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Abstract: This paper addresses the sizing and design problem of a permanent magnet electrical
machine power take-off system for a two-body wave energy converter, which is designed to support
ocean sensing applications with sustained power. The design is based upon ground truth ocean
data bi-spectrums (swell and wind waves) from Martha’s Vineyard Coastal Observatory in the
year 2015. According to the ground truth ocean data, the paper presents the optimal harvesting
power time series of the whole year. The electrical machine and energy storage static modeling are
introduced in the paper. The paper uses the ground truth ocean data in March to discuss the model
integration of the buoy dynamic model, the power take-off model, and the energy storage model.
Electrical machine operation constraints are applied to ensure the designed machine can fulfill the
buoy control requirements. The electrical machine and energy storage systems operation status is
presented as well. Furthermore, rule-based control strategies are applied to the electrical machine for
fulfilling specific design demands, such as improving power generating efficiency and downsizing
the electrical machine scale. The corresponding required capacities of the energy storage system
are discussed. This paper relates results to the wave data sets (different combinations of significant
wave heights and periods of both swell and wind waves). In this way, the power take-off system
rule-based control strategy determinations can rely on current ocean wave measurements instead of a
large historical ocean wave database.

Keywords: wave energy converter; permanent magnet electrical machine; energy storage;
rule-based control

1. Introduction

Ocean sensing applications require sustained power to measure and collect data during extended
periods in remote locations. This calls for the design of energy systems capable of delivering such
stringent demands. Typical solutions include wave energy converters (WECs), which rely on wave
height to actuate an electromechanical or hydraulic system [1] to generate power. However, this is not
a sufficiently resilient choice as lack of waves and wind can result in no power generated, rendering
the sensors useless. The literature presents solutions in which the WECs are part of hybrid systems,
with either photovoltaic [2], wind [3], batteries, and/or fuel cells [4]. However, most solutions add the
energy storage or alternative generation [5] as an afterthought, rather than considering a combined
design effort for both the WEC and energy storage systems (ESS).

Direct drive WECs have the merit of simplifying the power take-off (PTO) system configuration by
removing unnecessary gearboxes and hydraulic components. They are designed for small or medium
scale applications due to the limited PTO dimensions [6]. The permanent magnet linear generator
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(PMLG) translator can be driven directly by the buoy heave motion. However, slow wave motions and
excessive required control force will demand a high force density on the PMLG system [7]. The PMLG
design study, which aims to improve the power generation efficiency on WECs, has been discussed
in many studies. Magnet layout and field effect design are discussed in [8,9] to improve the PMLG
performances in direct drive wave energy conversion. The lighter translator PMLG design for direct
drive wave energy conversion is also discussed in [10] to improve the translator dynamics. High power
generation demands an increase in PMLG dimensions, including more robust magnet arrays and
longer stroke.

The ESS design for WECs considers off-board or on-board solutions. The location of the energy
storage is related to its function in combination with the WEC. Usually, on-board ESS is limited in size
due to the WEC dimension constraints, and the purpose is to provide short-term power supply for either
buoy motion control [11] or to smooth power fluctuation [12]. For direct drive WECs, the storage is
mostly electrochemical or mechanical, such as batteries, supercapacitors, flywheels [13], etc. Off-board
ESS is normally designed for larger power extraction WEC arrays connected to the grid, where the
energy storage can be located offshore on floating platforms or onshore, and the purpose can be
short-term for power quality improvement [14] or long-term for energy management [15].

1.1. Demands of Ground Truth Inputs and Reactive Power Control

The ground truth ocean data can reflect real ocean wave power dynamics. However, current
researches prefer simplified ocean wave data, such as in [16], which uses supercapacitors to smooth
the extracted power. The ocean wave data is simplified to one set of constant significant wave height
and wave period instead of ground truth ocean wave data. Similarly, using supercapacitors to smooth
WEC power output or to improve the extracted power quality is also studied in [17,18], considering
simplified ocean wave data, where the supercapacitors mitigate the wave power fluctuations with
certain control strategies. However, not using ground truth ocean data would decrease the variance of
the WEC power output, and so would the ESS demand.

Direct drive WEC PMLG damping control strategy has been studied for years [19], where the
inverter and the ESS in the electrical drive must fulfill the requirements to achieve the highest extraction
efficiency and smooth the output power. However, the extracted power cannot approach the optimal
values while using WEC PTO damping control. Comparatively, impedance matching control strategy,
such as complex conjugate control [20], will increase the PTO extracted power significantly. Few studies
discuss impedance matching control on direct drive WECs since applying the control method to the
PMLG will have higher-level demands for the on-board electrical drive.

