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Abstract

Background: Disparate research sites using identical or near-identical magnetic resonance 

imaging (MRI) acquisition techniques often produce results that demonstrate significant variability 

regarding volumetric quantification of white matter hyperintensities (WMH) in the aging 

population. The sources of such variability have not previously been fully explored.

New Method: 3D FLAIR sequences from a group of randomly selected aged subjects were 

analyzed to identify sources-of-variability in post-acquisition processing that can be problematic 

when comparing WMH volumetric data across disparate sites. The methods developed focused on 

standardizing post-acquisition protocol processing methods to develop a protocol with less than 

0.5% inter-rater variance.

Results: A series of experiments using standard MRI acquisition sequences explored 

postacquisition sources-of-variability in the quantification of WMH volumetric data. Sources-of-

variability included: the choice of image center, software suite and version, thresholding selection, 

and manual editing procedures (when used). Controlling for the identified sources-of-variability 

led to a protocol with less than 0.5% variability between independent raters in post-acquisition 

WMH volumetric quantification.

Comparison with existing method(s): Post-acquisition processing techniques can introduce 

an average variance approaching 15% in WMH volume quantification despite identical scan 

acquisitions. Understanding and controlling for such sources-of-variability can reduce 

postacquisition quantitative image processing variance to less than 0.5%.

Discussion: Considerations of potential sources-of-variability in MRI volume quantification 

techniques and reduction in such variability is imperative to allow for reliable cross-site and 

crossstudy comparisons.

Graphical Abstract

Significant variability in white matter hyperintensity quantification can occur as a result of 

variability in standardizing selection of the image center of gravity, software package, thresholding 

techniques, and manual editing procedures. Controlling for such variables can reduce the interscan 

post-acquisition processing variability to less than 0.5%.
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1. INTRODUCTION

Neuroimaging is a critical tool for diagnosing neurodegenerative disease states (Abramson et 

al., 2015), such as vascular dementia and Alzheimer’s disease. The wide-spread availability, 

high spatial resolution, and variety of imaging-sequences afforded by magnetic resonance 

imaging (MRI) make it an ideal imaging modality for evaluation of cerebrovascular 

contributions to cognitive decline. Significant effort has gone into standardizing acquisition 

sequences for multisite studies such as the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) (Vilar-Bergua et al., 2016), and the adoption of such consensus acquisition 

sequences beyond ADNI has allowed a greater degree of cross-study comparisons than 

afforded previously. Despite such standardization in acquisition protocols, post-acquisition 

processing techniques for subcortical white matter hyperintensity volume quantification 

(WMH-VQ) remain variable across studies and research sites. Few studies have examined 

the reliability and reproducibility of volumetric MRI postacquisition processing methods 

(De Guio et al., 2016).

The few studies addressing post-acquisition variability in MRI have focused exclusively on 

structural segmentation methods. Schnack and colleagues (2004) performed a multi-center 

MRI study focused on structural segmentation, where image processing was performed at a 

single site to reduce anticipated variability (Schnack et al., 2004). The study suggested that 

adding a thresholding calibration to the processing algorithm might allow more uniform 

segmentation across sites. However, this study did not assign multiple raters to verify their 

protocol nor did they validate the contention that a protocol including a standardized 

thresholding calibration would reduce cross-site or inter-rater variability. Ramirez and 
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colleagues (2013) further addressed volumetric protocol reliability using three raters and two 

repeat scans (interval ~30 min – 50 days) for twenty subjects (Ramirez, Scott, & Black, 

2013). However, the study did not examine variability between raters. They did comment on 

the issue of variance in the output volumes, which they attributed to brain structure changes 

during the long interval between the repeated scans, rather than inherent variability in post-

acquisition processing. No such studies have as of yet focused on assessing the inter-rater 

reliability of WMH-VQ techniques.

Visual rating scales have been developed for assessing WMH burden. While visual rating 

scales are reasonable choices for clinical evaluation, given their ease of use in facilities 

lacking modern post-acquisition image processing facilities, they are limited by floor and 

ceiling effects and do not allow for the precise quantification necessary for detecting subtle 

changes in imaging characteristics over time (Pantoni et al., 2002). For this reason, semi-

automated and automated techniques have been developed as more reliable and sensitive 

measures for WMH-VQ (Iorio et al., 2013). Despite the inherent benefits of automated post-

acquisition WMH-VQ techniques, the mean values of WMH volume derived from distinct 

studies often demonstrate significant variability with mean volumes ranging from 0.5 – 11.2 

cc3 (~5% of the average WMH-VQ across subjects), across otherwise comparable cohorts 

(Ambarki, Wahlin, Birgander, Eklund, & Malm, 2011; Carmichael et al., 2010; 

Promjunyakul et al., 2015; Ramirez et al., 2016; van den Heuvel et al., 2006; van der Flier et 

al., 2004; Wen & Sachdev, 2004; Wu et al., 2006). Frequently, such differences are assumed 

to be due to differential cohort characteristics. However, given the large number of 

competing protocols in widespread use, it is also possible that inherent sources-of-variability 

in post-acquisition image processing techniques contribute to such variability (Wu et al., 

2006).

