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Abstract 
Seasonality is a consistent component of aquatic ecosystems yet most fish 

biological and ecotoxicological studies commonly employ field sampling protocols 

focused during the warm open water season with minimal emphasis placed on winter 

sampling, especially for north-temperate latitude ecosystems.  Such strategies limit our 

understanding of poikilotherm biology and ecology during the overwintering seasons.  

Here, I investigated seasonal changes in yellow perch (Perca flavescens) biology, 

ecology and ecotoxicology over a one-year period in Lake Manganese.  Significant 

seasonality was observed for metrics including fish energy densities (kJ/g), 

gonadosomatic indices, whole-body lipid contents, and carbon stable isotope values 

(δ13C).  Mercury concentrations quantified within a single yellow perch age class 

displayed significant seasonal and individual variability, with Hg concentrations for fall 

and winter collected fishes being higher than those for spring and summer fishes. Both 

fish protein mass and δ13C were significant predictors of Hg bioaccumulation by Lake 

Manganese yellow perch. This study is among the few to demonstrate the role of 

seasonality on fish biology, ecology and pollutant bioaccumulation.  Furthermore, these 

results demonstrate the need to include winter and establish entire growing season 

datasets under current climate change predictions. 
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1 Introduction 

Winter and overwintering ecology represents a general knowledge gap for fisheries 

biology research and many other aquatic ecological sciences generally due to the 

logistical difficulties associated with sampling during this time of year [1].  It is 

important to study winter ecology due to the substantial differences in limnological 

factors that are anticipated relative to the warmer open water seasons.  For example, 

cooler water temperatures in the fall through winter represent periods of slower growth 

[2] [3] and lower metabolic rates in fish [4].  Ice-covered lakes also differ substantially 

with respect to the availabilities of nitrogen and phosphorus relative to the open water 

season [5].  Due to seasonal differences in these limiting nutrient availabilities, winter 

zooplankton communities are of low biomass and phytoplankton community composition 

also differing from those present during the open water months [6] [5].  Winter dissolved 

oxygen levels can also differ from open water seasons due to changed oxygen solubility 

at cooler temperatures and ice-cover posing a barrier for atmospheric exchange [7].  

Recent temporal variation and reductions in the duration of ice-cover have been attributed 

to climate change with ice-cover happening for shorter periods of time and on fewer 

bodies of water [8]. Such climate-induced changes in seasonal ice-cover could cause 

major shifts in temporal limnological factors with cascading effects on aquatic ecology.  

Due to a general paucity of winter ecology studies, the role of ice-cover on aquatic 

ecosystems is not well understood [1].  Additional winter ecological datasets such as 

generated by this research will help more accurately understand the importance of 

seasonality in aquatic environments and how climate change may act to reduce the 

magnitude of seasonality and associated ecosystem and species responses [1].   
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1.1 Yellow perch ecology 

The yellow perch is a cool-warm water species found throughout much of Canada 

and the United States [9] and is of cultural and economic importance for multiple interest 

groups such as recreational and commercial fisherman and people living within the Great 

Lakes Basin. For example, approximately 70% of yellow perch sales in the United States 

occurs within and in close proximity to the Great Lakes basin [10]. At its peak in the 

1950’s and 1960’s, yellow perch were harvested in excess of 15 million kg/year [10]. 

Although wild catch has decreased over the decades, this species still remains of 

economic importance, with the Department of Fisheries and Oceans Canada reporting a 

national yellow perch harvest of 8.5 million tonnes and worth $15 million in 2018 [11].  

For yellow perch, seasonality plays and important role in their ecology and 

biology.  For example, females require an extended chill period (> 185 days) of exposure 

to temperatures ≤ 6 ℃ for normal egg-yolk deposition and final maturation [10].  Both 

male and female yellow perch begin to spawn in the spring following ice-melt in northern 

latitudes. However, males and females reach sexual maturity at different ages. Males 

begin spawning after about one year while females typically take two years to reach 

sexual maturity [10] [9].  In preparation for spawning, females move into shallow weedy 

areas in early spring as water temperatures increase where they will lay egg ribbons on 

submerged vegetation which are then fertilized by broadcasting males [9, 12].  

After hatching, larval yellow perch are planktivorous and congregate in littoral 

zones where they consume zooplankton until large enough to feed on larger 

macroinvertebrates, such as mayfly and caddisfly larva [9].  Individuals then transition to 
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a benthic diet within the littoral zone until they are large enough to make their final 

ontogenetic shift to include piscivory [13-15].  In order to compensate for reduced food 

availability during the winter, yellow perch tend to rely on lipid stores build up during the 

summer as an energy reserve [16].  During winter, yellow perch diets also shift to include 

larger proportions of benthic invertebrates and zooplankton relative to their summer diet 

[17, 18].  

 Yellow perch growth can vary among individuals and populations [19-23]. For 

example, yellow perch from Lake Erie [24] have demonstrated faster growth and larger 

maximum size relative to fish from Lake Gogebic located in Michigan’s Upper Peninsula 

region [25].  Further, seasonal and age-related differences in growth patterns have also 

been observed, with summer representing a period of faster growth [26].  Growth rates 

have also been shown to change under situations when intra-specific resource 

competition increases due to a lack of predators, decreased fishing pressure, and/or 

decreased mortality rates within the population [23, 27, 28].  When these situations or 

combinations thereof are present, stunted or extremely slow growth can become 

manifested [20, 21].  Although this phenomenon is known to occur in yellow perch, it 

remains relatively unstudied and the broader ecological consequences of a stunted 

population are not fully understood. 

1.2 Seasonality in aquatic ecosystems 

 Aquatic ecosystems display patterns of seasonal change wherein key abiotic 

factors, such as water temperature, dissolved oxygen, pH, and concentrations of nitrogen 

and phosphorus have been shown to exhibit noteworthy seasonal differences [5]. Within 
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the open-water season alone, there are substantial changes in limnological factors that 

greatly affect the ecology of a lake, but less is known about ecological changes that take 

place over the winter season. The development of ice-cover during the winter months at 

northern latitudes is one of the most visible seasonal changes, but is considered to pose a 

logistical challenge for studying winter-season limnology and aquatic ecology [1]. As a 

result, there is a general lack of data for the fall, winter, and early spring seasons. For 

example, at northern temperate latitudes, the cool-cold water seasons (i.e. < 10 °C) can 

span up to six months of the year. Therefore, studies that include winter sampling will 

greatly benefit the field of aquatic ecology by creating a more complete picture of how 

the ecology and biology of aquatic systems change throughout an entire year.  

Distributions and assemblages of fishes also display patterns of seasonality [29] 

as different species, age classes, and sizes can respond differently to seasonality [30]. 

Winter also represents a period with important change in seasonal diet composition as 

many fish species experience shifts in available food resources, likely as associated with 

the decline primary productivity and availability of pelagic prey resources such as 

phytoplankton and zooplankton during the winter [18]. Individual movements within 

these aquatic systems also decreases in winter months, as fish find refuge and localize in 

deep, well-oxygenated areas [31]. This is a known adaption in fish species that have 

evolved to tolerate cold climates to help conserve energy and reduce overwinter mortality 

of susceptible age classes [17, 32]. 

Similar to fish, many invertebrates also display patterns related to seasonality. 

Notable differences in zooplankton and phytoplankton abundances and community 
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structures have been observed during the open water season and have been attributed to 

seasonal changes [5].  However, little research has been done to observe how these 

communities change under the ice [1].  Some studies have reported under ice 

phytoplankton blooms and subsequent increases in zooplankton populations [6]. 

Macroinvertebrates also experience significant seasonal change.  For instance, 

temperature contributes very heavily to macroinvertebrate growth, with colder 

temperatures associated with much slower growth than warmer temperatures [33]. Ice-

covered lakes also have lower available food resources for aquatic macroinvertebrates 

relative to the open water warmer months [34].  

1.3 Mercury 

 Mercury in the form of methylmercury (MeHg) is an acute neurotoxin that 

possess the ability to cross the blood brain barrier.  The primary source of human 

exposure to Hg is from the consumption of contaminated fish and seafood [35-37].  

Mercury is found naturally in the environment and is released from igneous rocks [38, 

39] that are often a component of the bedrock geology among north temperate latitude 

lakes, rivers and streams [38].  Elemental Hg generally does not pose a great risk to 

human health, as it is generally poorly absorbed from the diet by most consumer species, 

unlike MeHg which is easily absorbed by organisms [40]. The formation of MeHg 

typically occurs in anoxic environments when sulfur reducing bacteria indirectly 

assimilate inorganic Hg during metabolism and bind a methyl group to inorganic Hg [41]. 

In biological tissues, MeHg tends to bind strongly to sulfur containing amino acids with 

protein content generally describing the capacity of an animal to bioaccumulate Hg.  
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Mercury also exhibits the phenomenon of food-web biomagnification predominantly due 

to high efficiency of transfer from prey to consumer and generally slow rates of whole-

body elimination relative to such dietary uptake [42]. The amount of protein content and 

the inherent capacity for Hg storage, increases as an organism increases in size and 

moves up in tropic position [43].  Because MeHg is slow to eliminate, it tends to increase 

with trophic position (i.e. biomagnification; [35, 44]).  For this reason, consumption 

guidelines tend to exist for fish species across the Great Lakes basin, especially for top 

predator species that tend to be long-lived and large bodied [45].  

The process of Hg methylation can be exacerbated by the development of anoxic 

conditions in aquatic. Although anoxic events occur naturally, anthropogenic activities 

such as eutrophication can increase the frequency and duration of anoxia  [46-48].  

Anthropogenic Hg inputs into aquatic systems can also increase the amount of Hg 

mobilized into the food web [49].  Historic and ongoing activities including chlor-alkali 

plant operation, fossil fuel combustion and artisanal gold mining activities continue to 

contribute to the global Hg cycle [50, 51].  Additionally, the flooding of land and creation 

of aquatic reservoirs as associated with the operation of hydro-electric dams and also by 

the activities of beavers (Castor canadensis) can contribute to Hg loading into aquatic 

ecosystems due to the mobilization of geologic Hg from previously unexposed soils and 

bedrock [35]. 

1.4 Summary 

 Yellow perch are an important ecological, economic and recreational fish.  

Examining the biological and ecological responses of this species as associated with 
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seasonal changes in limnology will help address knowledge gaps pertaining to winter 

ecology and biology.  In this thesis, I investigated the general ecology of a yellow perch 

population over an entire growing season and also Hg bioaccumulation by these fish over 

this same duration.  I first hypothesized that there will be significant differences in yellow 

perch biological and ecological metrics due to the range of variability in abiotic 

limnological parameters expected of a north temperate aquatic ecosystem over a one-year 

period. I also hypothesized that Hg concentrations in yellow perch will also demonstrate 

significant seasonality. This study was therefore undertaken in two parts; 1) an 

investigation of biological and ecological metrics for the Lake Manganese yellow perch 

over an annual growing season concomitant with the study of lake limnological 

parameters during this timeframe and; 2) monthly quantification of Hg concentrations 

within a single age class of Lake Manganese yellow perch over the same annual period.  

These results will contribute to the growing knowledge base focused on the roles of 

seasonality and our understanding of winter ecology and ecotoxicology. 

  



8 

2 Seasonal comparison of yellow perch (Perca flavescens) biology and ecology in 
Lake Manganese 

2.1 Abstract 

As poikilotherms, fish ecology and biology is predicted to be highly associated 

with ambient water temperatures. For example, fish species such as yellow perch (Perca 

flavescens) inhabit a wide latitudinal range across North America but relatively little is 

known of their biology and ecology across the seasonal range of temperatures associated 

with such distribution.  In this study, yellow perch were collected monthly over one-year 

to evaluate seasonal changes in diet, proximate composition, condition indices, growth 

and also carbon (δ13C) and nitrogen (δ15N) stable isotopes.  Fish average energy densities 

changed significantly (P < 0.001) from a high of 4.9 kJ/g during the summer to 3.9 kJ/g 

in the spring and generally reflected similar seasonal changes in fish lipid contents.  

Significant seasonal changes in fish δ13C and δ15N values were also observed.  For δ13C, 

these changes were larger than the 1 ‰ fractionation described between predator and 

prey for aquatic ecosystems.  However, for δ15N this difference was less than the extent 

of change typically associated with one trophic position (± 3.4 ‰).  An unexpected result 

of this study was the observation of extremely stunted growth for Lake Manganese 

yellow perch and individual fish ages up to 18 years.  These results help demonstrate the 

empirical variability of fishery type research data and also contribute to the growing field 

of winter limnology and ecology. 
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2.2 Introduction 

Much of what is currently known of fish biology and ecology has been 

determined from field work commonly completed during the open-water warm-

temperature growing season.  The timing of such field efforts are associated with the 

perceived ease of sampling during the spring and summer open-water seasons and 

general schedules as associated with the academic calendar year [52-54].  However, such 

a single season or ‘snapshot’ approach limits our empirical knowledge regarding the 

biology, ecology, and physiology of fish populations to only these seasons when animal 

growth rates are likely to be optimal [14, 52, 55].  As ectotherms, much of fish biological 

and ecological characteristics are predicted to strongly correlate with seasonal 

temperature changes [4].  This becomes especially true across north temperate latitudes 

for cool-warm water species for which the preferred temperature growing season is 

limited from approximately late May through to early September and the cold-water fall 

and overwintering seasons can predominate the annual growth cycle.  In addition, fish 

physiological responses to additional overwintering conditions such as dissolved oxygen 

concentrations, prey availability and even ice-cover represents a general knowledge gap 

in our understanding of fish populations and their responses to their ambient 

environment.  Thus, an assessment of the importance of seasonality in fisheries biology 

will provide an important contribution for fisheries biologists, managers and stakeholders 

alike. 

In addition to its role in regulating fish growth and metabolism, water temperature 

is also an important contributor to ecological mechanisms such as habitat and food 
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resource partitioning.  For example, in north temperate latitude lakes, thermal 

stratification in the summer can restrict habitat availability to deeper waters below the 

thermocline especially for cold water species such as lake trout (Salvelinus namaycush).  

In contrast for cool-warm water species such as yellow perch (Perca flavescens), habitat 

selection is likely to be more restricted to meta- and epilimnetic waters where 

temperatures are closer to optimal and prey resources will be limited to those species that 

predominantly occupy similar habitats [56].  For these same ecosystems, inverse winter 

stratification has potentially contrasting effects on resource availability depending on the 

thermal preferences of the species under study.  For a species such as lake trout with a 

thermal optimum between 8 – 12 °C, the loss of the thermocline and onset of colder fall, 

winter and spring water temperatures can maximize habitat availability and potentially 

increase prey choice selections during these seasons.  In contrast, warmer water species 

such as yellow perch that have temperature optima > 20 °C are likely to select the 

marginally warmer water regions that tend to be limited to the greater depths of lentic 

ecosystems, especially during the ice-covered overwintering months [14, 56-58]   .  

However, during winter months, ice- and snow-cover can reduce light penetration and 

limit nutrient availability thereby restricting the extent of primary production and overall 

food availability [1].  Such seasonal temperatures cycles can also play a role in oxygen 

availability throughout the water column.  Summertime thermal stratification generally 

restricts oxygen mixing with the fall turnover period being required to replenish oxygen 

concentrations that can become reduced or even depleted during the warm water growing 

and high productivity seasons, especially in shallow and/or increasingly eutrophic lakes 

[59, 60].  Thus, for individual fish species, seasonal temperature cycles likely require 
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unique strategies for growth and survival that may be poorly understood if knowledge is 

derived primarily from the open water growing seasons only [1]. 

The yellow perch is a well-studied species with a depth of information available 

regarding this species’ biology and ecology.  For example, Kitchell et al. [4] developed a 

robust bioenergetics model for predicting characteristics such as consumption, 

respiration, egestion and growth rates across the life history of this species.  However, 

limited research has been completed to evaluate yellow perch biological and ecological 

responses under natural conditions over an entire growing season.  In North America, 

native populations of yellow perch range from approximately the state of Georgia to as 

far north as Great Slave Lake in Canada’s Northwest Territories with their native western 

range limited by the Mississippi River within the contiguous United States [9].  

Intentional stocking and accidental releases have expanded this range throughout the 

lower 48 United States and across most of the Canadian provinces [9].  Over such a broad 

latitudinal range, yellow perch will experience contrasting seasonal periods with respect 

to availability of optimal temperatures for growth.  Generally considered a cool-warm 

water species, juvenile and adult yellow perch have an optimal temperature for growth at 

23 °C which declines slowly as temperatures approach 10 ℃ [55, 61, 62] and reaches a 

zero/maintenance growth asymptote at temperatures less than 2 ℃ [4].  From these 

preferences, populations inhabiting aquatic ecosystems at the southern limit of their 

North American range will experience an extended summer growing season relative to 

populations occupying more northern latitude ecosystems where the open water season 

will be shorter.  In contrast, for more northern populations, the cool-cold water fall and 
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winter non-growing seasons will persist for a longer duration relative to more southerly 

lakes.  Such seasonal contrasts will also be important for prey availability especially 

given that the cold, darker overwintering periods are generally assumed to be a period of 

low productivity and dormancy [1]. 

Yellow perch are generally considered to be omnivorous with feeding habits 

typically displaying three distinct ontogenetic shifts during their life history.  Perch 

spawn in the spring with post-hatch free swimming individuals being predominantly 

planktivorous and consume larger cladoceran and copepod species [63].  By the end of 

the first growing season, young of the year diets can switch to benthivory with 

macroinvertebrates species such as odonates, amphipods and caddisflies beginning to 

dominate the diet [14].  A final diet switch to piscivory can be facilitated as individuals 

grow sufficiently large in size (> 150 mm) to consumer other smaller fishes which can 

include fishes such as brook stickleback (Cula inconstans), young-of-the-year and 

juvenile bluegill sunfish (Lepomis macrochirus), and emerald shiners (Notropis 

atherinoides) with cannibalism also frequently observed among yellow perch populations 

[9].  Generally, however, and similar to feeding information for many fish species, 

yellow perch diets have been assumed from samples predominantly collected in the 

summer with less known for the cold-water periods when prey species such zooplankton 

and larger macroinvertebrates may be very low in abundance.  Data is available 

describing seasonal changes in yellow perch energy density [26], and lipid content [64] 

that suggest food limitation during the winter. However, these studies have been 

completed without high frequency sampling over an annual temperature cycle within 
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wild populations, and as a result these changes and associated roles in yellow perch 

biology and ecology such as diet are generally unknown.  

