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Introduction 

Recently, many advances in the synthesis and surface engineering 
of iron oxide nanoparticles have been made [1]. Moreover, there 
are still newly formed magnetic nanoparticles proposed (bio glass 
ceramics [2, 3-10] and hydroxyapatite [4,5]. Hydroxyapatite (HAP), 
being the main mineral phase of natural bone, is a commonly 
studied material for biomedical applications [6-8]. It is commonly 
used in bone grafting and tissue engineering applications due to 
its excellent biocompatibility and osteon-conductivity [9]. HAP, 
Ca10(PO4)6(OH)2, has a hexagonal crystal lattice structure [10-28], 
which allows for a wide variety of substitutions by anions, cations, 
and functional groups, such as the F- [11], Fe2+/3+ [4, 12-16], and 
CO3

2− [17]. Iron is of interest as a cation that can be substituted 
in HAP due to the fact it is naturally present in trace amounts in 
both teeth and bone [13]. Furthermore, its presence provides iron 
substituted apatite (FeHA) with possible magnetic properties that  

 
can potentially be applied to various applications, including drug 
delivery, medical imaging, or hyperthermia-based cancer therapies, 
for which pure HAP is unsuitable [1,14,18-22]. Magnetic therapy 
has been considered as a promising treatment alternative in health 
care, especially in the treatment of bone diseases. Research has 
indicated that magnetic fields may stimulate the proliferation and 
differentiation of osteoblasts, promote the expression of growth 
factors such as bone morphogenetic protein, increase osteon-
integration, and accelerate new bone formation [23-26]. Magnetic 
fields were also found to be beneficial in promoting the integration 
of bone and implants, increasing bone density and calcium 
content, and accelerating the healing of bone fractures [27-30].  
Among the magnetic materials usually used in the biomedical field, 
magnetic nanoparticles (MNPs) have drawn great interest owing 
to their unique magnetic properties, including the fact that they 
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ARTICLE INFO Abstract

Hydroxyapatite (HAP-- Ca 10(PO4)6 (OH)2) is a biocompatible and bioactive material 
that is widely used for biomedical applications, especially in bone replacements.  It has 
good load carrying capacity; however, it lacks antibacterial property. New bio-composites 
based on bovine hydroxyapatite doped with, magnetite iron oxide (HAP/ Fe3O4) matrix 
reinforced with ZnO and MgO nanoparticles are proposed for biomedical applications 
that provide improved antibacterial activity with potential to be used in magnetic therapy.  
Microwave sintering was used to manufacture the composites. The microstructure 
evolution in these composites were studied by Scanning Electron Microscopy (SEM) and 
Energy Dispersive Spectroscopy (EDS). Density, microhardness, compressive strength 
of the composites was measured and compared along with their magnetic properties. 
Finite element analysis simulations were performed for the compression tests.
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become superparamagnetic at diameters of < 20 nm [31]. Although 
the role of iron in bone accrual has received little attention, a 
few studies have previously shown that iron restriction can have 
an inhibitory effect on the mineralization of osteoblasts in vitro 
and experimental evidence also suggests that there may be some 
positive association between iron metabolism and the in vitro 
proliferation of bone or non-bone cell lines [32-37].   Additionally, 
the implant associated infection is widely considered as a major 
concern in the field of biomedical applications and this has been 
the driving force for developing HAP-based biomaterials with 
antibacterial additives for possible use in prosthetic devices. In our 
present work, we sintered Hydroxyapatite (HAP) with different 
concentrations of zinc oxide micro rods (ZnO) at 1250°C to produce 
HAP-ZnO bio composites. In vitro antimicrobial studies were 
carried out to understand how ZnO addition (up to 30 wt %) to HAP 
leads to the improvement in bacteria static/bactericidal property 
and thereby reduce bacterial infection on implant surface. Some 
of the biomedical based research have shown that addition of ZnO 
also had a modest influence on fracture toughness and hardness as 
well as improving the antimicrobial property. 

