
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Dietetics and Human Nutrition Faculty 
Publications Dietetics and Human Nutrition 

11-2020 

Exercise for Weight Loss: Further Evaluating Energy Exercise for Weight Loss: Further Evaluating Energy 

Compensation with Exercise Compensation with Exercise 

Kyle D. Flack 
University of Kentucky, kyle.flack@uky.edu 

Harry M. Hays 
University of Kentucky 

Jack Moreland 
University of Kentucky, jack.moreland@uky.edu 

Douglas E. Long 
University of Kentucky, delong2@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/foodsci_facpub 

 Part of the Dietetics and Clinical Nutrition Commons, and the Sports Sciences Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Flack, Kyle D.; Hays, Harry M.; Moreland, Jack; and Long, Douglas E., "Exercise for Weight Loss: Further 
Evaluating Energy Compensation with Exercise" (2020). Dietetics and Human Nutrition Faculty 
Publications. 24. 
https://uknowledge.uky.edu/foodsci_facpub/24 

This Article is brought to you for free and open access by the Dietetics and Human Nutrition at UKnowledge. It has 
been accepted for inclusion in Dietetics and Human Nutrition Faculty Publications by an authorized administrator 
of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/346142789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/foodsci_facpub
https://uknowledge.uky.edu/foodsci_facpub
https://uknowledge.uky.edu/foodsci
https://uknowledge.uky.edu/foodsci_facpub?utm_source=uknowledge.uky.edu%2Ffoodsci_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/662?utm_source=uknowledge.uky.edu%2Ffoodsci_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/759?utm_source=uknowledge.uky.edu%2Ffoodsci_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/foodsci_facpub/24?utm_source=uknowledge.uky.edu%2Ffoodsci_facpub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Exercise for Weight Loss: Further Evaluating Energy Compensation with Exercise Exercise for Weight Loss: Further Evaluating Energy Compensation with Exercise 

Digital Object Identifier (DOI) 
https://doi.org/10.1249/mss.0000000000002376 

Notes/Citation Information Notes/Citation Information 
Published in Medicine and Science in Sports and Exercise, v. 52, issue 11. 

© 2020 The Author(s) 

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non 
Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the 
work provided it is properly cited. The work cannot be changed in any way or used commercially without 
permission from the journal. 

This article is available at UKnowledge: https://uknowledge.uky.edu/foodsci_facpub/24 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/foodsci_facpub/24


D
ow

nloaded
from

http://journals.lw
w
.com

/acsm
-m
sse

by
BhD

M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3yR

lXg5VZA8uqN
uqW

Fo8dR
hG

M
AVnN

M
de3eApodgidoKg=

on
10/28/2020

Downloadedfromhttp://journals.lww.com/acsm-mssebyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3yRlXg5VZA8uqNuqWFo8dRhGMAVnNMde3eApodgidoKg=on10/28/2020

Exercise for Weight Loss: Further Evaluating
Energy Compensation with Exercise

KYLE D. FLACK1, HARRY M. HAYS1, JACK MORELAND1, and DOUGLAS E. LONG2

1Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY; and 2College of Health Sciences
and Center for Muscle Biology, University of Kentucky, Lexington, KY

ABSTRACT

FLACK, K. D., H. M. HAYS, J. MORELAND, and D. E. LONG. Exercise for Weight Loss: Further Evaluating Energy Compensation with

Exercise.Med. Sci. Sports Exerc., Vol. 52, No. 11, pp. 2466–2475, 2020. Purpose: This study assessed how individuals compensate for en-

ergy expended during a 12-wk aerobic exercise intervention, elucidating potential mechanisms and the role exercise dose plays in the com-

pensatory response. Participants and Design: Three-arm, randomized controlled trial among sedentary adults age 18 to 40 yr, body

mass index of 25 to 35. Groups included six exercise sessions per week, two sessions per week, and sedentary control. Methods: Rate of

exercise energy expenditure was calculated from a graded exercise test averaged across five heart rate zones. Energy compensation was cal-

culated as the difference between expected weight loss (based on exercise energy expenditure) and changes in fat and fat-free mass (DXA).

Resting energy expenditure was assessed via indirect calorimetry and concentrations of acylated ghrelin, leptin, insulin, and Glucagon-like

peptide 1 (GLP-1) were assessed fasting and postprandial (six timepoints over 2 h). Results: The 6-d·wk−1 group expended more energy

(2753.5 kcal) and exercised longer (320.5 min) per week than the 2-d·wk−1 group (1490.7 kcal, 1888.8 min, P < 0.05), resulting in greater

fat loss compared with the 2-d or control groups (P < 0.05). Exercise groups did not differ in the % or total kcal compensated. Greater de-

creases in area under the curve (AUC) for acylated ghrelin predicted greater fat loss, regardless of group, energy expended per week, exercise

duration, or exercise intensity. Changes in leptin AUCwas the only independent predictor for energy compensation, with a greater decrease in

leptin AUC predicting less energy compensation. Exercise frequency, energy expended, duration, or intensity did not influence energy com-

pensation.Conclusions: Leptin is an important factor in successful weight loss through exercise, with greater postprandial decreases promoting

less compensation. Greater amounts of exercise do not influence the compensatory response to an exercise-induced energy deficit.KeyWords:

ENERGY COMPENSATION, EXERCISE, WEIGHT LOSS, LEPTIN, GHRELIN

Individuals classified as overweight or obese represent
over 70% of US adults, putting these individuals at risk
for a multitude of comorbidities including cardiovascular

disease, diabetes, heart disease, and certain cancers (1). Obe-
sity treatment has therefore emerged as a prime focus of
health care and a top concern among the general public. Re-
cent reports indicate that 41.5% of individuals are currently
trying to lose weight, with exercise being the most common
strategy at a prevalence rate of 65% (2). Unfortunately, weight

