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Abstract

The potential to track and view objects in space from the ground with greater near

real time knowledge of the intervening turbulence would be a revolutionary capabil-

ity. The objective of this thesis is to cross-validate two separate methods used to

estimate the Fried parameter. This verification is a step toward a commercial grade

product that would make real-time estimates of the turbulence strength along an op-

tical path from a ground-based observatory to a satellite in orbit around the Earth.

Michigan Technological University has developed a multi-frame blind deconvolution

(MFBD) algorithm used to estimate r0 and it was tested against MZA’s Delayed Tilt

Anisoplanatism (DELTA) software. Important realizations about MFBD initializa-

tion parameters were made during this study. Key results from the study included

that approximately 62% of the final MTU r0 estimates were in between the DELTA

r0A and r0B estimates. Only 8.3% of all of the results are more than 1 cm outside of

the r0A and r0B range. The outcome of these experiments has shown that overall the

MTU results fall very close to or within the range of the estimated DELTA results.

xix





Chapter 1

Introduction

1.1 Scope

The goal for this thesis is to experimentally verify a method that will ultimately

progress to the level of a commercial grade product in order to make real-time es-

timates of the turbulence strength along an optical path from a ground-based ob-

servatory to a satellite in orbit around the Earth. This ability would benefit a vast

amount of fields, but using it for military operations and astronomy are the main

focus here. It would aid the military branches in defense and surveillance, where as it

would be a great new resource for scientists or civilians interested in astronomy. The

potential to track and view objects in space from the ground with greater near real
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time knowledge of the intervening turbulence would be a revolutionary capability.

Light propagating through the atmosphere is strongly affected by turbulent motion

of air. The physical mechanism which gives rise to this effect is a combination of

differential heating of the Earth, the buoyancy of air, and the low kinematic viscosity

of air causing randomly sized and shaped pockets of air with uniform temperature,

referred to as turbulent eddies, to be constantly mixing. Since the index of refraction

of air is very sensitive to temperature, and as a result the index of refraction of the

atmosphere is constantly and randomly changing in space and time. Optical systems

experience this as a time varying aberration which strongly limits the ability to focus

light which has passed through the atmosphere, or project laser beams through the

atmosphere without using advanced adaptive optics systems. Adaptive optical system

performance can be optimized based on knowledge of the turbulence statistics [1].

The goal of this thesis research project was to conduct an outdoor experimental data

gathering and processing campaign to experimentally validate a technique that had

been previously demonstrated only in simulation.

The previously developed technique is based on multi-frame blind deconvolution

(MFBD). In MFBD multiple short exposure images of the target are measured and

then processed in a non-linear optimization-based algorithm to jointly estimate both

the object and the aberrations associated with each image. In the past the goal

was to obtain the best possible image, and the aberration parameter estimates were
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nuisance parameters that had to be computed as part of the MFBD processing. How-

ever, in the simulation work leading to this project it was shown that the aberration

parameters could be used to estimate the turbulence strength [2].

Our corporate partner for the project, MZA Corp. of Dayton, OH, has independently

developed a similar capability and packaged it in a camera and processing system they

call DELTA. For operational reasons not relevant to this thesis it was desirable to

compare performance of DELTA with the MFBD-based technique. With this in mind

we developed a measurement and processing system that would allow us to make this

comparison with real data gathered over the 3 km horizontal path between the Dow

building on the Michigan Technological University campus and the Huntington Bank

building in Hancock, MI.

The key results of this thesis are that MTU’s estimates more closely follow r0A than

r0B. About two thirds of the MTU results were in between r0A and r0B. The average

of the majority of the estimates was around 3 cm.

The remainder of this thesis is organized as follows:

1. Verification: a brief description of MZA and MTU’s software.

2. Background: an in-depth explanation of the mathematics and theory behind

MFBD and the Fried Parameter.
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3. Methods: the procedures taken to set up data collection and the reasoning

behind parameter assumptions.

4. Results: graphical comparisons of MTU and MZA’s r0 estimations.

5. Conclusion and Future Work: discussion surrounding overall results and oppor-

tunities to expand on based off of this thesis.

