the Krauklis wave, including crack stiffness, viscous damping, 

compliance, and geometry. Although some parameters such as crack stiffness, viscous 

damping and compliance or have been analytically or numerically investigated in previous 

studies, no comprehensive experimental study has been conducted to test those parameters. 

In addition, compared to the experimental study of Nakagawa et al. (2015), we investigate 

the effect of fracture compliance in a controlled condition by embedding different numbers 

of conical compression springs between the two fracture planes. Besides, to the best of our 

knowledge, no previous work has been conducted yet on the effect of the geometry.  

4.3 Method  

4.3.1 Experimental Setup 

Our trilayer model was composed of two aluminum plates each of which has a dimension 

of 30.18 cm × 7.62 cm × 1.27 cm. The upper plate was used to position a source and 

pressure transducer. Since we had just two pressure transducers, the experiment was 

repeated multiple times with one pressure transducer was moved along the crack to a new 

location each time (the red box in Fig. 1a). The remaining holes were plugged. The other 

transducer was placed at the end of the plate to assess the data quality. To emulate a crack 

model, the two plates were set parallel to each other; washers with specified thickness were 

positioned between them to create a gap; and then, the plates were clamped together (Fig. 

1b). We confirmed that the gap (crack thickness) is almost equal to the washers’ 
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thicknesses after clamping the plates. The physical properties of the aluminum plate are 

shown in Table 4-1.  

Table 4-1. Physical properties of the aluminum plate. 

Thickness (H) Width (w) Length (L) Shear modulus (𝝁𝝁) Vp  (𝜶𝜶) Vs (𝜷𝜷) 

12.7 cm 7.62 cm 30.48 cm 24 GPa 5587 m/s 2670 m/s 

The source was a MULTICOMP piezoelectric element with a resonant frequency of 4.2 

kHz that was affixed to a circular brass diagram and positioned on the edge of the crack 

(indicate by the red arrow in Figure 4-1a). The receiver transducer was positioned along 

the length of the crack in the plugs to record the Krauklis wave (Figure 4-1c). The receiver 

is a PCB Model 113B21 dynamic pressure transducer that has a low-frequency response 

of 0.5 Hz, the sensitivity of 100mV/kPa, and a resonant frequency of 500 kHz. To saturate 

the crack model, the entire apparatus was placed in a tank of fluid (e.g., water or oil, Figure 

4-2). The water tank is placed on a soft foam to avoid environmental vibration noise. 

 
Figure 4-1. Trilayer aluminum model. (a) A and B upper and lower plates respectively. 
The red box indicates the receiver locations respectively. (b) Trilayer from the cross. The 
crack model is created by placing washers between the two plates. 
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Figure 4-2. Schematic diagram of the data acquisition system. A pressure pulse from 
source is transmitted to the crack through the conduit on the left side of the model.  The 
receiver acquires data and moves along the plate to obtain the seismic array. 

 

 
Figure 4-3. The source waveform and its amplitude spectra. The single sin-modulated 
input pulse of a 1000Hz dominant frequency is measured from the source by attaching 
the receiver to the source. 
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4.3.2 Processing  

We applied different transformations to our data to characterize the Krauklis wave. First, 

for a given receiver location, we repeated data acquisition 25 times. Thereafter, the 

generated 25 traces were stacked to suppress any random or incoherent noise. Once we 

acquired data at different locations over the trilayer model, we estimated the phase velocity 

of the Krauklis waves. To obtain the phase velocity of the Krauklis wave, we utilized the 

high-resolution linear Radon transform (HRLRT), which is advantageous over the 

conventional transformations such as the phase shift method (Park et al., 1998) as it 

provides a higher resolution of dispersion curve images particularly when there is a limited 

number of traces (Trad et al., 2003). This method has been used in surface wave studies to 

obtain the phase velocities of Rayleigh and Love waves (Jeng et al., 2020). 

In addition, we calculated the amplitude spectra of the signals at each receiver location, 

normalized them, and put them together to obtain a 2D amplitude spectra map as a function 

of distance from the source (see Figure 4-10 as an example). Using this 2D map, not only 

can we identify resonance frequencies more easily, but also, we can investigate the 

dependency of resonance frequencies on location. 

We applied the Sompi method to our Krauklis wave data. The Sompi method is a high-

resolution spectral analysis method based on a homogeneous autoregressive (AR) 

equation. The complex frequencies are defined as 𝑓𝑓 + 𝑖𝑖𝑖𝑖 where 𝑖𝑖 = √−1 and 𝑔𝑔 are linked 

to the quality factor by 𝑄𝑄 = −𝑓𝑓/(2𝑔𝑔). Therefore, the outputs of the Sompi method are the 

frequencies and quality factors of the Krauklis waves. This method has been widely used 



76 

to analyse LP events from a volcano and hydraulic fracturing data (Kumagai & Chouet, 

2000; Lesage et al., 2002; Nakano et al., 1998; Tary et al., 2014).  

4.3.3 Boundary Conditions  

The Krauklis waves propagating along the model are both reflected and transmitted at the 

sides of the crack which are exposed to the fluid in the bath. Considering the relatively low 

frequencies (<~5 kHz) of the waves used in the experiment, the longest wavelength in the 

bulk fluid (oil or water), which is ~0.3 m for 5 kHz in water, is approximately the maximum 

dimension of the trilayer model (30.18 cm). Because the distance between the free surface 

of the fluid bath and the crack model is much smaller than 0.3m, the boundary condition 

along the sides can be approximated by an open-end (wave-induced pressure is zero). In 

contrast, within the crack model, the wavelengths are much shorter because of the small 

phase velocities of Krauklis waves, which allows us to generate finite-amplitude waves 

using a pressure source near the edge of the model. The wavelengths in our experiment are 

much larger than the crack width.  

4.4 Experimental Results  

4.4.1 Crack Stiffness (Thickness) 

4.4.1.1 Phase velocity  

To investigate the effect of the crack stiffness on the Krauklis wave, we consider four 

thicknesses of 1.5 mm, 2.5 mm, 4.5 mm, and 8.5 mm. If we assume the aluminum rigidity 

(μ) 26 GPa, these thicknesses respectively yield crack stiffnesses of 𝐶𝐶 =17, 10, 6, and 3. 

The waveforms of the Krauklis waves are shown in Figure 4-4. One important observation 
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of the waveforms is the dependency of the amplitudes of the Krauklis waves to the receiver 

location as we note in some offsets, for example, geophone numbers 5 and 11 in Figure 

4-4(a), the amplitudes are very weak. This can be due to the destructive interferences of 

direct and reflected Krauklis waves. The Krauklis waves are highly dispersive because the 

waves propagate in the elastic hydraulic fracture walls serving as the waveguide (Ferrazzini 

& Aki, 1987; Krauklis, 1962; Paillet & White, 1982). Therefore, we calculate the 

dispersion curves of the frequency-dependent wave velocity of the Krauklis wave using 

the HRLRT method in Figure 4-5, in which the solid curves correspond to the theoretical 

phase velocity of the Krauklis wave obtained from Equation 4. We note that our estimated 

phase velocities agree with the theoretical model. To compare the phase velocities, the 

picked phase velocities from the dispersion curves in Figure 4-5 are shown in Figure 4-6 

from which we note that the phase velocity increases with decreasing crack stiffness 

(increasing crack thickness).  
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Figure 4-4. a-d the waveforms for the thicknesses of 1.5, 2.5, 4.5 and 8.5 mm, 
corresponding to crack stiffnesses of 17, 10, 6, and 3 respectively. For each of the 
fracture models, the first three modes of resonant frequencies can be identified and 
indicated by the red number. The red arrow follows the propagation direction and is not 
intended to track any specific arrival. 
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Figure 4-5. The phase velocity of the waveforms in Figure 4-4 for the crack thickness of 
(a) 1.5, (b) 2.5, (c) 4.5, and (d) 8.5mm. The white-cross markers are the picked values 
and the black dashed curve are theoretical fittings. 

