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Abstract

This dissertation contains research on several topics related to Defect-deferred 

correction (DDC) method applying to CFD problems. First, we want to improve 

the error due to temporal discretization for the problem of two convection domi-

nated convection-diffusion problems, coupled across a joint interface. This serves 

as a step towards investigating an atmosphere-ocean coupling problem with the 

interface condition that allows for the exchange of energies between the domains.

The main diffuculty is to decouple the problem in an unconditionally stable 

way for using legacy code for subdomains. To overcome the issue, we apply the 

Deferred Correction (DC) method. The DC method computes two successive 

approximations and we will exploit this extra flexibility by also introducing the 

artificial v iscosity t o r esolve t he l ow v iscosity i ssue. The l ow v iscosity i ssue is 

to lose an accuracy and a way of finding a  approximate s olution a s a  diffusion 

coeffiscient gets low. Even though that reduces the accuracy of the first approx-

imation, we recover the second order accuracy in the correction step. Overall, 

we construct a defect and deferred correction (DDC) method. So that not only 

the second order accuracy in time and space is obtained but the method is also 

applicable to flows with low viscosity.

Upon successfully completing the project in Chapter 1, we move on to im-

plementing similar ideas for a fluid-fluid interaction problem with nonlinear in-

terface condition; the results of this endeavor are reported in Chapter 2.

In the third chapter, we represent a way of using an algorithm of an existing 

penalty-projection for MagnetoHydroDynamics, which allows for the usage of

xi



the less sophisticated and more computationally attractive Taylor-Hood pair of

finite element spaces. We numerically show that the new modification of the

method allows to get first order accuracy in time on the Taylor-Hood finite

elements while the existing method would fail on it.

In the fourth chapter, we apply the DC method to the magnetohydrodynamic

(MHD) system written in Elsásser variables to get second order accuracy in time.

We propose and analyze an algorithm based on the penalty projection with grad-

div stabilized Taylor Hood solutions of Elsásser formulations.

xii



Chapter 1

Defect-deferred correction method

for the two-domain

convection-dominated

convection-diffusion problem

1.1 Introduction

When attempting to solve a two-domain fluid-fluid interaction problem in a large 

domain with complex geometries, several key issues immediately appear. The 

more complicated the setting is, the more we are inclined to use the legacy codes 

- highly optimized black box subdomain solvers. This is often the only available 

option, because the monolithic, coupled problem can be difficult to efficiently 

discretize and solve. Thus, an attractive approach to some problems (as an am-

1



bitious underlying goal, consider the hurricane prediction, an atmosphere-ocean 

application on a huge domain with very complex boundaries and turbulent at-

mosphere flow) i s t he partitioned t ime s tepping method which would decouple 

the problem and allow for the easy implementation of subdomain solvers. Ad-

ditionally, these subdomain equations can be solved in parallel, if the data is 

explicitly passed across the shared interface at each time step.

Keeping with the goal of modelling the turbulent atmosphere-ocean flows 

using the preexisting codes for the atmosphere (separately) and the ocean, we 

seek, as a starting point of our project, an unconditionally stable partitioned 

time stepping method for fluid-fluid pr oblems. Two of these methods, the IMEX 

method and the data-passing scheme, were proposed and thoroughly investi-

gated in [7]; the data-passing scheme, introduced in this chapter, was proven to 

be unconditionally stable for the two-domain heat-heat coupled problem. The 

same group of authors then successfully applied this method to the atmosphere-

ocean coupled problem, proving that there exists a modification of the interface 

condition that allows for the unconditional stability of the data-passing scheme.

In this chapter we aim at improving two existing flaws of this m ethod: i t is 

only first order accurate in space and time, and it is not designed for the turbu-

lent (or convection-dominated) flows. The defect correction methods (discussed 

in more detail later in this section) start with a stable, low-order accurate, com-

putationally inexpensive method. Once the choice of such a method is made, 

the defect correction proceeds by computing a sequence of approximations to the 

solution; each successive approximation is of higher accuracy than the previous 

one. The approximations are sought on the same mesh (no mesh refinement

2



necessary for the improvement in accuracy!) and the only change in the setup

of the discretized problems is the modified right-hand side. The matrix of the

system doesn’t change, thus maintaining the computational attractiveness and

the ease of implementation. Finally, the defect correction procedure is easy to

parallelize.

When one is required to use the legacy codes for the convection-dominated

(or turbulent) flow, the choice of a stable method is not obvious. The Galerkin

finite element method cannot be used in a turbulent regime (iterative solver fails

to converge within the time frame of the problem), but the only changes one is

allowed to make, while using the legacy codes, concern the problem data. Many

turbulence models are available for the Navier-Stokes equations at high Reynolds

numbers, but most of them introduce either statistical (long-time) averages,

requiring multiple solves of the very complicated system, or local spatial averages

(LES approach) which modifies the structure of the PDE by usually requiring

more derivatives to be taken; these do not allow for the usage of legacy codes. A

step in the direction of using deferred correction (which is the defect correction

idea, applied to increase the accuracy with respect to time) with a turbulence

model was taken in [19]. In order to be able to use the legacy codes, we resort

to the simple but efficient artificial viscosity approximation, which increases the

flow’s viscosity coefficient. The combination of artificial viscosity (in space) and

Backward Euler (in time) discretization is the stable and first order accurate

method upon which we will build the DDC procedure. We will use the data-

passing idea of [7] to decouple the problem in a stable way.

The idea of using a stabilization as simple as the artifical viscosity, for the

3



real-life fluid-fluid co upling in  tu rbulence re gime, mi ght se em na ïve. Ye t, as 

shown in [22], the defect-deferred procedure, based on this stabilization, pro-

duces a sequence of approximations that captures more and more features of the 

true, turbulent solution.To quote [22], "even on a very coarse mesh the effect of 

doing the correction is the same as if the flow at a  higher Reynolds number was 

considered."

As a step towards the turbulent atmosphere-ocean coupling, we consider the 

two-domain convection-diffusion problem at high convection-to-diffusion ratio (in 

the computational tests we take the ratio of convection to diffusion coefficients 

to be 105). The interface condition is the linearized version of the rigid-lid 

condition used in meteorology, see [21] for a more detailed discussion on the rigid-

lid condition and the references therein. In order to create an unconditionally 

stable, second order accurate in both space and time, partitioned time stepping 

method, we apply the combined DDC techniques to the data-passing scheme of 

[7]. The combination of the DDC was introduced and successfully tested in [22] 

in application to the one-domain Navier-Stokes equations.

Consider the d-dimensional domain (in this chapter we consider d = 2) Ω that 

consists of two subdomains Ω1 and Ω2 coupled across an interface I (example in 

Figure 1.1 below).

The problem is: given bi ∈ Rd, νi > 0, fi : [0, T ] → H1(Ωi)
d, ui(0) ∈ H1(Ωi)

d 

and κ ∈ R, find (for i = 1, 2) ui : Ωi × [0, T ] → Rd satisfying

4



ui,t − νi∆ui + bi · ∇ui = fi, in Ωi, (1.1.1)

−νi∇ui · n̂i = κ(ui − uj), on I, i, j = 1, 2 , i 6= j , (1.1.2)

ui(x, 0) = u0
i (x), in Ωi, (1.1.3)

ui = gi, on Γi = ∂Ωi \ I. (1.1.4)

Let

Xi := {vi ∈ H1(Ωi)
d : vi = 0 on Γi}.

For ui ∈ Xi we denote u = (u1, u2), f = (f1, f2) and X := {v = (v1, v2) : vi ∈

H1(Ωi)
d : vi = 0 on Γi, i = 1, 2}. A natural subdomain variational formulation

for (1.1.1)-(1.1.4), obtained by multiplying (1.1.1) by vi, integrating and applying

the divergence theorem, is to find (for i, j = 1, 2, i 6= j) ui : [0, T ]→ Xi satisfying

(ui,t, vi)Ωi
+ νi(∇ui,∇vi)Ωi

+

∫
I

κ(ui − uj)vids+ (bi · ∇ui, vi)Ωi
= (fi, vi)Ωi

,

for all vi ∈ Xi. (1.1.5)

The natural monolithic variational formulation for (1.1.1)-(1.1.4) is found by

summing (1.1.5) over i, j = 1, 2 and i 6= j and is to find u : [0, T ]→ X satisfying

(ut,v) + ν(∇u,∇v) +

∫
I

κ[u][v]ds+ (b · ∇u,v) = (f ,v),∀v ∈ X, (1.1.6)

where [·] denotes the jump of the indicated quantity across the interface I , (·, ·) 

is the L2(Ω1 ∪ Ω2) inner product and ν = νi in Ωi.

Figure 1.1 illustrates the subdomains considered here, representative of com-

monly studied models in fluid-fluid and fluid-structure interaction, [5, 6, 7].

5



n̂2

n̂1

I

Ω1

Ω2

Figure 1.1: Example subdomains, coupled across an interface I.

Comparing (1.1.6) and (1.1.5) we see that the monolithic problem (1.1.6) has a 

global energy that is exactly conserved, (in the appropriate sense), (set v = u 

in (1.1.6)). The subdomain sub-problems (1.1.5) do not possess a subdomain 

energy which behaves similarly due to energy transfer back and forth across the 

interface I. It is possible for decoupling strategies to become unstable due to 

the input of non-physical energy as a numerical artifact.

Fluid-structure interaction problems, in particular blood flow models, are an-

other typical application of partitioned methods. In these models the equations 

of elastic deformation of an arterial wall are coupled to equations of fluid flow 

through the vessel. Recently, it has been shown partitioned methods may be 

employed for this problem with the addition of a stabilization term on the fluid-

structure interface. A defect correction step is implemented to recover optimal 

time accuracy, (see [6]).

In this chapter, a second order in space and time, non-overlapping uncoupling 

method for (1.1.1)-(1.1.4) is presented: the two-step DDC method. At each step 

of the method the interface term in (1.1.5) is advanced in time to give one step

6



black box decoupling of the subdomain problems in Ω1 and Ω2. Additionally, the

deferred correction technique allows for the different time scales to be used in

different domains, and even for the different terms within the same equation (see

the work of Minion et al, [16, 18, 17] and the references for more details). This

is important in the atmosphere-ocean coupling, where one flow (air) changes at

a much higher pace than the other (sea); also, the diffusion and the convection

terms sometimes need to be modelled at different time scales.

The general idea of any Defect Correction Method (DCM) can be formulated

as follows (see, e.g., [20, 4]):

Find a unique solution of Fx = 0, by

DCM: Use an approximation F̃ to build an iterative procedure:

F̃ x1 = 0, (1.1.7)

xi+1 = (I − F̃−1F )xi, i ≥ 1.

The choice of a particular approximation F̃  determines the defect correction 

method in use. The general idea of defect correction and deferred correction 

methods for solving partial differential equations has been known for a long 

time, see the survey article [4]. Defect correction was proven computationally 

attractive in fluid a pplications. S ee, e .g., [ 14, 9 , 1 3, 2 2, 1 , 2 ] a nd references 

therein for other defect correction work relevant to fluids.

The main advantage of the deferred correction approach is that a simple 

low-order method can be employed, and the recovered solution is of high-order 

accuracy, due to a sequence of deferred correction equations.

The classical deferred correction approach could be seen, e.g., in [10]. How-

ever, in 2000 a modification of the classical deferred correction approach was

7



introduced by Dutt, Greengard and Rokhlin, [8]. This allowed the construc-

tion of stable and high-order accurate spectral deferred correction methods. In

[15] M.L. Minion discusses these spectral deferred correction (SDC) methods in

application to an initial value ODE

φ′(t) = F (t, φ(t)), t ∈ [a, b] (1.1.8)

φ(a) = φa.

The solution is written in terms of the Picard integral equation; a polynomial 

is used to interpolate the subintegrand function and the obtained integral term 

is replaced by its quadrature approximation. In the case when the right hand 

side of the ODE can be decomposed into a sum of the stiff and non-stiff terms, a 

semi-implicit spectral deferred correction method (SISDC) is introduced, which 

allows to treat the non-stiff terms explicitly and the stiff terms implicitly. These 

SISDC methods for solving ordinary differential equations are further discussed 

in [15].

The remainder of this work is organized as follows: in Section 1.2, notation 

and mathematical preliminaries are given and the two-step DDC method is in-

troduced (Algorithm 1.2.1). The unconditional stability of the proposed method 

is proven in Section 1.3. Convergence results are presented in Section 1.4, and 

computations are performed to investigate stability and accuracy of a two-step 

DDC algorithm in Section 1.5.

8



1.2 Method Description, Notation and Prelimi-

naries

This section presents the numerical schemes for (1.1.1)-(1.1.4), and provides the

necessary definitions and lemmas for the stability and convergence analysis. For

D ⊂ Ω, the Sobolev space Hk(D) = W k,2(D) is equipped with the usual norm

‖·‖Hk(D), and semi-norm |·|Hk(D), for 1 ≤ k <∞, e.g. Adams [3]. The L2 norm

is denoted by ‖·‖D. For functions v(x, t) defined for almost every t ∈ (0, T ) on a

function space V (D), we define the norms (1 ≤ p ≤ ∞)

‖v‖L∞(0,T ;V ) = ess sup
0<t<T

‖v(·, t)‖V and ‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖pV dt
)1/p

.

The dual space of the Banach space V is denoted V ′.

Let the domain Ω ⊂ Rd (typically d = 2, 3) have convex, polygonal sub-

domains Ωi for i = 1, 2 with ∂Ω1 ∩ ∂Ω2 = Ω1 ∩ Ω2 = I. Let Γi denote

the portion of ∂Ωi that is not on I, i.e. Γi = ∂Ωi \ I. For i = 1, 2, let

Xi =
{
v ∈ H1(Ωi)

d | v|Γi
= gi

}
, let (·, ·)Ωi

denote the standard L2 inner prod-

uct on Ωi, and let (·, ·)Xi
denote the standard H1 inner product on Ωi. Define

X = X1 × X2 and L2(Ω) = L2(Ω1) × L2(Ω2). For u,v ∈ X with u = [u1, u2]T

and v = [v1, v2]T , define the L2 inner product

(u,v) =
∑
i=1,2

∫
Ωi

uivi dx ,

and H1 inner product

(u,v)X =
∑
i=1,2

(∫
Ωi

uivi dx+

∫
Ωi

∇ui · ∇vi dx
)
,

9



and the induced norms ‖v‖ = (v,v)1/2 and ‖v‖X = (v,v)X
1/2, respectively. The

case where gi = 0, i = 1, 2 will be considered here, and can be easily extended

to the case of nonhomogeneous Dirichlet conditions on ∂Ωi \ I.

Lemma 1.2.1. (X, ‖·‖X) is a Hilbert space.

Proof. The choice of boundary conditions for X1 and X2 will ensure Xi ⊂

H1(Ωi), i = 1, 2 are closed subspaces. Hence by the definitions of (·, ·)X and

‖·‖X , (X, ‖·‖X) is a Hilbert space.

The following discrete Gronwall’s lemma and its modified version from [12]

will be utilized in the subsequent analysis.

Lemma 1.2.2. (Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers

µ > 0, be nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k
n∑
µ=0

γµaµ + k
n∑
µ=0

cµ +M for n ≥ 0. (1.2.1)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)−1. Then,

an + k
n∑
µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (1.2.2)

The restriction on the time step can be waived if γn = 0.

Lemma 1.2.3. (Modified Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for

integers µ > 0, be nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k

n−1∑
µ=0

γµaµ + k

n∑
µ=0

cµ +M for n ≥ 0. (1.2.3)

Then, with σµ ≡ (1− kγµ)−1,

an + k
n∑
µ=0

bµ ≤ exp

(
k

n−1∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (1.2.4)
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1.2.1 Discrete Formulation

Let Ti be a triangulation of Ωi and Th = T1∪T2. Take Xh
i ⊂ Xi to be conforming

finite element spaces for i = 1, 2, and define Xh = Xh
1 × Xh

2 ⊂ X. It follows

that Xh ⊂ X is a Hilbert space with corresponding inner product and induced

norm. We shall consider Xh
i to be spaces of continuous piecewise polynomials of

degree m ≥ 2.

For tk ∈ [0, T ], uk will denote the discrete approximation to u(tk).

A partitioned time stepping approach for the heat-heat equations in the same

setting as (1.1.1)-(1.1.4) was introduced by Connors, Howell, Layton in [7]. The

analogue of this data-passing scheme for our problem is presented below.

1.2.2 First-order Data-Passing Scheme

Let ∆t > 0, fi ∈ L2(Ωi). For each M ∈ N,M ≤ T
∆t
, given uni ∈ Xi,h, n =

0, 1, 2, · · · ,M − 1, solve on each subdomain (for i, j = 1, 2, i 6= j) to find un+1
i ∈

Xi,h satisfying

(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

= (fi(t
n+1), vi), ∀vi ∈ Xi,h . (1.2.5)

This scheme was extensively studied in [7] and was proven to be uncondition-

ally stable and first o rder a ccurate. Moreover, i n [ 21] the authors were able to 

extend this scheme to the atmosphere-ocean problem and prove (using a subtle 

modification of the jump condition) that the unconditional stability stands.
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Based on this scheme, we now introduce the defect-deferred algorithm to

increase the method’s accuracy and expand the set of applications to include the

flows at very high convection-to-diffusion ratio. The artificial viscosity is chosen

to be the first order accurate spatial approximation to stabilize the convection-

dominated flows; the defect correction algorithm (1.1.7) is then combined with

the spectral deferred correction approach of [16].

Throughout the remainder of this chapter we will use tu, u, cu to denote,

respectively, the true solution, the defect step approximation and the correction

step approximation.

The defect correction method, based on the artificial viscosity approximation

of (1.2.5), would lead to the following system of equations.

(
un+1
i − uni

∆t
, vi

)
+ (νi + h)(∇un+1

i ,∇vi) (1.2.6)

+(1 +
h

νi
)κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

= (fi(t
n+1), vi), ∀vi ∈ Xi,h(

cun+1
i − cuni

∆t
, vi

)
+ (νi + h)(∇cun+1

i ,∇vi)

+(1 +
h

νi
)κ

∫
I

(cun+1
i − cunj )vi ds+ (bi · ∇cuni , vi)

= (fi(t
n+1), vi) + h(∇un+1

i ,∇vi) +
h

νi
κ

∫
I

(un+1
i − unj )vi ds,

∀vi ∈ Xi,h.

However, if the interface condition (1.1.2) is modified to replace νi with νi +h, 

this results in
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(
un+1
i − uni

∆t
, vi

)
+ (νi + h)(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds (1.2.7)

+(bi · ∇uni , vi) = (fi(t
n+1), vi), ∀vi ∈ Xi,h(

cun+1
i − cuni

∆t
, vi

)
+ (νi + h)(∇cun+1

i ,∇vi) + κ

∫
I

(cun+1
i − cunj )vi ds

+(bi · ∇cuni , vi) = (fi(t
n+1), vi) + h(∇un+1

i ,∇vi), ∀vi ∈ Xi,h.

Both the modified and non-modified jump conditions were compared numer-

ically, in favor of (1.2.7) (see Section 1.5). Therefore, only the theory for this

approach will be considered below.

The deferred correction algorithm applied to the model problem (1.2.5) is as

follows.(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

(1.2.8a)

= (fi(t
n+1), vi), ∀vi ∈ Xh

i(
cun+1

i − cuni
∆t

, vi

)
+ νi(∇rn+1

i ,∇vi) + κ

∫
I

(rn+1
i − rnj )vi ds

(1.2.8b)

+(bi · ∇rni , vi) =
1

∆t
In+1
n (ui).

Here rki = cuki − uki , k = 0, 1, ..., N .

In+1
n (ui) is a numerical quadrature approximation to

∫ tn+1

tn
F (τ, ui(τ))dτ , where

F (t, ui) = (fi(t), vi)− νi(∇ui(t), vi) + κ
∫
I
(ui(t)− uj(t))vids+ (bi · ∇ui(t), vi).

Remark 1.2.1. Provided the integral terms Inn+1(ui) are computed with the ac-

curacy of order O((∆t)2), after 1 correction iteration the above procedure will
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produce an approximate solution with global accuracy O((∆t)2). If the points

tm ∈ [tn, tn+1] are chosen to be Gaussian quadrature nodes, then the integral is

being computed with a spectral integration rule, which is the reason for the name

spectral deferred corrections. For the two-step method the spectral integration

simplifies to the trapezoid rule.

The variational formulation of the two-step DDC method is obtained by

combining the DDC techniques (1.2.7)-(1.2.8) into the following

Algorithm 1.2.1 (Two Step DDC). Let ∆t > 0, M = T
∆t
, fi ∈ L2(Ωi). Given

uni , find u
n+1
i ∈ Xh

i , i, j = 1, 2, i 6= j, n = 0, 1, 2, · · · ,M − 1, satisfying(
un+1
i − uni

∆t
, vi

)
+ (νi + h)

(
∇un+1

i ,∇vi
)

+ κ

∫
I

(un+1
i − unj )vids+ (bi · ∇uni , vi)

=
(
fn+1
i , vi

)
, ∀vi ∈ Xi,h (1.2.9)

Also, given cuni , find cu
n+1
i ∈ Xh

i satisfying(
cun+1

i − cuni
∆t

, vi

)
+ (νi + h)

(
∇cun+1

i ,∇vi
)

+ κ

∫
I

(cun+1
i − cunj )vids+

(b · ∇cuni , vi) =

(
fn+1
i + fni

2
, vi

)
− ∆t

2

(
bi · ∇(

un+1
i − uni

∆t
), vi

)
+ ∆t

(νi + h)

2
(∇(

un+1
i − uni

∆t
),∇vi) +

κ

2
∆t

∫
I

(
un+1
i − uni

∆t
)vids

+
κ

2
∆t

∫
I

(
un+1
j − unj

∆t
)vids+ h

(
∇(

un+1
i + uni

2
),∇vi

)
, ∀vi ∈ Xi,h. (1.2.10)

The terms in the right hand side of (1.2.10) are written in a form that hints 

at the reason for the increased accuracy of the correction step solution. Note also 

that the structure of the left hand side (and therefore the matrix of the system) 

is identical for (1.2.9) and (1.2.10); thus, a simple and computationally cheap ar-
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tificial viscosity data-passing approximation is computed twice to achieve higher

accuracy while maintaining the unconditional stability.

1.3 Stability

In this section we prove the unconditional stability of both the defect step and

the correction step approximations.

Lemma 1.3.1. (Stability of Defect approximation) Let un+1 ∈ Xh satisfy (1.2.9)

for each n ∈
{

0, 1, 2, · · · , T
∆t
− 1
}
. Then ∃C > 0 independent of h, ∆t such that

un+1 satisfies:

∥∥un+1
∥∥2

+ (ν + h)∆t
n+1∑
k=1

‖∇uk‖2
+ κ∆t(‖un+1

1 ‖2

I + ‖un+1
2 ‖2

I)

≤ C

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
2

ν + h
∆t

n+1∑
k=1

‖fk‖2

−1

}
.

Proof. Choose vi = un+1
i in (1.2.9), i 6= j to obtain(

un+1
i − uni

∆t
, un+1

i

)
+ (ν + h)

∥∥∇un+1
i

∥∥2
+
(
b · ∇uni , un+1

i

)
+

∫
I

κ(un+1
i − unj )un+1

i ds =
(
fn+1
i , un+1

i

)
.

Applying the Cauchy-Schwarz inequality and summing over i,j=1,2 , i 6= j ,

yields

‖un+1‖2 − ‖un‖2

2∆t
+ (ν + h)

∥∥∇un+1
∥∥2

+
(
b · ∇un,un+1

)
+ κ
∥∥un+1

1

∥∥2

I
+ κ
∥∥un+1

2

∥∥2

I

−κ‖un1‖I
∥∥un+1

2

∥∥
I
− κ‖un2‖I

∥∥un+1
1

∥∥
I
≤
∥∥∇un+1

∥∥∥∥fn+1
∥∥
−1
.

Young’s inequality allows to "hide" all the u-terms, leading to the telescoping 
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series in the left hand side (LHS)

‖un+1‖2 − ‖un‖2

2∆t
+ (ν + h)

∥∥∇un+1
∥∥2

+
κ

2
(
∥∥un+1

1

∥∥2

I
− ‖un1‖

2
I)

+
κ

2
(
∥∥un+1

2

∥∥2

I
− ‖un2‖

2
I) ≤

ν + h

4

∥∥∇un+1
∥∥2

+
1

ν + h

∥∥fn+1
∥∥2

−1

+
ν + h

4

∥∥∇un+1
∥∥2

+
|b|2

ν + h
‖un‖2

Summing over the time levels and multiplying by 2∆t, we obtain

∥∥un+1
∥∥2

+ (ν + h)∆t
n+1∑
k=1

∥∥∇uk∥∥2
+ κ∆t(

∥∥un+1
1

∥∥2

I
+
∥∥un+1

2

∥∥2

I
)

≤
∥∥u0
∥∥2

+ κ∆t(
∥∥u0

1

∥∥2

I
+
∥∥u0

2

∥∥2

I
) +

2

ν + h
∆t

n+1∑
k=1

∥∥fk∥∥2

−1
+

2|b|2

ν + h
∆t

n∑
k=0

∥∥uk∥∥2

The summation in the last term on the right hand side does not include the time

level (n+ 1). Therefore, using the modified Gronwall’s Lemma, we obtain

∥∥un+1
∥∥2

+ (ν + h)∆t
n+1∑
k=1

∥∥∇uk∥∥2
+ κ∆t(

∥∥un+1
1

∥∥2

I
+
∥∥un+1

2

∥∥2

I
)

≤ C

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
2

ν + h
∆t

n+1∑
k=1

‖fk‖2

−1

}

Hence, the initial approximation u is unconditionally stable. We conclude

the proof of stability of the DDC approximations by considering the second step

approximation cu.

