
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Entomology Faculty Publications Entomology 

7-14-2020 

Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes 

and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the 

Emerald Ash Borer Emerald Ash Borer 

Ramya Shanivarsanthe Leelesh 
University of Kentucky 

Lynne K. Rieske 
University of Kentucky, lynne.rieske-kinney@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub 

 Part of the Entomology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Leelesh, Ramya Shanivarsanthe and Rieske, Lynne K., "Oral Ingestion of Bacterially Expressed dsRNA Can 
Silence Genes and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer" (2020). 
Entomology Faculty Publications. 196. 
https://uknowledge.uky.edu/entomology_facpub/196 

This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for 
inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, 
please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/346142942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/entomology_facpub
https://uknowledge.uky.edu/entomology
https://uknowledge.uky.edu/entomology_facpub?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/83?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/entomology_facpub/196?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes and Cause Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes and Cause 
Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer 

Digital Object Identifier (DOI) 
https://doi.org/10.3390/insects11070440 

Notes/Citation Information Notes/Citation Information 
Published in Insects, v. 11, issue 7, 440. 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. 

This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/196 

http://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/entomology_facpub/196


insects

Article

Oral Ingestion of Bacterially Expressed dsRNA
Can Silence Genes and Cause Mortality in a Highly
Invasive, Tree-Killing Pest, the Emerald Ash Borer

Ramya Shanivarsanthe Leelesh 1,2 and Lynne K. Rieske 1,*
1 Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;

ramya.sl1989@gmail.com
2 School of Life Sciences, University of Bedfordshire, Luton LU13JU, UK
* Correspondence: lrieske@uky.edu; Tel.: +1-859-257-1167

Received: 27 May 2020; Accepted: 11 July 2020; Published: 14 July 2020
����������
�������

Abstract: RNA interference (RNAi) is a naturally occurring process inhibiting gene expression,
and recent advances in our understanding of the mechanism have allowed its development as a tool
against insect pests. A major challenge for deployment in the field is the development of convenient
and efficient methods for production of double stranded RNA (dsRNA). We assessed the potential for
deploying bacterially produced dsRNA as a bio-pesticide against an invasive forest pest, the emerald
ash borer (EAB). EAB feeds on the cambial tissue of ash trees (Fraxinus spp.), causing rapid death.
EAB has killed millions of trees in North America since its discovery in 2002, prompting the need
for innovative management strategies. In our study, bacterial expression and synthesis of dsRNA
were performed with E. coli strain HT115 using the L4440 expression vector. EAB-specific dsRNAs
(shi and hsp) over-expressed in E. coli were toxic to neonate EAB after oral administration, successfully
triggering gene silencing and subsequent mortality; however, a non-specific dsRNA control was not
included. Our results suggest that ingestion of transformed E. coli expressing dsRNAs can induce an
RNAi response in EAB. To our knowledge, this is the first example of an effective RNAi response
induced by feeding dsRNA-expressing bacteria in a forest pest.

Keywords: RNA interference; RNAi; Agrilus planipennis; EAB; RNAi-based biopesticide; forest
pest management

1. Introduction

RNA interference (RNAi) regulates gene expression at the post-transcriptional level by degrading
specific messenger RNAs (mRNA), thus blocking translational efficiency [1]. RNAi using exogenous
dsRNA is emerging as a novel means of pest suppression [2]. After introduction into cells, dsRNA
is recognized by the RNase III enzyme dicer and processed into small interfering RNAs (siRNAs).
These siRNAs then bind to the Argonaute protein and form an RNA-induced silencing complex (RISC),
and the RISC complex binds to the complementary mRNA molecule, thus blocking gene expression [3].

Coleopteran insects are known to exhibit robust RNAi responses [2,4,5]. RNAi efficiency varies
between insect species, insect life stages, target genes, and modes of dsRNA delivery [6]; dsRNA can
be delivered in several ways, including by injection, orally, and through absorption [7]. While RNAi is
emerging as an attractive option for insect pest control, convenient and efficient methods to produce
and deliver dsRNA to target insects is challenging.