1.2 Verification

MZA Associates Corporation is collaborating with Michigan Technological Univer-

sity to accomplish this goal. MZA is known for working with High Energy Lasers

(HEL) and advanced optical systems. MTU has vast experience in research with

image processing techniques. Combining past projects and experience allows for the

cross-verification of two methods that determine interesting characteristics of the at-

mosphere.

1.2.1 MZA’s DELTA Software

MZA is the developer of the DELTA Imaging Path Turbulence Monitor, which has

been verified and commercialized for up to two kilometers in path distance [3]. It needs

to be modified to be accurate at longer distances, so testing it and cross-validating

4



the results with a separate method MTU has will expand that path potential. This

system views a stationary object with several trackable features, and then it estimates

the non-uniform C2
n(z) profile associated with the atmospheric turbulence between the

sensors and the target [4]. This refractive-index structure parameter profile is derived

using path-weighting functions along the known propagation path. The atmospheric

coherence width, better known as Fried’s parameter, is another useful descriptor of

atmospheric turbulence information. The focus of this study revolves around the

estimation of Fried’s parameter, r0, which can be used in the calculation of C2
n(z) [5].

1.2.2 MTU’s MFBD Code

MTU has developed a post-processing code that inputs a stack of distorted images

and uses a multi-frame blind deconvolution technique to reconstruct an average image

while estimating r0 over a mean squared error curve. This method will be explained

in detail in later sections. The minimum MSE is the best resulting conclusion for

the Fried parameter over the set of images processed. With this in mind, the MTU

MFBD and MZA DELTA results for r0 can be compared over a few hours span of

time [2].

A rigorous comparison between MZA’s DELTA method and MTU’s MFBD technique

to estimate the Fried parameter will cross-validate the systems and allow for an

5



accurate representation of atmospheric conditions across a long horizontal path.
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Chapter 2

Background Information

2.1 Multi-Frame Blind Deconvolution

Multi-frame blind deconvolution is a process that jointly estimates an image along

with the image’s point spread function. There are many assumptions that must be

made in order to use this technique. These will be explained later on, as a better

understanding of the method as a whole is needed first.

MFBD takes a stack of images as its input. These images are corrupted by both

atmospheric turbulence and Gaussian noise that is produced within all CCD/CMOS

imaging systems. The standard linear imaging model shown below in equation 2.1 is

the basis that this entire process stems from.
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dk(~x) = o(~x) ∗ sk(~x) + nk(~x) (2.1)

The object, o(~x), is constant and unchanging. The vector sk(~x) represents the optical

system’s individual point spread functions for each image. The convolution of the two

eludes to a set of images that are corrupted by turbulence, but have no measurement

noise. The noise must be accounted for, so it is added to the estimate as nk(~x)

which is zero mean Gaussian noise with the same standard deviation at every pixel.

The term dk(x) defines the k’th image in the stack [6]. The PSF’s have a special

relationship with the generalized pupil function where the modulus squared of the

Fourier transform of the GPF is equal to the PSF. This association, shown in equation

2.2 is relevant, since the PSF’s in this case are unknown and need to be estimated

for MFBD.

sk(~x) = |F [Hk(~u)]|2 (2.2)

The vector ~x is a coordinate in the image plane calculated by:

~f =
~x

λfl
(2.3)

8



Lambda is the mean wavelength and fl is the focal length of the imaging system.

Now, the generalized pupil function is key because it is used to describe turbulence

effects on imaging systems. The GPF is shown below.

Hk(~u) = |H(~u)|ejφk(~u) (2.4)

The vector ~u is a 2-D coordinate in pupil space where as φk(~u) is a parameter repre-

senting the different phase aberrations in the imaging system. These phase aberra-

tions can be expressed in terms of summing Zernike orthonormal functions together.

Using Zernike polynomials in this sense accounts for the many fixed and random aber-

rations that occur in imaging systems due to diffraction and path length variability.

The summing function is expressed below in equation 2.5.

