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Highlights:

 Exercise reinforcement, similar to other reinforcing behaviors, can be predicted by 

genetic variations in the central dopamine reward system. 

 Having at least one copy of the G allele for the DRD2/ANKK1 polymorphism 

(rs1800497) predicts greater exercise reinforcement

 Tolerance for exercise intensity, which is related to exercise reinforcement, is influenced 

by SNP’s related to pain neurotransmission.

 Greater moderate-to-vigorous physical activity was observed among those homozygous 

for the T allele for the CNR1 polymorphism at rs6454672.



Abstract

Background: Exercise is a reinforcing behavior and finding exercise highly reinforcing 

is characteristic of habitual exercisers. Genotypes related to dopamine metabolism moderate the 

reinforcing value of behaviors, but genetic moderators of exercise reinforcement have not been 

established. Purpose: Determine whether singular nucleotide polymorphisms (SNPs) that 

moderate central reward pathways and pain neurotransmission are associated with exercise 

reinforcement, tolerance for exercise intensity, and usual physical activity. Methods: Adults 

(n=178) were measured for the reinforcing value of exercise relative to sedentary activities 

(RRVexercise), minutes of moderate-to-vigorous physical activity (MVPA) and completed the 

Preference for and Tolerance of the Intensity of Exercise Questionnaire. Genotyping of 23 SNPs 

known to influence central dopamine tone, pain, or physical activity was performed. ANOVA 

tested differences in RRVexercise, tolerance, and MVPA among genotype groups. Linear 

regression controlling for BMI, sex, and liking of exercise was used to further predict the 

association of genotype on RRVexercise, tolerance, and MVPA. Results: Having at least one copy 

of the G allele for the DRD2/ANKK1 polymorphism (rs1800497) conferred greater RRVexercise. 

Greater tolerance for exercise intensity was observed among those homozygous for the T allele 

for the CNR1 polymorphism (rs6454672), had at least one copy of the G allele for the GABRG3 

polymorphism (rs8036270), or had at least one copy of the T allele for the LPR polymorphism 

(rs12405556). Homozygous individuals for the T allele at rs6454672 exhibited greater MVPA. 

Conclusion: Similar to other reinforcing behaviors, there is a genetic contribution to exercise 

reinforcement, tolerance for exercise intensity, and MVPA. 

Key words: Dopamine, Exercise, SNPs, Physical Activity, Tolerance for Exercise Intensity
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19 1. Introduction 

20 Physical activity (PA) and the exercise subcomponent of PA are well-established as effective 

21 strategies to improve the health of nearly every organ system in the body, increase energy 

22 expenditure, and promote maintenance of a healthy body weight (1). Despite the long-term public 

23 health emphasis by the US government regarding the importance of PA for the health of 

24 Americans, more than 90% of US adults fail to meet PA recommendations when objectively  

25 assessed by accelerometry, and just 1 in 4 Americans report engaging in any leisure time physical 

26 activity (2, 3). Producing sustained increases in exercise and PA is an intractable problem; 

27 interventions designed to increase long-term PA have not yet demonstrated adherence in efficacy 

28 trials, let alone effectiveness trials (4).

29 Understanding individual-level factors associated with exercise participation may help to 

30 solve the problem of low adherence to the physical activity guidelines. One such factor is the 

31 reinforcing value of exercise relative to a competing alternative behavior (relative reinforcing 

32 value of exercise, RRVexercise). The alternative behavior is often a desired sedentary activity such 

33 as screen time or reading that is often chosen in favor of physical activity/exercise. Exercise 

34 reinforcement is a measure of how much an individual is willing to work to gain access to (i.e., 

35 consume) exercise. Individuals who find a behavior highly reinforcing will perform more work 

36 to obtain access relative to a less reinforcing behavior (5). Indeed, the RRVexercise is associated 

37 with engaging in physical activity at a frequency, duration, and intensity sufficient to meet 

38 physical activity guidelines (6), the choice to be physically active among children (7), and 

39 predictive of habitual vigorous PA among adults (8). 