Theorem 1.3.2 (Stability of Correction Step of DDC). Let cun+1 ∈ Xh satisfy

(1.2.10) for each n ∈
{

0, 1, 2, · · · , T
∆t
− 1
}
. Then ∃C > 0 independent of h, ∆t

16



such that cun+1 satisfies:

∥∥cun+1
∥∥2

+ (ν + h)∆t
n+1∑
k=1

∥∥∇cuk∥∥2
+ κ∆t(

∥∥cun+1
1

∥∥2

I
+
∥∥cun+1

2

∥∥2

I
)

≤ C

[
‖cu0‖2 + κ∆t(‖cu0

1‖
2

I + ‖cu0
2‖

2

I)

+
1

ν + h

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
1

ν + h
∆t

n+1∑
k=1

‖fk‖2

−1

}]
.

Proof. Choosing vi = cun+1
i in (1.2.10) gives(

cun+1
i − cuni

∆t
, cun+1

i

)
+ (νi + h)

∥∥∇cun+1
i

∥∥2
+
(
bi · ∇cuni , cun+1

i

)
+

∫
I

κ(cun+1
i − cunj )cun+1ds =

(
fn+1
i + fni

2
, cun+1

i

)
−∆t

2

(
b · ∇(

un+1
i − uni

∆t
), cun+1

i

)
+

∆t(νi + h)

2

(
∇(

un+1
i − uni

∆t
),∇cun+1

i

)
+

1

2
κ

∫
I

(un+1
j − unj + un+1

i − uni )cun+1
i ds+ h

(
∇(

un+1
i + uni

2
),∇cun+1

i

)
.

Compared to the proof of stability of the defect solution u, there are four

extra terms in the RHS. They are bounded as follows. After the summation over

i = 1, 2 we obtain∣∣∣∣∆t2
(
b · ∇(

un+1 − un

∆t
), cun+1

)∣∣∣∣ ≤ 1

2

∣∣(b · ∇cun+1,un+1)
∣∣+

1

2

∣∣(b · ∇cun+1,un)
∣∣

≤ 2ε(ν + h)‖∇cun+1‖2 +
|b|2

16ε(ν + h)
(‖un+1‖2 + ‖un‖2).

Similarly∣∣∣∣ν + h

2
(∇un+1,∇cun+1)− ν + h

2
(∇un,∇cun+1)

∣∣∣∣ ≤ 2ε (ν + h)‖∇cun+1‖2

+
ν + h

16 ε
(‖∇un+1‖2 + ‖∇un‖2).
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Using again the Cauchy-Swcharz and Young’s inequalities, we find a bound

on the h-term as follows∣∣∣∣h(∇(
un+1 + un

2
),∇cun+1

)∣∣∣∣ ≤ 2ε(ν + h)‖∇cun+1‖2

+
h2

16ε(ν + h)
(‖∇un+1‖2 + ‖∇un‖2) .

Summing over the time levels, choosing ε = 1
28

allows us to hide the ∇cu-

terms in the LHS. There are also eight boundary terms

κ

2

∫
I

(un+1
2 − un2 + un+1

1 − un1 )cun+1
1 ds+

κ

2

∫
I

(un+1
1 − un1 + un+1

2 − un2 )cun+1
2 ds.

For each of the eight terms, use the Cauchy-Schwarz inequality, followed by

the Young’s inequality and use the trace theorem to obtain the bounds

‖cun+1
i ‖2

I ≤ ‖cun+1
i ‖2

∂Ωi
≤ CTrace‖∇cun+1

i ‖2
Ωi

‖un+1
i ‖2

I ≤ ‖un+1
i ‖2

∂Ωi
≤ CTrace‖∇un+1

i ‖2
Ωi
.

Utilizing the stability bound on the defect solution u completes the proof.

1.4 Convergence analysis

We start by proving the accuracy estimate of the defect solution.

Theorem 1.4.1. (Accuracy of Defect Solution) Let tui(t; x) ∈ L2(0, T ; X) solve 

(1.1.1)–(1.1.4) for all t ∈ (0, T ). Let also tui,t(t; x) ∈ L2(0, T ; X) and tui,tt(t; x) ∈ 

L2(0, T ; L2(Ωi)), i = 1, 2. Then ∃C > 0 independent of h, ∆t such that for any
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n ∈ {0, 1, 2, · · · ,M − 1 = T
∆t
− 1}, the solution un+1

i of (1.2.9) satisfies

‖tun+1 − un+1‖2 + (ν + h)∆t
n+1∑
j=1

‖∇(tuj − uj)‖2 + κ∆t
2∑
i=1

‖tun+1
i − un+1

i ‖2
I

≤ C(h2 + ∆t2)

(1.4.1)

Proof. Restricting the test functions to Xh, write (1.1.5) at time tn+1 as

(
tun+1
i − tuni

∆t
, vi

)
Ωi

+ (νi + h)(∇tun+1
i ,∇vi)Ωi

+ κ

∫
I

(tun+1
i − tunj )vids

+(bi · ∇tuni , vi)Ωi
= (fn+1

i , vi)Ωi
+ h(∇tun+1

i ,∇vi)Ωi

+

(
tun+1
i − tuni

∆t
− tun+1

i,t , vi

)
Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)
Ωi

+κ

∫
I

(tun+1
j − tunj )vids

(1.4.2)

Denote tun+1
i −tuni

∆t
− tun+1

i,t ≡ ρn+1
i . Subtract (1.2.9) from (1.4.2) to obtain the

equation for the error, en+1
i = tun+1

i − un+1
i , i = 1, 2. For any vi ∈ Xh

i

(
en+1
i − eni

∆t
, vi

)
Ωi

+ (νi + h)(∇en+1
i ,∇vi)Ωi

+ κ

∫
I

(en+1
i − enj )vids

+(bi · ∇eni , vi)Ωi
= h(∇tun+1

i ,∇vi)Ωi
+ (ρn+1

i , vi)Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)
+ ∆tκ

∫
I

(
tun+1
j − tunj

∆t

)
vids, i 6= j.

(1.4.3)

Do the summation over i = 1, 2; decompose the error en+1 = (ũn+1 − un+1) − 

(ũn+1 − tun+1) = φn+1 − ηn+1, for some ũn+1 ∈ Xh and take v = φn+1 ∈ Xh.
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Then ∀n ≥ 0(
φn+1 − φn

∆t
,φn+1

)
+ (ν + h)(∇φn+1,∇φn+1) + κ

∑
i=1,2

∫
I

(φn+1
i )2ds

= h(∇tun+1,∇φn+1) + (ρn+1,φn+1) + ∆tκ

∫
I

(
tun+1 − tun

∆t

)
φn+1ds

+

(
ηn+1 − ηn

∆t
,φn+1

)
+ (ν + h)(∇ηn+1,∇φn+1)

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
),φn+1

)
+ κ

∫
I

φn+1ηn+1ds

+ κ
∑
i6=j

∫
I

enjφ
n+1
i ds+ (b · ∇ηn,φn+1)− (b · ∇φn,φn+1) (1.4.4)

Using the Cauchy-Schwarz and Young’s inequalities followed by the Trace

theorem gives

‖φn+1‖2 − ‖φn‖2

2∆t
+ (ν + h)(‖∇φn+1‖2 + κ‖φn+1

1 ‖2
I + κ‖φn+1

2 ‖2
I

≤ ε(ν + h)‖∇φn+1‖2 +
h2

4ε(ν + h)
‖∇tun+1‖2

+ ε(ν + h)‖∇φn+1‖2 +
C2
PF

4ε(ν + h)
‖ρn+1‖2 + ε(ν + h)‖∇φn+1‖2

+
C4
Trace∆t

2κ2

4ε(ν + h)
‖∇
(
tun+1 − tun

∆t

)
‖2 + ε(ν + h)‖∇φn+1‖2

+
C2
PF

4ε(ν + h)
‖η

n+1 − ηn

∆t
‖2 + ε(ν + h)‖∇φn+1‖2 +

(ν + h)

4ε
‖∇ηn+1‖2

+ ε(ν + h)‖∇φn+1‖2 +
C4
Traceκ

2

4ε(ν + h)
‖∇ηn+1‖2 +

κ

2
‖φn+1

1 ‖2
I +

κ

2
‖φn+1

2 ‖2
I

+
κ

2
‖φn

1‖2
I +

κ

2
‖φn

2‖2
I + ε(ν + h)‖∇φn+1‖2

+
C4
Traceκ

2

4ε(ν + h)
‖∇ηn‖2 + 3ε(ν + h)‖∇φn+1‖2 +

|b|2

4ε(ν + h)
‖ηn‖2

+
|b|2

4ε(ν + h)
‖φn‖2 +

|b|2

4ε(ν + h)
(∆t)2‖∇

(
tun+1 − tun

∆t

)
‖2 (1.4.5)
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Moving the four boundary integrals from the RHS to the LHS, choosing ε = 1
20
,

summing over the time levels, using the modified Gronwall’s lemma and the

triangle inequality (to pass from φn+1 to en+1) completes the proof.

In order to prove the accuracy estimate for the correction approximation, we

will need the following

Theorem 1.4.2. (Accuracy of Time Derivative of the Error in the Defect Step)

Let the assumptions of Theorem 1.4.1 be satisfied. Also, let ∆tu ∈ L2(0, T ;L2(Ω))

and tuttt ∈ L2(0, T ;L2(Ω)). Then ∃C > 0 independent of h, ∆t such that for

any n ∈ {0, 1, 2, · · · ,M − 1 = T
∆t
− 1} , the discrete time derivative of the error

en+1
i −ein

∆t
satisfies

‖e
n+1 − en

∆t
‖2 + (ν + h)∆t

n∑
j=1

‖∇
(
ej+1 − ej

∆t

)
‖2 +

κ∆t

2

n∑
j=1

2∑
i=1

‖e
j+1
i − eji

∆t
‖2
I

≤ C
(
h2 + (∆t)2

)
. (1.4.6)

Proof. Taking vi =
φn+1
i −φni

∆t
∈ Xi,h in (1.4.3) leads to(

en+1
i − eni

∆t
,
φn+1
i − φni

∆t

)
Ωi

+ (νi + h)(∇en+1
i ,∇(

φn+1
i − φni

∆t
))Ωi

+κ

∫
I

(en+1
i − enj )

φn+1
i − φni

∆t
ds+ (bi · ∇eni ,

φn+1
i − φni

∆t
)Ωi

= h(∇tun+1
i ,∇(

φn+1
i − φni

∆t
))Ωi

+ (ρn+1
i ,

φn+1
i − φni

∆t
)Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
),
φn+1
i − φni

∆t

)
+∆tκ

∫
I

(
tun+1
j − tunj

∆t

)
φn+1
i − φni

∆t
ds, i 6= j.

(1.4.7)
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Also, take vi =
φn+1
i −φni

∆t
in (1.4.3) at the previous time level, and subtract the

resulting equation from (1.4.7). Denoting sn+1
i ≡ φn+1

i −φni
∆t

, summing over i = 1, 2

we obtain for n ≥ 1

‖sn+1‖2 − (sn+1, sn) + (ν + h)∆t‖∇sn+1‖2 + ∆t(b · ∇sn, sn+1)

+
∑

i,j=1,2,i6=j

∆t

∫
I

κ(sn+1
i − snj )sn+1

i ds

= ∆t

(
ηn+1 − 2ηn + ηn−1

(∆t)2
, sn+1

)
+(ν + h)∆t

(
∇(

ηn+1 − ηn

∆t
),∇sn+1

)
+∆t

(
b · ∇(

ηn − ηn−1

∆t
), sn+1

)
+

∑
i,j=1,2,i6=j

∆t

∫
I

κ

(
ηn+1
i − ηni

∆t
−
ηnj − ηn−1

j

∆t

)
sn+1
i ds

+h∆t

(
∇(

tun+1 − tun

∆t
),∇sn+1

)
+∆t

(
ρn+1 − ρn

∆t
, sn+1

)
+

∑
i,j=1,2,i6=j

(∆t)2

∫
I

κ

(
tun+1

j − 2tunj + tun−1
j

(∆t)2

)
sn+1ds

(1.4.8)
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Using the Cauchy-Schwarz and Young’s inequalities leads to

1

2
‖sn+1‖2 − 1

2
‖sn‖2 + (ν + h)∆t‖∇sn+1‖2 +

∆tκ

2
‖sn+1

1 ‖2
I +

∆tκ

2
‖sn+1

2 ‖2
I

≤ ε(ν + h)∆t‖∇sn+1‖2 +
C2
PF∆t

4ε(ν + h)
‖η

n+1 − 2ηn + ηn−1

(∆t)2
‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
1

4ε(ν + h)
∆t‖b‖2‖sn‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
(ν + h)∆t

4ε
‖∇(

ηn+1 − ηn

∆t
)‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
‖b‖2∆t

4ε(ν + h)
‖η

n+1 − ηn

∆t
‖2 + 2ε(ν + h)∆t‖∇sn+1‖2

+
C4
Traceκ∆t

4ε(ν + h)

(
‖∇(

ηn+1 − ηn

∆t
)‖2 + ‖∇(

ηn − ηn−1

∆t
)‖2

)
+ε(ν + h)∆t‖∇sn+1‖2 +

h2∆t

4ε(ν + h)
‖∇(

tun+1 − tun

∆t
)‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
C2
PF∆t

4ε(ν + h)
‖ρ

n+1 − ρn

∆t
‖2 +

∆tκ

4
‖sn+1

1 ‖2
I

+
∆tκ

4
‖sn+1

2 ‖2
I + (∆t)2∆tκ

∑
i=1,2

‖tu
n+1
i − 2tuni + tun−1

i

(∆t)2
‖2
I .

(1.4.9)

Summing over the time levels, multiplying both sides by 2, letting ε = 1
16

and

using the modified Gronwall’s lemma gives

‖sn+1‖2 + (ν+h)∆t
n+1∑
i=2

‖∇si‖2 +
κ∆t

2

n+1∑
i=2

2∑
j=1

‖sij‖2
I ≤ C

(
‖s1‖2 +O(h2 + (∆t)2)

)
(1.4.10)

In order to get a bound on ‖s1‖2, consider (1.4.3) at n = 0. Note also that we

choose u0
i so that (tu0

i − u0
i , vi) = 0,∀vi ∈ Xh

i , i = 1, 2 . Thus, e0 = −η0 and
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φ0 = 0. We let v = s1 = φ1−φ0

∆t
= φ1

∆t
to obtain

‖s1‖2 +
(ν + h)

∆t
‖∇φ1‖2 + κ‖φ1

1‖2
I + κ‖φ1

2‖2
I =

(
η1 − η0

∆t
, s1

)
+ (ν + h)(∇η1,∇s1) + (b · ∇η0, s1) +

∑
i,j=1,2,i6=j

∫
I

κ(η1
i − η0

j )s
1
i ds

+ h(∇tu1,∇s1) + (ρ1, s1) +
∑

i,j=1,2,i6=j

∆t

∫
I

κ

(
tu1
j − tu0

j

∆t

)
s1
i ds (1.4.11)

Using the Cauchy-Schwarz and Young’s inequalities, we show the following

‖s1‖2 +
(ν + h)

∆t
‖∇φ1‖2 +

κ

2
‖φ1

1‖2
I +

κ

2
‖φ1

2‖2
I

≤ C

[
‖η

1 − η0

∆t
‖2 + (ν + h)‖∆η1‖2 + ‖b‖2‖∇η0‖2

+
∑

i=0,1,j=1,2

κ‖∇ηij‖2 + h2‖∆tu1‖2 + ‖ρ1‖2 + (∆t)2κ
∑
j=1,2

‖
tu1
j − tu0

j

∆t
‖2
I

] (1.4.12)

Inserting (1.4.12) into (1.4.10) completes the proof.

We now have all the intermediate results that are needed for proving the

accuracy of the correction step solution cu.

Theorem 1.4.3. (Accuracy of Correction Step) Let the assumptions of Theorem

1.4.2 be satisfied. Then ∃C > 0 independent of h, ∆t such that for any n ∈

{0, 1, 2, · · · ,M − 1 = T
∆t
− 1}, the solution cun+1

i of (1.2.10) satisfies

‖tun+1− cun+1‖2 + (ν + h)∆t
n+1∑
j=1

‖∇(tuj − cuj)‖2 + κ∆t
2∑
i=1

‖tun+1
i − cun+1

i ‖2
I

≤ C
(
h4 + (∆t)4

)
(1.4.13)

Proof. First, sum (1.4.2) at time levels tn and tn+1 and divide by 2, to obtain in 
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Ωi , i = 1, 2:

(
tun+1
i − tuni

∆
, vi

)
+ (νi + h)(∇tun+1

i ,∇vi) +

∫
I

κ(tun+1
i − tunj )vids

+ (bi · ∇tuni , vi) =

(
fi(tn+1) + fi(tn)

2
, vi

)
+

∆t(νi + h)

2

(
∇(

tun+1
i − tuni

∆t
),∇vi

)
+ h

(
∇(

tun+1
i + tuni

2
),∇vi

)
+
κ∆t

2

∫
I

(
tun+1
i − tuni

∆t

)
vids

+
κ∆t

2

∫
I

(
tun+1
j − tunj

∆t

)
vids−

∆t

2

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)

+

(
tun+1
i − tuni

∆t
−
tun+1
i,t + tuni,t

2
, vi

)
(1.4.14)

For the O(∆t2)-term introduce the notation tun+1
i −tuni

∆t
− tun+1

i,t +tuni,t
2

≡ γn+1
i . Sub-

tract the correction step equation (1.2.10) from (1.4.14). We obtain for i, j =

1, 2, i 6= j

(
cen+1
i − ceni

∆t
, vi

)
+(νi+h)(∇cen+1

i ,∇vi)+

∫
I

κ(cen+1
i −cenj )vids+(b·∇ceni , vi)

=
∆t(νi + h)

2

(
∇(

en+1
i − eni

∆t
),∇vi

)
+ h

(
∇(

en+1
i + eni

2
),∇vi

)
+ (γn+1

i , vi)

+
κ∆t

2

∫
I

(
en+1
i − eni

∆t

)
vids+

κ∆t

2

∫
I

(
en+1
j − enj

∆t

)
vids

− ∆t

2

(
bi · ∇(

en+1
i − eni

∆t
), vi

)
. (1.4.15)

Similarly to the error decomposition in the case of the defect approximation,

decompose cen+1
i = tun+1

i − cun+1
i = φn+1

i − ηn+1
i , φi ∈ Xi,h. We now choose

vi = φn+1
i ∈ Xi,h in (1.4.15), sum over i = 1, 2 and use the Cauchy-Schwarz and

Young’s inequalities to obtain bounds on the terms in (1.4.15), similar to what
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we did for equation (1.4.4). The bounds on en+1 and en+1−en
∆t

from Theorem

1.4.1 and Theorem 1.4.2 complete the proof.

1.5 Computational Testing

The convergence properties of the two-step DDC method (Algorithm 1.2.1) are

investigated quantitatively in the case of a test problem with the known solution

(see [7]).

Assume Ω1 = [0, 1] × [0, 1] and Ω2 = [0, 1] × [−1, 0], so I is the portion of

the x-axis from 0 to 1. Then n1 = [0, −1]T and n2 = [0, 1]T . For ν1, ν2, and

κ all arbitrary positive constants, the right hand side function f from (1.1.1) is

calculated so that the true solution is given by ui = (ui1, ui2), i = 1, 2

u11(t, x, y) = x(1− x)(1− y)e−t

u12(t, x, y) = −x(1− x)(1− y)e−t

u21(t, x, y) = x(1− x)(1 +
ν1

κ
− ν1

ν2

y − (1 +
ν1

ν2

+
ν1

κ
)y2)e−t

u22(t, x, y) = −x(1− x)(1 +
ν1

κ
− ν1

ν2

y − (1 +
ν1

ν2

+
ν1

κ
)y2)e−t .

This choice of u satisfies the interface conditions (1.1.2) and the boundary con-

ditions (1.1.4) with g1 = g2 = 0. The computations were performed using finite 

element spaces consisting of continuous piecewise polynomials of degree 2. The 

code was implemented using the software package FreeFEM++ [11].
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1.5.1 Convergence rate study

Computational results are provided for κ = 1 and for the moderate (ν1 = ν2 = 1)

and small (ν1 = ν2 = 0.00001) values of the diffusion coefficients. In the following

tables, the norm ‖u‖ is the discrete L2(0, T ;L2(Ω)) norm, given by

‖u‖ =

(
N∑
n=1

∆t|u(tn)|2L2(Ωi)

)1/2

, (1.5.1)

and |u|H1 is the discrete L2(0, T ;H1(Ω)) seminorm, given by

|u|H1 =

(
N∑
n=1

∆t|∇u(tn)|L2(Ω)

)1/2

, (1.5.2)

where N = T/∆t. Tables 1.1 and 1.2 compare the cases of modified v s. non-

modified j ump c ondition i n A lgorithm 1 .2.1 f or ν i =  1 . Tables 1 .3 a nd 1.4 

perform the same comparison for the case of convection-dominated flows at ν i = 

0.00001. The errors are calculated in the norms (1.5.1) and (1.5.2).

For the case νi = 1, i = 1, 2 the method with the modified j ump condition 

performs as predicted by the theory (with the accuracy improving from O(h+∆t) 

to O(h2 + (∆t)2) in the correction step). With the jump condition unchanged, 

the accuracy does not climb beyond first order accuracy, even in the correction 

step. The results for using different jump conditions at νi = 10−5 are even further 

apart.
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DEFECT SUBSTEP

h ∆t ‖u(t)− u‖L2 rate |u(t)− u|H1 rate

1/4 1/4 4.09893e-2 1.53394e-1

1/8 1/8 2.4502e-2 0.74 8.99462e-2 0.77

1/16 1/16 1.34949e-2 0.86 4.91759e-2 0.87

1/32 1/32 710272e-3 0.92 2.57988e-2 0.93

1/64 1/64 364762e-3 0.96 1.32293e-2 0.96

CORRECTION SUBSTEP

h ∆t ‖u(t)− cu‖L2 rate |u(t)− cu|H1 rate

1/4 1/4 1.50131e-2 5.94415e-2

1/8 1/8 5.37793e-3 1.48 2.0774e-2 1.51

1/16 1/16 1.85568e-3 1.53 7.34807e-3 1.49

1/32 1/32 7.06498e-4 1.39 2.9411e-3 1.32

1/64 1/64 3.08825e-4 1.19 1.34023e-3 1.13

Table 1.1: Errors for computed approximations, ν = 1, non-modified jump 

condition

Clearly, the correct way of implementing the proposed method is to modify 

the interface condition so that the diffusion coecient is treated consistently 

throughout the problem. Also, when the convection-to-diffusion ratio is mod-

erate (νi = 1) the observed convergence rates are in full agreement with the 

theoretical findings. When the diffusion coecient is very small compared to the 

spatial mesh diameter, convergence rates in the L2(0, T ; L2(Ω))-norm start to de-

teriorate, but the correction step still gives a clear advantage over the first order 

accurate defect approximation. However, the accuracy in the L2(0, T ; H1(Ω))-

seminorm has decayed drastically; this is due to the fact that for the chosen 

values of ν the mesh is much too coarse; the term ν + h, appearing in the error

28



DEFECT SUBSTEP

h ∆t ‖u(t)− u‖L2 rate |u(t)− u|H1 rate

1/4 1/4 4.10392e-2 1.5309e-1

1/8 1/8 2.42801e-2 0.75 8.9456e-2 0.77

1/16 1/16 1.33056e-2 0.86 4.87916e-2 0.87

1/32 1/32 6.98608e-3 0.92 2.55628e-2 0.93

1/64 1/64 358342e-3 0.96 1.3099e-2 0.96

CORRECTION SUBSTEP

h ∆t ‖u(t)− cu‖L2 rate |u(t)− cu|H1 rate

1/4 1/4 1.36326e-2 5.50424e-2

1/8 1/8 4.61153e-3 1.56 1.80651e-2 1.60

1/16 1/16 1.36977e-3 1.75 5.36588e-3 1.75

1/32 1/32 3.78436e-4 1.85 1.49775e-3 1.84

1/64 1/64 1.00268e-4 1.91 4.02327e-4 1.89

Table 1.2: Errors for computed approximations, ν = 1, modified jump condition

estimates of the method, is now almost equal to h, which immediately affects 

both the a priori error estimates and the computational results. This suggests, 

that if the legacy codes are to be used for the coupled convection-dominated 

convection-diffusion problem in the manner of Algorithm 1.2.1, then one has to 

refine t he mesh s ubstantially i n o rder t o c apture t he g radient o f t he solution. 

Notice, however, that the solution itself is well modelled (in the L2(0, T ; L2(Ω))-

norm) even on a coarse mesh. If one does not wish to refine the mesh, then taking 

one or two more correction steps could produce a solution that is qualitatively 

and quantitatively closer to the true, turbulent solution. The latter statement is 

partially supported by the qualitative tests in [22], but many more tests would 

need to be performed to make this conclusive.
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DEFECT SUBSTEP

h ∆t ‖u(t)− u‖L2 rate |u(t)− u|H1 rate

1/4 1/4 7.91115e-2 5.3402e-1

1/8 1/8 7.08314e-2 0.15 5.44157e-1 -0.02

1/16 1/16 5.9474e-2 0.25 5.6404e-1 -0.05

1/32 1/32 5.31807e-2 0.16 6.32873e-1 -0.16

1/64 1/64 5.11973e-2 0.05 7.7229e-1 -0.28

CORRECTION SUBSTEP

h ∆t ‖u(t)− cu‖L2 rate |u(t)− cu|H1 rate

1/4 1/4 7.3621e-2 5.61272e-1

1/8 1/8 6.06277e-2 0.28 5.98215e-1 -0.09

1/16 1/16 5.45552e-2 0.15 6.79845e-1 -0.18

1/32 1/32 5.32717e-2 0.03 8.45552e-1 -0.31

1/64 1/64 5.23807e-2 0.02 1.10753 -0.38

Table 1.3: Errors for computed approximations, ν = 10−5, non-modified jump

condition

1.6 Summary and future work

A method was presented that aims at resolving an atmosphere-ocean coupling

problem in a turbulent regime, with high accuracy in both space and time,

and with the usage of legacy codes. With this, seemingly impossible, goal in

mind, we considered a simplified problem here: create a stable and high-accuracy

(second order accurate in both space and time) method for solving a coupled two-

domain convection dominated convection-diffusion problem in legacy codes. The

coupling condition is a linearized version of the rigid lid condition, often used

atmosphere-ocean models.