Despite advances in the field of quantitative neuroimaging, no universally agreed upon or 

standardized methodologies for WMH-VQ post-acquisition processing exist today, nor have 

the potential sources-of-variability in such protocols been systematically identified and 

addressed. In general, protocols for WMH-VQ use the same basic concepts regardless of 

differences in processing tools (software and algorithms), type of algorithm (semi or fully 

automated), or study design (cross-sectional or longitudinal) including: 1) image 

registration, 2) nonbrain tissue stripping, 3) intensity estimation and thresholding, and 4) 

manual editing (as deemed necessary), yet such differences may influence variability in 

WMH-VQ. As such, an understanding of the sources-of-variability inherent in WMH-VQ is 

critical for comparisons of findings across centers and for the integrity of multi-site studies 

that do not utilize a centralized processing site or a standardized, validated, multi-site post 

acquisition processing protocol. Furthermore, such understanding of WMH-VQ variability is 

essential for interpretation of longitudinal studies examining within-subject change, as the 

potential variability inherent in different quantification protocols (due to advances in 

software or other scientific/technologic factors), whether semi- or fully automated, can 

exceed the annual rate of change in WMH volumes for any given subject. The present study 

systematically analyzed potential sources-of-variability in WMH-VQ procedures that may 

potentially increase variability resulting in difficulty comparing cross-center data, limit the 

reliability of multi-center studies, and further preclude an accurate understanding of 

longitudinal within-subject WMH-VQ changes.
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2. METHODS

2.1. Subjects

MRI acquisitions for 71 subjects (65 – 85 years old, spanning the cognitive continuum from 

normal through MCI to dementia) from the Sanders-Brown Center on Aging (University of 

Kentucky) research cohort were collected using a standard protocol. A random sample of 

scans from 21 participants were used for the discovery phase of the study with the remaining 

50 participant scans used for validation. Details of the clinical characterization of this cohort 

has been published previously (Schmitt et al., 2012). This study was approved by the 

University of Kentucky Institutional Review Board under the protocols used to acquire the 

clinical data and MRI images.

2.2. MRI Acquisition

All MRI scans were acquired at the University of Kentucky, Magnetic Resonance Imaging 

and Spectroscopy Center using a Siemens 3T TIM-Trio MRI scanner (Siemens Healthcare, 

Erlangen, Germany). A 32-channel head coil was used to scan the subjects. Two acquisition 

sequences were executed for this study: 1) T1-weighted Magnetization-Prepared Rapid 

Acquisition Gradient Echo (3D MPRAGE), echo time (TE) 2.3 milliseconds, repetition time 

(TR) 2,530 milliseconds, inversion recovery time (IR) 1,100 milliseconds, flip angle 7°, 

1×1×1 mm resolution full-brain coverage; 2) T2-weighted fluid-attenuated inversion 

recovery (FLAIR) image,. TE 388 milliseconds, TR 6,000 milliseconds, IR 2,200 

milliseconds, 3D 1×1×1 mm. No gap between slices. All subjects included were scanned 

used identical imaging acquisition protocols, along with the same scanner and head coil.

2.3. Image Processing

MRI images were processed using an automated WMH-VQ method, described previously 

(Bahrani et al., 2017). Briefly, all MRI images were normalized for intensity. Two T1-

weighted Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) images 

were acquired and co-registered using statistical parametric map software (SPM8 or SPM12) 

(http://www.fil.ion.ucl.ac.uk/spm) and averaged. The averaged-MPRAGE were then 

registered to the single 3-D FLAIR image. Nonbrain tissue was stripped from the registered 

averaged- MPRAGE image using a brain extraction tool (FSL-BET), FSL-FMRIB software 

library (FSL v5.0.9) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET). Remaining scalp tissue was 

removed slice-by-slice manually, as needed, using the medical image processing analysis 

and visualization (MIPAV v7.4.0) application (http://mipav.cit.nih.gov). FLAIR images were 

generated from the binary mask of the stripped averaged-MPRAGE and were further 

segmented using the SPM unified regime. Five segmented images including, gray matter 

(GM), two white matter (WM) subsegments, cerebrospinal fluid (CSF), and the unclassified 

tissue (UT) masks were created in a native-space using an in-house segmentation template 

created from 145 images of healthy normal adult subjects, demographically similar to the 

subjects in this study (C. D. Smith et al., 2016). The two WM masks were generated for 

different WM classes that cannot be captured by one mask (tissue class) and were further 

summed to create a binary WM mask that was multiplied by the FLAIR. This step isolates 

all of the classified white matter voxels in the FLAIR image. The intensity distribution of 

these voxels was then fit with a Gaussian curve. The maximum and minimum threshold 
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values were computed from the Gaussian distribution mean and standard deviation (SD). 

