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Abstract 

We proposed a novel seismic inversion approach that integrates the physical properties of 

litho-facies, and geophysical data, within the multiple-point geostatistical frameworks to 

reduce the uncertainty in predictions of litho-facies spatial arrangement away from wells 

or control points. The litho-facies groups (rock-type) in the well locations are defined and 

conditioned to the distribution of elastic properties, including P-wave velocity (Vp) and 

facies density (ρ) in the well locations.  A conceptual geological model (training image) is 

utilized within a wavelet-based multiple-point geostatistical simulation (WAVESIM) 

algorithm to generate litho-facies realizations. In our inversion algorithm, the forward 

model is created by implementing the bivariate Kernel density estimation technique of the 

litho-facies properties (Vp and ρ) that are distributed in the well locations. The inversion 

approach is an iterative process, where a particular number of elastic properties (Vp and ρ) 

for each WAVESIM realization are drawn, and then the forward model was utilized to 

create synthetic seismograms. For each generated set of the WAVESIM realizations, a 

series of synthetic seismograms are produced, and one realization is selected that provides 

the best-match synthetic seismogram compared to the input seismic data using cross-

correlation function. Our inversion technique was successfully applied to synthetic and 

field datasets.  The results demonstrate the efficiency of our inversion approach to 

characterize highly heterogeneous reservoirs. 
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Chapter 1: Introduction 

 

1.1 Inspiration and Purposes 

Seismic inversion has been widely used in geophysical exploration to characterize 

the reservoir properties such as litho-facies distribution and the corresponding physical 

properties (e.g., porosity, permeability, and fluid content) (Bosch et al., 2010; Grana et al., 

2012; Azevedo et al., 2015). However, an accurate estimation of the reservoir properties 

requires addressing the challenges stemming from the subsurface heterogeneity (Grana et 

al., 2012; Azevedo et al., 2015; Connolly et al., 2016). To address such challenges, a variety 

of inverse methodologies, both deterministic and stochastic, has been developed. Within 

the deterministic framework, the most common techniques are the sparse-spike and model-

based, which were utilized to generate a single (best) solution (Russel, 1988; Bosch et al., 

2010). Nevertheless, the uncertainty in producing a singular solution is quite a challenge. 

On the other hand, stochastic inversion approaches retrieve the best-fit inverse model 

among various scenarios and reduce the uncertainty associated with the inverted reservoir 

properties (Scales et al., 2001; Tarantola, 2005). The stochastic inversion process selects 

the best match solution with the conceptual parameters to minimize the output uncertainties 

(Buland et al., 2003). Previously, the stochastic inverse problem solution employed a 

traditional statistical approach by utilizing sequential Gaussian simulation and seismic data 

to generate multiple realizations of the same probability (Bortoli et al., 1993; Haas et al., 

1994). In reservoir characterization, the geostatistical information mainly provides 

predefined, consistent geological models for any inversion algorithm, which constrain the 

solutions to a range of practical problems (Gonzalez et al., 2007; Grana et al., 2012). 

Conventionally, geostatistical mechanisms relied on two-point statistics (i.e., 

variogram) such as sequential indicator simulation (SISIM) to capture the subsurface 

geologic structures (Deutsch et al., 1992; Journel et al., 1993). This method, however, fails 

to simulate complex structures such as the curvilinear channels, and to capture the massive 

continuity of geo-bodies. These shortcomings caused misinterpretation of the reservoir 
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extension and poor prediction of the reservoir properties (Guardiano et al., 1993; Tran, 

1994; Boisvert et al., 2007). To overcome the limitations of two-point geostatistical 

models, Guardiano et al. (1993) introduced a multiple-point geostatistics (MPS) approach, 

where statistical information are borrowed from training images representing the possible 

geological scenarios (Strebelle et al., 2002; Caers et al., 2003; Arpat et al., 2005). Strebelle 

(2002) developed a single normal equation simulation (SNESIM), a pixel-based algorithm 

that is based on involving multiple points at a time, rather than using two-point variogram-

based statistics, by borrowing the required multiple-point statistics from training images. 

Because the SNESIM technique is based on a pixel-based algorithm, it suffers from some 

other limitations, such as difficulty generating realistic and highly connected large-scale 

geologic structures (Gonzalez et al., 2007; Grana et al., 2012; Tahmasebi, 2018). 

The developed sequential simulation with patterns (SIMPAT) or the modified 

(mSIMPAT) algorithms (Arpat, 2005; Gonzalez et al., 2007) address the limitations of the 

conventional SNESIM algorithm by selecting best-matched training patterns with 

conditioning data. However, such algorithms are computationally expensive (Grana et al., 

2012; Tahmasebi, 2018). Chatterjee et al. (2012) introduced a pattern-based MPS 

algorithm that is based on wavelet simulation (WAVESIM). The wavelet decomposition 

reduces the predefined dimension of patterns produced by scanning a training image, and 

thus yields a faster solution while providing realistic facies simulation for complex 

geologies.  

In this study, we present a fast stochastic inversion approach that combines the 

physical properties of litho-facies, geophysical data, and advanced multiple-point 

geostatistics algorithm to render predictable reservoir models of litho-facies spatial 

arrangement. In our approach, first, the litho-facies groups are defined with respect to the 

bivariate distribution of elastic properties (i.e., Vp and ρ) in the well locations. The bivariate 

distribution of the Vp and ρ in the well locations is computed based on the Kernel density 

estimation technique. Thereafter, the WAVESIM algorithm that derives the required 

geological information from the training image and conditioned to well-data generates 

several litho-facies realizations. In the inversion, for each WAVESIM realization, several 
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Vp and ρ are drawn to generate forward modeling operators that are convolved by the 

seismic source to produce synthetic seismograms. The inversion process is repeated for 

different sets of WAVESIM realizations to produce different geologic scenarios for the 

reservoir litho-facies distribution.  

The novel proposed inversion approach was successfully applied to a reconstructed 

synthetic reservoir (Castro et al., 2005) and a real open-source dataset from the Penobscot 

offshore Field, Nova-Scotia Basin, Canada (Kendell et al., 2014). 

 

1.2 Chapter Glimpse 

Chapter 1 provides an overview of the significant role of seismic inversion in 

incorporating the physical properties of the litho-facies, geophysical data, and multiple-

point geostatistics algorithms for predicting the shape and distribution of the reservoir in a 

given area. 

Chapter 2 presents the mathematical background and the complete methodology of the 

proposed inversion algorithm. 