To that end, the combined approach of DDC was implemented, based on
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DEFECT SUBSTEP

h ∆t ‖u(t)− u‖L2 rate |u(t)− u|H1 rate

1/4 1/4 9.23371e-2 3.64616e-1

1/8 1/8 7.30489e-2 0.33 3.06128e-1 0.25

1/16 1/16 4.72726e-2 0.62 2.27403e-1 0.42

1/32 1/32 2.71885e-2 0.79 1.62003e-1 0.48

1/64 1/64 1.46477e-2 0.89 1.14559e-1 0.49

CORRECTION SUBSTEP

h ∆t ‖u(t)− cu‖L2 rate |u(t)− cu|H1 rate

1/4 1/4 6.75345e-2 2.89442e-1

1/8 1/8 3.59619e-2 0.90 2.15663e-1 0.42

1/16 1/16 1.47159e-2 1.28 1.55311e-1 0.47

1/32 1/32 5.43386e-3 1.44 1.12958e-1 0.45

1/64 1/64 1.87323e-3 1.54 8.05629e-2 0.48

Table 1.4: Errors for computed approximations, ν = 10−5, modified jump con-

dition

the clever (and stable, although only first order accurate) decoupling procedure 

of [7]. The presented method was investigated both theoretically (proving the 

unconditional stability and second order accuracy in both space and time) and 

numerically (where a comparison was made between a non-modified and a mod-

ified c oecient i n t he j ump c ondition, t he l atter c learly b eing t he r ight way 

of implementing the method). Since this is a dicult problem, and an even 

more dicult application is still ahead, more numerical tests are needed to get a 

clearer picture of the method’s capabilities (and, more importantly, limitations!) 

in modelling the convection dominated or turbulent flows. However, the numer-

ical results demonstrate that the method is computationally attractive, as even 

a coarse mesh would suffice to get fast, yet accurate approximations of a laminar
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flow. As the convection-to-diffusion ratio increases, either more correction steps

might be needed, or a finer mesh, or both. Nevertheless, even in the convection

dominated regime the numerical test shows that the accuracy of the correction

step solution (in the L2(0, T ;L2(Ω))-norm) increased beyond first order accuracy

even on a relatively coarse mesh.
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Chapter 2

A Defect-Deferred Correction

Method for Fluid-Fluid Interaction

2.1 Introduction

Global climate and regional weather simulations often require the resolution 

of phenomena related to atmosphere-ocean interaction (AOI), such as hurri-

canes, monsoons, and climate variability like El Niño-Southern Oscillation and 

the Madden-Julian Oscillation [26, 43, 44, 45]. The most common numerical 

approach is to pass fluxes (across the fluid interface) of  conserved quantities be-

tween an ocean code and an atmosphere code with some prescribed frequency, 

such as every simulated day. The ocean and atmosphere codes otherwise view 

each other as black boxes. Each code is optimized to resolve the dynamics of 

the respective physical system. For example, energy in the atmosphere remains 

significant at smaller time scales and larger spatial scales than in the ocean, so
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different time steps and grids are often used for each system. This intuitive 

approach is now well-established, with numerous codes in existence. Some ex-

amples are the so-called global circulation models (GCMs) used to assess climate 

change by the IPCC [34], as well as coupled Weather Research and Forecasting 

(WRF) and Regional Oceanic Models (ROMS) [33, 31, 39, 40].

We consider an approach to improve two numerical aspects of typical AOI 

simulations: artificial diffusion (or viscosity) processes, and the coupling across 

the fluid i nterface. V iscosity a nd d iffusion p arameterizations a re i ncluded in 

simulations to control numerical noise and to model subscale mixing processes; 

we provide some details in Section 2.1.2. But the net effect can be to overdiffuse 

(formally) and impact model resolution. For example, reduction of viscosity 

parameters in the ocean alone have been shown to improve some simulation 

outputs for both the ocean and atmosphere [35], but the model viscosity should 

remain larger than physical parameter values in order to control numerical noise. 

Meanwhile, typical coupling methods induce time-consistency errors (with rare 

exceptions; coupling details are discussed below). Some studies indicate sensi-

tivity with respect to this error, demonstrating that improved coupling methods 

could translate to better simulation results in many cases [27, 33].

There is an abundance of literature regarding the physics behind surface 

fluxes a nd t he p reservation o f fl ux co nservation pr operties wh en ma pping be-

tween different computational grids. In contrast, the literature that addresses 

the temporal aspects of flux c alculations i n t he c ontext o f AOI i s somewhat 

sparse. The method in [28] exemplifies t he a pproach u sed f or c limate models, 

while approaches for regional coupled models may be found in [25, 41]. The

34



common feature we point out is that the time consistency is always formally

first-order with respect to the size of time interval between coupling air and sea

components. An exception is the recent method in [32, 33], which employs it-

eration to achieve second-order consistency; further details are discussed below.

Generally, the development of flux-passing algorithms is complicated by technical

issues of numerical stability and consistency. Numerical analysis of algorithms

can illustrate the challenges and provide insight for future developments, but few

examples of this sort of analysis exist that address time-dependent issues. To our

knowledge, the papers are [5, 21, 30, 32, 46]. Our approach is investigated for a

simple model of two viscous fluids that retains the key aspect of their coupling;

the ensuing algorithms are amenable to a rigorous mathematical analysis.
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Consider the d-dimensional domain Ω in space that consists of two subdo-

mains Ω1 and Ω2, coupled across an interface I, for times t ∈ [0, T ]. The problem

is: given νi > 0, fi : [0, T ] → H1(Ωi)
d, ui(0) ∈ H1(Ωi)

d and κ ∈ R, find (for

i = 1, 2) ui : Ωi× [0, T ]→ Rd and pi : Ωi× [0, T ]→ R satisfying (for 0 < t ≤ T )

ui,t = νi∆ui − ui · ∇ui −∇pi + fi, in Ωi, (2.1.1)

−νin̂i · ∇ui · τ = κ|ui − uj|(ui − uj) · τ, on I, i, j = 1, 2 , i 6= j ,(2.1.2)

ui · n̂i = 0 on I, i = 1, 2 (2.1.3)

∇ · ui = 0, in Ωi (2.1.4)

ui(x, 0) = u0
i (x), in Ωi, (2.1.5)

ui = 0, on Γi = ∂Ωi \ I. (2.1.6)

The vectors n̂i are the unit normals on ∂Ωi, and τ is any vector such that 

τ · ̂ni = 0. The parameters νi represent kinematic viscosities. We include generic 

body forces fi, for generality. This model for fluid velocities, u i, and pressures, 

pi, was studied in [21], initially.

The coupling condition (2.1.2) represents the flux o f m omentum a cross a 

boundary layer region near the fluid i nterface. T he i nterface i s m odelled as 

being flat ( just a  l ine s egment f or d  =  2 ). T he b ulk fl uids sl ide pa st each 

other across the boundary layers. The action of the fluid i n the l ayer r egion is 

modelled as imparting a horizontal frictional drag force that scales quadratically 

with the jump in velocities across the layers. The constant κ > 0 is a friction 

parameter. A discussion of the full equations of the atmosphere and ocean 

and their mathematical analysis is provided in the work of Lions, Temam and 

Wang [37]. Our condition (2.1.2) is analogous to the coupling equations in [37],
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up to scaling constants.

In application, momentum flux is not calculated using simultaneous values of 

the ocean and air velocities, as would be required to satisfy (2.1.2). Fluxes are 

averaged locally in time to remove aliasing effects and computed using explicit 

or semi-implicit methods, so that the ocean and atmosphere codes may be run 

independently; sequentially, or even in parallel. This introduces a consistency 

error in time. A review of numerical coupling strategies is provided in the work 

of Lemarié, Blayo and Debreu [32], where an alternative coupling method is 

proposed and analyzed that is second-order consistent in time, and could be 

extended to higher order. In contrast, the methods in most codes, and in [5, 21, 

30, 46], are only first-order t ime a ccurate. The a pproaches i n [ 5, 3 2] advocate 

iterating between the fluid s olvers until c onvergence. These methods a re flux-

conservative and stable. In particular, the method of [32] applies to a general 

class of flux computations encountered in application codes.

In this chapter, we develop a method that is unconditionally stable and 

second-order time accurate, with exactly two solves per time step; further it-

erations are not required for stability or (formal) consistency. It is desirable to 

minimize iterations as much as possible, since in practice these require the exe-

cution of expensive physics subroutines and additional parallel communication. 

However, further iterations (in the manner of [32]) might still be justified for 

accuracy when fluxes b ecome l arge. We a lso p rovide a  c orrection f or t he use 

of viscosity parameterizations. Our goal is to outline a broad methodology, but 

also provide a specific algorithm with a  full mathematical analysis, and compu-

tational examples to illustrate the theory. The coupling method we focus on is
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not flux-conservative or time-averaged, as one encounters in application codes.

More general flux calculations will be handled in future work.

2.1.1 Improvement of time consistency via spectral de-

ferred correction

The main advantage of the deferred correction approach is that a simple low-

order method can be employed, and the recovered solution is of high-order accu-

racy, due to a sequence of deferred correction equations. The classical deferred

correction approach could be seen, e.g., in [10]. However, in 2000 a modification

of the classical deferred correction approach was introduced by Dutt, Greengard

and Rokhlin, [8]. This allowed the construction of stable and high-order accurate

spectral deferred correction (SDC) methods.

In [15], M.L. Minion discusses these SDC methods in application to an initial

value ODE. For clarity, that discussion is adapted here to explain the applica-

tion to our problem. Assume a method-of-lines approach in each fluid domain;

application of a given discrete method in space for (2.1.1)-(2.1.6) generates a

semi-discrete problem of the form

φ′i(t) = Fi(t, φ1(t), φ2(t)), t ∈ (0, T ] (2.1.7)

φi(0) = φ0
i ,

for i = 1, 2. Here, φi ∈ RNi is a vector of unknowns to approximate, for example, 

all fluid variables a t g rid p oints i n s pace, and F i :  (0, T ] × R N1 × R N2 →  RNi . 

Boundary conditions are already included in the operator Fi. The simultaneous 

flux conditions (2.1.2) are applied on I, which is the reason that both φ1 and φ2
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are required as inputs for Fi. The above formulation does not assume that the

same methods are applied to the equations in both fluid domains.

Let u = (u1, u2) and define [u] ≡ u1 − u2. Our base (low-order) numerical

method is derived by applying a backward-Euler method to approximate (2.1.7),

but with the following semi-implicit modification to the coupling conditions:

− νin̂i · ∇ui(tn+1) · τ ≈ κ|[u](tn)|ui(tn+1) · τ

− κ
√
|[u](tn)|

√
|[u](tn−1)|uj(tn) · τ, on I, i, j = 1, 2 , i 6= j. (2.1.8)

When using a finite element formulation in space, this treatment of the coupling

was shown to be unconditionally stable in [21]. Without the geometric averaging

in (2.1.8), the coupling is known to exhibit less stable behavior for large enough

time steps; see [46]. Since the data uj(tn+1) is not used in the coupling, the

result is a system of fully-discrete equations of the form

φn+1
i − φni

∆t
= F̃i(φ

n+1
i , φni , φ

n−1
i , φnj , φ

n−1
j )

= Fi(t
n+1, φ1(tn+1), φ2(tn+1)) +O(∆t),

(2.1.9)

where φni ≈ φi(t
n), for i = 1, 2 and i 6= j. The variables φn+1

1 and φn+1
2 are thus

“decoupled”, enabling solvers for each to run in parallel. We note that other cou-

pling methods and time discretizations could be represented in an analogous form 

in order to explore extensions to applications. The time step size ∆t represents 

the length of time between coupling of the fluid models. Typically, subcycling of 

the atmosphere is performed due to the faster dynamics compared to the ocean. 

In mathematical terminology, this is known as multirate time stepping, which 

will be addressed in a future paper.
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In the deferred correction approach, the formal accuracy of (2.1.9) is in-

creased to order ∆tk through a series of k − 1 additional correction steps. We

focus on the case of k = 2, so we define one correction step. In the derivation

of the correction equations, one introduces an abstract continuum reconstruc-

tion in time of the data φni , say φ̃i : [0, T ] → RNi , such that φ̃i(tn) = φni for

i = 1, 2 and all n. Corrections are found by approximating the error function

δi(t) ≡ φi(t) − φ̃i(t). One notes first that we may eliminate φi by inserting

φi = φ̃i + δi in (2.1.7) and integrating to yield

φ̃i(t) + δi(t) = φ0
i +

∫ t

0

Fi(τ, φ̃1 + δ1, φ̃2 + δ2) dτ.

The following functions are one measure of error in φ̃i:

Ei(t, φ̃1(t), φ̃2(t)) ≡ φ0
i +

∫ t

0

Fi(τ, φ̃1, φ̃2) dτ − φ̃i(t).

An equation for the error is then

δi(t) =

∫ t

0

{
Fi(τ, φ̃1 + δ1, φ̃2 + δ2)− Fi(τ, φ̃1, φ̃2)

}
dτ + Ei(t, φ̃1(t), φ̃2(t)),

from which one sees that

δi(t
n+1)− δi(tn)

∆t
=

1

∆t

∫ tn+1

tn

{
Fi(τ, φ̃1 + δ1, φ̃2 + δ2)− Fi(τ, φ̃1, φ̃2)

}
dτ

+
Ei(t

n+1, φ̃n+1
1 , φ̃n+1

2 )− Ei(tn, φ̃n1 , φ̃n2 )

∆t
.

(2.1.10)

The Ei-terms satisfy

Ei(t
n+1, φ̃n+1

1 , φ̃n+1
2 )− Ei(tn, φ̃n1 , φ̃n2 )

∆t
=

1

∆t

∫ tn+1

tn
Fi(τ, φ̃1, φ̃2) dτ − φ̃n+1

i − φ̃ni
∆t

.

In order to achieve the desired (second-order) accuracy, the deferred correction 

method requires this latter integral to be evaluated using a second-order quadra-

ture rule. We apply the trapezoidal rule in this chapter.
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A benefit of the deferred correction approach is that the same base discretiza-

tion method may be applied to the remaining terms in (2.1.10), so we apply our

semi-discrete method and approximate Fi by F̃i. The error approximations are

denoted by δni ≈ δi(t
n), which are added to φni to get the corrected approxima-

tions, say

ηni ≡ φni + δni = φi(t
n) +O(∆t2).

After applying the discretization method to (2.1.10) and eliminating the values

δni , the method for the corrected approximation is

ηn+1
i − ηni

∆t
=
{
F̃i(η

n+1
i , ηni , η

n−1
i , ηnj , η

n−1
j )− F̃i(φn+1

i , φni , φ
n−1
i , φnj , φ

n−1
j )

}
+

1

2

{
Fi(t

n+1, φn+1
1 , φn+1

2 ) + Fi(t
n, φn1 , φ

n
2 )
}
.

(2.1.11)

Note that ηn+1
j is not needed to compute ηn+1

i for i 6= j. The data φn+1
i and some

terms in (2.1.11) are already computed in the predictor step. The correction step

is equivalent to performing the predictor step with some extra source terms and

an algebraic change to the approximation of the momentum flux. This property

of the deferred correction approach makes it potentially viable for application

codes, since the existing code structure (the implementation of the predictor

step) could be leveraged quite heavily to implement the corrector step.

2.1.2 Reduction of numerical diffusion effects via defect

correction

The general idea of defect correction and deferred correction methods for solving 

partial differential equations has been known for a long time. For a survey,
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see [4]. Defect correction has been proven computationally attractive in fluid

applications; see, e.g., [14, 9, 13, 1, 2] and references therein. Initial approaches

to using the DDC ideas for AOI were tested in [22, 69], where the method

was successfully applied to the Navier-Stokes equations in one domain ([22])

and convection-diffusion equations in the two-domain setting (with the coupling

condition introduced as a linearized version of rigid lid) in [69]. The general

idea of any defect correction method (DCM) can be formulated as follows (see,

e.g., [20, 4]). Given an operator G̃ to approximate Gx = 0, build an iterative

procedure:

G̃x1 = 0, (2.1.12)

G̃xi+1 = G̃xi −Gxi, i ≥ 1.

The choice of a particular approximation G̃ determines the defect correction

method in use. In this chapter, the “defect” will represent numerical viscosity,

which we represent using the additional (constant) parameters Hi > 0 to obtain

an effective viscosity coefficient of νi + Hi, i = 1, 2. The operator G̃ in (2.1.12)

may be interpreted as using the effective viscosity in the construction of the

operator F̃i. Then G represents a corresponding operator that does not use

numerical viscosity. In the deferred correction step (2.1.11), this translates to

using the viscosity coefficient νi alone in the construction of the operator Fi.

In summary, the combined DDC method is equivalent to using the following
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viscous terms when constructing the operators in (2.1.9) and (2.1.11):

(νi +Hi)∆η
n+1
i ⇔ F̃i(η

n+1
i , ηni , η

n−1
i , ηnj , η

n−1
j )

(νi +Hi)∆φ
n+1
i ⇔ F̃i(φ

n+1
i , φni , φ

n−1
i , φnj , φ

n−1
j )

νi∆φ
j
i ⇔ Fi(t

j, φj1, φ
j
2), j = n, n+ 1.

The DDC method constitutes an easy way to enhance the deferred correction 

algorithm by reducing the impact of artificial v iscosity. This approach preserves 

an important attribute of deferred correction: that the code structure used to 

implement the predictor step may be leveraged to implement the corrector step.

Constant-coecient mixing-length models are used to some extent in codes, 

but a number of more sophisticated parameterizations also exist. For sake of 

brevity, we refer to the atmosphere and ocean components of the Community 

Earth Systems Model (see [29, 42]) and focus on the dissipation of momentum. In 

the atmosphere code, divergent modes in horizontal transport may be controlled 

with different options. Harmonic mixing ∇·α∇ is one; another is to use the more 

scale-selective biharmonic mixing like ∇·ν∇∆, again with constant coefficient in 

lower model layers for all cases. In upper model layers, the constants are allowed 

monotonically-increasing values (up to about four times the bulk value) due to 

the different dynamics near the top of the atmosphere.

Vertical dynamics are time-split from the horizontal, and vertical viscosity is 

handled using implicit, backward-Euler time stepping with a moist turbulence 

scheme. One calculates an eddy-diffusivity parameter K = l · 
√
e · S, with l a 

mixing length, e a diagnostic turbulent kinetic energy, and S a stability param-

eter. The calculations of these quantities are semi-implicit during the iteration 

required for the implicit-Euler step, and dependent on many state variables.

43



The ocean model also provides a range of options for horizontal and vertical 

viscosity. For horizontal dynamics, both harmonic and biharmonic damping 

operators may be used, with spatially-varying coecients. There is an option 

for anisotropic horizontal viscosity, which is represented as the divergence of a 

viscous stress tensor that depends linearly on the velocity gradient. The tensor 

coecients may vary in space and time in some prescribed way, or may be 

computed in terms of the strain-rates, nonlinearly, in the manner of Smagorinsky. 

Vertical viscosity ∂zµ∂z can be implemented either explicitly or implicitly, with 

a constant-coecient option. Another option allows a computation for µ as a 

function of the local Richardson number. Finally, µ can be computed using the 

so-called K-profile p arameterization ( KPP); t his i s c omplex a nd w e r efer the 

reader to [36] for details. The Richardson and KPP methods let µ depend on 

various state variables.

In this chapter, only constant-coecient harmonic diffusion is used to prevent 

the numerical analysis from being too technical and complicated. More sophis-

ticated operators could be explored by changing the definitions of the functions 

Fi, and various time-stepping approaches, including operator-splitting. These 

extensions are left for future investigation.

The remainder of this work is organized as follows: in Section 2.2, nota-

tion and mathematical preliminaries are given and the two-step DDC method 

is introduced (Algorithm 2.2.1) using a finite e lement d iscretization i n space. 

The unconditional stability of the proposed method and convergence results are 

proven in Section 2.3. Computations are performed to illustrate the stability 

and accuracy predictions of the theory in Section 2.4. In our computations we
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also observe that the corrector step provides a significant improvement to accu-

racy at the largest tested scales of time step and artificial viscosity parameters.

This indicates a potential benefit in application, where time step sizes and ar-

tificial viscosity (or diffusion) values are restricted by computational resources.

In Section 2.5 we conclude with a summary and discussion of future work.

2.2 Method Description, Notation and Prelimi-

naries

This section presents the numerical schemes for (2.1.1)-(2.1.6), and provides the

necessary definitions and lemmas for the stability and convergence analysis. For

D ⊂ Ω, the Sobolev space Hk(D) = W k,2(D) is equipped with the usual norm

‖·‖Hk(D), and semi-norm |·|Hk(D), for 1 ≤ k <∞, e.g. Adams [3]. The L2 norm

is denoted by ‖·‖D. For functions v(x, t) defined for almost every t ∈ (0, T ) on a

function space V (D), we define the norms (1 ≤ p ≤ ∞)

‖v‖L∞(0,T ;V ) = ess sup
0<t<T

‖v(·, t)‖V and ‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖pV dt
)1/p

.

The dual space of the Banach space V is denoted V ′.

For i = 1, 2, let

Xi := {vi ∈ H1(Ωi)
d : vi = 0 onΓi, i = 1, 2, vi · n̂i = 0 on I}

be velocity spaces, with associated pressure spaces

Qi = {qi ∈ L2(Ωi)
d :

∫
Ωi

qidΩi = 0}.
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We denote u = (u1, u2), f = (f1, f2) and X := {v = (v1, v2) : vi ∈ Xi, i = 1, 2} .

Similarly, we denote q = (q1, q2) and Q := {q = (q1, q2) : qi ∈ Qi, i = 1, 2}.

A natural subdomain variational formulation for (2.1.1)-(2.1.6), obtained by

multiplying (2.1.1) by vi, integrating and applying the divergence theorem, is to

find (for i, j = 1, 2, i 6= j) ui : [0, T ]→ Xi and pi : [0, T ]→ Qi satisfying

(ui,t, vi)Ωi
+ νi(∇ui,∇vi)Ωi

+ (ui · ∇ui, vi)Ωi
− (pi,∇vi)

+

∫
I

κ(ui − uj)|ui − uj|vids = (fi, vi)Ωi
, ∀ vi ∈ Xi,

(∇ · ui, qi) = 0, ∀ qi ∈ Qi.

(2.2.1)

The natural monolithic variational formulation for (2.1.1)-(2.1.6) is found by

summing (2.2.1) over i, j = 1, 2 and i 6= j and is to find u : [0, T ] → X and

p : [0, T ]→ Q satisfying

(ut,v)+ν(∇u,∇v)+(u·∇u,v)−(p,∇·v)+

∫
I

κ|[u]|[u][v]ds = (f ,v),∀v ∈ X,

(∇ · u,q) = 0, ∀ q ∈ Q (2.2.2)

where [·] denotes the jump of the indicated quantity across the interface I , (·, ·) 

is the L2(Ω1 ∪ Ω2) inner product and ν = νi in Ωi.

Comparing (2.2.2) and (2.2.1) we see that the monolithic problem (2.2.2) has 

a global energy that is exactly conserved, (in the appropriate sense), (set v = u 

and q = p in (2.2.2)). The subdomain sub-problems (2.2.1) do not possess a 

subdomain energy which behaves similarly due to energy transfer back and forth 

across the interface I. It is possible for decoupling strategies to become unstable 

due to the input of non-physical energy as a numerical artifact; see [7, 21].
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Let the domain Ω ⊂ Rd (typically d = 2, 3) have convex, polygonal sub-

domains Ωi for i = 1, 2 with ∂Ω1 ∩ ∂Ω2 = Ω1 ∩ Ω2 = I. Let Γi denote

the portion of ∂Ωi that is not on I, i.e. Γi = ∂Ωi \ I. For i = 1, 2, let

Xi =
{
v ∈ H1(Ωi)

d | v|Γi
= gi

}
, let (·, ·)Ωi

denote the standard L2 inner prod-

uct on Ωi, and let (·, ·)Xi
denote the standard H1 inner product on Ωi. Define

X = X1 × X2 and L2(Ω) = L2(Ω1) × L2(Ω2). For u,v ∈ X with u = [u1, u2]T

and v = [v1, v2]T , define the L2 inner product

(u,v) =
∑
i=1,2

∫
Ωi

ui · vi dx ,

and H1 inner product

(u,v)X =
∑
i=1,2

(∫
Ωi

ui · vi dx+

∫
Ωi

∇ui : ∇vi dx
)
,

and the induced norms ‖v‖ = (v,v)1/2 and ‖v‖X = (v,v)X
1/2, respectively. The

case where gi = 0, i = 1, 2 will be considered here, and can be easily extended

to the case of nonhomogeneous Dirichlet conditions on ∂Ωi \ I.

The inf-sup stable pair of velocity-pressure spaces (Pm, Pm−1) will be chosen

with m ≥ 2.

For functions u, v, w ∈ Xi, i = 1, 2 we define the expilicitly skew-symmetrized

nonlinear form on Ωi by

ci(u; v, w) =
1

2
(u · ∇v, w)Ωi

− 1

2
(u · ∇w, v)Ωi

(2.2.3)

Lemma 2.2.1. (X, ‖·‖X) is a Hilbert space.

Proof. The choice of boundary conditions for X1 and X2 will ensure Xi ⊂ 

H1(Ωi), i = 1, 2 are closed subspaces. Hence by the definitions o f (·, · )X and

‖·‖X , (X, ‖·‖X) is a Hilbert space. �
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The following discrete Gronwall’s lemma and its modified version from [12]

will be utilized in the subsequent analysis.