loss from an exercise program is often less than expected (3,4).
The lack of weight loss success with exercise is due to com-
pensatory responses counteracting the negative energy bal-
ance created by exercise to maintain homeostasis, thereby
alleviating the energy deficit required for weight loss (5).
Maintaining energy balance can be viewed as an evolution-
arily conserved mechanism in place to retain bodily energy
stores and reproductive function, a useful survival strategy in
times of famine (6). However, this response is not as advanta-
geous in our current obesogenic environment, detracting from
the desired additional body weight loss and weight loss main-
tenance. Some have speculated that the primary compensatory
response resisting weight loss with exercise is an increased en-
ergy intake based on the fact that the rate of energy intake far
exceeds the rate of energy expenditure (3–5). To this end, re-
search has evaluated how hormonal mediators of hunger
may function as mechanisms to influence energy intake when
faced with an energy deficit (7). Specifically, increases in acyl-
ated ghrelin and decreases in peptide YY, insulin, and leptin
(either postprandially or fasting levels) have been observed
with exercise and weight loss, potentially promoting feeding
behaviors (7–9). Others have championed for metabolic adap-
tations, or mass-independent reductions in energy expendi-
ture, as a major player in energy compensation (10–12).
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These changes in energy expenditure have been realized as de-
clines in resting energy expenditure (REE) and increases skel-
etal muscle work efficiency (expending less energy at a given
workload) when controlling for fat-free mass (FFM) (13,14).
Disagreement also exists around the magnitude of the
compensatory response, with evidence that greater energy ex-
penditures evoke a greater compensatory response (15), sup-
ported by the observed lack of differences in weight loss
between groups exercising at 50%, 100%, or 150% of public
health recommendations (16) or when exercising at 14 or
23 kcal·kg−1·wk−1 (17). On the other hand, we recently dem-
onstrated no differences in energy compensation between
groups expending 3000 or 1500 kcal·wk−1, with both groups
compensating for roughly 1000 kcal·wk−1 (18). The purpose
of the present investigation was to extend this previous study
on energy compensation by assessing the compensatory re-
sponse of inactive individuals with overweight/obesity after
a 12-wk aerobic exercise intervention when randomizing par-
ticipants into different exercise frequency groups (sessions per
week). We hypothesized that less frequent exercise (2 d·wk−1)
would evoke a reduced compensatory response compared
with frequent exercise (6 d·wk−1) as fewer sessions could re-
sult in fewer episodes of compensatory eating or fewer insults
on the biological mechanisms working to maintain energy ho-
meostasis. Although the 2-d·wk−1 group was not likely to pro-
duce the same exercise energy expenditure as the 6-d·wk−1

group, this hypothesized attenuation of the compensatory re-
sponse would, if proven true, result in both groups losing sim-
ilar amounts of body weight. To provide further insight into
the mechanisms of energy compensation, changes in REE ad-
justed for FFM, resting respiratory quotient (RQ), and the hor-
monal response to a breakfast meal were evaluated.

MATERIALS AND METHODS

Participants

A total of 52 participants age 18 to 49 yr volunteered and
were randomized into one of three groups during this longitu-
dinal, randomized, controlled trial. Of these, 44 participants
completed the study (32 women), with six (four women) with-
drawing for personal reasons and two female participants be-
ing excluded for noncompliance. All participants had a body
mass index (BMI) ranging from 25 to 35 kg·m�2 and were inac-
tive (not engaging in any form of exercise for the previous
6 months). We defined exercise as purposeful, leisure time
physical activities performed to improve health and/or weight
status. This was determined during screening when partici-
pants were asked of their exercise behaviors. Participants were
excluded if they reported engaging in any exercise over the
previous 6 months. The lack of exercise behaviors of the cur-
rent sample was validated by accelerometry, as baseline 7-d
vigorous physical activity (VPA) values were well below the
recommended 75 min·wk−1 for every participant (Table 1).
Recruitment began in the winter of 2018 and continued until
recruitment goals were met (spring of 2019) in and around
Lexington, Kentucky. Participants were a sample who

responded to recruitment media including printed brochures
and flyers and online advertisements placed on University of
Kentucky’s Center for Clinical and Translational Science
(CCTS) website. This study was approved by the University
of Kentucky Institutional Review Board and is registered with
ClinicalTrials.gov identifier: NCT03413826.

Study Design

The study was a randomized, controlled trial that included a
12-wk exercise intervention of either six sessions (days) per
week, two sessions per week, or a sedentary control group (no
exercise) blocked on sex. The study statistician generated and
maintained the concealed allocation sequence. Participants
were randomized upon completion of all baseline assessments
with no blinding of assignment to interventions as participants
and research staff needed to monitor weekly exercise sessions
to ensure compliance. Participants were assessed for outcome
measures at baseline and immediately after the intervention.

Procedures

During the initial screening and consenting visit, participants
provided their written informed consent and were screened of
eligibility criteria, completing a physical activity readiness
questionnaire, health history questionnaire, and screened on
their dieting, weight loss history, and physical activity behav-
iors. Participants were provided an ActiGraph Accelerometer
(Pensacola, FL) to wear for the following 7 d to objectively as-
sess physical activity before completing baseline testing. Sub-
sequent visits included assessments for resting metabolic rate,
rate of energy expenditure during exercise, body composition,
and hormonal response to a standardized breakfast meal (all
detailed below).

Assessments

Physical activity. Habitual, free-living physical activity
was measured using an ActiGraph accelerometer (GT3X+
model) at baseline to verify participants were not engaging
in exercise. Participants were instructed to wear the monitor
at the hip using the provided belt during all hours awake except
when bathing or swimming. Data were cleaned of nonwear

TABLE 1. Demographics, VPA, and metabolic rates of the study participants at baseline (in-
cludes all randomized participants).