1.2. The Research Novelty

The procedure to design and size the PTO and ESS system for a WEC system is a challenge.
Current research has yielded the buoy shape design [21] and the dynamic control design [22] efforts
to harvest the optimal theoretical wave energy. However, the total system optimality does not
reflect the actual generated energy in the PTO and ESS electrical drive since the electrical machine
limitations and the electrical power losses are neglected. On the other hand, WEC PTO and ESS
design research, such as wave to wire modeling [23], will focus on the generator dynamic control
strategy and the power management theory instead of presenting the actual PTO and ESS limitations
and operational constraints. This paper presents a novel methodology and procedure of integrating
the PTO and ESS static model to the WEC buoy dynamic model while considering the electrical
machine limitations. This approach can increase the PTO electrical drive design and sizing efficiency,
accuracy, and specificity. Considering PTO operation constraints will correct the deviation between
the buoy theoretical optimal harvesting power and the actual generated power in the electrical drive.
The rule-based control strategy applied to the PTO will increase the electrical drive design flexibility
instead of being excessively over-engineered as is a typical case. While considering the PTO limitations
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and power demands, the ESS sizing algorithm in this paper can downsize the ESS maximumly for
different PTO-ESS-load configurations.

The WEC power output in this paper is calculated based upon ground truth ocean data from
Martha’s Vineyard Coastal Observatory [24]. The ground truth data is available on their website [25].
A small-scale WEC system with a permanent magnet linear electrical machine (PMLEM) will be
discussed. The impedance matching control theory has been applied to WEC buoy control to increase
the extracted power maximumly. The configuration of the two-body WEC system and PTO power
extraction equations are presented in Section 2. The static modeling of the PMLEM and the electrical
drive configuration is introduced in Section 3. By integrating the buoy dynamic model and the electrical
drive static model, the PTO and ESS behaviors are presented in Section 4 by showing voltage and current
flow time series. Rule-based control strategies and constraints are introduced in Section 5. The PTO
and ESS behaviors and demands are also presented in this section while considering implementing
different rule-based control strategies.

2. Martha’s Vineyard Ground Truth Ocean Wave Data and Power Calculation

2.1. Martha’s Vineyard Data Case

Many studies have shown the modeling effort of wave energy resources characterization and
assessment. In [26], the Simulating WAves Nearshore numerical model is introduced and validated
for wave energy estimation in the U.S. east coast region from the Gulf of Maine to South Florida.
Another research [27] evaluates different spectral wave models and applies extreme wave heights
correction to present the extreme wave condition better. In this paper, the ground truth ocean wave
data is measured and collected by the Woods Hole Oceanographic Institution, on their Martha’s
Vineyard Coastal Observatory near the south beach in Edgartown, Massachusetts, U.S. The observatory
infrastructure includes an air-sea interaction tower, located 3 km south of Martha’s Vineyard, and a
12-m underwater node, located 1.5 km offshore [28]. The ocean wave measurements are recorded
and updated as one dataset every 20 mins on the website. One dataset includes significant wave
height (Hs) and significant wave period (T) of swell and wind waves. This paper selects and uses
the wave data of the year 2015. There are 25,116 samples recorded from 3:20 a.m. 1 January to
12:00 p.m. 31 December 2015. In this paper, only when both Hs and T of both swell and wind waves
are available, the dataset is considered as a usable one. According to this standard, there were a
total of 24,950 usable samples in 2015. All these usable datasets are assumed to be time continuous.
In this way, the input time series of the whole year 2015 can be generated, as shown in Figure 1.
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2.2. Power Calculation

The WEC model in this paper is a two-body oscillating system shown in Figure 2. The upper (1st)
body is the buoy, the lower (2nd) body has two discs, which are submerged and moored in the water.
The distance between the two bodies is 2 m. The permanent magnet linear electrical machine (PMLEM)
connects both bodies rigidly, and is driven by their relative motions.
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The equation of motion [29] of the two bodies can be expressed as:

(m1 + m∞,11)
..
z1 + m∞,12

..
z2 + B1

.
z1 + R11

.
z1 + R12

.
z2 + K1z1 = Fe1 + u1

(m2 + m∞,22)
..
z2 + m∞,21

..
z1 + B2

.
z2 + R21

.
z1 + R22

.
z2 + K2z2 = Fe2 + u2

(1)

where m1 and m1 are the mass of the 1st body and 2nd body, m∞,ij is the frequency-dependent added
mass on ith body, which is caused by the motion of jth body at infinity frequency. z1, z2,

.
z1,

.
z2,

..
z1,

..
z2

are correspondingly the displacement, velocity, and acceleration of the 1st and 2nd body. B1 and B2

are the damping coefficients for the 1st and 2nd body, which consist of viscous damping and velocity
constraint damping. The velocity constraint damping is an extra damping that can be adjusted and
applied to the system to guarantee that the two bodies will never have a contact (relative displacement
is not greater than 2 meters). Rij is the frequency-dependent radiation damping on ith body caused by
jth body. m∞, ij and Rij are both obtained by boundary element method solver WAMIT [30]. K1 is the
hydro-static coefficient for the 1st body. K2 is the mooring stiffness for the 2nd body u1 and u2 are the
control forces, which are provided by the PTO actuator. Fe1 and Fe2 are the excitation forces on the 1st
and 2nd body.