 

 
Figure 4-6. The overlay plot of the picked dispersion curves for different fracture 
thickness in Figure 4-5. 
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4.4.1.2 Resonant frequencies 

The resonance is another important property of the Krauklis waves resulted from the 

constructive interferences of counterpropagating waves along the fracture conduit 

(Frehner, 2014; Korneev, 2008; Liang et al., 2017; Lipovsky & Dunham, 2015). The finite 

length of the crack in our experiment allows investigating the effect of crack stiffness on 

the resonant frequencies. Nondispersive waves have resonance frequencies of  fn = nf1, 

while the resonance frequency spacing between successive modes of Krauklis waves is a 

non-integer multiple of the fundamental (n=1) mode. This characteristic could be used to 

verify if some observed resonances are indeed associated with fluid-filled cracks (Gräff et 

al., 2019; Lipovsky & Dunham, 2015).  Consider the rigid fracture with the finite length of 

L, resonance behavior requires the wavelength λ satisfy: 

𝐿𝐿 =
𝑛𝑛𝑛𝑛
2

, (𝑛𝑛 = 1,2,3 … )                      (5) 

𝑓𝑓 =
𝑛𝑛𝑐𝑐𝐹𝐹(𝑓𝑓)

2𝐿𝐿
                                         (6) 

Where cF(f) is the Krauklis wave phase velocity in Equation 2. Therefore, the resonance 

frequency estimated is  

𝑓𝑓 =
1
2
𝜋𝜋2(

𝑛𝑛
𝐿𝐿

)3�
𝐻𝐻3𝑑𝑑𝑑𝑑(1 − (𝛽𝛽𝛼𝛼)2)

6𝜌𝜌
, (𝑛𝑛 = 1,2,3 … )                        (7) 
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and the theoretical resonant frequencies obtained from Equation 7 is shown in Table 4-2. 

We observed that in Table 4-2 the frequency of the first mode in each experiment is less 

than 50 Hz and the second mode is below 400Hz. 

Table 4-2. Theoretical resonance frequencies estimated from cracks with different 
thicknesses. 

Crack thickness (mm) F1(Hz) F2 (Hz) F3 (Hz) F4 (Hz) F5 (Hz) 

𝑑𝑑1=1.5 17 134 452 1073 2096 

𝑑𝑑2=2.5 21 173 584 1385 2705 

𝑑𝑑3=4.5 29 232 784 1858 3630 

𝑑𝑑4=8.5 40 319 1077 2554 4989 

 

In our experiments, we applied the fast Fourier transform to the signals recorded at all the 

15 receivers in each of the experiments; and the 2D map of the amplitude spectra and the 

average amplitude spectra of all the 15 traces are shown on top of each panel in Figure 4-7. 

The first three observed frequencies of the Krauklis waves for different stiffnesses are 

presented in Table 4-3. We observe that by decreasing the crack stiffness (i.e., increasing 

thickness), the resonance frequencies shift to higher frequencies.   
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Figure 4-7. The normalized amplitude spectra of the waveforms in Figure 4-4 for the 
crack thickness of (a) 1.5, (b) 2.5, (c) 4.5, and (d) 8.5mm. The top plot shows the mean 
spectra of all 15 traces. The mode numbers are indicated at peak resonant frequencies. 
(d) The high amplitude marked by the red circle represents the antinode pressure. Higher 
mode resonance shows more antinodes.  
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However, we note that the theoretical first mode F1 in Table 4-2 are not observed in the 

experimentally measured resonant frequencies in Table 4-3. This is due to the natural 

limitation of our finite length fracture that works poorly in low-frequency band because the 

fracture cannot accommodate the long wavelength of the lower modes. In addition, the 

source does not produce strong low frequency bandwidth to support the excitation of low 

frequencies. For the fracture of thickness 4.5mm, we calculated the frequency-wavelength 

relation (Figure 4-8) based on the experimental dispersion curved extracted from Figure 

4-5 (c). With respect to equation 3, the wavelength of the first mode is 𝜆𝜆1=2L=0.604 m 

where its corresponding frequency estimated from Figure 4-8 is 30 Hz that is very close to 

the theoretical values 29 Hz  in Table 4-2. Therefore, the first observed peaked frequencies 

measured in our experiments in Figure 4-7 are the second modes.  

Table 4-3. Experimental Resonance frequencies from cracks with different 
thickness. 

Crack thickness (mm) f1(Hz) f2(Hz) f3 (Hz) f4(Hz) f5(Hz) 

𝑑𝑑1=1.5     ‒ 475 1200 2225     ‒ 

𝑑𝑑2=2.5     ‒ 575 1250 2250     ‒ 

𝑑𝑑3=4.5     ‒ 725 1525 2775     ‒ 

𝑑𝑑4=8.5     ‒ 875 1800 3350     ‒ 



84 

 
Figure 4-8. The frequency-wavelength relation calculated from the dispersion curve in 
Figure 4-5 (c) for the crack of 4.5mm thickness. The red circles indicate the first three 
modes with frequency and corresponding wavelength in parentheses. The first two 
modes are not observed in the 2D resonance map in Figure 4-7.  

 

In addition, we calculated the resonant frequency ratio between different crack thicknesses 

to avoid parameter errors for both the experimental theoretical frequencies in Table 4-4 to 

analyze the discrepancy. We observe that the frequency ratios between the experimental 

and theoretical frequencies are stable at different crack thicknesses with an average error 

discrepancy around 0.1. These discrepancies might be caused by the fracture compliance 

variations in fractures with different thickness.  

Table 4-4. Experimental and theoretical resonance frequencies ratio from cracks 
with different thickness. 

Frequency ratio Experimental frequency ratio Theoretical frequency ratio 

𝑓𝑓(𝑑𝑑2)/𝑓𝑓(𝑑𝑑1) 1.21 1.04 1.01 1.29 1.29 1.29 

𝑓𝑓(𝑑𝑑3)/𝑓𝑓(𝑑𝑑2) 1.26 1.22 1.23 1.34 1.34 1.34 

𝑓𝑓(𝑑𝑑4)/𝑓𝑓(𝑑𝑑3) 1.21 1.18 1.20 1.37 1.37 1.37 
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4.4.1.3 Quality factor  
The Sompi analysis was applied to the middle traces (8th receiver location) in Figure 4-9 

of four crack models in the form of frequency-growth rate on the (f-g) diagrams (Figure 

4-10). In Figure 4-10, the dense clusters correspond to the resonant components of the 

coherent signal that are stably calculated from different AR orders. Whereas the scattered 

points represent incoherent noise. We note that the crack thicknesses increase, the quality 

factor increase. In other words, the intrinsic absorption is higher in thinner (stiffer) cracks 

(Liang et al., 2017).  

 
Figure 4-9. 4 traces at the trace 8 from the crack thickness of (a) 1.5, (b) 2.5, (c) 4.5, 
and (d) 8.5mm. The fracture thickness increases, the amplitude of Krauklis wave signal 
becomes weak.  
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Figure 4-10. The quality factor for the crack thickness of (a) 1.5, (b) 2.5, (c) 4.5, and (d) 
8.5mm at trace 8. As the stiffness decreases (thickness increases), the quality factor 
increases.  
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4.4.2 Viscous fluid  

 
Figure 4-11. (a) The waveform array of acquired from the fracture filled with viscous 
oil. (b)The entire waveform of trace 5 comparison from water and oil-filled fracture of 
4.5mm thickness fracture.  

 

To investigate the effect of viscous damping on the Krauklis waves, we used vegetable oil 

as the fluid in the 4.5 mm thickness fracture. Galland et al. (2006) used the vegetable oil 

as magma analogue to study the magma injection in the upper crust. In Figure 4-11, trace 

5 of the Krauklis waves from the 4.5 mm-thick fracture filled water and oil are presented 

showing that Krauklis waves sustain longer in water-filled fracture. The dynamic viscosity 

of water and oil are approximately 1.0 and 20 mPa⋅s, and density of 1000 and 920 kg/m3 

at room environment (Galland et al., 2006). Therefore, the dimensionless viscous damping 

factors VD defined in Equation (4) for water and oil are 0.032 and 1.61, respectively. The 

fracture stiffness CS of the oil-filled fracture obtained by Equation (3) is 4.2. Figure 4-12(a) 

shows the amplitude spectra of the entire data in which only two peaks at the frequencies 

of 625 and 1400 Hz are observable. Higher modes in the viscous oil are highly attenuated. 