Lake Manganese located in Michigan’s Keweenaw Peninsula provides habitat for 

one of the northernmost yellow perch populations within the contiguous US.  This study 

was designed to investigate seasonal related changes in specific biological and ecological 

characteristics of the Lake Manganese yellow perch population.  Specific objectives 

included: 1) comparing and contrasting yellow perch lipid and moisture contents, energy 

densities, gonado- and hepatosomatic indices, and diet preferences across the spring, 

summer, fall and winter seasons and; (2) evaluating differences in these characteristics 

between male and female fishes.  It is predicted that there will be significant seasonal 

differences among these values and also that male and female fishes will contrast in their 

responses of these metrics to seasonality.  These results will be valuable for 

understanding the overwintering ecology and biology of a commercially and 

recreationally valuable fish species inhabiting north temperate ecosystems. 

2.3 Methods 

Yellow perch for this study were collected monthly from Lake Manganese 

(Figure 2.1) using hook and line from April 2018 – March 2019.  A maximum of 50 fish 

were collected each month with no fish collections being conducted in November 2018 

due to adverse weather and poor ice-conditions on the lake.  Bulk zooplankton were 

captured with a horizontal tow using a (64 μm) mesh zooplankton net in June 2018-

August 2018.  Excess water in samples was removed using 63 μm mesh metal sieve with 

samples stored frozen for stable isotope analysis.  Unionid mussel samples were collected 
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by hand from shallow depths (< 1 m) for stable isotope analysis.  Zooplankton and 

mussel samples were not collected in April, nor October 2018-March 2019 due to adverse 

sampling conditions for these taxa (e.g. ice cover and/or high turbidity).  Fish collections 

for this research were authorized by the Michigan Department of Natural Resources DNR 

Scientific Collecting Permits obtained in 2018 and renewed in 2019.  All samples were 

stored in ice filled coolers for transport back to the laboratory where they were 

subsequently stored frozen (-20°C) until ready for dissection or analysis.  Handling and 

care of the fish was done under the approval of the Michigan Technological University 

Institutional Animal Care and Use Committee, project number 1414057-1. 

Limnological data including temperature (°C), dissolved oxygen (mg/L), pH 

(unitless), specific conductivity (µS/cm), and oxidation-reduction potential (mV) were 

recorded during the open water months (May – October) using a Yellow Springs 

Instruments (YSI) Pro DSS Multiparameter Water Quality Meter.  Water quality profiles 

were collected at the deepest point of the lake from the water surface to a depth just 

above the bottom (approx. 6.4m).  A string of 7 Hobo Pendant™ (Model # UA-001-08) 

temperature loggers was deployed extending from the shallow littoral zone region of the 

lake (0.19 m) to approximately the deepest point of the lake with each logger 

corresponding to approximately 1 m increments in lake depth to the maximum depth. 

Temperature loggers were programmed to record water temperatures every 30 minutes 

and were in operation from April 2018 – March 2019.   
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2.3.1 Sample processing 

Biological data collected from each fish included sex, total, fork and standard 

lengths (mm), gonad, liver and whole-body masses (g), with sagittal otoliths removed for 

aging purposes.  Fish stomachs and intestinal tracts were also excised and prey items 

were identified during processing.  Following dissection, fish were wrapped in in 

acetone/hexane (solvent) rinsed aluminum foil and stored at -20°C until ready for 

homogenization.  Whole-body homogenates were prepared for moisture and lipid content 

determination and stable isotope analyses using a solvent rinsed stainless steel Waring 

700S blender with up to a ~35 g subsample stored in a clean steel tin until ready for 

analysis.  All dissection and homogenization equipment was thoroughly washed with 

soap and water and rinsed and rinsed between each fish.  Gonadosomatic (GSI) and 

hepatosomatic (HSI) indices were calculated from the respective tissue weights following 

equations 1 and 2 below, respectively; 

 

    𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑊𝑊𝐺𝐺 𝑊𝑊𝐵𝐵 × 100⁄      (1) 

    𝐻𝐻𝐺𝐺𝐺𝐺 =  𝑊𝑊𝐿𝐿 𝑊𝑊𝐵𝐵 × 100⁄     (2) 

 where WG and WL represent the masses of gonads or liver, respectively, and WB 

represents whole body mass. 
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2.3.2 Gut contents 

During fish collections, common earthworms (Lumbricus terrestris), wax worms 

(Galleria mellonella), and artificial lures were used to enhance fish collection.  None of 

these items were identified as natural food items and were removed from prey 

enumerations to avoid any skew of results due to their inclusion.  Invertebrate 

identifications followed the taxonomic keys outlined in [65].  Unidentifiable material 

including organic detritus were characterized as detritus.  Prey species identified in 

individual gut contents were reported as the proportion of the total number of prey items 

quantified in each individual gut content. 

2.3.3 Fish Aging 

 Perch ages were estimated from sagittal otoliths removed from each fish during 

dissection with aging method following the crack and burn procedure outlined by 

Christensen [113]. Otoliths were placed in Scotch™ brand lightweight mounting putty 

with their concave side facing up before being split in half with a scalpel through the core 

of the otolith and along the dorso-ventral axis. The otoliths were then held over an open 

flame for a few seconds until the otolith turned a light brown in color. The otolith was 

then inserted into a new piece of mounting putty with the cut surface facing up and then 

lightly painted with canola oil.  Both halves of aged otoliths were imaged using an 

Olympus SZX9 dissecting microscope equipped with Imagingsource™ camera. Images 

were analyzed in FIJI/ImageJ image processing software.  For quality control purposes, a 

subsample of 16 randomly selected otoliths were sent for aging by three individuals 

experienced in aging fish otoliths.  Otolith identifications were blind to each reviewer 
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with only fish species information known.  In the occurrence of discrepancies between 

readers, life-history tables and literature based yellow perch length at age ranges were 

consulted to provide a consensus age estimate for the otolith in question [58, 66]  .  The 

von Bertalanffy (VBL) outlined in equation (3) below was used to generate population 

and sex-specific growth rates for Lake Manganese yellow perch; 

 

    𝐿𝐿𝑡𝑡 = 𝐿𝐿∞�1 − 𝑒𝑒−𝐾𝐾(𝑡𝑡−𝑡𝑡0�    (3) 

 

where Lt represents estimated length (mm) at time t (yrs.), L∞ asymptotic length when 

growth equals zero, K represents Brody growth rate coefficient (yr-1) and t0 is the 

theoretical age at length 0.  For fish with missing or broken otoliths that could not be 

aged, the VBL model was rearranged to solve for age using the K, Lt and L∞ estimates 

generated from otolith age and length data.  Specific iterations of the VBL model 

included i) simulation for all fishes collected; ii) a subset of fishes aged 2 – 8 yrs.; iii) 

males only and; iv) females only. 

2.3.4 Moisture content determination 

Sample moisture contents were determined using approximately 1 g (± 0.0001 g) 

of whole-body homogenate, bulk zooplankton and homogenized mussel tissues.  

Aluminum weigh boats were pre-dried in an oven for 48 hours at 120 ℃ and allowed to 

cool to room temperature inside desiccators prior to sample addition.  Weigh boats were 
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pre-weighed empty followed by addition of the sample material and subsequent drying 

for 48 hours at 60 ℃.  Dried specimens were removed from the ovens and allowed to 

cool to room temperature inside desiccators with dried samples then reweighed (± 0.0001 

g) and moisture contents determined as per equation (4); 

 

  % 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒 =  �1 − 𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝑤𝑤𝑤𝑤𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

� ×  100   (4) 

 

Where dry weight represents the mass of the dried sample and weigh boat after 48 hours 

at 60 °C (g); boat weight is the mass of the empty, pre-dried weigh boat (g); and wet 

weight is the wet mass (g) of sample added to the boat prior to oven drying. 

2.3.5 Lipid content determination 

Total lipid content for each sample was determined as a component of a paired 

pollutant extraction procedure conducted on each fish and outlined in [67].  

Approximately 1.0 g of tissue homogenate was mixed with 10 g of pre-combusted 

sodium sulfate, (Granular 10-60 Mesh) added to a 20 mL glass syringe containing a glass 

wool plug, 10 mL of a 50:50 (vol:vol) mixture of a hexane and dichloromethane (DCM) 

extraction solvent attached to a VWR® syringe filter (25 mL 0.45 µm PTFE membrane). 

The mortar and pestle were then rinsed with an additional 5 mL of the extraction solvent 

with the 5 mL rinse transferred into the syringe. An additional 5.0g of sodium sulfate was 

added to the mortar and pestle, mixed in the mortar and quantitatively transferred into the 
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syringe, with a final 5.0 mL rinse of the mortar and pestle with the extraction solvent and 

transfer into the extraction syringe. Samples were then allowed to stand for one hour with 

eluents collected in 45 mL glass test-tube with an additional 15 mL of the 50:50 solvent 

added as a final rinse. Once samples had drained into test tubes, they were transferred 

into a 125 mL round-bottom flask with each test tubes rinsed with a small volume of 

hexane to remove any residual lipids in the test tube.  The round-bottom flasks were 

evaporated to a volume < 10.0 mL using Heidolph® Roto Evaporators, and the extract 

was then transferred to 10 mL volumetric flasks and brought up to volume with hexane. 

A 1.0 mL subsample was then transferred from the 10 mL flask into a dried, pre-weighed 

and labelled aluminum weigh boat before being placed in the oven at 110 ℃ to dry for 1 

hour.  Following drying, weigh boats containing the lipid volume were removed and 

allowed to cool to room temperature in a desiccator before being weighed. Final % lipids 

were calculated using the following equation: 

 

% 𝐿𝐿𝑀𝑀𝐿𝐿𝑀𝑀𝑑𝑑 = �𝐷𝐷𝑑𝑑𝑤𝑤𝑤𝑤𝑑𝑑 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚− 𝐵𝐵𝑏𝑏𝑏𝑏𝑡𝑡 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚
𝑊𝑊𝑤𝑤𝑡𝑡 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚

� ×  1000   (5) 

 

Where dried mass (g) is the mass of the dried weigh boat containing the lipid sample; 

boat mass (g) is the dried boat mass prior to sample additions; and wet mass represents 

the wet mass (g) of sample used for the extraction procedure. 
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2.3.6 Energy density and condition   

Yellow perch energy densities (kJ/g) were estimated using the mass balance 

approach as outlined in [68].  Briefly, whole-body lipid and moisture masses (g) were 

determined from the product of sample lipid and moisture contents (% wet weight) and 

fish total masses.  Ash content for fish tissues typically range between approximately 1 - 

2 % [69] in [70] and the random number generator function of Excel software was used 

to estimate an ash content within this range.  Fish tissues typically contain very little to 

no carbohydrates [71], thus protein mass was considered to represent the proportion of 

whole body tissue remaining following estimation of lipid, moisture and ash contents. 

Protein and lipids were assumed to contain caloric contents of 9.02 and 4.271 kcal/g [72], 

respectively, with a conversion factor of 4187 J/kcal used to estimate energy content [73] 

in [70]. 

Fulton’s condition index (K) was used as a general fisheries metric of yellow 

perch growth and quality [74].  This value typically ranges between 0.8 – 2.0 for fishes 

and was calculated as per equation (6): 

 

 𝐾𝐾 = �𝑊𝑊×100
𝑇𝑇𝐿𝐿3

�    (6) 

  

Where W represents fish total mass (g) and TL is fish total length (cm). 
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2.3.7 Stable isotope analysis 

Carbon (ẟ13C) and nitrogen (ẟ15N) stable isotopes values were quantified in 

samples to provide indicators of yellow perch, zooplankton and mussel trophic structure 

in Lake Manganese.  Analysis of ẟ13C and ẟ15N was completed using the individual fish 

whole body homogenate that was previously dried at 60 ℃ for 48 hrs and ground to a 

fine powder using a glass mortar and pestle. Between 0.04 - 0.06 mg of the dried powder 

was added to a 3.0 x 5.5 mm tin capsule, which was then folded and placed into sample 

trays.  Zooplankton and mussel samples for stable isotope analysis were prepared in the 

same manner as fish samples.  Sample stable isotope analyses were completed by the 

Stable Isotope Laboratory at Cornell University (Ithaca, New York) using a Finnigan 

MAT Delta Plus isotope ratio mass spectrometer. Stable isotope results are calculated 

relative to a reference standard and expressed as a delta (ẟ) notation: 

 

ẟ15N or ẟ13C (‰) = ��𝑅𝑅𝑚𝑚𝑏𝑏𝑚𝑚𝑠𝑠𝑠𝑠𝑤𝑤 𝑅𝑅𝑚𝑚𝑡𝑡𝑏𝑏𝑠𝑠𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑⁄ � − 1� × 1000   (7) 

 

Where R represents the ratio of heavy to light isotopes (13C/12C or 15N/14N) in the sample 

materials relative to the reference standard.  For ẟ13C measurements, samples were 

quantified against a Pee Dee Belemnite standard with atmospheric nitrogen being used 

for ẟ15N quantification.  An internal animal standard (Deer) was run along with all 

samples for accuracy and precision (± 0.03 ‰ for ẟ15N, and ± 0.05 ‰ for ẟ13C) and a 

chemical standard (methionine) used to test the accuracy across a range of amplitudes.  
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Isotope corrections were performed at the Stable Isotope Laboratory using two-point 

normalization on (linear regression) of all ẟ15N and ẟ13C using two additional in-house 

standards (KCRN and CBT). 

2.3.8 Data Analysis 

All statistical analyses were completed using the software package JMP Pro 

version 14.0 for Windows (SAS Institute, Cary, North Carolina, USA) with a criterion for 

significance of α= 0.05 (p < 0.05) used in all cases.  All data were tested for normality 

using normal probability plots. Energy density, length, mass, lipid contents, δ13C, δ15N, 

and condition data were all determined to be normally distributed. However, GSI values 

required log(x+1) transformation to meet the assumption of normality.  Statistical 

comparisons of the biological variables across seasons and between male and female 

fishes were completed using one-way analysis of variance (ANOVA) with analyses 

corrected for age, total length or body mass covariates where necessary.  To increase 

statistical power, monthly sampling data were combined to represent spring (April – 

June), summer (July – August), fall (September – December) and winter (January – 

March) seasonal collections.  A Tukey’s highly significantly different (HSD) post-hoc 

test was used for all pairwise comparisons.  For yellow perch data, ANOVA comparisons 

were conducted on the population level sampling data and also within 8-year-old fishes 

only.  This age class was predominant cohort within the population and thus used as a 

proxy for evaluating cohort level responses to seasonal changes.  Seasonal comparisons 

of the limnological variables were completed using one-way ANOVAs followed by 

Tukey’s post-hoc tests. 
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A one-way ANOVA was used to determine if there were significant differences 

between male (n = 236) and female (n = 209) total length and mass results for the 

population level sample collections and were also used to determine if there were 

significant differences between total length and mass between 8 year-old male (n = 51) 

and female (n = 46).  A one-way ANOVA model was used to test whether ‘taxa’ 

(mussels n = 3; zooplankton n = 5; and yellow perch n = 117) significantly differed in 

δ13C and δ15N values.  A Bonferroni correction (α = 0.017) was used when comparing 

stable isotopes among species to account for uneven sample sizes.  Unless indicated 

otherwise, all results are reported as arithmetic mean ± 1 standard error.  Full summary 

statistics are provided in supplementary tables S1-S5 at the end of this chapter. 

2.4 Results 

2.4.1 Water Quality 

A summary of the water quality parameters recorded from Lake Manganese over 

the duration of this study are provided in Table 2.1.  Daily water temperatures recorded 

by the temperature loggers ranged from 0.2 – 24.4 °C over the course of this study with 

these minimum and maximum values being recorded during the months of March and 

August, respectively.  The month of August 2018 also had the highest recorded mean 

temperature (16.7 ± <0.1 °C) with December 2018 being the coldest on average (2.5 ± 

<0.1 °C; Figure 2.2).  Water temperatures differed significantly across the seasons with 

averages of 6.8 ± < 0.1 ℃ (spring), 16.0 ± < 0.1 ℃ (summer), 4.4 ± < 0.1 ℃ (fall) and 

2.7 ± < 0.1 ℃ (winter) recorded over the study using HOBO data loggers (F = 590.0, P < 

0.001; Table 2.1; Table S2.1).  Mean seasonal water temperature depth profiles for Lake 
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Manganese are presented in Figure 2.3.  No distinct thermocline was observed during the 

summer but water temperatures declined from 19.0 ± 0.2 °C at the lake surface to a 

minimum of 11.2 °C approaching the lake bottom (6.2 m).  Lake Manganese was nearly 

isothermal across all depths during the fall with a surface water temperature of 3.7 °C and 

an average temperature of 6.1 °C recorded at the lake bottom (6.4 m).  A degree of 

inverse stratification was observed during the winter with an average water temperature 

of 5.0 °C measured at the lake bottom and an average surface temperature of 0.5 °C 

recorded during this period. 

 Lake Manganese did not demonstrate any periods of anoxia with dissolved 

oxygen (DO) concentrations ranging between 3.6 - 10.8 mg/L from spring through fall 

seasons (Table 2.1). YSI readings were taken monthly from May - October 2019.  

Highest dissolved oxygen levers were all recorded in October, ranging from 10.8 mg/L at 

0.1 m to 10.4 mg/L at 7 m. Average DO was highest in fall (10.5 ± 0.4 mg/L) which was 

significantly different than spring (7.9 ± 0.3 mg/L) and summer (7.9 ± 0.2 mg/L). The 

lowest overall DO was measured on May 18, 2018 at 7m and was 3.6 mg/L compared to 

10.1 mg/L at 0.1m during this sampling event.  Mean seasonal water DO depth profiles 

are presented in Figure 2.4. Dissolved oxygen levels gradually decreased with depth 

during the spring and summer but the fall profile demonstrating evenly mixed DO 

concentrations throughout the water column.  Specific conductivities ranged from 129.2 

µS/cm in summer to 69.7 µS/cm in fall. Total dissolved solids ranged from 84.0 mg/L in 

summer to 45.4 mg/L in fall.  pH ranged from 8.2 in summer to 7.6 in spring. Oxidation-

reduction potential values (ORP) did not display any significant seasonal variation with 
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depth (F = 2.626, P > 0.100; Table S2.4.) or with season (F = 3.041, P > 0.050; Table 

S2.4). 