Lemma 2.2.2. (Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers

µ > 0, be nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ +M for n ≥ 0. (2.2.4)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)−1. Then,

an + k
n∑
µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (2.2.5)

Lemma 2.2.3. (Modified Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for

integers µ > 0, be nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k
n−1∑
µ=0

γµaµ + k
n∑
µ=0

cµ +M for n ≥ 0. (2.2.6)

Then, with σµ ≡ (1− kγµ)−1,

an + k
n∑
µ=0

bµ ≤ exp

(
k
n−1∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (2.2.7)

Lemma 2.2.4. Let v ∈ H1
Ω. Then there exists C = C(Ω) > 0, a finite constant

such that

‖v‖L3(∂Ω) ≤ C(‖v‖1/4

L2(Ω)‖∇v‖
3/4

L2(Ω) + ‖v‖1/6

L2(Ω)‖∇v‖
5/6

L2(Ω)) (2.2.8)

‖v‖L2(∂Ω) ≤ C‖v‖1/2

L2(Ω)‖∇v‖
1/2

L2(Ω) (2.2.9)

‖v‖L4(∂Ω) ≤ C‖∇v‖L2(Ω) (2.2.10)

Proof. See [24], Theorem II.4.1, pg. 63. �
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Lemma 2.2.5. Let u, v, w ∈ H1(Ωi) for i = 1, 2. Then there exists C = C(Ωi) >

0, a finite constant such that

ci(u; v, w) ≤ C‖u‖1/2
Ωi
‖∇u‖1/2

Ωi
‖∇v‖Ωi

‖∇w‖Ωi
(2.2.11)

Proof. The proof can be found in [21]. �

The following constants and assumptions on the problem data (written here

as assumptions on the true solution u) will be used in the proofs below.

Definition 2.2.1. Let i = 1, 2.

Cu := ‖u(x, t)‖L∞(0,T ;L∞(Ω)) , Cui,t := ‖ui,t(x, t)‖L∞(0,T ;L∞(Ω)) , C∇ui,t

:= ‖∇ui,t(x, t)‖L∞(0,T ;L∞(Ω))

Assumption 2.2.1. ∃α > 0, such that α ≤ |[u( #»x , t)]|, ∀ #»x ∈ I, ∀t ∈ (0, T ].

Assumption 2.2.2. Let the true solution u satisfy∣∣∣∣ ∂∂t(|ui(t)|)
∣∣∣∣ ≤ C∆t1/4, for i = 1, 2, 0 < t ≤ ∆t,∀ #»x ∈ I. (2.2.12)

2.2.1 Discrete Formulation

Let Ti be a triangulation of Ωi and Th = T1∪T2. Take Xh
i ⊂ Xi to be conforming

finite element spaces for i = 1, 2, and define Xh = Xh
1 × Xh

2 ⊂ X. It follows

that Xh ⊂ X is a Hilbert space with corresponding inner product and induced

norm. We shall consider Xh
i to be spaces of continuous piecewise polynomials of

degree m ≥ 2.

For tk ∈ [0, T ], ûk, ũk will denote the discrete approximations (defect step 

and correction step, respectively) to u(tk).
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Every DDC method is based on a lower-order accurate method, which still

possesses some desirable characteristics. In our case, it is the geometric averaging-

based data passing scheme from [21].

Let ∆t > 0, fi ∈ L2(Ωi). For each M ∈ N,M ≤ T
∆t
, given uni ∈ Xi,h and

pni ∈ Qi,h, n = 0, 1, 2, · · · ,M − 1, solve on each subdomain (for i, j = 1, 2, i 6= j)

to find un+1
i ∈ Xi,h satisfying

(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

un+1
i |uni − unj |vi ds

− κ
∫
I

unj |uni − unj |1/2|un−1
i − un−1

j |1/2vi ds

+ ci(u
n+1
i ;un+1

i , vi)− (pn+1
i ,∇ · vi) = (fi(t

n+1), vi), ∀vi ∈ Xi,h .

(∇ · un+1
i , qi) = 0, ∀ qi ∈ Qi,h. (2.2.13)

This scheme was extensively studied in [21] and was proven to be uncondition-

ally stable and first order accurate. The variational formulation of the two-step

DDC method is obtained by combining the DDC techniques, as described in

Sections 2.1.1-2.1.2.

Algorithm 2.2.1 (Two Step DDC). Let ∆t > 0, M = T
∆t
, fi ∈ L2(Ωi). Given

ûni , find û
n+1
i ∈ Xh

i , i, j = 1, 2, i 6= j, n = 0, 1, 2, · · · ,M − 1, satisfying

(
ûn+1
i − ûni

∆t
, vi

)
+ (νi +Hi)

(
∇ûn+1

i ,∇vi
)

+ κ

∫
I

|[ûn]|ûn+1
i vids

− κ
∫
I

ûnj |[ûn]|1/2|[ûn−1]|1/2vids

− (p̂n+1
i ,∇ · vi) + ci

(
ûn+1
i ; ûn+1

i , vi
)

=
(
fn+1
i , vi

)
, ∀vi ∈ Xi,h (2.2.14)
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Then, given ûn+1
i and ũni , find ũ

n+1
i ∈ Xh

i satisfying

(
ũn+1
i − ũni

∆t
, vi

)
+ (νi +Hi)

(
∇ũn+1

i ,∇vi
)
− κ

∫
I

ũnj |[ũn]|1/2|[ũn−1]|1/2vids

− (p̃n+1
i ,∇ · vi) + κ

∫
I

|[ũn]|ũn+1
i vids+ ci

(
ũn+1
i ; ũn+1

i , vi
)

=

(
fn+1
i + fni

2
, vi

)
+

∆t(νi +Hi)

2

(
∇(

ûn+1
i − ûni

∆t
),∇vi

)
+
κ

2
∆t

∫
I

|[ûn]|( û
n+1
i − ûni

∆t
)vids

− κ

2
∆t

∫
I

ûn+1
i (
|[ûn+1]| − |[ûn]|

∆t
)vids+Hi

(
∇(

ûn+1
i + ûni

2
),∇vi

)
− κ

∫
I

ûnj |[ûn]|1/2|[ûn−1]|1/2vids+
κ

2

∫
I

|[ûn+1]|ûn+1
j vids

+
κ

2

∫
I

|[ûn]|ûnj vids+
1

2
ci(û

n+1
i ; ûn+1

i , vi)

− 1

2
ci(û

n
i ; ûni , vi)−

(
p̂n+1
i − p̂ni

2
,∇ · vi

)
, ∀vi ∈ Xi,h. (2.2.15)

The structure of the left hand side (and therefore the matrix of the system) is

identical for (2.2.14) and (2.2.15); thus, a simple and computationally cheap ar-

tificial viscosity data-passing approximation is computed twice to achieve higher

accuracy while maintaining the unconditional stability.

2.3 Proof of Stability and Convergence analysis

In this section we prove the unconditional stability of both the defect step and the

correction step approximations. Also we show the accuracy of defect, correction

and time derivative steps.

Lemma 2.3.1. (Stability of Defect approximation) Let ûji ∈ Xi,h satisfy (2.2.14)

for each j ∈
{

0, 1, 2, · · · , T
∆t
− 1
}
, i = 1, 2. Then ∃C > 0 independent of h, ∆t
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such that ûn+1 satisfies:

∥∥ûn+1
∥∥2

+
n∑
j=1

∥∥ûj+1 − ûj
∥∥2

+∆t
n∑
j=1

[
(ν1+H1)‖∇uj+1

1 ‖2
Ω1

+(ν2+H2)‖∇uj+1
2 ‖2

Ω2

]

+κ∆t

∫
I

|[ûn]|(|un+1
1 |2 + |un+1

2 |2)ds +κ∆t
n∑
j=1

∫
I

|uj+1
1 |[ûj]|1/2−u

j
2|[ûj−1]|1/2|2ds

+κ∆t
n∑
j=1

∫
I

|uj+1
2 |[ûj]|1/2−u

j
1|ûj−1|1/2|2ds ≤ ‖u1‖2+κ∆t

∫
I

|[u0]|(|u1
1|2+|u1

2|2)ds

+
n∑
j=1

[
∆t

ν1 +H1

‖f j+1
1 ‖2

−1 +
∆t

ν2 +H2

‖f j+1
2 ‖2

−1

]
. (2.3.1)

Proof. Replace ν1 and ν2 with ν1 + H1 and ν2 + H2, respectively, in the proof of

Lemma 3.1 in [21]. �

The accuracy result for the defect solution u is obtained in a manner very 

similar to Theorem 3.2 in [21].

Theorem 2.3.2. (Accuracy of Defect Solution) Let ûik ∈ Xi,h satisfy (2.2.14) for 

each k ∈ 2, · · · , n ≤ N − 1. Let ν̃ = max{ν1
−1, ν2

−1}, ν̂ = max{ν1, ν2}, and let

Dn+1 = ν̃3(1+κ4En+1+‖∇un+1‖4), where En+1 = maxj=0,1,··· ,n+1{‖uj ‖I4}.Assume 

∆t ≤ n1+1 , and that (u, p) is a strong solution of the coupled NSE system
D

(2.1.1)–(2.1.6) with ut ∈ L2(0, T ; X) and utt ∈ L2(0, T ; L2(Ω)). Then the solu-tion 

ûn+1 of (2.2.14) satisfies:
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‖un+1 − ûn+1‖2 +
∆t

2

[
(ν1 +H1)

n∑
k=1

‖∇(uk+1
1 − ûk+1

1 )‖2
Ω1

+(ν2 +H2)
n∑
k=1

‖∇(uk+1
2 − ûk+1

2 )‖2
Ω2

]
≤ Cexp

{
∆t

j∑
n=1

Dn+1

1−∆tDn+1

}[
‖u1− û1‖2

+ inf
v1∈Vh

‖u1 − v1‖2 + ∆t(ν1 +H1)(‖∇(u1
1 − û1

1)‖2
Ω1

+
1

2
‖∇(u0

1 − û0
1)‖2

Ω1
+ inf

v11∈V1,h
‖∇(u1

1 − v1
1)‖2

Ω1
+

1

2
inf

v01∈V1,h
‖∇(u0

1 − v0
1)‖2

Ω1
)

+ ∆t(ν2 +H2)(‖∇(u1
2 − û1

2)‖2
Ω2

+
1

2
‖∇(u0

2 − û0
2)‖2

Ω2

+ inf
v12∈V2,h

‖∇(u1
2 − v1

2)‖2
Ω2

+
1

2
inf

v02∈V2,h
‖∇(u0

2 − v0
2)‖2

Ω2
)

+ ∆t2‖utt‖2
L2(0,T ;L2(Ω)) + inf

v∈Vh
‖(u− v)t‖2

L2(0,T ;L2(Ω))

+ inf
q∈Qh

‖p− q‖2
L2(0,T ;L2(Ω)) + κ2∆t2‖ut‖2

L2(0,T ;X)

+ T max
k=2,··· ,n+1

( inf
vk∈Vh

‖∇(uk − vk)‖2) +
H2

1

ν1 +H1

C2
∇u1 +

H2
2

ν2 +H2

C2
∇u2

]
(2.3.2)

where C has the following dependence on κ , ν1 and ν2: C = O(max{ν̃, ν̂, (1+ 

∆tκ4)ν̃3, κ2}).

Proof. The proof can be found in [21], replacing ν1 and ν2 with ν1 + H1 and 

ν2 +H2, respectively. The extra term Hi(∇uin+1, ∇vi) is treated by applying the 

Cauchy-Schwarz and Young’s inequalities to obtain the accuracy of O(H1
2 +H2

2) 

. �

Corollary 2.3.1. Let the problem data be smooth enough; let the discrete velocity-

pressure spaces consist of continuous piecewise polynomials of degrees m and 

m − 1, respectively (m ≥ 2). Then there exists a constant C independent of
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h,H,∆t, s.t.

‖un+1 − ûn+1‖2 +
∆t

2

[
(ν1 +H1)

n∑
k=1

‖∇(uk+1
1 − ûk+1

1 )‖2
Ω1

+(ν2 +H2)
n∑
k=1

‖∇(uk+1
2 − ûk+1

2 )‖2
Ω2

]
≤ C(h2m + ∆t2 +H2

1 +H2
2 ). (2.3.3)

In order to show the improved accuracy for the correction approximation,

we will need the following result. In order to keep this chapter from being

prohibitively long, the proof is given in full detail in [23]. Consider eji = uji − û
j
i

, i = 1, 2, j = 0, 1, 2, · · · ,M .

Theorem 2.3.3. (Accuracy of Time Derivative of the Error in the Defect Step)

Let ui(∆t) ∈ H2(Ωi), ∆u ∈ L2(0, T ;L2(Ω)) and utt,ut,u ∈ L2(0, T ;L2(Ω)). Let

min(h,∆t) < C(νi+hi
κ

).

Let also max(h,∆t,H1, H2) ≤ α

4
√
Cf

, where α is the constant introduced in

Assumption 2.2.1, and Cf is the constant from (2.3.3).

Then ∃C > 0 independent of h,Hi, ∆t such that for any n ∈ {0, 1, 2, · · · ,M−

1 = T
∆t
− 1} , the discrete time derivative of the error en+1

i −eni
∆t

satisfies

‖e
n+1 − en

∆t
‖2 + (ν1 +H1)∆t

n∑
j=1

‖∇

(
ej+1

1 − ej1
∆t

)
‖2

+ (ν2 +H2)∆t
n∑
j=1

‖∇

(
ej+1

2 − ej2
∆t

)
‖2

≤ C
(
h2m + (∆t)2 +H2

)
. (2.3.4)
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Proof. Focusing on Ω1 first, write (2.2.1) at time tn+1 to obtain(
un+1

1 − un1
∆t

, v1

)
+ (ν1 +H1)(∇un+1

1 ,∇v1) + c1(un+1
1 ;un+1

1 , v1)

−(pn+1
1 ,∇ · v1) + κ

∫
I

un+1
1 |[un+1]|v1ds− κ

∫
I

un+1
2 |[un+1]|1/2|[un+1]|1/2v1ds

= (fn+1
1 , v1) +H1(∇un+1

1 ,∇v1) +

(
un+1

1 − un1
∆t

− un+1
1,t , v1

)
(2.3.5)

Denote un+1
1 −un1

∆t
− un+1

1,t ≡ ρn+1
1 . Subtract (2.2.14) from (2.3.5) to obtain the

equation for the error, en+1
i = un+1

i − ûn+1
i , i = 1, 2. For any v1 ∈ Xh

1(
en+1

1 − en1
∆t

, v1

)
+ (ν1 +H1)(∇en+1

1 ,∇v1) + c1(un+1
1 ;un+1

1 , v1)

−c1(ûn+1
1 ; ûn+1

1 , v1)

−(pn+1
1 − p̂n+1

1 ,∇ · v1) + κ

∫
I

un+1
1 |[un+1]|v1ds

−κ
∫
I

ûn+1
1 |[ûn]|v1ds− κ

∫
I

un+1
2 |[un+1]|v1ds

+κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2v1ds = H1(∇un+1
1 ,∇v1) + (ρn+1

1 , v1)

(2.3.6)

Decompose ei1 = ui1− ûi1 = (ŭi1− ûi1)− (ŭi1−ui1) = φi1− ηi1, for some ŭi1 ∈ Xh
1 .

Taking v1 =
φn+1
1 −φn1

∆t
∈ X1,h in (2.3.6) leads to(

en+1
1 − en1

∆t
,
φn+1

1 − φn1
∆t

)
+ (ν1 +H1)(∇en+1

1 ,∇φ
n+1
1 − φn1

∆t
)

+c1(un+1
1 ;un+1

1 ,
φn+1

1 − φn1
∆t

)− c1(un+1
1 ;un+1

1 ,
φn+1

1 − φn1
∆t

)

−(pn+1
1 − p̂n+1

1 ,∇ · φ
n+1
1 − φn1

∆t
) + κ

∫
I

un+1
1 |[un+1]|φ

n+1
1 − φn1

∆t
ds

−κ
∫
I

ûn+1
1 |[ûn]|φ

n+1
1 − φn1

∆t
ds− κ

∫
I

un+1
2 |[un+1]|φ

n+1
1 − φn1

∆t
ds

+κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2φ
n+1
1 − φn1

∆t
ds = H1(∇un+1

1 ,∇φ
n+1
1 − φn1

∆t
)

+(ρn+1
1 ,

φn+1
1 − φn1

∆t
)

(2.3.7)
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Also, take v1 =
φn+1
1 −φn1

∆t
in (2.3.6) at the previous time level, and subtract the

resulting equation from (2.3.7). Denoting sn+1
1 ≡ φn+1

1 −φn1
∆t

,we obtain for n ≥ 1

‖sn+1
1 ‖2 − (sn+1

1 , sn1 ) + (ν1 +H1)∆t‖∇sn+1
1 ‖2 + c1(un+1

1 ;un+1
1 , sn+1

1 )

−c1(un1 ;un1 , s
n+1
1 )− c1(ûn+1

1 ; ûn+1
1 , sn+1

1 ) + c1(ûn1 ; ûn1 , s
n+1
1 )

+∆t

(
pn+1

1 − pn1
∆t

− p̂n+1
1 − p̂n1

∆t
,∇ · sn+1

1

)
+ κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds

−κ
∫
I

un1 |[un]|sn+1
1 ds− κ

∫
I

ûn+1
1 |[ûn]|sn+1

1 ds+ κ

∫
I

ûn1 |[ûn−1]|sn+1
1 ds

−κ
∫
I

un+1
2 |[un+1]|sn+1

1 ds+ κ

∫
I

un2 |[un]|sn+1
1 ds

+κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2sn+1
1 ds− κ

∫
I

ûn−1
2 |[ûn−1]|1/2|[ûn−2]|1/2sn+1

1 ds

= H1∆t

(
∇(

un+1
1 − un1

∆t
),∇sn+1

1

)
+ ∆t

(
ρn+1

1 − ρn1
∆t

, sn+1
1

)
+∆t

(
ηn+1

1 − 2ηn1 + ηn−1
1

(∆t)2
, sn+1

1

)
+(ν1 +H1)∆t

(
∇(

ηn+1
1 − ηn1

∆t
),∇sn+1

1

)

(2.3.8)

The nonlinear terms are bounded in a manner, typical for the deferred correc-

tion methods for NSE (see, e.g., [22, 19]). This part of the proof is also available

in [23].

Consider the first 4 interface terms

κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[ûn]|sn+1

1 ds

−(κ

∫
I

un1 |[un]|sn+1
1 ds− κ

∫
I

ûn1 |[ûn−1]|sn+1
1 ds) = F1 − F2.
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Write F1 as

F1 = κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[un+1]|sn+1

1 ds

+κ

∫
I

ûn+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[un]|sn+1

1 ds

+κ

∫
I

ûn+1
1 |[un]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[ûn]|sn+1

1 ds

= κ

∫
I

en+1
1 |[un+1]|sn+1

1 ds+ κ

∫
I

ûn+1
1 (|[un+1]| − |[un]|)sn+1

1 ds

+κ

∫
I

ûn+1
1 |[en]|sn+1

1 ds

= κ

∫
I

en+1
1 |[un+1]|sn+1

1 ds+ κ

∫
I

un+1
1 (|[un+1]| − |[un]|)sn+1

1 ds

−κ
∫
I

en+1
1 (|[un+1]| − |[un]|)sn+1

1 ds+ κ

∫
I

un+1
1 |[en]|sn+1

1 ds

−κ
∫
I

en+1
1 |[en]|sn+1

1 ds.

In order to treat the five terms above, apply the same arguments for F2 and

subtract the result from F1. Let F1 − F2 = F12,1 + F12,2 + F12,3 + F12,4 + F12,5,

defined as follows.

F12,1 = κ

∫
I

(en+1
1 − en1 )|[un+1]|sn+1

1 ds+ κ

∫
I

en1 (|[un+1]| − |[un]|)sn+1
1 ds (2.3.9)

= κ∆t

∫
I

|[un+1]||sn+1
1 |2ds+ κ∆t

∫
I

en1
|[un+1]| − |[un]|

∆t
sn+1

1 ds

+κ∆t

∫
I

ηn+1
1 − ηn1

∆t
|[un+1]|sn+1

1 ds

The term κ
∫
I

∆t|[un+1]||sn+1
1 |2ds is non-negative and it stays in the left hand

side. The Cauchy-Schwarz and Young’s inequalities are used to bound the two 

remaining terms in the right hand side of (2.3.9).
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The term

F12,2 = κ

∫
I

un+1
1 (|[un+1]| − |[un]|)sn+1

1 ds− κ
∫
I

un1 (|[un]| − |[un−1]|)sn+1
1 ds

= κ

∫
I

∆t
un+1

1 − un1
∆t

(|[un+1]| − |[un]|)sn+1
1 ds

+κ

∫
I

un1 (|[un+1]| − 2|[un]|+ |[un−1]|)sn+1
1 ds

is bounded by using Assumption 2.2.1 for the second integral in the right hand

side and then applying the Cauchy-Schwarz and Young’s inequalities.

Similarly, the Cauchy-Schwarz and Young’s inequalities are used to derive

the O(H2 +H∆t+ ∆t2) bounds for F12,3, F12,4, F12,5 - see [23] for details.

The following notation is used to simplify the computations below.

a = |[ûn]|1/2|[ûn−1]|1/2 − 1

2
(|[ûn]|+ |[ûn−1]|),

ap = |[ûn−1]|1/2|[ûn−2]|1/2 − 1

2
(|[ûn−1]|+ |[ûn−2]|).

We now proceed with the bounds on the remainder of the interface terms 

(see [23] for the missing details).
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κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2sn+1
1 ds− κ

∫
I

un+1
2 |[un+1]|sn+1

1 ds

−(κ

∫
I

ûn−1
2 |[ûn−1]|1/2|[ûn−2]|1/2sn+1

1 ds− κ
∫
I

un2 |[un]|sn+1
1 ds) =

κ

∫
I

ûn2 (|[ûn]|1/2|[ûn−1]|1/2 − 1

2
(|[ûn]|+ |[ûn−1]|))sn+1

1 ds

−κ
∫
I

ûn−1
2 (|[ûn−1]|1/2|[ûn−2]|1/2 − 1

2
(|[ûn−1]|+ |[ûn−2]|))sn+1

1 ds

−κ
∫
I

en2 |[un+1]|sn+1
1 ds+ κ

∫
I

en−1
2 |[un]|sn+1

1 ds

+κ

∫
I

ûn2 (
|[ûn]|+ |[ûn−1]|

2
− |[un+1]|)sn+1

1 ds

−κ
∫
I

ûn−1
2 (
|[ûn−1]|+ |[ûn−2]|

2
− |[un]|)sn+1

1 ds

Denote

I1 = κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds

I2 = −κ
∫
I

en2 |[un+1]|sn+1
1 ds+ κ

∫
I

en−1
2 |[un]|sn+1

1 ds

I3 = κ

∫
I

ûn2 (
|[ûn]|+ |[ûn−1]|

2
− |[un+1]|)sn+1

1 ds

−κ
∫
I

ûn−1
2 (
|[ûn−1]|+ |[ûn−2]|

2
− |[un]|)sn+1

1 ds

.

The integrals in I1 are treated as follows.

I1 = κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds

= κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

un2as
n+1
1 ds+ κ

∫
I

un2as
n+1
1 ds

−κ
∫
I

un−1
2 asn+1

1 ds+ κ

∫
I

un−1
2 aps

n+1
1 ds− κ

∫
I

un2aps
n+1
1 ds

+κ

∫
I

un−1
2 asn+1

1 ds− κ
∫
I

ûn−1
2 aps

n+1
1 ds
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Denoting x = |[ûn]|1/2 and y = |[ûn−1]|1/2, we write

|a| = |xy − 1

2
(x2 + y2)| = | − 1

2
(−2xy + x2 + y2)| = | − 1

2
(x− y)2| (2.3.10)

≤ 1

2
|x− y|(x+ y) =

1

2
|x2 − y2| = 1

2
|[ûn − ûn−1]|

Then

|a| ≤ 1

2
|[ûn − ûn−1]| ≤ 1

2
|[en − en−1]− [un − un−1]|

≤ 1

2
|[φn − φn−1]|+ 1

2
|[ηn − ηn−1]|+ ∆t

2

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
≤ 1

2
∆t|sn1 |+

1

2
∆t|sn2 |+

1

2
∆t

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣+
1

2
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
Since a is bounded, we can bound each line in I1:

κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

un2as
n+1
1 ds

≤ Cκ

∫
I

|en2 |∆t

[
|sn1 |+ |sn1 |+

∣∣∣∣∣ηn − ηn−1

∆t

∣∣∣∣∣+

∣∣∣∣∣[un − un−1

∆t
]

∣∣∣∣∣
]
|sn+1

1 |ds

κ

∫
I

un2as
n+1
1 ds− κ

∫
I

un−1
2 asn+1

1 ds ≤ Cκ

∫
I

∆t2

∣∣∣∣∣un2 − un−1
2

∆t

∣∣∣∣∣|a||sn+1
1 |ds

κ

∫
I

un−1
2 aps

n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds ≤ Cκ

∫
I

|en−1
2 |∆t|a||sn+1

1 |ds

Instead of trying to show the second order of smallness of |a − ap|, we will 

show that a (and therefore ap) is small enough. Each of the last two terms in 

I1, is bounded using Assumption 2.2.1, as follows.

60



|κ
∫
I

un2 (|[ûn]|1/2 − |[ûn−1]|1/2)2sn+1
1 ds|

≤ κ

∫
I

(un2/α)|[un]|(|[ûn]|1/2 − |[ûn−1]|1/2)2|sn+1
1 |ds = A

|[un]|(|[ûn]|1/2 − |[ûn−1]|1/2)2 =
1

4

[
4|[un]| − (|[ûn]|1/2 + |[ûn−1]|1/2)2

+ (|[ûn]|1/2 + |[ûn−1]|1/2)2

]
(|[ûn]|1/2 − |[ûn−1]|1/2)2

=
1

4

[
4|[un]| − 2|[ûn]| − 2|[ûn−1]|+ (|[ûn]|1/2 − |[ûn−1]|1/2)2

+ (|[ûn]|1/2 + |[ûn−1]|1/2)2

]
(|[ûn]|1/2 − |[ûn−1]|1/2)2

=
1

4

[
2(|[un]| − |[ûn]|) + 2(|[un]| − |[un−1]|)

+ 2(|[un−1]| − |[ûn−1]|)

]
(|[ûn]|1/2 − |[ûn−1]|1/2)2

+
1

4
(|[ûn]|1/2 − |[ûn−1]|1/2)4 +

1

4
(|[ûn]| − |[ûn−1]|)2

Thus,

A ≤ κ

∫
I

1

α
|un2 ||sn+1

1 |

[(
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣+ |[ηn]|+ |[φn]|+ |[ηn−1]|

+ |[φn−1]|

)[
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣+ ∆t

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣+ ∆t|[sn]|

]

+ ∆t2

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
2

+ ∆t2

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣
2

+ ∆t2|[sn]|2
]
ds. (2.3.11)
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We will now show how to bound some of the terms in the right hand side of

(2.3.11); see [23] for more details.