Figure 4-12(b) shows the results of the Sompi analysis from which we note that the quality 
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factor has significantly decreased in the case of the viscous fluid (Q=15) compared to the 

quality factor of 32 for the water-filled experiment. The phase velocity, however, (see 

Figure 4-12(c) and Figure 4-12(d)) shows a slight decrease at high frequency compared 

with that of the water-filled fracture. Such a small difference in the phase velocity can be 

explained by Chouet model (1986). While the analytical models (Korneev, 2008) suggest 

a significant decrease of the phase velocity for the case of infinite fractures, the crack 

stiffness mitigates the velocity drop for finite fractures.  Note that although the oil filled 

fracture has a much higher viscous damping compared to the water filled one, it has a lower 

crack stiffness that according to Chouet’s model should increase the velocity, and thus, 

moderates the velocity drop.  
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Figure 4-12. The properties of Krauklis waves in oil-filled fracture of 4.5 mm thickness. 
(a) The 2D map of resonance frequency (b) quality factor (c) phase velocity and (d) 
Comparison of the Krauklis wave phase velocity in the water-filled and oil-filled 
fracture of thickness 4.5 mm. All of these values in oil-filled fracture are lower than that 
in water.  
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4.4.3 Crack roughness and geometry  

 
Figure 4-13. The fracture roughness model and the wedge shape model in (a) and (b). 

Real fractures have much more complex geometries. For instance, fracture geometries 

might be rough and wedge shape with a pinch out tip. Such complex geometries can affect 

the fluid-solid interaction, and thus the seismic wave properties (Petrovitch et al., 2013).  

To simulate roughness, we used the classical Weierstrass-Mandelbrot model (Askari et al., 

2018; Lu et al., 2013; Mehrabi et al., 1997), where the height of the rough surface 𝑧𝑧 as a 

function of distance 𝑥𝑥 is given by  

𝑧𝑧(𝑥𝑥) = ℒ �
𝐺𝐺
ℒ�

𝐷𝐷−1

�
𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝑣𝑣𝑛𝑛𝑥𝑥/ℒ
𝑣𝑣(2𝐷𝐷)/𝑛𝑛                   (8)

∞

𝑛𝑛=0

 

where ℒ  is the sample’s length that depends on the scanning device, D is the fractal 

dimension, and G is the fractal roughness parameter that for a given D controls the 

amplitude of the roughness, and ν >1 is a scaling parameter. To simulate roghness, we 

assumed D = 1.4 that has been reported for natural rocks (Lee et al. 1990), ℒ =4 cm and 
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G= 1.2 × 10-6. The values of  ℒ and G yield the maximum roughness of  0.61 cm. Figure 

4-13(a) and (b) respectively show the rough and wedge fracture models. 

 
Figure 4-14. (a) and (b) The waveforms of the Krauklis wave of the rough and wedge 
fracture models. The red arrows follow the trend of the Krauklis wave propagation. 

 

Figure 4-14 (a) and (b) show the waveform of the Krauklis waves from the rough and 

wedge fracture models respectively. We note that in Figure 4-14(a) the waveforms after 

trace 6 become noisy due to the wave scattering along the rough surface. Figure 4-15(a) 

and (b) show the phase velocities of the Krauklis waves for the rough and wedge fracture 

models respectively. In Figure 4-15(a), the black dashed line is the theoretical dispersion 

curves of a flat crack model (Equation 2) calculated using the average thickness of the top 

and bottom plate 10.45 mm.  We note the both geometries have resulted decreased phase 

velocity from which it might be concluded that the low thickness areas on the rough and 

wedge fracture models significantly contribute to the decrease of the velocity. In addition, 

at high frequency around from 4000-6000 Hz, the phase velocity of the wedge fracture 



92 

model significantly deviates from the theoretical curve. This might be explained by the 

extreme narrow fracture aperture at the pinch out tip.  

The resonant frequencies of the rough fracture (Figure 4-16(a)) are 650, 1350 and 2950 Hz, 

and the wedge crack (Figure 4-16(b)) 425, 925, 1350, 1675 and 2950 Hz respectively. We 

note that the wedge fracture has a lower resonant frequency that is constant with its lower 

phase velocity.  

 
Figure 4-15. The phase velocity of crack wave from fracture roughness model and the 
wedge shape model in (a) and (b). The dashed black curve is the theoretical crack wave 
velocity for flat crack using the average thickness of the top and bottom plate 1.05 mm. 

 

 
Figure 4-16. The resonance frequencies of crack wave from fracture roughness model 
and the wedge shape model in (a) and (b).  
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Considering the inhomogeneous fracture surface, we also apply the Sompi method to three 

traces which are well separated in offset. Trace 2 trace 8 and trace 12 are selected to 

compare the quality factors for roughness and wedge model in Figure 4-17 and Figure 4-18 

respectively. On one hand in the roughness model in Figure 4-17(a) and (b) the quality 

factors in trace 2 and trace 8 are similar, while in trace 12 the quality factor increases. On 

the other hand, in the wedge fracture model in Figure 4-18, the quality factor in trace 2 is 

higher than that in trace 8 and 12. Overall, the dependency of the quality factors on the 

transducers location is noticeable in the both fracture models that can be due to the 

inhomogeneous surfaces of the two fractures.  
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Figure 4-17. The quality factors obtained for the roughness model at (a) trace 2, (b) trace 
8 and (c) trace 12.  
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Figure 4-18. The quality factors obtained for the wedge model at (a) trace 2, (b) trace 8 
and (c) trace 12. 

4.4.4 Fracture compliance  

In fracture mechanics, an open fracture that is under uniaxial compression σ deforms along 

the fracture length. A parameter that is commonly used to describe the properties of fracture 

surfaces is called fracture compliance 𝑍𝑍𝑁𝑁  (Liu, 2005) (or more commonly used in 

engineering, its inverse 𝐾𝐾𝑁𝑁=1/𝑍𝑍𝑁𝑁, the fracture stiffness), which is defined as  
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                    𝑍𝑍𝑁𝑁 =
1
𝐾𝐾𝑁𝑁

=
∆ℎ
∆σ

                         (9) 

A fracture with a higher number of asperities contact is less compliant than a fracture with 

sparsely spaced asperities (Brown & Scholz, 1985; Cook & Liniger, 1992; Hopkins et al., 

1987). For example, if the contact points of the fracture planes are damaged (e.g., due to 

the fluid pressure), it will be more compliant (Nakagawa and Korneev, 2014). It has been 

observed that the magnitude of fracture compliance controls the velocity of fracture 

interface waves (Gu et al., 1996; Nakagawa et al., 2015; Pyrak‐Nolte et al., 1990). In the 

following experiment, we investigate the effect of the fracture compliance on the Krauklis 

waves by embedding several conical compression springs between the two plates in Figure 

4-1b .  

The fracture compliance is modeled by using 4, 8, and 16 springs. The conical compression 

spring physical parameters are shown in Table 4-5. The resonant frequencies and phase 

Table 4-5. The physical parameters of the conical compression spring. 

Diameter of spring wire 0.16 cm 

Large end 2.22 cm 

Small end 0.95 cm 

Free height 1.27 cm 

Number of active coils 7 

Shear modulus 77.2 GPa 

Spring rate 7763 N/m 
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velocities of the Krauklis wave from different compliant crack models are shown in Figure 

4-19 from which we note both the resonant frequency and velocity increase with decreasing 

fracture compliance. The resonant frequencies of different modes are shown in Table 4-6. 