6 d·wk−1 Group, n = 19 2 d·wk−1 Group, n = 20 Control, n = 14

Sex (% female) 68.4 85.0 78.8
Age (yr) 29.32 ± 7.27 28.56 ± 5.85 26.00 ± 7.80
BMI, kg·m�2 29.0 ± 2.87 30.51 ± 3.47 29.36 ± 2.87
VPAa 9.08 ± 12.88 8.57 ± 17.45 12.91 ± 19.87
REE/kg FFMb 31.52 ± 4.76 33.86 ± 4.75 33.37 ± 4.62
RQc 0.93 ± 0.10 0.90 ± 0.09 0.92 ± 0.06
V̇O2 peak

d 39.76 ± 4.56 38.45 ± 2.57 39.95 ± 4.84

Data are mean ± SD.
aMinutes of weekly VPA assessed objectively assessed via accelerometry using Freedson
cut points.
bREE per kg FFM, in kcal per 24 h, assessed from indirect calorimetry and calculated via the
Weir equation from O2 consumed and CO2 produced.
cRespiratory quotient, CO2 produced/O2 consumed during REE test.
d V̇O2Peak: Estimated from submaximal exercise test, mL·kg−1·min−1.
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time, defined as consecutive strings of zeros greater than
20 min. An epoch of 10 s was used for data collection as a
shorter epoch is more suitable to reflect bout duration under
free-living conditions of sedentary individuals (19). These
data were used to determine participants’ weekly minutes of
VPA using the Crouter et al algorithm, and Freedson cutpoints.
Vigorous physical activity was used over the more typical
moderate to vigorous physical activity (MVPA) to determine
exercise behavior as VPA is a better measure of purposeful
exercise opposed to activities like walking across a large
college campus (as many participants were obligated to do)
which can be counted as MVPA but did not fit our definition
of “exercise.”

Rate of energy expenditure. A graded exercise tread-
mill test was used to determine each participant’s rate of en-
ergy expenditure at five different heart rate (HR) zones. Oxygen
consumed and CO2 produced were analyzed by indirect calo-
rimetry (VMAX Encore Metabolic Cart; Vyaire Medical,
Mettawa, IL), which included an integrated 12-lead ECG for
monitoring HR and used in conjunction with the Trackmaster
TMX428 Metabolic cart interfaced treadmill. Upon comple-
tion of a 5-min warm-up walking at 0% grade and 3.0 mph,
the treadmill grade increased to 2.5% for 3 min. The treadmill
grade was then increased every 3 min to produce an approxi-
mately 10-bpm increase in HR from the previous stage with
the speed fixed at 3.0 mph. The test continued until an HR
of 85% HR reserve (HRR) was attained or the participant felt
they could no longer continue. Rate of energy expenditure
(kcal·min−1) was determined from the amount of oxygen
consumed and CO2 expired using the Weir equation (20).
The average rate of energy expenditure during the last
30 s of each stage of the test was regressed against the HR
averaged over the last 30 s of the corresponding stage to cal-
culate the rate of energy expenditure at different HR. Heart
rate zones were calculated based on the HRR formula as
(220 − age) − resting HR � zone % + resting HR. Heart rate
zone 1 ranged from 50% to 59% HRR, zone 2 corresponded
to 60%–69% HRR, zone 3 was 70% to 79% HRR, zone 4 was
80% to 89% HRR, and zone 5 was 90% or greater. Energy
expenditure (kcal·min−1) was averaged across each HR
zone for determination of energy expenditure per minute
for each zone. This test was completed at baseline and again
at 6 wk to recalculate energy expenditure to take improve-
ments in cardiorespiratory fitness into account.

Body composition. Body composition was measured
using a GE Lunar iDXA machine before the exercise test.
The iDXA technique allows the noninvasive assessment of
soft tissue composition by region with a precision of 1%
to 3% (21). A total body scan was conducted with partici-
pants lying supine on the table and arms positioned to the
side. Most scans were completed using the thick mode sug-
gested by the software. All scans were analyzed using GE
Lunar enCORE Software (13.60.033). Automatic edge de-
tection was used for scan analyses. The machine was cali-
brated before each scanning session, using the GE Lunar
calibration phantom.

Resting Energy Expenditure

Resting Energy Expenditure was measured using indirect
calorimetry (Quark RMR; Cosmed USA, Chicago, IL) with
a ventilated canopy. Calibrations were performed on the flow
meter using a 3.0-L syringe and on the gas analyzers using ver-
ified gases of known concentrations before each test. After
30 min of quiet rest in the supine position in a dimly lit,
temperature-controlled room between 22°C and 24°C, REE
was measured for 30 min. The test was monitored to ensure
participants remained awake and between 0.8% and 1.2%
feCO2. Criteria for a valid REE was a minimum of 15 min
of steady state, determined as a <10% fluctuation in oxygen
consumption and <5% fluctuation in respiratory quotient.
The Weir equation (20) was used to determine REE from
the measured oxygen consumption and CO2 production.
Participants completed the baseline REE assessment before
the exercise test and 36 to 72 h after their final exercise ses-
sion of the intervention. Fat-free mass is the predominate
determinant of REE due to its metabolic activity, explaining
53% to 88% of the variance in REE (22,23). For this reason,
REE (raw value) was divided by FFM (kg, from DXA) at
each timepoint to standardize REE. This is consistent with
previous literature and the definition of metabolic compen-
sation, that is, mass-independent reductions in energy ex-
penditure (10–12).

Hormonal Response to Standardized Breakfast

Participants reported to the outpatient wing of the Univer-
sity of Kentucky’s CCTS, located within a research hospital
after an overnight fast between 10 and 14 h. Participants pro-
vided a blood sample to analyze hormone and peptide concen-
trations associated with hunger and body weight regulation
immediately before a standardized breakfast. The standardized
breakfast provided 20% of estimated energy needs for each in-
dividual based on their REE and a sedentary activity factor of
1.4. The standardized breakfast consisted of 2% milk and
cornflakes (with the option of substituting unsweetened soy
milk for those with a lactose sensitivity) and one Nutra-grain™
bar. Participants consumed the breakfast within 15 min with
postprandial blood draws completed at minutes 15, 30, 45,
and 60. After the first hour blood was taken every 30 min
thereafter for 2 h (minutes 90, 120, 150, and 180). Blood
samples were collected in EDTA-coated and serum tubes.
Serum PYY3–36, glucagon-like peptide 1., leptin, and acylated
grehlin were measured using ELISA (Millipore, Phoenix Phar-
maceuticals, Alpco). Serum insulin was measured with a
chemiluminescent immunometric assay (Siemens) and serum
glucose was measured by the hexokinase glucose-6-phosphate
dehydrogenase reaction (Roche Diagnostics).

