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The modular expression patterns of three pigmentation genes prefigure 
unique abdominal morphologies seen among three Drosophila species 

William A. Dion , Mujeeb O. Shittu , Tessa E. Steenwinkel , Komal K.B. Raja 1, Prajakta P. Kokate , 
Thomas Werner * 

Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

To understand how novel animal body colorations emerged, one needs to ask how the development of color 
patterns differs among closely related species. Here we examine three species of fruit flies – Drosophila guttifera 
(D. guttifera), D. palustris, and D. subpalustris – displaying a varying number of abdominal spot rows. Through in 
situ hybridization experiments, we examine the mRNA expression patterns for the pigmentation genes Dopa 
decarboxylase (Ddc), tan (t), and yellow (y) during pupal development. Our results show that Ddc, t, and y are co- 
expressed in modular, identical patterns, each foreshadowing the adult abdominal spots in D. guttifera, 
D. palustris, and D. subpalustris. We suggest that differences in the expression patterns of these three genes 
partially underlie the morphological diversity of the quinaria species group.   

1. Introduction 

The complexity and diversity of animal body coloration in the nat-
ural world are astounding. Unique patterns like cheetah spots and zebra 
stripes beg the question – how did these traits evolve? To understand 
how novel morphologies arose, one needs to ask how alterations to 
organismal development occurred over evolutionary time (Raff, 2000). 
Butterfly wings have served as a system to unravel the molecular 
mechanisms underlying complex pattern development (Carroll et al., 
1994; Matsuoka and Monteiro, 2018; Monteiro et al., 2013; Zhang and 
Reed, 2016; Zhang et al., 2017), and the examination of American 
cockroaches, large milkweed bugs, and twin-spotted assassin bugs pro-
gressed the knowledge of the process of body coloration (Lemonds et al., 
2016; Liu et al., 2014; Zhang et al., 2019). Moreover, pigmentation has 
been shown to be vital to the lifecycles of agricultural pests and human 
disease vectors, such as the Asian tiger mosquito, black cutworm, brown 
planthopper, and kissing bug (Berni et al., 2020; Chen et al., 2018; Liu 
et al., 2019; Lu et al., 2019; Noh et al., 2020; Sterkel et al., 2019). 
However, these studies were built upon the robust knowledge of pattern 
and pigmentation development gained through the study of fruit flies, in 
particular, D. melanogaster. 

The role of D. melanogaster as a model to understand fruit fly 
pigmentation spans decades (Brehme, 1941; Wright, 1987). Recent 

studies have examined the relationship between pigmentation and 
thermal plasticity (De Castro et al., 2018; Gibert et al., 2017), and how 
pigmentation of the male sex comb contributes to Drosophila mating 
success (Massey et al., 2019b). Investigating how pigmentation develops 
in D. melanogaster provided the foundation to understand the same 
processes in other fruit flies. This knowledge, in turn, has facilitated 
studies of species divergence (Lamb et al., 2020) and positioned 
Drosophila pigmentation as a model to study how gene-regulatory net-
works – the regulatory mechanisms responsible for organismal devel-
opment (Davidson and Levin, 2005) – evolved (Camino et al., 2015; 
Gibert et al., 2018; Grover et al., 2018; Ordway et al., 2014; Rebeiz and 
Williams, 2017; Roeske et al., 2018). The Drosophila pigmentation 
pathway with the enzymes and reactions necessary to produce black, 
brown, and yellow coloration seen on the bodies of fruit flies, is shown in 
Fig. 1 (Gibert et al., 2017; Massey et al., 2019a; Rebeiz and Williams, 
2017; True et al., 2005; Wittkopp et al., 2003). 

While the process of Drosophila pigmentation patterning involves 
many genes, our study focuses on three: Ddc, t, and y, which are all 
essential for the production of black and brown coloration. Ddc is inte-
gral to the development of Drosophila pigmentation, with the mutant 
phenotype lacking the dark coloration seen on the wild type fly (Walter 
et al., 1996; Wright et al., 1976). The genes t and y are also required for 
melanization. Mutants of the t gene exhibit a tan as opposed to a black 
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body pigmentation (Hotta and Benzer, 1969; McEwen, 1918; True et al., 
2005), while y mutants display a yellow body color (Biessmann, 1985; 
Brehme, 1941). 