φ̃k(~u, ~αk) ≈
J∑
j=1

αj,kφj(~u) (2.5)

The Zernike basis functions φj(~u) are weighted by the corresponding coefficients αj,k,

which are referred to as Zernike coefficients. These Zernike coefficients are random

Gaussian numbers with a unity variance and mean of 0.5. These Zernikes can be im-

plemented into the general pupil function to create the relationship shown in equation

2.6.
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Hk(~u, ~αk) = |H(~u)|ejφ̃k(~u,~αk) (2.6)

Now, remembering the association seen in equation 2.2, the PSF can be expressed as

the inverse Fourier transform of the new GPF. This allows for the estimation of the

k’th aberrated PSF as a vector of weighted Zernike polynomials.

sk(~x, ~αk) = |F [Hk(~u, ~αk)]|2 (2.7)

Using the Gaussian noise model, each image dk(x) can be approximated as a random

variable that has a Gaussian probability density function.

dk(x) = o(~x) ∗ sk(~x) + nk(~x) (2.8)

For simplification purposes, let gk(~x, ~αk) be the noise free image that would be present

if the object is o(~x) and the aberrations were represented by ~αk:

gk(~x, ~αk) = o(~x) ∗ sk(~x, ~αk) (2.9)

The likelihood function of the kth image is thus the Gaussian PDF for the noise. The

10



probability density function of this Gaussian noise model is shown below in equation

2.10. The estimate of the object is represented as f(~x, ~αk).

p[dk(~x); f(~x, ~αk)] =
1

(2πσ2
n)1/2

exp

{
− [dk(~x)− gk(~x, ~αk)]2

2πσ2
n

}
(2.10)

The likelihood of this PDF for the entire data set is represented in equation 2.11.

This encompasses the likelihood of the complete data set consisting of all the pixel

intensities in all the corrupted images.

p[dk(~x); f(~x, ~αk)] =
K∏
k=1

∏
xεχ

1

(2πσ2
n)1/2

exp

{
− [dk(~x)− gk(~x, ~αk)]2

2πσ2
n

}
(2.11)

To simplify this analysis, the natural log of the likelihood function can be taken

in order to change products into summations. This Gaussian log-likelihood seen in

equation 2.12 is easier to use for further calculations.

L[f(~x, ~αk)] = −
K∑
k=1

∑
xεχ

[dk(~x)− gk(~x, ~αk)]2 (2.12)

The limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization maximizes the

log-likelihood function by incorporating the gradient in its analytic form with respect

11



to pixel intensities.

∂

∂f
L[f(~x, ~αk)] = 2

K∑
k=1

∑
xεχ

[dk(~x)− gk(~x, ~αk)]
∂

∂f
gk(~x, ~αk)) (2.13)

It also must be represented in terms of the Zernike coefficients which gives way to the

equation shown below.

∂

∂~α
L[f(~x, ~αk)] = 2

K∑
k=1

∑
xεχ

[dk(~x)− gk(~x, ~αk)]
∂

∂~α
gk(~x, ~αk) (2.14)

L-BFGS optimization maximizes this cost function in terms of the true object, the

phase terms, and the Zernike coefficients. It requires an estimate of the gradient of

the log-likelihood function shown previously. It estimates the Hessian by maintaining

the recent estimates of the gradient and the current image intensity. Then using

Matlab, nonlinear optimization is conducted to locate the values of the object and

aberration coefficients that were most likely to have caused those particular distorted

images. It uses the Zernike coefficients as an initial guess to iterate on estimates of

the object and PSF before outputting the r0 with the smallest MSE.

The MSE is calculated by comparing the average OTF obtained from the set of

Zernike coeffients estimated in the course of the MFBD run to the theoretical long

12



exposure OTF which is a function of the Fried parameter r0. The long exposure OTF

is given by:

H(~f, r0) = HDL(~f) exp

{
− 3.44

(
λfl|~f |
r0

)5/3}
(2.15)

where HDL(~f) is the diffraction limited OTF, and fl is the focal length of the imaging

system. It is important to note that H(~f, r0) can be computed from knowledge of

the optical system, and is a strong function of r0. The average OTF associated

with the image data H̃(~f) be estimated using equation 2.6 to compute the estimated

generalized pupil function for each frame after the MFBD run, then computing the

OTF for each frame as described in [7]. It must be noted that the estimated OTF

is also a function of r0, the number of frames used K and the number of iterations