And the quality factors at the trace 8 for each case are calculated in Figure 4-20 from which 

we observed that the quality factor for 8 springs fracture Figure 4-20(b) is the lowest 

compare to the others due to the uneven compliance. The fractures embedded with 8 and 

16 springs in Figure 4-19(d) are stiffer, especially at the locations of the springs. The 

uneven stiffness over the plates might results in the mismatch dispersion at low frequencies 

less than 3000 Hz in Figure 4-19(d) and (f).  The dispersion curves in Figure 4-19 are 

picked indicated by white crossings markers and plot in for comparison in Figure 4-21.  
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Figure 4-19. Comparison of the resonant frequencies and phase velocity of fractures with 
different compliance. (a) and (b) are the resonant frequency map and phase velocity of 
fracture supported by two springs; (b) and (c) by 8 springs; (e) and (f) by 16 springs. The 
resonant frequencies and phase velocity increased with decreasing compliance.  The 
white crossing markers are the picked dispersion curve to follow the HRLRT calculated 
trend. 
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Figure 4-20. The quality factors obtained from complaint fractures embedded with 
springs. (a) fracture with 4 springs. (b) fracture with 8 springs. (c) fracture with 16 
springs 
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4.5 Discussion  

4.5.1 Open-end fracture  

All the fracture models presented are subjected to open-end vibration condition which 

means the standing waves have displacement antinodes (maximum displacement) at the 

ends of the fracture. If we ignore complex solid-fluid interactions and just focus on the 

fluid wave propagation in a 2D system. The mode analysis for the fluid pressure vibration 

in open-end fracture in Figure 4-22 also proves our mode identification in Figure 4-7. This 

Table 4-6.   Resonant frequencies of cracks with different compliance 

Spring numbers f3(Hz) f4(Hz) f5(Hz) 

4 400 675 1150 

8 625 1250 2900 

16 725 1500 3425 

 
Figure 4-21. The overlay plot of the picked dispersion curves of Krauklis waves for 
cracks with different fracture compliance in Figure 4-19. 
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also explains some weak signals recorded due to destructive wave interferences for 

example in Figure 4-4(a) trace 5 and trace 11.  

 
Figure 4-22. The pressure vibration of Krauklis waves in open-end fracture. (a) to (f) 
represent the fundamental mode to mode 6, respectively. The red points represent the 
antinodes at the maximum pressure.  

4.5.2 Closed-end fracture  

To compare with the open-end fracture, we also conducted the experiment for flat fracture 

with closed-end fracture for 4.5 mm thickness. In Figure 4-23(a), instead of some 

deconstructive traces observed in an open-end fracture in Figure 4-4, all the traces 

constructively interfered. The resonant frequencies in Figure 4-23(b) indicated by red 

arrows are 650, 1425 and 2750 Hz which are slightly less than the open-end fracture case 

725, 1525 and 2775 Hz.   
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Figure 4-23. Krauklis waves properties in the closed-end fracture. (a) the 2D seismic 
array. (b) the resonant frequencies. The red arrows are pointing at different modes. (c) 
The phase velocity.  
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4.5.3 Application 

One of the applications of the Krauklis wave is to determine the fracture size. Lipovsky & 

Dunham (2015) presented a method to estimate the aperture and length of a resonating 

hydraulic fracture using both the seismically observed quality factor and characteristic 

resonant frequency.  

𝐿𝐿 =
1
2 �
𝜋𝜋𝜋𝜋 �

𝐺𝐺𝑆𝑆
(1 − 𝜐𝜐𝑠𝑠)𝜌𝜌�

2

�
𝑄𝑄𝑟𝑟2

𝑓𝑓𝑟𝑟5
�� 1/6            (10) 

2𝑤𝑤0 = 𝑄𝑄𝑟𝑟�
𝜈𝜈
𝜋𝜋𝑓𝑓𝑟𝑟

.                                             (11) 

where 𝜈𝜈 is the fluid kinematic viscosity, 𝐺𝐺𝑆𝑆 is the shear modulus of the aluminum plate, 𝜐𝜐𝑠𝑠 

is the Poisson’s ratio, 𝜌𝜌  is the fluid density, 𝑄𝑄𝑟𝑟  is the quality factor at the resonant 

frequency, 𝑓𝑓𝑟𝑟 is the resonant frequency, 𝑤𝑤0 is the half-width of the fracture aperture.  

The solid and fluid parameters to calculate the fracture geometry using equations 10 and 

11 are shown in Table 4-7. Take the 4.5 mm thickness fracture filled with water for example 

to test the feasibility of the equations (10) and (11). We calculate the quality factor and 

resonant frequency from the trace 12 from which we can observe all the three modes at the 

antinode location using Sompi method (Figure 4-24). Using the first observed peak 

frequency 725 Hz and quality factor 50 observed in Figure 4-24 and parameters in Table 

4-7, the fracture length calculated is 32.5 cm which is very close to the fracture model 

30.48 cm.  
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Table 4-7. Input parameters for equation 6 to calculate the fracture length. 

𝝂𝝂 (𝑚𝑚2/𝑠𝑠) 𝑮𝑮𝑺𝑺 (Gpa) 𝝊𝝊𝒔𝒔 𝝆𝝆 (𝑘𝑘𝑘𝑘/𝑚𝑚3) 𝑸𝑸𝒓𝒓 𝒇𝒇𝒓𝒓 (Hz) 

1.5×10−6 24 0.33 1000 50 725 

 

 
Figure 4-24. The resonance frequencies and quality factors calculated using Sompi 
method. The first observed resonant frequency 725 Hz and its corresponding quality 
factor 50 are used to calculate the fracture length using equation 6.  

4.6 Conclusion  

We conducted numerous experiments to investigate the effects of the crack stiffness, 

viscous damping, compliance and geometry on the resonance, dissipative and dispersion 

characteristics of the Krauklis waves. Therefore, we divide our experiments into four 

categories where our major results are shown in Table 4-8. 
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Our results in terms of the effect of the crack stiffness and viscous damping on the 

dispersion and resonance of the Krauklis wave are consistent with Chouet’s numerical 

model. In addition, we note that geometry significantly contribute to the dispersion and 

dissipative properties of the Krauklis waves. In addition, we found that that higher 

complaint fractures result in slower wave velocity and resonant frequencies. To validate 

the experimental result, we compared it to existed theoretical equations, which showed 

good agreement between them for Krauklis waves in flat fractures.  

Table 4-8. Experiments in the paper. 

Exp Objective Major Observation 

1 Stiffness 
Phase velocity and resonant frequencies increase with 

decreasing the stiffness. 

2 Viscous Damping 
Phase velocity and resonant frequencies decrease with 

increasing damping factor. 

3 
Mechanical 

Compliance 

Phase velocity and resonant frequencies increase with 

decreasing compliance. 

4 (1) 
Geometry 

(Roughness) 

Phase velocity and resonant frequencies decrease 

comparing to Exp 1, 4.5mm. 

4 (2) 
Geometry 

(Wedge shape) 
Phase velocity close to roughness model. 
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5 Conclusion  
In this study we conducted laboratory experiments to investigate the properties of fluid-

filled fractures and the Krauklis waves propagate in it. Optical and acoustic experiments 

are combined to visualize the fluid dynamic with the fluid-filled fractures and analyze the 

Krauklis wave dispersion, resonance, and attenuation properties qualitatively and 

quantitatively in fluid fracture under different environments.  

Chapter two shows the ability of the dynamic photoelasticity technique to analyze the 

dispersion of Krauklis waves trapped in fluid-filled fractures based on a pixel-based 

framework. We performed a series of signal analysis on the waveform extracted from 

images sequences by tracking the pixel variations induced by the stress wave. The optic 

experimental dispersion curve calculated using the high-resolution Radon transform is 

proved to be consistent with the theoretical dispersion equation derived from the plate 

theory. We also showed the capability of the method to analyze the Krauklis wave in the 

case of complex geometry with fluid of different viscosity by modeling a saw-tooth 

fracture. We observe that higher viscous fluid results in a lower Krauklis wave group and 

phase velocity. In addition, the complex fracture geometry leads to a greater perturbation 

of the Krauklis wave and a higher velocity compared to the flat fracture.  

Apart from the Krauklis wave we visualized and analyzed in the Chapter two, we also 

visualize the fluid-solid interaction inside fractures with different types of fracture surfaces 

and tips using a combination of the photoelasticity and shadowgraph technique in chapter 

3. The most striking observation is the occurrence of the cavitation and bubble collapse in 

the fracture with complex surface (saw-tooth shape). The phenomenon is an important 
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mechanism that can contribute to the hydraulic fracture growth and propagation. The two 

main causes for the fracture surface degradation and growth are, first, the expansion of the 

bubbles that causes the tensile stress on the fracture wall to increase and, second, the 

collapse of the bubble generates a shock wave. This phenomenon can be used to explain a 

variety of geological related fractures growth such as the hydraulic fracturing, deep well 

waste-water disposal, and dike propagation during magmatic intrusion. In addition, a 

shadowgraph technique is used to study the effects of bubbles at the fracture tip using 

various tip geometries. The pressure wave in the liquid phase compresses and pushes 

forward the trapped bubbles into the tips. The tensile stress induced by the bubbles at the 

fracture tip increase as the bubble pressure increases. The rate of strain energy release at 

the fracture tip increases significantly due to the presence of bubbles. The energy produced 

by the bubbles overcomes the resistance of the trilayer that results in its delamination, 

which resembles a fracture opening and propagation. 