D. melanogaster has a relatively simple abdominal pigmentation 
pattern, as compared to other Drosophila species. The quinaria group, an 
adaptive radiation of non-model fruit flies, displays a great variety of 
abdominal and wing pigmentation patterns (Bray et al., 2014; Werner 
et al., 2018). This abundant morphological diversity and the recent 
divergence of the lineage (approximately 10–20 million years ago 
(Izumitani et al., 2016; Spicer and Jaenike, 1996)) will help facilitate the 

identification of molecular mechanisms underlying differences in spe-
cies morphology. One member of the quinaria group, D. guttifera, has 
emerged as a model to study complex pattern development (Fukutomi 
et al., 2020; Koshikawa et al., 2015, 2017; Raja et al., 2020; Shittu et al., 
2020; Werner et al., 2010). 

The abdominal spot pattern of D. guttifera consists of six rows of 
spots: three rows on the left side (dorsal, median, and lateral row), 
which are mirrored on the right side of the abdomen (Fig. 2). D. palustris 
lacks a pattern module (and sometimes two) of those seen in D. guttifera: 
the dorsal pair of spot rows is always missing; while the median spots 

Fig. 1. The pigmentation pathway of Drosophila. This illustration of the pigmentation pathway is adopted from (Gibert et al., 2017; Massey et al., 2019a; Rebeiz 
and Williams, 2017; True et al., 2005; Wittkopp et al., 2003). Tyrosine is converted to dopa by Pale, which is then converted into dopamine by Dopa decarboxylase 
(encoded by Ddc). Dopamine proceeds one of four ways: Yellow (encoded by y) can convert it into black melanin; it can become brown pigment through the activity 
of phenol oxidases; it can be converted into N–acetyl dopamine (NADA) through arylalkylamine N-acetyl transferases (aaNATs) and thus result in a lack of 
pigmentation through the activity of phenol oxidases; or it may become N-β-alanyl dopamine (NBAD) through the activity of Ebony, followed by a transition to a 
yellow-tan pigment by phenol oxidases. The protein Tan (encoded by t) functions opposite of Ebony by converting NBAD into dopamine. The gene products for Ddc, t, 
and y are highlighted. 

Fig. 2. Spot pattern complexity in the quinaria species group. Three members of the quinaria group are shown from a lateral view. The dorsal (d), median (m), 
and lateral (l) rows of spots are labeled. Images are from (Werner et al., 2018). 
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display varying intensity and can even be completely absent (Werner 
et al., 2018). The most extreme reduction of this patterning theme 
among the three species is evident in D. subpalustris, where only the 
lateral pair of spot rows is present (Fig. 2). Thus, the interspecific and 
even intraspecific differences in spot patterns are facilitated by the se-
lective presence or absence of entire spot row pairs (modules) on the 
adult abdomens. 

In addition to displaying spots, the abdomens of each of the three 
fruit fly species exhibit wide areas of dark shading. D. guttifera shows two 
somewhat distinct shaded regions: a wide swath that is shared by all 
three species encompassing the spotted region, plus a specific dorsal 
midline shade. Furthermore, D. guttifera shows blackish stripes along the 
dorsal segment boundaries, which are absent in the other two species. 

In the current study, we show that abdominal color pattern diversity 
among the quinaria species group members D. guttifera, D. palustris, and 
D. subpalustris is strictly modular and that Ddc, t, and y are co-expressed 
in identical patterns where dark spots will appear. 