The threshold value was then applied to the stripped FLAIR images to obtain the final 

WMH-VQ mask.

2.4. Study Design

MRI images were used for both discovery and validation arms of the project as follows: 

twenty-one scans were used for analyzing the variability associated with software and 

system compatibility, choice of the center of gravity (CoG), threshold calculations, and 

manual editing procedures as part of the discovery dataset (Figure 1). An independent 

sample of 50 MRI images was used to anlayze the validation dataset after controlling for 

sources-of-variability identified in the discovery phase of the study.

2.5. Software Compatibility

The computers for this study are Linux operating systems and have the same software 

versions, MATLAB a2015b (MathWorks, Inc), MIPAV v7.4.0, and FSL 5.0.9. Two versions 

of SPM including SPM8 and SPM12 were used to examine variance inherent in specific 

software versions. For this experimental aim, we did not vary other software programs and 

so recognize that our findings may not generalize across all software systems and versions. 

Variability was assessed by comparing the WMH-VQ measurements from identical scans 

using both SPM8 and SPM12-based analyses.

2.6. Center of Gravity

The center of gravity (CoG) is linked to the nonbrain extracting process (Segonne et al., 

2004). An accurate CoG enables a smooth stripping process with virtually no additional 

manual editing required. To allow assessment of potential variance that is associated with a 

differential selection of the CoG, two random CoGs were selected for each subject in 

addition to the systematic CoG. The systematic CoG was chosen by displaying; the 

registered averaged T1-weighted image using the Triplaner display module in MIPAV to 

locate the CoG visually (C1), using the cursor (estimating the brain center as one half the 

brain anterior-posterior, left-right, and inferior-superior distances). The second CoG (C2) 

was selected using the default CoG of the Triplaner display. The third Cog (C3) was 

randomly chosen manually by the post-acquisition analyst but its location was restricted to 

within a 0.5 cm diameter of C1. Variability was assessed by comparing the WMH-VQ 

measurements from identical scans using C1, C2, and C3 as the independent variables.

2.7. Threshold Calculation and WMH volume quantification

To extract the WMH volume, the WMH distribution must be defined (Anbeek, Vincken, van 

Osch, Bisschops, & van der Grond, 2004; Caligiuri et al., 2015). Variability in WMH-VQ 

are exacerbated when the minimum WMH intensity distribution overlaps with the normal 

appearing WM intensity distribution, leading either to over- or under-estimating WMH-VQ 

due to inconsistent thresholding. We used 10% of the maximum FLAIR WM voxel intensity 

as the minimum value to obtain the histogram distribution of the WM tissue. This lower 

limit is flexible and does not appear to contribute significant error in the fitting procedure. 

However, the upper threshold value is a critical factor for quantifying WMH volume. A two-
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Gaussian curve fit to the distribution (MATLAB curve-fitting tool) was used for computing 

the mean and SD. The mean and SD were applied to the thresholding equations to calculate 

the maximum and minimum thresholds. The thresholds were mean + 3 x SD for the lower 

bound and mean + 15 x SD for the upper bound (Bahrani et al., 2017). The upper bound 

eliminated extreme values occasionally seen as intensity artifacts in FLAIR images. All 

threshold values were expressed to the second decimal place. WMH mask artifacts were 

reduced using a Gaussian filter (1 × 1 × 1 mm). Total WMH volume was calculated from the 

final WMH mask.

We tested two parameters in our experiment to study their influence on the thresholding 

values and in turn on the WMH-VQ. First, we compared the mean and SD of the histogram 

distribution of the WM voxels extracted from the FLAIR image using voxel intensity and 

position on the Gaussian curve, versus voxels intensity and volume in mm3 rather than 

position on the Gaussian curve. Second, we tested the impact of the precision of the mean 

and SD on the calculation of the thresholding values. We choose the mean and the SD using 

the systematic algorithm described above carried to two significant digits (decimal places) as 

increasing the precision beyond this (i.e. adding additional significant digits (decimal places) 

did not further contribute to accuracy in the resultant WMH-VQ derived. This threshold was 

then compared to setting the same mean and SD threshold at a single or no significant digits 

(an integer).

2.8. Manual Editing

The sources-of-variability assessed above are all operator independent, but do not consider 

artifact removal which can be an additional source-of-variability that may require one or 

more manual editing steps. In order to define the variability associated with manual editing, 

two manual editing steps were included in the protocol to ensure that artifact did not 

confound the conclusions drawn regarding post-acquisition processing variability. Manual 

editing was performed on: 1) the whole brain mask after the nonbrain tissue extraction 

process and 2) the final WMH mask.