40 The dopamine hypothesis of reward explains that behavioral reinforcement and the 

41 appetitive drive to consume a reward are predominately a function of the meso-accumbal 

42 dopamine system (9, 10). At the core of this system, specific genotypes explain some of the 

43 individual variability in the reinforcing nature of, and participation in behaviors such as drug 

44 abuse, alcohol consumption, nicotine use, gambling, and eating (5, 11-13). For example, SNP’s 

45 influencing protein expression for the DRD2 or DRD3 dopamine receptors are associated with 

46 opioid addiction, alcoholism, cocaine abuse, and smoking (14-16). Also, SNPs affecting central 

47 dopamine tone such as the dopamine transporter gene (SLC6A3), DRD2 receptor, monoamine 

48 oxidase A (MAOA-LPR), and serotonin receptor genes are associated with food reinforcement 

49 and energy intake (17), while SNPs of the fat mass and obesity associated (FTO) gene moderate 

50 the relationship between food reinforcement and energy intake (18).

51 Exercise can be realized as a reinforcing behavior as exercise dependency has been 

52 demonstrated in both humans (19, 20) and rodents (21-23). The wide individual differences in 

53 successful adherence to regular PA and exercise (2) suggest that genetic variability in central 

54 mechanisms of reinforcement may be associated with individual differences in RRVexercise, 

55 although this has not yet been studied. Identifying such variations in the central dopaminergic 

56 reward system would provide initial evidence that some SNPs may moderate exercise 

57 reinforcement, thus influencing individual differences in physical activity behaviors (9, 24) and 

58 adherence to physical activity guidelines (6). Prior work suggests that SNPs involved in control 

59 of the central dopaminergic reward system may associate with PA behavior (25, 26). SNPs 

60 associated with pain neurotransmission could additionally impact exercise reinforcement (27, 28) 

61 because exercise reinforcement is positively associated with the ability to tolerate the discomfort 

62 of increasing exercise intensity (6). Thus, the current study was performed to test the hypothesis 



63 that SNPs associated with central dopamine physiology that moderate the reinforcing value of 

64 other behaviors (17, 29, 30), activity of central nervous system reward pathways (9, 14, 16, 31, 

65 32), or those associated with pain neurotransmission (27, 28) would be associated with exercise 

66 reinforcement, tolerance for exercise intensity discomfort, and usual (habitual) physical activity.

67

68 2. Materials and Methods

69 2.1    Participants and Study Design

70 The study sample was a combined data set from two studies on exercise reinforcement. 

71 One study was a cross-sectional study to determine predictors and correlates of exercise 

72 reinforcement (clinical trials.gov identifier: NCT02416882) while the other was a longitudinal 

73 study on changes in exercise reinforcement (clinical trials.gov identifier: NCT02444247). The 

74 baseline assessment of exercise reinforcement from the longitudinal study was used for the 

75 present analysis. A total of 178 participants (127 female) age 18 to 49 years were included. 

76 Baseline participant characteristics are presented in Table 1. Participants were a sample who 

77 responded to recruitment media including printed brochures, fliers, and online advertisements 

78 placed on the Grand Forks Human Nutrition Research Center website. Entry criteria were very 

79 similar for both studies. All participants were non-smokers and healthy enough to participate in 

80 an exercise program assessed by a physical activity readiness questionnaire, not taking any drugs 

81 that affect energy expenditure (e.g., thyroid, glucose-lowering drugs), could not have gained or 

82 lost more than 5% of body weight over the past 6 months or 10 pounds over the past 3 months, 

83 could not use tobacco, and could not be pregnant or lactating or plan to become pregnant in the 

84 next 6 months. Both studies were approved by the University of North Dakota Institutional 



85 Review Board and registered with ClinicalTrials.gov, numbers NCT02444247 and 

86 NCT02416882. 

87 For both studies, after having the study explained and providing written informed 

88 consent, participants provided a blood sample for genetic assessment and were given an 

89 ActiGraph accelerometer (Pensacola, FL) to measure usual PA. Participants wore the 

90 accelerometer for seven days before performing additional assessments. During subsequent 

91 visits, participants completed assessments of anthropometrics (height and weight), exercise 

92 reinforcement, and tolerance for discomfort during intense exercise. 

93

94 2.2 Assessments 

95 2.2.1  Height and weight: Height was measured in triplicate to the nearest 0.1 cm using a 

96 stadiometer (Seca; Chino, CA). Body weight was measured using a calibrated digital scale 

97 (Fairbanks Scales- Model SCB-R9000-HS; MO) to the nearest 0.1 kg. Measures were completed 

98 with participants wearing either provided lab scrubs or light casual clothes (t-shirt, shorts) and 

99 not wearing shoes. 