2. Results 

2.1. D. guttifera pattern development 

The gene expression patterns of Ddc, t, and y during pupal develop-
ment foreshadowed the abdominal adult spots of D. guttifera. Ddc mRNA 
was detected at pupal stages P10, P12 and P13, t mRNA at P11 and P12, 
and y mRNA at P10 (Fig. 3) (see section 5.2 for information regarding 
pupal (P) stages). For the rest of the pattern, only y expression correlated 
with both the dorsal midline shade and intersegment stripes at stage P10 
(Fig. 4). However, we were unable to detect any gene expression 

Fig. 3. The in situ hybridization signals of Ddc, t, and y during D. guttifera pupal development foreshadowed the adult spot pattern. The spot rows are 
labeled as dorsal (d), median (m), and lateral (l). (A, B) Adult D. guttifera from a dorsal and lateral view, respectively (Werner et al., 2018). (C, D, E) Ddc mRNA 
expression at stages P10, P12, and P13, respectively. (F, G) t mRNA at stages P11 and P12, respectively. (H, I) y mRNA expression at stage P10. 

Fig. 4. The in situ hybridization result of y during D. guttifera pupal 
development correlated with the adult abdominal dorsal midline shading 
and the intersegment stripes. (A) Dorsal view of adult D. guttifera (Werner 
et al., 2018). (B) y mRNA expression at stage P10 foreshadowing the dorsal 
midline shading and the intersegment stripes. 
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foreshadowing the broader shading around the dorsal and median spot 
rows. 

2.2. D. palustris pattern development 

D. palustris lacks at least three components of the D. guttifera pattern: 
the dorsal pair of spot rows (sometimes even the median spot row pair), 
the dorsal midline shade, and the intersegment stripes. Just as in 
D. guttifera, the mRNA expression patterns of Ddc, t, and y prefigured the 
adult D. palustris spot pigmentation. Ddc mRNA was present at stages 
P11 and P12, t at P11 and P12, and y at P10 and P12 (Fig. 5). However, 
only the expression of t mRNA at stage P12 correlated with the shading 
pattern (Fig. 6). 

2.3. D. subpalustris pattern development 

D. subpalustris exhibits the simplest pattern among the three species 
studied: one pair of lateral spot rows and shading similar to that of 
D. palustris. The Ddc, t, and y expression patterns during pupal devel-
opment foreshadowed the abdominal spots of D. subpalustris; in situ 
hybridization signals were seen for Ddc at stage P11 and between stages 
P11 and P12, t at stages P11 and P12, and y at stage P10 (Fig. 7). The 
shading pattern is prefigured by Ddc mRNA at stage P11 (Fig. 8). 

3. Discussion 

Here we show the evidence of pigmentation gene expression patterns 
prefiguring the complex coloration of three Drosophila species. Ddc, t, 
and y are spatially co-expressed in the developing abdomens, precisely 
foreshadowing the diverse dark spots in three quinaria group species. 

Fig. 5. The in situ hybridization signals of Ddc, t, and y during D. palustris pupal development foreshadowed the abdominal spot pattern. The spot rows are 
labeled as median (m) and lateral (l). (A, B) Adult D. palustris from a dorsal and lateral view, respectively (Werner et al., 2018). (C, D) Ddc mRNA expression at stages 
P11 and P12, respectively. (E, F) t gene expression foreshadowing spots at stages P11 and P12, respectively. (G, H) y mRNA expression at stages P10 and P12, 
respectively. 
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Interestingly, the shades and intersegment stripes are uniquely fore-
shadowed by only one of the three genes: Ddc in D. subpalustris, t in 
D. palustris, and y in D. guttifera. These data suggest that the regulation of 
Ddc, t, and y possibly co-evolved to paint complex abdominal spot pat-
terns in concert, but not to collectively regulate the shading. 

The spot pattern diversity seen among the three non-model species 
alone position them as an emerging system to study color pattern di-
versity. We show correlative evidence that the co-expression of three 
pigmentation genes is likely responsible for the spot patterning of these 
three quinaria group species. Intriguingly, each pair of spot rows behaves 
like a set of independent, serial homologs, similar to the repetitive 
pattern elements within butterfly wing sections (Monteiro, 2008). Thus, 
these fruit fly abdominal pigmentation patterns may have broader im-
plications to progressing our understanding of color pattern evolution 
and development across insects. 