2.4.2 Seasonal biological, ecological and stable isotope data 

Summary seasonal biological and stable isotope data for population level 

sampling of Lake Manganese yellow perch are provided in Table 2.2.  Male yellow perch 

collected for this study ranged in age from 2 – 18 years old with females ranging from 2 – 

14 years old.  No fish ≤ 1 year of age were collected.  Across the seasons and between the 

sexes, females were consistently large than males in both total length and body mass 

(Table S2).  Von Bertalanffy (VBL) growth curves also demonstrated females to have 

substantially different growth relative to males (Figure 2.5).  For females, VBL growth 

model estimates indicated a maximum asymptotic length (L∞) of 17.1 cm relative to a 

value of 14.2 cm for males.  Also, Brody growth coefficients (k) of 0.5 yr-1 and 0.6 yr-1 

were estimated for females and males, respectively.  

Lipid content and energy density both significantly differed based on season 

(Table 2.1). Whole body lipid contents were highest in winter (1.9 ± 0.2 %) and was 

significantly different from fall (1.1 ± 0.1 %) and spring (0.8± 0.1 %). Summer (1.5 ± 0.1 

%) was significantly different than spring (0.8 ± 0.1 %) (F = 22.3, P = 0.001 S1.) (Table 

2.2). There was no significant difference between winter and summer lipid content. 

Lipids also significantly decreased with age (F = 8.3, P < 0.005 S1.)  Energy density was 

highest in summer (4.7 ± 0.1 kJ/g) and decreased through fall (4.5 ± 0.1 kJ/g), winter (4.5 

± 0.2 kJ/g) and into the spring (3.9 ± 0.1 kJ/g) (F= 16.6, P < 0.001 Table S2.1.)  
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Highest GSI values for Lake Manganese yellow perch occurred in winter 

collections (4.2 ± 0.3 %) and was lower in fall (3.2 ± 0.3 %), both of which were 

significantly greater than spring (2.2 ± 0.3 %) and summer (1.5 ± 0.4 %; F = 22.0, P < 

0.0001; Table S2.1.)  There was no significant difference in GSI values between males 

and females (F = 2.3, P > 0.100). Gonadosomoatic indices decreased significantly with 

age (F = 6.0, P = 0.015), and with length (F = 17.1, P < 0.001). In contrast, GSI values 

increased significantly with mass (F = 23.4, P < 0.001).  Hepatosomatic indices were 

highest in spring (1.2 ± 0.1 %) and was significantly greater than winter (0.9 ± 0.1 %), 

which was significantly greater than fall (0.6 ± 0.1 %) and summer (0.5 ± 0.1 %) (F = 

21.1, P < 0.001). Female HSI were significantly higher (1.1 ± 0.1 %) than those for males 

(0.6 ± 0.1 %; F = 19.8, P < 0.001). There was a significant decrease in HSI with 

increasing length (F = 17.1, P < 0.001), and a significant increase with both age (F = 4.6, 

P = 0.033), and mass (F = 16.2 P < 0.001).  Condition indices demonstrated significant 

seasonality with summer (0.9 ± <0.1 g/cm3) 0.1% smaller than the peak condition in 

winter (F = 3.9, P = 0.0091). Condition also demonstrated a significant increase with age 

(F = 5.4, P < 0.021). 

There was significant seasonal variation in δ15N, which peaked in fall (7.5 ± 0.1 

‰) and decreased in spring (7.1 ± 0.1 ‰) (F = 3.0, P = 0.032; Table S2.1). There was 

also a significant increase in δ15N with both age (F = 6.9, P < 0.010; Table S2.1) and 

length (F = 6.0, P = 0.016; Table S2.1). Also, fish δ13C demonstrated significant seasonal 

variation with values peaking in spring (-31.3 ± 0.2‰), decreasing in summer (-31.7 ± 

0.4‰), fall (-32.8 ± 0.4‰), and winter (-32.9 ± 0.5‰) (F = 7.0, P < 0.001; Table S2.1). 
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There was also a significant increase in δ13C with fish length (F = 13.7, P < 0.001: Table 

S2.1).  Mussels, yellow perch, and zooplankton ẟ15N values differed significantly (F = 

135.6, P < 0.001, Table S2.3) with values averaging 2.7 ± 0.3 ‰, 7.3 ± < 0.1 ‰, and 5.3 

± 0.4 ‰, respectively. Yellow perch were significantly different from mussels and 

zooplankton ẟ13C differed significantly (F = 13.7, P < 0.001; Table 2.3) with yellow 

perch ẟ13C values averaging -31.9 ± 0.2 ‰ and zooplankton averaging -37.8 ± 1.2 ‰.  

Sex 

Lipid contents were significantly different (F = 18.0, P < 0.001; Table 2.1) 

between males and females. Males had significantly greater lipid content (1.6 ± 0.1%) 

than females (1.1 ± 0.1%). Condition indices were significantly different (F = 256.0, P < 

0.001; Table 2.1) between males (-0.1 ± 0.1 g/mm3) and females (-1.5 ± 0.1 g/mm3). 

Summary seasonal biological and stable isotope data for 8-year-old Lake 

Manganese yellow perch are provided in Table 2.3. Male fish within this age class were 

significantly smaller in both total length (F = 109.2, P < 0.001; Table S2.4) and body 

mass (F = 53.3, P < 0.0001; S4) relative to 8-year-old females.  Lipid content for male 

and female 8-year-olds peaked in winter (2.0 ± 0.2%) and was significantly larger than 

fall (1.0 ± 0.1%) and spring (0.8 ± 0.1%) (F = 10.5, P < 0.001; Table S3).  Energy 

densities within this age class were also greatest in the summer (4.7 ± 0.1 kJ/g), and 

decreased in fall (4.5 ± 0.1 kJ/g), winter (4.4 ± 0.2 kJ/g), and reached its lowest value in 

the spring (4.0 ± 0.1 kJ/g).  Spring collected fishes had significantly lower energy density 

relative to individuals collected in the summer and fall (F = 69, P < 0.001, Table S3). 
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There was a significant seasonal difference for GSI which had the highest values 

in fall (4.0 ± 0.8 %) and winter (4.6 ± 0.8 %) and were significantly different from 

summer (1.8 ± 0.8 %) and spring (1.8 ± 0.6 %) (F = 6.9, P < 0.001). Hepatosomatic 

indices peaked in spring (1.6 ± 0.1%) and were significantly different from winter (0.8 ± 

0.2 %), both of which are significantly different than summer (0.4 ± 0.1%) (F = 12.0, P < 

0.001). Condition indices did not demonstrate any significant differences across seasons 

(F= 1.6, P = 0.2, Table S2.3), but was significantly different between sex (F = 7.2, P = 

0.009).  No significant seasonal patterns in ẟ15N or ẟ13C were evident among 8-year-old 

fishes (Table S2.4). 

2.4.3 Diet 

The greatest total number of prey taxa identified from fish diets occurred in the 

summer with 13 different prey types identified from the gut contents of fish sampled 

during this season (Figure 2.8). This was followed by spring (n = 12), winter (n = 9), and 

fall (n = 6) collections.  Female and male diets differed seasonally with respect to the 

diversity of prey items identified within gut contents.  For example, females consumed a 

wider diversity of prey species in the spring (n = 11), summer (n = 12) and fall (n =7) 

relative to males (spring n = 5; summer n = 9; fall 3; winter n = 9).  For males, snails 

(Physa spp.), mayflies (Hexagenia limbata) and detritus were consistently observed in 

diets each season.  For females, Physa spp., crayfish (Orconectes propinquus), 

dragonflies (Anisoptera spp.), caddisflies (Trichoptera spp.) and unidentifiable fish 

remains and detritus remains were consistently observed in the diet. Spring peeper 

(Pseudacris crucifer), aquatic and terrestrial Coleptera spp., and amphipods were found 
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only in female diets.  The only prey item unique to male diets included fingernail clams 

(Sphaerium spp.) with the diets of male fishes consisting of 11 different prey species over 

the one-year sampling period.  Three of the prey items; Isopoda, Sphaerium, and 

Anisoptera, were only found during one season and each contributed < 3.0% to prey 

counts in the diet.  Physa constituted the largest proportion of male diets in spring (46.4 

%), fall (48.2 %), and winter (60.0 %), whereas females consumed the most Physa in 

spring (62.1 %) but dropped to 5.9 % in summer, 0 % in fall, and 13.0 % in winter. 

Within male diets, Trichoptera were present in spring (28.8 %), summer (2.7 %), fall 

(25.0 %) and winter (16.3 %). In summer detritus (51.4 %) made up the largest 

proportion of the diet, along with Chironomids (8.1 %) and Orconectes propinquus (5.4 

%) reaching peak abundance in male diets. Fish remains occurred infrequently in the gut 

contents of males (< 3.8%).  

2.5 Discussion  
Traditional snapshot sampling of fish populations has typically been conducted 

during the summer during which water temperatures, nutrient levels, primary 

productivity, and prey availability are generally highest and conditions for fish growth 

are optimized relative to the remainder of the year [7, 75].  However, such single season 

sampling will not permit the ability to empirically capture the extent of annual variability 

for common biological metrics frequently quantified by fisheries monitoring programs.  

In this study, significant seasonality was observed across a range of biological variables 

for a yellow perch population at both the population- and age-class levels of sampling.  

Significantly different seasonal responses were also determined between male and female 
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fishes that could be associated with the unique growth of the Lake Manganese perch 

population.  Such seasonal variation contributes to our knowledge of fish ecology and 

also our understanding of population responses to natural forcing factors such as 

seasonality.  

Yellow perch lipid contents demonstrated a significant seasonal pattern with 

highest lipid levels occurring in the winter and prior to spring reproduction.  This pattern 

agrees well with that described for yellow perch and other cool and cold-water fish 

species that spawn in the spring [16].  Due to the high caloric content of lipid tissues, it 

would be expected that energy density would follow a similar seasonal pattern as lipid 

content.  Instead, energy density peaked in the summer contrasting the winter lipid peak.  

A possible explanation for this contrast could be associated with the specific seasonality 

of yellow perch reproduction.  For example, the lowest GSI values were recorded in the 

summer and reproductive tissues generally have low water content but require a large 

energy investment to create [12, 26] . Condition was also lowest in the summer months, 

which would indicate that yellow perch in Lake Manganese have less body mass per unit 

length in the summer than the rest of the year when GSI increases.  Increases in HSI are 

also associated with the production of reproductive tissues and this metric demonstrated a 

seasonal increase from fall through to the spring, before a rapid decline following the 

spring spawning period [26, 70].  Therefore, seasonal changes observed in lipid content 

and energy density are all potentially correlated with the seasonal nature of reproductive 

physiology.  Further, moisture content for fishes were highest for winter collected fishes 

and this component of proximate composition does not contribute to whole body energy 
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density.  This trend also agrees well seasonal changes in GSI and HSI as associated with 

yellow perch reproduction and is a characteristic of the population that would not be 

captured during the open water non-reproductive seasons for this species and other 

similar percids such as walleye (Sander vitreum) that also spawn in the spring. 

The stable isotopes of carbon (δ13C) and nitrogen (δ15N) are considered to 

represent longer-term spatial integrations of animal trophic ecology with δ13C providing 

insight into habitat and food resource exploitation strategies and δ15N provide a measure 

of organismal trophic position [71, 76-79].  In this study, yellow perch δ13C values 

differed by up to 2.2 ‰ among seasons for the fishes collected here which is greater than 

the < 1 ‰ generally assumed for the fractionation of δ13C between prey and predator 

[80].  Importantly, such differences in fish δ13C occurred between sampling events that 

were conducted within a few months apart suggesting that this particular ecological tracer 

may integrate shorter time frames of animal resource exploitation relative to general 

assumptions of a life-history integration for this particular tracer [77].  Yellow perch δ13C 

values in this study were generally quite negative for this species and also encompassed a 

wide range (-27.3 to -35.3 ‰) suggesting a wide variety of habitat and food resource 

exploitation.  In comparison, Happel et al. [81] reported δ13C values ranging from -18 to -

24 ‰ for Lake Michigan yellow perch collected from across a variety of rocky and sandy 

substrate locations across the lake.  Lake Manganese receives inflow from Aetna and 

French Annie Creeks which drain through flooded marsh habitat before emptying into the 

lake.  Anaerobic habitats within such marshes can result in highly negative ẟ13C 

signatures approaching -40.0 ‰ due to high levels of bacterial respiration that alters 
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carbon isotope fractionation [82].  Hecky and Hesslein [83] also described similarly 

highly negative ẟ13C values for Arctic lakes where phytoplankton carbon production 

resources predominate to overall consumer production and these trends could contribute 

to the ẟ13C profiles determined for yellow perch in this study. 

Carbon stable isotopes in lentic ecosystems tend to follow a general pattern of 

becoming increasingly negative along a transect from nearshore littoral zones, to offshore 

pelagic areas, and typically being the most negative in deeper profundal regions [83-85].  

Gut contents data collected for this study demonstrated a total of 14 different diet items 

and agree with the generally omnivorous diet described for yellow perch [9].  Male diets 

encompassed a broader range of prey items relative to females with snails (Physa spp), 

detritus and mayflies representing the predominant biomass ingested by males across the 

seasons. Hecky and Hesslein [83] reported an average ẟ13C of -30.8 ‰ for benthic 

grazing snails (Physa jennessii jennessii) in an Arctic lake that were highly similar to 

zooplankton values (-32.7 ‰).  This similarity was attributed to increased turbidity that 

inhibits light penetration and the development of benthic algae that generally produce 

isotopically heavier (less negative) ẟ13C values as associated with photosynthesizing in 

the undisturbed boundary layer proximate to the lake bottom [83].  Lake Manganese is a 

small (21.2 ha) and relatively shallow (zmax = 7.6 m) ecosystem that was frequently highly 

turbid during sampling with total dissolved solids values averaging 84.0 mg/L during 

summer sampling.  Carbon stable isotope values for male yellow perch in Lake 

Manganese were consistently more negative relative to those for females suggesting that 

males are selecting deeper regions of the lake where phytoplankton and zooplankton 
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resources support consumer production.  In contrast, the less negative ẟ13C values 

characterized for female yellow perch in Lake Manganese Sport conclusions of shallower 

nearshore habitat selection by this sex [86] where light penetration can better support the 

growth of benthic algal resources and produce the less negative ẟ13C values characteristic 

of this habitat [83]. 

An unexpected result from this study was distinct evidence of highly stunted 

growth for the Lake Manganese yellow perch population.  For example, male yellow 

perch collected from Lake Manganese for this study averaged only 141 mm in length 

with females averaging 165 mm.  Additionally, fish up to 18 years of age were collected 

for this study.  For comparison, Ridgway and Chapleau [28] described average lengths of 

172 mm and 241 mm for stunted male and female yellow perch, respectively, collected 

from Lac du Printemps in Quebec.  These results compare to the highly productive Lake 

Erie yellow perch population for which average sizes of 7-year-old male and female fish 

can range up to 233 and 374 mm, respectively [87].  Fish collected from Lac du 

Printemps had a maximum age of 10 years which is not atypical for yellow perch and 

lifespans up to 15 years have been reported for this species [28, 88].  However, the 18-

year-old male yellow perch collected in the current study appear to be atypical and rare 

for this species and have remained undocumented for the Lake Manganese population 

until now.     

Stunting in fish populations is indicated by earlier sexual maturation, smaller sizes 

at age, longer lifespans, and exceedingly slow growth rates relative to those described for 

typical population [20-23, 27, 28].  This phenomenon can be attributed to a variety of 
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factors including competition for limited food resources [21, 23, 28] which in turn can be 

associated with additional factors such as including a loss of fishing pressure, 

introductions of non-native species, a shortage of forage fish, and a lack of benthic 

invertebrates [23, 27].  Decreased mortality within a population can also result in stunting 

or exacerbate it within an already stunted or at-risk population [23]. Stunting is, however, 

a plastic growth response to environmental conditions with transplantation studies 

demonstrating rapid increases in growth observed for stunted individuals under 

laboratory settings and ad-libitum feeding conditions [21].  The relatively high north 

temperate latitude location and limnological conditions within Lake Manganese may also 

contribute to the degree of stunting observed for this yellow perch population.  For the 6 

months from November through May, water temperatures were consistently within one 

degree of the 2 ºC temperature at which yellow perch growth is predicted to approach a 

zero growth or maintenance level [4].  Further, there was no single month of the year 

during which water temperatures achieved the 22 – 23 ºC range for optimum yellow 

perch growth.  Northern latitudes are associated with longer periods of cooler 

temperatures and a decreased number of growing degree days [53, 89].  For Lake 

Manganese, only the top 4 meters of the water column consistently averaged water 

temperatures sufficiently high (> 13.5 ºC) for yellow perch to maintain consistent 

positive growth during the summer growing season.  Furthermore, prolonged exposure to 

cold temperatures typically also results in longer fish lifespans [16].  The slow growth 

rates within Lake Manganese which, when combined with longer-lived individuals, could 

further increase resource limitation and also contribute to stunting in this yellow perch 

population.  
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In addition to abiotic factors, highly abundant golden shiner (B. Duxbury, pers. 

obs.) may also attribute to the stunting of Lake Manganese yellow perch.  Juvenile yellow 

perch feed on a diet of zooplankton [9], which are also the main food source of golden 

shiner. There has also been a diversity of successful and unsuccessful introductions of 

several non-native species into Lake Manganese species such as; largemouth bass 

(Micropterus salmoides), bluegill (Lepomis macrochirus), splake (Salvelinus namaycush 

x Salvelinus fontinalis), artic grayling (Thymallus arcticus), brook trout (Salvelinus 

fontinalis) and the now extirpated strain of Lake Medora lake whitefish (Coregonus 

clupeaformis medorae) [90, 91].   Of these introductions, only largemouth bass appear to 

have been successful based on collections completed for the current study.  Historical 

survey data also indicate a diversity of smaller forage fishes including lake chub 

(Couesius plumbeus), fine-scale dace (Chrosomus neogaeus), red-bellied dace 

(Chrosomus eos), Johnny darter (Etheostoma nigrum), Iowa darter (Etheostoma exile), 

stickleback (Gasterosteus spp.) and brassy minnow (Hybognathus hankinsoni) in Lake 

Manganese [41].  The introductions of larger-bodied predators such as largemouth bass 

and splake likely rapidly depleted these forage fish species as none were collected during 

sampling efforts here.  Subsequently, for yellow perch in Lake Manganese, competition 

with golden shiner for zooplankton prey, and a general absence of larger more energy 

dense prey such as small bodied forage fish likely prohibits progression through the 

ontogenetic shifts that permit increased growth and greater body sizes. 