NI . Hence we will write the estimated OTF going forward to make this dependence

explicit as H̃(~f,NI , K) The MSE used to estimate r0 is given by

MSE(r0, NI , K) =
∑

|~f |≤10 samples

[∣∣∣H̃(~f,NI , K)−H(~f, r0)
∣∣∣2] (2.16)

Limiting the band over which MSE(r0, NI , K) is computed was found to be very

important in the Phase I program because the high frequency estimates of the OTF

are quite noisy under almost every condition of interest. After the MFBD calculation

13



MSE(r0, NI , K) is computed for a range of r0 values, and the value of r0 which

minimizes the error is chosen as the estimated r0.

2.2 Atmospheric Turbulence Related Parameters

When attempting to characterize the turbulent atmosphere, this paper will focus on a

comparison of Fried’s parameter. The effective aperture radius of an imaging system

is commonly defined by this parameter, also called the atmospheric coherence radius,

r0. Fried, Roggemann, and Welsh define this mathematically in equation 2.18.

r0 = 0.185

[
4π2

k2
∫ L
0

(L−z
L

)5/3C2
n(z)dz

]3/5
(2.17)

The wave number, k, is defined as k = 2π/λ, where λ is the mean wavelength across

the path. The integral’s limits are the distance from the pupil plane to the scene, z = 0

and z = L. This equation is simplified by assuming that the refractive-index structure

constant over the horizontal path. The formula for calculating Fried’s parameter in

this case is

r0 = (0.16k2C2
nL)3/5 (2.18)
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Physically, r0 represents the largest diameter telescope for which diffraction limited

resolution would be obtained in the presence of turbulence characterized by r0 [7].
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Chapter 3

Methods for MTU MFBD

Processing

3.1 Optical Path, Target, and Data Collection

A long horizontal path of just over three kilometers was chosen to test these atmo-

spheric turbulence conditions through imaging. According to Google Earth this path

is 3018 m in length, and it is approximately 25 m above the surface of the Earth.

The path is shown below in figure 3.1.

Located on the ninth floor of MTU’s Dow building, images were taken with an Cele-

stron VX 11 Schmidt-Cassegrain telescope equipped with a FLIR Grasshopper3 USB3

17



Figure 3.1: Google Earth Image of the Path From the Huntington Bank
Building in Hancock, MI to the Dow Building on the MTU Campus

Mono Vision camera. This system pointed out toward the Huntington Bank building

across the Portage canal. Unfortunately, the telescope had to be moved inside due

to winter weather, but data through the window still suffices as a valid comparison

of the two methods. This indoor viewing area is shown in figure 3.2. A setup with a

patterned target was constructed on top of the bank building, and it can be seen in

figure 3.3.

The main features of the target are the spokes, which are approximately 36 inches

in diameter, and the black patch in the lower left, which has a point-like source in

the center. The spoke target, and the surrounding apparatus on the roof of the bank

provided ample opportunities for testing out MFBD and DELTA codes to estimate

r0. The goal of the point source was to provide a direct estimate of the average point

spread function of the turbulence which would allow for an independent measurement

of r0 to be computed and compared to the MFBD outputs. Many target and light
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Figure 3.2: Image of the Indoor Telescope Setup

combinations were attempted, but there was too much leakage from the light source

to add this third metric to the validation.

Ultimately, combined with the DELTA software, this test setup was used to collect un-

compressed TIFF images that would later be inputs to MTU’s MFBD post-processing

code. The data was collected by first aligning the telescope onto the target. Then

using the camera’s USB connection to a laptop, the DELTA software could be con-

nected to the system. Location geometry including latitude, longitude, and altitude

of the sensor and target were necessary for the process DELTA uses to estimate it’s

outputs. Observation parameters and telescope information such as instantaneous
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Figure 3.3: Photograph of a Version of the Spoke Target on Top of the
Bank Building

field of view (IFOV), wavelength, and diameters had to be inputted into the soft-

ware. The shutter and gain were automatic to allow for changes in daylight over a

span of time. The input parameters are shown in tables 3.1-3.5.

