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ABSTRACT OF DISSERTATION 
 
 
 

PLANT-SOIL INTERACTIONS DOMINATE SOIL MICROBIAL RESPIRATION 
AND SOIL ORGANIC CARBON SEQUESTRATION IN A SUBTROPICAL MOIST 

EVERGREEN BROADLEVED FOREST IN CHINA 
 

Tropical forest soils contain one-third of global soil carbon (C). The warm and 
moist climate in tropical forests leads to rapid soil organic carbon (SOC) decomposition, 
with the highest soil microbial respiration rates in the world, so even a slight change in 
soil C and microbial respiration could affect atmospheric carbon dioxide concentration. 
However, there remains a lack of understanding of the mechanisms driving microbial 
respiration in tropical forests, due to different climate and biophysical drivers compared 
to temperate or boreal forests. Furthermore, forest conversions (from natural forests to 
plantations) are most widespread in tropical regions, leading to a loss of SOC during 
harvesting and reforestation processes. However, the magnitude and direction of SOC 
changes vary greatly. These uncertainties result in great variability in, and disagreement 
among, models predicting the response of SOC to future climate in tropical forests.  

To quantify the contribution of recent photosynthesis and SOC decomposition to 
soil microbial respiration, I separated microbial respiration from total soil respiration 
using the trenching method with 150 µm pore size of nylon mesh sheets in a subtropical 
moist evergreen broadleaved (SMEB) forests. In addition, I excavated five 50 cm × 50 cm 
mineral soil columns from the forest and incubated them in the open. Measures of soil 
microbial respiration, soil temperature and moisture, and photosynthetically active 
radiation (PAR) were automated, recorded simultaneously every 30 minutes. Results 
demonstrated that current photosynthates contributed 88 % of C sources to soil microbial 
respiration, and soil temperature was not the controlling factor for Rm on the diel scale; 
rather, soil microbial respiration was strongly controlled by PAR. These results suggest 
the need for a new conceptual model of C cycling in SMEB forests, in contrast to most 
microbial respiration models based on temperature-dependent SOC decomposition in 
temperate forests. 

The intensification of human activities in forest management have led to large SOC 
losses during the establishment of tree plantations from former natural forests. I 
quantified three major SOC loss pathways in the establishment of a Chinese fir plantation, 
demonstrating that converting of natural forest to Chinese fir plantation resulted in 28 % 
loss of SOC present prior to conversion 11 % through volatilization by slash burning, 10 % 
via soil erosion, and 7 % via increasing SOC mineralization. Forest conversion also 
altered the available C sources for soil microbes from newly formed carbohydrates in the 
natural forest to SOC in the plantation. Finally, I found SOC did not recover after 40 
years. My results highlight that slash burning during forest conversion leads to a dramatic, 
and lasting, decline in SOC in SMEB forests during the establishment of tree plantations 
converted from former natural forest. 
 

 
 



Although we have a good understanding of the mass loss rate and nutrient release 
of plant residues during decomposition, the role of incorporation of plant residues into 
SOC is still poorly understood and often neglects the influence of live roots on SOC 
sequestration. In this study, I examined changes in bulk and rhizosphere SOC across three 
developmental stages of Chinese fir plantation (6, 18, and 42 years old) with age-
associated differences in net primary productivity (NPP). My results indicated that SOC 
concentration in bulk soils did not vary significantly with forest age, but SOC 
concentration in rhizosphere soils was higher in 6 yrs and 42 yrs stands, both of which 
had lower NPP. Both labile and recalcitrant C pools in rhizosphere soils were smallest in 
the 18 yrs stand, which had the highest NPP. Variation in rhizosphere SOC was correlated 
with soil phosphorus and microbial biomass carbon: nitrogen ratio (MBC:MBN), which 
drove labile and recalcitrant SOC dynamics in different ways depending on forest age. 
My results demonstrated that variability in forest productivity and nutrient demand with 
time are key factors controlling rhizosphere SOC sequestration and nutrient cycling. 

Altogether, this work provides insights into the magnitude and pathways of SOC 
losses due to conversion of natural forest to tree plantation in SMEB forests, and its 
feedback to tree plantation development in a rotation. This study also highlights the 
dominance of photosynthates on soil microbial activity and SOC sequestration. The 
findings from these studies will improve our understanding of C cycling in tropical forests 
and reduce the uncertainty in modeling future C dynamics in tropical forests. 
 