Overall the stunted Lake Manganese yellow perch population provides a 

demonstration of the effects of central ecological concepts such as predation, 
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competition, and resource limitation. It is important to note that only yellow perch and 

largemouth bass have successfully established within Lake Manganese, and the Michigan 

Department of Natural Resources is currently attempting another bluegill introduction 

into Lake Manganese (G. Madison MiDNR pers. comm.). Bluegill sunfish are a benthic 

omnivore and such introductions may only increase competition for benthic prey and the 

extent of stunting evident in this yellow perch population.  Future studies to evaluate such 

a potential consequence would prove valuable to identify the extent to which growth 

stunting can be manifested within a population and ecosystem.  Lake Manganese also 

allows for the study of extremely old age and slow growth rates and the effects these may 

have on food-web ecology and biology in Lake Manganese.  The high competition, and 

lack of predators have the possibility to influence stunting by altering energy density and 

ẟ15N values.  Stunted yellow perch in Lake Manganese generally occupy a single trophic 

level as indicated by ẟ15N.  A seasonal comparison of stable isotope values among the 

other fishes inhabiting this ecosystem could help demonstrate the extent of competition 

occurring in this ecosystem. This would prove beneficial for identifying populations at 

risk in the lake, or possibly identify seasonal periods of habitat and resource limitation 

that could contribute to stunting. 

2.5.1 Conclusion 

This study is among the few that have comprehensively examined a range of 

biological, ecological and limnological parameters for a single species and from an 

individual waterbody over an entire annual cycle.  For some of the biological parameters 

studied here such as HSI, GSI and fish condition, seasonal changes in these metrics were 
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not entirely unexpected as associated with our general knowledge of poikilothermy, fish 

ecology and aquatic ecology. However, such seasonal variability has rarely been 

quantified empirically.  Of particular interest from this study was the seasonal variability 

observed for yellow perch δ13C values.  The stable isotopes of carbon and nitrogen are 

considered to integrate long-term and spatial variability in the trophic ecology of aquatic 

and terrestrial consumer species [77].  The results of this study suggest that, for yellow 

perch, δ13C values may reflect more recent habitat and food resource exploitation 

behaviors and that general assumptions derived from single season sampling may not 

fully capture long-term variability.  Fishes collected for this study also demonstrated 

significant seasonal variability in proximate composition and energy density which is 

important for our understanding of pollutant bioaccumulation in fish species.  For 

example, pollutants such as polychlorinated biphenyls (PCBs) and mercury (Hg) 

accumulate in animal lipid and protein tissues, respectively [92, 93]. These two pollutants 

also contribute to the majority of fish consumption advisories across the Great Lakes 

basin.  Thus, understanding seasonal variability in the ability of aquatic species to 

bioaccumulate pollutants is likely important for furthering our knowledge of aquatic 

ecotoxicology, and also for managing human risks associated with the consumption of 

contaminated fish which is also not limited to a single season.  
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2.6 Chapter 2 Tables and Figures 

Table 2.1 Seasonal water quality monitoring data including average temperature (℃), 
dissolved oxygen (DO; mg/L), specific conductivity (Sp. Cond.; µS/cm), total dissolved 
solids (TDS; mg/L), pH, and oxidation reduction potential (ORP; mV) for Lake 
Manganese collected with a YSI® Professional Plus Multi-Parameter Instrument and 
HOBO data loggers* between May 2018 and June 2019. 

Variable Spring 
18 

Summer 
18 

Fall 
18 

Winter 
19 

Spring 
19 

Temperature    11.1 (0.7)    16.3 (0.4)   6.2 (1.0) N/A N/A 
Temperature* N/A      16.0 (<0.1)     4.4 (<0.1) 2.7 (<0.1) 6.8 (<0.1) 
DO      7.9 (0.3)     7.9 (0.2) 10.5 (0.4) N/A N/A 
Sp. Cond.  115.7 (6.4) 129.2 (4.1)   69.7 (10.2) N/A N/A 
TDS     75.2 (4.2)   84.0 (2.7) 45.4 (6.6) N/A N/A 
pH      7.6 (0.1)    8.2 (0.1)   8.4 (0.1) N/A N/A 
ORP  126.6 (16)    86.0 (10.2) 128.0 (25.3) N/A N/A 

*HOBO data loggers collected temperature measurements every 30 minutes from 8/17/18
- 6/24/19 where YSI was only collected once per month 5/18/18 – 10/13/18
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Table 2.2 Summary biological data including length (mm), mass (g), lipid content (%), 
GSI (%), HSI (%), Fulton’s condition (K; g/mm3), energy density (kJ/g), and stable 
nitrogen (ẟ15N; ‰), and carbon (ẟ13C; ‰) isotope data for yellow perch collected from 
Lake Manganese, Grant Township, Michigan. Collections occurred April 11, 2018 
through March 2, 2019. Data for female fish represent individuals ranging from 2 – 14 
years in age and from 2 – 18 years for males.  Values represent arithmetic means with 1 
standard error in parentheses. 

Variable Sex Spring Summer Fall Winter 

Length 
F 168 (1.8) 165.5 (2.7) 160.7 (3.2) 158.1 (3) 
M 139.5 (1.3) 145.2 (1.4) 140 (1.5) 140.1 (0.9) 
All 159.1 (1.3) 157.6 (1.6) 150.2 (2) 145.9 (1.5) 

Mass 
F 46.4 (2.4) 42.2 (3.5) 40.7 (4.3) 43.1 (3.9) 
M 25.8 (0.9) 28.3 (1) 24.6 (1) 25.2 (0.6) 
All 40.0 (1.7) 36.7 (2) 32.5 (2.5) 31 (1.9) 

Lipid 
content 

F 0.8 (0.1) 1.2 (0.2) 0.8 (0.2) 1.7 (0.3) 
M 0.9 (0.1) 1.8 (0.2) 1.4 (0.2) 2.0 (0.2) 
ALL 0.8 (0.1) 1.5 (0.1) 1.1 (0.1) 1.9 (0.2) 

GSI 
F 1.9 (0.3) 1.2 (0.5) 3.4 (0.6) 7.4 (0.6) 
M 2.6 (0.4) 2.3 (0.6) 3.0 (0.4) 3.0 (0.2) 
All 2.2 (0.3) 1.5 (0.5) 3.2 (0.4) 4.2 (0.3) 

HSI 
F 1.4 (0.1) 0.5 (0.1) 0.7 (0.1) 1 (0.1) 
M 0.6 (0.1) 0.5 (0.1) 0.3 (0.1) 0.8 (0.1) 
All 1.2 (0.1) 0.5 (0.1) 0.6 (0.1) 0.9 (0.1) 

K 
F 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 
M 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 
All 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 

Energy 
density 

F 3.9 (0.1) 4.6 (0.2) 4.5 (0.2) 4.4 (0.3) 
M 3.9 (0.1) 4.8 (0.2) 4.6 (0.2) 4.5 (0.2) 
All 3.9 (0.1) 4.7 (0.1) 4.5 (0.1) 4.5 (0.2) 

ẟ15N 
F 7.2 (0.1) 7.5 (0.2) 7.8 (0.2) 7.8 (0.3) 
M 7.0 (0.1) 7.4 (0.1) 7.3 (0.2) 7.1 (0.2) 
All 7.1 (0.1) 7.4 (0.1) 7.5 (0.1) 7.3 (0.1) 

ẟ13C 
F -30.6 (0.2) -31.9 (0.5) -32.7 (0.7) -32.2 (0.8)
M -32.3 (0.3) -31.3 (0.5) -33 (0.6) -33.6 (0.5)
All -31.4 (0.2) -31.6 (0.4) -32.9 (0.4) -33.2 (0.5)
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Table 2.3 Summary biological data including length (mm), mass (g), lipid content (%), 
GSI (%), HSI (%), Fulton’s condition (K; g/mm3), energy density (kJ/g), and stable 
nitrogen (ẟ15N; ‰), and carbon (ẟ13C; ‰) isotope data for 8-year-old yellow perch 
collected from Lake Manganese, Grant Township, Michigan. Collections occurred April 
11, 2018 through March 2, 2019. Values represent arithmetic means with 1 standard error 
in parentheses. 

Variable Sex Spring Summer Fall Winter 

Length 
F 180.3 (4.0) 166 (4.5) 174.7 (7.4) 170.0 (9.0) 
M 139.3 (2.3) 144.2 (2.2) 138.4 (2.6) 139.1 (1.6) 
All 166.6 (2.6) 157.1 (2.6) 153.9 (3.6) 143.8 (3.7) 

Mass 
F 59.5 (4.6) 40.9 (5.1) 52.9 (8.4) 51 (10.2) 
M 25.7 (1.8) 29.1 (1.7) 23.4 (2) 24.9 (1.2) 
All 48.2 (2.8) 36.1 (2.9) 36.0 (4.0) 28.9 (4.0) 

Lipid 
F 0.9 (0.2) 1.1 (0.2) 0.6 (0.2) 1.7 (0.3) 
M 0.6 (0.2) 1.8 (0.2) 1.3 (0.2) 2.1 (0.2) 
All 0.8 (0.1) 1.4 (0.1) 1 (0.1) 2 (0.2) 

GSI 
F 1.5 (0.4) 1.3 (0.5) 4.3 (0.8) 9.8 (0.9) 
M 2.5 (1.3) 2.7 (1.6) 3.8 (1.3) 3.6 (0.8) 
All 1.8 (0.6) 1.8 (0.8) 4 (0.8) 4.6 (0.8) 

HSI 
F 2.0 (0.2) 0.4 (0.2) 0.9 (0.4) 0.9 (0.3) 
M 0.7 (0.1) 0.4 (0.1) 0.5 (0.2) 0.8 (0.1) 
All 1.6 (0.1) 0.4 (0.1) 0.7 (0.2) 0.8 (0.2) 

K 
F 1.0 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 1.0 (<0.1) 
M 0.9 (0.1) 0.8 (0.1) 1.2 (0.1) 1.0 (0.1) 
All 1.0 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 

Energy 
density 

F 4.0 (0.2) 4.6 (0.2) 4.5 (0.2) 4.3 (0.3) 
M 4.0 (0.2) 4.8 (0.2) 4.5 (0.2) 4.5 (0.1) 
All 4.0 (0.1) 4.7 (0.1) 4.5 (0.1) 4.4 (0.1) 

δ15N 
F 7.4 (0.1) 7.5 (0.2) 7.9 (0.2) 7.8 (0.2) 
M 7.3 (0.2) 7.3 (0.2) 7.4 (0.2) 6.9 (0.2) 
All 7.4 (0.1) 7.4 (0.1) 7.6 (0.1) 7.2 (0.1) 

δ13C 
F -30.3 (0.5) -31.7 (0.5) -32.5 (0.7) -32.5 (0.8)
M -33.4 (0.7) -31.4 (0.5) -33.2 (0.6) -33.4 (0.5)
All -31.5 (0.4) -31.6 (0.4) -32.9 (0.5) -33.1 (0.5)
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Table 2.4 Averages of: length (mm), mass (g), lipid content (%), GSI (%), HSI (%), 
condition K, (g/mm3), Energy density (kJ/g), ẟ15N (‰), and ẟ13C (‰) with standard error, 
yellow perch collected from Lake Manganese, Grant Township, Michigan. Collections 
occurred April 11, 2018 through March 2, 2019.  
 

Variable 
Female Male Female Male 

(2 – 14 yrs.) (2 – 18 yrs.) (8-year-old fish only) 
Length  164.5 (1.1) 140.9 (1.2) 173.7 (2.5)    140.1 (2.0) 
Mass   44.0 (1.4)   25.8 (1.5)   51.4 (2.7)      25.7 (2.2) 
Lipid content     1.0 (0.1)     1.3 (0.1)     1.0 (0.1)        1.5 (0.1) 
GSI     2.9 (0.2)     2.8 (0.3)     2.6 (0.5)        3.3 (0.5) 
HSI     1.1 (0.1)     0.6 (0.1)     1.3 (0.1)        0.7 (0.1) 
K     0.9 (0)     0.9 (0)     0.9 (<0.1)        0.9 (<0.1) 
Energy density     4.1 (0.1)     4.3 (0.1)     4.4 (0.1)        4.4 (0.1) 
ẟ15N     7.4 (0.1)     7.2 (0.1)     7.6 (0.1)        7.2 (0.1) 
ẟ13C  -31.2 (0.3)  -32.5 (0.2)  -31.5 (0.3)     -32.8 (0.3) 
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Figure 2.1: Lake Manganese bathymetry.  Map information collected by the Michgian 
Conservation Department’s Institute for Fisheries Research (August 1938). 
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Figure 2.2: Average monthly water temperatures for Lake Manganese from May 2018- 
July 2019 with standard error in brackets, white squares represent YSI data with error 
bars representing ± standard error. Black squares represent temperature data collected by 
remote HOBO data loggers. Minimum temperature (13.5 ℃) required for yellow perch 
growth is represented by the shaded dashed line.  Upper and lower dotted lines represent 
the temperatures for optimum (22 °C) and zero or maintenance growth (2 ℃) asymptotes 
for yellow perch growth. 
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Figure 2.3: Average water temperature profiles for Lake Manganese collected via Hobo 
data loggers from 8/17/18 - 6/24/19. Profiles represent spring (A), summer (B), fall (C), 
and winter (D). 
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Figure 2.4: Average dissolved oxygen profiles for Lake Manganese collected via YSI 
from once per month 5/18/18 – 10/13/18. Profiles represent spring (A), summer (B), and 
fall (C) with bars representing standard error. No standard error bars are available for fall 
as there was only one measurement.  
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Figure 2.5: Von Bertalanffy (VBL) growth curve for male (; n = 210) and female (; 
n = 236) yellow perch collected from Lake Manganese in Keweenaw County, MI 
between April 11, 2018 and March 17, 2019.  Solid and dashed lines represent von 
Bertalanffy growth models for female and male perch, respectively.  
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Figure 2.6: Carbon (δ13C) and nitrogen (δ15N) isotope values for zooplankton (+), 
mussels (■), and male ( , n = 37) and female (, n = 32) yellow perch.  Samples were 
collected from April 2018 – March 2019 
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Figure 2.7: Stable carbon (δ13C) and nitrogen (δ15N) isotope values for all male () and 
female () yellow perch collected from Lake Manganese, Grant Township, Michigan. 
Collections occurred April 11, 2018 through March 2, 2019 ranging in ages from 2 – 18. 
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Figure 2.8: Diet composition data for female (A; n = 236), and male (B; n = 209) yellow 
perch collected from Lake Manganese, Grant Township, Michigan. Collections occurred 
April 11, 2018 through March 2, 2019. 
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2.7 Supplemental information 
Table S2.1 Results of the one-way ANOVA model for the effects of season (Spring 
[April-June], Summer [July-September], Fall [October, December], Winter [ January-
March]), and the covariates: Age (2-18), Sex (Male, Female), length (mm), and mass (g) 
on the lipid content (%), log(GSI+1) (%), HSI (%), Fulton’s K (g/mm3), ẟ15N (‰), and 
ẟ13C (‰) on Lake Manganese yellow perch (Perca flavescens). All factors were treated 
as fixed effects with bold values indicating a significant effect at α = 0.05. 

Source DF Mean Square F Ratio Prob > F 
(A) Lipid content (%)     

Season 3.0 5.8 22.3 <0.001* 

Age 1.0 2.1 8.3 0.005* 

Sex 1.0 0.8 3.0 0.1 

Total (mm) 1.0 0.2 0.8 0.4 

Total (g) 1.0 0.3 1.2 0.3 

Model Error 111.0 0.3   

     

(B) log (GSI+1) (%)     

Season 3.0 6.4 22.0 <.0001* 

Age 1.0 1.8 6.0 0.0145* 

Sex 1.0 0.7 2.3 0.1 

Total (mm) 1.0 5.0 17.1 <.0001* 

Total (g) 1.0 6.9 23.4 <.0001* 

Model Error 351.0 0.3   

     

(C) HSI (%)     

Season 3.0 7.1 21.1 <.0001* 

Age 1.0 1.5 4.6 0.0331* 

Sex 1.0 6.6 19.8 <.0001* 

Total (mm) 1.0 2.1 6.2 0.0136* 
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Total (g) 1.0 5.4 16.2 <.0001* 

Model Error 281.0 0.3   

     

(D) Condition (g/mm3)     

Season 3.0 0.0 3.9 0.0091* 

Age 1.0 0.0 5.4 0.0208* 

Sex 1.0 0.0 1.8 0.2 

Total (mm) 1.0 1.0 192.4 <.0001* 

Total (g) 1.0 2.1 411.7 <.0001* 

Model Error  426.0 <0.1   

     

(E) Energy density 
(kJ/g) 

    

Season 3.0 3.8 16.6 <.0001* 

Age 1.0 0.0 0.0 1.0 

Sex 1.0 0.7 3.1 0.1 

Total (mm) 1.0 0.5 2.3 0.1 

Total (g) 1.0 0.2 0.8 0.4 

Model Error 110.0 0.2   

     

(F) ẟ15N (‰)     

Season 3.0 0.6 3.0 0.0317* 

Age 1.0 1.4 6.9 0.0099* 

Sex 1.0 0.0 0.0 0.9 

Total (mm) 1.0 1.2 6.0 0.0162* 

Total (g) 1.0 0.2 1.1 0.3 

Model Error 109.0 0.2   
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(A) Overall model for lipid content (%): N =119, R2 = 0.439, P < 0.0001 
(B) Overall model for GSI (%): N = 359, R2 = 0.262, P < 0.0001 
(C) Overall model for HSI (%): N = 289, R2 = 0.316, P < 0.0001 
(D) Overall model for condition (g/mm3): N = 434, R2 = 0.533, P < 0.0001 
(E) Overall model for energy density (kJ/g): N = 118, R2 = 0.350, P < 0.0001 
(F) Overall model for ẟ15N (‰): N = 177, R2 = 0.281, P < 0.0011 
(G) Overall model for ẟ13C (‰): N = 177, R2 = 0.367, P < 0.0011 
  

     

(G) ẟ13C (‰)     

Season 3.0 15.1 7.0 0.0002* 

Age 1.0 0.5 0.2 0.6 

Sex 1.0 1.6 0.8 0.4 

Total (mm) 1.0 29.5 13.7 0.0003* 

Total (g) 1.0 5.5 2.6 0.1 

Model Error 109.0 2.2     
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Table S2.2 Results of the one-way ANOVA model for the effects of age (2-18), and sex 
(M/F) on total length (mm) and mass (g) on Lake Manganese yellow perch (Perca 
flavescens). All factors were treated as fixed effects with bold values indicating a 
significant effect at α = 0.05. 