100

101 2.2.2  Physical activity: Habitual, free-living PA was measured using an ActiGraph 

102 accelerometer (GT3X+ model; Pensacola, Florida). Each participant wore the device for seven 

103 days prior to performing other assessments. Participants were instructed to wear the monitor at 

104 the right hip using the provided belt during all hours awake except when bathing or swimming. 

105 Data were cleaned of non-wear time, defined as consecutive strings of zeros greater than 20 

106 minutes. An epoch of 10 seconds was used for data collection as a shorter epoch is more suitable 



107 to reflect bout duration under free-living conditions where many bouts of sporadic PA last 30 

108 seconds or less (33, 34). These data were used to determine participants’ usual PA, defined as 

109 weekly minutes of MVPA using the Crouter et al. algorithm (35) and Freedson cut-points (36). 

110

111 2.2.3  Liking: Participants’ liking (hedonic value) of the exercise options (treadmill, elliptical, 

112 stationary bike) and sedentary alternatives (TV, video games, reading magazines, 

113 puzzles/Sudoku) was assessed using a 10-point scale (1 = “do not like at all” and 10 = “like very 

114 much”). The most liked sedentary activity and exercise option was used as the sedentary and 

115 exercise alternative for the RRVexercise testing session, respectively. 

116

117 2.2.4  RRVexercise: Participants’ RRVexercise (specifically, aerobic-type exercise) was assessed 

118 against a sedentary alternative chosen based upon hedonic liking scores (see “Liking” above). 

119 RRVexercise was assessed by evaluating the amount of operant responding (mouse button presses) 

120 a participant was willing to complete to gain access to exercise or a sedentary alternative (11, 

121 37). The testing space included two adjacent computer workstations. The participant could earn 

122 points towards their most liked exercise activity at one station, while the other station was an 

123 identical setup that could be used to earn points toward their most liked sedentary alternative. 

124 Participants could switch between stations as much as they chose. The program presented a game 

125 similar to a slot machine with a row of three shapes of various colors; a point was earned each 

126 time the shapes and colors matched. For every 5 points a schedule was completed and the 

127 participant received 5 min of access to the reinforcer that was earned (either exercise or 

128 sedentary activity). The game was performed until the participant no longer wished to work for 

129 access to either the exercise or sedentary activities, with no minimum or maximum time limit. At 



130 first, points were delivered after every 4 presses (schedule of reinforcement was 4), but then the 

131 schedule of reinforcement doubled (4, 8, 16, 32, […] 1024) each time 5 points were earned. For 

132 instance, the participant initially had to click the mouse button 4 times to earn one point for 

133 schedule 1. After the first 5 points were earned, schedule 1 was complete and the participant had 

134 earned 5 minutes for the corresponding activity. Then, 8 clicks were required to earn each of the 

135 next 5 points for schedule 2 before another 5 minutes was earned. Schedule 3 required 16 clicks 

136 to earn one point, schedule 4 required 32 clicks to earn one point, and so on (11, 37). Participants 

137 engaged in the activity for the time earned after they complete the reinforcement task, which 

138 ended when participants no longer wished to earn points (time) for exercise or the sedentary 

139 alternative. Similar button pressing tasks have been used as valid predictors of the RRV of 

140 physical versus sedentary activity (7). Participants self-selected the intensity level when 

141 performing any earned exercise time, which was typically a low to moderate steady-state 

142 intensity. These assessments took place in private laboratory space within a large exercise 

143 facility. Participants completed their earned exercise time using the exercise facilities’ 

144 equipment. The last schedule completed for exercise and the sedentary alternative were assessed 

145 separately and termed Pmax of sedentary (Pmaxsed) and Pmax of exercise (Pmaxexercise). 

146 RRVexercise was calculated as (Pmaxexercise/(Pmaxexercise + Pmaxsed)) (18, 37). 

147

148 2.2.5  Preference and tolerance for exercise intensity: Participants completed the Preference for 

149 and Tolerance of the Intensity of Exercise Questionnaire (PRETIE-Q) (38). The tolerance 

150 subscale measured ability to tolerate the discomfort associated with intense exercise and was 

151 included in the current analysis as only tolerance scores have been linked to RRVexercise (6).