Table 3.1
Platform Location Geometry

Latitude Longitude Altitude
Degree 47 88 649
Minute 7 32
Second 12 47
Direction North West

With these inputs entered, Delta could be run for several hours at a time. For the

purposes relevant to this thesis, it was used to capture data for approximately 2 hour

intervals. A longer period of time was not used due to the uncompressed images
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Table 3.2
Target Location Geometry

Latitude Longitude Altitude
Degree 47 88 692
Minute 7 35
Second 34 7
Direction North West

Table 3.3
Camera Settings

Camera Options Image Options
Auto Exposure Frame Rate (fps) Image Size (pix) Pixel Format

1.00 100 800x800 Raw

Table 3.4
Observation and Telescope Parameters

IFOV (µrad) Lambda (nm) Dobs (m) D (m)
1.23 550 0.056 0.279

Table 3.5
Data Recording

Recording Interval Format
300 frames every 2 min Uncompressed TIFF

requiring a lot of storage space. Sets of 300 images are taken every 2 minutes and

saved. This length of time is still enough to display results useful in comparison of

DELTA’s processing with MTU’s processing method.
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3.2 Post Processing

3.2.1 Assumptions for MFBD

Several steps were taken in order to reduce the processing time from hours to minutes,

and to eliminate to the maximum extent possible the effects of wind buffeting for

outdoor data, and building instabilities due to air handlers and elevator activity in

the indoor setting. The approach to these issues contains the following elements:

1. Choosing a square subframe of the data which contains the target but removes

most of the background in the images. We have for now settled on 250×250

pixel subimages. The size of this subimage is user-selected before a run. Since

the angular sampling of the measurement system is constant, it is likely that

the subimage size will change with target size and range.

2. Choosing a ”search window” bigger than the square subimage and implementing

a spatial cross correlation-based approach for sensing the line-of-sight jitter and

removing it.

3. Modifying the MFBD code to run at the same angular sampling as the mea-

surement system, rather than upsampling to slighty higher than the Nyquist

frequency for the data.

22



4. Finding a reasonable number of iterations and initial Zernike coefficients for the

purposes of the estimating r0 at the minimum MSE.

Now, each of these issues is discussed in further detail.

An 800×800 pixel full image and the 250×250 subimage extracted from one frame of

data is shown in figure 3.4. It was necessary to select a number of images to process,

which in this case is 50. To remove the effects of line of sight jitter, and likely some

of the effects of global atmospheric tilt, a search band of 30 pixels was established

around the 250×250 subimage to yield a 310×310 pixel image. The 50 images to

be processed were then averaged to create a 310×310 pixel reference image used for

sensing shifts.

(a) Full Image (b) Aligned Image

Figure 3.4: Example of a Full 800 × 800 Pixel Image and the Associated
Cropped 250 × 250 Image Used for Processing

The spatial cross correlation between each image in the data set was to be processed
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and compared to the reference image. The location of the peak of the cross correla-

tion is a reasonable measure of the shift between the image being processed and the

reference. The image being processed was shifted to place its centroid in the same

location as the centroid of the reference image, and then it was cropped to 250×250

pixels. This process was applied to each of the 50 images in the data set to prepare

the images for MFBD processing.

We originally had been running the MFBD code with upsampled data as the combi-

nation of aperture diameter, f-number, and pixel pitch results in the raw data being

slightly undersampled from the perspective of the Nyquist theorem. To get to Nyquist

sampling we were upsampling by a factor of two, and then interpolating. There were

two problems with this: (1) In some cases it created a 500×500 image which has four

times the number of pixels as the original data set and hence increased run times

dramatically; and (2) there are artifacts from the interpolation which are unavoid-

able in the processing paradigm, and would affect MFBD reconstruction at higher

frequencies. The decision was made to modify the code to run at the sampling of the

data collection system as a means of improving run times. Note that this approach

has an effect on the high spatial frequencies in the reconstructed images, but the

intuition was that estimating r0 accurately requires that only the low frequencies be

reconstructed well, and this intuition has initially proven to be correct.

Extensive testing was conducted in order to choose the number of Zernike coefficients
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and number of iterations that were used in this study. These tests were done using

50 images from the March 17, 2020 data set. The table below shows experiments

that tested if the MSE and r0 results were greatly affected by the initial number of

Zernike coefficients chosen.