Figure 3 presents the power-calculation solution flow chart. The input Hs1,2 (significant wave
heights) and T1,2 (significant wave periods) in the blue block are the ground truth swell and wind
waves datasets from Martha’s Vineyard Coastal Observatory. The bimodal spectrum can be generated
by a standard 2-parameter equation as:

S(ωi) =
2∑

j=1

131.5H2
Sj

T4
j ωi

5
exp[−

1054

(Tjωi)
4
] (2)

where S(ωi) is the power density at the frequency ωi, ωi is one of the selected frequencies in the
frequency vector input in Figure 3 flow chart (blue portion), The whole spectrum should include
all the frequencies in the frequency vector. Hsj and Tj are corresponding to the significant wave
height and period inputs of the swell and wind waves. The Wave-by-wave prediction method has
been applied and it has been explained in [24]. According to Section 2.1, the Hs1,2 and T1,2 datasets
update every 20 min, so that a 20-min long wave record will be generated. The excitation coefficient,
radiation damping coefficient, frequency-dependent added mass and hydra static restoring coefficient
in the orange block can be obtained by the boundary element method solver WAMIT based upon the
buoy design parameters. More details about coefficients calculation are introduced in the WAMIT
manual [30]. The optimal control parameter Kd and Kp can be obtained by the complex conjugate
control method [20] based upon the impedance matching control theory. According to this method,
for regular wave record (only one frequency ωi), the equation of the buoy linear motion can be
expressed in time domain as:

M
..
z + C

.
z + Kz = Fei + ui (3)

where M, C, K, and Fei correspondingly represent the total force from inertia portion, damping portion,
stiffness portion and excitation force of the two-body system, z is the displacement of connected
PMLEM translator, ui is the control force and it can be expressed as:

ui = −Kpiz−Kdi
.
z (4)

where Kpi and Kdi are the optimal control parameters for the regular wave record with one frequency.
Thus, the translator motion equation is:

M
..
z + (C + Kdi)

.
z + (K + Kpi)z = Fei (5)
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To have the optimal extraction power for regular wave record, the velocityneeds to be in phase
with the excitation force, so the optimal control gains can be determined by:

Kpi = ωi
2M−K

Kdi = C
(6)

For irregular wave record with more frequencies (ω1-n), the control gains can be determined by:

Kp =
n∑

i=1
Kpi

Kd =
n∑

i=1
Kdi

(7)

The total optimal control gains (Kp and Kd) of irregular wave record with multiple frequencies
can be determined by the sum of the optimal control gains (Kpi and Kdi) of each included regular
wave frequency.

The wave excitation force time series (Fe in green box Figure 3) is a 1200 s time series according to
the generated wave record. It is calculated by the excitation wave (blue box Figure 3) and the excitation
coefficient (orange box Figure 3). The time step of Fe time series is 0.57 s based upon the frequency
vector input in Figure 3. The optimal buoy velocity (Vop) time series is determined by Equation [20]:

Vop =
Fe

2Kd
(8)

Integrate Vop time series to have the optimal buoy displacement z time series, and the required
control force (Fc in green box Figure 3) is calculated by:

FC = (Kd + R)Vop + (Kp + K)z (9)

where Kd + R represents the system optimal damping and Kp + K represents the system optimal
stiffness, R and K are both determined by boundary element solver WAMIT [30] in the orange box
of Figure 3. Vop and Fc time series are both 1200 s time series with 0.57 s time steps. The optimal
extraction power (Pop) of the buoy is the product of Fc and Vop. Average the 1200 s optimal power
time series of Pop to have one 20-min average optimal power sample.
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2.3. Optimal 20-min Mean Power Time Series of Available Wave Power in 2015

The simulation models in this paper are all generated by Matlab 2019 (Natick, MA, USA). Figure 4
presents the 20-min average optimal power time series of 2015. The different colors represent months
from January to December. The x-axis is the layout of all the 20-min average power samples according
to the time sequence. The annual average power is 1.77 kW, with the total energy amounting to
14.71 MWh. However, the variance of the 20-min average optimal power is significant throughout
the year, especially in January, February, March, April, and October. The maximum power sample
happens in January, where it is higher than 15 kW, and the lowest power is 0.025 kW in March. The
maximum power samples in June, July, August, and September are relatively lower than other months.
In May, November, and December, the maximum power samples are intermediate.
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2.4. Sensor Supporting and Insurfficient Average Power Samples