A maximum up to 1.7 MPam1/2 indentation fracture 
toughness and hardness of up to 6.8 GPa were measured in HAP- 
ZnO bio composites [38-51]. Other researches have also shown 
that the additions of reinforcing elements like ZnO and MgO in 
HAP/magnetic iron oxide composites could reduce the bacterial 
infections on the surface of the composites and increase their 
hardness which is a positive feature for different medical implants 
[2,10,11]. For this reason, the current work aims to present the 
design of new bio-composites based on bovine hydroxyapatite 
(BHA)/nano-magnetite iron oxide (Fe3O4) reinforced with ZnO and 
MgO nanoparticles. Here, in the frame of the “Bio ceramic” research 
project, a net shape microwave sintering procedure was used by 
using a few percent of paraffin to create a natural micro porous 
structure as an alternative to the other materials to create a porous 
structure. A special attention was given for the microstructural 
evolution with recently developed compositions to give practical 
significance for the application as biomaterials. Mechanical and 
other physical-chemical characteristics were studied in detail. The 
structure evolutions of these composites were observed in detail 
by means of Scanning Electron Microscopy (SEM) and Energy 
Dispersive Spectroscopy (EDS).  

Experimental Conditions 
HAP-Materials Processing and Microwave - Sintering

Natural HAP was obtained from calcinated fresh - young bovine 
bones (femurs) by following the method developed at SUPMECA/
LISMMA-Paris [2,10]. The femurs were undergone deproteinization 
with NaOH treatment. After repeated washing, they were heat 
treated at 850°C. The treated HAP powder (particle sizes of 1-2μm) 
was the mixed with other constituents as described in Sec 2.2. 
In this work, microwave sintering process has been carried out 

for the manufacturing of the bio-composite materials details of 
which were given in earlier papers [2,10,11]. The application of 
microwave energy to the processing of various materials such as 
ceramics, metals and composites offers several advantages over 
conventional heating methods. Microwave heating results in lower 
energy costs and decreased processing times for many industrial 
processes. These advantages include unique microstructure and 
properties, improved product yield, energy savings, reduction in 
manufacturing cost and synthesis of new materials. 

In order to compare the microstructural evolution of 
microwave sintered composites to the ones manufactured by 
conventional sintering, some specimens were sintered in an 
electrical - conventional furnace (High Temperature Furnace. 
In this project, the primary aim, however, is to use a house type 
microwave oven under laboratory conditions. For this reason, a 
house type (2.45 GHz) microwave oven was modified to be used in 
the manufacturing process. A special thermocouple, insulated for 
the microwaves, was installed to monitor the temperature during 
production. The accuracy of temperature measurement with this 
device was determined to be within -10°C of the temperature 
measured. The thermocouples were placed inside the alumina 
ceramic crucible, 2-3 mm away from the specimens. Compared to 
the conventional sintering, there was a slight increase in density of 
the specimens manufactured with microwave sintering. Since the 
microwave sintering took much shorter time, densification rate in 
the microwave sintering process may be considered to be higher 
than in the conventional sintering. Effective sintering time for these 
samples was chosen as 30 minutes. 

Specimen Design and Other Experimental Design 

The compact geometry was prepared based on the matrix 
natural HAP + 20wt% magnetic iron oxide (Fe3O4) reinforced 
with different percentages of nano MgO and ZnO (received from 
VWR-France). At the beginning of the process, a pre-treatment of 
doping of iron oxide was made with the reinforcements for surface 
activation and for increasing of homogeneous distribution of the 
reinforcements in the matrix. For this treatment, a very simple 
process has been carried out: pre-mixing and pre-heating of the 
magnetic iron oxide (Fe3O4) with the reinforcement at 100-150°C 
followed by surface activation with hydrogen peroxide during the 
mixture at this temperature. Then, the blended powders were 
homogenized by ball milling for two hours, then compacted by 
uniaxial cold isostatic pressing at a pressure of 300 MPa, intending 
to produce an initial green density ranging 85-90%. Cylindrical 
test specimens were prepared (Height=11mm, Diameter=11mm) 
according to the British Standards-BS 7253, In the second stage, 
micro hardness and quasi static compression tests were performed 
on the sintered samples to study the influence of microstructure 
and phase composition on the micro-mechanical behavior of the 
manufactured composites. For microstructural surface analysis 
acetic and lactic acids were used to etch the surfaces. Microstructure 
was evaluated by SEM and chemical analysis by “EDS” analysis. 

http://dx.doi.org/10.26717/BJSTR.2019.21.003649
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Fracture surfaces of the specimens after the compression tests 
were also evaluated by SEM. Magnetic measurements were carried 
out by the physical-chemistry research laboratory in Paris. Two test 
specimens were used for each composite determine the magnetic 
saturation values. The results for the different composites were 
compared to each other. Experimental results were used to create a 
simple Finite Element (FEM) analysis model to study the behavior 
of the bio ceramic materials during deformation. 