Table 3.6
Results for MSE and r0 Over A Range of Zernikes at 50 Iterations

Number of Zernikes MSE r0 (m)
100 1.3932 0.034
90 1.3171 0.035
60 1.1561 0.039
50 0.95926 0.041
30 1.1629 0.050
20 0.82263 0.057
10 0.44727 0.059
5 1.3808 0.1

The results from table 3.6 were semi-predictable. For 50 iterations, the MSE dras-

tically decreases as the number of Zernikes is lowered. The cutoff is at 10 Zernikes,

as the MSE starts to increase again at any lower than this. Finding that the smaller

number of Zernike coefficients has a significantly lower MSE makes sense with the

results from Dr. Archer’s paper, where he uses 30 Zernikes for his work [8]. It is in-

teresting to see that the values for r0 increased as the number of Zernikes decreased.

After acquiring these outputs, the effect that the number of iterations had on the

same Zernike scale was desired. Table 3.7 shows the same test at 100 iterations to

see how the error would change.
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Table 3.7
Results for MSE and r0 Over A Range of Zernikes at 100 Iterations

Number of Zernikes MSE r0 (m)
100 1.1199 0.030
90 1.1181 0.031
60 1.0422 0.036
50 1.0838 0.037
30 1.2344 0.044
20 0.91001 0.052
10 0.57644 0.056
5 0.75777 0.1

This test surprisingly resulted in more error from 50 Zernikes down to 10 Zernikes at

the higher number of iterations. At the smaller number of iterations the error was

smaller at the higher number of Zernikes. Overall, the lowest MSE was consistently

at 10 Zernikes for both cases of iterations. From these results, it would be assumed

that 10 Zernikes would cause the least MSE and therefore would be used for all

comparison processing. Another remaining question was how a full range of the

number of iterations changed at a constant value of 10 Zernikes. Table 3.8 represents

this test.

Based off of the outcome of this test, the general trend is that the MSE is seen to

increase as the number of iterations increases. This holds true from 20-100 itera-

tions. At 10 iterations the MSE increases again. The overall minimum MSE is at 20

iterations.

Now that these parameters could be assumed, it was desired to have an error metric
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Table 3.8
Results for MSE and r0 Over A Range of Iteration Numbers at A Constant

Value of 10 Zernikes

Number of Iterations MSE r0 (m)
10 0.49532 0.1
20 0.097411 0.1
30 0.24324 0.075
40 0.34254 0.067
50 0.46735 0.058
60 0.5189 0.058
70 0.48037 0.058
80 0.49802 0.057
90 0.55197 0.056
100 0.62227 0.052

associated with each r0 estimate at these settings. A final test was conducted to

examine how much the MSE and r0 outputs changed when run several times at the

same parameter settings. Table 3.9 shows the experiment to obtain these error bars.

Table 3.9
Error metric results from testing the same parameters to see how much

variability occurred

Number of Zernikes Number of Iterations MSE r0 (m)
10 20 0.097411 0.1
10 20 0.10043 0.097
10 20 0.10342 0.099
10 20 0.10069 0.098
10 20 0.10098 0.098
10 20 0.097411 0.01
10 20 0.10043 0.097
10 20 0.10342 0.099
10 20 0.10069 0.098
10 20 0.10098 0.098

Error = (max-min) 0.006009 0.003
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Based on this analysis, it was assumed that using 10 Zernikes and 20 iterations per

r0 estimate would be the most accurate option for processing. The MSE can vary

± 0.006009, causing the estimate of r0 to have an error metric of ± 0.003 meters

associated with it. A total of 50 frames per 300 image directory was used in processing

each r0 estimate over time. DELTA processes these 300 image data sets right after

they are collected each time and saves that information in a results file which is turned

into a summary file after all collection is finished. This way those r0 results could be

plotted on top of MTU’s results in MATLAB.