The sensor application is one kind of phytoplankton remote sensing applications for phytoplankton
measurement. The sensor requires a 0.04–0.06 kW power demand. However, adding losses and
safety factors, a load of 0.12 kW is considered for each sensor. Based on the 2015 power time series
(Figure 4), the required 0.12 kW for one sensor is not met by the optimal extraction power throughout
the year. Table 1 shows all the 20-min samples that are insufficient to supply one 0.12 kW sensor.
The date and time in Table 1 are the actual time when the periods happened in 2015. The index presents
the sequence of the sample in the power time series (Figure 4). In Table 1, there are 19 samples lower
than 0.12 kW in 2015, which is 0.08% of the total usable samples. Some of these 19 samples are highly
separated in different days and months. However, sample 5492 to sample 5557, which includes 53%
of the 19 samples, happened in March. The insufficient power samples (lower than 0.12 kW) will
demand ESS support to fulfill the buoy control requirements and the sensor load power requirement.
The variance between the high-power and low-power samples can also become a challenge for the
PTO and ESS design, especially when the power time series is in small time steps (0.57 s) instead of
20-min. There will be 52,519,750 samples for the whole year if presenting the time series with 0.57 s
step time, which are too many for this paper. Thus, ground truth ocean wave inputs in March will
be selected for discussing the following electrical machine and energy storage system modeling and
integration. The selection is based upon the power variance level in Figure 4 and the insufficient power
sample number in Table 1.
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Table 1. 20-min power samples lower than 0.12 kW.

Index Date Time Power (kW) Index Date Time Power (kW)

3864 2/24/2015 18:40 0.026 5535 3/20/2015 15:00 0.054
5028 3/13/2015 10:40 0.053 5539 3/20/2015 16:40 0.053
5037 3/13/2015 13:40 0.054 5540 3/20/2015 17:00 0.053
5039 3/13/2015 14:20 0.054 5541 3/20/2015 17:20 0.054
5040 3/13/2015 14:40 0.054 5556 3/20/2015 22:20 0.053
5042 3/13/2015 15:20 0.053 5557 3/20/2015 22:40 0.053
5492 3/19/2015 23:40 0.107 5821 3/24/2015 17:40 0.054
5524 3/20/2015 10:20 0.053 5850 3/25/2015 18:40 0.025
5525 3/20/2015 10:40 0.053 5851 3/25/2015 19:00 0.025
5534 3/20/2015 14:40 0.054 - - - -

3. Static Modeling of Power Take-Off and Energy Storage System

The power take-off (PTO) and energy storage system (ESS) design configuration is shown in
Figure 5. In this section, the PTO and ESS model will be integrated to the buoy dynamic model
(Section 2). The inputs from the buoy dynamic model are the optimal buoy speed and required control
force time series with 0.57 s time step. It has been assumed that the PMLEM translator will follow the
optimal buoy speed trajectory when the control force requirements are fulfilled. The PMLEM modeling
can be converted into permanent magnet rotational electrical machine modeling by applying equivalent
radius (req Figure 5), which relates to the electrical machine permanent magnet design parameter,
pole pitch. Thus, the control force requirements input will become torque demands input and the
optimal velocity input will become optimal rotational rotor speed input in this section. Under these
assumptions, the PMLEM dynamic modeling in dq frame is expressed as:

Vd = RSid + Ld
did
dt −ωeLqiq

vq = RSiq + Lq
diq
dt +ωeLdid +ωeϕf

(10)

where the vdq is the inverter voltage, Rs is the stator resistance, Ldq is the inductance in dq frame, idq is
the stator current, ωe is the rotor electrical rotational speed and ϕf is the magnet field flux. The dynamic

terms (
didq
dT ) in the equation can be neglected in the static model.

The d-axes current is controlled to be zero [31]. Then the control required torque and iq can be
expressed as the following equation:

iq =

√
2
3

Te

npϕf
(11)

where Te is the electrical torque of the machine and np is the pole pair number.
According to Equations (10) and (11), Equation (12) is a power extracting constraint for the inputs,

while the PMLEM operates as a generator:

∣∣∣ωeϕf
∣∣∣ > ∣∣∣∣∣∣∣

√
2
3

RSTe

npϕf

∣∣∣∣∣∣∣ (12)

whereωe and Te are the optimal rotational speed and torque demand input time series. The constraint
is required since the designed PMLEM may not be able to fulfill the control requirements for all the
inputs, although it has been assumed to be in the static modeling. If the control requirements cannot
be fulfilled by the PMLEM as a generator, it will be operated as a motor even when there is available
wave energy for extracting. Table 2 shows three different operation modes of the PMLEM.
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Table 2. Electrical machine operation modes while considering power extracting constraint.

Inputs Direction Wave Power Status Equation (12) Constraints Operation Status[
ωe
Te

]
+
+

Not available Not applied Mode 1:
Motor[

ωe
Te

]
−

−
Not available Not applied[

ωe
Te

]
+
−

Available for extracting Fulfilled Mode 2:
Generator[

ωe
Te

]
−

+
Available for extracting Fulfilled[

ωe
Te

]
+
−

Available for extracting Unfulfilled Mode 3:
Motor[

ωe
Te

]
−

+
Available for extracting Unfulfilled
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Figure 5. Power take-off and energy storage system electrical drive configuration.