To further understand the Krauklis waves properties and the vibration of the fluid-filled 

fractures, in addition to the optical experiment, we conducted numerous acoustic 

experiments to elaborate the study of the effect of the fracture stiffness (Chouet’s model, 

1988) by changing the fracture thickness, fluid damping, fracture roughness and geometry, 

and fracture mechanical compliance  on the resonant frequencies, quality factor, and 

dispersion properties. We observe that the phase velocity, resonant frequencies and quality 

factors: (1) increase with the increase of the fracture thickness; (2) decrease with the 

increase of the fluid viscosity; (3) decrease with the increase of mechanical compliance. In 

addition, an increase in the roughness of fracture surface and a change from a rectangular 
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to wedge shaped fracture both result in decreased phase velocity and resonant frequencies. 

These experimental findings are important to be incorporated into numerical modeling and 

theoretical derivations.  
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	Abstract

	Fractures play an important role in the geological related processes such as hydraulic fracturing, water-water disposal, and volcanic earthquake. Seismic waves can provide useful information from fractures at a relatively low cost. In particular, the ...

	1 Introduction
	1.1 The background and motivation
	Fractures have a significant influence on the seismic signature of the reflected and transmitted seismic wave and fluid-filled cracks can serve as seismic sources. The complex geometry of fractures can govern the physical properties such as elastic wa...
	Tary and Van (2012) and Tary et al. (2014) identified the resonance characteristics of the crack waves in fluid-filled cracks which can be used to gain a better understanding of reservoir deformation or dynamic fluid flow perturbation during fluid inj...
	All the published experimental and analytical models have been based on a parallel flat and oversimplified crack as the standard model (Figure 1-1) (Paillet and White, 1982; Tang and Cheng, 1988; Hasson and Nagy, 1997; Kumagai et al., 2005; Nakano and...
	Although the effects of many parameters including crack length, aperture, and fluid viscosity have been investigated on the characteristics of the crack waves (Korneev, 2008; Kumagai and Chouet 1999, 2001; Groenenboom and Falk, 2000; Frehner and Schma...
	Ferrazzini and Aki (1987) derived the equation of dispersion of the slow wave trapped in crack to determine the phase velocity that is inverse proportion to the wavelength. Following the pioneer works of Krauklis (1962) and Lloyd and Redwood (1965), a...
	In addition to analytical studies, several numerical studies have been carried out about the crack waves. Aki et al. (1977) numerically investigated the dynamics of cracks filled with fluids. By modeling the dynamic of an expanding fluid-filled crack ...

	1.2 Experimental studies
	Following Chouet’s numerical simulation of crack wave and their associated resonance property with respect to crack stiffness and viscous damping ratio (Chouet 1986, 1988), Tang and Cheng (1988) first investigated the crack propagation in lab scale us...
	In this dissertation, on one hand I study the propagation of crack waves propagation using the dynamic photoelasticity technique.  I will focus on monitoring the stress pattern of the crack wave from which the movement, and transmission pattern of cra...
	In this dissertation, by considering different geometries, I will investigate the effect of crack geometry on the resonance, dispersion, and attenuation of the crack wave. This understanding is crucial to further modify the standard rectangular crack ...
	Apart from the rock physics set up, I will study the crack wave propagation using an optical apparatus that is based on the photo-elasticity technique. This technique has been used to visualize seismic wave propagation. Using this technique, not only ...


	Figure 11. Standard crack model. L is the length, W width, d aperture, and α P-wave velocities in the matrix and fluid respectively, and ρs and ρs the matrix and fluid density respectively.
	2 Experimental observation of Fluid-Filled Fractures Using the Dynamic Photoelasticity Technique
	2.1 Abstract
	We have developed an optical apparatus based on the dynamic photoelasticity technique to visualize and analyze the propagation of the Krauklis wave within an analog fluid-filled fracture. Although dynamic photoelasticity has been utilized by others to...

	2.2 Introduction
	Fractures contribute significantly to fluid flow in many low-permeability rocks. In exploration for and development of unconventional reservoirs, it is crucial to identify highly fractured zones. Seismic methods provide critical information about subs...
	The Krauklis wave is dispersive; that is, its velocity is a function of frequency. At low frequency, the phase velocity is near zero, and it increases with frequency to an upper limit close to the speed of sound in the fracture fluid.  As a result, th...
	Tang and Cheng (1988) created an analog fracture using two thick aluminum cylinders as half-spaces, with a narrow flat gap filled with water between them, conclusively verifying the existence of the Krauklis wave. Following that approach, Hasson and N...
	For Krauklis waves to be useful in an exploration and development sense, there must be some method of remotely exciting them in fractures in the earth’s crust. Shih and Frehner (2016) showed that the Krauklis wave could be generated from a body wave s...
	In addition to these numerical and experimental studies, significant theoretical advances have been made in recent years. For instance, Korneev (2008) obtained the phase velocity of the Krauklis wave for inviscid and viscous fluids bounded between two...
	However, most of the studies assumed idealized fracture geometry with flat surfaces for modeling convenience. Dynamic photoelasticity is a technique that can be employed to obtain the stress distribution and dynamic response of material to applied for...
	There are many parameters that likely affect Krauklis wave properties and a number of them have already been investigated (e.g., fracture fluid, fracture width, and fracture compliance; see Bayuk and Goloshubin, 2018 and Nakagawa and Korneev, 2014), b...

	2.3 Method
	2.3.1 Dynamic photoelasticity technique
	Some materials are optically isotropic when they are not under stress yet become optically anisotropic under anisotropic stress (Pandya and Parey, 2013). The induced anisotropy or birefringence is proportional to the stress applied to the object (Pand...
	We developed a linear polariscope apparatus (Figure 2-1) to visualize the stress field within the fluid-filled fracture. Our linear polariscope is composed of three parts: (i) a collimated light also known as a shadowgraph system, (ii) a linear light ...
	The current linear polariscope provides a series of sample-wide images of photoelastic fringes over time. The brightness of each fringe is linearly related to the strain in the medium, such that the brighter a pixel is, the stronger the stress to whic...

	2.3.2 Trilayer model
	In our experiment, we developed a trilayer fracture model by combining two photoelastic insensitive acrylic plates and one photoelastic sensitive polycarbonate plate. Both polycarbonate and acrylic plates are transparent and homogeneous, and the area ...
	The physical properties of the two plates are shown in Table 2-2. In the middle layer, a machined slot is created to be filled by fluid. We considered the flat and saw-tooth slot models (Figure 2-2c,d) in which the slots have a dimension of about 127 ...


	2.4 Experiments
	To investigate the effects of viscosity and fracture geometry on the Krauklis wave, we performed three experiments, using water as the fracture fluid in the flat fracture model and shampoo in both the flat and saw-tooth models. (In addition, we perfor...
	To initiate the Krauklis wave, a sharp pressure load was applied by a hammer striking on an aluminum piston, surrounded by a rubber O-ring, in a bronze tube connected perpendicularly to the specimen to the right side of the trilayer (as viewed in Figu...
	The original photoelastic images are typically displayed in grey scale. Figure 2-3 shows an example photoelastic image from the flat fracture filled with water in which the bright zones are under-stress regions. For our image processing, we use the “i...

	2.5 Results
	For ease of visualization, a series of photoelasticity images (512×256) are shown in Figure 2-4, this time in pseudo-color, for Experiment 1 (flat fracture filled with water). We clearly observed the Krauklis wave traveling slowly along the fracture (...
	For Experiments 2 and 3, using a viscous shampoo in both the flat and saw-tooth fractures, we obtained the group velocities of 14.6 m/s and 28.3 m/s from Figure 2-5 and Figure 2-6 respectively. Given the higher viscosity of the shampoo (910 to nearly ...
	The waveforms extracted from the images at several points near the fracture boundary are shown (normalized) in Figure 2-7; dispersion is noticeable all three experiments as the waveforms change shape over time. As the Krauklis wave travels, the tempor...
	Dispersion curves of phase velocities are shown in Figure 2-9, where phase velocity trends at frequencies above 500 Hz are recognizable; at frequencies below 500 Hz, the resolution is poor. The primary reason for the poor phase velocity resolution at ...
	The phase velocities of the three experiments are compared in Figure 2-11. As expected, the highest velocity belongs to the experiment in which the fluid is water, with its low viscosity (Experiment 1). By increasing the viscosity through the use of s...