 
Source DF Mean Square F Ratio Prob > F 
(A) Length     
Season 3 749.8 3.1 0.0263* 
Age 1 18106.4 75.1 <.0001* 
Sex 1 62903.4 260.9 <.0001* 
Model Error 428 241.1   
     
(B) Mass     
Season 3 508.7 1.3 0.2660 
Age 1 17960.9 46.8 <.0001* 
Sex 1 42534.7 110.7 <.0001* 
Model error 428 384.2   
(A) Overall model for total length (mm) : N =434, R2 = 0.440, P < 0.0001 
(B) Overall model for mass (g): N = 434, R2 = 0.249, P < 0.0001 
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Table S2.3. Results of the one-way ANOVA model for the effects of Season (Spring 
[April-June], Summer [July-September], Fall [October, December], Winter [ January-
March]), and the covariates: , Sex (Male, Female), length(mm), mass, (g) on the Lipid 
Content (%), GSI (%), HSI (%), Fulton’s K (g/mm3), ẟ15N (‰), and ẟ13C (‰) on Lake 
Manganese 8-year-old yellow perch (Perca flavescens). All factors were treated as fixed 
effects with bold values indicating a significant effect at α = 0.05. 

Source DF Mean Square F Ratio Prob > F 
(A) Lipid content%      

Season 3.0 3.2 10.5 <.0001* 

Sex 1.0 0.5 1.7 0.2 

Total (mm) 1.0 0.5 1.5 0.2 

Total (g) 1.0 0.6 2.0 0.2 

Model Error 51.0 0.3   

     

(B) GSI (%)     

Season 3.0 2.0 7.7 0.0001* 

Sex 1.0 0.1 0.4 0.5 

Total (mm) 1.0 0.3 1.0 0.3 

Total (g) 1.0 0.2 0.8 0.4 

Model Error 76.0 0.3   

     

(C) HSI (%)     

Season 3.0 4.2 12.0 <.0001* 

Sex 1.0 3.3 9.5 0.0030* 

Total (mm) 1.0 1.5 4.4 0.0405* 

Total (g) 1.0 1.4 4.2 0.0458* 

Model Error 60.0 0.3   
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(D) Condition (g/mm3)     

Season 3.0 0.0 1.6 0.2 

Sex 1.0 0.0 7.2 0.0089* 

Total (mm) 1.0 0.3 69.5 <.0001* 

Total (g) 1.0 0.4 101.9 <.0001* 

Model Error  90.0 <0.1   

     

(E) Energy density (kJ/g)     

Season 3.0 1.6 6.9 0.0005* 

Sex 1.0 0.4 1.6 0.2 

Total (mm) 1.0 0.1 0.5 0.5 

Total (g) 1.0 0.0 0.1 0.8 

Model Error 52.0 0.2   

     

(F) ẟ15N (‰)     

Season 3.0 0.3 1.3 0.3 

Sex 1.0 0.0 0.0 1.0 

Total (mm) 1.0 0.0 0.2 0.7 

Total (g) 1.0 0.1 0.3 0.6 

Model Error 52.0 0.2   

     

(G) ẟ13C (‰)     

Season 3.0 6.1 2.5 0.1 

Sex 1.0 2.3 0.9 0.3 
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Total (mm) 1.0 9.4 3.9 0.1 

Total (g) 1.0 2.1 0.9 0.4 

Model Error 52.0 2.4     

     

(A) Overall model for lipid content (%): N =58, R2 = 0.482, P < 0.0001 
(B) Overall model for GSI (%): N = 83, R2 = 0.288, P < 0.0002 
(C) Overall model for HSI (%): N = 67, R2 = 0.520, P < 0.0001 
(D) Overall model for condition (g/mm3): N = 97, R2 = 0.581, P < 0.0001 
(E) Overall model for energy density (kJ/g): N = 59, R2 = 0.293, P < 0.0047 
(F) Overall model for ẟ15N (‰): N = 59, R2 = 0.277, P < 0.0075 
(G) Overall model for ẟ13C (‰): N = 59, R2 = 0.363, P < 0.0005 
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Table S2.4 Results of the one-way ANOVA model for the effects of age (2-18), and sex 
(M/F) on total length (mm) and mass (g) on Lake Manganese yellow perch (Perca 
flavescens). All factors were treated as fixed effects with bold values indicating a 
significant effect at α = 0.05. 

 
Source DF Mean Square F Ratio Prob > F 
(A) Length (mm)     
Season 3 275.6 1.5 0.2333 
Sex 1 20755.6 109.2 <.0001* 
Model Error 92 190.0   
     
(B) Mass     
Season 3 510.9 2.2515 0.0876 
Sex 1 12085.3 53.2570 <.0001* 
Model error 92 226.9   

(A) Overall model for total length (mm) : N =97, R2 = 0.616, P < 0.0001 
(B) Overall model for mass (g): N =97, R2 = 0.456, P < 0.0001 
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Table S2.5 Results of the one-way ANOVA model for seasonality among limnological 
parameters for Lake Manganese: (spring [April-June], Summer [July-September], Fall 
[October, December], Winter [January-March]), depth (0.1-7m), and their interactions. 

Source DF Mean Square F Ratio Prob > F 
(A) DO (mg/L)         

Season 2.0 27.2 17.8 <.0001* 

Depth (m) 1.0 35.3 23.1 <.0001* 

Season*Depth (m) 2.0 7.5 4.9 0.0099* 

Model Error 70.0 1.5   

     

(B) Sp Cond (µS/cm)     

Season 2.0 14998.2 20.0 <.0001* 

Depth (m) 1.0 19052.8 25.3 <.0001* 

Season*Depth (m) 2.0 415.8 0.6 0.6 

Model Error 77.0 751.7   

     

(C) TDS (mg/L)     

Season 2.0 5328.9 13.9 <.0001* 

Depth (m) 1.0 10200.0 26.6 <.0001* 

Season*Depth (m) 2.0 704.9 1.8 0.2 

Model Error 79.0    

     

(D) Temperature ℃     

Season 2.0 496.4 52.0 <.0001* 

Depth (m) 1.0 337.4 35.4 <.0001* 

Season*Depth (m) 2.0 51.8 5.4 0.0062* 

Model Error 79.0 9.5   
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(E) pH     

Season 2.0 3.0 16.5 <.0001* 

Depth (m) 1.0 1.6 8.6 0.0045* 

Season*Depth (m) 2.0 0.1 0.6 0.6 

Model Error 79.0 0.2   

     

(F) ORP (mV)     

Season 2.0 17149.8 3.0 0.1 

Depth (m) 1.0 14800.7 2.6 0.1 

Season*Depth (m) 2.0 7517.7 1.3 0.3 

Model Error 79.0 9.0     

 
(A) Overall model for DO (mg/L) : N = 97, R2 = 0.553, P < 0.0001 
(B) Overall model for Sp Cond (µS/cm): N = 83, R2 = 0.536, P < 0.0001 
(C) Overall model for TDS (mg/L): N = 85, R2 = 0.527, P < 0.0001 
(D) Overall model for temperature (℃): N = 85, R2 = 0.527, P < 0.0001 
(E) Overall model for pH: N = 85, R2 = 0.362, P < 0.0001 
(F) Overall model for ORP (mV): N = 85, R2 = 0.527, P < 0.0001 
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3 Comparison of mercury bioaccumulation by an age class of yellow perch (Perca 
flavescens) over an annual growing season. 

3.1 Abstract 
 

Mercury bioaccumulation in fish is associated with a range of biological, 

ecological and limnological characteristics, many of which exhibit significant seasonal 

variation.  However, few studies have explicitly examined Hg bioaccumulation at such a 

level of temporal resolution over an annual period.  In this study, Hg concentrations were 

measured monthly over a one-year period in a single age class of the Lake Manganese 

yellow perch (Perca flavescens) population to assess potential seasonal trends in Hg 

bioaccumulation and relationships with fish proximate composition and carbon (δ13C) 

and nitrogen (δ15N) stable isotope values.  Mercury concentrations demonstrated 

significant (P < 0.001) seasonal variation with monthly averages ranging from 78.5 – 

119.3 μg/kg (wet wt.) for spring and fall collections, respectively.  Fish protein content 

and protein mass were significant predictors of Hg bioaccumulation (P ≤ 0.010) with fish 

δ13C values also being significantly (P = 0.040) correlated with wet weight Hg 

concentrations in this population.  Mercury concentrations among 8-year old fishes also 

spanned almost an order of magnitude over one year under both wet (28.4 – 228.5 μg/kg) 

and dry (114.6 – 948.1 μg/kg) weight concentration measures.  Combined, these results 

demonstrate the high levels of seasonal and individual variability of Hg bioaccumulation 

in a common and popular recreational and commercial fish species.    
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3.2 Introduction 

Mercury, specifically methylmercury (MeHg) concentrations in fish tissues are of 

particular concern, as the consumption of contaminated fish is a main source of Hg 

exposure to humans [94].  MeHg is an acute neurotoxin that binds with high affinity to 

proteins and is capable of crossing the blood brain barrier [94].  MeHg accounts for > 90 

% of total Hg found in freshwater fishes. Factors including fish growth rates [95], water 

temperature, dissolved oxygen, and acidity [96], fish reproductive cycles [97], trophic 

position [98], habitat use and resources partitioning [99] have all been shown to 

contribute to Hg bioaccumulation.  However, many of these variables are likely to exhibit 

spatial and temporal variability within and among ecosystems and populations owing to 

generally tight coupling with seasonal cycles.   

Recreational and commercial fishing activities typically occur throughout the 

summer months within the Great Lakes basin. Within many inland lakes and northern 

regions of the Great Lakes, winter fishing (ice fishing) continues far past the close of the 

commercial season.  This suggests for individuals consuming fish captured during this 

cold water season are consuming fish during conditions when Hg surveys do not typically 

take place due to difficulty in sampling methods and less in known regarding seasonal 

variability in Hg bioaccumulation by fishes [1].  Evidence of short-term temporal 

variability in fish Hg concentrations have been observed during open water seasons or 

within laboratory settings [96, 100-102]. However, we currently do not know how 

variable Hg concentrations are among individual fishes on monthly of even on an annual 

seasonal basis.  By quantifying such potential variability, we may better understand 
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bioaccumulation kinetics in natural populations.  This knowledge gap poses a potential 

human health risk to the people consuming fish caught from ice-covered aquatic 

ecosystems. 

Lab-based and field studies have demonstrated the capacity of fish for the whole 

body elimination Hg [103, 104] .  However, many studies fail to include winter and/or 

entire growing season datasets when examining temporal changes in Hg concentrations 

[101, 105, 106]  .  Being ectotherms, the open water sampling seasons (i.e. spring, 

summer) are associated with optimal temperatures for yellow perch growth [9, 52, 62]   

and bioenergetic rates [4]. Faster growth rates also result in a greater potential for growth 

dilution [102, 107]  due to the increased potential for Hg storage in growing muscle 

tissues.  This combination of increased growth rate, growth dilution, and faster 

bioenergetic rates process all contribute to the capacity for Hg elimination potential being 

highest during the open water seasons [104, 108] .  In contrast, the colder temperatures of 

fall and winter slow bioenergetics processes and growth rates in fishes [4] resulting in 

reduced whole-body elimination and limited potential for growth dilution [102, 107] .  As 

a result, Hg elimination rates are thought to decrease in the fall and winter [108].  Field 

experiments have demonstrated that wild populations of yellow perch to have much 

slower Hg elimination than predicted by laboratory experiments [104].  This discrepancy 

between field and laboratory studies could be the result of seasonal changes in ecology 

and limnology that affect fish physiology but are difficult to replicate in a laboratory 

setting.   
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Seasonal changes in reproduction, habitat use, body composition, and prey 

selection may also affect Hg concentrations of fish.  Physiological changes as a result of 

reproduction represent a pathway for seasonal changes in Hg concentrations as both male 

and female fish have displayed Hg offloading through gametes [97, 105, 109].  Open 

water sampling for yellow perch typically occurs after the spawning season [9] and after 

any potential offloading may have already occurred.  In contrast, yellow perch gamete 

production peaks in winter [10], therefore having the ability to affect seasonal Hg 

concentrations through Hg offloading as associated with gonad maturation during the 

winter.  Seasonal shifts in fish ecology could also change mercury concentration rates.  

For example, yellow perch display seasonal shifts in diet as a species [18] and within 

Lake Manganese (chapter 2).  As different prey items have been shown to have differ Hg 

concentrations [110], this seasonal dietary change may also change mercury 

concentrations.  Furthermore, habitat selection has been shown to affect Hg 

concentrations [99], and seasonal changes in habitat selection [29] could influence 

seasonal mercury concentration.  For these reasons, a comprehensive full growing season 

study investigating Hg concentrations in a fish population over one year could address 

the knowledge gaps regarding the seasonality of Hg bioaccumulation.  

Lake Manganese located in Michigan’s Keweenaw Peninsula is one of the 

northernmost yellow perch populations within the contiguous US. This study was 

designed to investigate temporal changes in Hg bioaccumulation within a single age-class 

of the yellow perch population in this ecosystem.  Specific objectives included; 1) 

quantifying and contrasting monthly and seasonal Hg bioaccumulation in a single age 
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class of yellow perch over a one year growing season and 2) evaluating fish proximate 

composition (moisture, lipid, and protein) and the stable isotopes of carbon (δ13C) and 

nitrogen (δ15N) to determine how these factors relate with seasonal Hg bioaccumulation 

patterns in yellow perch.  I hypothesize that Hg concentrations will display significant 

seasonal differences and that protein and nitrogen (δ15N) will be significant predictors of 

Hg concentration.  These results will be valuable for understanding overwintering 

toxicology of a commercially and recreationally valuable fish species inhabiting north 

temperate ecosystems.  

3.3 Methods 

Yellow perch for this study were collected monthly from Lake Manganese located in 

Grant Township Michigan. Sampling was completed using hook and line from April 

2018 – March 2019.  A maximum of 50 fish were collected each month with no fish 

collections being conducted in November 2018 due to adverse weather and poor ice-

conditions on the lake.  Fish collections for this research were authorized by the 

Michigan Department of Natural Resources (MiDNR) Scientific Collection Permits 

obtained in 2018 and renewed in 2019.  All samples were stored in ice filled coolers for 

transport back to the laboratory where they were subsequently stored frozen (-20°C) until 

ready for dissection or analysis.  Handling and care of the fish was completed under the 

approval of the Michigan Technological University Institutional Animal Care and Use 

Committee, project number 1414057-1. 
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3.3.1 Sample Processing 

Biological data collected from each fish included sex, total, fork and standard 

lengths (mm), whole-body masses (g), lipid and protein content (%), protein mass 

(g/fish), moisture (%), δ15N, and δ13C with sagittal otoliths removed for aging purposes. 

Following dissection, fish were wrapped in solvent rinsed aluminum foil and stored at -

20°C until ready for homogenization.  Whole-body homogenates were prepared for 

moisture and lipid content determination and stable isotope analyses using a solvent 

rinsed stainless steel Waring 700S blender with up to a ~35 g subsample stored in a clean 

steel tin until ready for analysis.  All dissection and homogenization equipment were 

thoroughly washed and rinsed between each fish. 

3.3.2 Fish Aging 

Yellow perch ages were estimated from sagittal otoliths removed from each fish 

during dissection with aging method following the crack and burn procedure outlined in 

[111].  Otoliths were placed in Scotch™ brand lightweight mounting putty with their 

concave side facing up before being split in half with a scalpel through the core of the 

otolith and along the dorso-ventral axis.  The cross-sectioned face of the otolith was then 

held over an open flame for a few seconds until the cut surface turned a light brown in 

color.  The otolith was then inserted into a new piece of mounting putty with the cut 

surface facing up and then lightly painted with canola oil.  Both halves of aged otoliths 

were imaged using an Olympus SZX9 dissecting microscope equipped with 

Imagingsource™ camera (Figure 3.1). Images were analyzed in FIJI/ImageJ image 

processing software.  For quality control purposes, a subsample of 16 randomly selected 
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otoliths were sent for aging by three individuals experienced in aging fish otoliths.  

Otolith identifications were blind to each reviewer with only fish species information 

known.  In the occurrence of discrepancies between readers, life-history tables and 

literature based yellow perch length at age ranges were consulted to provide a consensus 

age estimate for the otolith in question [9, 58, 66].  A frequency distribution histogram 

indicated 8-year-old yellow perch to be the predominant age class within the Lake 

Manganese population (Figure 3.2).  Subsequently, these fishes were used as a proxy for 

tracking temporal Hg bioaccumulation among individual fishes in the absence of non-

lethal sampling methods for repeated sampling of individual fish Hg concentrations.  

3.3.3 Fish Proximate Composition 

Sample moisture contents were determined using approximately 1 g (± 0.0001g) 

of whole-body homogenate.  Aluminum weigh boats were pre-dried in an oven for 48 

hours at 120℃ and allowed to cool to room temperature inside desiccators prior to 

sample addition.  Weigh boats were pre-weighed empty followed by addition of the 

sample material and subsequent drying for 48 hours at 60℃.  Dried specimens were 

removed from the oven and allowed to cool to room temperature inside desiccators with 

dried samples then reweighed (± 0.0001g) and moisture contents determined as per 

equation (4); 

 

  % 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒 =  �1 − 𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡−𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝑤𝑤𝑤𝑤𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

� ×  100   (4) 
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Where dry weight represents the mass of the dried sample and weight boat after 

48 hours at 60°C (g); boat weight is the mass of the empty, pre-dried weigh boat (g); and 

wet weight is the wet mass (g) of sample added to the boat prior to oven drying. Total 

lipid content for each sample was determined as a component of a paired pollutant 

extraction procedure outlined in [67].  Approximately 1.0 g of tissue homogenate was 

mixed with 10 g of pre-combusted sodium sulfate, (Granular 10-60 Mesh) added to a 20 

mL glass syringe containing a glass wool plug, 10 mL of a 50:50 (vol:vol) mixture of a 

hexane and dichloromethane (DCM) extraction solvent attached to a VWR® syringe 

filter (25 mL 0.45 µm PTFE membrane). The mortar and pestle were then rinsed with an 

additional 5 mL of the extraction solvent with the 5 mL rinse transferred into the syringe. 

An additional 5.0g of sodium sulfate was added to the mortar and pestle, mixed in the 

mortar and quantitatively transferred into the syringe, with a final 5.0 mL rinse of the 

mortar and pestle with the extraction solvent and transfer into the extraction syringe. 