κ

∫
I

1

α
|un2 ||sn+1

1 |∆t2
∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣
2

ds ≤ C∆t2‖∇sn+1
1 ‖

∥∥∥∥∥
[
∇ηn −∇ηn−1

∆t

]∥∥∥∥∥
2

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C∆t2∆t

∥∥∥∥∥
[
∇ηn −∇ηn−1

∆t

]∥∥∥∥∥
4

(2.3.12)

The next term is bounded in two different ways, depending on the relationship

between the mesh diameter and the time step.

κ

∫
I

1

α
|un2 ||sn+1

1 ||φn1 |∆t|sn1 |ds ≤ C∆t‖φn1‖1/2‖∇φn1‖1/2‖∇sn1‖‖∇sn+1
1 ‖

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 +

C

ν1 +H1

∆t‖φn1‖‖∇φn1‖‖∇sn1‖2

(2.3.13)

≤


ε(ν1 +H1)∆t‖∇sn+1

1 ‖2 + C
ν1+H1

∆th−1(h2 + ∆t2)‖∇sn1‖2 if∆t < h

ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C

ν1+H1
(h+ ∆t)∆t1/2(h+ ∆t)‖∇sn1‖2

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C

ν1+H1
∆t3/2∆t‖∇sn1‖2 ifh < ∆t

Given, that max(h,∆t) ≤ ε(ν1+H1)2

C
, the terms in the right-hand side of (2.3.13)

are small enough to either be subsumed in the left-hand side, or to provide the

necessary accuracy.

The remainder of the terms in (2.3.11) are bounded, using the Cauchy-

Schwarz and Young’s inequalities, similar to (2.3.12)-(2.3.13); see [23].

Add and subtract κ
∫
en2 |[un]|sn+1

1 ds for I2 and

κ
∫
ûn2 ( |[û

n−1]|+|[ûn−2]|
2

− |[un]|)sn+1
1 ds for I3. The goal, as usual, is to get the
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second order of smallness in each of the interface terms; for most of them, apply-

ing the Cauchy-Schwarz and Young’s inequalities is straightforward. The only

problematic term is the one remaining from I3:

κ

∫
I

un2
(
|[ûn]| − |[ûn−1]| − |[un]|+ |[un−1]|

)
sn+1

1 ds (2.3.14)

The second order of smallness for the interface term (2.3.14) is achieved as

follows. Notice that here lies the reason for us restricting the proof to the 2−D

problems; the rest of the proof of this theorem (and all other theorems in this

Chapter) is also valid in 3−D.

|[ûn]| − |[ûn−1]| − |[un]|+ |[un−1]| (2.3.15)

=
(

(|[ûn]|
1
2 − |[un−1]|

1
2 )2 − (|[un]|

1
2 − |[ûn−1]|

1
2 )2
)

+2
(
|[ûn]|

1
2 |[un−1]|

1
2 − |[un]|

1
2 |[ûn−1]|

1
2

)
= G+ 2L.

The second order of smallness ofG follows from an argument given in (2.3.11).

With h+ ∆t ≤ Cα, we have

[ûn] = [un]− [en] => |[ûn]| ≥ |[un]| − |[en]| ≥ α

2
.

Then,

|L| ≤ 1

α
|L|
(
|[ûn]|

1
2 |[un−1]|

1
2 + |[un]|

1
2 |[ûn−1]|

1
2

)
(2.3.16)

≤ 1

α
||[ûn]||[un−1]| − |[un]||[ûn−1]|| = 1

α
|D|.
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At the same time,

|[ûn][un−1]− [un][ûn−1]| = |[un][un−1]− [en][un−1]− [un][un−1] (2.3.17)

+[un][en−1]| ≤ |[en]|∆t|u
n − un−1

∆t
|+ |un||[en]− [en−1]|.

In 2−D: for any i, j = 1, 2, ûi · n = uj · n = 0 on I, therefore ûi||uj on I.

Thus, in 2−D

|[ûn]||[un−1]| = |[ûn][un−1]| and |[un]||[ûn−1]| = |[un][ûn−1]|.

Putting it together, it follows from (2.3.15)-(2.3.17) that

|L| ≤ 1

α
|D| ≤ 1

α
|[ûn]||[un−1]− [un]||[ûn−1]|

≤ 1

α

[
∆t|[en]|| [u

n]− [un−1]

∆t
|+ ∆t|[un]|| [η

n]− [ηn−1]

∆t
|

+ ∆t|[un]||[sn]|

]
. (2.3.18)

The last term in (2.3.18) will be dealt with by using the Gronwall’s lemma, and

the rest of the terms are O(∆t(h+ ∆t)).

Combining all the bounds together leads to

‖sn+1
1 ‖2 − ‖sn1‖2

2
+ (ν1 +H1)∆t‖∇sn+1

1 ‖2 ≤ ε∆t(ν1 +H1)‖∇sn+1
1 ‖2

+
d∆t

4ε(ν1 +H1)
inf
q1∈Qh

1

‖p
n+1
1 − pn1

∆t
− q1‖2 +

∆tH2
1

4ε(ν1 +H1)
C2
∇u1t

+
∆t

4ε(ν1 +H1)
‖ρ

n+1
1 − ρn1

∆t
‖2
−1
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+
∆tCPF

4ε(ν1 +H1)
‖η

n+1
1 − 2ηn1 + ηn−1

1

∆t2
‖2
−1

+
∆t(ν1 +H1)

4ε
‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
C2
∇u1t∆t

4ε(ν1 +H1)
‖∇φn+1

1 ‖2 +
C2
∇u1t∆t

4ε(ν1 +H1)
‖∇ηn+1

1 ‖2

+
C2
∇u1∆t

4ε(ν1 +H1)
‖∇(

ηn+1
1 − ηn1

∆t
)‖2 + ∆t(

C2
∇u1t
2

+
C2
u1

16ε(ν1 +H1)
)‖sn+1

1 ‖2

+
4∆t

ε3(ν1 +H1)3
‖∇φn+1

1 ‖4‖sn+1
1 ‖2 +

4∆t

ε3(ν1 +H1)3
‖∇ηn+1

1 ‖4‖sn+1
1 ‖2

+
∆t

4ε(ν1 +H1)
‖∇ηn+1

1 ‖2‖∇(
ηn+1

1 − ηn1
∆t

)‖2

+
∆t

4ε(ν1 +H1)
‖∇φn+1

1 ‖2‖∇(
ηn+1

1 − ηn1
∆t

)‖2

+ C
κ2

(ν1 +H1)
∆t‖∇en1‖2 +

Cκ2

(ν1 +H1)
∆t‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
Cκ2

(ν1 +H1)
∆t∆t2 + Cκ∆t2‖∇sn+1

1 ‖2

+
Cκ2

(ν1 +H1)
∆t∆t2‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
Cκ2

(ν1 +H1)
∆t∆t2‖∇ηn1 ‖2 +

Cκ2

(ν1 +H1)
∆t‖sn+1

1 ‖2

+ ε∆t(ν1 +H1)‖∇sn1‖2 + ε∆t(ν1 +H1)‖∇sn2‖2

+
Cκ2

(ν1 +H1)
∆t‖sn1‖2 +

Cκ2

(ν1 +H1)
∆t‖sn2‖2

+
Cκ

(ν1 +H1)3
∆t‖∇en1‖4‖sn+1

1 ‖2

+
Cκ

(ν1 +H1)3
∆t‖∇en2‖4‖sn+1

1 ‖2

+
Cκ2

(ν1 +H1)
∆t‖∇en1‖2‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
Cκ2

(ν1 +H1)
∆t‖∇en2‖2‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
Cκ2

(ν1 +H1)
∆t‖∇en1‖2‖[∇(

ηn1 − ηn−1
1

∆t
)]‖2
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+
Cκ2

(ν1 +H1)2
∆t‖en1‖‖∇en1‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en2‖‖∇en2‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en2‖‖∇en2‖‖∇sn2‖2(ν1 +H1) +

C2
∇utκ

2

(ν1 +H1)
∆t‖∇en2‖2

+
Cκ2

(ν1 +H1)2
∆t‖en−1

2 ‖‖∇en−1
2 ‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en−1

2 ‖‖∇en−1
2 ‖‖∇sn2‖2(ν1 +H1) +

C2
∇utκ

2

(ν1 +H1)
∆t‖∇en−1

2 ‖2

+
C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇sn1‖2 +

C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇sn2‖2

+
C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇(

[ηn − ηn−1]

∆t
)‖2 +

C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2C2

∇ut

+ C∆t∆t2‖∇(
[ηn − ηn−1]

∆t
)‖4 +

C

(ν1 +H1)
∆t‖φn1‖‖∇φn1‖‖∇sn1‖2

+
C

ν1 +H1

∆t‖∇φn1‖2 +
C

ε(ν1 +H1)
∆t2∆t‖∇[sn]‖4

+
Cκ

ε(ν1 +H1)
∆t‖∇[sn]‖2‖∇[ηn]‖2

Summing over the time levels, multiplying both sides by 2, letting appropriate

ε and using the modified Gronwall’s lemma gives

‖sn+1
1 ‖2 + (ν1 +H1)∆t

n∑
j=1

‖∇sn+1
1 ‖2 ≤ C

(
‖s2

1‖2 +O(h2m + (∆t)2 +H2)
)

In order to be able to finish the proof using the d iscrete Gronwall’s lemma, 

we will need the following bound

‖si2‖2 + ∆t‖∇si1‖2 + ∆t‖∇si2‖2 ≤ C(h2 + (∆t)2)

Notice that the method requires two initial conditions, so that we are given 

ûi
0 and ûi1, i = 1, 2. Then we can take ũi0 and ũi1 to be the L2 projections of ûi0
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and û1
i , respectively, onto Xh. The details of the calculations are shown in [23];

one should notice that here lies the necessity for the Assumption 2.2.2. In the

end, we obtain

‖s2
1‖2 + (ν1 +H1)∆t‖∇s2

1‖2 ≤ C(∆t2 + h2m−2).

For 2 ≤ m, we get

‖s2
1‖2 + (ν1 +H1)∆t‖∇s2

1‖2 ≤ C(∆t2 + h2).

Terms in domain 2 are treated in exactly the same way. After adding the

inequalities for domains 1 and 2 , use the discrete Gronwall’s lemma and the

triangle inequality, we obtain for eij = uij − ûij (j = 1, 2):

‖e
n+1 − en

∆t
‖2 + (ν1 +H1)∆t

n∑
j=1

‖∇

(
ej+1

1 − ej1
∆t

)
‖2

+(ν2 +H2)∆t
n∑
j=1

‖∇

(
ej+1

2 − ej2
∆t

)
‖2 ≤ C

(
h2 + (∆t)2 +H2

1 +H2
2

)
. �

We now proceed to show the stability and increased accuracy of the correction

step approximation cu. The left hand sides of the equations satisfied by u and

cu are the same, so parts of the proofs of stability and accuracy of the defect

step approximation can be reused here.

Theorem 2.3.4 (Stability of Correction Step of DDC). Let ũn+1 ∈ Xh satisfy

(2.2.15) for each n ∈
{

0, 1, 2, · · · , T
∆t
− 1
}
. Then ∃C > 0 independent of h, ∆t

such that ũn+1 satisfies:
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∥∥ũn+1
1

∥∥2
+
∥∥ũn+1

2

∥∥2
+ (ν1 +H1)∆t

n+1∑
k=1

∥∥∇ũk1∥∥2
+ (ν1 +H2)∆t

n+1∑
k=1

∥∥∇ũk2∥∥2

+ κ∆t

∫
I

∣∣ũn+1
1 |[ũn]|1/2 − ũn2 |[ũn−1]|1/2

∣∣2 ds
+ κ∆t

∫
I

∣∣ũn+1
2 |[ũn]|1/2 − ũn1 |[ũn−1]|1/2

∣∣2 ds
≤ C∆t

ν1 +H1

n∑
j=1

[
‖∇ej+1

1 ‖2 + ‖ej2‖‖∇e
j
2‖‖∇e

j
i‖2

+ ‖∇ej+1
i ‖2 + ‖ej+1

1 ‖‖∇e
j+1
1 ‖‖∇e

j
i‖2 + ‖ej1‖‖∇e

j
1‖‖∇e

j
i‖2 + ‖∇ej2‖2

]

+
∆t

14(ν1 +H1)

n∑
j=1

(‖∇ej2‖2 + ‖ej2‖‖∇e
j
2‖‖∇e

j
i‖2)

+
8∆t(ν1 +H1)

19

n∑
j=1

{
∆t2‖∇(

ej+1
1 − ej1

∆t
)‖2 + ∆t2C2

∇ût)

}

+
8∆t(ν1 +H1)

19

n∑
j=1

[
∆t‖∇ûj+1

1 ‖2∆t‖∇(
ej+1

1 − ej1
∆t

)‖2

+ ∆t‖∇ûj+1
1 ‖2∆tC2

∇û1t + ∆t‖∇ûj1‖2∆t‖∇(
ej+1

1 − ej1
∆t

)‖2

+ ∆t‖∇ûj1‖2∆tC2
∇û1t

]

+
19∆t

(ν1 +H1)

n∑
j=1

[
H2

1‖∇û
j+1
1 ‖2 + ‖f

j+1
1 + f j1

2
‖2
−1

]

+
∆tC∇un+1

ν1 +H1

n∑
j=1

[
1 + κ‖∇ej+1

i ‖2

]

+ ∆tC
n∑
j=1

(‖ej+1
1 ‖1/2‖∇ej+1

1 ‖1/2 + ‖ej+1
2 ‖1/2‖∇ej+1

2 ‖1/2)‖∇ej+1
i ‖2 (2.3.19)

Proof. Choosing v1 = ũn+1
1 in (2.2.15) gives
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(
ũn+1

1 − ũn1
∆t

, ũn+1
1

)
+ (ν1 +H1)

(
∇ũn+1

1 ,∇ũn+1
1

)
− κ

∫
I

ũn2 |[ũn]|1/2|[ũn−1]|1/2ũn+1
1 ds− (p̃n+1

1 ,∇ · ũn+1
1 )

+ κ

∫
I

|[ũn]|ũn+1
1 ũn+1

1 ds+ c1

(
ũn+1

1 ; ũn+1
1 , ũn+1

1

)
=

(
fn+1

1 + fn1
2

, ũn+1
1

)
+

∆t(ν1 +H1)

2

(
∇(

ûn+1
1 − ûn1

∆t
),∇ũn+1

1

)
− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 )

+
κ

2
∆t

∫
I

|[ûn]|( û
n+1
1 − ûn1

∆t
)ũn+1

1 ds− κ

2
∆t

∫
I

ûn+1
1 (
|[ûn+1]| − |[ûn]|

∆t
)ũn+1

1 ds

+H1

(
∇(

ûn+1
1 + ûn1

2
),∇ũn+1

1

)
+

1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )

− κ
∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2ũn+1
1 ds+

κ

2

∫
I

|[ûn+1]|ûn+1
2 ũn+1

1 ds

+
κ

2

∫
I

|[ûn]|ûn2 ũn+1
1 ds−

(
p̂n+1

1 − p̂n1
2

,∇ · ũn+1
1

)
, ∀v1 ∈ X1,h. (2.3.20)

We will be applying the Cauchy-Schwarz inequality and Young’s inequality

to subsume all the û1-terms, leading to the telescoping series in the left hand

side of (2.3.20) - in exactly the same way the stability of the defect step was

proven in [21].

The nonlinear terms in the right hand side are treated as follows.

1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 )

=
1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 )

+
1

2
c1(ûn+1

1 ; ûn1 , ũ
n+1
1 )− 1

2
c1(ûn+1

1 ; ûn1 , ũ
n+1
1 )

=
∆t

2
c1(ûn+1

1 ;
ûn+1

1 − ûn1
∆t

, ũn+1
1 ) +

∆t

2
c1(

ûn+1
1 − ûn1

∆t
; ûn1 , ũ

n+1
1 )

= A+B
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A ≤ ∆t

2
‖∇ûn+1

1 ‖

∥∥∥∥∥∇
(
ûn+1

1 − ûn1
∆t

)∥∥∥∥∥ ‖∇ũn+1
1 ‖

≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

∆t2

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2

∥∥∥∥∥∇
(
ûn+1

1 − ûn1
∆t

)∥∥∥∥∥
2

≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆t

∥∥∥∥∥∇
(
en+1

1 − en1
∆t

)∥∥∥∥∥
2

+
2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆tC2
∇û1t

Similarly,

B ≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

2∆t

16ε(ν1 +H1)
‖∇ûn1‖2∆t

∥∥∥∥∥∇
(
en+1

1 − en1
∆t

)∥∥∥∥∥
2

+
2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆tC2
∇û1t .

Note that ∆t‖∇ûn1‖2 ≤ ∆t
∑n

i=1‖∇ûi1‖2 and the stability bound for the defect

step approximation can be utilized. The two interface terms on the left hand

side of (2.3.20) are treated in the same way as in the stability proof in [21] .

Replacing ûi with ui − ei leads to

κ

2

∫
I

|[ûn+1]|(ûn+1
2 − ûn+1

1 )ũn+1
1 ds

=
κ

2

∫
I

|[ûn+1]|(un+1
2 − un+1

1 )ũn+1
1 ds− κ

2

∫
I

|[ûn+1]|(en+1
2 − en+1

1 )ũn+1
1 ds

Repeating this replacement and applying the Cauchy-Schwarz and Young’s in-
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equalities, we obtain

κ

2

∫
I

|[ûn+1]|(ûn+1
2 − ûn+1

1 )ũn+1
1 ds

≤ κC∇un+1

2(ν1 +H1)
+

3ε(ν1 +H1)

2
‖∇ũn+1

1 ‖2 +
C

(ν1 +H1)
(‖∇en+1

1 ‖2 + ‖∇en+1
2 ‖2)

κC∇un+1

2(ν1 +H1)
(‖∇en+1

1 ‖2 + ‖∇en+1
2 ‖2) +

ε(ν1 +H1)

2
‖∇ũn+1

1 ‖2

+ C(‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2 + ‖en+1
2 ‖1/2‖∇en+1

2 ‖1/2)(‖∇en+1
1 ‖2 + ‖∇en+1

2 ‖2)

Next, we bound the interface term W = κ
∫
I
ûn+1

1 |[ûn]|ũn+1
1 ds.

W = κ

∫
I

un+1
1 |[ûn]|ũn+1

1 ds− κ
∫
I

en+1
1 |[ûn]|ũn+1

1 ds

Since |a− b| ≤ |a|+ |b|, ‖∇[ûn]‖ ≤ ‖∇ûn1‖+ ‖∇ûn2‖. Thus,

W ≤ C∇un+1

(ν1 +H1)
(‖∇ûn1‖2 + ‖∇ûn2‖2) + ε(ν1 +H1)‖∇ũn+1

1 ‖2 (2.3.21)

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en1‖‖∇ũn+1
1 ‖

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en2‖‖∇ũn+1
1 ‖

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇[u]n‖‖∇ũn+1
1 ‖

The last three summands in the right hand side of (2.3.21) are bounded by

C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇[u]n‖‖∇ũn+1
1 ‖

≤ C

(ν1 +H1)
‖∇en+1

1 ‖2 + ε(ν1 +H1)‖∇ũn+1
1 ‖2,

and
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C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en1‖‖∇ũn+1
1 ‖ (2.3.22)

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en2‖‖∇ũn+1
1 ‖

≤ 2ε(ν1 +H1)‖∇ũn+1
1 ‖2

+
C

(ν1 +H1)
‖en+1

1 ‖‖∇en+1
1 ‖(‖∇en1‖2 + ‖∇en2‖2).

In order to bound the last summand in the right hand side of (2.3.22), choose

one of the two options below, depending on the relationship between the mesh

diameter and the time step. Both of these upper bounds are of the required

order of smallness.
C

(ν1+H1)
1
h
(h2 + ∆t2)(‖∇en1‖2 + ‖∇en2‖2) if∆t < h

C
(ν1+H1)

[∆t(‖∇en1‖4 + ‖∇en2‖4) + ∆t‖∇en+1
1 ‖2] ifh < ∆t

The terms κ
2

∫
I
ûn1 |[ûn]|ũn+1

1 ds and κ
∫
I
ûn2 |[ûn]|ũn+1

1 ds are bounded in the

same way as the term W .

Since |[ûn]|1/2|[ûn−1]|1/2 ≤ |[ûn]|+|[ûn−1]|
2

, we get

κ

∫
I

|ûn2 ||[ûn]|1/2|[ûn−1]|1/2|ũn+1
1 |ds

=
κ

2

∫
I

|ûn2 ||[ûn]||ũn+1
1 |ds+

κ

2

∫
I

|ûn2 ||[ûn−1]||ũn+1
1 |ds

= I + II

Both the I and II terms are bounded similar to the bound on W . Terms

in domain 2 are treated in exactly the same way and then the inequalities for

domains 1 and 2 are added together. Finally, choosing ε = 1
38

allow us to subsume
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the ∇ũi-terms in the LHS. Multiplying through by 2∆t and summing over the

time levels gives us the desired result. �

We now have all the intermediate results that are needed for proving the

accuracy of the correction step solution ũ.

Theorem 2.3.5. (Accuracy of Correction Step) Let the assumptions of Theo-

rems 2.3.2 and 2.3.3 be satisfied. Then ∃C > 0 independent of h, ∆t such that

for any n ∈ {0, 1, 2, · · · ,M − 1 = T
∆t
− 1}, the solution ũn+1

i of (2.2.15) satisfies

‖un+1 − ũn+1‖2 + (ν +H1)∆t
n+1∑
j=1

‖∇(uj1 − ũ
j
1)‖2 (2.3.23)

+(ν +H2)∆t
n+1∑
j=1

‖∇(uj2 − ũ
j
2)‖2

≤ C
(
h4 + h2∆t2 +H4

1 +H2
1 ∆t2 +H4

2 +H2
2 ∆t2 + (∆t)4

)
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Proof. First, sum (2.3.5) at time levels tn and tn+1 and divide by 2, to obtain in

Ω1:

(
un+1

1 − un1
∆t

, v1

)
+ (ν1 +H1)(∇(

un+1
1 + un1

2
),∇v1) +

1

2
c1(un+1

1 ;un+1
1 , v1)

+
1

2
c1(un1 ;un1 , v1)−

(
pn+1

1 + pn1
2

,∇ · v1

)
+
κ

2

∫
I

|[un+1]|(un+1
1 − un+1

2 )v1ds

+
κ

2

∫
I

|[un]|(un1 − un2 )v1ds =

(
fn+1

1 + fn1
2

, v1

)
+H1

(
∇
(
un+1

1 + un1
2

)
,∇v1

)
−

(
un+1

1,t + un1,t
2

, v1

)
+

(
un+1

1 − un1
∆t

, v1

)
(2.3.24)

For the O(∆t2)-term introduce the notation un+1
i −uni

∆t
− un+1

i,t +uni,t
2

≡ γn+1
i . Sub-

tract the correction step equation (2.2.15) from (2.3.24). Denoting cen+1
i =

ui(tn+1)− ũn+1
i , i = 1, 2, we obtain
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(
cen+1

1 − cen1
∆t

, v1

)
+ (ν1 +H1)(∇cen+1

1 ,∇v1) + c1(un+1
1 ;un+1

1 , v1)

− 1

2
c1(un+1

1 ;un+1
1 , v1)− c1(ũn+1

1 ; ũn+1
1 , v1) +

1

2
c1(un1 ;un1 , v1)

+
1

2
c1(ûn+1

1 ; ûn+1
1 , v1)− 1

2
c1(ûn1 ; ûn1 , v1)

−
(
pn+1

1 − p̃n+1
1 ,∇ · v1

)
+
κ

2

∫
I

(un+1
1 − un+1

2 )|[un+1]|v1ds

− κ
∫
I

ũn+1
1 |[ũn]|v1ds+ κ

∫
I

ũn2 |[ũn]|1/2|[ũn−1]|1/2v1ds

+
κ

2

∫
I

(un1 − un2 )|[un]|v1ds =
∆t(ν1 +H1)

2

(
∇(

en+1
1 − en1

∆t
),∇v1

)
+
H1∆t

2

(
∇(

un+1
1 − un1

∆t
),∇v1

)
+H1(∇en+1

1 ,∇v1) + (γn+1
1 , v1)

+
∆t

2

(
pn+1

1 − pn1
∆t

− p̂n+1
1 − p̂n1

∆t
,∇ · v1

)
+ κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2v1ds− κ
∫
I

ûn+1
1 |[ûn]|v1ds+

κ

2

∫
I

ûn+1
1 |[ûn+1]|v1ds

+
κ

2

∫
I

ûn1 |[ûn]|v1ds−
κ

2

∫
I

ûn+1
2 |[ûn+1]|v1ds−

κ

2

∫
I

ûn2 |[ûn]|v1ds (2.3.25)

Similarly to the error decomposition in the case of the defect approximation,

decompose cen+1
1 = un+1

1 − ũn+1
1 = φn+1

1 − ηn+1
1 , φ1 ∈ X1,h. We now choose

v1 = φn+1
1 ∈ X1,h in (2.3.25).

Notice that after applying the Cauchy-Schwarz and Young’s inequalities, the 

first five te rms in  the right hand side wi ll provide the expected second order of 

smallness, O(∆t(h + H1 + ∆t)). This follows from the results of Theorems 2.3.2 

and 2.3.3.