	2.6 Repeatability
	To show the repeatability of our experiment, which depends on manually striking a piston, the procedure was re-applied to the flat fracture filled with water (Experiment 1). Photoelastic images of the Krauklis wave motion on the upper fracture boundar...

	2.7 Discussion
	The phase ,𝑉-𝑝ℎ. and group velocities ,𝑉-𝑝ℎ. are linked to the frequency (𝑓) and wavenumber (𝑘) respectively by
	,𝑉-𝑝ℎ.=𝑓/𝑘,                                  (1)
	and
	,𝑉-𝑔.=𝑑𝑓/𝑑𝑘.                                (2)
	Therefore, the phase velocity is linked to the group velocity (e.g., Askari and Ferguson, 2012) via
	,𝑉-𝑔.=,,𝑉-𝑝ℎ-2.-,𝑉-𝑝ℎ.−𝑓,𝑑,𝑉-𝑝ℎ.-𝑑𝑓...                                   (3)
	Because the phase velocity of the Krauklis wave increases with frequency, ,𝑑,𝑉-𝑝ℎ.-𝑑𝑓. > 0, the group velocity will be greater than the phase velocity, ,𝑉-𝑔.>,𝑉-𝑝ℎ..  This “inverse dispersion” property of the Krauklis wave is consistent with ...
	The phase velocity we obtained in Figure 9(a) for the flat fracture filled with inviscid and incompressible water can be validated using the width-averaged theoretical model (Dunham and Ogden, 2012). The polycarbonate plate is subject to internal pres...
	𝑃=,−,(𝐷-1.+,𝐷-2.),𝑑-4.𝑤-𝑑,𝑥-4..              (4)
	𝐷= ,𝐸,ℎ-3.-12(1−,𝜈-2.).                     (5)
	Where ∆𝑃 is pressure change in the fluid (normal traction on plate walls), D is bending stiffness (,𝐷-1. for polycarbonate plate and ,𝐷-2. for acrylic plate), 𝑤 is displacement normal to plate walls, E is Young’s modulus, h is plate thickness and ...
	The mass and moment balance of an incompressible inviscid fluid is
	,𝑑𝑤-𝑑𝑡.+,𝑤-0.,𝑑𝑢-𝑑𝑥.=0               (6)
	𝜌,𝑑𝑢-𝑑𝑡.+,𝑑𝑃-𝑑𝑥.=0                  (7)
	where ,𝑤-0. is thickness of fluid layer and ρ is fluid density.
	The complex notation for the fluid velocity is
	𝑢,𝑥, 𝑡.=𝐴,𝑒-𝑖(𝑘𝑥−𝜔𝑡).        (8)
	Combining equations from (4) to (7) results in
	𝜌,,𝜕-2.𝑢-𝜕,𝑡-2..+,𝑤-0.(,(𝐷-1.+,𝐷-2.),,𝜕-6.𝑢-𝜕,𝑥-6..=0         (8)
	And applying the Fourier transform yields the following the dispersion relation
	,𝜔-2.=,,𝑘-6.,𝑤-0.,(𝐷-1.+,𝐷-2.)-𝜌.              (9)
	Therefore, the phase velocity of the Krauklis wave is
	,𝑉-𝑝ℎ.=,𝑘-2.,,,𝑤-0.,(𝐷-1.+,𝐷-2.)-𝜌. .         (10)
	Using an example wavelength of 40 mm at around 700 Hz and reported fluid and solid properties in Table 2, the phase velocity calculated ,𝑉-𝑝ℎ.= 32.9 m/s. This result is close to our estimated phase velocity in Experiment 1 (water in a flat fracture)...
	To summarize our observations, the dispersion properties of the stress fields obtained from our experiments are consistent with the characteristics of the Krauklis wave as (i) the estimated velocities are lower than the speed of sound in the fracture ...
	The higher phase and group velocities in Experiment 3 (viscous shampoo in a saw-tooth fracture), and the qualitative observation that extremely high strains occurred in an experiment using low-viscosity water in the saw-tooth fracture, require additio...
	Although the major advantage of conventional photoelasticity technique is to measure the stress, particularly for complex objects (Smith, 1980) as we showed in this study, this technique can also be used to study the dispersion properties of the Krauk...
	One could further improve our physical model by addressing some of the issues we have discovered in the current apparatus.  One problem is how to screw the aluminum plates (Figure 2a) evenly, in a controlled manner, so that the screws apply a uniform ...

	2.8 Conclusion
	We demonstrated the possibility of visualizing the propagation of the Krauklis wave using the dynamic photoelasticity method. Using a pixel-based framework, we quantitatively processed and analysed the dispersion properties (phase and group velocities...
	Using the saw-tooth fracture, we showed the capacity of the photoelasticity method to analyze seismic wave propagation for complex geometries. In addition, we note that the geometry has a salient effect on the characteristics of the Krauklis wave, as ...
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	3.3 Introduction
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	Another important aspect of fluid-driven fractures in geological systems that might affect fracture propagation is the geometry of the fracture and its tip (Desroches et al., 1994; Lenoach, 1995). The shape of the fracture tip influences the stress di...
	In this experiment, a laboratory analogue experiment is developed to study stress conditions at the margins and tips of two-phase fluid-filled fractures in homogeneous and layered media. We show that fracture geometry and its tip contribute to fractur...

	3.4 Method
	3.4.1 Experimental Setup
	A linear (planar) polariscope is used to visualize the dynamics of the liquid-solid interaction in the filled fractures, subject to a pulse pressure wave originated in the liquid phase; see Figure 3-2 for more details. The polariscope measures simulta...

	3.4.2 Analogue Fracture – Trilayer Model
	The experimental apparatus was used to visualize the solid-fluid interactions along the fracture main body and at the fracture tips in the following six trilayer models (Table 3-1. Six Experiments to Visualize the Fluid-Filled Fracture Dynamics), each...
	𝜎=,𝑁,𝑓-𝜎.-ℎ.                              (1)
	where ,𝑓-𝜎. is a constant material fringe, N is the fringe order that depends on relative retardation, and ℎ is the specimen’s thickness.
	The three layers are held together by two 5 mm thick aluminum plates and clamped by bolts along the plates’ edges (Figure 3-3a). Fractures were machined in the middle acrylic layer. The reference fracture has flat boundaries (sides) with semi-cylindri...
	Additionally, three types of fracture tips were designed to study the fluid-filled fracture dynamics in its plastic zone: single narrow tip, double parallel narrow tips, and a triangular tip, as shown in Figure 3-4(a), 3(b), and 3(c), respectively. Th...


	3.5 Experimental Results
	We utilize the reference fracture to investigate how the liquid pressure wave is transferred to the solid walls of the fracture. The stress wave on the fracture walls manifests itself as bright patterns, also known as photoelastic fringes, traveling f...
	In contrast to the idealized smooth fracture surface, experiments considering a fracture with saw-tooth surface representative of fracture surface roughness were conducted. the most striking difference between the smooth and saw- tooth fracture models...
	To investigate the effect of viscosity on cavitation, we used transparent viscous shampoo as the crack fluid in the saw-tooth fracture.  Note that the shampoo viscosity is 103-104  higher than water viscosity (1 mPa(s) at room according to AlQuadeib e...
	Apart from the expansion and collapse of the bubbles due to the cavitation phenomenon that is likely to produce sub-fractures along solid boundaries, the bubbles can enhance the opening and propagation of fractures through other mechanisms acting at t...
	In order to investigate and visualize the fracturing behavior at the tips for complex geometries when the bubbles are present, the three aforementioned fracture models were used, shown in Figure 3-4(a-c). The tips were purposely not completely filled ...
	In the model with the triangular tip, on the other hand, the delamination effect due to the bubble being compressed and pushed by the liquid interface is the least severe of the three cases. This is shown in Figure 3-8(i-l). We attribute this to two f...