Samples were then allowed to stand for one hour with eluents collected in 45 mL glass 

test-tube with an addition 15 mL of the 50:50 solvent added as a final rinse. Once 

samples had drained into test tubes, they were transferred into a 125 mL round-bottom 

flask with each test tubes rinsed with a small volume of hexane to remove any residual 

lipids in the test tube.  The round-bottom flasks were evaporated to a volume < 10.0 mL 

using Heidolph® Roto Evaporators, and the extract was then transferred to 10 mL 

volumetric flasks and brought up to volume with hexane. A 1.0 mL subsample was then 

transferred from the 10 mL flask into a dried, pre-weighed and labelled aluminum weigh 

boat before being placed in the oven at 110℃ to dry for 1 hour.  Following drying, weigh 

boats containing the lipid volume were removed and allowed to cool to room temperature 
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in a desiccator before being weighed. Sample lipid contents (%) were calculated using the 

following equation: 

% 𝐿𝐿𝑀𝑀𝐿𝐿𝑀𝑀𝑑𝑑 = �𝐷𝐷𝑑𝑑𝑤𝑤𝑤𝑤𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡− 𝐵𝐵𝑏𝑏𝑏𝑏𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝑊𝑊𝑤𝑤𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

� ×  1000   (5) 

where dried weight (g) is the mass of the dried weigh boat containing the lipid sample (± 

0.0001g); boat weight (g) is the dried boat mass prior to sample additions; and wet weight 

represents the wet mass (g) of sample used for the extraction procedure. 

Protein contents (%) were estimated using the mass balance approach as outlined 

in [68].  Briefly, whole-body lipid and moisture masses (g) were determined from the 

product of sample lipid and moisture contents (% wet weight) and fish total masses.  Ash 

content for fish tissues typically range between approximately 1 - 2 % [69] in  [70]  and 

the random number generator function of Excel software was used to estimate an ash 

content within this range for each individual fish.  Fish tissues typically contain very little 

to no carbohydrates [71], thus protein mass was considered to represent the proportion of 

whole body tissue remaining following estimation of lipid, moisture and ash contents. 

3.3.4 Hg Analysis  

Following drying at 60 ℃ for at least 48 hours, samples were ground using a 

glass mortar and pestle before being quantitatively transferred into scintillation vials that 

had been washed in 10 % HNO3 acid bath and then triple rinsed in double distilled water. 

Samples were then weighed into a pre-cleaned nickel weigh boat on a balance to the 

nearest ± 0.0001 g before analysis. Samples were analyzed against a certified reference 

standard material (National Research Council of Canada, DORM-4, 0.410 mg Hg/kg) 
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with random samples from the field collected samples being run in triplicate. Recovery 

for the reference standard averaged 96.15 ± 2.53% of the certified concentration. All Hg 

analyses were completed using a Milestone direct mercury analysis (DMA) DMA-80 

instrument following the general methodology outlined by the United States 

Environmental Protection Agency (USEPA) for the analysis of Hg in biological samples 

using DMA methodology [112]. 

3.3.5 Data Analysis 

All statistical analyses were completed using the software package JMP Pro 

version 14.0 for Windows (SAS Institute, Cary, North Carolina, USA) with a criterion for 

significance of α = 0.05 used in all cases. Unless otherwise indicated, all data are reported 

as means ± 1 standard error.  All data were tested for normality using normal probability 

plots. Dry and wet weight Hg concentrations and lipid, moisture, and protein contents 

were all determined to be normally distributed.  To increase statistical power, monthly 

sampling data were combined to represent spring (April – June), summer (July – August), 

fall (September – December) and winter (January – March) seasonal collections.  

Statistical comparisons of the biological and ecological variables across seasons and 

between male (n = 51) and female (n = 46) fishes were completed using one way 

analyses of variance (ANOVA) and corrected for total length or body mass covariates 

where necessary.  Least squares linear regressions were used to evaluate the relationships 

between dry or wet weight Hg concentrations with fish protein content (%), protein mass, 

and δ13C, and δ15N values. 



70 

3.4 Results 

A summary of biological and Hg concentration data collected from fish analyzed 

for this study are presented in Table 3.1.  Female fishes were larger than males for both 

total length (F = 109.2; P < 0.001) and body mass (F = 53.3, P < 0.001). The heaviest 

individual was a female (145.5 g) collected in the spring (6/14/19) with the lightest fish 

(18.1 g) being a male caught in the winter (2/23/19).  Individual fish lipid contents ranged 

from 0.2 - 3.1 % and demonstrated significant seasonal variability (Figure 3.3; F = 10.5, 

P < 0.001; Table S3.1).  For example, fish lipid contents peaked in winter (2.0 ± 0.1%), 

which was significantly higher than the lowest lipid average content for spring collected 

fishes (0.8 ± 0.1%).  However, lipid contents did not differ significantly between male 

and female fish.  Fish protein contents (%) also demonstrated significant seasonal 

differences with highest values determined for summer collected fishes (23.5 ± 0.6%) 

relative to fall (20.4 ± 0.6%) and winter (20.4 ± 0.4 %) collections (F = 7.0, P < 0.001; 

Table S3.1).  Fish moisture contents were also seasonally different with spring collected 

fishes having the highest average moisture contents (77.9 ± 0.7%) and summer collected 

fishes representing the lower average (73.9 ± 0.8%; F = 7.6, P < 0.001; Table S3.1). 

Monthly and seasonal comparisons of Hg bioaccumulation in Lake Manganese 

yellow perch are presented in Figures 4 and 5.  Dry weight Hg concentrations for 

individual fishes ranged from 114.6 – 948.1 μg/kg in comparison to 28.4 - 228.5 μg/kg 

for wet weight concentrations.  The highest individual wet weight concentration (228.5 

μg/kg) was for a male caught during the winter (1/21/19). This individual also 

represented the highest dry weight Hg concentration.  Significant seasonality was evident 
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for wet weight Hg concentrations (F = 3.3, P = 0.025) but not for dry weight 

concentrations (F = 2.4, P = 0.077).  Fall collected fishes were determined to have the 

highest average dry (484.6 ± 58.2 μg/kg) and wet (119.3 ± 12.1 μg/kg) weight Hg 

concentrations.  Wet weight Hg concentrations for spring collected fishes were 

approximately 65.8 % lower relative to values quantified in fall collected fishes.  Of the 

10 highest Hg concentrations among individual fishes (both wet and dry weight), the 9 

highest concentrations were males. On average, males had higher Hg concentrations 

under both wet (109.3 ± 7.9 μg/kg) and dry weight (452.8 ± 35.1 μg/kg) relative to 

females (82.8 ± 5.2 μg/kg wet wt.; 352.0 ± 23.2 μg/kg dry wt.; Table 3.2).  There were no 

significant differences in Hg bioaccumulation between males and females for both wet (F 

= 2.1, P = 0.157) and dry (F = 1.1, P = 0.293) weight Hg concentration metrics. 

Fish δ15N values ranged from 5.7 – 8.8 ‰ and were not significantly correlated 

with either dry (P = 0.882) or wet weight (P = 0.803) Hg concentration data (Figure 3.6; 

Table 3.2).  In contrast, fish δ13C values were significantly correlated with wet weight Hg 

concentrations (P = 0.040) but not for dry weight Hg concentrations (P = 0.064).  

Mercury concentration data (wet and dry wt.) were negatively correlated with fish protein 

content (%) and protein mass (g) metrics.  Protein mass was significantly correlated with 

both wet (P = 0.023) and dry (P = 0.006) Hg concentration data.  For protein content, no 

significant relationship was observed with wet weight Hg concentrations (P = 0.365).  

However, protein content was significantly correlated with dry weight Hg concentrations 

(P = 0.010).  Coefficients of determination for all linear regressions were generally low 

(R2 ≤ 0.13) and explained minimal variance in each relationship. 
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3.5 Discussion 

Mercury concentrations measured in a single age class of yellow perch over a 

one-year period demonstrated significant seasonal variability with highest concentrations 

occurring during the fall and winter seasons.  These seasonal differences emphasize the 

importance of collecting such data in order to generate a better understanding of the 

factors that can influence the bioaccumulation of environmental pollutants such as Hg. 

For example, fish biology and ecology are highly regulated by limnological conditions, 

such as water temperature, which can also dictate the temporal structure and functioning 

of aquatic food-webs. Thus, quantifying Hg concentrations in fish species over multiple 

time points may help capture the various processes that contribute to an individual’s 

exposure to Hg and their capacity to assimilate and bioaccumulate such pollutants. 

Mercury concentrations in fishes are typically positively correlated with animal 

length, mass and age  [95, 108].  However, in this study, no significant relationships were 

evident for yellow perch Hg concentrations and these predictor variables.  By 

investigating Hg bioaccumulation in a single age class of fish, the design of this study 

eliminated the role of age as a cofactor in Hg bioaccumulation and thus likely also 

minimized the possible effects of age and growth related increases in fish length and 

mass.  Mercury is a unique environmental pollutant in that it is hydrophobic but does not 

partition into lipid tissues rather tending to bioaccumulate in tissues having higher protein 

content such as dorsal muscle [93].  Mercury bioaccumulation by Lake Manganese 

yellow perch was negatively correlated with fish protein mass with smaller individuals 

generally exhibiting a higher Hg concentrations relative to larger individuals within the 
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same age class.  The smaller size at age individuals represent more slowly growing fishes 

that have reduced capacity for the growth dilution of environmental pollutants such as Hg 

[113].  Specifically, growth dilution represents the bioaccumulation mechanism in which 

animal’s growth rate exceeds that for the rate of pollutant assimilation into somatic tissue 

and the pollutant mass becomes diluted by a rapid increase in tissue mass [113].  Such 

contrasts in fast or slow growth have been demonstrated to be important for contrasting 

patterns of Hg bioaccumulation among walleye and bluegill sunfish at the population 

scale but not at the individual level [95, 102].  The results of the current study 

demonstrate this effect at the individual level and also suggest that periods of the year 

during which slow growth predominates (i.e. winter) are more likely to increase Hg 

bioaccumulation relative to the warm open water season when temperatures are more 

amenable to faster growth in poikilothermic species [114].  For example, fish collected 

during the summer tended to have proportionally higher protein content and lower wet 

weight Hg concentrations, and faster growing individuals with higher protein content also 

tended to have lower Hg concentrations independent of season.  These results 

demonstrate how both seasonal changes and individual differences in proximate 

composition and growth rates can significantly affect Hg bioaccumulation. 

As poikilotherms, yellow perch growth and bioenergetics are highly coupled with 

ambient temperature [4].  In addition to very slow growth predicted for the overwintering 

period, the rates of bioenergetic processes such as respiration, excretion, egestion are also 

predicted to be highly reduced in the cold water season.  These biological functions also 

represent the general pathways for the whole-body elimination of pollutants such as Hg 



74 

by fish species [114]. Van Walleghem et al. [103] demonstrated very slow rates of Hg 

elimination in wild yellow perch under natural temperature conditions relative to 

elimination rates determined from controlled laboratory studies during which fish are 

often held at a constant temperature.  Such slow Hg elimination patterns in the wild 

complements the results observed in this study for the Lake Manganese yellow perch 

population.  Specifically, Hg concentrations were highest during the fall and winter when 

slow growth predominates and reduced bioenergetics functioning is also predicted for the 

metabolic pathways such as excretion, egestion and respiration (ie. elimination across the 

gill surface) that could contribute to the loss of Hg by fishes [4, 114] . 

In addition to the contributions of excretion, egestion and respiration to Hg 

elimination, fish reproductive biology can also play a significant role in seasonal Hg 

changes as associated with the offloading of Hg into gonads and gametes.  For example, 

Johnson et al. [115] demonstrated that MeHg concentrations in walleye eggs can range 

from 1 – 12% of the concentrations measured in muscle tissues.  Also, differences in the 

extent of Hg bioaccumulation between male and female fishes have been attributed to 

contrasting levels of Hg that are transferred to gametes and released during spawning 

[116, 117] .  For yellow perch, gonad maturation peaks in the late winter and, for 

females, gonadosomatic indices can exceed 25% but rapidly decline to < 5% following 

spawning in early spring [26].  This agrees well with the results of the current study 

where yellow perch Hg concentrations declined following the spring spawning period.  

This decline in Hg concentration from winter to spring also occurred in the absence of 

any significant changes in protein growth that could contribute to the dilution of the Hg 



75 

body burden pre- to post-spawning activities.  These patterns suggest that reproductive 

tissue growth and the release of gametes could represent an important Hg offloading 

mechanism for yellow perch [105].  However, because Hg was measured in whole body 

homogenates for this study, rather than in specific tissues, additional studies comparing 

the temporal transfer of Hg into gonad tissue and gametes during reproductive 

development and spawning are needed to confirm that this seasonal change is the result 

of reproductive offloading. 

A unique observation of this study was the relationship between yellow perch Hg 

concentrations and δ13C and also the relatively wide range of δ13C values (-27.4 to -35.4 

‰) determined for individual fishes over the course of this study.  For example, Happel 

et al. [81] demonstrated δ13C values ranging from approximately -18 to -24 ‰ for yellow 

perch collected from across multiple locations and habitats within Lake Michigan.  Such 

a wide range of δ13C values for yellow perch from within Lake Manganese is surprising 

given the small size (21.2 ha) of this ecosystem relative to a location such as Lake 

Michigan (5.8 x 106 ha) for which residential, industrial and agricultural inputs can 

contribute to both stable isotope signatures and Hg loadings [50, 76, 77].  Much of the 

inflow into Lake Manganese from French Annie and Aetna Creeks transitions through 

wetland habitat with evidence of beaver lodge construction (B. Duxbury pers. obs.).  

Greenfield et al. [97] demonstrated for small aquatic ecosystems such as Lake 

Manganese that even the presence of relatively small wetlands within the watershed can 

influence Hg bioaccumulation in fishes.  Beaver ponds can also increase the rate of 

MeHg production in affected areas due to the development of anoxia [118].  The 
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deciduous trees preferred by beavers for dam construction can contribute to lower δ13C 

values relative to when dams are absent [119].  Also, bacterial respiration in low oxygen 

environments such as beaver ponds can further reduce δ13C values to the more negative 

of values observed in the current study [85].  Future research would be valuable to 

quantify the extent to which the surrounding watershed of Lake Manganese contributes to 

patterns of both δ13C signatures and Hg concentrations in this ecosystem. 

Seasonal changes in Lake Manganese yellow perch diets may also have 

influenced observed the relationships between Hg bioaccumulation and fish δ13C values.  

Freshwater snails (Physa spp.) are abundant in Lake Manganese yellow perch diets 

(Chapter 2) and this taxa tends to have more negative δ13C values relative to other prey 

species identified in the diet of population [83].  Physa spp. are also small (< 10 mm) 

bodied and declining growth efficiencies have been demonstrated as a consequence for 

larger consumers feeding on such small prey [120, 121] .  This is associated with the 

increased number of small prey that must be consumed to meet daily energy requirements 

and also the increased amount of time spent foraging to consume numerous small prey 

[121].  Mayflies (Hexagenia limbata) were also documented in Lake Manganese gut 

contents and this benthic invertebrate can also have more negative δ13C relative to other 

aquatic invertebrate prey observed.  Mayflies are a burrowing invertebrate and during 

field collections, yellow perch were visually observed diving into Lake Manganese 

sediments with mayflies contributing to fish diets in this ecosystem (B. Duxbury pers. 

obs.).  Sediments typically represent the sink for environmental pollutants such as Hg in 

aquatic ecosystems [51].  These unique aspects of yellow perch foraging ecology in Lake 
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Manganese likely contribute to the observed relationships between Hg concentrations and 

δ13C in this population.   

3.5.1 Conclusion 

This research demonstrates that Hg concentrations in fish species may be much more 

dynamic over relatively short periods in an individual’s life history than previously 

considered.  These results complement the conclusions of Kolka et al. [96] and Braaten et 

al. [100] which also demonstrated the potential for seasonal change in Hg concentrations.  

However, the study of Kolka et al. [96] sampled young-of-the-year yellow perch (YOY) 

once a year but across multiple years. Mercury concentration data generated under such a 

field design are likely more representative of changes in bioavailable Hg as YOY perch 

tend to feed primarily on zooplankton for which Hg bioaccumulation is primarily driven 

by dissolved Hg concentrations [114].  The study of Braaten et al. [100] provides 

valuable insight into temporal Hg bioaccumulation dynamics in perch populations but not 

at the resolution of an individual age class scale as completed in the current study.  

Greenfield et al. [98] showed that a variety of biological, ecological, and limnological 

factors can predict Hg concentrations in yellow perch.  The results of my study also 

suggest that seasonal variability in such factors help regulate short term fluctuations in 

Hg bioaccumulation in fishes.  This research further builds on perspectives of Block et al. 

[1] who proposed the need for more winter biological, limnological, and ecological 

datasets.  This research is also important from a human risk management perspective as 

the results indicate potentially elevated Hg exposure for population sub-groups such as 

ice-fishermen.  Fish consumption guidelines are generally established based on Hg 
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concentrations generated from specimens that are frequently collected during the spring 

and summer open water seasons.  However, the results of this study and those of Braaten 

et al. [100] generally demonstrate, lower seasonal Hg concentrations for summer 

collected fishes may underestimate the exposure risks to human consumers at other times 

of the year. 
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3.6 Tables and Figures 

Table 3.1 Summary biological data including length (mm), mass (g), lipid, moisture and 
protein contents (%), Hg concentrations (µg/kg dry and wet wt.), and δ13C and δ15N (‰) 
values for 8-year-old yellow perch collected from Lake Manganese, Grant Township, 
Michigan. Collections occurred April 11, 2018 through March 2, 2019. Values represent 
mean with ± 1 standard error in parentheses.  