152



153 2.2.6  Genetic assessment: Table 2 details the SNPs assessed. SNP genotyping was performed on 

154 3-5 ml samples of whole blood collected in EDTA-containing tubes that were immediately 

155 processed for DNA extraction and frozen for future batch analysis. Platinum® qPCR SuperMix 

156 for SNP Genotyping (Applied Biosystems’ TaqMan®-based SNP genotyping products, Life 

157 Technologies) specifically formulated for discrimination of alleles by real-time qPCR followed 

158 by allelic-discrimination analysis was used for the amplification and identification of each SNP. 

159 Predesigned SNP genotyping assays for individual SNPs that included two allele-specific 

160 TaqMan® MGB probes containing distinct fluorescent dyes and a PCR primer pair to detect 

161 specific SNP targets were used. These probe and primer assays align with the genome to provide 

162 specificity for the allele of interest.

163

164 2.3  Analytic Plan: Sex differences in demographics, RRVexercise, MVPA, liking, and tolerance 

165 for exercise discomfort were determined by unpaired T-tests. One-way analysis of variance 

166 (ANOVA) tested whether participants homozygous for minor alleles differed for RRVexercise, 

167 tolerance of exercise intensity, MVPA, and liking of exercise and sedentary activities from 

168 participants carrying one or two major alleles. RRVexercise was modeled using the beta 

169 distribution due to it being a ratio score. When used as a dependent variable, MVPA was 

170 transformed by natural logarithmic transformation due to the highly skewed distribution, and 

171 back-transformed to report means and standard errors in models predicting MVPA. All other 

172 dependent variables were modeled using the normal distribution. For SNPs that showed 

173 significant differences by ANOVA, after correcting for the false discovery rate, multiple 

174 regressions were performed to test whether SNP genotype was predictive of RRVexercise, 

175 tolerance for exercise intensity, or MVPA after controlling for possible covariates. The 



176 RRVexercise model included BMI, MVPA, tolerance for exercise intensity, liking of aerobic 

177 exercise, and sex as covariates. Tolerance of exercise intensity models included BMI, MVPA, 

178 RRVexercise, liking of exercise, and sex. The MVPA model included BMI, RRVexercise, liking of 

179 aerobic exercise, tolerance for exercise intensity, sex, and the interaction of tolerance and 

180 genotype. 

181

182 3. Results

183 Men had greater (p<0.05) BMI, MVPA, and tolerance for exercise intensity than women. 

184 No sex differences were found for age or RRVexercise, (Table 1). Genotype prevalence was 

185 consistent with NIH databases (https://www.ncbi.nlm.nih.gov/snp/) as shown in Table 3. 

186 Participants that were homozygous (A:A) for rs1800497 had a lower RRVexercise than 

187 participates carrying one or two G alleles when tested by ANOVA (p<0.01) and by regression 

188 (p<0.01) that modeled potential covariate effects on RRVexercise (Table 4). From ANOVA, 

189 tolerance for exercise intensity was greater (p<0.05) for participants that were homozygous for 

190 rs6454672 (T:T), and lower for homozygous rs8036270 (A:A) and rs12405556 (G:G) (p<0.01, 

191 p<0.05, respectfully). Results from the regression models demonstrated that SNP’s rs6454672, 

192 rs8036270, and rs12405556 were significant (p<0.03) predictors of tolerance for exercise 

193 intensity. MVPA and RRVexercise were also significant (p<0.01) predictors of tolerance for 

194 exercise intensity in each model (Table 5). SNP rs6454672 was a significant predictor (p<0.001) 

195 of MVPA, as homozygous carriers of the T allele exhibited lower (p<0.01) MVPA (Table 6.). 