We show the expression patterns of three genes occurring at different 
pupal stages, ranging from P10 to P12. However, it has been shown in 
D. guttifera that this developmental timeframe is very short (P10 lasts 
almost 12 h, however stages P11 through P13 are completed in less than 
10 h (Fukutomi et al., 2017). Thus, we cannot state that these genes’ 
activities are restricted to the developmental stages shown here. It is also 
important to note that the lack of in situ hybridization signal could be a 
result of gene expression levels below the detection limit. This is likely 
why there is little to no signal among the pigmentation genes fore-
shadowing the median rows of spots in D. palustris. Additionally, the 
many tiny dots of in situ hybridization signal seen on the abdomens most 
likely correlate with the bristle sockets of the developing fly. 

To fully understand the role of each gene in these three species’ color 
pattern development, we must utilize RNA interference and gene 

overexpression, as well as CRISPR/Cas9 approaches. Transgenic 
methods are established in D. guttifera (Shittu et al., 2020), and devel-
oping similar protocols to produce transgenic D. palustris and 
D. subpalustris will facilitate our further understanding of how color 
pattern development evolved among these three species. Pursuing the 
development of such approaches will facilitate a robust investigation of 
the mechanisms underlying these three species’ morphological di-
versity. Furthermore, these advances will facilitate access to study the 
complex patterning of the 26 members (Scott Chialvo et al., 2019) of the 
quinaria species group, which displays many modular combinations of 
spots, stripes, and shapes. 

4. Conclusion 

Our research is the first to show the expression patterns of pigmen-
tation genes in D. palustris and D. subpalustris. Additionally, we provide 
further data with regards to an emerging model organism to study 
complex color pattern development in D. guttifera. Here, we provide 
qualitative evidence that the modular activities of Ddc, t, and y prefigure 
the abdominal spot patterns seen among these three species. These data 
offer a starting point for future transgenic studies to better understand 
the molecular mechanisms that underlie these unique modular mor-
phologies. Our understanding of complex color pattern development is 
far from complete; however, continuing to study these three fruit flies, 
and the quinaria group as a whole, will help us connect the dots. 

5. Experimental procedures 

5.1. Drosophila stocks – D. guttifera, D. palustris, and D. subpalustris 

D. guttifera and D. subpalustris were purchased from the Drosophila 
Species Stock Center, stock numbers 15130–1971.10 and 
15130–2071.00, respectively. We collected D. palustris in Waunakee, 
Wisconsin. All fly stocks were maintained at room temperature on 
cornmeal-sucrose-yeast medium (Werner et al., 2018). 

5.2. Identification of pupal stages 

Pupal developmental stages for D. guttifera were determined ac-
cording to (Bainbridge and Bownes, 1981; Fukutomi et al., 2017). The 
same characteristics used to establish D. guttifera pupal stages were seen 
in D. palustris and D. subpalustris pupae, and were therefore used to 
determine the developmental stages of these two fruit flies. 

5.3. In situ hybridization probe design for Ddc, t, and y 

RNA in situ hybridization probes were 200–500 bases in length. We 
used Mean Green PCR Master Mix (Syzygy Biotech Solutions) to amplify 
the partial coding regions with forward and reverse primers (Table 1). 
The PCR products were extracted and purified with a Thermo Scientific 
GeneJET Gel Extraction Kit and cloned into the pGEM-TEasy vector, 
using E. coli DH5α cells. Colony PCR with the M13 forward and reverse 
universal primer pair was used for screening, and the Thermo Scientific 
GeneJET Plasmid Miniprep Kit was used for plasmid purification. The 
insertion direction into the pGEM-TEasy vector was determined through 
PCR with the M13 forward universal primer and either the internal 
forward or internal reverse primer (Table 1). Depending on the insertion 
direction, either SP6 or T7 RNA polymerase was used to produce a DIG 
(digoxigenin)-labeled RNA anti-sense probe (Roche DIG RNA Labelling 
Kit (SP6/T7)). GenePalette was used for computational biology (Rebeiz 
and Posakony, 2004). 