We now briefly introduce the approach to treating the twelve interface terms 

of (2.3.25). After the proper pairing, the proof follows similarly to the treatment 

of the interface terms in Theorem 2.3.3.
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Combine −κ
2

∫
I
un+1

1 |[un+1]|φn+1
1 ds and −κ

2

∫
I
un1 |[un]|φn+1

1 ds with half of

κ
∫
I
ũn+1

1 |[ũn]|φn+1
1 ds term for each.

Similarly, pair κ
2

∫
I
un+1

2 |[un+1]|φn+1
1 ds and κ

2

∫
I
un2 |[un]|φn+1

1 ds with half of

−κ
∫
I
ũn2 |[ũn]|1/2|[ũn−1]|1/2φn+1

1 ds term for each.

Also, add and subtract I ≡ κ
∫
I
[un+1]|[un+1]|φn+1

1 ds from the rest of the

interface terms.

Pair up I with −κ
∫
I
ûn+1

1 |[ûn]|φn+1
1 ds and κ

∫
I
ûn2 |[ûn]|1/2|[ûn−1]|1/2φn+1

1 ds.

Combine −I with the remainder of the interface terms. Then follow the proof

of Theorem 2.3.3 to obtain the corresponding bounds.

The nonlinear terms are treated as follows.

c1(un+1
1 ;un+1

1 , φn+1
1 )− c1(ũn+1

1 ; ũn+1
1 , φn+1

1 )− 1

2
c1(un+1

1 ;un+1
1 , φn+1

1 )

+
1

2
c1(ûn+1

1 ; ûn+1
1 , φn+1

1 ) +
1

2
c1(un1 ;un1 , φ

n+1
1 )− 1

2
c1(ûn1 ; ûn1 , φ

n+1
1 )

= c1(un+1
1 ; cen+1

1 , φn+1
1 ) + c1(cen+1

1 ; ũn+1
1 , φn+1

1 )− 1

2
c1(un+1

1 ; en+1
1 , φn+1

1 )

−1

2
c1(en+1

1 ; ûn+1
1 , φn+1

1 ) +
1

2
c1(un1 ; en1 , φ

n+1
1 ) +

1

2
c1(en1 ; ûn1 , φ

n+1
1 )

Adding and subtracting more nonlinear terms and writing cen+1
1 = ηn+1

1 −

φn+1
1 we get

−c1(un+1
1 ;φn+1

1 , φn+1
1 ) + c1(un+1

1 ; ηn+1
1 , φn+1

1 )− c1(φn+1
1 ; ũn+1

1 , φn+1
1 )

+c1(ηn+1
1 ; ũn+1

1 , φn+1
1 ) +

∆t

2
c1(

un+1
1 − un1

∆t
; en1 , φ

n+1
1 )

+
∆t

2
c1(un+1

1 ;
en+1

1 − en1
∆t

, φn+1
1 ) +

∆t

2
c1(en+1

1 ;
un+1

1 − un1
∆t

, φn+1
1 )

−∆t

2
c1(en+1

1 ;
en+1

1 − en1
∆t

, φn+1
1 ) +

∆t

2
c1(

en+1
1 − en1

∆t
; ûn1 , φ

n+1
1 ).
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The first of these terms is identically zero; the third term is treated by using

the sharper bound (2.2.11) and then it is subsumed using the Gronwall’s lemma.

The remainder of the nonlinear terms provide the necessary second order of

smallness. Terms in domain 2 are treated in exactly the same way. Finally,

summing over i = 1, 2 and using the Gronwall’s lemma completes the proof.

�

2.4 Computational Testing

We use a manufactured solution test to illustrate the theoretical findings of this

chapter. An exact solution in the domain Ω = Ω1 ∪ Ω2 with Ω1 = [0, 1] × [0, 1]

and Ω2 = [0, 1]× [0,−1] is given by

u1,1 = aν1e
−tx2(1− x)2(1 + y) + ae−t/2x(1− x)ν1/

√
κa

u1,2 = aν1e
−txy(2 + y)(1− x)(2x− 1) + ae−t/2y(2x− 1)ν1/

√
κa

u2,1 = aν1e
−tx2(1− x)2(1 +

ν1

ν2

y)

u2,2 = aν1e
−txy(1− x)(2x− 1)(2 +

ν1

ν2

y),

where ui,j : Ωi → R, ∀i, j = 1, 2. Parameters are chosen as follows: a = 1, 

ν1 = 0.5, ν2 = 0.1, κ = 1 and the final t ime T  =  1 . The s olution has a  vortex 

region in the lower subdomain.

Pressures in both domains are set to zero (for simplicity only, not a require-

ment), and the right hand side forcing terms, initial and boundary values are 

calculated accordingly. For simplicity, we have used the true solution for two ini-

tial values. Instead, one could use one step of the Geometric Averaging Method 

as a starting method to find the second initial value. In order to compute the
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convergence rates easily, we have chosen the mesh size(h), time step(∆t), and 

both artificial v iscosities (Hi) e qual t o 1 /N , w here N  i s t he n umber o f mesh 

points on per unit line segment. Taylor-Hood elements, piecewise quadratic 

polynomials for the velocity and piecewise linear polynomials for the pressure, 

have been used in these computations.

As seen in Table (2.1) and Table (2.2), the convergence rates of the ar-

tificial v iscosity ( AV) a pproximation ( 2.2.14) i n b oth t he ||.||L2(0,T ; L2(Ω)) and 

||.||L2(0,T ;H1(Ω)) norms are 1, whereas those of the correction step (CS) approx-

imation (2.2.15) in both norms are 2. These results are consistent with the 

theory developed in this chapter. We note that the correct convergence rates 

require not just the improvement of the time accuracy, but also the reduction 

of artificial viscosity effects on the s olution. In terms of qualitative assessment, 

consider Figure (2.1) and Figure (2.2). It can be clearly seen that the computed 

solution successfully captures all the structures of the true solution, including 

the vortex in the second domain. Beyond the theory, we note that the correction 

step improves the accuracy of the computed solution even for large values of the 

time step, mesh and viscosity values outside of the asymptotic regime. This is 

important for atmosphere-ocean applications, since discretization parameters for 

these simulations are not expected to lie in the asymptotic regime.

2.5 Summary and future work

A method was proposed to reduce time-consistency errors and artificial viscosity 

effects in computational simulations for a model of two coupled fluids. Our
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N ||u− û ||L2(0,T ;L2(Ω)) rate ||u− û ||L2(0,T ;H1(Ω)) rate

2 1.4798e-002 - 7.3869e-002 -

4 9.4941e-003 0.64 6.8654e-002 0.10

8 5.5097e-003 0.78 4.9680e-002 0.46

16 2.9407e-003 0.90 2.9957e-002 0.72

32 1.5262e-003 0.94 1.5786e-002 0.92

64 7.9193e-004 0.94 7.7512e-003 1.02

128 4.0867e-004 0.95 3.7515e-003 1.04

Table 2.1: AV approximation û.

N ||u− ũ ||L2(0,T ;L2(Ω)) rate ||u− ũ ||L2(0,T ;H1(Ω)) rate

2 1.0087e-002 - 6.0656e-002 -

4 5.1671e-003 0.96 4.2536e-002 0.51

8 2.3203e-003 1.15 2.3754e-002 0.84

16 8.7794e-004 1.40 1.0149e-002 1.22

32 2.8166e-004 1.64 3.3514e-003 1.60

64 8.1197e-005 1.79 9.2868e-004 1.85

128 2.2172e-005 1.87 2.3908e-004 1.96

Table 2.2: CS approximation ũ.

model was chosen to roughly represent the numerical viscosity (or diffusion) 

and flux coupling techniques used in many atmosphere-ocean interaction (AOI)
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.

Figure 2.1: True Solution Figure 2.2: Computed Solution

simulations. The point of the simplified model has been to illustrate the general 

algorithmic approach, but also to provide a rigorous numerical analysis and 

testing to illustrate the theory, which would have been too cumbersome for the 

full physics and numerics of an application code. We believe that our analysis 

helps to begin filling in gaps in the literature; few examples of numerical analysis 

exist that seek to address the AOI coupling problem (see [30, 21, 32, 38, 46]).

The formal, global consistency in time was improved using deferred correc-

tion. The deferred correction approach allowed the lower-order numerics to be
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employed for a predictor-type calculation, which was then modified t o create 

a corrector step with a formal increase in the order of accuracy in time. This 

improvement applied to the global time stepping method, but in particular the 

coupling consistency was lifted to second order, which would typically be of first 

order in practice. Defect correction was applied to mitigate artificial viscosity 

effects, which we demonstrated could be implemented as a slight modification 

to the deferred correction step. We subsequently proved the unconditional sta-

bility and optimal convergence of the method, as well as the formal reduction of 

numerical viscosity effects.

A numerical example was provided to illustrate the theory. A manufactured 

solution was derived for the coupled fluid model, s o t hat e rrors c ould b e com-

puted explicitly as time step and artificial v iscosity parameters were v aried. In 

this way, the predictions of the theory were demonstrated clearly. That is, the 

second-order convergence rate was verified a s t he t ime s tep was d ecreased, as 

well as the improved accuracy using defect correction to reduce the artificial vis-

cosity effects. Beyond the theory, a significant improvement was observed for the 

largest values of time step and artificial viscosity p arameters. This indicates the 

possibility of a benefit i n a pplication, where s olutions a re marginally resolved 

due to turbulent behavior and a wide range of scales.

In this chapter we have provided an initial step toward numerical improve-

ments for AOI simulations, but some important issues remain to be considered 

in future work. One is the extension of the methodology to account for the 

existence of additional physics, more complex geometry and different numerical 

methods encountered in application codes. We have explained in Sections 2.1.1-
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2.1.2 that the combined DDC approach may, in principle, be applied to a broad 

class of numerical methods. In this regard, the most important extension will be 

to consider smaller time steps in the “atmosphere” fluid regime and incorporate 

a more general class of flux c oupling methods, s uch a s i n [ 33, 32]. This exten-

sion will illuminate another benefit of the DDC a pproach: improvement of time 

consistency within each fluid r egime i ndividually, n ot j ust f or t he c oupling (as 

has been emphasized in this chapter).

Another issue for future study is that new algorithmic approaches for AOI 

are not practical unless they can be integrated into existing code structures. 

We believe the implementation would be reasonable, since one may leverage the 

existing code structure used for the base (predictor) step to a considerable degree 

for the corrector calculation. Roughly speaking, this is because the corrector 

step is equivalent to a second predictor step with additional source terms and 

an algebraic change in the flux calculations.

Finally, code eciency must be addressed, but this cannot be determined 

until testing is performed using an application-level code. We have hope that 

the DDC approach would lead to an improvement in eciency because of the 

significant improvement in accuracy observed in our test using parameter choices 

outside of the regime of asymptotic convergence. The cost of the DDC method is 

around 3 to 4 times that of the base method; to achieve the same accuracy with 

the base method alone (by decreasing the time step size, for example) may cost 

much more than a factor of 3 to 4. Furthermore, reducing artificial viscosity 

effects in current, coupled AOI simulations is not as simple as just reducing 

parameter values. The defect correction approach may provide an efficient way
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to reduce these effects.
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Chapter 3

Note On the Usage of Grad-Div

Stabilization for the

Penalty-Projection Algorithm in

Magnetohydrodynamics

3.1 Introduction

Magnetically conducting fluids are ubiquitous i n r eal-life applications f rom dif-

ferent areas, including astrophysics, geophysics, engineering, cooling of nuclear 

reactors, sea water propulsion, etc. When the fluid i s e lectrically conducting, 

the flow i s affected by Lorentz f orces, l eading t o a  coupled system o f magneto-

hydrodynamics (MHD) equations for the velocity and magnetic fields. A  large 

body of literature is dedicated to MHD flows, both from the experimental and
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theoretical perspective - see, e.g., [57, 58, 59, 62, 61, 60].

The diculties in resolving MHD flows a re w ell d ocumented: w hen com-

mon discretization techniques are used, the resulting linear systems often re-

quire prohibitively small time steps, otherwise demonstrating the unstable and 

non-physical behavior of the solutions. Similar diculties exist for modeling 

non-conducting fluid flows via the Navier-Stokes eq uations. The family of  split-

ting methods is one of the known techniques for resolving incompressible fluid 

flows in an ecient way. These methods originated in the sixties from the work 

of Chorin [50] and Temam [63], followed by Kim and Moin [54] and Brown et 

al. [49]. This approach is known as fractional step method, penalty-projection 

or pressure-correction method. The latter name was introduced to separate this 

idea from the alternative, known as the velocity-correction approach; see [47], 

page 323, for a short survey of these approaches.

Based on the idea of applying the penalty-projection technique to MHD flows, 

a method was presented in [48] (see Algorithm 3.2.1 below), that eciently 

resolves MHD flows. The method i s based on t he s table d ecoupling procedure 

of [51], and it also utilizes the penalty-projection method (see, e.g., [52] for 

some recent results for penalty-projection methods for incompressible flows). 

The Scott-Vogelius finite element pair (see, e.g., [53]) and grad-div stabilization 

technique (see, e.g., [55]) are used for stabilization in the fully discrete version 

of the model. The method is proven to be first o rder a ccurate i n t he grad-div 

parameter γ: as this parameter increases (while the mesh diameter h and the 

time step ∆t are fixed), the solution converges to a  solution given by the IMEX 

method of [51]. In turn, that solution is within O(h2+∆t) from the true solution,
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when the (P2, P
disc
1 ) Scott-Vogelius pair is used.

However, if one tries to apply the penalty-projection method of [48] with

the routinely used Taylor-Hood finite element spaces, the method fails. In this

chapter we demonstrate numerically this blow-up of solutions, and we propose

a simple modification of the method, which allows for the usage of Taylor-Hood

finite elements and results in an optimally convergent approximation.

The formulation of MHD in Elsasser variables, [56], seeks to find v, w, q, r,

that satisfy

vt + w · ∇v − (B̃0 · ∇)v +∇q − ν + νm
2

∆v − ν − νm
2

∆w = f1, (3.1.1)

∇ · v = 0, (3.1.2)

wt + v · ∇w + (B̃0 · ∇)w +∇r − ν + νm
2

∆w − ν − νm
2

∆v = f2, (3.1.3)

∇ · w = 0. (3.1.4)

In order to consider a fully discrete, decoupled penalty-projection method 

for solving (3.1.1), some notation will be introduced in the next section. The 

method of [48] will then be considered on the much more common Taylor-Hood 

pair of finite element spaces (one for v, w  and one for q, r), and a  treatment will 

be provided for the demonstrated blow-up of the solutions. Section 3.3 gives the 

results of numerical tests, which show that the modified version o f the method 

converges, where the existing method has failed.
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3.2 Algorithms

The following spaces are used for the penalty-projection approach to MHD in

the spatial domain Ω ⊂ Rd, d = 2, 3.

X := H1
0 (Ω), Q := L2

0(Ω), Y := {v ∈ H1(Ω), v · n = 0 on ∂Ω}.

Notice that the additional velocity space Y , needed for the splitting, differs from

the space X only in the boundary conditions: for the functions in Y these are

only imposed in the normal direction.

Denote the usual L2 norm and inner product by ‖·‖ and (·, ·). Introduce also

the space of divergence-free functions V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

The finite element approximation begins by selecting conforming finite ele-

ment spaces Xh ⊂ X,Qh ⊂ Q satisfying the usual discrete inf-sup condition. In

this chapter, we use the Taylor-Hood velocity-pressure pair (P2, P1) of piecewise

polynomials.

Denote the space of discretely divergence free functions V h by:

V h := {vh ∈ Xh : (qh,∇ · vh) = 0, ∀ qh ∈ Qh}.

Note, that, contrary to the case of Scott-Vogelius finite elements, for the Taylor-

Hood choice of Xh, Qh the functions in V h are not necessarily divergence-free

pointwise.

Define the skew symmetric trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v), (3.2.1)
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Finally, define Y h = (P2)d ∩Y - additional discrete velocity space, where the

boundary condition is only enforced in the normal direction. The scheme for

solving (3.1.1) reads

Algorithm 3.2.1. (Grad-div stabilized penalty-projection scheme of [48])

Let f1, f2 ∈ L∞(0, T ;H−1(Ω)) , stabilization parameter γ > 0 and time step

∆t > 0 and end time T > 0 be given. Set M = T/∆t and start with ṽ0 = v(0),

w̃0 = w(0) ∈ H2 ∪ V . For all n = 0, 1, ...,M − 1, compute v̂n+1
h , ŵn+1

h , p̂n+1
h , q̂n+1

h

via:

Step 1: Find v̂n+1
h ∈ Xh satisfying for all χh ∈ Xh,(

v̂n+1
h − ṽnh

∆t
, χh

)
+ b∗(ŵnh , v̂

n+1
h , χh)− (B̃0(tn+1) · ∇v̂n+1

h , χh)

+
ν + νm

2
(∇v̂n+1

h ,∇χh) +
ν − νm

2
(∇ŵnh ,∇χh)

+γ(∇ · v̂n+1
h ,∇ · χh) = (f1(tn+1), χh).

(3.2.2)

Step 2: Find (ṽn+1
h , q̂n+1

h ) ∈ (Yh ×Qh) satisfying for all (vh, qh) ∈ (Yh ×Qh),

(
ṽn+1
h − v̂n+1

h

∆t
, vh

)
− (q̂n+1

h ,∇ · vh) = 0,

(∇ · ṽn+1
h , qh) = 0.

(3.2.3)

Step 3: Compute w̃n+1
h ∈ Xh for all lh ∈ Xh,

(
ŵn+1
h − w̃nh

∆t
, lh

)
+ b∗(v̂nh , ŵ

n+1
h , lh) + (B̃0(tn+1) · ∇ŵn+1

h , lh)

+
ν + νm

2
(∇ŵn+1

h ,∇lh) +
ν − νm

2
(∇v̂nh ,∇lh)

+γ(∇ · ŵn+1
h ,∇ · lh) = (f2(tn+1), lh).

(3.2.4)

Step 4: Find (w̃n+1
h , λ̂n+1

h ) ∈ (Yh×Qh) satisfying for all (sh, rh) ∈ (Yh×Qh),
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(
w̃n+1
h − ŵn+1

h

∆t
, sh

)
− (λ̂n+1

h ,∇ · sh) = 0,

(∇ · w̃n+1
h , rh) = 0.

(3.2.5)

This penalty-projection method was investigated with the use of Scott-Vogelius

finite element spaces, and it was shown to converge to the "conservative" solu-

tion of [51] as the stabilization parameter γ is increased (while h and ∆t are

kept fixed). The question of convergence to a known true solution of (3.1.1) is

still open, when γ stays fixed and the mesh size and time step are being refined.

Moreover, the main advantage of penalty-projection is the improved compu-

tational efficiency, and yet this scheme has not been investigated in a setting

where the Scott-Vogelius elements are replaced with a less sophisticated (and

less computationally challenging) choice. To that end, we employ the Taylor-

Hood finite elements and we show that the method fails, as h and ∆t are refined

(see next section). We propose the following simple change, adding the grad-div

stabilization to steps 2 and 4 of the algorithm.

Algorithm 3.2.2. (Penalty-projection with grad-div stabilization in pressure

equation)

Let f1, f2 ∈ L∞(0, T ;H−1(Ω)) , stabilization parameter γ > 0 and time step

∆t > 0 and end time T > 0 be given. Set M = T/∆t and start with ṽ0 = v(0),

w̃0 = w(0) ∈ H2 ∪ V . For all n = 0, 1, ...,M − 1, compute v̂n+1
h , ŵn+1

h , p̂n+1
h , q̂n+1

h

via:
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Step 1: Find v̂n+1
h ∈ Xh satisfying for all χh ∈ Xh,(

v̂n+1
h − ṽnh

∆t
, χh

)
+ b∗(ŵnh , v̂

n+1
h , χh)− (B̃0(tn+1) · ∇v̂n+1

h , χh)

+
ν + νm

2
(∇v̂n+1

h ,∇χh) +
ν − νm

2
(∇ŵnh ,∇χh)

+γ(∇ · v̂n+1
h ,∇ · χh) = (f1(tn+1), χh).

(3.2.6)

Step 2: Find (ṽn+1
h , q̂n+1

h ) ∈ (Yh ×Qh) satisfying for all (vh, qh) ∈ (Yh ×Qh),

(
ṽn+1
h − v̂n+1

h

∆t
, vh

)
− (q̂n+1

h ,∇ · vh) + γ(∇ · ṽn+1
h ,∇ · vh) = 0,

(∇ · ṽn+1
h , qh) = 0.

(3.2.7)

Step 3: Compute w̃n+1
h ∈ Xh for all lh ∈ Xh,

(
ŵn+1
h − w̃nh

∆t
, lh

)
+ b∗(v̂nh , ŵ

n+1
h , lh) + (B̃0(tn+1) · ∇ŵn+1

h , lh)

+
ν + νm

2
(∇ŵn+1

h ,∇lh) +
ν − νm

2
(∇v̂nh ,∇lh)

+γ(∇ · ŵn+1
h ,∇ · lh) = (f2(tn+1), lh).

(3.2.8)

Step 4: Find (w̃n+1
h , λ̂n+1

h ) ∈ (Yh×Qh) satisfying for all (sh, rh) ∈ (Yh×Qh),

(
w̃n+1
h − ŵn+1

h

∆t
, sh

)
− (λ̂n+1

h ,∇ · sh) + γ(∇ · w̃n+1
h ,∇ · sh) = 0,

(∇ · w̃n+1
h , rh) = 0.

(3.2.9)

We will show in Section 3.3 that this new algorithm converges to the true 

solution at the optimal rate.
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3.3 Computational Testing

In order to show the difference in Algorithms 3.2.1 and 3.2.2, we consider the

test problem from Section 5.1 of [48]. Choose the final time T = 1, introduce

ν = 1, νm = 0.5 (to avoid unnecessary cancellation of terms), take γ = 105 and

let ∆t = h = 1
N
. Tables 3.3 and 3.4 show that the refinement of both the mesh

and the time step eventually leads to a non-physical blow-up of the solution.

Taylor-Hood pair of finite element spaces (piecewise quadratic polynomials for

velocity and piecewise linears for the pressure) is used, via the FreeFEM software,

in all the numerical tests of this chapter.

Applying Algorithm 3.2.2 to the same test problem leads to a first order

accurate approximation of v, w - see Tables 3.1 and 3.2. This agrees with the

theoretical findings of [48], as the first order accuracy in time is expected.

N || v − vh ||L2(0,T ;L2(Ω)) rate || v − vh ||L2(0,T ;H1(Ω)) rate

2 0.0017261 - 0.0240934 -

4 0.00163595 0.077 0.0220761 0.12

8 0.000819784 0.99 0.00759246 1.53

16 0.000423041 0.95 0.00361052 1.07

32 0.000214447 0.98 0.00172608 1.06

64 0.000107897 0.99 0.000858492 1.00

Table 3.1: Algorithm 3.2.2. Accuracy of vh. ∆t = h = 1
N
.

Finally, in order to prove the second order spatial accuracy of the solution,
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N ||w − wh ||L2(0,T ;L2(Ω)) rate ||w − wh ||L2(0,T ;H1(Ω)) rate

2 0.00266961 - 0.0372761 -

4 0.00170584 0.64 0.0271122 0.45

8 0.000828133 1.04 0.00832559 1.70

16 0.000422762 0.97 0.00373864 1.15

32 0.000214283 0.98 0.00173525 1.10

64 0.000107804 0.99 0.000848726 1.03

Table 3.2: Algorithm 3.2.2. Accuracy of wh. ∆t = h = 1
N
.

obtained by Algorithm 3.2.2, we take ∆t = h2 in the test problem considered 

above. Tables 3.5 and 3.6 verify the claimed (and optimal) quadratic convergence 

rate.

3.4 Summary and future work

A method was presented in [48], that aims at approximating the MHD flows in 

an efficient way; the two key ingredients were the stable decoupling of the MHD 

system and the usage of the penalty-projection technique. The method showed 

good results when the Scott-Vogelius finite e lements were u sed. H owever, we 

showed in this chapter, that if one tries to use the more common (and, most im-

portantly, less computationally challenging) pair of Taylor-Hood finite elements 

- the method of [48] fails. We demonstrated numerically that the solution fails, 

and we showed a simple and effective way of resolving the issue. By adding
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two more grad-div stabilization terms, we obtained a method that resolves the

MHD flows in a more efficient way: it combines the penalty-projection technique

with the computationally attractive choice of Taylor-Hood finite element spaces.

We showed numerically that this modified approach is stable and accurate, with

optimal convergence rate.

N || v − vh ||L2(0,T ;L2(Ω)) rate || v − vh ||L2(0,T ;H1(Ω)) rate

2 0.0017261 - 0.0240934 -

4 0.00163595 0.077 0.0220761 0.12

8 0.000819793 0.99 0.00759253 1.53

16 0.000423053 0.95 0.00361062 1.07

32 986444 –31.11 1.04093e+0 7 –31.42

64 3.29793e+11 – 18.35 3.03772e+13 – 21.47

Table 3.3: Algorithm 3.2.1. Accuracy of vh. ∆t = h = 1
N
.
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N ||w − wh ||L2(0,T ;L2(Ω)) rate ||w − wh ||L2(0,T ;H1(Ω)) rate

2 0.00266958 - 0.0372761 -

4 0.00170589 0.64 0.0271129 0.45

8 0.000828166 1.04 0.00832582 1.70

16 0.000422804 0.96 0.00373889 1.15

32 6.47278e+11 --50.44 5.50982e+13 --53.71

64 4.28696e+14 –9.37 6.15723e+16 --10.12

Table 3.4: Algorithm 3.2.1. Accuracy of wh. ∆t = h = 1
N
.