	3.6 Discussion
	Here, we present the effects of the geometry of fracture wall (i.e., roughness) and tip on the fracture mechanics of fluid-filled fractures using analogue models. We observed that in a fracture with a rough interface, bubble cavitation occurs when a t...
	The fracture in the trilayer model is machined in the brittle acrylic plate which is an isotropic and linear elastic material for which typically linear elastic fracture mechanics (LEFM) is valid except in the small area in vicinity of the crack tip (...
	𝑅=,,1-2𝜋..,,,,𝐾-𝐼𝐶.-,𝜎-𝑦𝑠...-2.                          (2)
	where the typical critical stress intensity factor ,𝐾-𝐼𝑐. and yield stress ,𝜎-𝑦𝑠. of acrylic is 1.5 MPa m0.5 (Efimov & Sher, 2001) and 64.8 MPa respectively and R is the radial distance ahead of the crack tip.
	From equation 2, the plastic zone radius is 0.08 mm which is much smaller compared to the size of the fracture in our case exhibiting the small-scale yielding at the crack tip, therefore LEFM is still applicable if no bubble effect occurs at the crack...
	Compared to the fracture length, the polycarbonate used in our experiment were thin, implying the plane stress condition. The typical critical stress intensity factor ,K-Ic. and yield stress ,σ-ys. of polycarbonate is 2.24 MPa m0.5 and 68 MPa, respect...
	,T-c.≤2.5,,,,K-Ic.-,σ-ys...-2.                       (3)
	Thus, a thickness less than 3 mm is considered as plane-stress condition. This explains the discrepancy between our measured crack wave group velocity of 33.95 m/s and the theoretical velocity using the formulation of Lipovsky and Dunham (2015), who a...
	Note that the entire clamped trilayer model may be regarded as real fractures in nature of low conductivity or closed fractures. The reopening of the closed fracture is by the process of delamination of the tight layers, due to the pressure wave and t...

	3.7 Conclusion
	An analogue experimental setup combining two distinct optical techniques, shadowgraphy and photoelasticity, were used to visualize the fluid-solid interaction inside fractures with different types of fracture surfaces and tips. Among the most importan...
	While we have focused on magmatic systems, the results are also applicable to other fluid-filled crack systems. The fluid injection in hydraulic fracturing and wastewater disposal or fluid intrusion in natural geothermal systems could also form bubble...
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	Figure 31. Four stages of cavity collapse in a dike. (a) The magma pushes the rock at the tip of the dike. (b) Once the rock is opened, a pressure pulse drop is initiated at the tip and travels down through the dike. The pressure drop creates small cavity bubbles within the dike. (c) The bubbles continue to grow until reaching their maximum sizes, and (d) They collapse quickly, and shock waves are created.
	Figure 32. Schematic diagram of the combined high-speed shadowgraph imaging system and linear polarizer setup. The specimen is placed between two steel L-shaped support brackets that are mounted on an optical table. Ø is the lens diameter and f the focal length. σ1 and σ2 are principal stresses of the sample. 
	Table 31. Six Experiments to Visualize the Fluid-Filled Fracture Dynamics
	Figure 33. (a) The trilayer model and its schematic side view, which consists of one polycarbonate and two acrylic plates, fastened by two aluminum plates. The pressure pulse is produced by applying a sudden load to the aluminum piston. (b) Flat fracture model in the middle layer used as a reference. (c) Saw-tooth fracture model and enlarged details of its geometry. The circles along the edges of plates are the locations for clamping bolts.
	Figure 34. The fracture models used to study the fluid-filled fracture dynamics in the plastic zone. (a) Single narrow tip with 1 cm length and 2 mm width. (b) Double narrow tips with 1 cm length and 2 mm width each.  (c) Triangle tip with 1 cm side length. In fracture propagation linear elasticity is valid far from the tip, it breaks down near the tip, where one has a highly nonlinear plastic zone.
	Figure 35. The photoelastic image of the reference smooth flat fracture used to show the solid-fluid interaction due to the input pressure pulse on the liquid phase under no surface irregularities. The bright dashed line trend represents direction of the stress wave propagation, which is the result of the photoelastic effect on the polycarbonate layer. The bright patterns near the crack tip are due to the residual stress, caused by clamping bolts. The color bar shows the pixel intensity value of the images. Stressed area is in white and unstress is in black. 
	Figure 36. Image sequence of the bubbles expansion and collapse for the saw-tooth fracture model. (a) Before the bubble initiation, there is no stress on the saw-tooth. (b-f) As the pressure on the liquid decreases, the small-scale bubbles expand and photoelastic fringes (bright patterns) appear on the fracture surface, implying that the fracture surface is subjected to a tensile stress due to the bubble expansion. (g) The photoelastic fringes and the associated stress on the fracture surface disappear after the pressure in the fluid recovered. (h) The tracked pixel brightness intensity at the saw-tooth location indicated by white arrow in (a-g). This cavitation phenomenon was not observed in the reference fracture in Figure 35.
	Figure 37. The photoelastic images of the stress wave propagation in the saw-tooth fracture filled with shampoo. The bright dashed line trend represents direction of the stress wave propagation as in Figure 35. Cavitation phenomenon is not observed in this shampoo filled fracture. 
	Figure 38. The image sequences the process of bubbles emergence at the fracture tip. These narrow fracture tips were purposely not filled with water to mimic trapped bubbles. The pressure wave in the fluid phase forces the bubble to intrude into the tip, forcing a delamination of the layers of the trilayer model.
	4 Laboratory Measurements of the Impact of Fracture and Fluid Properties on the Propagation of Krauklis Waves
	4.1 Abstract
	Krauklis waves are commonly observed in fluid filled fractures and are considered to be a tool to study the physical properties of fractures due to their strong dispersion and resonant vibration natures. By analyzing the resonant frequency and quality...

	4.2 Introduction
	Most of the seismicity worldwide stems from the brittle failure of rock due to tectonic forces. However other types of seismicity are also common in environments such as glaciers, geothermal systems, and active volcanoes. While brittle failure earthqu...
	Most interpretations of LP events have employed a model of oscillations in a fluid-filled crack based on Chouet’s seminal work (1986; 1988). He demonstrated numerically that a pressure disturbance on the crack initiates a slow dispersive wave called t...
	Following Chouet (1996 and 1998), many researchers have been focused on the analytical developments of the Krauklis wave. For instance, Korneev (2008) derived the phase velocity of the Krauklis wave for a crack model with inviscid fluid bounded betwee...
	,𝑐-𝐼.(𝑓)=,(,𝜔𝑑𝜇-,𝜌-𝑓..(1−(,,𝛽-𝛼.)-2.))-,1-3..,                                                              (1)
	where 𝛽 is the shear wave velocity in the matrix, 𝛼 P-wave velocity in the matrix, 𝜇 matrix rigidity, 𝑑 crack thickness, ,𝜌-𝑓. fluid density, and 𝜔 the angular frequency. He also investigated the effects of viscosity on the Krauklis wave veloci...
	,𝑐-𝐹.(𝑓)=,(,1-6.)-,1-6..,𝜔𝐻,𝑐-𝐼.(𝑓).                                                              (2)
	where 𝐻 is the thickness of the fracture wall.
	In addition to the analytical developments, extensive research has been conducted to understand the effects of the crack and fluid properties on the characteristics of the Krauklis waves. Through such understanding, by analyzing the Krauklis waves, we...
	𝐶𝑆=,𝑏-𝜇.,𝐿-𝑑.                                                                    (3)
	𝑉𝐷=,12𝜂𝐿-,𝜌-𝑓.,𝑑-2.𝛼.                                                                 (4)
	where 𝑏 is the fluid bulk modulus, 𝐿 crack length, and 𝜂 fluid viscosity. The crack stiffness and viscous damping respectively characterize the dynamic response of the crack and attenuation due to the fluid viscosity. Chouet (1988) shows that for a...
	Nakagawa & Korneev (2014) investigated the phase velocity of the Krauklis wave when the clamping force between two plates is not infinite, which called the compliant crack model. They theoretically showed that the phase velocity increases when the cla...
	We note that there has been a great interest to understand the effect of various fluid and crack properties of the characteristics of the Krauklis waves. In this experimental study, we investigated the effects of important factors on the dissipative a...