Based upon Table 2, in operation mode 1, the PMLEM must provide power as a motor for the
buoy to fulfill the control requirements. In mode 2, there is available wave power to extract and the
inputs (ωe and Te) do not violate the Equation (12) constraint, so the electrical machine can extract
wave power as a generator. In mode 3, there is available wave power to extract; however, Equation (12)
constraint is violated, which means the designed PMLEM cannot fulfill the control requirements by
the inputs. Thus, the PMLEM will work as a motor and provide the exact same amount of the required
torque for the buoy control.

The outputs from the PMLEM model are required current (iq) and voltage (vq and vd) time series.
id has been controlled to a constant 0. Therefore, the generated power on d-axis is 0. The controllers
and actuators in the electrical drive in Figure 5 are all assumed to be ideal. The voltage and current
demands will always be fulfilled by these actuators. The actuators behaviors and losses will not be
discussed in this paper. Under these assumptions, the inputs to the following ESS components are also
feedforward and static. Based upon the configuration in Figure 5, the supercapacitor pack will have
rapid responses to fulfill the PMLEM control requirements. It can either store or provide energy to
support the PMLEM operating as a generator or a motor. The PMLEM will be controlled to have the
exact required iq to fulfill the buoy control force requirement, and the required current between the
PMLEM and the supercapacitor pack can be determined by iq since the all the components on the bus
have been assumed ideal.

The energy storage module includes a supercapacitor pack and a battery pack, as shown in Figure 5.
The supercapacitor pack has been assumed ideal in this static modeling, except for internal resistance.
The battery cell in the battery pack is modeled based upon the battery equivalent circuit model.
The equivalent circuit is shown in Figure 6.
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In static modeling, the battery equivalent circuit has been simplified to a constant OCV with a
resistor in series. The inductance and capacitance behaviors are neglected in static modeling. Therefore,
the modeling equation can be expressed as:

OCV− ibRi = Vb (13)

where ib is the battery internal current and vb is the battery voltage. The battery pack aims to store the
harvested energy and support the supercapacitor pack and the load sensor in the meantime. The load
sensor connects to the battery pack and requires a constant power supply. One of the ocean sensor
applications requires a constant 0.12 kW power supply with a 120 V DC.

4. PTO and ESS Static Modeling Parameters and Results

The design parameters are shown in Table 3. The design parameters were chosen based upon the
wave power level and buoy control requirements

Table 3. Power take-off and energy storage system components design parameters.

Components Parameters Values Parameters Values

Electrical Machine
req 0.15 m ϕf 25 Wb
RS 2 Ω nP 6
Ld 62.5 mH

Super Capacitor Module
Fully Charged

OCV 800 V RC 0.1 Ω

C 2 F

Battery Pack Module OCV 240 V Ri 6.67 Ω

Sensor Load
Pload 0.12 kW Voltage

Requirement 120 V

Quantity 1

Based upon the buoy dynamic model in Section 2, the optimal velocity (Vop) and the required
control force (Fc) are both time series with 0.57 s time step. For one set of 20-min ocean wave data (Hs
and T of swell and wind waves), there are 2015 samples in the time series. The inputs (Vop and Fc) of
2015 March to the PMLEM are shown in Figure 7. The buoy-required control force in Figure 7 is over
50 kN, and the buoy velocity is below 4 m/s. The strong magnets with large field flux of the PMLEM
design can help to fulfill these requirements. The optimal power output (Pop) from the buoy dynamic
model is the product of the Vop and Fc time series according to the flow chart in Figure 3. The positive
Pop is the optimal harvesting power from the waves to the PTO and the negative Pop is the required
power from the PTO for the buoy complex conjugate control.
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Figure 7. Buoy-required control force and optimal velocity inputs in March.

The electrical machine outputs in dq frame are shown in Figure 8. The vq can reach over 3000 V
according to the figure. The high voltage inverter is required to convert the current from the AC to DC.
To lower the vq, the PMLEM demands increased field flux, pole pair number, or lower req, but it will
cause an increased current flow in the bus. Positive Pqc happens when the PMLEM is in motor mode
and providing power for the buoy control. Negative Pqc means the PMLEM is extracting power from
the waves. The maximum extracting power can be higher than 350 kW and the maximum reverse
power is smaller than 20 kW. The values are very close to Pop but in the opposite power flow direction.
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The supercapacitor pack and the battery pack are the energy storage system for the WEC design
in this paper. The operation status is shown in Figure 9. The iqc is the current from the capacitor to
the PMLEM. Positive current discharges the capacitor and negative charges it. The capacitor needs to
provide the demanded current for the buoy complex conjugate control. The ib is the battery current,
the positive current discharges and the negative charges. The battery pack will support the sensor
load and store all the energy from the capacitor. Furthermore, the battery can also charge the capacitor
back to the desired SOC level. In this design, the battery current in Figure 9 is the sum of the current
to the capacitor and the current to the load sensor. The max charging current for the battery pack
can reach 200 A. According to Figure 9, the stored energy amounts to 1168 kWh in the whole month
if the battery pack pre-charged level is 0. The required capacity for the battery pack is excessive to
store all the extracted energy. The designed PTO can harvest much more energy than one of the
applications demanded.
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5. Power Take-Off and Energy Storage System Rule-Based Control