The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an exotic beetle that was accidentally
introduced from China into North America in the mid- to late 1990s [8]. Adult beetles feed on ash,
Fraxinus spp., and foliage and cause little damage, but larvae feed on cambial tissue beneath the bark,
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disrupting water and nutrient flow, and causing rapid tree death [9]. Ash species native to North
America have very little resistance to the emerald ash borer [10]. EAB has killed millions of ash trees in
North America since its introduction [11], and the invasion continues. Chemical suppression can be
effective, but is expensive and unsustainable over large areas [12,13]. Classical biological control has
been implemented, but it is slow-acting and expensive [14]. Thus, the EAB invasion in North America
warrants explorations into innovative approaches for management [15].

In this study we evaluated the insecticidal potential of dsRNA-expressing bacteria delivered
orally to neonate EAB larvae. dsRNA expressed in bacteria could provide dual benefits in terms of
inexpensive production and efficient delivery.

2. Materials and Methods

2.1. Insect Rearing

EAB eggs were obtained from the United States Department of Agriculture, Animal and Plant
Health Inspection Service, Plant Protection Quarantine (USDA APHIS PPQ) EAB Biocontrol Facility
(Brighton, MI, USA). Immediately upon receipt the eggs were placed in Petri dishes (60 × 90 mm)
with moistened filter paper and maintained at 23 ◦C and 75% relative humidity in a growth chamber.
Newly hatched unfed larvae were used in bioassays.

2.2. Target Gene Selection, Total RNA Extraction, cDNA Synthesis, PCR Amplification, and Construction of
Recombinant L4440 Vector

To assess the insecticidal activity of bacterially-expressed dsRNA, candidate genes shibire (shi) and
heat shock protein-70kDA (hsp) were chosen due to their effectiveness in RNAi-induced EAB mortality
by in vitro produced dsRNA [15]. Total RNA was extracted from EAB larvae using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions; RNA concentration and
purity were evaluated using a Nano Drop 1000 (Thermo Fisher, USA). cDNA was synthesized from 1 µg
of total RNA using a M-MLV reverse transcriptase kit (Thermo Fisher, USA). Target sequences of shi and
hsp were amplified using gene-specific primers with restriction enzymes (Table 1). PCR conditions
were as follows: 94 ◦C for 5 min, followed by 35 cycles of initial denaturation at 94 ◦C for 30 s, annealing
at 60 ◦C for 30 s and extension at 67 ◦C for 1 min, and finishing with extension at 67 ◦C for 8 min.

Table 1. Primer sequences for dsRNA synthesis and qPCR of the target genes shi and hsp, and for qPCR
of the reference gene TEF-1α; bold italics indicate sequences of restriction enzymes.

Gene Primer Primer Sequence (5′–3′)

hsp—heat shock protein
(70kDA)

F-dsRNA-HSP CTAGTCTAGAGTTACGAGCCAGGGTGAAAA

R-dsRNA-HSP TCCCCCCGGGCCTTTTGAACGGCACGGTTAT

F-qRNA-HSP GACAAAGGAACGGGAAACAA

R-qRNA-HSP TCTCGGCATCCCTTATCATC

shi—shibire

F-dsRNA-SHI CTAGTCTAGATGGCACATTTGTATGCCAGT

R-dsRNA-SHI TCCCCCCGGGCTTGTTGCATTTGCTGAGGA

F-qRNA-SHI GGGATCTGCCCAAATTAACA

R-qRNA-SHI CCCGTCTGAGTTCTTTCTCG

TEF-1α-Translation
elongation factor 1 alpha

F-qRNA-TEF CATTGAAACCTACGTTGTCGC

R-qRNA-TEF ACTGGAGTGCTTAAACCTGG

The L4440 plasmid (Addgene plasmid 1654) comprising two T7 promoters in an inverted position
flanking multiple cloning sites was used to clone target genes. Restriction (Xba I and XmaI) digested
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amplicons were ligated into the Xba I and XmaI digested L4440 vector, respectively. The recombinant
vectors were validated by colony PCR [16] and restriction digestion (Xba I and XmaI).