	4.3 Method
	4.3.1 Experimental Setup
	Our trilayer model was composed of two aluminum plates each of which has a dimension of 30.18 cm × 7.62 cm × 1.27 cm. The upper plate was used to position a source and pressure transducer. Since we had just two pressure transducers, the experiment was...
	The source was a MULTICOMP piezoelectric element with a resonant frequency of 4.2 kHz that was affixed to a circular brass diagram and positioned on the edge of the crack (indicate by the red arrow in Figure 4-1a). The receiver transducer was position...

	4.3.2 Processing
	We applied different transformations to our data to characterize the Krauklis wave. First, for a given receiver location, we repeated data acquisition 25 times. Thereafter, the generated 25 traces were stacked to suppress any random or incoherent nois...
	In addition, we calculated the amplitude spectra of the signals at each receiver location, normalized them, and put them together to obtain a 2D amplitude spectra map as a function of distance from the source (see Figure 4-10 as an example). Using thi...
	We applied the Sompi method to our Krauklis wave data. The Sompi method is a high-resolution spectral analysis method based on a homogeneous autoregressive (AR) equation. The complex frequencies are defined as 𝑓+𝑖𝑔 where 𝑖=,−1. and 𝑔 are linked t...

	4.3.3 Boundary Conditions
	The Krauklis waves propagating along the model are both reflected and transmitted at the sides of the crack which are exposed to the fluid in the bath. Considering the relatively low frequencies (<~5 kHz) of the waves used in the experiment, the longe...


	4.4 Experimental Results
	4.4.1 Crack Stiffness (Thickness)
	4.4.1.1 Phase velocity
	To investigate the effect of the crack stiffness on the Krauklis wave, we consider four thicknesses of 1.5 mm, 2.5 mm, 4.5 mm, and 8.5 mm. If we assume the aluminum rigidity (μ) 26 GPa, these thicknesses respectively yield crack stiffnesses of 𝐶=17, ...
	4.4.1.2 Resonant frequencies
	The resonance is another important property of the Krauklis waves resulted from the constructive interferences of counterpropagating waves along the fracture conduit (Frehner, 2014; Korneev, 2008; Liang et al., 2017; Lipovsky & Dunham, 2015). The fini...
	𝐿=,𝑛𝜆-2., ,𝑛=1,2,3….                      (5)
	𝑓=,𝑛,𝑐-𝐹.(𝑓)-2𝐿.                                         (6)
	Where ,c-F.(f) is the Krauklis wave phase velocity in Equation 2. Therefore, the resonance frequency estimated is
	𝑓=,1-2.,𝜋-2.,(,𝑛-𝐿.)-3.,,,𝐻-3.𝑑𝜇(1−(,,𝛽-𝛼.)-2.)-6𝜌..,  ,𝑛=1,2,3….                        (7)
	and the theoretical resonant frequencies obtained from Equation 7 is shown in Table 4-2. We observed that in Table 4-2 the frequency of the first mode in each experiment is less than 50 Hz and the second mode is below 400Hz.
	However, we note that the theoretical first mode F1 in Table 4-2 are not observed in the experimentally measured resonant frequencies in Table 4-3. This is due to the natural limitation of our finite length fracture that works poorly in low-frequency ...
	In addition, we calculated the resonant frequency ratio between different crack thicknesses to avoid parameter errors for both the experimental theoretical frequencies in Table 4-4 to analyze the discrepancy. We observe that the frequency ratios betwe...
	4.4.1.3 Quality factor

	4.4.2 Viscous fluid
	4.4.3 Crack roughness and geometry
	Real fractures have much more complex geometries. For instance, fracture geometries might be rough and wedge shape with a pinch out tip. Such complex geometries can affect the fluid-solid interaction, and thus the seismic wave properties (Petrovitch e...
	To simulate roughness, we used the classical Weierstrass-Mandelbrot model (Askari et al., 2018; Lu et al., 2013; Mehrabi et al., 1997), where the height of the rough surface 𝑧 as a function of distance 𝑥 is given by
	𝑧,𝑥.=ℒ,,,𝐺-ℒ..-𝐷−1.,𝑛=0-∞-,𝑐𝑜𝑠2𝜋,𝑣-𝑛.𝑥/ℒ-,𝑣-(2𝐷)/𝑛..                  (8).
	where ℒ is the sample’s length that depends on the scanning device, D is the fractal dimension, and G is the fractal roughness parameter that for a given D controls the amplitude of the roughness, and ν >1 is a scaling parameter. To simulate roghness,...
	Figure 4-14 (a) and (b) show the waveform of the Krauklis waves from the rough and wedge fracture models respectively. We note that in Figure 4-14(a) the waveforms after trace 6 become noisy due to the wave scattering along the rough surface. Figure 4...
	The resonant frequencies of the rough fracture (Figure 4-16(a)) are 650, 1350 and 2950 Hz, and the wedge crack (Figure 4-16(b)) 425, 925, 1350, 1675 and 2950 Hz respectively. We note that the wedge fracture has a lower resonant frequency that is const...
	Considering the inhomogeneous fracture surface, we also apply the Sompi method to three traces which are well separated in offset. Trace 2 trace 8 and trace 12 are selected to compare the quality factors for roughness and wedge model in Figure 4-17 an...

	4.4.4 Fracture compliance
	In fracture mechanics, an open fracture that is under uniaxial compression σ deforms along the fracture length. A parameter that is commonly used to describe the properties of fracture surfaces is called fracture compliance ,𝑍-𝑁. (Liu, 2005) (or mor...
	,𝑍-𝑁.=,1-,𝐾-𝑁..=,(ℎ-(σ.                         (9)
	A fracture with a higher number of asperities contact is less compliant than a fracture with sparsely spaced asperities (Brown & Scholz, 1985; Cook & Liniger, 1992; Hopkins et al., 1987). For example, if the contact points of the fracture planes are d...
	The fracture compliance is modeled by using 4, 8, and 16 springs. The conical compression spring physical parameters are shown in Table 4-5. The resonant frequencies and phase velocities of the Krauklis wave from different compliant crack models are s...


	4.5 Discussion
	4.5.1 Open-end fracture
	All the fracture models presented are subjected to open-end vibration condition which means the standing waves have displacement antinodes (maximum displacement) at the ends of the fracture. If we ignore complex solid-fluid interactions and just focus...

	4.5.2 Closed-end fracture
	To compare with the open-end fracture, we also conducted the experiment for flat fracture with closed-end fracture for 4.5 mm thickness. In Figure 4-23(a), instead of some deconstructive traces observed in an open-end fracture in Figure 4-4, all the t...

	4.5.3 Application
	One of the applications of the Krauklis wave is to determine the fracture size. Lipovsky & Dunham (2015) presented a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and c...
	𝐿=,1-2.,,𝜋𝜈,,,,𝐺-𝑆.-(1−,𝜐-𝑠.)𝜌..-2.,,,𝑄-𝑟-2.-,𝑓-𝑟-5.... -1/6.            ,10.
	2,𝑤-0.=,𝑄-𝑟.,,𝜈-𝜋,𝑓-𝑟....                                             ,11.
	where 𝜈 is the fluid kinematic viscosity, ,𝐺-𝑆. is the shear modulus of the aluminum plate, ,𝜐-𝑠. is the Poisson’s ratio, 𝜌 is the fluid density, ,𝑄-𝑟. is the quality factor at the resonant frequency, ,𝑓-𝑟. is the resonant frequency, ,𝑤-0. ...
	The solid and fluid parameters to calculate the fracture geometry using equations 10 and 11 are shown in Table 4-7. Take the 4.5 mm thickness fracture filled with water for example to test the feasibility of the equations (10) and (11). We calculate t...


	4.6 Conclusion
	We conducted numerous experiments to investigate the effects of the crack stiffness, viscous damping, compliance and geometry on the resonance, dissipative and dispersion characteristics of the Krauklis waves. Therefore, we divide our experiments into...
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	5 Conclusion
	In this study we conducted laboratory experiments to investigate the properties of fluid-filled fractures and the Krauklis waves propagate in it. Optical and acoustic experiments are combined to visualize the fluid dynamic with the fluid-filled fractu...
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