196 The interaction of tolerance and genotype was tested to further examine the synergy between 

197 genotype and the ability to tolerate exercise intensity but was not significant (p=0.41). There 

198 were no SNP genotypes that influenced in liking of the exercise or sedentary alternatives.

https://www.ncbi.nlm.nih.gov/snp/


199

200 4. Discussion 

201 This is the first investigation of the association of SNPs that moderate central dopamine 

202 physiology and pain neurotransmission with exercise reinforcement, tolerance for exercise 

203 intensity, and usual physical activity. The results support the hypothesis that a genetic 

204 contribution to RRVexercise exists. Specifically, individuals carrying the polymorphism of a G 

205 allele at rs1800497 had greater RRVexercise. The rs1800497 polymorphism, also known as Taq1A, 

206 affects the ankyrin repeat and kinase domain containing 1 gene (ANKK1), and is a G > A 

207 polymorphism, causing a Glutamine > Lysine missense variant. Although there is some debate 

208 (39), Taq1A is associated with decreased ligand binding at, or decreased expression of the 

209 dopamine D2 receptor (DRD2) (40-43), and is associated with other reinforcing behaviors (30) 

210 and greater risk of alcohol and drug abuse (44). Further, central dopamine signaling is necessary 

211 for development and maintenance of exercise behavior (24), supporting a role for Taq1A in 

212 exercise reinforcement. Indeed, genotype variants affecting dopamine signaling via DRD2 or 

213 ANKK1 expression are associated with differences in usual physical activity in both rodents and 

214 humans (45, 46). 

215 In the current study, homozygous Taq1A carriers (A1/A1) had lower (p<0.01) RRVexercise 

216 than heterozygous A1:A2 or homozygous A2/A2 carriers (Table 4.). Adults with the Taq1A 

217 allele experience a decreased response to reinforcing stimuli (30). Notably, dopamine signaling 

218 has been investigated for its role in motivation (47, 48), motor movement (49-51) and 

219 reinforcement (52). Moreover, the dopamine system is a key player in determining voluntary 

220 physical activity (see review (24)). Antagonists of DRD2 receptors (53) or similar DRD2 



221 polymorphisms (46) also reduce motor activity in humans. Together these data support a 

222 mechanism by which Taq1A inhibits central dopamine signaling, therefore attenuating 

223 RRVexercise. 

224 This study is also the first to demonstrate a genotypic association with tolerance for 

225 exercise intensity. The SNP’s rs6454672, rs8036270, and rs12405556 independently predicted 

226 tolerance for exercise intensity, which is defined as an individual’s ability to tolerate the 

227 discomfort associated with intense exercise such as fatigue, pain, and sweatiness (38). This is in 

228 contrast to the need to increase dosage to maintain a response, as is common with pharmacologic 

229 agents. Greater tolerance for exercise intensity is associated with participating in enough exercise 

230 to meet physical activity guidelines (6) and with self-selected exercise intensity (54), suggesting 

231 that greater tolerance for exercise intensity may lead to more frequent engagement in intense 

232 physical activity. 

233 Most of what is known regarding rs6454672 is in respect to cannabinoid signaling and 

234 schizophrenia, as rs6454672 is located near the cannabinoid receptor 1 gene and is noted for its 

235 contribution to genetic coding variability for the cannabinoid receptor type 1 (CB1) gene (55). 

236 Stimulation of CB1 receptors negatively regulates pain and inflammation through its inhibitory 

237 action as a Gαi-coupled receptor, decreasing neurotransmission of pain (56). Carrying even a 

238 single minor (C) allele is associated with a decreased likelihood of meeting physical activity 

239 recommendations (57), which is supported by the current finding that homozygous T carriers 

240 have greater tolerance for exercise intensity, supporting previous work demonstrating individuals 

241 with greater tolerance for exercise intensity are more likely to meet PA recommendations (6). 

242 The relationship between tolerance for exercise intensity and increased likelihood of meeting PA 

243 recommendations is also supported by the current finding that participants homozygous (T:T) at 



244 rs6454672 also exhibited greater MVPA. However, no other SNP’s tested in this study were 

245 associated with MVPA.

246 The gamma-aminobutyric acid type A receptor gamma 3 subunit (GABRG3) encodes a 

247 gamma-aminobutyric acid (GABA) receptor and rs8036270 is an intron variant within this gene 

248 locus. GABA, as the primary inhibitory neurotransmitter in the human brain, can bind to 

249 ionotropic receptors (K+ channels - hyperpolarizing) or metabotropic receptors (Gαi) to inhibit 

250 neurotransmission of painful stimuli (58). Consistent with the present finding that carrying at 

251 least one G allele at rs8036270 predicts increased tolerance for exercise intensity, prior studies 

252 have determined that this SNP is also associated with leisure time exercise behavior and physical 

253 activity related energy expenditure (26, 59). Although further research is necessary for 

254 verification, these findings suggest that rs8036270 positively regulates inhibitory 

255 neurotransmission through GABA signaling, thus decreasing “pain” signaling pathways, 

256 increasing exercise intensity tolerance, and therefore, physical activity.