Manual editing was performed independently without standardization of procedures and 

again after developing a standard editing protocol to minimize operator-dependent error in 

these steps as follows. Extraneous voxels of T2 hyperintensity that are generated due to 

pulsation and flow artifacts were removed manually, guided by the original FLAIR image. A 

FLAIR image was displayed with a standard Gaussian-fit mean center and ten x SD grey 

scale window value side-by-side with the WMH mask. and the second image was kept with 

its original values, to allow maximal recognition of false positive and negative voxels. Figure 

2 demonstrates the spectrum of false hyperintensity signals that were removed from the gray 

matter (GM), lateral sulcus and pineal gland, the voxels between and inside the ventricles, 

voxels in the cerebellum, and the voxels in the pons and lower brainstem. A synopsis of our 

manual protocol guidelines is presented in Table 1. Variability due to manual editing was 

assessed by comparing the WMH-VQ measurements from identically processed scans using 

both unstandardized and standardized manual editing protocols as the independent variables.
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2.9. Validation of a standard protocol to reduce variance

Controlling for selection of CoG, WM segmentation in SPM, curve fitting and threshold 

setting on the WM histogram, and manual editing produced a final protocol that was 

validated in an independent set of 50 MRI scans. We set the threshold for success at 0.5% 

variability as an acceptable limit of variability well within the range of anticipated within-

subject annual longitudinal change. The current variability for WMH-VQ was calculated as 

a mean of the variability assessed across all parameters studied at −15%, based on the 

assumptions that inter-study, and intra-site inter-rater reliability would represent an average 

rather than cumulative (additive) effect on WMH-VQ assessments.

2.10. Statistical Analysis

Using the 21 discovery images, WMH volumes were calculated in a four-step process as 

follows. First, two raters assessed WMH volume under the protocol described in Section 2.3 

above, one using SPM8 (OA) and one using SPM12 (AB). Variability was measured by the 

percent difference in the two raters’ ratings, as given below. Next, the software package was 

fixed (SPM12), and one of the two raters (AB) calculated WMH volume based on different 

CoG (as described in Section 2.4.2). Then, both software and CoG were fixed, and the rater 

(AB) calculated WMH volumes under different thresholding conditions, as described in 

Section 2.4.3. The distribution of the WM voxel intensity and position on the curve was 

visualized using histograms. Finally, software, CoG, and threshold were fixed, and manual 

editing was applied by both raters. The percentage difference (PD) for each set of ratings for 

each image, which was defined as the difference between the two sets of measurements 

divided by the average value of the two methods, for each source of variability (i.e., software 

compatibility, CoG, thresholding, and manual editing):

Percentage Difference(PD) = ∣ Rating 1 − Rating 2
Rating 1 + Rating 2

2
∣ x 100

These summary PDs were used to quantify the approximate measurement error associated 

with each source of variability. The overall PD for each discovery image was calculated by 

taking the average of the four individual PDs. The WMH volumes obtained after 

implementing all four steps are referred to hereafter as “standardized” WMH.

Once the analyses based on the discovery data were completed, the two raters each 

calculated WMH volume for the set of 50 validation images based on the unstandardized 

and standardized protocols. Interrater agreement was assessed using the Pearson correlation 

coefficient and the Interrater Reliability (IRR). SigmaPlot 13 (Systat Software Inc., San 

Jose, California) was used for statistical data analysis.

Additionally, the permutation test (aka randomization test; MATLAB function https://

www.mathworks.com/matlabcentral/fileexchange/63276-permutation-test) was applied to 

the 50 standardized WMH volumes to test whether mean WMH volume was different 

between raters (50,000 permutations). Finally, the Dice similarity test (using MATLAB) was 

utilized to find the similarity and dissimilarity of the WMH final masks before and after the 

manual editing between the two raters.
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3. RESULTS

3.1. Subjects

The mean age of this cohort was 74.1 (± 8.0) years, the mean educational attainment was 

16.9 (±3.3) years, and the mean WMH volume was 14.5 cc3 (± 23.0 cc3). In addition, 54% 

were female, 66% were hypertensive, 26% were diabetic, 10 were smokers, and 56% had 

hyperlipidemia. Finally, 30% of the cohort were cognitively normal, and the remaining 70% 

had a diagnosis of mild cognitive impairment at the time of the scan. There were no 

significant demographic or clinical differences between the discovery and validation data set 

participants in this study.