Fig. 6. The in situ hybridization result of t during D. palustris pupal 
development correlated with the adult abdominal shading. (A) Lateral 
view of adult D. palustris (Werner et al., 2018). (B) t mRNA expression at stage 
P12 prefiguring the shading. 
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Fig. 7. The in situ hybridization signals for Ddc, t, and y during D. subpalustris pupal development prefigured the abdominal spot pattern. The spot rows are 
labeled as lateral (l). (A, B) Adult D. subpalustris from a dorsal and lateral view, respectively (Werner et al., 2018). (C, D) Ddc gene expression foreshadowing spots at 
stage P11 and between stages P11 and P12, respectively. (E, F) t gene expression at stage P11 and P12, respectively. Image (E) is taken from a ventral view. (G, H) y 
mRNA expression at stage P10. 
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5.4. Preparation of pupae for RNA in situ hybridization 

When pupae matured to the desired developmental stage, they were 
cut along the anterior-posterior axis either between the eyes or on their 
side through the eyes. The pupal halves were fixed in 4% para-
formaldehyde (Electron Microscopy Sciences) and kept at − 20 ◦C in 
pure ethanol. 

5.5. In situ hybridization of the pupae 

The in situ hybridization procedure was adopted from (Jeong et al., 
2008). The tissues were washed between each step with PBST. On the 
first day, pupae were treated with a 1:1 xylenes to ethanol mixture to 
remove residual fat tissue. The pupal tissue was then fixed (4% para-
formaldehyde), treated with Proteinase K (from Tritirachium album, 
Sigma-Aldrich) for 10–15 min (1:25,000 dilution of a 10 mg/mL stock 
solution), fixed again (4% paraformaldehyde), and then incubated with 
the anti-sense RNA probe (1:500 dilution) for 18–72 h at 64 ◦C–65 ◦C. 
Pupae were gently agitated periodically. The pupae were then incubated 
in Roche α-DIG AP Fab Fragments (1:6000) at 4 ◦C overnight. On the 
final day, the tissues were incubated with the BCIP/NBT staining solu-
tion (Promega) in the dark until patterns were fully developed 
(approximately two to 18 h). 

5.6. Imaging of Ddc, t, and y expression patterns after in situ 
hybridization 

z-Stacks of images were taken with Olympus cellSens software, using 
an Olympus SZX16 microscope and an Olympus DP72 camera. The 
digital images were stacked with Helicon Focus software. 

5.7. Key Resources Table 

For a summary of the resources essential to replicating this study, 
please see the Key Resources Table.  

Reagent or resource Source Identifier 

Antibodies                

Bacterial and Virus Strains                

Biological Samples                

Chemicals, Peptides, and Recombinant Proteins                

Critical Commercial Assays       

(continued on next page) 

Fig. 8. The in situ hybridization result for Ddc during D. subpalustris pupal 
development foreshadowed the adult abdominal shading. (A) Lateral view 
of adult D. subpalustris (Werner et al., 2018). (B) Ddc mRNA expression at 
stage P11. 

Table 1 
Primers used to construct in situ hybridization probes. The D. guttifera Ddc 
exon 3 forward and reverse primer pair was used to amplify D. guttifera genomic 
DNA to make the probe to test for D. guttifera Ddc expression. Primer set (a) was 
used to generate Fig. 3 (C), while set (b) was used for Fig. 3(D) and (E). The 
D. guttifera t exon 5 forward and reverse primer pair amplified D. guttifera 
genomic DNA to produce the probe used to characterize t in all three species. The 
forward and reverse primer pair for D. guttifera y exon 2 was used to amplify 
D. guttifera genomic DNA to develop the probe to determine y expression in 
D. guttifera. The D. palustris forward and reverse primer pairs for Ddc exon 3 and y 
exon 2 were used to amplify D. palustris genomic DNA to make the probes used to 
determine Ddc and y expression patterns in both D. palustris and D. subpalustris. 
Our choice to use probes constructed from a different species’ DNA was based on 
the close relationship of the quinaria species group (Izumitani et al., 2016; Spicer 
and Jaenike, 1996). All internal forward and internal reverse primer pairs were 
used for verification of the gene identity during the probe-making process.  