257 SNP rs12405556 is an intron variant that affects the leptin receptor and predicts physical 

258 activity (59, 60). In agreement with the current study, prior studies have also demonstrated that 

259 glutamine to arginine substitution in codon 223 of the leptin receptor predicts levels of physical 

260 activity and adiposity in humans (60). The current work revealed that having at least one copy of 

261 the minor (T) allele predicted greater tolerance for exercise intensity. Central leptin receptors, 

262 and therefore central leptin signaling, play key roles in feeding behavior [80], energy 

263 homeostasis (61), and physical activity behavior (60, 62). Therefore, these data suggest that 

264 carrying at least one copy of the minor allele for rs12405556 may be a genetic factor driving 

265 greater tolerance for exercise intensity, and physical activity.



266 5. Conclusion

267 In conclusion, we found that SNP rs1800497 predicted RRVexercise. Additional SNP’s 

268 rs6454672, rs8036270 and rs12405556 predicted greater tolerance for exercise intensity, while 

269 rs6454672 also predicted MVPA. Having greater RRVexercise is an important factor in one’s 

270 choice to be more physically active (6, 8, 63). Maintaining an exercise routine likely depends on 

271 an individual’s ability to experience aversive aspects of exercise yet be able to tolerate those 

272 unpleasant aspects and persist engaging in exercise behavior. Therefore, having greater 

273 RRVexercise and tolerance for the discomfort associated with intense exercise may lead to more 

274 frequent and sustained exercise behavior. These results demonstrate that functional changes at 

275 the protein level provide pathways by which SNPs may be driving changes in physical activity-

276 related behavior, and these SNPs may be underlying causes for differences in habitual physical 

277 activity between individuals. Further research to determine personalized exercise prescriptions 

278 based on genotype, along with strategies to increase exercise reinforcement among certain 

279 individuals is needed to potentially increase the number of Americans being physically active.
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493

494 Table 1. Demographics, MVPA, and exercise reinforcement of the study participants

495  Data are presented as mean ± SD 

496 *means differ (p ≤ 0.05) between sex 

497 1BMI: body mass index

498 2 RRVAT: number of sessions completed during the RRV task to gain access to aerobic exercise training 
499 (AT) when sedentary behavior was available as a behavioral alternative.

500 3MVPA: minutes of moderate to vigorous physical activity per week

501 4Preference: Preference for the Intensity of Exercise Questionnaire score (au)

502 5Tolerance: Tolerance of the Intensity of Exercise Questionnaire score (au)

Male (n=51) Female (n=127) Total (n=178)

Age (years) 26.3 ± 6.7 27.1 ± 9.3 26.9 ± 8.6

BMI (kg/m2)1 27.0 ± 5.1* 25.2 ± 4.4* 25.7 ± 4.7

RRVexercise
2 0.72 ± 0.34 0.71 ± 0.37 0.71 ± 0.4

MVPA3 50.4 ± 27.3* 35.7 ± 22.9* 40.0 ± 25.1

Preference4 26.1 ± 5.5 26.3 ± 6.2 26.3 ± 6.0

Tolerance5 26.0 ± 5.7* 23.9 ± 5.2* 24.5 ± 5.4



504 Table 2. List of single nucleotide polymorphisms (SNPs) assessed in the present study

SNP ID Gene Polymorphism Residue Change

rs8066276 ACE C/T Transition 
Substitution

(TCT[C/T]ACT)

N/A

rs11615016 TPH2 A/G transition 
substitution 

(TAC[A/G]TTC)

N/A
Intron Variant

rs6454672 CNR1 C/T Transition 
Substitution 

(CTT[C/T]ACA)

N/A
Intron Variant

rs6280 DRD3 C/T Transition 
Substitution 

(GGC[C/T]ACT)