Chapter 3  describes the validation tests and field application of the proposed inversion 

approach  

Chapter 4  discusses the overall conclusions of this study and future work.  
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Chapter 2: Methodology 

 

2.1 Mathematical Background 

Theoretically, a set of model realizations represents the prototypical solution of an 

inverse problem, in which forward modeling of the elastic properties is inverted into 

synthetic data that match the real data within some tolerance (Gonzalez et al., 2007; Azizian 

et al., 2018). Mathematically, the inverse problem can be expressed as: 

                                                  	                                              (1) 

where  is the posterior probability density, D is a normalization constant,  is 

the prior probability density. The posterior and prior probability density are defined in the 

model space . Besides,  is the likelihood function, which is a measure of the 

match of the model 	to the data. In equation 1, model parameterization is expressed 

by	 , and  is the forward-modeling operator that maps the model space into the data 

space (González et al., 2007, Azizian et al., 2018). 

The model parameters are dissected into two subspaces:	 , 	 		where 

	refers to the parameters of the reservoir properties such as facies, and fluid contents. At 

the same time, for acoustic inversion, 	represents the elastic properties such as P-wave 

velocity (Vp) and density (ρ) (González et al., 2007; Azizian et al., 2018). The joint 

distribution of elastic properties (Vp and ρ) indicates the prior bivariate probability density 

for each litho-facies in . Based on the chain rule of conditional probability, the 

multivariate distribution of and	  can be estimated using the prior probability density 

of litho-facies parameters 	(i.e., 	 ) and the conditional probability of elastic 

properties, 	, given litho-facies parameters, and can be written as: 

                 																 	 , 	 	 	 	                                       (2) 
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and by merging equation (1) and (2), the posterior probability density function can be 

written as: 

																																							 , 	 	 ,                      (3) 

Equation 3 presents the core structure of the proposed inversion algorithm, where 

 is the conditional distribution of Vp and ρ to litho-facies groups of the reservoir, 

and  is the prior pdf of the litho-facies groups, which can be obtained by the 

multiple-point geostatistical technique (Gonzalez et al., 2007; Chatterjee et al., 2012). 

 

2.2 Proposed Inversion Approach 

The proposed inversion approach is based on three main components: (i) pre-

inversion, (ii) inversion loop, and (iii) post-inversion, as shown in Figure 2.1. The pre-

inversion step aims to create the inputs required for the inversion loop: (a) the litho-facies 

groups; (b) the bivariate distribution of the elastic properties (Vp and ρ) for each litho-

facies; and (c) facies simulation. The bivariate distribution of the Vp and ρ in the well 

location is computed based on the Kernel density estimation technique (Ruggeri et al., 

2013). The facies simulation is performed using the WAVESIM algorithm conditioning to 

the well litho-facies data, and borrowing required information from the training image 

(Strebelle, 2002; Gonzalez et al., 2007; Chatterjee et al., 2012). 

In our inversion loop, the values of the P-wave velocity (Vp) and rock density (ρ) 

for every pseudo-logs (trace) generated from the WAVESIM algorithm are simulated from 

the estimated kernel density. The simulated values are then fed to the forward-model, 

which produce the synthetic seismograms. The WAVESIM realization that offers the best-

match synthetic seismogram is compared to the input seismic data using a cross-correlation 

function in which an appropriate cut-off (α) is selected. The inversion step is iterated based 

on a pseudo-random path to visit all spatial locations and produce a litho-facies solution 

for each set of WAVESIM realizations. In the pseudo-random path, simulation is 
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performed trace by trace, where pixels within the trace are simulated following a random 

path. For the proposed stochastic inversion, different sets of WAVESIM realizations are 

used for generating different inversion solutions to produce different geologic scenarios 

for the reservoir litho-facies distribution. A post-inversion step is used to evaluate the 

performance of multiple equiprobable litho-facies realizations generated from the 

inversion process. We have generated probability or normalized frequency maps (E-type) 

from multiple litho-facies simulations. 

 

 

 

 

2.2.1 Pre-Inversion Step 

As shown in Figure 2.1, the pre-inversion step includes two-differentiated 

procedures:  litho-facies group definition, and facies simulation. Both procedures are 

independent and provide crucial inputs for the inversion process.  

Figure 2.1: The workflow for the proposed inversion approach. 
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Litho-facies group definition is an essential step for seismic inversion. The 

term group represents the categorical variables (e.g., lithology or fluid) in the well location 

that has similar reservoir characteristics (Gonzalez et al., 2007; Grana et al., 2012; Azizian 

et al., 2018). Additionally, the bivariate distribution of the elastic properties (Vp and ρ) for 

each group is estimated using the elastic properties data collected from the wells, for 

instance, rock physics distribution conditioned to the group or 	  in Equation 2. 

For real applications, rock physics can also be used to predict the elastic properties in the 

drilled wells vicinity, non-sampled areas for the proposed inversion approach (Gonzalez et 

al., 2007; Azizian et al., 2018). 

 

 

 

 

 

 

For clastic reservoirs, two simple groups (e.g., reservoir sand and barrier shale) can 

be identified with their Vp and ρ bivariate distributions, as shown in Figure 2.2 (Gonzalez 

et al., 2007). The conditional probabilities of the Vp and ρ values are calculated based on 

the Kernel density estimation, a non-parametric method to estimate the probability density 

function of a random variable using the data collected from the wells (Gonzalez et al., 

Figure 2.2: A simple clastic reservoir, two-group of litho-facies were identified, each 
group has as associated distribution of P-wave velocity (Vp) and density (ρ) for 
inverting seismic data (Gonzalez et al., 2007). 
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2007, Azizian et al., 2018). The estimated Kernel density estimation is then used to draw 

multiple Vp and ρ samples that are used for the forward modeling in the inversion loop. 

 

 

 

 

 

 

 

 

 

 

 

 

The prior litho-facies map is the key input for the stochastic inversion model. The 

WAVESIM algorithm, which is a pattern-based multiple-point geostatistical simulation 

algorithm, is used for generating the litho-facies map. The WAVESIM algorithm, similar 

to other pattern-based simulation algorithms, is based on two main steps: (i) scanning a 

particular training image by using a predefined template with a specific size 	to 

produce the pattern database; (ii) selecting the best-match pattern to the conditioning data 

event from the pattern database. In the following equation, 	defines the value of the 

training image	 , where 	 ∈ 	and 	refer to the conventional Cartesian grid 

Figure 2.3: A vertical section of 2D training image with 3x3 reference template (up), a 
constructed pattern database (down) consists of the best selected patterns with respect 
to the predefined 3x3 template (Gonzalez et al., 2007). 
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discretizing the training image. In addition, 	designates a particular multi-point 

vector of 	inside a template 	that is centered at the node  (Chatterjee et al., 2012, 

2016). 