Results and Discussions 
Microstructural Evaluation 

General compositions of the HAP based bio composites are given 
in the Table 1.  In the frame of the common research project, only 
three composites were presented here. Basically, HAP was doped 

with pure magnetic Fe3O4 after those secondary reinforcements 
were added as explained in the former section. HAP has a hexagonal 
structure with lattice parameters a = 0.942 nm and c = 0.687 nm. 
The ideal formula of HAP is given as Ca10(PO4)6(OH)2. The atomic 
structure of HAP and its projection along the “c” axis are shown in 
Figure 1. Also, Figure 1c shows the average grain size measured of 
this mixture which varies from 1 to 5µm. This structure verifies that 
the microwave sintering is a viable manufacturing method with 
lower energy costs and shorter processing times for these materials. 
Figure 2 shows the microstructures of natural HAP + 20% magnetic 
iron oxide (Fe3O4) reinforced with different percentages of nano 
ZnO (10%) and MgO (10%) taken from the SEM image with “EDS” 
analysis that was distributed homogeneously in the structure for 
three compositions prepared here.

Figure 1:
a)	 Atomic structure of HAP, 
b)	 Its projection along the c axis [38, 39] and HAP powders after 2 hours of milling used in this work 

Figure 2: Microstructures of three composites obtained after sintering (1200°C, 2 hours), for HAP-1, HAP-2 and HAP-3, 
respectively.

http://dx.doi.org/10.26717/BJSTR.2019.21.003649
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Table 1: Weight percentage of the particles added as reinforcement to the HAP-matrix.

Composite HAP Fe3O4 ZnO MgO BN PVA 

HAP-1 B 20 - - 2 3 

HAP-2 B 20 10 - 2 3 

HAP-3 B 20 - 10 2 3 

Mechanical – Physical Behavior; Density, Microhardness 
and Compression Tests 

A main idea in the improvement of the mechanical and physical 
properties of the implant materials is their mechanical strength. 
Bio ceramics should have strength similar to bone tissue that also 
exhibit a good fatigue and fracture toughness under both static and 
dynamic forces. In the literature, the modulus of elasticity of the 
bone varies from 0.005 to 0.5 GPa, depending on its position and its 
age [38-42]. Simultaneously, the elastic modulus of certain ceramics 
for medical applications is around 380 GPa. Again, it is known that 
the resultant stress gradient may be the origin of the fracture along 
the bone implant interface [38]. Finally, it is not good idea to use 
very hard implant materials that can increase the rate of bone wear. 
In the frame of this present work, all the density measurements 
of the specimens were carried out by using Archimedes method. 
These values varied between 1.79 ± 0.15 g/cm3 for HAP-1 and 

2.05 ± 0.25 g/cm3 for HAP-2 and 2.19 ± 0.30 g/cm3 for HAP-3 
respectively. Again, microhardness tests results measured on the 
3 specimens for each composite were found as 95 ± 0,25 HVN for 
HAP-1 and 225 ± 0,12 HVN for HAP-2 and finally 321 ± 0,18 HVN for 
HAP-3 respectively. Quasi-static compression test was performed 
on 4-5 specimens for each composition with a servo-hydraulic MTS 
Universal test system (model: 5500R) at an initial rate of 10 mm/
min and second rate of 5 mm/min. Maximum load endpoint was 
5000N. Quasi-static compression test results have been shown 
in the Figure 3. As shown in the Figure 3, the third series (HAP-
3) have shown a little bit higher strength but is more ductile then 
the two others (HAP-1 and HAP-2). Fracture surfaces of these three 
composites are shown in Figure 4. All of these pictures justify that 
microwave sintering give a good solution. A good cohesion in each 
structure is observed on the broken specimens. Influence of MgO 
on the fracture behavior is considerable which was also given in the 
literature [2,10,38,39,43];

Figure 3: Static compression test results for three composites developed in this work, HAP-1, HAP-2 and HAP-3 respectively.