Compensation

To calculate compensation for the energy expended during
the exercise program, the accumulated energy balance (AEB)
was calculated from pre–post changes in fat mass (FM) and
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FFM as body composition changes reflect long-term alterations
in energy balance (15). Gains of 1 kg FM and 1 kg FFM were
assumed to reflect 12,000 kcal and 1780 kcal, respectively
(24). Losses of 1 kg FM and 1 kg FFMwere assumed to equal
9417 and 884 kcal, respectively (25). Exercise energy
expenditure (ExEE) was calculated from the training-induced
energy expenditure (TrEE) with the addition of 15% excess
postexercise energy expenditure (26). The REE that would have
occurred during the exercise sessions (REE � 1.2) was sub-
tracted so not to include it twice. Thus, ExEE = (TrEE� 0.15) +
(TrEE − training duration� [REE� 1.2]) (15). Compensation
in response to the increase in ExEE was assessed as de-
scribed by Rosenkilde et al. (15), with the compensation
index (CI) calculated as (ExEE + AEB)/ExEE � 100%.
When the CI equals zero, AEB equals −1� ExEE, or changes
in the energy equivalent of FM and FFM equal energy
expended during exercise. Positive compensation suggests
that changes in body composition indicate a negative energy
balance that was less than expected based on ExEE, whereas
negative compensation indicates a greater than expected
negative energy balance. ExEE, AEB, and CI could be cal-
culated only for those participants who completed the study
as both a pretreatment and posttreatment data points were
needed to calculate these variables.

Exercise Intervention

Participants were provided a Polar A-300 HR monitor
(watch and chest strap, Kempele, Finland) for the duration of
the 12-wk intervention and instructed to exercise either 2 or
6 d·wk−1. Participants in the control group were instructed to
remain sedentary and were offered the exercise intervention
after posttesting, 12 wk later. Those in the exercise groups re-
turned to the laboratory weekly to meet a researcher and
download their exercise sessions using the PolarFlow™ soft-
ware, which allowed research staff to monitor and track com-
pliance. If a participant was not 90% compliant (completed
90% of expected exercise sessions per month) they were
dropped from the study. The downloaded exercise session re-
ports provided the amount of time spent in each HR zone,
which allowed for the calculation of total energy expended
during each exercise session based off individual rates of
energy expenditure averaged across each HR zone calcu-
lated from the graded exercise test with indirect calorimetry
performed at baseline and again at week 6. Participants in
the 2-d·wk−1 group were instructed to perform two long ex-
ercise sessions per week between 90 and 120 min at a self-
selected intensity provided they were in at least HRR zone 1.
Participants in the 6-d·wk−1 group were instructed to keep
their sessions between 40 and 60 min per session with the
same intensity guidelines as the 2-d group. Participants
were provided feedback each week on their time and energy
expenditure of each session of the prior week. All participants
were instructed not to purposely change dietary habits during
the intervention.

Analytic Plan

Baseline participant characteristics and exercise training-
induced variables (ExEE, AEB, and CI) were tested for group
differences using t tests. Our primary outcomes were CI, kcal
compensated, percent body fat loss, and hormonal mediators
or appetite with interest in how these variables related to exer-
cise dose defined as sessions per week (randomized group),
ExEE per week, time spent exercising per week, and exercise
intensity (percent time spent exercising in HRR zones 3–5).
Changes in concentrations of the hormonal mediators of appe-
tite were assessed as pre–post differences in area under the
curve (AUC) calculated via the trapezoidal rule. Differences
in primary outcomes were tested via repeated measures two-
way ANOVA to determine differences between groups, over
time, and group–time interactions with sex and age included
as covariates. Additional ANCOVA analyses were performed
assessing changes over time and between groups for changes
in body weight and FM, both as percent change and raw values.
Bivariate correlation analysis was used to assess correlates of CI
and body fat loss. Linear regression analyses were used to pre-
dict CI and percent body fat loss using leptin delta-AUC,
ghrelin delta-AUC, exercise group (exercise frequency), time
spent exercising per week, ExEE per week, and exercise inten-
sity as independent variables. All analyses were performed in
IBM SPSS Version 26 (IBM Corporation, Armonk, NY).

Power Analysis: We chose to power the present study to
detect significant differences in body fat loss between
groups to draw conclusions regarding energy compensation
in a clinically relevant scenario, that is, a scenario in which in-
dividuals who are overweight to obese decrease body weight.
Our previous study (18) demonstrated significant differences
(1.7 kg) in body fat loss between groups exercising at
3000 kcal·wk−1 versus 1500 kcal·wk−1 for 12 wk with the
3000-kcal group decreasing significantly from baseline
(−2.6 kg). Using an 80% power and 95% confidence level,
13 participants per group were needed to detect a significant
change in body fat loss between groups with a standard devi-
ation of 2.3. An alternative scenario would be to power the
study based off of Rosenkilde et al. (15), who demonstrated
significant differences between exercise groups in CI (−83%
for high dose group and +20% for low dose group) with a
pooled SD of 70.397. Using an 80% power and 95% confi-
dence level, eight participants per group would be needed to
detect significant differences in CI between groups.

RESULTS

Baseline characteristics are presented in Table 1, with no
differences in BMI, age, VPA, REE/kg FFM, RQ, or V̇O2

max between groups. Participants in the 2-d·wk−1 group
expended on average 745.33 ± 61.04 kcal per session, whereas
the 6-d·wk−1 group expended 460.37 ± 26.04 kcal per session,
mean ± SE, which was different (P < 0.01) between groups as
expected. All exercise training-induced variables are presented
in Table 2, with differences in weekly ExEE, time spent
exercising, and percent body fat loss between groups. Both
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total and percent body fat and body weight changed (de-
creased) over time for the 6-d·wk−1 group but not in the
2-d·wk−1 group or control. These changes held when con-
trolling for age and sex (ANOVA) and when controlling for
baseline values (ANCOVA). The control group gained
0.98 ± 0.79 kg (4.20% ± 2.82%) body fat, which was signifi-
cantly different (P < 0.04) from both exercise groups. The
increases in total body weight of the control group
(0.40 ± 0.99 kg and 0.78% ± 1.19%) were not significantly
different from either exercise group. These results did not
change when covarying for baseline body fat or total mass,
sex, or age. Changes RQ and REE were not different between
groups or over time when assessed as raw values or per kg
FFM. Neither CI nor total kcal compensated per week was dif-
ferent between groups. Figure 1 presents a plot of individual
CI values, indicating a large individual variation and a mean
CI of 50%. Table 3 presents changes in AUC for the hormonal
mediators of hunger, with only leptin demonstrating signifi-
cant changes between groups and over time. Compensation in-
dex was positively correlated with leptin delta AUC. Percent
body fat loss was positively correlated with ghrelin and leptin

delta AUC, and percent time spent exercising in HR zones 3 to
5. Percent body fat loss was negatively correlated with ExEE
and time spent exercising per week.