																		 , , … , , … , 																						(4) 

where the 	vector defines the geometry of the 	nodes of the template 	and 

1,2, … , . The vector 1 0	indicates the central position 	of the template . 

Template 	is utilized to scan the training image	  to generate the pattern database and 

store the multi-point 	vectors in the database.  

Figure 2.3 shows a simple training image that is scanned by a 3x3 template to 

extract similar patterns from a primitive geologic channel system (Arpat, 2005; Gonzalez 

et al., 2007; Chatterjee et al., 2012; Grana et al., 2012). The selection of the similar pattern 

blocks are relied on the size of the predefined template scanned the training image. Similar 

patterns, consequently, are retained to construct the pattern database (Arpat, 2005). The 

categorical training image with 	groups is converted into  sets of binary values 

, 1,… , , ∈ , 

                                    	 1,0,
			 	 	 	 	 	                             (5) 

The pattern of -categories, therefore, is presented by  sets of binary patterns 

where the 	binary pattern with group value 1	indicates the appearance of category , 

for value 0, otherwise, indicates the nonexistence of  category in a particular position in 

the template . Figure 2.4 reveals the results of four WAVESIM realizations by visiting 

x-location in the well position (Gonzalez et al., 2007; Chatterjee et al., 2012). 

To reduce the computational time of the pattern matching in the pattern-based 

simulation, instead of searching from the entire pattern database, WAVESIM only uses a 

limited number of representative patterns from the pattern database.  To choose the 

representative members, similar patterns are grouped together using a clustering algorithm. 

The implemented WAVESIM is the most widely used clustering algorithm, i.e., k-means 
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clustering, where the number of clusters is selected using the gap statistics (Chatterjee and 

Mohanty, 2015). The representative member from each cluster is selected using the class 

centroid. To further reduce the computational time, the dimension reduction of the pattern 

database is performed using discrete wavelet transformation before applying the clustering 

algorithm. The wavelet decomposition reduces the dimension of patterns by preserving the 

significant data variability by a limited number of variables. In the simulation process, 

sequentially following the random path, the best-matched class is selected conditioning to 

the data event, and then, a random pattern is drawn from the best match class  (Chatterjee 

et al., 2012, 2015, 2016; Mustapha et al., 2013). The similarity between the conditioning 

data event and the representative member of the class is measured by the Manhattan 

distance (Strebelle, 2002; Arpat et al., 2007; González et al., 2007; Mariethoz et al., 2010; 

Mariethoz et al., 2014; Chatterjee et al. 2012; Chatterjee and Dimitrakopoulos 2012). As a 

pre-inversion procedure, WAVESIM generates several facies realizations with the various 

litho-facies spatial arrangements to be used as a necessary input for the forward model in 

the inversion loop. 

 

2.2.2 Inversion   

The identified litho-facies groups, the bivariate distribution of Vp and ρ, the 

WAVESIM facies realizations, and the input seismic data are considered the main inputs 

for the inversion process. Through the inversion, for each litho-facies group indices in the 

pseudo-wells that are generated by WAVESIM, several elastic properties (Vp and ρ) are 

drawn using the Monte Carlo sampling. The acoustic impedance and reflection coefficients 

are calculated for each Vp and ρ values. These reflectivity series are convolved with the 

extracted wavelet from the recorded seismic data to produce a series of synthetic seismic 

traces (Gonzalez et al., 2007; Bosch et al., 2010; Azevedo et al., 2013). Based on the cross-

correlation function with an appropriate cut-off (α: usually less than 1), the synthetic traces 

are compared to the input seismic traces; the best-match synthetic traces is retained. For 

each group of WAVESIM realizations, one realization is selected based on the cross-
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correlation value that provides the best-match synthetic seismogram compared to the input 

seismic. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The WAVESIM main components to generate litho-facies realizations by 
scanning a training image that is conditioned to well-data, searching, and selecting the 
best-match patterns from the pattern database (González et al., 2007; Chatterjee et al., 
2012). 
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For the first WAVESIM realization (Figure 2.4), since all horizontal (x) locations 

or common depth-point (CDP) gathers in the WAVESIM realization with the same 

distance from the wells, the order of visiting all surface locations (x or CDPs) is defined 

by a random path. Following the random path, several pseudo-wells of the elastic properties 

(Vp and ρ) are drawn for each group indices in the WAVESIM realization, as shown in 

Figure 2.5. The generated elastic properties are transformed into synthetic traces by 

calculating their reflection coefficient and then convolving them with the extracted wavelet 

from the recorded seismic data. From the deterministic wavelet extraction method using 

commercial software (i.e., Petrel), the wavelet can be generated by deconvolving a set of 

reflectivity series of a well-tied synthetic seismogram on the well location. The well to 

seismic tie process is based on using sonic and density logs from the available wells to 

generate synthetic seismogram that is well-tied with the input seismic on the well locations 

Figure 2.5: The schematic inversion components of WAVESIM simulation and forward 
modeling on the well position. The synthetic traces are generated through the drawing 
and iteration of the elastic properties. The selection process is based on the cross-
correlation cut-off value of the best-match synthetic traces with the input seismic traces 
(Vp and ρ) (Gonzalez et al., 2007; Chatterjee et al., 2012). 



  

13 

(Bo et al., 2013; Azizian et al., 2018). The computed synthetic traces (black-lines), 

subsequently, are compared to the recorded seismic traces (red-lines) based on the cross-

correlation function with a user-defined cut-off (α). The best-match synthetic traces are 

retained and filled with the solution grid. There might be some traces, where no pseudo-

logs are accepted due to the poor cross-correlation value (less than α) between synthetic 

trace and the input trace. Therefore, after the first iteration of visiting all CDPs locations, 

some locations can still be empty. Then the subsequent iterations proceed. When it goes to 

a previously filled location, it only accepts pseudo-logs that give a better α value compared 

to the previous value. 