Variable Female (n = 46) Male (n = 51) 
Length  173.7 (2.5) 140.1 (2.0) 

Mass 51.4 (2.7) 25.7 (2.2) 

Lipid  1.0 (0.1) 1.5 (0.1) 

Moisture 76.2 (0.7) 75.5 (0.4) 

Protein 22.0 (0.6) 21.6 (0.4) 

Hg (dry wt.) 352.0 (23.2) 452.8 (35.1) 

Hg (wet wt.) 82.8 (5.2) 109.3 (7.9) 

ẟ15N 7.6 (0.1) 7.2 (0.1) 

ẟ13C -31.5 (0.3) -32.8 (0.3) 
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Figure 3.1. 8-year-old otolith picture taken from a Lake Manganese yellow perch. 
Overwintering annuli are indicated by the green lines in green with a scale bare 
representing 1mm. 
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Figure 3.2. Frequency distribution histogram of yellow perch age classes (n = 433) 
collected from Lake Manganese in Keweenaw County, MI between April 11, 2018 and 
March 17, 2019. 
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Figure 3.3. Average seasonal proximate (%) composition A) moisture (B) protein and 
(C) lipid contents for 8-year-old yellow perch including sampled from Lake Manganese 
in Keweenaw County, MI between April 11, 2018 and March 17, 2019.  Symbols indicate 
mean with error bars indicating ± 1 standard error. 
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Figure 3.4  Monthly dry (A) and wet (B) weight Hg concentrations (μg/kg) for 8-year-
old male () and female () yellow perch collected from Lake Manganese in 
Keweenaw County, MI from April 11, 2018 and March 17, 2019. 
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Figure 3.5. Average dry (A) and wet (B) weight Hg concentrations for 8-year-old yellow 
perch collected from Lake Manganese in Keweenaw County, MI during the spring, 
summer, fall, and winter between April 11, 2018 and March 17, 2019. Note the difference 
in y-axis scales between panels A and B. Symbols indicate mean with error bars 
indicating ± 1 standard error. 
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Figure 3.6. Dry and wet weight Hg concentrations (μg/kg) relative to stable isotopes of 
nitrogen δ15N (A) and carbon δ13C (B) for male () and female () yellow perch. Solid 
and open symbols represent dry and wet weight Hg concentrations, respectively, with dry 
weight concentrations plotted on the primary y-axis and wet weight concentrations on the 
secondary y-axis. Solid and dashed lines in each panel represent the least squares 
regression lines between dry or wet weight Hg concentrations, respectively, and the 
independent variables. Summary regression statistics are provided in Table S3.2.  
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Figure 3.7 Dry and wet weight Hg concentrations (μg/kg) relative to protein content (%) 
() and female () yellow perch. Solid and open symbols represent dry and wet weight 
Hg concentrations, respectively, with dry weight concentrations plotted on the primary y-
axis and wet weight concentrations on the secondary y-axis. Solid and dashed lines in 
each panel represent the least squares regression lines describing the relationships 
between dry or wet weight Hg concentrations, respectively, with the independent 
variables. Summary regression statistics are provided in Table S3.2. 
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Figure 3.7 Dry and wet weight Hg concentrations (μg/kg) relative to  protein mass 
(g/fish) for male () and female () yellow perch. Solid and open symbols represent dry 
and wet weight Hg concentrations, respectively, with dry weight concentrations plotted 
on the primary y-axis and wet weight concentrations on the secondary y-axis. Solid and 
dashed lines in each panel represent the least squares regression lines describing the 
relationships between dry or wet weight Hg concentrations, respectively, with the 
independent variables. Summary regression statistics are provided in Table S3.2. 
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3.7 Supplemental Information 

 Table S3.1. Results of the one-way ANOVA model for the effects of Season (Spring 
[April-June], Summer [July-September], Fall [October, December], Winter [ January-
March]), and the covariates: Sex (Male, Female), length (mm), and mass (g) on the lipid 
content (%), moisture content (%), protein content (%), dry mass Hg concentration 
(μg/kg), wet mass Hg concentration (μg/kg) on Lake Manganese yellow perch Perca 
flavescens. All factors were treated as fixed effects, and bold values indicate a significant 
effect at α = 0.05. 
 

Source DF Mean Square F Ratio Prob > F 
(A) Moisture (%)     
Season 3.0 59.8 7.6 <0.001 
Sex 1.0 8.3 1.1 0.308 
Total length (mm) 1.0 7.3 0.9 0.340 
Body mass (g) 1.0 7.0 0.9 0.348 
Model Error 61.0 7.8     
          
(B) [Hg] (μg/kg dry wt.)     
Season 3.0 66590.5 2.4 0.077 
Sex 1.0 31253.1 1.1 0.293 
Total (mm) 1.0 3784.0 0.1 0.713 
Total (g) 1.0 9317.3 0.3 0.564 
Model Error  56.0 277725.9     
          
(C) [Hg] (μg/kg wet wt.)         
Season 3.0 4443.2 3.3 0.025 
Sex 1.0 2732.3 2.1 0.157 
Total (mm) 1.0 523.1 0.4 0.533 
Total (g) 1.0 930.1 0.7 0.406 
Model Error  56.0 1328.2     
          
(D) Lipid (%)         
Season 3.0 3.2 10.5 <0.001 
Sex 1.0 0.5 1.7 0.202 
Total (mm) 1.0 0.5 1.5 0.226 
Total (g) 1.0 0.6 2.0 0.163 
Model Error  51.0 0.3     
          
(E) Protein (%)         
Season 3.0 40.8 7.0 <0.001 
Sex 1.0 2.2 0.4 0.542 
Total (mm) 1.0 4.2 0.7 0.400 
Total (g) 1.0 1.8 0.3 0.579 
Model Error  52.0 5.8     
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(A) Overall model for Moisture (%): N =67, R2 = 0.302, P < 0.0009 
(B) Overall model for dry mass Hg concentration (μg/kg): N = 63, R2 = 0.194, P < 0.0518 
(C) Overall model for wet mass Hg concentration (μg/kg): N = 63, R2 = 0.259, P < 
0.0081 
(D) Overall model for lipid (%): N = 58, R2 = 0.482, P < 0.0001 
(E) Overall model for Protein (%): N = 59, R2 = 0.304, P < 0.0033 
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Table S3.2 Results of the one-way ANOVA model for the effects of season (Spring 
[April-June], Summer [July-September], Fall [October, December], Winter [ January-
March]) and sex (Male, Female) on total length (mm) and mass (g) on Lake Manganese 
yellow perch Perca flavescens. All factors were treated as fixed effects, and bold values 
indicate a significant effect at α = 0.05. 
 
 

Source DF Mean Square F Ratio Prob > F 
(A) Length (mm)     
Season 3 275.6 1.5 0.2333 
Sex 1 20755.6 109.2 <0.001 
Model Error 92 190.0 36.9  
     
(B) Mass (g)     
Season    3 1532.8 2.3 0.088 
Sex    1 12085.3 53.3 <0.001 
Model Error 92 226.9 19.3  
     

 
(A) Overall model for total length (mm): N =97, R2 = 0.616, P < 0.001 
(B) Overall model for dry mass Hg concentration (μg/kg): N = 97, R2 = 0.456, P < 0.001 
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Table S3.3 Summary least squares regression statistics describing the relationships 
between wet and dry wet Hg concentrations with biological predictor variables including 
protein content (%), protein mass (g), δ13C (‰), δ15N (‰) for 8-year-old yellow perch 
collected from Lake Manganese, Grant Township, Michigan. Collections occurred April 
11, 2018 through March 2, 2019.  Values indicated in bold represent statistically 
significant (P < 0.05) relationships.  

 Predictor [Hg] R2 F p SE Y-intercept Slope 
Protein content  
(n = 58) 
 

Wet 0.12 0.8 0.365 2.0 137.9   -1.8 
Dry 0.11 7.1 0.010 8.3 890.4 -22.1 

Protein mass* 
(n = 58) 
 

Wet 0.09 5.5 0.023 1.3 122.8   -2.9 
Dry 0.13 8.1 0.006 5.5 534.9 -15.1 

δ13C 
(n = 58) 
 

Wet 0.06 4.4 0.040 2.8 -93.5   -5.9 
Dry 0.07 3.6 0.064 12.7 -366.4 -23.9 

δ15N 
(n = 58) 

Wet <0.01 0.1 0.803 10.6 78.0    2.7 

Dry <0.01 <0.1 0.882 47.2 455.1   -7.0 
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4 General Conclusion 

Seasonality is a ubiquitous component of aquatic ecosystems, yet focused studies 

investigating fish population responses to this characteristic are generally limited.  The 

overall objective of this thesis was to examine the importance of seasonality on the 

biology and ecology of the Lake Manganese yellow perch population and their 

association with limnological characteristics over one year.  It is important to understand 

how yellow perch respond to seasonal changes owing to their broad latitudinal range 

across North America, ecological role in aquatic ecosystems, and their contributions to 

recreational and commercial fisheries [9, 10] . During an annual growing season, the cold 

water overwintering seasons generally represents an understudied period for aquatic 

ecology [1].  Furthermore, the bioaccumulation and biomagnification of pollutants, such 

as mercury (Hg), are tightly coupled with animal ecology and the role of seasonality in 

these processes has received relatively limited attention [122].  This research greatly 

contributes to our understanding of the role that seasonality and winter conditions have 

on aquatic ecology, limnology, and ecotoxicology.  

Seasonal changes in lacustrine limnological factors have been generally well 

studied [5].  However, under-ice limnology is relatively understudied outside of polar 

environments [1].  In this study, we quantified daily average water temperatures at 

various depths throughout Lake Manganese from August 2018 through June 2019.  For a 

cool-warm water fish species such as yellow perch, the availability of water temperatures 

from 20 – 23 °C define the optimal habitat for growth [4].  During the summer months, 

only the top 4 m of Lake Manganese approached this temperature range with the month 
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of August 2018 demonstrating the highest average water column temperature (16.7 °C).  

In contrast, under ice-cover, the ‘warm’ water temperature was largely restricted to 4 °C 

and only encompassed the bottom 1m of Lake Manganese.  These patterns indicate 

substantial differences in the availability of thermal habitat for the growth of species such 

as yellow perch that prefer water temperatures ≥ 20 °C.  Additional fishes captured from 

Lake Manganese during the course of this research included bluegill sunfish (Lepomis 

macrochirus), golden shiner (Notemigonus crysoleucas), largemouth bass (Micropterus 

salmoides) and white sucker (Catostomus commersonii).  Each of these species also have 

preferred water temperatures ≥ 20 °C [123]  and the annual thermal stratification of Lake 

Manganese is likely limiting for their growth.  Specifically, each of these species have 

only a relatively short duration of optimal growth habitat available which likely creates a 

high degree of competition among these fish species for habitat and prey resources in 

Lake Manganese.  Investigating how such potential competition contributes to the stunted 

growth of yellow perch in Lake Manganese could contribute to our knowledge of 

resource partitioning in aquatic ecosystems.  

The remote location of Lake Manganese and the sparse population density of 

Michigan’s Keweenaw Peninsula creates a great opportunity for long term limnological 

monitoring programs. Due to its high northern latitude, I believe that a long-term study 

with various data loggers could greatly benefit our knowledge of seasonal limnology and 

would be an excellent tool to examine the responses of limnological variables under the 

perspectives of climate change.  By using temperature profiles to accurately map out 

habitat volumes of various species, data sets such as mine could be used to predict 
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species at risk of extirpation due to climate change while simultaneously characterizing 

habitat for species likely to thrive in these new conditions. For example, based on 

continued oxygenation of the water column and availability of cool-cold water habitat 

over one year, Lake Manganese may represent a candidate for brook trout (Salvelinus 

fontinalis) restoration/reintroduction. Lake Manganese also receives almost 2 m of snow 

and ice-cover during winter (B. Duxbury, pers. obs.), and a more in-depth study as to 

how pH, dissolved oxygen, and zooplankton communities change in such prolonged and 

extreme winter environments would improve our understanding of under-ice limnology.  

Yellow perch were sampled on a monthly basis to observe seasonal changes in 

their biology and ecology. Significant seasonal variation in lipid contents, and 

gonadosomatic and hepatosomatic indices were expected and observed in Lake 

Manganese yellow perch [26].  The seasonal changes observed in energy density was 

surprising as it did not follow the same seasonal pattern as lipids.  Another surprising 

observation was the significant seasonal variability in nitrogen (δ15N) and carbon (δ13C) 

stable isotope values. The stable isotope of carbon can be used to describe habitat and 

prey resource exploitation activities [77, 83, 124].  In Lake Manganese, yellow perch 

δ13C values were generally quite negative for a small inland lake population [81] and 

encompassed a wide range of values (-35.3 to -28.0 ‰) and were overall very negative 

relative to, for example, those reported for Lake Michigan yellow perch by Happel et al. 

[81] across a much ecosystem scale. This wide range in δ13C values for Lake Manganese 

yellow perch suggests that this population is exploiting a diversity of habitat and prey 

resources rather than maintaining a high degree of fidelity to any one resource. From this 
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consideration, a stable isotope study of the entire Lake Manganese food web could 

provide novel insight regarding the trophic ecology of this ecosystem.  For example, 

owing to the general lack of top predator species and the generally smaller sizes of fishes 

collected during this study, I predict that the trophic structure of the fish population as 

indicated by δ15N should not differ among the fish species within Lake Manganese.  Such 

an in-depth investigation of stable isotopes especially within the Lake Manganese fish 

community could be a key component for examining the role of competition in 

structuring this food web and possible contributors to stunted yellow perch growth.  The 

occupancy of all fish species at the same tropic position would indicate that resource 

limitation is occurring within Lake Manganese.  I believe that the limiting resource would 

be identified as benthic invertebrates due to a large abundance of small fish and in the 

absence of any large piscivores in the lake.  

To our knowledge, this study is among the first to examine Hg bioaccumulation in 

a single age class of fish over an annual temperature cycle. Among 8-year old yellow 

perch, Hg concentrations varied almost ten-fold among individuals and across the 

seasonal sampling. These results complement those of Braaten et al. [100] who quantified 

Hg concentrations in populations of Eurasian perch (Perca fluviatilis) over an annual 

spring, summer, fall and winter seasonal cycle. However, our results demonstrate the 

variable nature of Hg bioaccumulation among individual fish and emphasize the 

importance of fish growth at this scale [125].  Our results also emphasize the need for 

pollutant bioaccumulation data during the cold water and ice-covered periods. 

Specifically, Hg concentrations quantified yellow perch were highest during the fall and 
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winter seasons when the contributions of mechanisms, such as growth dilution and 

whole-body elimination, are likely to be limited for reducing the extent of Hg 

bioaccumulation by individuals [4, 103] . Additional investigations of pollutant 

bioaccumulation kinetics, including Hg and hydrophobic polychlorinated biphenyls 

(PCBs), would prove a valuable contribution for our understanding of the ecotoxicology 

of these pollutants in aquatic ecosystems, especially under the auspices of climate 

change.  For example, future investigation into Hg concentrations throughout the entire 

food web may help explain the significant seasonal variation that was observed within 

Lake Manganese. The use of passive integrated transponder (PIT) tags and mussel plugs 

in Lake Manganese sampling methods could be expanded to include non-lethal seasonal 

sampling while also specifically tracking temporal Hg bioaccumulation patterns among 

specific individual fish.  These results could expand upon our knowledge of seasonal 

ecotoxicology data and the role winter and seasonal changes in growth play on Hg 

bioaccumulation. 

4.1 Summary 

 The extent of seasonality for the range of limnological characteristics and 

ecological and ecotoxicological variables demonstrated for Lake Manganese and the 

yellow perch population in this lake underscore the importance of seasonal and 

overwintering datasets.  The most important expansion of this dataset would be to further 

increase the intensity of winter and entire growing seasonal sampling across multiple 

areas of aquatic ecology.  Efforts to standardize and demonstrate the importance of winter 

sampling as emphasized by Block et al. [1] and the methodologies used in the current 
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study provide examples for generating novel and additional data for this emerging field 

of ecology [126].  Lake Manganese represents an excellent site for a long-term study on 

the effects of seasonality owing to its smaller size and scale for sampling, and relatively 

remote location and accessibility. Specifically, high frequency sampling of various 

ecological and toxicological metrics in this ecosystem could further our understanding of 

the role of winter on aquatic ecology and pollutant bioaccumulation.   
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	Abstract

	Seasonality is a consistent component of aquatic ecosystems yet most fish biological and ecotoxicological studies commonly employ field sampling protocols focused during the warm open water season with minimal emphasis placed on winter sampling, espec...

	1 Introduction
	Winter and overwintering ecology represents a general knowledge gap for fisheries biology research and many other aquatic ecological sciences generally due to the logistical difficulties associated with sampling during this time of year [1].  It is im...
	1.1 Yellow perch ecology
	The yellow perch is a cool-warm water species found throughout much of Canada and the United States [9] and is of cultural and economic importance for multiple interest groups such as recreational and commercial fisherman and people living within the ...
	For yellow perch, seasonality plays and important role in their ecology and biology.  For example, females require an extended chill period (> 185 days) of exposure to temperatures ≤ 6 ℃ for normal egg-yolk deposition and final maturation [10].  Both ...
	After hatching, larval yellow perch are planktivorous and congregate in littoral zones where they consume zooplankton until large enough to feed on larger macroinvertebrates, such as mayfly and caddisfly larva [9].  Individuals then transition to a be...
	Yellow perch growth can vary among individuals and populations [19-23]. For example, yellow perch from Lake Erie [24] have demonstrated faster growth and larger maximum size relative to fish from Lake Gogebic located in Michigan’s Upper Peninsula reg...

	1.2 Seasonality in aquatic ecosystems
	Aquatic ecosystems display patterns of seasonal change wherein key abiotic factors, such as water temperature, dissolved oxygen, pH, and concentrations of nitrogen and phosphorus have been shown to exhibit noteworthy seasonal differences [5]. Within ...
	Distributions and assemblages of fishes also display patterns of seasonality [29] as different species, age classes, and sizes can respond differently to seasonality [30]. Winter also represents a period with important change in seasonal diet composit...
	Similar to fish, many invertebrates also display patterns related to seasonality. Notable differences in zooplankton and phytoplankton abundances and community structures have been observed during the open water season and have been attributed to seas...

	1.3 Mercury
	Mercury in the form of methylmercury (MeHg) is an acute neurotoxin that possess the ability to cross the blood brain barrier.  The primary source of human exposure to Hg is from the consumption of contaminated fish and seafood [35-37].  Mercury is fo...
	The process of Hg methylation can be exacerbated by the development of anoxic conditions in aquatic. Although anoxic events occur naturally, anthropogenic activities such as eutrophication can increase the frequency and duration of anoxia  [46-48].  A...

	1.4 Summary
	Yellow perch are an important ecological, economic and recreational fish.  Examining the biological and ecological responses of this species as associated with seasonal changes in limnology will help address knowledge gaps pertaining to winter ecolog...


	2 Seasonal comparison of yellow perch (Perca flavescens) biology and ecology in Lake Manganese
	2.1 Abstract
	As poikilotherms, fish ecology and biology is predicted to be highly associated with ambient water temperatures. For example, fish species such as yellow perch (Perca flavescens) inhabit a wide latitudinal range across North America but relatively lit...

	2.2 Introduction
	Much of what is currently known of fish biology and ecology has been determined from field work commonly completed during the open-water warm-temperature growing season.  The timing of such field efforts are associated with the perceived ease of sampl...
	In addition to its role in regulating fish growth and metabolism, water temperature is also an important contributor to ecological mechanisms such as habitat and food resource partitioning.  For example, in north temperate latitude lakes, thermal stra...
	The yellow perch is a well-studied species with a depth of information available regarding this species’ biology and ecology.  For example, Kitchell et al. [4] developed a robust bioenergetics model for predicting characteristics such as consumption, ...
	Yellow perch are generally considered to be omnivorous with feeding habits typically displaying three distinct ontogenetic shifts during their life history.  Perch spawn in the spring with post-hatch free swimming individuals being predominantly plank...
	Lake Manganese located in Michigan’s Keweenaw Peninsula provides habitat for one of the northernmost yellow perch populations within the contiguous US.  This study was designed to investigate seasonal related changes in specific biological and ecologi...