3.2. Software versions and compatibility

Different SPM software versions and software compatibility were found to be a significant 

source-of-variability. Analysis using SPM8 resulted in an overestimated WMH-VQ 

compared to analyses using SPM12, 36.44% before editing and 93.26% after editing (n = 

21). Figure 3 shows the difference between the two processed WMH masks in contrast to the 

FLAIR image (Panel A). Panel B is the WMH mask resulting from the use of SPM8, while 

Panel C is the mask utilizing SPM12. These data demonstrate the importance of software 

version (even from the same source) in affecting variability in WMH-VQ.

3.3. Selection of Center

The use of different CoGs introduced a variability of approximately 11% in final WMH 

volumes. The percentage error in WMH-VQ (mean ± standard error of the mean (SE) in 

mm3) determined using C2, (28360 ± 7460), and C3, (33235 ± 8036), compared to C1, 

(33755 ± 7907), were 20.9% and 16.1%, respectively (n = 21). Figure 4 demonstrates the 

artifacts leading to increased WMH-VQ variability as a result of the choice of CoG.

3.4. Thresholding

Fitting the histogram distribution of the WM intensities to the Gaussian curve was also 

shown to contribute to interrater reliability variance in WMH volume before and after 

manual editing. The percentage variance of fitting the WM histogram distribution of the 

WM voxel intensities and volume, mean ± SE (39427 ± 8299), versus the WM voxel 

intensities and position, (39759 ± 8237) on the Gaussian curve was found to be 2.5% 

(n=21). Thresholding the FLAIR mask to compute the WMH volume was also shown to be a 

significant source-of-variability. The percentage error between the thresholding values 

carried to either none or one significant digits, versus the maximal selection of two 

significant digits was −19.9% and 10.2%, respectively. This percentage error is maximally 

evident whenever the distribution is not corrected for the natural left-handed skew deviation 

inherent in community-based samples such as ours and the many others that have been 

studied to date.

3.5. Manual editing

All steps in the WMH-VQ protocol represent automated processes that can be standardized 

to reduce variability. While the protocol is fully automated, artifacts can create erroneous 
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volume estimates, and so manual editing may be desired in order to remove artifacts when 

present. Variability due to non-systematic manual editing was 1.7% (rater-I, 28503 ± 8683 

and rater-II, 28394 ± 8667) compared to systematic manual editing. Using this systematic 

manual editing protocol, the variability in WMH-VQ was reduced to 0.34% overall.

3.6. Validation of a standardized protocol

In order to investigate whether controlling for these sources of variability could result in a 

protocol with a minimal acceptable variability (defined as < 0.5% WMH-VQ) could be 

developed, we studied the performance characteristic of standardized protocol using 

identical acquisitions, with post-processing performed by independent raters using 

independent workstations, Inter-rater analysis, using Spearman correlations and linear 

regression models for WMH masks before and after editing (Figure 5), demonstrated r2 

values = 0.999, with SE = 118.7 and 68.1 respectively, and p < 0.001 for the 50 scans used in 

the validation study. WMH volume variance in the refined protocol was 0.23% before 

manual editing (all processes automated) and this increased only slightly to 0.34% after 

manual editing once all sources-of-variability were addressed in a systematic fashion. The 

permutation test showed the observed mean difference in WMH volume before manual 

editing was 12.37, and P-value = 0.998; the observed mean difference was 0.97 and P-value 

= 0.999 after editing, which again shows a good concordance between the raters. As well, 

the Dice similarity test confirmed that result with 0.99 (dissimilarity: 0.009) before editing 

and 0.98 (dissimilarity: 0.018) after manual editing.

4. DISCUSSION

This study demonstrates that even automated post-acquisition WMH-VQ techniques have 

several inherent sources-of-variability that can lead to discrepant results between raters and 

centers using different post-acquisition protocols. The importance of this finding should not 

be understated. The data generated and the conclusions drawn from different raters and 

centers, even when using standardized data acquisition and source images such as those 

acquired in ADNI or other large multi-center collaboratives, can be quite discrepant if post-

acquisition protocols have not been refined to address such sources-of-variability.

The present data further demonstrate that systematically identifying and addressing potential 

sources-of-variability inherent in post-acquisition WMH-VQ techniques can result in a 

dramatic reduction in intra-scan variability from ~15% to less than 0.5%. Sources-of-

variability identified in the present study, and methods to overcome these confounds, include 

the selection of CoG, thresholding effects, software versions, and manual editing procedures 

(as included in the protocol). Specific discussion focused on each identified source-of-

variability and methods developed to reduce such variability are presented below.