Linear regression results are presented in Tables 4 and 5
predicting CI and percent body fat lost, respectively. Full
models include all dosing variables and others correlated with
the dependent variable. Reduced models are presented with
only significant predictors. Leptin delta AUC was the only in-
dependent predictor of CI, whereas ExEE per week and ghrelin
delta AUC were the only independent predictors of percent
body fat loss.

DISCUSSION

The present study’s hypothesis that less frequent exercise
would evoke a reduced compensatory response compared
with frequent exercise did not hold, in that both groups com-
pensated similarly. The ever-present obesity epidemic is indi-
cation that weight loss and weight loss maintenance will
continue to be of prime importance as the vast majority of in-
dividuals are not meeting these weight loss needs. Compensa-
tory responses that defend against a negative energy balance
can be dichotomized into two types, behavioral or automatic
(5). Automatic compensatory responses are those in which
humans have little control over, such as lowering metabolic
rate, or REE, when faced with an energy deficit. Behavioral

TABLE 2. Resulting data from the exercise intervention between groups that exercised.

6 d·wk−1 Group
N = 15

2 d·wk−1 Group
N = 17

All Participants
N = 32

Exercise time/weeka * 320.5 ± 20.40 188.8 ± 12.00 249.41 ± 16.85
% Time in zone 3–5b 47.73 ± 6.13 52.31 ± 4.62 50.32 ± 3.69
% Time in zone 1–2c 52.11 ± 5.68 47.69 ± 4.62 49.67 ± 3.69
ExEE/weekd* 2753.5 ± 144.9 1490.7 ± 122.1 2041.68 ± 150.8
Kcal compensated/weeke 1309.86 ± 274.5 715.42 ± 268.6 961.39 ± 198.7
Total exercise timef 3944.2 ± 242.8 2265.4 ± 143.4 2992.9 ± 202.2
Total ExEEg 33,091 ± 2112.8 17,562 ± 1547.7 24,291 ± 1895.0
Total kcal compensatedh 15,718 ± 3294.1 8585.0 ± 3223.0 11,537 ± 2384.2
AEBi −16,789 ± 3589.8 −8977.3 ± 3515.3 −12,363 ± 2586.7
CIj 55.43 ± 10.16 49.31 ± 20.56 50.25 ± 12.27
kg Weight lossk −1.04 ± 0.45** −0.76 ± 0.60 −0.59 ± 0.38
% Weight lossl −1.48 ± 0.64** −0.84 ± 0.66 −1.09 ± 0.45
kg Body fat lossm,* −1.82 ± 0.39** −0.64 ± 0.44 −0.58 ± 0.34
% Body fat lossn,* −7.70 ± 2.04** −1.86 ± 1.27 −4.43 ± 1.30
Delta REE/kg FFMo 1.06 ± 0.94 −1.45 ± 1.08 −0.38 ± 0.81
Delta RQp −0.11 ± 0.06 −0.09 ± 0.07 −0.09 ± 0.04

Data are mean ± SE, only individuals who completed intervention included.
*Significantly different between groups, P ≤ 0.05.
**Significant change over time (change different from zero) P ≤ 0.05.
Note: control group (N = 12) increased %weight change (+0.78 ± 1.19) and kg body weight
(+0.40 ± 0.99) which was not different from exercise groups. The control group increased
% fat change (+4.20 ± 2.82) and kg fat change (+0.98 ± 0.79) both different from 2- and 6-d
groups (P < 0.05).
aAmount of time (in minutes) spent exercising per week.
bPercentage of time exercising spent in HR zones 3, 4, or 5 (70%–100% HRR).
cPercentage of time exercising spent in HR zones 1 or 2 (50%–69% HRR).
dExercise energy expenditure (in kilocalories) per week.
eEnergy (in kilocalories) compensated for each week calculated by adding AEB and total
ExEE together and dividing by 12.
fTotal amount of time spent exercising during the entire 12-wk intervention, in min.
gTotal ExEE of the 12-wk intervention, in kcal.
hTotal amount of kcal compensated, calculated by adding AEB and total ExEE together.
iCalculated from changes in bodily energy stores (changes in fat and lean mass) converted
to kilocalorie equivalents.
jCI: percentage of kilocalories compensated for, calculated as (ExEE + AEB) / ExEE.
kkg of total body weight lost after the 12-wk intervention.
lkg of weight loss/baseline body weight in kg.
mkg of body fat lost after the 12-wk intervention.
nkg of body fat loss / baseline body fat in kg.
oChanges in REE per kg of FFM from baseline to post (post value minus baseline value).
pChanges in respiratory quotient during rest from baseline to post (post value minus base-
line value).

FIGURE 1—Plot of CI values. Each point represents an individual par-
ticipant. Y values areCI expressed as a percentage (%kcal compensated for).
The solid black line is the mean.

TABLE 3. Changes in AUC calculations (12-wk minus baseline) for concentrations of acyl-
ated ghrelin, leptin, insulin, and GLP-1 from prebreakfast (fasting) to 3 h postprandial with
samples taken before eating and every 15 min thereafter for the first hour and every 30 min
for the second hour.