There was, however, reason to be concerned about using only 10 Zernikes for these

calculations. The main issue is the estimated r0 values that resulted from this choice

were quite a lot higher than the DELTA estimates, and seemed inconsistent the

the visual quality of the images from previous simulations. We conjecture that this a

consequence of 10 Zernikes simply not being able to capture the high spatial frequency

content of the incident turbulence-corrupted wave. Hence, we eventually decided to

put a floor on the number of Zernikes at 50, and explore how this worked. Both of

these approaches are reported in the next Chapter.
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Chapter 4

Results and Discussion

4.1 First comparison of Fried Parameter Re-

sults Between MTU and DELTA’s Processing

Methods

MTU’s processing code was run on several days worth of data sets and the results

were graphed as point plots. Estimates of r0 were plotted every 10 minutes over

approximately a 2 hour time span each day. They were plotted against DELTA’s r0A

and r0B outputs. Examples of unprocessed images from the first and last timestamp

are displayed to help gauge what kind of conditions occurred over the entire time
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span. Results are displayed and discussed below in figure’s 4.1-4.10.

Figure 4.1: Comparison of Estimated r0 over Time for 03-17-2020

(a) Image from First Timestamp Set (b) Image from Last Timestamp Set

Figure 4.2: First Images from the First Timestamp and Last Timestamp
Processed on 03-17-2020
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Figure 4.3: Comparison of Estimated r0 over Time for 03-18-2020

(a) Image from First Timestamp Set (b) Image from Last Timestamp Set

Figure 4.4: First Images from the First Timestamp and Last Timestamp
Processed on 03-18-2020
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Figure 4.5: Comparison of Estimated r0 over Time for 03-20-2020

(a) Image from First Timestamp Set (b) Image from Last Timestamp Set

Figure 4.6: First Images from the First Timestamp and Last Timestamp
Processed on 03-20-2020
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Figure 4.7: Comparison of Estimated r0 over Time for 03-21-2020

(a) Image from First Timestamp Set (b) Image from Last Timestamp Set

Figure 4.8: First Images from the First Timestamp and Last Timestamp
Processed on 03-21-2020
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Figure 4.9: Comparison of Estimated r0 over Time for 03-22-2020

(a) Image from First Timestamp Set (b) Image from Last Timestamp Set

Figure 4.10: First Images from the First Timestamp and Last Timestamp
Processed on 03-22-2020
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Judging from these results, it may have been overlooked that even though the MSE

appeared smaller, using 10 Zernikes was most likely inaccurate. So, more tests were

run assuming that not using enough Zernikes smooths over the data and doesn’t

account for all of the turbulence. In order to gauge a more accurate representation

of the data, an experiment was conducted using 50 and 60 Zernikes respectively to

see how the number of iterations was affected. This number of Zernikes is enough to

account for the majority of the turbulence in the data without smoothing everything

over too much. Tables 4.1 and 4.2 show these tests.

Table 4.1
Results for MSE and r0 Over A Range of Iteration Numbers at A Constant

Value of 50 Zernikes

Number of Iterations MSE r0 (m)
10 0.50343 0.067
20 0.72523 0.056
30 1.0649 0.045
40 1.1839 0.044
50 1.1663 0.042
60 1.115 0.041
70 1.1362 0.039
80 1.0345 0.039
90 1.0993 0.038
100 1.0203 0.037

A few test runs were completed at 90 Zernikes as well, but from these results and the

previous tests shown in the methods section the r0 estimates didn’t change drastically

from what they were with less Zernikes and higher iterations. Based on these results,

as the number of Zernike coefficients increases, the r0 estimates tend to decrease.
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Table 4.2
Results for MSE and r0 Over A Range of Iteration Numbers at A Constant

Value of 60 Zernikes

Number of Iterations MSE r0 (m)
10 0.6543 0.062
20 0.91948 0.051
30 1.1841 0.043
40 1.1352 0.041
50 1.1117 0.038
60 1.127 0.038
70 1.1462 0.037
80 1.0924 0.036
90 1.114 0.036
100 1.0904 0.035

Further tests would need to be conducted to display the range this effect has. For

the purposes of this thesis, both tables 4.1 and 4.2 showed a decrease in MSE at 60

iterations. In general, a higher number of iterations means more accurate results.