 

 

 

 

 

 

Figure 2.6: Four realizations are produced from the WAVESIM algorithm in Figure 4 
and their inversion results; the red synthetic traces present the input seismic, which are 
compared to the generated black traces from the inversion process. WAVESIM three 
represents the best realization that produces the best-match synthetic traces with input 
seismic (Gonzalez et al., 2007, Chatterjee et al., 2012). 
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The proposed inversion approach is terminated when all traces are filled. Figure 2.6 

shows the results of the inversion loop for the four WAVWSIM realizations. For each 

generated set of realizations, one realization is selected that provides the best-match 

synthetic seismic compared to the input seismic data. The solution grid, eventually, is filled 

with the accepted pseudo-logs of the Vp and ρ values for all group indices in addition to 

the corresponding synthetic traces.  

 

2.2.3 Post-Inversion Step 

Each best-realization that is selected from the inversion represents an equiprobable 

geologic scenario of the spatial arrangement of the litho-facies for a given reservoir. For 

generating multiple equiprobable reservoir's litho-facies maps, the inversion loop is 

repeated with different sets of the WAVESIM realizations to generate an optimized 

solution from the inversion process that preserves the major characteristics of the reservoir. 

The generated probability or normalized frequency map (E-type) of all realizations exhibits 

the maximum occurrence of each litho-facies group at each cell on the solution grid. The 

probability or normalized frequency map (E-type) is considered as the best visualization 

tool for optimized solutions (Gonzalez et al., 2007). The variance map is also generated 

from all realizations by the inversion process to evaluate the uncertainty of the inversion 

model.  
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Chapter 3: Validation and Case Study 

The proposed inversion approach is applied to synthetic and real datasets. The 

synthetic dataset is generated with respect to a reconstructed synthetic reservoir, Stanford 

VI-E (Castro et al., 2005).  The real data is from the Penobscot offshore field, Nova-Scotia 

Basin, Canada. The objective of the stochastic solution is to predict the shape and 

distribution of the geologic structures for a given reservoir. In each test, the elastic 

properties for every group indices are inverted using the proposed inversion process to 

predict the spatial arrangement of the litho-facies in the reservoir. 

For the synthetic data set, two tests were performed. In the first test, the training 

image is used as the model itself to verify the inversion approach by forecasting the shape 

and distribution of the sand channels in the inverted solutions. This test validates the 

proposed inversion method by using the training image as the model itself to predict the 

shape and distribution of the reservoir channels that are generated through the inversion 

process. The second test examines the ability of the proposed method by providing a set of 

equiprobable realizations that are produced by using the WAVESIM algorithm. For the 

real dataset, the equiprobable realizations of geological models were developed using 

WAVESIM and borrowing information from the training image. The training image for 

the real application was prepared using the geological interpretation of the well data using 

expert geological knowledge.  

 

3.1 Synthetic Data 

 3.1.1 Inversion Approach for Training Image as a Model Itself 

Figure 3.1 shows a 2D cross-section of a simplified, two litho-facies (two groups); 

channel sand represents the target hydrocarbon reservoir, and the background shale is 

assumed impermeable. This cross-section in Figure 3.1 depicts the training image for the 

proposed inversion technique. The cross-section thickness is 80 m (cells) in the z-direction 
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and contains 150 CDPs in the x-direction with a total length of 3755 m. Also, Figure 3.1 

displays the distribution of the elastic properties Vp (P-wave velocities) and ρ (densities) 

of the predefined cross-section (González et al., 2007).  

 

 

 

 

Figure 3.2 shows the distribution of the elastic properties (Vp and ρ) conditioned to 

the spatial arrangement of the two litho-facies groups (i.e., channel sand and background 

shale) on the position of the selected wells (W1 and W2). The elastic properties of the 

channel sand and background shale are well-differentiated and computed from the mean, 

variance, and covariance for each group indices. Additionally, Figure 3.3 shows the 

bivariate distribution of the Vp and ρ values in the well locations, using the Kernel density 

estimation method for each litho-facies group indices (see Equations 2 and 3). The 

Figure 3.1: The spatial distribution of the (a) geological model (training image) includes 
the two selected wells (W1 at CDP 35 and W2 at CDP 115), (b) density (ρ), and (c) P-
wave velocity (Vp). 
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generated cdf and pdf plots in Figure 3.3 reveals that W1 well has well-discriminated Vp 

and ρ for background shale and channel sand. Therefore, multiple draws of the elastic 

properties (Vp and ρ) from W1 well have been used in the inversion loop. The WAVESIM 

algorithm generates multiple litho-facies realizations by borrowing the required 

information from the geological model (Figure 3.1) and is conditioned to the litho-facies 

group information at the selected wells (W1 and W2). Subsequently, the likelihoods of Vp 

and ρ are drawn trace by trace at all CDP locations in the WAVESIM realizations. 

 

 

 

 

The input seismic section in the inversion process is computed by a convolution 

model using a standard Ricker wavelet (15 Hz - central frequency), as shown in Figure 3.4. 

This bandwidth is intentionally assumed to depict the value of utilizing the proposed 

inversion approach for such complex geologic structures (i.e., channels) that could not 

Figure 3.2: Two selected wells, W1 at CDP 35 and W2 at CDP 115, from the geological 
model shown in Figure 3.1. The two-group litho-facies spatial arrangement in the two 
wells (left) and a cross-plot of Vp and ρ values are colored by the two groups (right). 
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directly be defined from observing seismic amplitudes (González et al., 2007). Table 3.1 

shows the values of the input parameters (template size, number of draws, iteration number, 

number of samples, and cut-off factor) in the first test. The decision to select these values 

is based on trials and observations. These parameters are user-defined and varied based on 

the MPS algorithm, and the inversion procedure. 

 

 

 

 

 

 

 

 

 

Figure 3.3: For W1 well, (a) bivariate cdf and pdf cross-plots for sand and (b) bivariate 
cdf and pdf cross-plots for shale. Similarly, for W2 well, (c) bivariate cdf and pdf cross-
plots for sand and (d) bivariate cdf and pdf cross-plots for shale. 
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Parameter description Value 

WAVESIM template size (11,11) 

Elastic properties draw 20 

Elastic properties iterations per CDP 20 

Sampled CDP 1 

Cross-correlation factor (α) 0.8 

Table 3.1: Summarized values of the input parameters for the validation test. 

Figure 3.4: The input seismic section passing through the two selected wells in the 
geological model (training image) in Figure 3.1, which was estimated by utilizing a 
standard Ricker wavelet with 15 Hz of the central frequency, and was plotted every 
fourth trace with a wiggle trace. 
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Figure 3.5: Iteration results obtained from the inversion process for the geological 
model (training image) in Figure 3.1 after 20 iterations and 20 draws. 