6 d·wk−1 Group 2 d·wk−1 Group Control

Ghrelin ΔAUC −5321.99 ± 4304.09 1778.38 ± 2114.07 −4028.67 ± 2440.11
Leptin ΔAUC −998.57 ± 414.16*,** −604.53 ± 617.98* 1118.31 ± 650.77*
Insulin AUC −1090.49 ± 759.40 410.80 ± 625.16 315.39 ± 1184.69
GLP-1 AUC −27.10 ± 20.85 −19.12 ± 22.86 −25.90 ± 12.85

*Significant differences between groups, P ≤ 0.05.
**Significantly different from zero (change from baseline is significant) P ≤ 0.05.
GLP-1, glucagon-like peptide 1.
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compensatory responses, on the other hand, are those in which
individuals have control over, such as increasing energy in-
take, which many agree to be the primary compensatory re-
sponses when the body is faced with an energy deficit
induced by exercise (5). Limiting the compensatory responses
induced by exercise would, in effect, make exercise a more
viable option for weight loss and reduce the prevalence of
obesity, although there are still questions regarding the mech-
anisms controlling these responses and their overall contribu-
tion to the total compensatory response. We are also uncertain
how different parameters of an exercise program may influ-
ence mechanisms proposed to control these responses and
their relative contribution to the overall compensatory re-
sponse. The present investigation provides insight into some
of these questions, with the primary finding that energy com-
pensation is not influenced by exercise dose, rather, greater en-
ergy expenditures (approaching 3000 kcal·wk−1) are needed to
overcome this compensatory response to produce significant
reductions in body fat. We have also demonstrated important
roles reducing leptin and ghrelin concentrations may have on
energy compensation and body fat loss.

In agreement with our previous study (18), the current find-
ings indicate that individuals compensate for approximately
50% of the kcal they expend through exercise, regardless of
exercise dose. Exercise dose, in the present analysis, was con-
ceptualized as frequency (number of sessions per week), dura-
tion of exercise (time spent exercising per week), exercise
intensity (% time spent exercising at HR zones 3–5), and
weekly ExEE. When including each of these variables as an
independent variable in a regressionmodel predicting CI or to-
tal kcal compensated, none of these exercise dose variables in-
fluenced the compensatory response. This finding was very
similar to our previous work, where participants compensated for
approximately 50% of their kcal, equating to 1000 kcal·wk−1,
with no difference between groups that differed in ExEE (18).
In the present study, we also demonstrated the compensatory

response not relative to exercise energy expenditure (total kcal
per week) was not different between groups, averaging
961 kcal·wk−1, which was similar to our previous work where
groups differing in ExEE compensated 943 and 1007 kcal·wk−1

(18). However, in the present study, the between-group differ-
ences in kcal compensated per week (594 kcal) was much
larger than the 64-kcal·wk−1 difference between groups ob-
served in (18). This difference between groups in the present
study would equate to 84.9 kcal·d−1, which may be clinically
significant, likely influencing changes in body FM if the inter-
vention was longer than 12 wk. Another possibility, due to the
variance of over 200 kcal for each group, is that a greater sam-
ple size would be needed to determine differences in this metric.
Future studies assessing energy compensation may improve on
this by using longer interventions and a greater sample size to
better answer these questions.

Because groups in the present study differed in both exer-
cise frequency and ExEE, we are not able to draw conclusions
on between group differences on either of these variables in
isolation. Although similar to our previous work, only the
group with greater ExEE lost significant amounts of body
fat, indicating that greater energy expenditures are able to
overcome, at least partially, the compensatory response to an
exercise-induced energy deficit to produce weight loss. This
is at odds with Rosenkilde et al. (15), who demonstrated that
expending either 1800 or 3600 kcal during exercise per week
produced nearly identical energy deficits after 12wk due to the
greater CI observed in the 3600-kcal group. Results from the
large Examination of Mechanisms of Exercise-Induced
Weight Compensation (E-MECHANIC) study offers addi-
tional insight with high-volume group (ExEE of 20 kcal·kg−1

body weight) compensating significantly more than the low-
volume group (8 kcal·kg−1 body weight); however, weight
loss was greater in the 20-kcal·kg−1 group compared with the
8-kcal·kg−1 (−1.6 vs −0.4, respectively, P = 0.02) (27). These

TABLE 4. Regression models predicting CI among participants who exercised as control
participants did not have values for CI.

Effect β SE P Partial Correlationa

Full model of all predictors
Intercept 47.87 27.85 0.10
Leptina ΔAUC 0.01 <0.01 <0.01 0.60*
Exercise frequencyb 23.98 23.01 0.17 0.31
Exercise time/weekc −0.13 0.11 0.24 −0.27
ExEE/weekd 0.13 0.02 0.47 0.17
% Time in zones 3–5e 0.09 0.35 0.81 0.06
% body fat lostf 5.79 1.25 <0.01 0.73*

Reduced model of significant predictors
Intercept 86.42 7.05 <0.01
Leptina ΔAUC 0.01 <0.01 <0.01 0.64*
% body fat lostg 4.28 0.88 <0.01 0.71*

Partial correlations also displayed.
*Significant correlation.
aPartial correlation coefficient between each independent variable and CI, controlling for
other independent variables.
bChanges in AUC for changes in concentrations of leptin premeal (fasting) to 2 h postprandial.
cParticipants were randomly assigned to exercise 6 or 2 d·wk−1.
dAmount of time (in minutes) spent exercising per week.
eExercise energy expenditure (in kilocalories) per week.
fPercentage of time exercising spent in HR zones 3 to 5 (70%–100% HRR).
gkg of FM lost/baseline kg fat mass.

TABLE 5. Regressionmodels predicting percent body fat loss among participants who exercised
as control participants did not have values for many independent variables/predictors.