The present data demonstrate the importance of software compatibility for any longitudinal, 

multi-center study lacking: 1) a central uniform post-acquisition processing center, 2) central 

processing centers that undergo software upgrades between acquisitions and processing of 

images, or 3) for between-study comparisons using different post-acquisition processing 

regimens. SPM is based on the use of MATLAB scripts. Updating one of these software 

packages without updating the other produced significant variability in intra-scan WMH-
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VQ. As software versions are constantly evolving, it is necessary to re-evaluate potential 

sources-of-variability introduced with each new software version employed both within and 

across sites. As such, one should also consider the issue of variability introduced when 

combining legacy data with recently acquired data if software versions are upgraded (as they 

are likely to be) over time. While such upgrades are important for enabling technological 

progress in WMH-VQ measurements, unless legacy scan data are reprocessed with the same 

software, drawing conclusions regarding longitudinal datasets from post-acquisition data 

derived from protocols using different software versions may be problematic. The present 

data demonstrate that considerations of increased variability in such samples could be at 

least partially responsible for changes in longitudinal trajectories or analyses examining 

historical or birth cohort effects.

Another source of variability lies in the selection of the CoG, which can affect non-brain 

tissue extraction. Nonbrain tissue extraction is essential for optimal brain segmentation (Xue 

et al., 2007). The BET stripping tool is a common brain extraction tool that is easy to both 

use and to script (Despotovic, Goossens, & Philips, 2015; Shattuck, Prasad, Mirza, Narr, & 

Toga, 2009). In order to obtain an accurate non-tissue extraction result with BET, the CoG 

should be consistently and uniformly assigned across protocols (Boesen et al., 2004; M S. 

Atkins, 2002). The closer the CoG is to the center of the brain (tissue to be analyzed), the 

less non-brain tissue artifact will be seen (see Figure 4). Random estimation of the CoG or 

variability in such estimation that differs by protocol could increase the sources-of-

variability due to inclusion of residual of nonbrain tissue. This problem may be solved by 

either performing manual editing, increasing the number of BET iterations (S. M. Smith et 

al., 2007), or editing the CoG manually to ensure uniformity. The selection of three distinct 

CoGs isolated as independent variables, allowed us to examine the variability associated 

with such selection independent of other procedures. While many automated protocols select 

identical CoGs, the exact CoG selected often differs by protocol, and many protocols do not 

take into account differences in brain center coordinates that may vary from subject to 

subject due to subject positioning in the scanner. Certain CoG selections can increase 

artifacts related to excess inclusion of nonbrain tissue. Standardized selction of CoG, 

necessary to develop uniform protocols across diparate raters, centers, and studies will 

require the development of consensus best-practices in the field of post-acquisition 

processing.

The selection of an appropriate threshold is critical for specifying the volume of WMH to 

include in the mask. If the threshold is set too high, it will reduce the sensitivity of WMH 

detection, while setting the threshold too low can increase the presence of WMH artifacts 

that may necessitate the inclusion of burdensome manual editing processes. The highest 

sensitivity to thresholding value effects exists for subjects with large WMH volumes and is 

less important for those with low levels of such imaging findings. The present analysis found 

that two independent Gaussian curves provided the most consistent principal fit to the mean 

of the hyperintensity distribution. Even though the histogram distribution of WM using 

intensity and voxel position vs. voxel volume showed a relatively small variance < 3%, it 

still remained one of the sources-of-variability in excess of the acceptable threshold set in 

our study aims.
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Manual editing may be necessary for accurate WMH-VQ assessment, as the WMH mask 

will likely contain at least some FLAIR artifact. The decision to include a manual editing 

step(s) may be dependent on the protocol specifics that either limit or increase artifact 

representation in the WMH-VQ assessment. The present data demonstrate that WMH-VQ 

can be overestimated by as much as 42% using an automated process without manual 

editing. While such overestimates due to artifact may exhibit regression to the mean when 

analyzing large samples, they prohibit accurate assessments of the true WMH-VQ and 

further prevent accurate analyses when working with smaller samples or when considering 

within-subject change in WMH-VQ. While machine learning techniques are being 

developed to address editing procedures systematically (Ahmed et al., 2019; Bzdok, 2017; 

Doyle, Mehta, & Brammer, 2015; Mateos-Perez et al., 2018), manual editing may still be 

required for many studies depending on the sample size and the nature of the hypothesis 

being tested (Bzdok, 2017). It is important to also note that machine learning techniques 

often require the “ground truth” in the training set (Ahmed et al., 2019; Bzdok, 2017; Doyle 

et al., 2015; Mateos-Perez et al., 2018). Therefore, obtaining an accurate “ground truth” was 

a main purpose of the present study. Given these considerations, manual editing remains a 

common necessity for WMH-VQ protocols until improved automated machine learning 

techniques are introduced into the field (Cuadrado-Godia et al., 2018).