Rule-based control can ensure that the PTO and ESS designs are more specific for the
required demands. Based upon the results in Section 4, there is much excess energy stored in
the battery pack while supporting one load sensor. The rule-based control strategy can be applied to
downsize the PTO and ESS systems scale and increase the design feasibility.

5.1. Electrical Machine Generating Efficiency Constraint

The PMLEM working efficiency varies significantly during the whole month. According to Table 2,
the PMLEM does not need to fulfill any efficiency constraint while working in motor mode, since the
buoy may still require a large control force when the oscillation speed is almost 0. However, if the
generating efficiency is too low, the extremely small extracting voltage and current requirements
will be difficult to be fulfilled by the following components in the electrical drive. Concerning this,
a generating efficiency constraint can be applied to filter out low generating efficiency inputs (Fe, Vop)
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and fulfill the control requirements by operating the PMLEM in motor mode. Based upon the static
modeling, the electrical machine generating efficiency is:

η =

√
3
2

i2qRS

Teωm
(14)

where ωm is the equivalent mechanical rotational speed (converted from Vop by applying req) of

the generator rotor, and
√

3
2 is a scale factor when calculating power in dq frame. Based upon the

former sections, the inputs to the PMLEM model are Te and ωe time series, which are converted from
the buoy dynamic model outputs Fe and Vop time series. Thus, the electrical machine generating
efficiency constraint can be applied by the following equation:

Te

ωe
≥ (100%− ηb)

√
3
2

3npϕf
2

2RS
(15)

where ηb is the efficiency boundary to filter the inputs.
Figure 10a shows all the generating points of March on a generating efficiency contour map

of the designed PMLEM (Table 3). The lowest efficiency is almost 0. There are no data points on
the negative efficiency portion (dark blue area) owing to the generating constraints (Equation (12)).
The maximum generating efficiency of the month can be above 99%. The efficiency boundary is set
to 70% in Figure 10b. After filtering, the generation time is 82.23% of the month, which was 82.89%
before filtering (29,688 inputs have been filtered out). The slight decrease in generating time can barely
change the charging/discharging behavior of the supercapacitor pack and the battery pack. The stored
energy in the battery pack decreases to 1167 kWh from 1168 kWh.
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min long period. Thus, if the maximum required control force of one bi-spectrum is greater than the 
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Hs and T required control force matrixes are shown in Figure 11. The color bar shows the average 
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5.2. Required Control Force Limitation for Downsized Electrical Machine

The buoy control force demands based upon complex conjugate control must be fulfilled by
the PTO. The buoy design in this paper can extract more wave energy than one sensor load demand
but requires a large control force (over 50 kN according to Figure 7). If the electrical machine can fulfill
the large control force requirement, the WEC system can operate without any breaks. In this case,
the designed electrical machine can be downsized to fulfill the specific ocean sensor power demand
instead of generating much excess energy stored in the battery. The downsized electrical machine will
only work when small wave oscillations engage, and it will be locked down and enter a safe mode
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when aggressive waves come to prevent the PTO components from being crashed by aggressive waves.
The required control force output and optimal extracting power output from the buoy dynamic model
will be 0 while the WEC is in safe mode. According to the Martha’s Vineyard Observatory ocean
wave data, one set of bi-spectrum wave data can present the wave status in a 20-min long period. Thus,
if the maximum required control force of one bi-spectrum is greater than the PTO limitation, the WEC
will be locked down for 20 min.

Hs and T required control force matrixes are shown in Figure 11. The color bar shows the average
extraction power of 20 min. The average extraction power increases with PTO maximum control force
limitations (MCFL) increase. When the MCFL is 10 kN, only small waves can be captured by the buoy,
so the average extraction power is low. If the MCFL is increased to 50 kN, the average extraction power
can reach over 3000 W. However, the increased MCFL does not have a simple linear correlation with
the increased average extraction power.
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Figure 11. MCFL matrix.