Effect β SE P Partial Correlationa

Full model of all predictors
Intercept 5.62 4.78 0.26
Leptina ΔAUC <0.01 <0.01 0.07 0.43
Ghrelinb ΔAUC <0.01 <0.01 0.03 0.50*
Exercise frequencyc 0.23 4.00 0.95 0.01
Exercise time/weekd 0.02 0.02 0.22 0.29
ExEE/weeke −0.01 0.03 0.05 −0.45*
% Time in Zone 3–5f 0.07 0.06 0.31 −0.25

Reduced model of significant predictors
Intercept 5.80 3.19 0.08
Ghrelinb ΔAUC <0.01 <0.01 <0.03 0.44*
ExEE/weeke −0.01 <0.01 0.01 −0.54*

Partial correlations also displayed.
*Significant correlation.
aPartial correlation coefficient between each independent variable and CI, controlling for
other independent variables.
bChanges in AUC for changes in concentrations of leptin premeal (fasting) to 2 h postprandial.
cChanges in AUC for changes in concentrations of Acylated Ghrelin premeal (fasting) to 2 h
postprandial.
dParticipants were randomly assigned to exercise 6 or 2 d·wk−1.
eAmount of time (in minutes) spent exercising per week.
fExEE (in kilocalories) per week.
gPercentage of time exercising spent in HR zones 3 to 5 (70%–100% HRR).
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results partially support both present findings, that greater ex-
ercise energy expenditures are needed to produce weight loss,
and those of Rosenkilde et al. that greater ExEE instigates
greater compensation. The ExEE of E-MECANIC study par-
ticipants was about 1760 and 700 kcal·wk−1 for the 20- and
8-kcal·kg−1 groups, respectively, much lower than the current
study which averaged 2753 and 1491 for the 6-d and 2-d
groups, respectively, and the 3000 and 1500 ExEE groups as
in Flack et al. (18). The larger dose (3600 kcal·wk−1 vs
1800 kcal·wk−1) and larger differences in ExEE between
groups (1800 kcal) Rosenkilde et al. (15) used may explain
some of the discrepancies. It is possible that there may be a point
at which greater levels of ExEE do not additionally contribute to
weight loss, rather, disproportionately influence energy compen-
sation. Future research may benefit from assessing the com-
pensatory responses to 4000 to 5000 kcal·wk−1 to investigate
this possibility.

An additional objective of the present study was to investi-
gate possible mechanisms contributing to the compensatory
response, focusing on automatic metabolic adaptations
(changes in REE and substrate utilization) and factors that
may influence energy intake (concentrations of hormonal me-
diators of hunger/satiety both fasting and in response to a
meal). Correlation analysis indicated that CI was positively
correlated with leptin delta AUC, indicating that less compen-
sation was linked to greater reductions in leptin AUC. Because
leptin is an anorexigenic hormone, greater reductions in leptin
concentrations would be expected to produce less satiety and
promote greater energy intake. However, the present results
demonstrate that reductions in leptin predict less energy com-
pensation even when controlling for ExEE, exercise intensity,
weekly exercise time, exercise frequency (group), and body
fat loss (Table 4). These findings, what may seem to be coun-
terintuitive, actually support recent work by Zhao et al. (28),
who through a series of experiments using a rodent model
demonstrated partial leptin reductions restore leptin sensitivity
in hypothalamic neurons, reducing food intake and protecting
mice from diet-induced obesity. It is possible that greater lep-
tin sensitivity resulted from exercise- or weight loss-induced
reductions in leptin to promote less energy compensation in
our sample. This is, as far as we know, is the first study to dem-
onstrate such an effect in humans, supporting findings from
animal literature and potentially opening new research ques-
tions and treatment options that may work to reduce energy
compensation with exercise.

There were no other correlations with CI, which was
reflected in none of the variables for exercise dose (frequency,
weekly exercise time, ExEE, exercise intensity) being a signif-
icant predictor or interfering with the predictive ability of lep-
tin delta AUC. Changes in REE or RQ were not correlated nor
different between exercise groups or sedentary control,
supporting work from the E-MECHANIC study (27) and our
previous findings that changes in REE or RQ do not signifi-
cantly contribute to the compensatory response with exercise
(18). These findings seem to undermine the impact of auto-
matic metabolic compensatory mechanisms on the overall

compensatory response; however, these negative findings may
also be due to methodological shortcomings. Work by Weigle
et al. (29) demonstrated that, after weight loss, REE was 97%
of that predicted, whereas non-REE was only 76%, indicating
the energy saving metabolic effects in the reduced obese state
occurred primarily through non-REE. It, therefore, appears met-
abolic compensatory responses need to be assessed by more
than REE and include assessments of skeletal muscle efficiency
during physical activity and total energy expenditure. Indeed,
many have demonstrated changes in skeletal muscle metabolism
after weight loss that coincidewith lower energy expenditures for
a given workload as a mechanism to conserve energy expendi-
ture after weight loss (14,30). Future studies would, therefore,
benefit from these additional assessments to further eludicate
metabolic adaptations caused by a negative energy balance.

Percent body fat loss was positively correlated with ghrelin
and leptin delta AUC, indicating greater increases in ghrelin
and leptin AUC were correlated with increasing changes in
percent body fat (less negative losses or gains in body fat). Per-
cent body fat loss was also positively correlated with percent
of exercise time spent in HR zones 3 to 5 and negatively cor-
related with ExEE and time spent exercising per week. The
finding that percent body fat loss decreased (more negative)
as time spent exercising and ExEE increased supports what
we deduced from the between group differences and regres-
sion models predicting CI as discussed, that greater energy ex-
penditures are not completely compensated for and thus
promote body fat loss. This is further supported in the re-
gression analysis where weekly ExEE was a significant in-
dependent predictor after accounting for all other relevant
variables, including time spent exercising and exercise fre-
quency. It is not surprising that weekly ExEE is the only dose
variable that independently predicts body fat loss as ExEE is a
product of the all the other dose variables. It is interesting that
a greater percentage of exercise time spent in HR zones 3 to 5
are associated with a less favorable change in percent body fat;
however, this dosing variable was no longer a significant pre-
dictor when included in the linear regression analysis, which
was also the case with leptin delta AUC leptin. Ghrelin delta
AUC, on the other hand, proved to be an independent predic-
tor of percent body fat loss when included in the both the full
and reduced regression models (Table 5), indicating that
greater attenuation in ghrelin concentrations from fasting to
3 h postprandial independently predicts greater percent body
fat loss. Similar findings have been observed, where reduc-
tions in postprandial ghrelin concentrations resulted from
exercise-induced weight loss (7); however, we believe this is
the first time reductions in ghrelin have been subscribed to
exercise-induced body fat loss while controlling for exercise
dose. There are a few possible explanations for this result,
one being centered on ghrelin’s well-known role as an
orexigenic hormone. Individuals who experienced greater de-
clines in ghrelin are likely to be less hungry, especially post-
prandially, and more likely to curb their energy intake. An
additional mechanism that may be at play may involve
ghrelin’s role in reward-based feeding (31), increasing the
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neural response to food in the amygdala, orbitofrontal cortex,
hippocampus, striatum, and ventral tegmental area (32–34).
These brain regions are involved in reward processing and he-
donic feeding, influencing central dopamine release to modu-
late the rewarding value of food (32). Ghrelin may also shift
food preferences toward diets rich in fat (35,36) or high in
sugar (37), which is in line with the fact that foods considered
highly reinforcing, that is, able to promote feelings of craving
or wanting, are high in fat and/or sugar (38). The current study
cannot determine which (homeostatic drive for eating or
hedonic/reward-mediated feeding) or if a separate, not yet
understood, role of ghrelin is at play. Additionally, much of
the literature on ghrelin’s role in reward-driven feeding has
been specific to animal models and yet to be translated to
humans. The present study serves as initial evidence that
reducing concentrations of ghrelin are important for successful
body fat loss from an exercise program. This could promote
future research involving dopamine antagonists to be used in
conjunction with exercise as a weight control strategy.