While introducing human bias with manual editing procedures, the present data demonstrate 

that the development of standard rules for manual editing can significantly reduce intra-scan 

variability in the final WMH masks and WMH-VQ results, despite such procedures. Specific 

editing rules that proved useful for reducing inter-rater variability included: 1) removal of T2 

hyperintensity artifacts in CSF/GM junctions, especially those involving the septum 

pellucidum; 2) removal of all T2 hyperintensities below the level of the midbrain, including 

the cerebellum, as this area is highly prone to significant pulsation and other artifacts; 3) 

removal of T2 signal hyperintensities in the cortical GM; and 4) editing of the supratentorial 

deep GM structures (including the basal ganglia and thalamus) that require special attention 

as these structures are in end-arterial zones that are both subject to high levels of small 

vessel ischemic disease and are also prone to significant artifact. (Hegde, Mohan, Lath, & 

Lim, 2011; Lim, 2009) Irrespective of the specific rules for manual editing standardization 

that are applied to a given protocol, it is clear that specifying such procedures and 

standardizing them across raters, sites, and studies would help reduce the variability in 

WMH-VQ seen within and across disparate studies.

While the present findings and method developed focus on a cross-sectional analysis, the 

reduction in sources-of-variability suggested in the present methods are critically important 

for any studies assessing longitudinal change in WMH-VQ. As change in WMH-VQ is 

estimated at ~5%/year, any protocol that introduces a greater degree of variability in cross-

sectional findings is likely to generate inaccurate longitudinal results. Our analyses of both 

the findings reported in the literature and those described within our study suggest that 

current variability demonstrated in WMH-VQ assessment is 10-15%, a figure that is simply 

unacceptable. As study protocols and software versions are constantly being modified for 

improvement overtime, re-grounding legacy data and longitudinal data collection based on 

the principles described is critical for scientific discovery in the field of WMH-VQ. This 

new method of addressing post-acquisition sources-of-variability overcomes this limitation 
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and may prove to be even more useful if integrated with other acquisition methods to reduce 

variability, e.g. longitudinal data is acquired with the same imaging sequence and protocol 

on the same scanner.

Study limitations include our focus on a largely Caucasian, highly-educated, aged, study 

population that may limit the generalizability of our findings to other populations. Minority 

and underserved populations are at greater risk for cerebrovascular disease and WMH 

accumulation and are an important focus of future studies. In addition, caution should be 

used in interpreting these data in regards to disease processes that may affect younger 

populations, such as those with multiple sclerosis, as such subjects were not studied in our 

experimental design. Further limitations include the specific software programs that were 

analyzed and a statistical threshold-based analysis approach; it is possible that the present 

considerations studied may not be applicable to all software programs and version upgrades. 

In addition, we did not fully explore how a region of interest (ROI) analyses would be 

impacted by the use of standardized methodologies, although it is assumed that such 

analyses would benefit from the standardized approach presented. Further work in this area 

is clearly indicated. Despite such caveats, the present data suggest that careful attention to 

what may seem to be simple changes in software version (incidental upgrades) or selection 

of post-acquisition analysis parameters ( selection of CoG and thresholding limits), and 

standardization of operator-dependent steps (manual editing) may improve cross-site, cross-

study and longitudinal WMH-VQ assessments in order to advance the field.

Future directions include analyzing the potential sources-of-variability in WMH-VQ across-

sites to better identify which variables are most important for establishing cross-center 

reliability. A further focus on sources-of-variability that exist within subjects in longitudinal 

studies also need to be pursued before we can use within subject change in WMH-VQ as a 

reliable outcome measure for imaging findings related to vascular cognitive impairment or 

vascular dementia. Data from the present study are also being used currently as the “ground 

truth” in our collaborative development to advance artificial intelligence machine learning 

approaches to WMH-VQ.

The final validation study attempted to determine if addressing all the sources-of-variability 

identified in the study in composite would lead to a protocol with overall reduced WMH-VQ 

variability that we considered acceptable (defined as variability < 0.5%). The field is in need 

of protocol development adequate to study within subject WMH-VQ change accurately, as 

average WMH-VQ change is approximately 5% the total WMH-VQ measurement. This goal 

was achieved demonstrating a post-acquisition WMH-VQ variance well under our target of 

< 0.5%. The standardized protocol used in this study may not be ideal for many researchers, 

depending on their needs and the practical implementation of the data derived. However, the 

lessons learned in addressing potential sources-of-variability in WMH-VQ assessment 

techniques can be applied universally to help limit methodologic variability.

5. Conclusions:

The present study sought to systematically identify sources-of-variability in WMH-VQ 

techniques that can create challenges for both within-site and between-site data comparisons 
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and conclusions. This exercise allowed the development of a standardized protocol, 

minimizing potential sources of bias and variability in the determination of WMH-VQ 

measurements in our study sample. While the developed protocol was found to be optimal 

for use in the present dataset for the detection of subcortical white matter disease, many 

other protocols exist in the field and may have unique attributes that make them optimal for 

specific study purposes. Such protocols should, in light of the present data, systematically 

evaluate the sources-of-variability inherent in their methodologies to move the field of post-

acquisition processing of WMH-VQ into a more rigorous and standardized arena where data 

may be more reliably compared across studies and sites. In addition, data on WMH-VQ that 

may represent a more reliable “ground truth” is critical for the development and training of 

machine learning algorithms that may allow future artificial intelligence approaches to 

WMH-VQ assessment.