Figure 3.6: Three solutions by running the proposed inversion process with the same 
criterion parameters in Table 3.1 separately. 
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Figure 3.5 shows several results of twenty iterations, where there is a significant 

enhancement in the initial model through iterations. In the initial iterations (iteration 1 and 

2), substantial portions of CDPs are not filled because no pseudo-logs are accepted due to 

the low cross-correlation value (lower than the cut-off (α)). The empty CDPs are then 

getting filled with the increasing iteration number (iteration 12, 16, 20). In this synthetic 

test, the most difficult locations to fill were the first ten CDPs, besides the CDPs between 

133 and 137, due to the presence of low acoustic impedance shale in the entire CDPs that 

produces low seismic amplitudes. However, by increasing the number of draws and 

iterations, these empty locations are started to be filled, except for a few spots of CDPs. By 

running the inversion several times with the same criterion parameters (Table 3.1), the 

resulted solutions were almost similar. Figure 3.6 shows three equiprobable final 

realizations from the inversion; each solution was obtained from a separate run for the 

proposed inversion approach with the same criterion parameters. Figure 3.7 shows the best-

Figure 3.7: Input seismic, produced synthetic seismic, and the difference sample-by-
sample between them (residual) for all solutions after 20 iterations of the proposed 
inversion approach. 
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match synthetic seismogram that was generated from the first solution and compared it to 

the input seismic data. Likewise, the other solutions in Figure 3.7 provide similar results 

for the generated synthetic seismograms. These solutions are quite identical and 

demonstrate the inversion performance in reducing the uncertainty of predicting the litho-

facies spatial distribution for the reconstructed Stanford VI-E synthetic reservoir. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Inversion Approach for Multiple Sets of Realizations  

In this test, the WAVESIM algorithm was used to simulate equiprobable prior 

geological models from a conceptual geological model, (i.e., training image), to produce 

several litho-facies realizations (Gonzalez et al., 2007; Chatterjee et al., 2012). Table 3.2 

shows the values for the assigned parameters that were used in the second test. Table 3.2 

Parameter description Value 

WAVESIM template size (11,11) 

Elastic properties draw 30 

Elastic properties iterations per CDP 6 

Sampled CDP 1 

Cross-correlation factor (α) 0.8 

WAVESIM realizations per CDP 10 

Table 3.2: Summarized values of the input parameters for multiple realizations. 
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parameters have been selected are very similar to Table 3.1, except the number of draws 

and the number of repetitions due to the litho-facies distribution of the generated 

realizations has distinct spatial arrangement than in the conceptual geological model used 

in the previous test. As it has mentioned above, these values in Table 3.2 are user-defined 

and can be modified for various datasets accordingly. In the inversion process, each 

solution is generated by visiting all surface locations for each realization eight times until 

filling the solution grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Probability or normalized frequency maps (E-type) for the two assigned 
lithofacies groups (sand and shale), from the geological model in Figure 3.1, are 
estimated with ten WAVESIM realizations without constraining seismic data, and 
conditioning only to the two selected wells (W1 at CDP 35 and W2 at CDP 115). 
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The probability or normalized frequency map (E-type) is calculated cell-by-cell by 

counting the number of occurrences of each group and dividing by the cumulative number 

of solutions. The probability of each cell concerning each group indices is a crucial element 

in generating the normalized frequency map, which is one of the best ways to visualize 

results (González et al., 2007; Bosch et al., 2010). Figure 3.8 shows E-type maps for the 

two litho-facies groups (channel sand and background shale), generated from ten 

WAVESIM realizations without constraining seismic data. It is observed from the 

probability maps that the higher probability values are observed near the well locations 

(W1 at CDP 35 and W2 at CDP 115). However, as expected, the probability values are low 

at the location away from the two wells. Therefore, the WAVESIM realizations cannot 

precisely simulate the geological features away from well locations without constraining 

the geophysical data. 

 

 

 

Figure 3.9: Input seismic, produced synthetic seismic, and the difference sample-by-
sample between them (residual) for multiple sets of WAVESIM realizations after six 
iterations and 30 draws of the proposed inversion approach. 
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The generated synthetic seismogram after 30 draws and six iterations of the elastic 

properties through the inversion is compared with the recorded seismic data, as shown in 

Figure 3.9. For all solutions that are obtained from the inversion loop for multiple sets of 

WAVESIM realizations, after six iterations, the difference (sample-by-sample) between 

the generated synthetic seismogram and the input seismic data remains constant. The 

sample-by-sample values are estimated from the residual seismic section and reveal tiny 

differences between the original and synthetic seismograms, which lead to the borders of 

the channels were less continuous with gaps within some channels for some obtained 

solutions from the inversion loop, as shown in Figure 3.10. 

 

 

 

 

 

Figure 3.10: Four solutions obtained from multiple sets of the WAVESIM realizations 
after six iterations and 30 draws of the proposed inversion approach. 
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In the inversion, different sets of WAVESIM realizations were used as prior 

solutions for generating different inversion solutions to produce different geologic 

scenarios for the reservoir litho-facies distribution. The normalized frequency or 

probability (E-type) and variance maps for the channel sand and background shale are 

generated, and are shown in Figure 3.11. The shape and distribution of the major geologic 

bodies (sand channels) are precisely localized and observed in the probability maps. It was 

also observed from the probability maps of the inversion solutions that probability values 

away from the well locations are significantly improved as compared to the probability 

maps from WAVESIM (Figure 3.8). From the variance map, it can be seen that the variance 

values are very low near to the wells and increases away from the wells. Overall, the 

stochastic solutions have validated the efficiency of the proposed inversion approach. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Probability or normalized frequency (E-type) and variance maps for the 
two assigned lithofacies groups (sand and shale), from the geological model in Figure 
3.1, are estimated with multiple sets of the WAVESIM realizations constrain seismic 
data, which were computed after 30 draws and six iterations of the proposed inversion 
approach. 
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3.2 Real Data Application 

3.2.1 Exploration History 

Figure 3.12 shows the location of the Penobscot offshore field (Kendell et al., 

2014). Figure 3.13 depicts a 2D time map that exhibiting the structure regime in this area, 

where a down-thrown fault block confines the Middle Mississauga sand reservoir. The 

discovered L-30 well encountered seven thin sand channel pay zones; all of them have a 

thickness of less than 0.6 m. This great discovery motivated the Petro-Canada-Shell to drill 

another exploratory well B-41 in the up-dip from the discovered L-30 well, to follow the 

reservoir extension in this area and evaluate the oil reserves in this field. The B-41 well 

was drilled around 3800 m northwest the discovered well; however, no meaningful oil and 

gas pay zones were estimated, and their traditional tools were failed to follow the 

discovered reservoir. Although the formation well tops in well B-41 is about 15 m above 

L-30 formation tops, the seven thin sand channels in L-30 well were evanesced in the B-

41 well. The unexpected results have caused a great dilemma about future drilling activities 

in the Penobscot field (Kendell et al., 2014). 