C [Gly] ⇒ S [Ser]

rs8049933 FTO C/T Transition 
Substitution 

(AAT[C/T]GGT)

N/A
Intron Variant

rs9936768 FTO C/T Transition 
Substitution

(TAT[C/T]GTC)

N/A
Intron Variant

rs12446047 FTO C/T Transition 
Substitution 

(GAC[C/T]TCA)

N/A
Intron Variant

rs11076022 FTO A/G transition 
substitution

(GTC[A/G]TTC)

N/A

rs7199716 FTO C/T Transition 
Substitution 

(TTC[C/T]CTC)

N/A
Intron Variant

rs6314 HTR2A A/G transition 
substitution

(AAT[A/G]CTG)

A [His] ⇒ G [Tyr]

rs1800497 DRD2/AN
KK1

A/G transition 
substitution

(GTC[A/G]AGG)

A [Glu] ⇒ G [Lys]

rs10887741 PAPSS2 C/T Transition 
Substitution 

(GGG[C/T]TCC)

N/A
Intron Variant



rs12612420 None A/G transition 
substitution 

(TCC[A/G]GAT)

N/A

rs8097348 None A/G transition 
substitution

(TA[A/G]CTAG)

N/A

rs12405556 LEPR G/T Transversion 
Substitution

(CAG[G/T]ATA)

N/A
Intron Variant

rs8036270 GABRG3 A/G transition 
substitution

(GAA[A/G]TGA)

N/A
Intron Variant

rs6265 BDNF C/T Transition 
Substitution

(TCA[C/T]GTG)

C [Val] ⇒ T [Met]

rs1076560 DRD2 A/C Transversion 
Substitution 

(TC[A/C]CCC)

N/A
Intron Variant

rs4680 COMT A/G transition 
substitution

(GGC[A/G]TGA)

G [Val] ⇒ A [Met]

rs265981 DRD1 A/G transition 
substitution 

(GGC[A/G]GCC)

N/A

rs1800955 DRD4 C/T Transition 
Substitution 

(GGG[C/T]GCG)

N/A

rs1611115 DBH C/T Transition 
Substitution 

(TTG[C/T]GGG)

N/A

rs6275 DRD2 A/G transition 
substitution 

(ACC[A/G]TGG)

A [His] ⇒ G [His]

505



506 Table 3. prevalence of genotypes with significant predictive values

507

SNP Allele Frequency Percent Genotype Frequency Percent

A:A 10 5.6 All A 10 5.6

A:G 52 29.2rs1800497

G:G 116 65.2
Has G 168 94.4

C:C 28 15.8

C:T 88 49.7
Has C 116 65.5

rs6454672

T:T 61 34.5 All T 61 34.5

A:A 52 29.2 All A 52 29.2

A:G 88 49.4rs8036270

G:G 38 21.4
Has G 126 70.8

G:G 84 47.2 All G 84 47.2

G:T 80 44.9rs12405556

T:T 14 7.9
All T 94 52.8

508



509 Table 4. ANOVA results and regression model results predicting the relative reinforcing value of exercise 

510 from SNP rs1800497 and covariates

511

512

513

514

515

516

517

518

519

520

521

522

523 *Means ± SE differ (p<0.01)

524 Single nucleotide polymorphism (SNP), body mass index (BMI), moderate-to-vigorous physical activity 

525 (MVPA), tolerance for exercise intensity (Tolerance), sex coded as: female = 0, male = 1

Coefficient ± SE P

Full regression model 

R2 = 0.11

Intercept -1.10 ± 1.01 0.28

BMI -0.01 ± 0.02 0.55

MVPA 0.003 ± 0.004 0.43

Tolerance 0.03 ± 0.02 0.14

Liking of exercise 0.16 ± 0.08 0.05

Sex = Female -0.02 ± 0.23 0.94

rs1800497 A:A -1.20 ± 0.42 0.005

Regression model of significant predictors

R2 = 0.06

Intercept 0.75 ± 0.11 <0.001

rs1800497 A:A -1.38 ± 0.42 0.001

RRV by genotype (from ANOVA)

Genotype Mean ± SE

AA 0.35 ± 0.09*

AG,GG 0.68 ± 0.02*



526 Table 5. ANOVA results and regression model results predicting tolerance for exercise intensity from SNP rs6454672, rs8036270 or rs12405556, 