N || v − vh ||L2(0,T ;L2(Ω)) rate || v − vh ||L2(0,T ;H1(Ω)) rate

2 0.00157575 - 0.0219946 -

4 0.00107462 0.55 0.0187298 0.23

8 0.000139787 2.94 0.00393326 2.25

16 3.1187e-05 2.16 0.00131798 1.57

32 7.02949e-06 2.14 0.000289867 2.18

Table 3.5: Algorithm 3.2.2. Accuracy of vh. ∆t = h2 = 1
N2 .
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N ||w − wh ||L2(0,T ;L2(Ω)) rate ||w − wh ||L2(0,T ;H1(Ω)) rate

2 0.00251314 - 0.0350914 -

4 0.00120641 1.05 0.024198 0.53

8 0.000164786 2.87 0.00528656 2.19

16 3.35303e-05 2.29 0.00175146 1.59

32 7.44182e-06 2.17 0.000462205 1.92

Table 3.6: Algorithm 3.2.2. Accuracy of wh. ∆t = h2 = 1
N2 .
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Chapter 4

A Second order Decoupled Penalty

Projection Method based on

Deferred Correction for MHD in

Elsässer variable

4.1 Introduction

We consider an efficient numerical approximation for the magnetohydrodynamic

(MHD) system, given in a convex domain Ω× (0, T ] by

ut + (u · ∇)u− s(B · ∇)B − ν∆u+∇p = f, (4.1.1)

∇ · u = 0, (4.1.2)

Bt + (u · ∇)B − (B · ∇)u− νm∆B +∇λ = ∇×g, (4.1.3)

∇ ·B = 0, (4.1.4)
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with appropriate initial and boundary conditions. Here u is the velocity of fluid,

p is the modified pressure, B is the magnetic field, λ is a Lagrange multiplier

(dummy variable) corresponding to the solenoidal constraint on the magnetic

field, f and ∇×g are body forces, s is the coupling number, ν is the kinematic

viscosity and νm is the magnetic diffusivity.

It is known that solving MHD systems arising from various important applica-

tions, including geophysics [76, 80], process metallurgy, astrophysics [64, 68, 71],

can be very challenging. Significant progress has been made in recent years (see

e.g. [67, 77, 81] and references therein). However, due to the coupling between

the velocity and the magnetic field, solving the fully coupled system can be very

difficult for many problems. Because of this reason, to obtain unconditionally

stable uncoupled algorithms, an excellent idea was pioneered by [51]. It is shown

that the stable algorithm can be achieved by writing the system (4.1.1)-(4.1.2)

in Elsässer variables [56]. The Elsässer fields are defined by v =: u +
√
sB,

w =: u −
√
sB, f1 =: f +

√
s(∇× g), f2 =: f −

√
s(∇× g), q =: p +

√
sλ and

r =: p−
√
sλ. These decompositions modify (4.1.1)-(4.1.2) to

vt + w · ∇v − (B̃0 · ∇)v +∇q − ν + νm
2

∆v − ν − νm
2

∆w = f1, (4.1.5)

∇ · v = 0, (4.1.6)

wt + v · ∇w + (B̃0 · ∇)w +∇λ− ν + νm
2

∆w − ν − νm
2

∆v = f2, (4.1.7)

∇ · w = 0. (4.1.8)

The main goal of this chapter consists in proposing and studying numeri-

cally an efficient second order accurate fully uncoupled approximation of (4.1.5)-

(4.1.8) based on the decoupled penalty-projection method. A numerical anal-
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ysis of the penalty-projection method with the DC method will be presented 

to achieve second order accuracy. The numerical studies include the Taylor-

Hood finite e lement pair augmented with the grad-div stabilization term in the 

algorithm to improve mass conservation in solutions.

The time discretization we used here is the DC principle used for solving 

ODEs and PDEs by using the method of lines. The main advantage of the 

DC method is that high-order approximations to the solution of the differential 

equations can be constructed based on a simple low-order method by a process 

of iterated corrections.

First proposal of the classical DC method dates back to [10] and of spectral 

DC methods to [8]. In [17], a semi implicit spectral DC method was presented 

for ODEs which uses the Picard integral equation and discretization of it. This 

enables to use the non-stiff terms explicitly and the stiff terms implicitly. Some 

related works to the different types of DC method include [22] and [69] where 

the DDC is studied for Navier Stokes equations and two-domain convection-

dominated convection-diffusion problem, respectively. We refer to reader for the 

survey article [82] for other approaches.

There are a number of papers analyzing the MHD system in Elsässer vari-

ables. Theoretical analyses of (4.1.5)-(4.1.8) for the first a nd s econd order 

schemes in a semi discrete setting, originally were performed in [78] and [51], 

respectively. In [51], unconditionally stable IMEX type uncoupling discretiza-

tion is introduced and high order accurate method augmented with the DC 

method of [51] is studied in a semi discrete setting in the work of [83]. The fully 

discrete unconditionally stable scheme of MHD system in Elsässer variables has
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been considered in [74] with appropriate choices ν and νm.

On the other hand, it was observed that the penalty-projection method yields 

more efficient solution with very little sacrifice o f a ccuracy ( see e .g. [ 52, 55]), 

subsequently, [48] suggests a grad-div stabilized penalty projection scheme for 

(4.1.5)-(4.1.8) for extra efficiency and it was shown that if one uses the Scott-

Vogelius finite e lement pair ( see, e .g., [53]), the equivalency of the penalty pro-

jection scheme and the fully coupled solutions can be obtained as a first order 

for large penalty parameter, γ. Additionally, it was observed that Taylor-Hood 

finite e lements s uffering f rom p oor mass c onservation a re a  p opular c hoice on 

a much wider set of problems, [72, 79]. To avoid poor mass conservation on 

them, the grad-div stabilization is studied in [66]. In addition, as it was re-

cently presented in [70], with the modification of the grad-div penalty projection 

algorithm of [48] for (4.1.5)-(4.1.8), the Taylor-Hood pair with grad-div stabiliza-

tion leads to a first order accuracy while the existing method would fail on the 

Taylor-Hood element. These two observations are some of the motivations of the 

current chapter. Thus, in this study, we use the Taylor-Hood finite element pair 

with grad-div stabilized penalty projection scheme for (4.1.5)-(4.1.8) to improve 

accuracy and mass conservation properties.

The rest of the chapter is organized as follows. In order to consider a fully dis-

crete, decoupled penalty-projection method and DC method for solving (4.1.5)-

(4.1.8), some notation and algorithms will be presented in Section 2. The method 

of [48] will then be considered for the Taylor-Hood pair of finite element spaces. 

After the introduction of the DC algorithm used for the second order accuracy 

in Section 2, the stability of the correction step has been established based on
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some assumptions. Numerical experiments are presented in Section 4 to verify

theoretical results and a summary finishes the chapter.

4.2 Deferred Correction Algorithm

In this section, the studied algorithms are described in detail. We first summarize

some notations. The L2 norm and inner product are denoted by ‖·‖ and (·, ·),

respectively. Let Ω ⊂ Rd, (d = 2, 3) be a convex polygonal or polyhedral domain.

The following spaces are used for the penalty-projection algorithm of (4.1.5)-

(4.1.8) in Ω:

X := H1
0 (Ω), Q := L2

0(Ω), Y := {v ∈ H1(Ω), v · n = 0 on ∂Ω}.

Notice that the additional velocity space Y , needed for the splitting, differs

from the space X only in the boundary conditions: the functions in Y are only

imposed in the normal direction. We also introduce the space of divergence-free

functions

V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

Define the skew symmetric trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v). (4.2.1)

Through the analysis, we use the following bounds for the skew symmetric form

(4.2.1), (see [73], for the proof);

b∗(u, v, w) ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖ (4.2.2)

b∗(u, v, w) ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (4.2.3)
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To consider finite e lement f ormulation o f the problem, l et X h ⊂  X, Q h ⊂  Q 

be two finite element spaces corresponding to a family of regular conforming par-

tition of the domain Ω. Furthermore we assume the existence of a finite element 

space Y h = (P2)d ∩ Y with Xh ⊂ Y h. In this chapter, we will consider the well 

known Taylor-Hood finite element pair (P2, P1) of piecewise polynomials, which 

fulfills the discrete inf-sup condition and has optimal approximation properties, 

see [73]. The space of discretely divergence free functions V h is given by:

V h := {vh ∈ Xh : (qh, ∇ · vh) = 0, ∀ qh ∈ Qh}.

Note that, contrary to the case of Scott-Vogelius finite elements, for the Taylor-

Hood choice of (Xh, Qh) the functions in V h are not necessarily divergence-free 

pointwise. Thus, in general, approximations obtained by using Scott-Vogelius 

has strong (pointwise) mass conservation property but poor mass conservation 

property in the case of using Taylor-Hood elements, (see e.g. [66]). Because 

of this reason, the use of Taylor-Hood finite e lements introduces an extra error 

when using penalty projection method, thus the formulation in [48] does not 

work without the simple fix o f [ 70]. Thus, by adding the grad-div stabilization 

terms to pressure equations for both Elsässer fields, w e s howed t hat t he DC 

method also works for the Taylor-Hood elements for large γ. As it is shown 

below, this combination greatly increases efficiency and accuracy.

We now present the DC discretization of (4.1.5)-(4.1.8) combined with the 

penalty projection method of [48] by using the Taylor-Hood finite e lements. The 

method consists of the first step of the algorithm of [48] followed by the algorithm 

for correction step.
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Algorithm 4.2.1. (Penalty-projection with grad-div stabilization in pressure

equation for the first step)

Let f1, f2 ∈ L∞(0, T ;H−1(Ω)) , stabilization parameter γ > 0 and time step

∆t > 0 and end time T > 0 be given. Set M = T/∆t, tn = n∆t and start with

ṽ0 = v(0), w̃0 = w(0) ∈ H2 ∪ V . For all n = 0, 1, ...,M − 1, we compute the

approximations v̂n+1
h , ŵn+1

h , p̂n+1
h , q̂n+1

h via:

Step 1: Find v̂n+1
h ∈ Xh satisfying for all χh ∈ Xh,(

v̂n+1
h − ṽnh

∆t
, χh

)
+ b∗(ŵnh , v̂

n+1
h , χh)− (B̃0(tn+1) · ∇v̂n+1

h , χh)

+
ν + νm

2
(∇v̂n+1

h ,∇χh) +
ν − νm

2
(∇ŵnh ,∇χh)

+γ(∇ · v̂n+1
h ,∇ · χh) = (f1(tn+1), χh).

(4.2.4)

Step 2: Find (ṽn+1
h , q̂n+1

h ) ∈ (Yh ×Qh) satisfying for all (vh, qh) ∈ (Yh ×Qh),

(
ṽn+1
h − v̂n+1

h

∆t
, vh

)
− (q̂n+1

h ,∇ · vh) + γ(∇ · ṽn+1
h ,∇ · vh) = 0,

(∇ · ṽn+1
h , qh) = 0.

(4.2.5)

Step 3: Compute w̃n+1
h ∈ Xh for all lh ∈ Xh,

(
ŵn+1
h − w̃nh

∆t
, lh

)
+ b∗(v̂nh , ŵ

n+1
h , lh) + (B̃0(tn+1) · ∇ŵn+1

h , lh)

+
ν + νm

2
(∇ŵn+1

h ,∇lh) +
ν − νm

2
(∇v̂nh ,∇lh)

+γ(∇ · ŵn+1
h ,∇ · lh) = (f2(tn+1), lh).

(4.2.6)

Step 4: Find (w̃n+1
h , λ̂n+1

h ) ∈ (Yh×Qh) satisfying for all (sh, rh) ∈ (Yh×Qh),
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(
w̃n+1
h − ŵn+1

h

∆t
, sh

)
− (λ̂n+1

h ,∇ · sh) + γ(∇ · w̃n+1
h ,∇ · sh) = 0,

(∇ · w̃n+1
h , rh) = 0.

(4.2.7)

Note that Algorithm 4.2.1 includes grad-div stabilization terms in Step 2 and

Step 4, to be able to use the Taylor Hood finite element pair. The work of [48]

differs from the current chapter because it uses the Scott-Vogelius finite element

pair and it has first accuracy in time. We now introduce the DC algorithm for

Algorithm 4.2.1.

Algorithm 4.2.2. (Penalty-projection with grad-div stabilization in pressure

equation for the correction step)

By using the same notation above, we start with c̃v0 = cv(0), c̃w0 = cw(0) ∈

H2 ∪ V . For all n = 0, 1, ...,M − 1, compute ĉvn+1
h , ĉwn+1

h , ĉpn+1
h , ĉqn+1

h via:

Step 1: Find ĉvn+1
h ∈ Xh satisfying for all χch ∈ Xh,(

ĉvn+1
h − c̃vnh

∆t
, χch

)
+
ν − νm

2
(∇ĉwnh,∇χch) + b∗(ĉwnh, ĉv

n+1
h , χch)

−(B̃0(tn+1) · ∇ĉvn+1
h , χch) +

ν + νm
2

(∇ĉvn+1
h ,∇χch) + γ(∇ · ĉvn+1

h ,∇ · χch)

−ν − νm
2

(∇ŵnh ,∇χch)− b∗(ŵnh , v̂n+1
h , χch) + (B̃0(tn+1) · ∇v̂n+1

h , χch)

−ν + νm
2

(∇v̂n+1
h ,∇χch)− γ(∇ · v̂n+1

h ,∇ · χch) + γ(∇ · ( v̂
n+1
h + v̂nh

2
),∇ · χch)

+
ν + νm

2
(∇(

v̂n+1
h + v̂nh

2
),∇χch)− (

B̃0(tn+1) · ∇v̂n+1
h + B̃0(tn) · ∇v̂nh

2
, χch)

+
b∗(ŵn+1

h , v̂n+1
h , χch) + b∗(ŵnh , v̂

n
h , χch)

2

+
ν − νm

2
(∇(

ŵn+1
h + ŵnh

2
),∇χch) = (

f1(tn+1) + f1(tn)

2
, χch).

(4.2.8)
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Step 2: Find (c̃vn+1
h , ĉqn+1

h ) ∈ (Yh × Qh) satisfying for all (vch, qch) ∈ (Yh ×

Qh),

(
c̃vn+1

h − ĉvn+1
h

∆t
, vch

)
− (ĉqn+1

h ,∇ · vch) + (q̂n+1
h ,∇ · vch)− (

q̂n+1
h + q̂nh

2
,∇ · vch)

+γ(∇ · c̃vn+1
h ,∇ · vch)− γ(∇ · ṽn+1

h ,∇ · vch) + γ(∇ · ( ṽ
n+1
h + ṽnh

2
),∇ · vch) = 0,

(4.2.9)

(∇ · c̃vn+1
h , qch) = 0. (4.2.10)

Step 3: Compute c̃wn+1
h ∈ Xh for all lch ∈ Xh,

(
ĉwn+1

h − c̃wnh
∆t

, lch

)
+
ν − νm

2
(∇ĉvnh,∇lch) + b∗(ĉvnh, ĉw

n+1
h , lch)

+(B̃0(tn+1) · ∇ĉwn+1
h , lch) +

ν + νm
2

(∇ĉwn+1
h ,∇lch) + γ(∇ · ĉwn+1

h ,∇ · lch)

−ν − νm
2

(∇v̂nh ,∇lch)− b∗(v̂nh , ŵn+1
h , lch)− (B̃0(tn+1) · ∇ŵn+1

h , lch)

−ν + νm
2

(∇ŵn+1
h ,∇lch)− γ(∇ · ŵn+1

h ,∇ · lch) + γ(∇ · (ŵ
n+1
h + ŵnh

2
),∇ · lch)

+
ν + νm

2
(∇(

ŵn+1
h + ŵnh

2
),∇lch)

+(
B̃0(tn+1) · ∇ŵn+1

h + B̃0(tn) · ∇ŵnh
2

, lch) +
b∗(v̂n+1

h , ŵn+1
h , lch) + b∗(v̂nh , ŵ

n
h , lch)

2

+
ν − νm

2
(∇(

v̂n+1
h + v̂nh

2
),∇lch) = (

f2(tn+1) + f2(tn)

2
, lch).

(4.2.11)

Step 4: Find (c̃wn+1
h , ĉλ

n+1

h ) ∈ (Yh ×Qh) satisfying for all (sch, rch) ∈ (Yh ×

Qh),
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(
c̃wn+1

h − ĉwn+1
h

∆t
, sch

)
− (ĉλ

n+1

h ,∇ · sch) + (λ̂n+1
h ,∇ · sch)

−(
λ̂n+1
h + λ̂nh

2
,∇ · sch) + γ(∇ · c̃wn+1

h ,∇ · sch)− γ(∇ · w̃n+1
h ,∇ · sch)

+γ(∇ · (w̃
n+1
h + w̃nh

2
),∇ · sch) = 0,

(4.2.12)

(∇ · c̃wn+1
h , rch) = 0. (4.2.13)

Remark 4.2.1. We note that since the grad-div stabilized penalty projection

scheme of the solution of Algorithm 2.1 and Algorithm 2.2 converges to divergence-

free solution of it as γ → ∞, (see [48]), as it is shown in Section 4, a larger

choice of γ will be used for the validity of the numerical scheme.

4.3 Stability

The unconditional stability of Algorithm 4.2.1 is well-studied and is known to

have unique solutions under some regularity assumptions on data, [48]. Based on

these results, we make the following assumptions on the solutions of Algorithm

4.2.1.

Assumption 4.3.1. Assume that, there exists a constant C̃ independent from

∆t, h and γ such that, the solutions of Algorithm 4.2.1 satisfy

max
0≤n≤M−1

(‖v̂nh‖
2 + ‖ŵnh‖

2) ≤ C̃ (4.3.1)

max
0≤n≤M−1

(‖∇v̂nh‖
2 + ‖∇ŵnh‖

2) ≤ C̃ (4.3.2)

max
0≤n≤M−1

γ(‖∇ · v̂nh‖
2 + ‖∇ · ŵnh‖

2) ≤ C̃ (4.3.3)
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where the constant C̃ > 0 depends only on problem data.

Assumption 4.3.2. The solution of Algorithm 4.2.1 satisfies

∥∥en+1
∥∥2 ≤ O(∆t2 + h2)

∆t
N∑
i=1

∥∥∇ei∥∥2 ≤ O(∆t2 + h2)
(4.3.4)

for e = w − ŵ

∥∥ηn+1
∥∥2 ≤ O(∆t2 + h2)

∆t
N∑
i=1

∥∥∇ηi∥∥2 ≤ O(∆t2 + h2)
(4.3.5)

for η = v − v̂ and

B̃0 ∈ L∞(0, T ; Ω), (4.3.6)

where w and v are solutions of (4.1.5)-(4.1.8).

We now prove the stability of the correction step approximation of Algorithm

4.2.2.

Theorem 4.3.1 (Stability of Correction Step). Let ĉvn+1
h , ĉwn+1

h , c̃vn+1
h and

c̃wn+1
h ∈ Xh satisfy Algorithm 4.2.2 for each n ∈

{
0, 1, 2, · · · , T

∆t
− 1
}
. Then
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there exists a C > 0 independent of ∆t, h such that ĉvn+1
h and ĉwn+1

h satisfy:

∥∥ĉvn+1
h

∥∥2
+
∥∥ĉwn+1

h

∥∥2
+ ∆t

(ν + νm)

2

n+1∑
j=1

(
∥∥∇ĉvjh∥∥2

+
∥∥∥∇ĉwjh∥∥∥2

)

+ ∆tγ
n+1∑
j=1

(
∥∥∇ · ĉvjh∥∥2

+
∥∥∥∇ · ĉwjh∥∥∥2

) ≤ ‖ĉv0
h‖2 + ‖ĉw0

h‖2

+

(
3(ν − νm)2∆t

2(ν + νm)
+

6C2∆t

(ν + νm)
+

3(ν + νm)∆t

2

)[ n∑
j=1

∥∥∇ŵjh∥∥2

+
n+1∑
j=1

∥∥∇ŵjh∥∥2
)

]

+

(
3(ν − νm)2∆t

2(ν + νm)
+

6C2∆t

(ν + νm)
+

3(ν + νm)∆t

2

) [
n∑
j=1

∥∥∇v̂jh∥∥2

+
n+1∑
j=1

∥∥∇v̂jh∥∥2
)

]

+
6∆t

(ν + νm)

n∑
j=1

(
∥∥ej+1

∥∥+
∥∥ej∥∥)(

∥∥∇ej+1
∥∥+

∥∥∇ej∥∥)[
∥∥∇v̂j+1

h

∥∥2
+
∥∥∇v̂jh∥∥2

]

+
6∆t

(ν + νm)

n∑
j=1

(
∥∥ηj+1

∥∥+
∥∥ηj∥∥)(

∥∥∇ηj+1
∥∥+

∥∥∇ηj∥∥)[
∥∥∇ŵj+1

h

∥∥2
+
∥∥∇ŵjh∥∥2

]

+
γ∆t

2

(
n+1∑
j=1

∥∥∇ · v̂jh∥∥2
+

n∑
j=1

∥∥∇ · v̂jh∥∥2

)

+
γ∆t

2

(
n+1∑
j=1

∥∥∇ · ŵjh∥∥2
+

n∑
j=1

∥∥∇ · ŵjh∥∥2

)

+
6∆tC1

(ν + νm)

n+1∑
j=1

|B̃0(tj)|(
∥∥∇v̂jh∥∥2

+
∥∥∇ŵjh∥∥2

)

+
6∆tC1

(ν + νm)

n∑
j=1

|B̃0(tj)|(
∥∥∇v̂jh∥∥2

+
∥∥∇ŵjh∥∥2

) +
24∆t

(ν + νm)

n∑
j=1

∥∥∥∥∥f j+1
1 + f j1

2

∥∥∥∥∥
2

∗

+

∥∥∥∥∥f j+1
2 + f j2

2

∥∥∥∥∥
2

∗

 . (4.3.7)

108



Remark 4.3.1. Note that from Assumption 4.3.1 and Assumption 4.3.2, it fol-

lows that the right hand side of (4.3.7) is bounded by the data.

Proof. The proof of the stability starts with the choices χch = ĉvn+1
h in (4.2.8)

and lch = ĉwn+1
h in (4.2.11). Along with the polarization identity, one obtains

1

2∆t
(
∥∥ĉvn+1

h

∥∥2 − ‖c̃vnh‖
2 +

∥∥ĉvn+1
h − ĉvnh

∥∥2
) +

ν + νm
2

∥∥∇ĉvn+1
h

∥∥2
+ γ
∥∥∇ · ĉvn+1

h

∥∥2

= −ν − νm
2

(∇ĉwnh,∇ĉv
n+1
h ) +

ν − νm
2

(∇ŵnh ,∇ĉv
n+1
h ) + b∗(ŵnh , v̂

n+1
h , ĉvn+1

h )

−(B̃0(tn+1) · ∇v̂n+1
h , ĉvn+1

h ) +
ν + νm

2
(∇v̂n+1

h ,∇ĉvn+1
h ) + γ(∇ · v̂n+1

h ,∇ · ĉvn+1
h )

+(
f1(tn+1) + f1(tn)

2
, ĉvn+1

h )− γ(∇ · ( v̂
n+1
h + v̂nh

2
),∇ · ĉvn+1

h )

−ν + νm
2

(∇(
v̂n+1
h + v̂nh

2
),∇ĉvn+1

h ) + (
B̃0(tn+1) · ∇v̂n+1

h + B̃0(tn) · ∇v̂nh
2

, ĉvn+1
h )

−b
∗(ŵn+1

h , v̂n+1
h , ĉvn+1

h ) + b∗(ŵnh , v̂
n
h , ĉv

n+1
h )

2
− ν − νm

2
(∇(

ŵn+1
h + ŵnh

2
),∇ĉvn+1

h ),

(4.3.8)

and

1

2∆t
(
∥∥ĉwn+1

h

∥∥2 − ‖c̃wnh‖
2

+
∥∥ĉwn+1

h − ĉwnh
∥∥2

) +
ν + νm

2

∥∥∇ĉwn+1
h

∥∥2

+γ
∥∥∇ · ĉwn+1

h

∥∥2
= −ν − νm

2
(∇ĉvnh,∇ĉw

n+1
h ) +

ν − νm
2

(∇v̂nh ,∇ĉw
n+1
h )

+b∗(v̂nh , ŵ
n+1
h , ĉwn+1

h ) + (B̃0(tn+1) · ∇ŵn+1
h , ĉwn+1

h ) +
ν + νm

2
(∇ŵn+1

h ,∇ĉwn+1
h )

+γ(∇ · ŵn+1
h ,∇ · ĉwn+1

h ) + (
f2(tn+1) + f2(tn)

2
, ĉwn+1

h )

−γ(∇ · (ŵ
n+1
h + ŵnh

2
),∇ · ĉwn+1

h )− ν + νm
2

(∇(
ŵn+1
h + ŵnh

2
),∇ĉwn+1

h )

−(
B̃0(tn+1) · ∇ŵn+1

h + B̃0(tn) · ∇ŵnh
2

, ĉwn+1
h )

−b
∗(v̂n+1

h , ŵn+1
h , ĉwn+1

h ) + b∗(v̂nh , ŵ
n
h , ĉw

n+1
h )

2

−ν − νm
2

(∇(
v̂n+1
h + v̂nh

2
),∇ĉwn+1

h ),

(4.3.9)
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where we have used

b∗(ĉwnh, ĉv
n+1
h , ĉvn+1

h ) = 0

(B̃0(tn+1) · ∇ĉvn+1
h , ĉvn+1

h ) = 0

b∗(ĉvnh, ĉw
n+1
h , ĉwn+1

h ) = 0

(B̃0(tn+1) · ∇ĉwn+1
h , ĉwn+1

h ) = 0,

following from (4.2.1). Since the right hand sides of (4.3.8) and (4.3.9) are

similar, it is enough to bound only the right hand side of (4.3.8).

The first term is bounded by the Cauchy-Schwarz inequality and Young’s

inequality:

−ν − νm
2

(∇ĉwnh,∇ĉv
n+1
h ) ≤ ε(ν + νm)

2

∥∥∇ĉvn+1
h

∥∥2
+

(ν − νm)2

8ε(ν + νm)
‖∇ĉwnh‖

2
.