2.3. Bacterial Transformation and Expression of dsRNA

The RNase III-deficient E. coli strain HT115 (DE3), obtained through the CGC at the University
of Minnesota, was grown in Luria broth (LB) medium with ampicillin (100 µg/mL) and tetracycline
(10 µg/mL). The recombinant L4440 vector was transformed into E. coli HT115 (DE3) competent
cells. Single bacterial colonies were cultured in LB broth maintained on a shaker incubator at 37 ◦C
(225 rpm) overnight. Cultured broth was then transferred to 50 mL fresh broth medium containing
100 µg/mL ampicillin and cultured at 37 ◦C until colony growth reached the late exponential phase,
with OD600 = 0.4–0.6. Expression of T7 RNA polymerase was induced by adding a final concentration
of 0.5 mM of isopropyl-β-D-1-thiogalactopyranoside (IPTG). Bacteria with dsSHI and dsHSP were
then incubated at 37 ◦C, 30 ◦C, and 25 ◦C for up to 4 h to evaluate dsRNA expression. Based on
this optimization, further experiments were conducted at 37 ◦C for dsSHI and 30 ◦C for dsHSP.
Total bacterial RNA was extracted with Trizol reagent and the presence of synthesized dsRNA was
confirmed by electrophoresis using a 1% agarose gel.

2.4. Biological Activity of Recombinant Bacteria Expressing dsRNA

Laboratory-reared EAB eggs were placed in petri dishes with moistened filter paper and maintained
at 24± 1 ◦C in an incubator (Figure 1). Newly hatched neonates were used in all bioassays. To determine
the biological activity of the recombinant bacteria expressing dsRNA, neonate EAB larvae were fed
using a modified droplet feeding bioassay [5], where 1 ml of bacterial culture was centrifuged at
3000 rpm for 15 min and the pellet was dissolved in 100 µL of 1% sucrose solution with green tracking
dye (Kroger, Co., USA). For each assay, 3µL of bacterial suspension were fed to individual neonate
larvae using the droplet assay. Cellular density of the bacterial culture was determined by considering
that an optical density of 1 at 600 nm corresponds to 108 bacterial cells/mL [17]. As the control, HT115
(DE3) bacteria were used as a treatment [18]. Neonate EAB larvae were fed dsRNA-expressing bacteria
for five consecutive days. On day 6, larvae were fed with 1% sucrose lacking dsRNAs for two days.
Assays were maintained in an incubator at 26 ± 1 ◦C, under a 14:10 (L:D) photoperiod. Mortality
was measured on day 5 (the last day of dsRNA feeding) and on day 7 (the final day of bioassays).
Each treatment was replicated three times, and for each replication, 10–15 larvae were used. Mortality
(%) was calculated and the mean values of the experimental replicates were analyzed using a one-way
ANOVA, with Tukey’s post-hoc t-test to evaluate differences.
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Figure 1. Emerald ash borer egg hatch at 24 ± 1 ◦C and neonate larva.

2.5. Molecular Validation of Gene Silencing

Following ingestion of dsRNA-expressing bacteria, total RNA was isolated from 5–6 EAB larvae
at two time intervals (72 h and 120 h) using Trizol reagent. Total RNA was treated with DNase I to
degrade any genomic contamination. cDNA was synthesized using a M-MLV Reverse Transcriptase
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Kit (Thermo Fisher, USA), and was used as a template for gene expression studies. The expression
analysis of the target gene was performed using SYBR™ Green Master Mix (Applied Biosystems, USA).
qPCR reactions were performed using StepOnePlus Real-Time PCR system (Life Technologies, USA).
All reactions were carried out in triplicate with a final volume of 10 µL. A melting curve was generated
at the end of each reaction to confirm single product (target) amplification. In order to eliminate
undesirable amplification from input recombinant plasmids and/or dsRNAs, primers for qPCR were
designed to detect target mRNAs by amplifying only sequences that lay outside of the insert interfering
sequences. The TEF1α gene (Table 1) was used as the reference gene ([19]; Supplemental Material),
and the 2−∆∆Ct method [20] was used to calculate expressions of the target gene relative to the control.
A two-tailed t-test was used for statistical analysis to compare the means of a single variable.