Due to time constraints on processing and the fact that the MSE didn’t change much

at these levels of Zernikes, iterations 30-100 were all decent parameter choices. The

MSE at 10 and 20 iterations was very low, and the r0 estimates jumped up more

drastically, so this most likely meant there weren’t enough iterations to grasp a very

accurate estimation. Since there was a small decrease in MSE at 60 iterations that

parameter would be used for the next round of tests. The code ran faster at 50

Zernikes and the MSE was still technically smaller at that setting than at 60, so that

would be used as well to compare to DELTA.
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4.2 Final Comparison of Fried Parameter Re-

sults Between MTU and DELTA’s Processing

Methods

Figure 4.11: Final Comparison of Estimated r0 over Time for 03-17-2020
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Figure 4.12: Final Comparison of Estimated r0 over Time for 03-18-2020

Figure 4.13: Final Comparison of Estimated r0 over Time for 03-20-2020
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Figure 4.14: Final Comparison of Estimated r0 over Time for 03-21-2020

Figure 4.15: Final Comparison of Estimated r0 over Time for 03-22-2020
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Now, these results are much more accurate and appear to be closer to the DELTA

estimates. Approximately 62% of the final MTU r0 estimates were in between the

DELTA r0A and r0B estimates. Comparing the two, around 72% of the final MTU

r0 estimates were closer to r0A than they were to r0B. Of all of MTU’s estimates,

58% of them were within 1 cm of r0A. Only 8.3% of all of the results are more than 1

cm outside of the r0A and r0B range. The outcome of these experiments has shown

that overall the MTU results fall very close to or within the range of the estimated

DELTA results.
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Chapter 5

Conclusion and Future Work

Judging from the results plots comparing MTU and DELTA’s estimates of the Fried

parameter, there are many conclusions to be made. These realizations are described

below, and have given way to the possibility of future experiments on this area of

study.

5.1 Conclusion

Ultimately, the first attempt at comparisons were concluded to be inaccurate due to

a smoothing effect that failed to encompass all of the atmospheric turbulence at an

extremely low number of Zernikes. Ten Zernike coefficients was just not enough to
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account for all of the turbulence. Expanded testing with consideration of minimums

in MSE gave way to a new choice of start up parameters for a secondary round of

comparisons.

The final refined MTU results using 50 Zernike coefficients and 60 iterations matched

up with DELTA’s r0A estimates quite well. Over half of MTU’s results were in

between the range of r0A and r0B. DELTA’s r0A appeared to be more closely related

to MTU’s estimates than the r0B estimate was. Less than one tenth of the results

were outside of the DELTA range by over one centimeter, giving good reason to

believe that the vast majority of the estimates were accurate. In conclusion, cross-

validation has shown that the MTU results fall very close to or within the range of

the estimated DELTA results.

This experiment proved that there can be a large change in result accuracy due to

a few seemingly arbitrary initialization parameters in MFBD. For the purposes of

this thesis, comparing MTU’s results to MZA’s DELTA estimations showed just how

much variability there is and brought up these interesting realizations. Overall, more

work that includes a true r0 validation method should be conducted to get a firm

grasp on what start up parameters provide results with the least amount of error.
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5.2 Future Work

This work opened up a lot of questions about how the number of Zernikes and itera-

tions affects MSE and r0 estimates in MTU’s MFBD code. A great way to come to a

conclusion on these vague parameters would be to have a true r0 calculation to tweak

the code results to. One example of how this could be achieved would be to use a

point source method with a very large black target around it as was talked about in

the background section of this thesis. This way, the PSF’s would be calculated instead

of estimated and ”truth” would be known. To add to this, more testing on a range of

iterations for specific Zernike values is also desired. This would allow for a possible

end cap on the lowest that the r0 estimate would go before hitting a floor. There was

just not enough time to get all of these questions answered in this specific thesis. This

future work would open up great opportunities to validate important initialization

parameters and provide extreme confidence in MTU’s MFBD post processing code.
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Appendix A

Added Results From A Slightly

Different Target Format

Figure A.1: Comparison of Estimated r0 over Time for 02-24-2020
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Figure A.2: Comparison of Estimated r0 over Time for 02-25-2020

Figure A.3: Comparison of Estimated r0 over Time for 03-02-2020
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