The matrix in Figure 11 is for a single spectrum. The maximum required control force threshold
of the bi-spectrum can be determined by the sum of the maximum required control force of the swell
spectrum and the wind waves spectrum. Therefore, the maximum bi-spectrum MCFL PTO constraint
can be expressed as:

MCFLbi ≥MCFHS1T1 + MCFHS2T2 (16)

where MCFLbi is MCFL of the bi-spectrum, MCFHs1T1 and MCFHs2T2 are the maximum required control
force of one set of swell and wind waves inputs. The MCFLbi can represent the theoretical maximum
required control force of the bi-spectrum, but the actual required control force can be smaller than this
value due to phase differences at the same frequency between the two spectrums. However, it is more
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common to use power to size electrical machines instead of the max torque the machine can provide.
Thus, the maximum power limitation (MPL) constraint for the PMLEM can be expressed as: MPLbiG ≥ max(ωeG(t)

np
TeG(t))

MPLbiM ≥ max(
√

3
2 vqM(t)iqM(t))

(17)

where MPLbiG,M is the MPL constraint for the bi-spectrum when the PMLEM is in generator or
motor mode;ωeG(t) and TeG(t) are the rotational speed and torque time series inputs to the PMLEM
according to the bi-spectrum while the PMLEM is in generator mode; vqM(t) and iqM(t) are the voltage
and current time series in dq frame when the PMLEM is in motor mode. The max power of the inputs
to the PMLEM must not be greater than the MPLbiG,M; if it does, the inputs time series cannot be
accepted by the downsized PMLEM and the WEC system will be locked down for 20 min.

5.3. Results with Constraints Applied on the Electrical Machine

The MPLbi of the PMLEM has been set to 30 kW. The constrained inputs (Fc and Vop) are shown
in Figure 12. According to Figure 12, the continuous 0 values (gaps) are seen in the time series when
the WEC is locked down. The required control force (Fc) and the optimal buoy velocity (Vop) will be
0 in the lockdown periods, so will the optimal extracting power (Pop). It has been assumed that the
WEC buoy will go back following the optimal velocity trajectory without any delay after releasing
the lockdown. The maximum required control force is less than 25 kN, which means that only small
waves can be captured by the buoy based upon the Figure 11 matrix. The maximum Vop decreases to
about 2 m/s from 4 m/s compared to Figure 7. The maximum Pop is always smaller than 30 kW.
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The downsized PMLEM has different parameter setups. The field fluxϕf has been decreased down
to 10 Wb from 25 Wb. Small permanent magnets can still fulfill the input requirements. Because the
parameters have been modified, the generating efficiency contour map of the PMLEM is changed
as well. While considering the same generating efficiency constraint (70%), the updated generating
efficiency contour map is shown in Figure 13.
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The slope of the high-efficiency boundary (90%) in Figure 13 decreases significantly (comparing
to Figure 10) because of the decreased magnet field flux. While applying the MPL and generating
efficiency constraints, the generating time only takes a 20.64% of the whole month. The PMLEM
outputs are shown in Figure 14.
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In Figure 14, the PMLEM output vq decreases to lower than 1000 V from 3500 V, vd decreases to
150 V from 780 V. The decreased voltage will increase the design feasibility for the following components
in the electrical drive. The current iq is on the same level comparing to Figure 8. There are no samples
in the Pqc time series having power higher than 30 kW since the inputs have been constrained to 30 kW.
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With the updated parameters, the capacitor pack fully charged OCV can also be decreased to 300 V
(comparing to Table 2) and the pre-charged level can be decreased to 270 V. The energy storage system
behaviors are shown in Figure 15.
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According to the graph in Figure 15, the current flows (iqc and ib) decrease significantly comparing
to Figure 9. The current ib is slightly higher than 0 when the WEC is shut down since the battery
pack needs to keep discharging to supply the load sensor. The required battery pack capacity can be
decreased to 140 kWh from 1168 kWh in Section 4. According to the input required control force in
Figure 12, the max control force is smaller than 25 kN. The 20-min average extracting power will be
smaller than 0.4 kW based upon the MCFL matrix in Figure 11. Moreover, the generating constraints
have filtered generating inputs down to about 20%. Thus, the average generating power of the whole
month will be even lower.

With this downsized PTO, the extremely high voltage (over 3500 V DC) and current fluctuations
requirements can be eliminated. The sensor load power demand can still be fulfilled with the small PTO.
The amount of stored energy in the battery pack is still large. Supporting multiple sensor loads can be
considered to size the PTO and the battery pack in the most efficient way. The problem of the required
battery capacity will be discussed in the next section.

5.4. Battery Pack Sizing for Multiple Sensor Loads with PTO Power Limitations

Supporting multiple sensor loads will be considered in this section since the amount of the stored
energy in the battery pack is large when the PMLEM is in aggressive waves. The design parameters
of all the other PTO and ESS components will remain the same as in Section 5.3 except for the PTO
power limitations and the battery pack capacity. The flow chart in Figure 16 presents the battery pack
sizing algorithm.