3. Results

3.1. Bacterial Transformation and Expression of dsRNA

Bacteria were prepared with the recombinant vector containing fragments of the shi and hsp genes
(Figure 2a). Using colony PCR, we confirmed that 100% of the recombinant bacterial colonies tested
contained the insert: dsSHI (483 bp) and dsHSP (468 bp) (Figure 2b), and the IPTG-induced bacteria
expressed dsRNA specific to EAB (shi (483 bp) and hsp (468 bp)). Expression of dsSHI was at 37 ◦C
for 4 h and dsHSP was at 30 ◦C for 4 h (Figure 2c,d). The two genes were successfully synthesized in
the bacteria.
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Figure 2. Construction of recombinant E. coli expressing emerald ash borer (EAB)-specific dsRNAs,
showing (a) a schematic diagram of the recombinant plasmid for the expression and production of
dsRNA, (b) colony PCR confirmation of recombinant bacteria (lane M: 1Kb marker, lane SHI: shi gene
amplified from two individual bacterial colonies), lane HSP: heat shock protein (hsp) gene amplified
from two individual bacterial colonies, (c) biosynthesis of dsRNA corresponding to partial sequence
of the shibire (shi) gene in the RNAse III deficient bacterial strain (lane M: 1Kb marker, lanes 1 and 2:
uninduced dsSHI, lane 3: dsSHI induced by IPTG), and (d) biosynthesis of dsRNA corresponding to
partial sequence of the hsp gene in the RNAse III deficient bacterial strain (lane M: 1Kb marker, lane 1:
uninduced dsHSP, lane 2: dsHSP induced by IPTG).
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3.2. Biological Activity of dsRNA Expressing E. Coli Against EAB

Ingestion of dsRNA-expressing bacteria targeting shi and hsp caused 69.44% and 46.66% mortality,
respectively, of neonate larvae at day 7 (Figures 3 and 4). Larvae ingesting dsSHI and dsHSP experienced
greater mortality than control larvae ingesting bacteria that lacked the dsRNA, and dsSHI-ingested
larvae appeared to grow more slowly based on larval length (Figure 5).
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Figure 4. Effect of dsRNAs specific to shi and hsp on EAB neonate larval survival (%) 7 d after feeding
on dsRNA-expressing bacteria (N = 3). Observations were taken on day 1, day 5, and day 7. One-way
ANOVA, with a post-hoc t-test (Tukey) was used to evaluate differences at p < 0.05.
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Figure 5. Neonate EAB larvae showing suppressed growth of those fed bacteria expressing dsSHI
relative to control larvae (C—control) fed bacteria containing no dsRNA.

3.3. Molecular Validation of Gene Silencing

Our qPCR analysis showed that bacteria containing dsSHI resulted in a 24.92% reduction in gene
expression at 72 h; expression did not differ from controls. However, at 120 h post-exposure there was
a 74.14% reduction in the transcript level, which differed significantly from controls (untransformed
bacteria) (Figure 6a). Silencing hsp caused 48.67% and 96.94% reductions in the transcript level relative to
controls at 72 h and 120 h, respectively (Figure 6b), following exposure to bacterially-expressed dsRNA.
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Figure 6. Quantitative RT-PCR analysis of transcript levels after RNAi-mediated repression of gene
expression in EAB. Relative expression (mean ± SE) of (a) shi and (b) hsp genes in neonate EAB larvae
72 h and 120 h after feeding on dsRNA-expressing bacteria (N = 3). Asterisks (*) indicate a significant
difference in gene expression within each time interval (t-test, two-tailed p < 0.05). Results are expressed
as the relative expression of the target gene in treated samples relative to the control.

4. Discussion

This is the first time an effective RNAi response in the tree-killing EAB using oral ingestion of
dsRNA-expressing bacteria has been demonstrated. We transformed HT115 E. coli to express dsSHI
and dsHSP specific to EAB, which caused gene knockdown and showed biocidal activity that resulted
in significant mortality of neonate EAB larvae. Use of bacterially-expressed dsRNA to trigger RNAi
was first demonstrated experimentally in Caenorhabditis elegans [21], and bacterially-expressed dsRNA
has subsequently been used against numerous insect pests. In the coleopteran Leptinotarsa decemlineata,
ingestion of bacterially-expressed dsRNA led to effective suppression of five target genes, causing
decreases in body weight and significant mortality of treated beetles [22]. In our work the engineered
E. coli strain HT115 (DE3), lacking dsRNA-specific RNase III produced EAB-specific dsRNAs and
effectively triggered the RNAi pathway upon ingestion by EAB larvae. These features make HT115
(DE3) a promising strain for preparing dsRNA in vivo, providing a less costly and potentially more
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efficient alternative to in vitro synthesis of dsRNA. However, bacterial dsRNA production can have
limitations; recombinant bacterial production of dsRNA is reportedly less effective in causing mortality
in Spodoptera exigua (Order: Lepidoptera) than is in vitro synthesized dsRNA [23], perhaps due to
a lower expression of target gene(s) in bacteria. These direct comparisons have yet to be made
experimentally in EAB.