This study is not without limitations. Use of doubly labeled
water would be the most robust method to evaluate energy ex-
penditure and deduce energy intake from comparing expected
to actual body composition changes. Similarly, ad libitum en-
ergy intake would be best assessed in an inpatient feeding de-
sign where all of participants’meals and snacks are consumed
in a controlled environment and recorded by research staff to
prevent the known underreporting that often occurs with
self-reported dietary intake. Without an assessment of dietary
intake, the present study does not have an exact amount of en-
ergy participants compensated with via increases in dietary in-
take. As noted previously, the present study, and many others,
only assessed REE and resting RQ to deduce the metabolic
compensatory response. Additional assessments of the thermic
effect of food and skeletal muscle efficiency would be valu-
able assessments to include in future studies. Because the pres-
ent study lacked these assessments, it is not equipped to
determine the exact amount of energy compensation resulting
from automatic/metabolic responses or volitional/behavioral
responses. Large-scale, controlled feeding studies utilizing
doubly labeled water are needed to quantify the exact amount
of energy compensated for by specific mechanisms, an excit-
ing area for future research.

Additionally, stage of menstrual cycle was not accounted
for among female participants, which may be important as re-
cent reports indicate that, relative to the follicular phase, en-
ergy intake is increased during the luteal phase when
progesterone levels are increased (39). This may have influ-
enced energy intake and caused unaccounted for variations
in energy expenditure, thus altering the calculated compensa-
tory response for some participants. Twelve of the 36 female
participants randomized at baseline reported taking oral con-
traceptives, although differences in dose, classification and un-
known compliance make it difficult to draw conclusions on
the true influence varying levels of progesterone and estrogen
may have had in the compensatory response. Future research
may include assessments of these hormones to determine if

they could be a factor in energy compensation to aerobic exer-
cise. The unsupervised nature of the exercise program may
also be considered a limitation as participants could have
exercised for additional time while not recording it (did not
start watch), although we have no reason to believe this oc-
curred. Lastly, of the 44 participants who completed the cur-
rent study, 40 were white (one Pacific Islander, one Asian,
two African American), thus limiting the generalizability to
other race/ethnic groups. This study also was not designed to
detect sex differences and included an unbalanced sample of
women; thus, sex effects cannot be drawn.

CONCLUSIONS AND FUTURE DIRECTIONS

There are three primary findings from the present study that
may set forth additional research in the realm of obesity treat-
ment through exercise. First, in agreement with our previous
work (18), this study demonstrates individuals do not increase
their energy compensation with greater doses of exercise. This
lack of significant compensation was observed as neither CI
(energy compensation proportional to energy expended) or to-
tal energy compensated differed between groups. Rather, the
greater dose of the 6-d·wk−1 group was needed to produce ap-
preciable fat loss with exercise. This is an important consider-
ation for exercise prescription when the goal is to reduce body
fat. Current recommendations state that exercise programs
should exceed 225 min·wk−1 to induce clinically significant
weight loss (40); however, the average weekly exercise time
for all participants was just over 249 min, producing nonsig-
nificant decreases in percent body fat loss. The 6-d·wk−1 group
exercised more than 320 min·wk−1 to experience significant
decreases in body fat. Therefore, the results of the present
study suggest current recommendations for exercise to pro-
mote weight loss may be inadequate and should be closer to
300 min·wk−1 to overcome the approximately 1000-kcal·wk−1

compensatory response that accompanies exercise. Although
more research in this area is needed to definitivelymake such rec-
ommendations. Future research could involve using greater doses
of exercise as it is uncertain if exercise energy expenditures
greater than 3000 kcal·wk−1 range would instigate a different
compensatory response or act on a different mechanism for en-
ergy compensation.

The second and third primary findings revolve around im-
portant predictors of energy compensation and body fat loss
with exercise. For the first time, we demonstrated that reduc-
tions in postprandial leptin concentrations influence energy
compensation when controlling for all relevant exercise dose
variables. This supports what has only recently been observed
in rodents, that reducing leptin concentrations can restore lep-
tin sensitivity in hypothalamic neurons and reduce food intake
(28), this is a novel mechanism that has yet to be investigated
further in humans but may offer potential for future pharmaco-
logical treatment that may be used in conjuncture with exer-
cise. Additionally, it appears reductions in postprandial
ghrelin concentrations are an important predictor of body fat
loss, regardless of exercise dose. It is uncertain if reductions
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in ghrelin are working to reduce the appetitive drive to con-
sume food or acting on the reward centers in the brain to de-
crease the rewarding value of eating. In either case, and
similar to leptin, pharmacological treatments that reduce ghrelin
may exert additional benefits when coupled with exercise, and
thus offering an area for future research.

It is evident, based on the lack of improvement in the pres-
ent obesity epidemic, that more effective weight-loss treatment
strategies are needed. Exercise is commonly prescribed as a
treatment option; however, the multi-faceted, complex nature
of exercise necessitates careful prescription and consideration
for all and interacting variables that may influence the weight
loss response. The current findings provide some clarity on rel-
evant variables and set the stage for future research that may fur-
ther elucidate the role exercise may have or increase its utility
in obesity treatment.
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