The stratigraphic column for the Nova-Scotia basin depicts a deltaic depositional 

environment; these deposits consist of sandstone, siltstone, and shale interbedded with 

limestone streaks, as shown in Figure 3.14 (Campbell et al., 2015). Missisauga reservoir 

was trapped between Upper and Lower Missisauga formation (Kendell et al., 2014). The 

reservoir quantitative parameters (e.g., lithology, Vp, and ρ) were obtained from the logs 

of wells L-30 and B-41. The 2D seismic line was extracted from a 3D seismic cube in the 

intersecting path between the two well locations. A 2D geologic cross-section (training 

image) was acquired from a 3D facies cube that was created through Petrel, in the direction 

parallel to the arbitrary seismic line. All the data mentioned above were used as input 

parameters for the proposed inversion approach. Based on the geological information in 

the Penobscot area obtained from the two wells; Missisauga reservoir encounters three- 

group of lithology (i.e., Channel sand, silty-sand, and barrier shale),  the silty-sand streaks 

has merged with shale due to their similar properties as seal rocks in the reservoir zone. 
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Therefore, two groups of litho-facies were defined; channel sand and barrier shale. Figure 

3.15 shows the crucial well logs from the selected wells (L-30 and B-41). Gamma-ray 

(GR), sonic velocity (Vp), and density (ρ) are the assigned logs that could be used in the 

inversion approach. 

 

 

 

 

 

 

 

 

Figure 3.12: The base map of the given study area, the Penobscot offshore field, Nova-
Scotia Basin, Canada (Campbell et al., 2015). 
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3.2.2 Results 

Figure 3.16 shows the 2D training image that was derived from a 3D geologic 

model. This model represents the distribution of channel sand and barrier shale.  

Numerically, the 3D geologic model has confined 71 and 110 cells in the horizontal x and 

y directions and 20 layers in the vertical direction z.  The horizontal x and y dimensions 

are 50x50 for each cell. In the vertical direction, 15 cells of the model are covered 150 feet 

of the reservoir, 10 feet for each cell. The size of the 2D training image is 152 in the x-

direction and 74 in the z-direction. The input seismic section for the inversion process is 

extracted from the Petro-Canada shell’s 3D volume and covered the distance between the 

selected wells (B-41 and L-30); around 3800 m of seismic traces (CDPs) are separated by 

a 25 m distance in between, as shown in Figure 3.17. The geologic structure interpretation 

in the Penobscot field is based on seismic data, and the flatten surface at 60 ms presents 

the target reservoir. 

Figure 3.13: A 2D structural time map of the top Middle Mississauga reservoir 
encounters the two selected wells B-41 and L-30 (Kendell et al., 2014). 
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 Figure 3.14: Generalized stratigraphic column of the Nova-Scotia Basin, Canada 
(Campbell et al., 2015). 
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Figure 3.16: A 2D training image extracted from the 3D geological model of the 
Penobscot field. B-41 at CDP 1 and L-30 at CDP 152 are the two selected wells for this 
study area. 

Figure 3.17: A 2D near-offset seismic data of the Penobscot field depicts the locations 
of the two selected wells, B-41, and L-30. 
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Figure 3.18 shows the spatial distribution of the litho-facies groups (i.e., channel 

sand and barrier shale) on the B-41 and L-30 wells, conditioned to the distribution of the 

elastic properties (Vp and ρ). The Vp and ρ of the barrier shale group have overlapped the 

elastic properties of the channel sand group. With increasing depth, the elastic properties 

of the sand group cannot be distinctly differentiated from the Vp and ρ of the shale group, 

as well as, the presence of the interbedded silty-sand facies with shale causes this overlap 

with intermediate elastic properties. Figure 3.19 unveils the bivariate distribution of the 

values of Vp and ρ that is estimated by the Kernel density estimation technique for the 

assigned litho-facies groups (Figure 3.18). The generated cdf and pdf plots in Figure 3.19 

shows that L-30 well has well-discriminated Vp and ρ for background shale and channel 

sand than B-41 well. Consequently, multiple draws of Vp and ρ from L-30 well have been 

used in the inversion approach. Table 3.3 summarizes the values of the input parameters 

for this application. Before the inversion step, the pattern database is constructed by 

Figure 3.18: Two selected wells, B-41 at CDP 1 and L-30 at CDP 152, from the 
geological model shown in Figure 3.16. The two-group facies distribution alongside the 
two wells (left) and a plot of Vp and ρ values has colored by the two groups (right). 
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scanning the training image with an 11-by-11 template through the WAVESIM algorithm. 

The WAVESIM technique produces ten lithofacies realizations for the inversion process. 

As mentioned earlier, all the assigned values of the input parameters for the inversion loop 

were selected after several trials and observations. 

 

 

 

 

 

 

 

 

 

Figure 3.19: For B-41 well, (a) bivariate cdf and pdf cross-plots for sand and (b) 
bivariate cdf and pdf cross-plots for shale. Similarly, for L-30 well, (c) bivariate cdf and 
pdf cross-plots for sand and (d) bivariate cdf and pdf cross-plots for shale. 
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Parameter description Value 

WAVESIM template size (11,11) 

Elastic properties draw 60 

Elastic properties iterations per CDP 8 

Sampled CDP 1 

Cross-correlation factor (α) 0.7 

WAVESIM realizations per CDP 10 

Table 3.3: Summarized values of the input parameters for the Penobscot dataset. 