(4.3.10)

Similarly, for the second and last terms of the right hand side of (4.3.8) one also

gets

ν − νm
2

(∇ŵnh ,∇ĉv
n+1
h )− ν − νm

2
(∇(

ŵn+1
h + ŵnh

2
),∇ĉvn+1

h )

≤ ε(ν + νm)
∥∥∇ĉvn+1

h

∥∥2
+

(ν − νm)2

32ε(ν + νm)
‖∇ŵnh‖

2 +
(ν − νm)2

32ε(ν + νm)

∥∥∇ŵn+1
h

∥∥2
.

(4.3.11)

To bound nonlinear terms in (4.3.8), we first rewrite them as:

b∗(ŵnh , v̂
n+1
h , ĉvn+1

h )− b∗(ŵn+1
h , v̂n+1

h , ĉvn+1
h ) + b∗(ŵnh , v̂

n
h , ĉv

n+1
h )

2

=
1

2
b∗(ŵnh − ŵn+1

h , v̂n+1
h , ĉvn+1

h ) +
1

2
b∗(ŵnh , v̂h

n+1 − v̂nh , ĉv
n+1
h ).

(4.3.12)

To estimate the first term in the right hand side of (4.3.12), decompose ŵn+1
h −

ŵnh = (en+1 − en) − (wn+1 − wn) and use the bounds (4.2.2)-(4.2.3). Then,
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application of the Cauchy-Schwarz and Young’s inequalities yield

∆t

2

∥∥∥∥en+1 − en

∆t

∥∥∥∥ 1
2
∥∥∥∥∇(

en+1 − en

∆t
)

∥∥∥∥ 1
2∥∥∇v̂n+1

h

∥∥∥∥∇ĉvn+1
h

∥∥
+
C

2

∥∥∇v̂n+1
h

∥∥∥∥∇ĉvn+1
h

∥∥ ≤ ε(ν + νm)
∥∥∇ĉvn+1

h

∥∥2

+
1

8ε(ν + νm)
(
∥∥en+1

∥∥+ ‖en‖)(
∥∥∇en+1

∥∥+ ‖∇en‖)
∥∥∇v̂n+1

h

∥∥2

+
C2

8ε(ν + νm)

∥∥∇v̂n+1
h

∥∥2
.

(4.3.13)

There are two possible cases for bounding (4.3.13). We now examine each case:

Case 1 . If ∆t < h: For the second term in the right hand side of (4.3.13),

using the inverse inequality ([65], p112): for any v̂h ∈ Xh

‖∇v̂h‖ ≤ Ch−1‖v̂h‖, (4.3.14)

Assumption 4.3.1 and Assumption 4.3.2, one gets

(
∥∥en+1

∥∥+ ‖en‖)‖∇v̂h‖2 = O(h−1). (4.3.15)

We note that at the end of proof we will also multiply the error equation (4.3.8)

by 2∆t. Thus, by using Assumption 4.3.2 and ∆t < h, one gets

∆t
N∑
i=1

∥∥∇ei∥∥ = O(h). (4.3.16)

As a result of the combination of (4.3.15) and (4.3.16), one can conclude the

boundedness of the second term in the right hand side of (4.3.13).

Case 2 . If ∆t > h : In this case, since

(
∥∥en+1

∥∥+ ‖en‖)
∥∥∇v̂n+1

h

∥∥2
= O(∆t)

∥∥∇v̂n+1
h

∥∥2 (4.3.17)

is bounded via Assumption 4.3.1 and Assumption 4.3.2, we get

C∆t

16ε(ν + νm)

∑
i

∥∥∇ei∥∥, (4.3.18)
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which is also bounded from Assumption 4.3.2. In a similar manner, for the

second term in the right hand side of (4.3.12), with the help of decomposition

where v̂n+1
h − v̂nh = (ηn+1 − ηn)− (vn+1 − vn), one obtains

∆t

2
‖∇ŵnh‖

∥∥∇ĉvn+1
h

∥∥∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥ 1
2
∥∥∥∥∇(

ηn+1 − ηn

∆t
)

∥∥∥∥ 1
2

+
C

2
‖∇ŵnh‖

∥∥∇ĉvn+1
h

∥∥ ≤ ε(ν + νm)
∥∥∇ĉvn+1

h

∥∥2

+
1

8ε(ν + νm)
(
∥∥ηn+1

∥∥+ ‖ηn‖)(
∥∥∇ηn+1

∥∥+ ‖∇ηn‖)‖∇ŵnh‖
2

+
C2

8ε(ν + νm)
‖∇ŵnh‖

2.

(4.3.19)

Then, arguing exactly as for (4.3.13) with assumptions (4.3.5), one concludes

the bound for (4.3.19).

For the fourth term in the right hand side of (4.3.8), we use the Cauchy-

Schwarz, Young’s and Poincaré’s inequalities:

−(B̃0(tn+1) · ∇v̂n+1
h , ĉvn+1

h ) + (
B̃0(tn+1) · ∇v̂n+1

h + B̃0(tn) · ∇v̂nh
2

, ĉvn+1
h )

=
−1

2
(B̃0(tn+1) · ∇v̂n+1

h , ĉvn+1
h ) +

1

2
(B̃0(tn) · ∇v̂nh , ĉv

n+1
h )

≤ 1

2
|B̃0(tn+1)|

∥∥∇v̂n+1
h

∥∥∥∥ĉvn+1
h

∥∥+
1

2
|B̃0(tn)|‖∇v̂nh‖

∥∥ĉvn+1
h

∥∥
≤ C1ε1(ν + νm)

∥∥∇ĉvn+1
h

∥∥2
+

1

8C1ε1(ν + νm)
|B̃0(tn+1)|

∥∥∇v̂n+1
h

∥∥2

+
1

8C1ε1(ν + νm)
|B̃0(tn)|‖∇v̂nh‖

2.

(4.3.20)

One can conclude that (4.3.20) is also bounded from assumption (4.3.6). In the

same way as for (4.3.10), the remaining terms in (4.3.8) are estimated by as

follows:
ν + νm

2
(∇v̂n+1

h ,∇ĉvn+1
h )− ν + νm

2
(∇(

v̂n+1
h + v̂nh

2
),∇ĉvn+1

h )

≤ ε(ν + νm)
∥∥∇ĉvn+1

h

∥∥2
+

(ν + νm)

32ε

∥∥∇v̂n+1
h

∥∥2
+

(ν + νm)

32ε
‖∇v̂nh‖

2,

(4.3.21)
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(
f1(tn+1) + f1(tn)

2
, ĉvn+1

h )

≤ ε(ν + νm)

2

∥∥∇ĉvn+1
h

∥∥2
+

1

2ε(ν + νm)

∥∥∥∥f1(tn+1) + f1(tn)

2

∥∥∥∥2

∗

(4.3.22)

γ(∇ · v̂n+1
h ,∇ · ĉvn+1

h )− γ(∇ · ( v̂
n+1
h + v̂nh

2
),∇ · ĉvn+1

h )

≤ 2ε2γ
∥∥∇ · ĉvn+1

h

∥∥2
+

γ

16ε2

∥∥∇ · v̂n+1
h

∥∥2
+

γ

16ε2
‖∇ · v̂nh‖

2
(4.3.23)

After putting all bounded terms in the right hand side of (4.3.8) and (4.3.9),

we add them up. Then, dropping the non-negative terms in the right hand

side of the resulting inequality and substituting all estimations along with ε =

1/24, ε1 = 1/4, C1ε2 = 1/4, and (ν + νm)/2 ≥ (ν − νm)2/(8ε(ν + νm)) yields

1

2∆t
(
∥∥ĉvn+1

h

∥∥2 − ‖c̃vnh‖
2) +

ν + νm
4

∥∥∇ĉvn+1
h

∥∥2
+
γ

2

∥∥∇ · ĉvn+1
h

∥∥2

+
1

2∆t
(
∥∥ĉwn+1

h

∥∥2 − ‖c̃wnh‖
2
) +

ν + νm
4

∥∥∇ĉwn+1
h

∥∥2
+
γ

2

∥∥∇ · ĉwn+1
h

∥∥2

≤ A+B,

(4.3.24)

where

A =
[ 3

(ν + νm)
(
∥∥en+1

∥∥+ ‖en‖)(
∥∥∇en+1

∥∥+ ‖∇en‖) +
3C2

(ν + νm)

+
3

(ν + νm)
|B̃0(tn+1)|+ 3(ν + νm)

4

]∥∥∇v̂n+1
h

∥∥2
+
[ 3

(ν + νm)
|B̃0(tn)|

+
3(ν + νm)

4

]
‖∇v̂nh‖

2 +
3(ν − νm)2

4(ν + νm)

∥∥∇ŵn+1
h

∥∥2
+
[(3ν − νm)2

4(ν + νm)
+

3C2

(ν + νm)

+
3

(ν + νm)
(
∥∥ηn+1

∥∥+ ‖ηn‖)(
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∥∥+ ‖∇ηn‖)
]
‖∇ŵnh‖

2

+
γ

4

∥∥∇ · v̂n+1
h

∥∥2
+
γ

4
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2 +
12

2(ν + νm)

∥∥∥∥f1(tn+1) + f1(tn)

2

∥∥∥∥2

∗
,
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and

B =
[ 3

(ν + νm)
(
∥∥ηn+1

∥∥+ ‖ηn‖)(
∥∥∇ηn+1

∥∥+ ‖∇ηn‖) +
3C2

(ν + νm)

+
3

(ν + νm)
|B̃0(tn+1)|+ 3(ν + νm)

4

]∥∥∇ŵn+1
h

∥∥2
+
[ 3

(ν + νm)
|B̃0(tn)|

+
3(ν + νm)

4

]
‖∇ŵnh‖

2 +
3(ν − νm)2

4(ν + νm)

∥∥∇v̂n+1
h

∥∥2

+
[(3ν − νm)2

4(ν + νm)
+

3C2

(ν + νm)

+
3

(ν + νm)
(
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∥∥+ ‖en‖)(
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∥∥+ ‖∇en‖)
]
‖∇v̂nh‖

2

+
γ

4

∥∥∇ · ŵn+1
h

∥∥2
+
γ

4
‖∇ · ŵnh‖

2 +
12

2(ν + νm)

∥∥∥∥f2(tn+1) + f2(tn)

2

∥∥∥∥2

∗
.

On the other hand, choosing vch = c̃vn+1
h in (4.2.9) and qch = q̂n+1

h in (4.2.10),

applying the Cauchy-Schwarz and Young’s inequalities results in

∥∥c̃vn+1
h

∥∥2 ≤
∥∥ĉvn+1

h

∥∥2 (4.3.25)

Repeating exactly same arguments as above one can obtain the similar esti-

mation for (4.3.9) e.g. for ĉwh. Similarly, we choose sch = c̃wn+1
h in (4.2.12)

rch = λ̂n+1
h in (4.2.13) so that

∥∥c̃wn+1
h

∥∥2 ≤
∥∥ĉwn+1

h

∥∥2 (4.3.26)

In (4.3.24), adding the estimations for cv̂ h using (4.3.25) and cŵhusing (4.3.26), 

multiplying both sides by 2∆t and summing over time levels finishes the proof 

since the first approximation i s unconditionally stable.

Convergence analysis of Algorithm 4.2.1 in a fully discrete setting without 

a penalty-projection was performed in [48]. In addition, from Theorem 4.1 in 

[48], as γ → ∞, penalty projection solutions have first order convergence to the
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Algorithm 4.2.1 in a fully discrete setting without penalty-projection solution

on a fixed mesh and time step. Thus, one can conclude first order convergence

result for the solutions of Algorithm 4.2.1 as stated in (4.3.4)-(4.3.6). We now

state second order convergence of solutions to Algorithm 4.2.2 to an Elsässer

solution.

Theorem 4.3.2. (Convergence of Correction Step) Assume (v, w, p) solves (4.1.5)-

(4.1.8) and satisfying

v, w ∈ L∞(0, T ;Hm(Ω)), m = max{2, k + 1}

vt, wt ∈ L∞(0, T ;Hk+1(Ω))

vtt, wtt ∈ v, w ∈ L∞(0, T ;L2(Ω))

Then the solution to Algorithm 4.2.2 converges to the true solution: for any

∆t > 0, ∥∥v(T )− ĉvMh
∥∥+

∥∥∥w(T )− ĉwMh
∥∥∥

+
ννm

2(ν + νm)
{∆t

M−1∑
n=1

(‖∇(v(tn)− ĉvnh)‖2 + ‖∇(w(tn)− ĉwnh)‖2
)}

1
2 ≤ C(hk + ∆t2)

Proof. Stability and accuracy results from [48] and [83] provide all the necessary

details for the proof of this theorem. Thus, the technical proof of the convergence

analysis can be established exactly in the same way.

Remark 4.3.2. From (4.3.4)-(4.3.6) and Theorem 4.3.2 under some regularity

assumptions on true solution, by using the Taylor-Hood finite element, one can

conclude

‖v − v̂h‖2,2 + ‖w − ŵh‖2,2 ≤ C(∆t+ h2) (4.3.27)

‖v − v̂h‖2,1 + ‖w − ŵh‖2,1 ≤ C(∆t+ h2) (4.3.28)
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for the solutions of Algorithm 4.2.1 and

‖v − ĉv‖2,2 + ‖w − ĉw‖2,2 ≤ C(∆t2 + h2) (4.3.29)

‖v − ĉv‖2,1 + ‖w − ĉw‖2,1 ≤ C(∆t2 + h2) (4.3.30)

for the solutions of Algorithm 4.2.2, where

‖Φ‖2,2 := ‖Φ‖L2(0,T ;L2(Ω)d)

‖Φ‖2,1 := ‖Φ‖L2(0,T ;H1(Ω)d).

4.4 Computational Testing

In this section, we present two numerical experiments to test the proposed scheme 

and theory. The first example is for an analytical test problem with known solu-

tion. The second experiment is of more practical interest: it is a MHD channel 

flow over a  forward and backward facing s tep. In a ll tests, the discretization of 

the problem is studied with the Taylor-Hood element pair. The computations 

are performed with the public license finite element software FreeFem++[75].

4.4.1 Convergence Rates

In this section, we present a numerical experiment for the verification o f the 

expected convergence rates (4.3.27)-(4.3.30). We compare the proposed method 

with the penalty-projection method, which results in first order accuracy in time. 

In each case of the experiments, we also compare the results for with the γ = 1 

and γ = 10000. To test the theoretically predicted convergence rates, we consider 

the solutions of Algorithm 4.2.1 and Algorithm 4.2.2 with Ω = [0, 1] × [0, 1] and
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with the prescribed solution

v =

 cos y + (1 + et) sin y

sinx+ (1 + et) cosx

 ,

w =

 cos y − (1 + et) sin y

sinx− (1 + et) cosx

 ,

p = −λ = sin(x+ y).

In addition, the right hand side functions f1 and f2 are calculated from (4.1.5). 

For computations, we chose ν = 1, νm = 0.5, the final time T  = 1 and h = ∆t = 

1/M . We compute the first s tep with Algorithm 4 .2.1 and then use the results 

in Algorithm 4.2.2. We evaluate each error in ||.||L2(0,T ;L2(Ω)) and ||.||L2(0,T ;H1(Ω)) 

norms for each Elsässer variables.

The results are shown in Table 4.1-Table 4.4. We observe that for the large 

penalty parameter γ, a first o rder t emporal c onvergence f or t he s olutions of 

Algorithm 4.2.1 and a second order temporal convergence for the solutions of 

Algorithm 4.2.2 are obtained, as expected.
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N || v − v̂h ||L2(0,T ;L2(Ω)) rate || v − v̂h ||L2(0,T ;H1(Ω)) rate

2 0.0017261 - 0.0240934 -

4 0.00163583 0.07 0.022075 0.12

8 0.000819807 0.99 0.00759258 1.53

16 0.00042305 0.95 0.00361056 1.07

32 0.000214446 0.98 0.00172605 1.06

64 0.000107892 0.99 0.000858431 1.00

Table 4.1: Algorithm 4.2.1. Accuracy of v̂h, for γ = 100000 and ∆t = h = 1
M
.

N ||w − ŵh ||L2(0,T ;L2(Ω)) rate ||w − ŵh ||L2(0,T ;H1(Ω)) rate

2 0.00266961 - 0.0372761 -

4 0.00170579 0.64 0.027112 0.45

8 0.000828149 1.04 0.00832568 1.70

16 0.00042277 0.97 0.00373869 1.15

32 0.000214286 0.98 0.00173527 1.10

64 0.000107804 0.99 0.000848722 1.03

Table 4.2: Algorithm 4.2.1. Accuracy of ŵh, for γ = 100000 and ∆t = h = 1
M
.
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N || v − ĉvh ||L2(0,T ;L2(Ω)) rate || v − ĉvh ||L2(0,T ;H1(Ω)) rate

2 0.00172604 - 0.0240931 -

4 0.00123244 0.48 0.0213587 0.17

8 0.000174041 2.82 0.004284 2.31

16 4.398e-05 1.98 0.00139066 1.62

32 1.14404e-05 1.94 0.000304462 2.19

64 3.02593e-06 1.91 6.29791e-05 2.27

Table 4.3: Algorithm 4.2.2. Accuracy of ĉvh, for γ = 100000 and ∆t = h = 1
M
.

N ||w − ĉwh ||L2(0,T ;L2(Ω)) rate ||w − ĉwh ||L2(0,T ;H1(Ω)) rate

2 0.0026696 - 0.0372759 -

4 0.00137167 0.96 0.0273535 0.44

8 0.000197954 2.79 0.00570089 2.26

16 4.57471e-05 2.11 0.00183279 1.63

32 1.17158e-05 1.96 0.000476566 1.94

64 3.36945e-06 1.79 0.000111516 2.09

Table 4.4: Algorithm 4.2.2. Accuracy of ĉwh, for γ = 100000 and ∆t = h = 1
M
.

We also compute the solutions for γ = 1 . While the tables above show 

expected convergence rate for the choice of large penalty parameter γ = 100000, 

as seen in Table 4.5-Table 4.8, the choice of γ = 1 significantly l oses accuracy 

for both Algorithm 4.2.1 and Algorithm 4.2.2.
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N || v − v̂h ||L2(0,T ;L2(Ω)) rate || v − v̂h ||L2(0,T ;H1(Ω)) rate

2 0.0538592 - 0.264343 -

4 0.0258353 1.05 0.136099 0.95

8 0.0136141 0.92 0.0749909 0.85

16 0.00747208 0.86 0.0431047 0.79

32 0.00389868 0.93 0.0242952 0.82

64 0.00181945 1.09 0.0128235 0.92

Table 4.5: Algorithm 4.2.1. Accuracy of v̂h, for γ = 1. ∆t = h = 1
M
.

N ||w − ŵh ||L2(0,T ;L2(Ω)) rate ||w − ŵh ||L2(0,T ;H1(Ω)) rate

2 0.0707299 - 0.339429 -

4 0.0403039 0.81 0.194823 0.80

8 0.0330883 0.28 0.15507 0.32

16 0.0284572 0.21 0.132846 0.22

32 0.0223229 0.35 0.106202 0.32

64 0.0154592 0.53 0.0767291 0.46

Table 4.6: Algorithm 4.2.1. Accuracy of ŵh, for γ = 1. ∆t = h = 1
M
.
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N || v − ĉvh ||L2(0,T ;L2(Ω)) rate || v − ĉvh ||L2(0,T ;H1(Ω)) rate

2 0.0197291 - 0.114869 -

4 0.0109216 0.85 0.0633522 0.85

8 0.00740681 0.56 0.0434134 0.54

16 0.00494728 0.58 0.0304451 0.51

32 0.00294147 0.75 0.0196976 0.62

64 0.00149777 0.97 0.0113684 0.79

Table 4.7: Algorithm 4.2.2. Accuracy of ĉvh, for γ = 1. ∆t = h = 1
M
.

N ||w − ĉwh ||L2(0,T ;L2(Ω)) rate ||w − ĉwh ||L2(0,T ;H1(Ω)) rate

2 0.0474063 - 0.222608 -

4 0.0441578 0.10 0.202465 0.13

8 0.0385005 0.19 0.177266 0.19

16 0.0312935 0.29 0.145638 0.28

32 0.0234673 0.41 0.11166 0.38

64 0.0158558 0.56 0.078735 0.50

Table 4.8: Algorithm 4.2.2. Accuracy of ĉwh, for γ = 1. ∆t = h = 1
M
.

4.4.2 Channel flow over a  step

The second experiment we consider is the channel flow in a  30 × 10 rectangular 

domain with a 1×1 step five units into the channel, in the presence of a magnetic
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field. We chose ν = 0.001, νm = 1, T = 40 and ∆t = 0.025. No slip boundary

conditions are enforced for velocity components v and w, and B =< 0, 1 >T is

used on the all walls and step. We also take u =< y(10 − y)/25, 0 >T at the

inlet and outlet. The initial conditions are chosen as u =< y(10 − y)/25, 0 >T

and B = 0. Numerical studies are performed for the penalty parameter γ =

100000. We are interested in studying evolution of the reattachment points

of the recirculating vortices developing behind the step, for varying coupling

numbers s = 0, s = 0.01 and s = 0.05

In Figure 4.1, we depict the streamlines over speed contours and correspond-

ing magnetic field contours for each c ase. We clearly observe the eddy formation 

behind the step for each case. Due to the increasing effect of the magnetic field 

as s increases, the eddies tend to gather, shorten and seems steady. Thus, our 

solution captures the correct eddy structures behind the step and their detach-

ment.

122



s = 0

s = 0.01

s = 0.05

Figure 4.1: Plots of streamlines over speed contours and magnetic field contours

for varying s
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4.5 Summary and future work

This chapter studied an efficient second order penalty-projection DC method for

the solutions of the MHD in Elsässer variables. The proposed algorithm uses

the grad-div stabilized Taylor-Hood pair, which is a common choice of the finite

element spaces, is used for large penalty parameter γ. In this way, the algorithm

improves mass conservation in solutions. The stability analysis was performed

for the correction step and expected converges rates are verified for the analytical

test problem. Channel flow over a full step test problem was also presented in

order to show the well performance of the method.
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Chapter 5

Conclusion

Predictor-corrector methods are often considered to be too crude to tackle the 

stiff problems arising in fluid fl ow mo deling. However, th e au thor wa s ab le to 

show that both Defect and Deferred Correction methods can be useful, some-

times even invaluable, in a variety of CFD applications. It has been shown 

through a sequence of chapters.

In the first c hapter, t he DDC method f or a  fl uid-fluid int eraction problem 

(two convection-dominated convection-diffusion problems adjoined by an inter-

face), which is a simplied version of the atmosphere-ocean coupling problem, 

was introduced. It is a partitioned time stepping method, yet it is of high order 

accuracy in both space and time. Also, it allows for the usage of the legacy 

codes (which is a common requirement when resolving flows in complex geome-

tries), yet it can be applied to the problems with very small viscosity/diffusion 

coecients. This is achieved by combining the defect correction technique for 

increased spatial accuracy (and for resolving the issue of high convection-to-
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diffusion ratio) with the DC in time (which allows for the usage of the computa-

tionally attractive partitioned scheme, yet the time accuracy is increased beyond 

the usual result of partitioned methods being only first order accurate) into the 

DDC. The results are readily extendable to the higher order accuracy cases by 

adding more correction steps. Both the theoretical results and the numerical 

tests provided demonstrate that the computed solution is unconditionally sta-

ble and the accuracy in both space and time is improved after the correction 

step. This research was published in [69]; the author of this dissertation was 

responsible for the computational part of this publication.

In the second chapter, a method is proposed to improve two aspects of nu-

merical simulations for a model of two fluids c oupled a cross a  fl at interface. 

This problem is motivated by atmosphere-ocean interaction. A DC approach 

lifts the numerical order of accuracy formally from first o rder ( very common 

in applications) to second order, in terms of the time interval of communica-

tion between the fluid c ode c omponents. T his i s a ccomplished i n a  two-step 

predictor-corrector type method. In the second step, a further defect correction 

is included as well. The “defect” represents artificial d iffusion u sed i n t he fluid 

solvers, which is often included to control numerical noise or to model subscale 

mixing processes. The addition of the defect correction adds only marginally to 

the expense, but in exchange may provide a significant reduction of overdiffusive 

effects. A full DDC algorithm is studied using finite elements in space, including 

an analysis of the stability and convergence. A computational example using a 

known (manufactured) solution illustrates the theoretical predictions. We ob-

serve a computational benefit in this example even for coarse time steps and over
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a wide range of artificial viscosity values. Some discussion is provided regarding 

the possibility to generalize the approach for application codes. Briefly, legacy 

atmosphere and ocean codes may be used as-is over a coupling time interval for 

a predictor computation. The corrector step would then potentially be imple-

mented as a straight-forward modification o f t he p redictor s tep t hat leverages 

the existing code structure. This research was published in [23]; the author of 

this dissertation was responsible for the theoretical part of this publication.

In the third chapter, we propose a small modification of an recently presented 

algorithm for resolving magnetohydrodynamic (MHD) flows, that a llowed for a 

stable decoupling of the system and used the penalty-projection method for ex-

tra eciency. The algorithm relies on the choice of Scott-Vogelius finite elements 

to complement the grad-div stabilization. Our proposed modification allows for 

this algorithm to be used even with the less sophisticated (and more computa-

tionally attractive) Taylor-Hood pair of finite e lement s paces. We demonstrate 

numerically, that the new modification o f the method i s first order ac curate in 

time (as expected by the theory), while the existing method would fail on the 

Taylor-Hood finite elements (the blow-up of the solution is d emonstrated). This 

research was published in [70]; the author of this dissertation was responsible for 

the computational part of this publication.

In the fourth chapter, we study the DC method for the magnetohydrody-

namics (MHD) system written in Elsässer variables. The proposed algorithm is 

based on the penalty projection with grad-div stabilized Taylor Hood solutions 

of the Elsässer formulation. In this way, second order accuracy of the method 

in time is obtained through the DC method with excellent mass conservation
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properties. For the proposed method, stability is rigorously proven and numer-

ical experiments are presented to verify the proposed scheme and theory. This

research was published in [84]; the author of this dissertation was responsible for

parts of both the theoretical and the computational parts of this publication.
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