Primer Name Primer Sequence 
D. guttifera Ddc exon 3 (a) forward CACATGAAGGGCATCGAGACCGC 
D. guttifera Ddc exon 3 (a) reverse CATGCGCAAGAAGTAGACATCCCG 
D. guttifera Ddc exon 3 (a) internal forward CAACTTTGACTGCTCGGC 
D. guttifera Ddc exon 3 (a) internal reverse CATGTTCACCTCAGCAGC 
D. guttifera Ddc exon 3 (b) forward AGCCATTGATTCCGGATGCGG 
D. guttifera Ddc exon 3 (b) reverse AATCGTGTGCTCATCCCACTCG 
D. guttifera Ddc exon 3 (b) internal forward ACTGGCACAGTCCCAAGTTCC 
D. guttifera Ddc exon 3 (b) internal reverse CATCTTGCCCAGCCAATCTAGC 
D. guttifera t exon 5 forward CAGCGTCTGCTTGGCCACACG 
D. guttifera t exon 5 reverse TTGCCGCTGCGCAACAATTCGG 
D. guttifera t exon 5 internal forward GCTGAATCATTACTACTTTGTGG 
D. guttifera t exon 5 internal reverse AATGGTGTTGATGCTGAACACG 
D. guttifera y exon 2 forward CCAACATCGCCGTGGACATTG 
D. guttifera y exon 2 reverse AATTGCGGAGTGTACGGCATCG 
D. guttifera y exon 2 internal forward CTCCTACTTCTTCCCGGATCCC 
D. guttifera y exon 2 internal reverse ATCAGATTGAACAGCTCGACGCC 
D. palustris Ddc exon 3 forward TATCGTCATCACATGAAGGGC 
D. palustris Ddc exon 3 reverse GCCATGCGCAAGAAGTAGAC 
D. palustris Ddc exon 3 internal forward TGAAGCACGACATGCAGGG 
D. palustris Ddc exon 3 internal reverse CAGACCCATGTTCACCTC 
D. palustris y exon 2 forward GAGGAGGGCATCTTTGGC 
D. palustris y exon 2 reverse CGATGCCATGGAATTGCGG 
D. palustris y exon 2 internal forward TCTCGCACCGAGGACAGC 
D. palustris y exon 2 internal reverse CGATCAGATTGAACAGCTCG  

W.A. Dion et al.                                                                                                                                                                                                                                 
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(continued ) 

Reagent or resource Source Identifier          

Deposited Data                

Experimental Models: Cell Lines                

Experimental Models: Organisms/Strains 
Drosophila guttifera This paper Drosophila Species Stock Center, 

stock number 15130–1971.10. Note 
that this stock was not available 
through the Drosophila species stock 
center as of July 5, 2020 and is 
available from the laboratory of Dr. 
Thomas Werner at Michigan 
Technological University by request. 

Drosophila palustris This paper N/A – Available from the Laboratory 
of Dr. Thomas Werner at Michigan 
Technological University by request. 

Drosophila subpalustris This paper Drosophila Species Stock Center, 
stock numbers 15130–2071.00. Note 
that this stock was not available 
through the Drosophila species stock 
center as of July 5, 2020 and is 
available from the laboratory of Dr. 
Thomas Werner at Michigan 
Technological University by request.          

Oligonucleotides 
Primers for in situ 

hybridization probes, 
see Table 1 

This paper N/A             

Recombinant DNA                

Software and Algorithms 
GenePalette Software Rebeiz and 

Posakony 
(2004) 

http://www.genepalette.org/ 

Olympus cellSens N/A https://www.olympus-lifescience. 
com/en/software/cellsens/ 

Helicon Focus N/A https://www.heliconsoft.com/helico 
nsoft-products/helicon-focus/       

Other 
DIG RNA Labelling Kit 

(SP6/T7) 
Roche https://www.sigmaaldrich.com/ca 

talog/product/roche/11175025910? 
lang=en&region=US 

α-DIG AP Fab Fragments Roche https://www.sigmaaldrich.com/ca 
talog/product/roche/11093274910? 
lang=en&region=US 