These data strongly support the notion that consensus “best-practices” should be developed 

in the field to aid such discovery. Only through such initiatives can we hope to advance our 

understanding of the risks, diagnosis, study outcome measures, and treatment modality 

considerations that might mitigate the impact of small vessel ischemic disease on the 

population today.
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Abbreviations:

WMH white matter hyperintensities

WMH-VQ WMH volumetric quantification

FSL-BET functional MRI software library-brain extraction tool

MIPAV medical image processing analysis and visualization

SPM statistical parametric map

CoG center of gravity

ADNI Alzheimer’s Disease Neuroimaging Initiative

MRI magnetic resonance imaging

TE echo time

TR repetition time

IR inversion recovery

FLAIR T2-weighted fluid-attenuated inversion recovery

MPRAGE T1-weighted magnetization-prepared rapid acquisition gradient echo

SE standard error
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SD standard deviation

GM gray matter

WM white matter

CSF cerebral spinal fluid

UT the unclassified tissue
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Highlights

• Current protocols for WMH volumetric quantification have substantial 

variability.

• Selection of image center, software, threshold, and manual editing introduce 

variability.

• Methods to address these sources-of-variability can be developed and are 

essential for reliable interpretation of data.

• Standardizing techniques can reduce intra-scan variability to less than 0.5%.
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Figure 1: 
Flow chart summarizing the use of the discovery dataset (n=21) that examined distinct 

sources of variability inherent in white matter hyperintensity volumetric quantification 

(WMH-VQ) processing techniques.
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Figure 2: 
Common hyperintensity signal artifacts in the white matter hyperintensity (WMH) mask 

include: Gray matter signals (GM), panels A, and B, (arrowhead); Lateral sulcus and pineal 

gland, panels A, and B, (rectangle); Voxels in between and inside the ventricles, panels A, B, 

C, and D, (narrow arrow); Voxels in cerebellum panels E and F (circle); Voxels in the pons 

and lower slices panels G and H (large arrow).
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Figure 3: 
Example of a case where WMH masks differ based on SPM versions used. A: is the original 

T2 FLAIR image. B: WMH mask using MATLAB 2015 and SPM8. It shows an 

overestimate volume comparing to the FLAIR image and C which is the WMH mask that 

quantified using MATLAB 2015 and SPM12.
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Figure 4. 
Several examples of cases that highlight the effect of the center of gravity (CoG) on bone 

extraction method using BET-FSL tools. Panel A: demonstrates optimal bone extraction with 

almost clean brain tissue. Panel B and C show non-brain tissue remaining (narrow arrows) 

due to choosing an alternate CoG. Panel D demonstrates a loss of a portion of GM due to the 

non-tissue extraction process as a result of choosing an alternate CoG.
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Figure 5. 
Regression curve for WMH volumes before and after editing (Panel A and B, respectively, 

(n = 50)). Panel C, the mean value of WMH volume for both raters before and after editing 

(n = 50). R2 = 0.999, Standard error estimation before editing 118.7 and after editing 68.1.

( p < 0.001).
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Table 1.

Manual editing protocol developed to systematically reduce sources of variation in the assessment of 

subcortical small vessel ischemic disease. Sources of variability and areas of analysis that require increased 

diligence and further development of standardized methodology are identified.

Areas to systematically
review for T2 artifact

Rationale Illustrations in
Figure 1

Common extraneous voxels False intensities identified compared to original FLAIR image Panels A and B

Cortical GM Extends beyond anatomic boundaries of subcortical disease, but 
may be considered important for some studies Panels A and B, (arrowhead)

Lateral sulcus/insular cortex and 
pineal gland Signal artifact due to CSF boundary Panels A and B, (rectangle)

Areas of contrast with GM and CSF 
between and inside the ventricles Artifact due to CSF boundary and pulsation Panels A, B, C, and D, (narrow 

arrow)

Cerebellum Prone to infra-tentorial artifact and extensive CSF boundaries, 
but may be considered important for some studies Panels E and F (circle)

Pons and lower slices
CSF pulsation from forth vertical may produce hyperintensity 
voxels in the pons. The extensive artifact in lower slices due to 
bone & CSF boundaries

Panels G and H (large arrow)

Pituitary gland & cavernous sinus Extensive artifact due to bone & CSF boundaries Panels G and H (large arrow)

Basal ganglia & thalamus Deep GM artifacts due to homogeneous T2 signal need to be 
distinguished from true small vessel ischemic disease Not shown
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