Figure 4: Fracture surfaces after the compression test for three composites, HAP-1, HAP-2 and HAP-3 respectively.

http://dx.doi.org/10.26717/BJSTR.2019.21.003649
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Evaluation of magnetic properties for HAP-1, HAP-2 and 
HAP-3 

Magnetic measurements have been carried out by the physical-
chemistry research laboratory in Paris. Two test specimens were 
used for each composite and evaluated for finding the magnetic 
saturation values (Figure 5) and compared certain parameters 
and summarized in the Table 2. As well known, magnetic 
properties of the composite structures can be improved with 
small grain size distribution well in the matrix especially in the 
nanoscale [2,10,17,21,23,42-55]. As indicated in the former papers 
[2,10,11,17,21,23,38,39,42-55], a basic and important parameter in 
the characterization of the magnetic materials is the power loss; 
this kind of power gives a measure of the energy density available 
in the material for a specific application. Magnetic measurements 

of the Fe3O4/HAP based composites have shown very similar 
quasi superparamagnetic behavior; they give magnetic saturation 
between 7.87 and 8.66 emu/g. As known well that the magnetic 
coercivity (coercivity force) measures the ability of a ferromagnetic 
material to withstand an external magnetic field without becoming 
demagnetized. This value measured for three composites here is 
variable between 0, 05 to 0.07 kA/m (Oe). For this reason, these 
values measured here is very efficient for biomedical applications 
of these composites. It seems that all of the three composites very 
similar value of Ms to be maximized as much as possible to confirm 
a better response under the application of the pieces. These results 
should be considered as the indicative values for three composites 
and other measurements for these composites are going on in the 
frame of the research project. 

Figure 5: Magnetic properties; magnetic saturation curve for the composite of HAP-I-II and III. 

Table 2: Hysteresis parameters of the HAP based bio composites.

Sample Ms (emu/g) Hc (G) 

HAP-1 9,31±0,03 0.07±0,08 

HAP-2 10,03±0,05 0.05±0,09 

HAP-3 7,16±0,18 0.07±0,09 

Finite Element Simulation of the Microstructure of HAP 
Based Composites  

The idealized microstructure considered in this work consists 
of a random arrangement of cylindrical inclusions embedded in a 
continuous HAP bio composite matrix (HAP+Fe3O4). The volume 
fraction of the reinforcements is varied from 5%, 10% to 20% 
and the micro-macro transition schemes are evaluated in many 
cases. However, when the volume fraction increases, nearby the 
reinforcements start to interact and this can influence the overall 
mechanical behavior. The distributions of the reinforcements in 
the matrix were considered randomly and as equal shape and they 

were aligned in similar way. The Representative Volume Element 
(RVE) microstructure is periodic along the 3 directions, permitting 
us to put on periodic boundary conditions to the external faces of 
the specimens. The positioning of the reinforcements is controlled 
by the practical limitation of producing a suitable FE mesh. A simple 
condition is useful to the minimal distance between each inclusion 
surface and the external faces of the specimen. The volume of one 
particular cell for the reinforcements is less than 1mm3.   

In the same way, the representative cells are also meshed 
with quadratic tetrahedral. FE simulations are achieved using 
ABAQUS (2008-Supmeca-Paris) and the whole volume is meshed 

http://dx.doi.org/10.26717/BJSTR.2019.21.003649
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using 4-node C3D4 tetrahedral in ABAQUS), allowing us to 
improved detention the strain gradients in the matrix. After that, 
the prediction was efficiently compared to those obtained with 
finer meshes. It means that comparison of active response is made 
to the regular response of the reinforcement. Figure 6 indicates 
typical meshes formation generated for a composite with various 
percentages of the reinforcements and variable geometry of 
specimens that were used in this work. Evidently, the macroscopic 
stress predicted by the FE analysis is computed from an average 
volume of the stress tensor given at each integration point over the 

RVE of domain “i”. The same method was applied as have been done 
in the former papers of the authors [2,10]: As for the procedure of 
numerical part, it is intended to calculate the macroscopic stresses 
and strains using a homogenization procedure of the numerical 
part. This procedure simply consists on defining the deformation 
state at each integration point, in the FE model, as well as the 
present matrix average state that depends on the corresponding 
state at the previous step time, etc. As known, a simple FE analysis 
proposed here affords an alternative approach for approximating of 
the material properties.

Figure 6: Schematic of experimental setup and position of the composite in FEM (HAP+Fe3O4 additionally reinforced with 
MgO and ZnO).