Selection of target gene(s) and target regions within gene(s) is crucial for successful gene silencing.
Second-generation sequencing can provide information on target gene selection and screening [4,24],
with the goal of selecting genes and/or target regions within genes with increasing RNAi efficiency in
the target pest, while having no measurable off-target effects. Here we used two target genes, shibire
(shi), and heat shock protein-70kDa protein (hsp), which play essential biological functions and are
efficacious in EAB [15], and demonstrate their potential for use in bacterially-expressed RNAi-based
EAB management. The heat shock-70kDA protein gene (hsp) functions in protein folding and protects
cells from stress [25], while the shibire gene (shi) is involved in production of microtubule bundles,
endocytosis and other vesicular trafficking processes [26]. The loss in function of either of these target
genes in EAB neonates ingesting transformed bacteria causes significant larval mortality (shi: ~69% and
hsp: ~46%) as well as an apparent suppression of larval growth (shi). Ingestion of bacteria producing
dsRNAs, specifically double stranded integrin (dsINT), has also been shown to reduce growth of the
lepidoptera, S. exigua [23].

We have demonstrated that, when ingested, bacteria transformed to produce EAB-specific dsRNA
can silence target genes and kill neonate EAB, which creates additional potential for its use as a
biopesticide. Recombinant bacteria with EAB-specific dsRNA could be sprayed on foliage to be
ingested by feeding beetles or on ash stems to be ingested by newly hatched neonates. Naked dsRNAs
applied topically or through root drenching can be assimilated into and moved through ash plant
tissues [27], suggesting crude extract of bacterially-expressed dsRNA may also be able to be translocated
through the plant via soil drench, trunk sprays or injection [28]. Recombinant bacteria producing
EAB-specific dsRNAs also make the genetic transformation of ash trees with dsRNA-expressing
constructs a more plausible goal [29].

5. Conclusions

We showed that EAB fed with dsRNA-expressing bacteria results in downregulation of selected
genes, demonstrating the potential for application of bacterially-expressed dsRNA for controlling
EAB; however, in the current experiment a non-specific dsRNA control was not included. Although
optimization of bacterial dsRNA production and expression is needed, our observations suggest that
RNA interference mediated by bacterial dsRNA could be a convenient and cost-effective approach for
managing this invasive pest.

The specificity of these EAB-specific dsRNAs is an essential step towards moving this approach to
the deployment phase; these evaluations are under way. Additionally, management of resistance in
the pest population is essential. Western corn root worm, Diabrotica virgifera, has shown field-level
resistance to DvSnf7 dsRNA [30], necessitating development and selection of new targets. This process
is relatively simple, however, and involves screening for and switching to other appropriate dsRNAs,
thereby managing for the potential development of resistance. dsRNAs can be designed for a different
region in the same target gene or new genes much more quickly and efficiently than developing a more
expensive chemical insecticide [22]. There are clearly knowledge gaps that must be addressed before
this technology can be deployed in the EAB–ash system. Potential off-target effects in EAB, mutation
of RNAi core machinery genes, mutation of target genes, and enhanced dsRNA degradation, not to
mention potential effects on non-target organisms, must be more fully understood before deployment
of bacterially-expressed dsRNA in EAB management can become practical.

RNAi is an emerging pest management tool with tremendous potential to protect plants against
insect pests. Its application continues to expand into crop and vegetable production [2,6,24,31,32],
and horticultural [32,33] and forest systems [5,34,35], and there are numerous native and non-native tree



Insects 2020, 11, 440 8 of 10

pests that might be appropriate candidates. If RNAi technology can be deployed aggressively along the
invasion front to prevent widespread and catastrophic tree losses, this could reduce management costs,
freeing up resources for other aspects of integrated forest management [34–38]. In some situations,
EAB can be managed with chemical insecticides [13,39] and biological control has shown considerable
potential [12–14]. However, the need for a rapid-acting, effective, and environmentally friendly
approach, such as RNAi, remains high.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/7/440/s1,
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