BCIP/NBT staining 
solution 

Promega https://www.promega.com/product 
s/biochemicals-and-labware/bioch 
emical-buffers-and-reagents/bcip_ 
nbt-color-development-substrate-_ 
5_bromo_4_chloro_3_indolyl_phosph 
ate_nitro-blue-tetrazolium_/?cat 
Num=S3771 

(continued on next column)  

(continued ) 

Reagent or resource Source Identifier 

Proteinase K from 
Tritirachium album 

Sigma-Aldrich https://www.sigmaaldrich.com/cata 
log/product/sigma/p6556?lang=e 
n&region=US     

Funding 

This work was supported by a National Institutes of Health grant (to 
TW) (grant number 1R15GM107801–01A1). The funding source had no 
influence in the study design; collection, analysis and interpretation of 
data; in the writing of the report; and in the decision to submit the article 
for publication. 

CRediT authorship contribution statement 

William A. Dion: Data curation, Investigation, Project administra-
tion, Visualization, Writing - original draft, Writing - review & editing. 
Mujeeb O. Shittu: Supervision, Investigation, Writing - review & edit-
ing. Tessa E. Steenwinkel: Resources, Writing - review & editing. 
Komal K.B. Raja: Investigation, Writing - review & editing. Prajakta P. 
Kokate: Investigation, Writing - review & editing. Thomas Werner: 
Conceptualization, Funding acquisition, Resources, Validation, Meth-
odology, Writing - review & editing. 

Declaration of competing interest 

None. 

Acknowledgments 

We thank Dr. Rupali Datta for valuable comments on the manuscript. 

References 

Bainbridge, S.P., Bownes, M., 1981. Staging the metamorphosis of Drosophila 
melanogaster. J. Embryol. Exp. Morphol. 66 (1), 57–80. 

Berni, M., Bressan, D., Simão, Y., Julio, A., Oliveira, P.L., Pane, A., et al., 2020. 
Pigmentation loci as markers for genome editing in the Chagas disease vector 
Rhodnius prolixus. bioRxiv. https://doi.org/10.1101/2020.04.29.067934, 
2020.2004.2029.067934.  

Biessmann, H., 1985. Molecular analysis of the yellow gene (y) region of Drosophila 
melanogaster. Proc. Natl. Acad. Sci. U. S. A. 82 (21), 7369–7373. https://doi.org/ 
10.1073/pnas.82.21.7369. 

Bray, M.J., Werner, T., Dyer, K.A., 2014. Two genomic regions together cause dark 
abdominal pigmentation in Drosophila tenebrosa. Heredity 112 (4), 454–462. https:// 
doi.org/10.1038/hdy.2013.124. 

Brehme, K.S., 1941. The effect of adult body color mutations upon the larva of Drosophila 
melanogaster. Proc. Natl. Acad. Sci. U. S. A. 27 (6), 254–261. https://doi.org/ 
10.1073/pnas.27.6.254. 

Camino, E.M., Butts, J.C., Ordway, A., Vellky, J.E., Rebeiz, M., Williams, T.M., 2015. The 
evolutionary origination and diversification of a dimorphic gene regulatory network 
through parallel innovations in cis and trans. PLoS Genet. 11 (4), e1005136 https:// 
doi.org/10.1371/journal.pgen.1005136. 

Carroll, S., Gates, J., Keys, D., Paddock, S., Panganiban, G., Selegue, J., Williams, J., 
1994. Pattern formation and eyespot determination in butterfly wings. Science 265 
(5168), 109–114. https://doi.org/10.1126/science.7912449. 

Chen, X., Cao, Y., Zhan, S., Zhang, Y., Tan, A., Huang, Y., 2018. Identification of yellow 
gene family in Agrotis ipsilon and functional analysis of Aiyellow-y by CRISPR/Cas9. 
Insect Biochem. Mol. Biol. 94, 1–9. https://doi.org/10.1016/j.ibmb.2018.01.002. 

Davidson, E., Levin, M., 2005. Gene regulatory networks. Proc. Natl. Acad. Sci. U. S. A. 
102 (14) https://doi.org/10.1073/pnas.0502024102, 4935–4935.  

De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E., Gibert, J.-M., 2018. Bric à brac 
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