A simple FE model is proposed here for the heterogeneous 
trial in which the material parameters are considered as variable. 
The simulation is then accomplished, and results can be compared 
to data obtained from comparable experimental results. The 
agreement between the model predictions and the data is 
quantified and judged to be adequate or not. If the settlement is 
not satisfactory, the parameter values can be updated after that 
a new FE model can be produced and run. At the final stage, the 
process carries on until obtaining satisfactory results. This simple 
method constructed here can give understandable and comparable 
predictions regarding to the experimental results. Additionally, 
boundary conditions considered here for the material properties 
should be arranged: it means that a simple boundary condition is 
Ux, Uy, Uz = 0 at the bottom border and also, a negative displacement 
load Uy in y-direction was imposed at the upper face of the 
specimen to make through the rigid plate indenter (see Figure 5 for 
experimental setup and the position of the HAP and reinforcement 
in the FEM for these composites). A static step with small step time 
is used to assess the gradual evolution of stresses and strains in the 
basics model; here, the corresponding reaction force is calculated 
and used to supply the maximum load. 

Certain mechanical properties of the composites designed 
in the present work are then predicted from the reinforcement 
properties. Hydroxyapatite (HAP) bio composite ceramics 
reinforced basically with magnetic iron oxide (Fe3O4), and secondly 

added reinforcements are pure pulverized MgO and ZnO powders 
respectively. The reinforcement materials are assumed to be 
linearly elastic with elastic modulus.  Ep =359 GPa with a density 
of ρ = 5.12 g/cm3 and poison’s ratio υ=0.12 for fine magnetic iron 
oxide (Fe3O4) as a main part of the matrix. Again, Ep =330 GPa 
with a density of ρ = 3.56 g/cm3 and poison’s ratio υ=0.35 for 
pure MgO and Ep =120 GPa with a density of ρ = 5.6 g/cm3 and 
poison’s ratio υ=0.34 for pure ZnO. As a basic data considered for 
the model designed in the present work. The FE solution used to 
simulate multiple-phase composites consisting of an elastic-plastic 
matrix reinforced by linear elastic inclusions. Uniaxial compressive 
loading is successively applied to the multi particle cells embedded 
in the HAP matrix. The average of the macroscopic strain over a 
RVE computed at each time step provides the loading history for 
the corresponding FE models.

  Average equivalent stress in the inclusions of multiple-
phase composite materials is determined for different volume 
fractions of the reinforcing phase. With multiple reinforcements, 
FE predictions (FE with 25-30% volume fraction) correspond to 
a uniaxial compression test. The predictions of the compressive 
results were compared with experimental compression test results 
by using of deformation and maximum stress values (Table 3). The 
average volume fractions for the reinforcements were indicated 
in the same table. For the sake of simplicity, only compressive 
test results were considered by using a rigid plate. As for these 
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comparisons, numerical values were found higher than those of 
experimental. Naturally, experimental conditions in laboratory 
scale are influenced with many artificial reasons occurred during 
the test. Position, porosity, geometry of the specimen and other 
environmental conditions can influence these results whereas 
numerical results obtained by a simple FE model here give the 
results considered for ideal perfect specimens. It should be more 
precious experimental work. These results give a practical solution 
and give idea for industrial applications of these biomaterials. For 
this reason, these results should be accepted as indicative results as 
a helpful tool for manufacturing of new design of bio composites.

Table 3: Comparison of maximum experimental and numerical 
stress values (MPa) for three different compositions.  

Composite Experimental values  
Max Stress (MPa)

Numerical values  
Max Stress (MPa) 

HAP-1 47,1 54 

HAP-2 52.2 58 

HAP-3 55.6 62 

Conclusion

A basic idea in this work is centralized in the improvement of 
the mechanical and physical properties of the bio composites used 
as implant materials. For this reason, new designs of HAP based 
bio composites were developed by using a microwave sintering. 
As is well known, the addition of reinforcing elements such as ZnO 
and MgO in HAP/magnetic iron oxide composites could reduce the 
bacterial infections on the surface of the composites and increase 
their hardness and strength which is a positive feature for different 
medical implants. In the present work, the results obtained with the 
ZnO and MgO reinforcements should be considered as indicative 
values and can help for the manufacturing of these types of bio 
composites.  As for FEM solution, the reaction of the reinforcements 
(considered as inclusions here) in the HAP matrix can be predicted 
based on the solution of the reinforcement in a finite medium having 
the properties of the matrix. Here only a simple FEM allowing 
heterogeneous field was proposed to solve an equivalent inclusion 
problem. Macroscopic deformation histories corresponding to the 
non-monotonic uniaxial and the plane strain compression were 
consecutively considered. Here, a simple prediction has made by 
using a simple FEM Naturally, development of HAP bio composites 
needs more investigations to attempt a high accuracy between 
experimental results and their equivalent FE predictions.
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