In Figure 16, the inputs are the battery current (ib). Integrate ib from time 0 to time tn to obtain the
total extracted net energy at tn. Enet is the net energy at different times. The Enet is used to determine the
maximum value of the extracted energy to be stored in the battery pack. Edis is used to determine the
maximum value of the discharged energy while the wave power is not sufficient. If Enet(tn) is positive,
it means the wave power is not sufficient (positive ib means discharging) and the value of Enet(tn) is the
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energy that the battery pack needs to provide by time tn. A positive Enet(tn) value will be integrated
to the following Edis(tn+1) calculation. If Enet(tn) is negative (negative ib means charging), it means
the wave power is sufficient at time tn, a negative Enet(tn) value will be fixed to 0 for the following
Edis(tn+1) calculation. At the end, the greater one of the maximum absolute values of the Enet and Edis

is the required capacity of the battery pack.
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Based upon different MPL setups and sensor load numbers, while using the sizing algorithm in
Figure 16, the required capacity (Creq) of the battery pack module can be obtained, as shown in Table 4.
According to Table 4, the required capacity numbers that have been bolded are acceptable as WEC
on-board battery pack design considering the space constraints. When the MPL is small (10 kW, first
row in Table 4), the Creq increases, as does the sensor load number. It means the wave power is not
sufficient and the discharged energy (Edis) determines Creq values. Increasing the load number will
consume more energy, so the maximum absolute value of Edis increases. When the MPL is greater (such
as 100 kW), the wave power will be sufficient and the stored energy (Enet) will determine Creq values.
Thus, Creq decreases with an increasing sensor load number since more loads consume more stored
energy. The design of 50 kW MPL and 6 sensor loads is a promising combination according to Table 4
since it is at the boundary of sufficient and insufficient wave power design, so the extracted wave
power can be utilized maximumly. For greater MPLs, such as 250 kW, the PTO can support more
sensor loads (about 89 kWh per load per month) than it shows in Table 4. While increasing the sensor
load number, the boundary will be noticed as well. The PTO and ESS sizing will be more specific and
efficient while considering the sizing strategies in this section.

Table 4. Battery pack sizing for different PTO MPLs and loads in March.

MPLs 1 Sensor 2 Sensors 3 Sensors 4 Sensors 5 Sensors 6 Sensors 7 Sensors

10 kW 169 kWh 110 kWh 195 kWh 280 kWh 366 kWh 451 kWh 537 kWh
50 kW 436 kWh 352 kWh 265 kWh 180 kWh 94 kWh 65 kWh 112 kWh
100 kW 887 kWh 802 kWh 716 kWh 631 kWh 546 kWh 460 kWh 375 kWh
150 kW 1076 kWh 990 kWh 905 kWh 820 kWh 734 kWh 649 kWh 563 kWh
200 kW 1196 kWh 1110 kWh 1025 kWh 939 kWh 854 kWh 768 kWh 683 kWh
250 kW 1255 kWh 1170 kWh 1084 kWh 999 kWh 913 kWh 828 kWh 743 kWh
300 kW 1264 kWh 1178 kWh 1093 kWh 1008 kWh 922 kWh 837 kWh 751 kWh

6. Discussion and Conclusions

The PTO and ESS design cannot be isolated from the buoy dynamic behaviors and control
strategy requirements. The optimal extracting power from the buoy can be achieved only when the
control requirements can be fulfilled perfectly well by the PTO. This paper discusses the integration
methodology between the buoy dynamic model and the WEC PTO electrical drive model. High demand
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control inputs will give stringent design requirements to the PTO and ESS components. According to
the results in Section 4, the required control force can be higher than 90 kN while the translator speed
is around 4 m/s. The PMLEM design will be very limited by this stringent demand. Furthermore,
the converted high power from the slow buoy motion will result in current fluctuations in the bus,
while it will influence the electrical drive design and ESS design significantly. Instead of capturing
all the optimal wave power, the PTO and ESS should be designed to fulfill the demand of selected
applications and purposes. The operation constraints and rule-based control strategies introduced in
Section 5 can improve the PTO and ESS design efficiency. In this paper, the sensor load power demand
can be fulfilled by a small-scale PMLEM instead of a larger one extracting excess energy. The high
voltage bus can be decreased to 1000 V from 3500 V. The definitions of MCFL and MPL are also
introduced in Section 5.2. The Hs-T-MCFL matrix in Figure 11 can help future PTO and ESS sizing since
it relates the MCFL and the average power to the ground truth Hs and T. Such as the 30 kW PMLEM in
this paper, the MCFL would be lower 25 kN according to Figure 12. If the sum of the required control
forces of the bi-spectrum is greater than 25 kN, then the waves can be too aggressive for the PMLEM.
In this way, for a specific ocean area with a certain WEC buoy design, the PTO and ESS can be designed
and sized for the future without relying on a large amount of historical ocean data. The static modeling
of the direct drive WEC PTO electrical drive is enough to determine the dominant parameters set-up
for the PTO and ESS design. To further improve the PTO and ESS design reliability and specificity, the
dynamic behaviors of actual electrical drive components can be integrated. An optimization strategy
can also be applied to determine the optimal rule-based control boundaries in the future.
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