527 and covariates 

rs6454672 rs8036270 rs12405556

Coefficient ± SE P Coefficient ± SE P Coefficient ± SE     P

Full regression models

R2 = 0.21 R2 = 0.24 R2 = 0.21

Intercept 19.36 ± 4.31 < 0.001 Intercept 20.27 ± 4.19 < 0.001 Intercept 20.33 ± 4.31 < 0.001

BMI 0.06 ± 0.10 0.58 BMI 0.06 ± 0.10 0.57 BMI 0.04 ± 0.10 0.73

MVPA 0.05 ± 0.01 <0.001 MVPA 0.06 ± 0.02 < 0.001 MVPA 0.06 ± 0.01 < 0.001

RRVExercise 2.95 ± 1.09 0.008 RRVExercise 3.17 ± 1.12 0.005 RRVExercise 2.88 ± 1.14 0.01

Liking of 
exercise

-0.03 ± 0.38 0.95 Liking of 
exercise

-0.03 ± 0.37 0.93 Liking of exercise 0.12 ± 0.37 0.75

Sex = Female -1.40 ± 0.96 0.15 Sex = Female -1.10 ± 0.99 0.27 Sex = Female -1.52 ± 1.02 0.14

rs6454672 T:T 2.12 ± 0.90 0.02 rs8036270 A:A -2.86 ± 0.89 0.002 rs12405556 G:G -1.86 ± 0.82 0.025

Regression models of significant predictors

R2 = 0.19 R2 = 0.21 R2 = 0.19

Intercept 19.40 ± 0.91 < 0.001 Intercept 20.67 ± 1.0 < 0.001 Intercept 20.88 ± 1.02 < 0.001

rs6454672 T:T 2.39 ± 0.88 0.007 rs8036270 A:A -2.95 ± 0.82 < 0.001 rs12405556 G:G -2.08 ± 0.77 0.0072

MVPA 0.06 ± 0.01 < 0.001 MVPA 0.07 ± 0.01 < 0.001 MVPA 0.063 ± 0.01 < 0.001



RRVExercise 2.72 ± 1.03 0.009 RRVExercise 2.86 ± 1.05 0.007 RRVExercise 2.90 ± 1.11 0.0096

Tolerance by genotype (from ANOVA)

Genotype Mean ± SE Mean ± SE Mean ± SE

TT 26.04 ± 0.73* AA 22.41 ± 0.69** GG 23.41 ± 0.58*

CT,CC 23.65 ± 0.46* AG,GG 25.36 ± 0.45** GT,TT 25.49 ± 0.51*

*means ± SE differ between genotype (p<0.05)

**means ± SE differ between genotype (p<0.01)

single nucleotide polymorphism (SNP), body mass index (BMI), moderate-to-vigorous physical activity (MVPA), tolerance for exercise intensity 

(Tolerance), sex coded as: female = 0, male = 1



529 Table 6. ANOVA results and regression model results predicting the natural logarithm of daily minutes of 

530 moderate-to-vigorous physical activity from SNP rs6454672 and covariates

Coefficient ± SE P

Full regression model

R2 = 0.22

Intercept 3.38 ± 0.55 < 0.001

BMI -0.01 ± 0.01 0.32

RRVExercise 0.09 ± 0.15 0.54

Liking_AT -0.02 ± 0.04 0.71

Tolerance 0.02 ± 0.01 0.02

rs6454672 T:T 0.35 ± 0.10 < 0.001

Sex = Female -0.37 ± 0.09 < 0.001

Regression model of significant predictors

R2 = 0.19

Intercept 3.01 ± 0.23 < 0.001

Tolerance 0.02 ± 0.01 0.01

Sex = Female -0.30 ±0.10 0.002

rs6454672 T:T 0.32 ± 0.09 < 0.001

MVPA by genotype (from ANOVA)

Genotype Mean ± SE

TT 42.95 ± 2.48*

CT,CC 31.1 ± 2.1*

*means ± SE differ (p<0.01)

531 Single nucleotide polymorphism (SNP), body mass index (BMI), relative reinforcing value of exercise 

532 (RRVExercise) tolerance for exercise intensity (Tolerance), ANOVA model means and standard errors are 

533 back-transformed from natural logarithmic function.
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