Figure 3.20: Well to seismic tie for the wavelet extraction process from L-30 well. The 
red boxes highlight the high similarities between the input seismic and the synthetic 
seismogram that is created by Petrel. 
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Wavelet is the crucial input in the inversion process to convert the generated 

pseudo-logs of Vp and ρ to synthetic seismic traces, and it should be extracted from the 

original seismic data. Based on the deterministic wavelet extraction method, Petrel 

software was used to generate the wavelet from seismic data, considering the best-match 

for the created synthetic seismograms for both wells. Figure 3.20 shows the correlation 

between the generated synthetic seismogram and the seismic data based on the sonic and 

density logs from well L-30. By doing the well to seismic tie procedure, and since the 

generated synthetic seismogram is quite similar to the original seismic data, the wavelet 

(50 Hz) is extracted from the seismic data. 

 

 

 

 

 

 

Figure 3.21: Input seismic section, produced synthetic seismic, and the difference 
sample-by-sample between them (residual) for all obtained solutions after eight 
iterations and 60 draws of the proposed inversion approach. 
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In the inversion, for each WAVESIM realization pseudo-well, 60 draws of Vp and 

ρ were sampled for all CDP locations, and the best-fit synthetic traces compared to the 

input seismic traces, accordingly, are retained. After eight iterations, and based on the 

cross-correlation cut-off (0.7), the best WAVESIM realization that produces the best-

match synthetic seismogram with respect to recorded seismic data was selected. Figure 

3.21 shows the generated synthetic seismogram, the input seismic section, and the 

corresponding residual section. The residual section indicates a high similarity between the 

input and synthetic seismic data. 

 

 

 

 

 

 

Figure 3.22: Four solutions are obtained from multiple sets of the WAVESIM 
realizations after eight iterations and 60 draws of the proposed inversion approach. 



  

38 

Stochastically, four different independent solutions (geologic scenarios) that were 

generated after eight iterations of the proposed inversion approach (Figure 3.22). Each of 

these geologic scenarios was resulted from ten WAVESIM realizations, and display 

various spatial arrangement of the litho-facies for the Mississauga reservoir. Figure 3.23 

shows the normalized frequency or probability (E-type), and variance maps from ten 

lithofacies inverse solutions represent different equiprobable geologic scenarios for the 

study area. The shape and distribution of the major geologic bodies (sand channels) are 

precisely localized and observed in the normalized frequency maps. From the variance 

map, it can be seen that the variance values are quite low near to the wells and increases 

away from the wells. The shape and distribution of the major geologic bodies (sand 

channels) are precisely localized and observed in the probability maps. These results 

demonstrate the inversion approach powerful in predicting the extension of the reservoir 

characterization in the Penobscot field and offer an initial step to reconsider the 

development plans for the Mississauga reservoir. 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Probability or normalized frequency (E-type) and variance maps for the 
two assigned lithofacies groups (sand and shale), from the geological model in Figure 
3.16, are estimated with multiple sets of the WAVESIM realizations constrain seismic 
data, which were computed after 60 draws and eight iterations of the proposed inversion 
approach. 
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Chapter 4: Conclusions and Future Work 

We have developed a novel inversion approach that integrates the physical properties of 

litho-facies, geophysical data, and advanced multiple-point geostatistics to generate 

explicit stochastic solutions that precisely localized the shape and distribution of the litho-

facies spatial arrangement that was observed in the conceptual geological models. A 

multiple-point geostatistics method, WAVESIM algorithm, provides a fast technique 

compared to the conventional geostatistical approaches, in generating multiple litho-faces 

realizations based on training image and conditioned to well positions. The Kernel density 

estimation technique affords an appropriate method in estimating the likelihoods of the 

elastic properties (Vp and ρ) and a proper discriminating tool to detect the suitable well that 

subsequently used for the drawing process in the inversion approach. From the probability 

maps (E-type), the generated WAVESIM realizations can correctly detect the geologic 

bodies (i.e., channels) in the well positions of the training image; however, without 

constraining geophysical data, the shape and distribution of channels cannot be identified. 

The results of either synthetic or the Penobscot dataset validate our inversion approach and 

show the strong applicability of this technique in predicting the extension of the reservoir 

characterization in the Penobscot field and offer an initial step to reconsider the 

development plans for the Mississauga reservoir. The probability or normalized frequency 

maps (E-type) provide a powerful visualization tool for the inversion solutions that 

probability values away from the well locations are significantly improved as compared to 

the probability maps from WAVESIM without constraining to geophysical data. It was 

also observed from variance maps of the inversion solutions that variance values are very 

low near to the wells and increases away from the wells.  

This research presented the proposed inversion loop encountered two elastic properties (Vp 

and ρ); however, the proposed algorithm is not limited to acoustic impedance. The elastic 

reflectivities can be estimated inside the inversion loop, and then convolved with the given 

wavelet to produce the appropriate synthetic seismograms. The inversion loop is designed 

to generate a synthetic seismogram in the time domain by utilizing multiple numbers of 
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iterations. As a consequence, this procedure can take a long time of running due to several 

repetitions. The computational time can significantly be improved by generating synthetic 

seismograms in the frequency domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

41 

5 Reference List 

Arpat, B. G., 2005, Sequential simulation with patterns: Ph.D. dissertation, Stanford 
University. 

Arpat, G. B., & Caers, J. (2005). A multiple-scale, pattern-based approach to sequential 
simulation. In Geostatistics Banff 2004 (pp. 255-264). Springer, Dordrecht. 

Arpat, G. B., & Caers, J. (2007). Conditional simulation with patterns. Mathematical 
Geology, 39(2), 177-203. 

Azizian, M., & Davis, T. L. (2018). Stochastic inversion of seismic data by implementing 
image-quilting to build a lithofacies model for reservoir characterization of Delhi 
Field, Louisiana. First Break, 36(9), 47-57. 

Azevedo, L., Nunes, R., Correia, P., Soares, A., Guerreiro, L., & Neto, G. S. (2014). 
Multidimensional scaling for the evaluation of a geostatistical seismic elastic 
inversion methodology. Geophysics, 79(1), M1-M10. 

Azevedo, L., Nunes, R., Soares, A., Mundin, E. C., & Neto, G. S. (2015). Integration of 
well data into geostatistical seismic amplitude variation with angle inversion for 
facies estimation. Geophysics, 80(6), M113-M128. 

Boisvert, J. B., Pyrcz, M. J., & Deutsch, C. V. (2007). Multiple-point statistics for training 
image selection. Natural Resources Research, 16(4), 313-321. 

Bortoli, L. J., Alabert, F., Haas, A., & Journel, A. (1993). Constraining stochastic images 
to seismic data. In Geostatistics Tróia’92 (pp. 325-337). Springer, Dordrecht. 