	2.3 Methods
	Yellow perch for this study were collected monthly from Lake Manganese (Figure 2.1) using hook and line from April 2018 – March 2019.  A maximum of 50 fish were collected each month with no fish collections being conducted in November 2018 due to adve...
	Limnological data including temperature ( C), dissolved oxygen (mg/L), pH (unitless), specific conductivity (µS/cm), and oxidation-reduction potential (mV) were recorded during the open water months (May – October) using a Yellow Springs Instruments (...
	2.3.1 Sample processing
	Biological data collected from each fish included sex, total, fork and standard lengths (mm), gonad, liver and whole-body masses (g), with sagittal otoliths removed for aging purposes.  Fish stomachs and intestinal tracts were also excised and prey it...
	𝐺𝑆𝐼= ,,𝑊-𝐺.-,𝑊-𝐵.×100.     (1)
	𝐻𝑆𝐼= ,,𝑊-𝐿.-,𝑊-𝐵.×100.    (2)
	where WG and WL represent the masses of gonads or liver, respectively, and WB represents whole body mass.

	2.3.2 Gut contents
	During fish collections, common earthworms (Lumbricus terrestris), wax worms (Galleria mellonella), and artificial lures were used to enhance fish collection.  None of these items were identified as natural food items and were removed from prey enumer...

	2.3.3 Fish Aging
	Perch ages were estimated from sagittal otoliths removed from each fish during dissection with aging method following the crack and burn procedure outlined by Christensen [113]. Otoliths were placed in Scotch™ brand lightweight mounting putty with th...
	,𝐿-𝑡.=,𝐿-∞.,1−,𝑒-−𝐾(𝑡−,𝑡-0...    (3)
	where Lt represents estimated length (mm) at time t (yrs.), L∞ asymptotic length when growth equals zero, K represents Brody growth rate coefficient (yr-1) and t0 is the theoretical age at length 0.  For fish with missing or broken otoliths that could...

	2.3.4 Moisture content determination
	Sample moisture contents were determined using approximately 1 g (± 0.0001 g) of whole-body homogenate, bulk zooplankton and homogenized mussel tissues.  Aluminum weigh boats were pre-dried in an oven for 48 hours at 120 ℃ and allowed to cool to room ...
	% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒= ,1−,𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡−𝑏𝑜𝑎𝑡 𝑤𝑒𝑖𝑔ℎ𝑡-𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡..× 100   (4)
	Where dry weight represents the mass of the dried sample and weigh boat after 48 hours at 60  C (g); boat weight is the mass of the empty, pre-dried weigh boat (g); and wet weight is the wet mass (g) of sample added to the boat prior to oven drying.

	2.3.5 Lipid content determination
	Total lipid content for each sample was determined as a component of a paired pollutant extraction procedure conducted on each fish and outlined in [67].  Approximately 1.0 g of tissue homogenate was mixed with 10 g of pre-combusted sodium sulfate, (G...
	% 𝐿𝑖𝑝𝑖𝑑=,,𝐷𝑟𝑖𝑒𝑑 𝑚𝑎𝑠𝑠− 𝐵𝑜𝑎𝑡 𝑚𝑎𝑠𝑠-𝑊𝑒𝑡 𝑚𝑎𝑠𝑠..× 1000   (5)
	Where dried mass (g) is the mass of the dried weigh boat containing the lipid sample; boat mass (g) is the dried boat mass prior to sample additions; and wet mass represents the wet mass (g) of sample used for the extraction procedure.

	2.3.6 Energy density and condition
	Yellow perch energy densities (kJ/g) were estimated using the mass balance approach as outlined in [68].  Briefly, whole-body lipid and moisture masses (g) were determined from the product of sample lipid and moisture contents (% wet weight) and fish ...
	Fulton’s condition index (K) was used as a general fisheries metric of yellow perch growth and quality [74].  This value typically ranges between 0.8 – 2.0 for fishes and was calculated as per equation (6):
	𝐾=,,𝑊×100-,𝑇𝐿-3...    (6)
	Where W represents fish total mass (g) and TL is fish total length (cm).

	2.3.7 Stable isotope analysis
	Carbon (ẟ13C) and nitrogen (ẟ15N) stable isotopes values were quantified in samples to provide indicators of yellow perch, zooplankton and mussel trophic structure in Lake Manganese.  Analysis of ẟ13C and ẟ15N was completed using the individual fish w...
	,ẟ-15.N or ,ẟ-13.C ,‰.=,,,,𝑅-𝑠𝑎𝑚𝑝𝑙𝑒.-,𝑅-𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑...−1.×1000   (7)
	Where R represents the ratio of heavy to light isotopes (13C/12C or 15N/14N) in the sample materials relative to the reference standard.  For ẟ13C measurements, samples were quantified against a Pee Dee Belemnite standard with atmospheric nitrogen bei...

	2.3.8 Data Analysis
	All statistical analyses were completed using the software package JMP Pro version 14.0 for Windows (SAS Institute, Cary, North Carolina, USA) with a criterion for significance of α= 0.05 (p < 0.05) used in all cases.  All data were tested for normali...
	A one-way ANOVA was used to determine if there were significant differences between male (n = 236) and female (n = 209) total length and mass results for the population level sample collections and were also used to determine if there were significant...


	2.4 Results
	2.4.1 Water Quality
	A summary of the water quality parameters recorded from Lake Manganese over the duration of this study are provided in Table 2.1.  Daily water temperatures recorded by the temperature loggers ranged from 0.2 – 24.4  C over the course of this study wit...
	Lake Manganese did not demonstrate any periods of anoxia with dissolved oxygen (DO) concentrations ranging between 3.6 - 10.8 mg/L from spring through fall seasons (Table 2.1). YSI readings were taken monthly from May - October 2019.  Highest dissolv...

	2.4.2 Seasonal biological, ecological and stable isotope data
	Summary seasonal biological and stable isotope data for population level sampling of Lake Manganese yellow perch are provided in Table 2.2.  Male yellow perch collected for this study ranged in age from 2 – 18 years old with females ranging from 2 – 1...
	Lipid content and energy density both significantly differed based on season (Table 2.1). Whole body lipid contents were highest in winter (1.9 ± 0.2 %) and was significantly different from fall (1.1 ± 0.1 %) and spring (0.8± 0.1 %). Summer (1.5 ± 0.1...
	Highest GSI values for Lake Manganese yellow perch occurred in winter collections (4.2 ± 0.3 %) and was lower in fall (3.2 ± 0.3 %), both of which were significantly greater than spring (2.2 ± 0.3 %) and summer (1.5 ± 0.4 %; F = 22.0, P < 0.0001; Tabl...
	There was significant seasonal variation in δ15N, which peaked in fall (7.5 ± 0.1 ‰) and decreased in spring (7.1 ± 0.1 ‰) (F = 3.0, P = 0.032; Table S2.1). There was also a significant increase in δ15N with both age (F = 6.9, P < 0.010; Table S2.1) a...
	Sex
	Lipid contents were significantly different (F = 18.0, P < 0.001; Table 2.1) between males and females. Males had significantly greater lipid content (1.6 ± 0.1%) than females (1.1 ± 0.1%). Condition indices were significantly different (F = 256.0, P ...
	Summary seasonal biological and stable isotope data for 8-year-old Lake Manganese yellow perch are provided in Table 2.3. Male fish within this age class were significantly smaller in both total length (F = 109.2, P < 0.001; Table S2.4) and body mass ...
	There was a significant seasonal difference for GSI which had the highest values in fall (4.0 ± 0.8 %) and winter (4.6 ± 0.8 %) and were significantly different from summer (1.8 ± 0.8 %) and spring (1.8 ± 0.6 %) (F = 6.9, P < 0.001). Hepatosomatic ind...

	2.4.3 Diet
	The greatest total number of prey taxa identified from fish diets occurred in the summer with 13 different prey types identified from the gut contents of fish sampled during this season (Figure 2.8). This was followed by spring (n = 12), winter (n = 9...


	2.5 Discussion
	Traditional snapshot sampling of fish populations has typically been conducted during the summer during which water temperatures, nutrient levels, primary productivity, and prey availability are generally highest and conditions for fish growth are opt...
	Yellow perch lipid contents demonstrated a significant seasonal pattern with highest lipid levels occurring in the winter and prior to spring reproduction.  This pattern agrees well with that described for yellow perch and other cool and cold-water fi...
	The stable isotopes of carbon (δ13C) and nitrogen (δ15N) are considered to represent longer-term spatial integrations of animal trophic ecology with δ13C providing insight into habitat and food resource exploitation strategies and δ15N provide a measu...
	Carbon stable isotopes in lentic ecosystems tend to follow a general pattern of becoming increasingly negative along a transect from nearshore littoral zones, to offshore pelagic areas, and typically being the most negative in deeper profundal regions...
	An unexpected result from this study was distinct evidence of highly stunted growth for the Lake Manganese yellow perch population.  For example, male yellow perch collected from Lake Manganese for this study averaged only 141 mm in length with female...
	Stunting in fish populations is indicated by earlier sexual maturation, smaller sizes at age, longer lifespans, and exceedingly slow growth rates relative to those described for typical population [20-23, 27, 28].  This phenomenon can be attributed to...
	In addition to abiotic factors, highly abundant golden shiner (B. Duxbury, pers. obs.) may also attribute to the stunting of Lake Manganese yellow perch.  Juvenile yellow perch feed on a diet of zooplankton [9], which are also the main food source of ...
	Overall the stunted Lake Manganese yellow perch population provides a demonstration of the effects of central ecological concepts such as predation, competition, and resource limitation. It is important to note that only yellow perch and largemouth ba...
	2.5.1 Conclusion
	This study is among the few that have comprehensively examined a range of biological, ecological and limnological parameters for a single species and from an individual waterbody over an entire annual cycle.  For some of the biological parameters stud...


	2.6 Chapter 2 Tables and Figures
	Table 2.1 Seasonal water quality monitoring data including average temperature (℃), dissolved oxygen (DO; mg/L), specific conductivity (Sp. Cond.; µS/cm), total dissolved solids (TDS; mg/L), pH, and oxidation reduction potential (ORP; mV) for Lake Man...
	*HOBO data loggers collected temperature measurements every 30 minutes from 8/17/18 - 6/24/19 where YSI was only collected once per month 5/18/18 – 10/13/18
	Table 2.2 Summary biological data including length (mm), mass (g), lipid content (%), GSI (%), HSI (%), Fulton’s condition (K; g/mm3), energy density (kJ/g), and stable nitrogen (ẟ15N; ‰), and carbon (ẟ13C; ‰) isotope data for yellow perch collected f...
	Table 2.3 Summary biological data including length (mm), mass (g), lipid content (%), GSI (%), HSI (%), Fulton’s condition (K; g/mm3), energy density (kJ/g), and stable nitrogen (ẟ15N; ‰), and carbon (ẟ13C; ‰) isotope data for 8-year-old yellow perch ...
	Table 2.4 Averages of: length (mm), mass (g), lipid content (%), GSI (%), HSI (%), condition K, (g/mm3), Energy density (kJ/g), ẟ15N (‰), and ẟ13C (‰) with standard error, yellow perch collected from Lake Manganese, Grant Township, Michigan. Collectio...
	Figure 2.1: Lake Manganese bathymetry.  Map information collected by the Michgian Conservation Department’s Institute for Fisheries Research (August 1938).
	Figure 2.2: Average monthly water temperatures for Lake Manganese from May 2018- July 2019 with standard error in brackets, white squares represent YSI data with error bars representing ± standard error. Black squares represent temperature data collec...
	Figure 2.3: Average water temperature profiles for Lake Manganese collected via Hobo data loggers from 8/17/18 - 6/24/19. Profiles represent spring (A), summer (B), fall (C), and winter (D).
	Figure 2.7: Stable carbon (δ13C) and nitrogen (δ15N) isotope values for all male (() and female (() yellow perch collected from Lake Manganese, Grant Township, Michigan. Collections occurred April 11, 2018 through March 2, 2019 ranging in ages from 2 ...
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	3 Comparison of mercury bioaccumulation by an age class of yellow perch (Perca flavescens) over an annual growing season.
	3.1 Abstract
	Mercury bioaccumulation in fish is associated with a range of biological, ecological and limnological characteristics, many of which exhibit significant seasonal variation.  However, few studies have explicitly examined Hg bioaccumulation at such a le...

	3.2 Introduction
	Mercury, specifically methylmercury (MeHg) concentrations in fish tissues are of particular concern, as the consumption of contaminated fish is a main source of Hg exposure to humans [94].  MeHg is an acute neurotoxin that binds with high affinity to ...
	Recreational and commercial fishing activities typically occur throughout the summer months within the Great Lakes basin. Within many inland lakes and northern regions of the Great Lakes, winter fishing (ice fishing) continues far past the close of th...
	Lab-based and field studies have demonstrated the capacity of fish for the whole body elimination Hg [103, 104] .  However, many studies fail to include winter and/or entire growing season datasets when examining temporal changes in Hg concentrations ...
	Seasonal changes in reproduction, habitat use, body composition, and prey selection may also affect Hg concentrations of fish.  Physiological changes as a result of reproduction represent a pathway for seasonal changes in Hg concentrations as both mal...
	Lake Manganese located in Michigan’s Keweenaw Peninsula is one of the northernmost yellow perch populations within the contiguous US. This study was designed to investigate temporal changes in Hg bioaccumulation within a single age-class of the yellow...

	3.3 Methods
	Yellow perch for this study were collected monthly from Lake Manganese located in Grant Township Michigan. Sampling was completed using hook and line from April 2018 – March 2019.  A maximum of 50 fish were collected each month with no fish collection...
	3.3.1 Sample Processing
	Biological data collected from each fish included sex, total, fork and standard lengths (mm), whole-body masses (g), lipid and protein content (%), protein mass (g/fish), moisture (%), δ15N, and δ13C with sagittal otoliths removed for aging purposes. ...

	3.3.2 Fish Aging
	Yellow perch ages were estimated from sagittal otoliths removed from each fish during dissection with aging method following the crack and burn procedure outlined in [111].  Otoliths were placed in Scotch™ brand lightweight mounting putty with their c...

	3.3.3 Fish Proximate Composition
	Sample moisture contents were determined using approximately 1 g (± 0.0001g) of whole-body homogenate.  Aluminum weigh boats were pre-dried in an oven for 48 hours at 120℃ and allowed to cool to room temperature inside desiccators prior to sample addi...
	% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒= ,1−,𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡−𝑏𝑜𝑎𝑡 𝑤𝑒𝑖𝑔ℎ𝑡-𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡..× 100   (4)
	Where dry weight represents the mass of the dried sample and weight boat after 48 hours at 60 C (g); boat weight is the mass of the empty, pre-dried weigh boat (g); and wet weight is the wet mass (g) of sample added to the boat prior to oven drying. T...
	% 𝐿𝑖𝑝𝑖𝑑=,,𝐷𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡− 𝐵𝑜𝑎𝑡 𝑤𝑒𝑖𝑔ℎ𝑡-𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡..× 1000   (5)
	where dried weight (g) is the mass of the dried weigh boat containing the lipid sample (± 0.0001g); boat weight (g) is the dried boat mass prior to sample additions; and wet weight represents the wet mass (g) of sample used for the extraction procedure.
	Protein contents (%) were estimated using the mass balance approach as outlined in [68].  Briefly, whole-body lipid and moisture masses (g) were determined from the product of sample lipid and moisture contents (% wet weight) and fish total masses.  A...

	3.3.4 Hg Analysis
	Following drying at 60 ℃ for at least 48 hours, samples were ground using a glass mortar and pestle before being quantitatively transferred into scintillation vials that had been washed in 10 % HNO3 acid bath and then triple rinsed in double distilled...

	3.3.5 Data Analysis
	All statistical analyses were completed using the software package JMP Pro version 14.0 for Windows (SAS Institute, Cary, North Carolina, USA) with a criterion for significance of α = 0.05 used in all cases. Unless otherwise indicated, all data are re...


	3.4 Results
	A summary of biological and Hg concentration data collected from fish analyzed for this study are presented in Table 3.1.  Female fishes were larger than males for both total length (F = 109.2; P < 0.001) and body mass (F = 53.3, P < 0.001). The heavi...
	Monthly and seasonal comparisons of Hg bioaccumulation in Lake Manganese yellow perch are presented in Figures 4 and 5.  Dry weight Hg concentrations for individual fishes ranged from 114.6 – 948.1 μg/kg in comparison to 28.4 - 228.5 μg/kg for wet wei...
	Fish δ15N values ranged from 5.7 – 8.8 ‰ and were not significantly correlated with either dry (P = 0.882) or wet weight (P = 0.803) Hg concentration data (Figure 3.6; Table 3.2).  In contrast, fish δ13C values were significantly correlated with wet w...

	3.5 Discussion
	Mercury concentrations measured in a single age class of yellow perch over a one-year period demonstrated significant seasonal variability with highest concentrations occurring during the fall and winter seasons.  These seasonal differences emphasize ...
	Mercury concentrations in fishes are typically positively correlated with animal length, mass and age  [95, 108].  However, in this study, no significant relationships were evident for yellow perch Hg concentrations and these predictor variables.  By ...
	As poikilotherms, yellow perch growth and bioenergetics are highly coupled with ambient temperature [4].  In addition to very slow growth predicted for the overwintering period, the rates of bioenergetic processes such as respiration, excretion, egest...
	In addition to the contributions of excretion, egestion and respiration to Hg elimination, fish reproductive biology can also play a significant role in seasonal Hg changes as associated with the offloading of Hg into gonads and gametes.  For example,...
	A unique observation of this study was the relationship between yellow perch Hg concentrations and δ13C and also the relatively wide range of δ13C values (-27.4 to -35.4 ‰) determined for individual fishes over the course of this study.  For example, ...
	Seasonal changes in Lake Manganese yellow perch diets may also have influenced observed the relationships between Hg bioaccumulation and fish δ13C values.  Freshwater snails (Physa spp.) are abundant in Lake Manganese yellow perch diets (Chapter 2) an...
	3.5.1 Conclusion
	This research demonstrates that Hg concentrations in fish species may be much more dynamic over relatively short periods in an individual’s life history than previously considered.  These results complement the conclusions of Kolka et al. [96] and Bra...


	3.6 Tables and Figures
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