Bosch, M., Mukerji, T., & Gonzalez, E. F. (2010). Seismic inversion for reservoir 
properties combining statistical rock physics and geostatistics: A review. 
Geophysics, 75(5), 75A165-75A176. 

Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68(1), 
185-198. 

Bo, Y. Y., Lee, G. H., Kim, H. J., Jou, H. T., Yoo, D. G., Ryu, B. J., & Lee, K. (2013). 
Comparison of wavelet estimation methods. Geosciences Journal, 17(1), 55-63. 

Caers, J., Strebelle, S., & Payrazyan, K. (2003). Stochastic integration of seismic data and 
geologic scenarios: A West Africa submarine channel saga. The Leading Edge, 
22(3), 192-196. 

Campbell, T. J., Richards, F. B., Silva, R. L., Wach, G., & Eliuk, L. (2015). Interpretation 
of the Penobscot 3D seismic volume using constrained sparse spike inversion, 
Sable sub-Basin, offshore Nova Scotia. Marine and Petroleum Geology, 68, 73-93. 



  

42 

Castro, S., Caers, J., & Mukerji, T. (2005). The Stanford VI reservoir 18th Annual Report 
Stanford Center for Reservoir Forecasting (California: Stanford University). 

Chatterjee, S., Dimitrakopoulos, R., & Mustapha, H. (2012). Dimensional reduction of 
pattern-based simulation using wavelet analysis. Mathematical Geosciences, 44(3), 
343-374. 

Chatterjee, S., & Dimitrakopoulos, R. (2012). Multi-scale stochastic simulation with a 
wavelet-based approach. Computers & geosciences, 45, 177-189. 

Chatterjee, S., & Mohanty, M. M. (2015). Automatic cluster selection using gap statistics 
for pattern-based multi-point geostatistical simulation. Arabian Journal of 
Geosciences, 8(9), 7691-7704. 

Chatterjee, S., Mustapha, H., & Dimitrakopoulos, R. (2016). Fast wavelet-based stochastic 
simulation using training images. Computational Geosciences, 20(3), 399-420. 

Connolly, P. A., & Hughes, M. J. (2016). Stochastic inversion by matching to large 
numbers of pseudo-wells. Geophysics, 81(2), M7-M22. 

Gloaguen, E., & Dimitrakopoulos, R. (2009). Two-dimensional conditional simulations 
based on the wavelet decomposition of training images. Mathematical Geosciences, 
41(6), 679-701. 

González, E. F. (2006). Physical and quantitative interpretation of seismic attributes for 
rocks and fluids identification. Stanford University. 

González, E. F., Mukerji, T., & Mavko, G. (2007). Seismic inversion combining rock 
physics and multiple-point geostatistics. Geophysics, 73(1), R11-R21. 

Grana, D., & Della Rossa, E. (2010). Probabilistic petrophysical-properties estimation 
integrating statistical rock physics with seismic inversion. Geophysics, 75(3), O21-
O37. 

Grana, D., Mukerji, T., Dvorkin, J., & Mavko, G. (2012). Stochastic inversion of facies 
from seismic data based on sequential simulations and probability perturbation 
method. Geophysics, 77(4), M53-M72. 

Guardiano, F. B., & Srivastava, R. M. (1993). Multivariate geostatistics: beyond bivariate 
moments. In Geostatistics Troia’92 (pp. 133-144). Springer, Dordrecht. 

Haas, A., & Dubrule, O. (1994). Geostatistical inversion-a sequential method of stochastic 
reservoir modelling constrained by seismic data. First break, 12(11), 561-569. 

Journel, A. G., & Ying, Z. (2001). The theoretical links between sequential Gaussian 
simulation, Gaussian truncated simulation, and probability field simulation. 
Mathematical Geology, 33(1), 31-40. 



  

43 

Kendell, K., Brown, D. E., & Smith, B. M. (2014). Geological context and parcel 
prospectivity for Call for Bids NS13-1; seismic Interpretation, source rocks and 
maturation, exploration history and potential play types of the central and eastern 
Scotian Shelf., Canada–Nova Scotia Offshore Petroleum Board, Geoscience Open 
File Report. 

Liu, X., Li, J., Chen, X., Guo, K., Li, C., Zhou, L., & Cheng, J. (2018). Stochastic inversion 
of facies and reservoir properties based on multi-point geostatistics. Journal of 
Geophysics and Engineering, 15(6), 2455-2468. 

Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The direct sampling method to perform 
multiple‐point geostatistical simulations. Water Resources Research, 46(11). 

Mariethoz, G., & Caers, J. (2014). Multiple-point geostatistics: stochastic modeling with 
training images. John Wiley & Sons. 

Mustapha, H., Chatterjee, S., Dimitrakopoulos, R., & Graf, T. (2013). Geologic 
heterogeneity recognition using discrete wavelet transformation for subsurface 
flow solute transport simulations. Advances in water resources, 54, 22-37. 

Ruggeri, P., Irving, J., Gloaguen, E., & Holliger, K. (2013). Regional–scale integration of 
multiresolution hydrological and geophysical data using a two-step Bayesian 
sequential simulation approach. Geophysical Journal International, 194(1), 289-
303. 

Russell, B. H. (1988). Introduction to seismic inversion methods (No. 2). SEG Books. 

Scales, J. A., & Tenorio, L. (2001). Prior information and uncertainty in inverse problems. 
Geophysics, 66(2), 389-397. 

Strebelle, S. B. (2002). Sequential simulation drawing structures from training images. 

Strebelle, S. (2002). Conditional simulation of complex geological structures using 
multiple-point statistics. Mathematical geology, 34(1), 1-21. 

Tahmasebi, P. (2018). Multiple point statistics: a review. In Handbook of Mathematical 
Geosciences (pp. 613-643). Springer, Cham. 

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation 
(Vol. 89).  

Tran, T. T. (1994). Improving variogram reproduction on dense simulation grids. 
Computers & Geosciences, 20(7-8), 1161-1168. 

https://wiki.seg.org/wiki/Open_data 

 


	STOCHASTIC INVERSION INTEGRATING SEISMIC DATA, LITHO-FACIES PHYSICAL PROPERTIES, AND MULTIPLE-POINT GEOSTATISTICS FOR RESERVOIR CHARACTERIZATION
	Recommended Citation

	Microsoft Word - Mohamed Mohamed_summer_2020_with committee coments