KEYWORDS: Subtropical forest, forest conversion, soil organic carbon, photosynthates, 
soil microbial respiration, rhizosphere. 
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CHAPTER ONE: THE INFLUENCE OF BIOPHYSICAL FACTORS ON SOIL 

CARBON IN SUBTROPICAL FORESTS 

The sharp rise in atmospheric carbon dioxide (CO2) concentration over the last 150 

years is causally linked to increasing temperature and accelerating global change. Soil 

respiration from terrestrial ecosystems is the second largest CO2 flux to the atmosphere; 

even a slight change in the rate of soil respiration could considerably alter the 

concentration of atmospheric CO2 (Schlesinger & Andrews, 2000; Bond-Lamberty & 

Thomson, 2010). Thus, it is essential to improve understanding of the factors controlling 

soil respiration (Bauer et al., 2008). Soil respiration research has primarily focused on 

temperate and boreal forests, ecosystems in which soil microbial activity is largely 

controlled by temperature. The highest rates of soil respiration occur in tropical forests 

(Whitaker et al., 2014; Bond-Lamberty et al., 2018), yet we still have limited information 

on the factors that control it. 

In contrast to temperate and boreal forests, tropical forests generally experience 

warm temperatures throughout the year, and a lack of temperature limitation on plant and 

soil microbial activities (Vitousek, 1982; Townsend et al., 1992; Cusack et al., 2010).  

Compared to the relatively deep organic horizons found in temperate and boreal forests, 

tropical forests are characterized by highly weathered soils with low soil organic carbon 

(SOC) and low substrate availability for soil microbial activity (Trumbore, 1993). 

Furthermore, high plant productivity and belowground carbon allocation, coupled with a 

longer growing season in tropical compared to temperate and boreal forests, provides two 

to four times greater input of fresh plant-derived C to support soil microbial activities 

(Raich & Schlesinger, 1992; Giardina & Ryan, 2000). In tropical forests, soil 

microorganisms are highly dependent on current plant-derived C, leading to tight 
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interactions between plants and soil microbes (Trumbore, 1997; Carbone & Trumbore, 

2007; Giardina et al., 2014). Despite these differences in the factors controlling soil 

microbial respiration, most models that predict soil microbial respiration focus on the 

response of SOC to temperature (Holland et al., 2000; Dungait et al., 2012). When 

applied to tropical forests, these models result in nearly three times the predictive 

uncertainty as that for temperate and boreal forests (Cavaleri et al., 2015). 

Tropical forests account for 55% of world forest C stocks, 32% of which is stored in 

the soil (van Straaten et al., 2015; Don et al., 2011). Due to the high, and increasing, 

demand for timber, bioenergy, and food, a large area of natural forests in the tropics has 

been converted into tree plantation, grassland, and farmland (Powers et al., 2011). 

Deforestation in the tropics has contributed one-third of the past SOC losses over the last 

150 years, the second largest C source to the atmosphere after fossil fuel emissions (Lugo 

et al., 1986). Research from Africa, South America and Southeast Asia, from sites where 

natural forests have been converted to cropland, pasture, and tree cash crop plantations, 

suggests that the magnitude of SOC changes after tropical forest conversions is controlled 

by multiple factors, including precipitation, vegetation type, clay mineralogy, and time 

since conversion (Don et al., 2011; Powers et al., 2011; van Straaten et al., 2015). Still 

lacking is research on SOC changes when natural forest is converted to tree plantation, 

which is the primary forest conversion practice in subtropical China (Sheng et al., 2010; 

Chen et al., 2016; Yang et al., 2019). Furthermore, there are few studies in the tropics that 

have examined the dominant pathways of SOC losses after forest conversion (Yang et al., 

2005; Guillaume et al., 2015). When the magnitude of SOC losses has been examined, 

the research has been conducted using ‘space-for-time’ substitution, a robust 

methodology for comparing the differences in SOC after forest conversion (Yang et al., 
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2009; Don et al., 2011; Guillaume et al., 2018). However, few studies have elucidated the 

primary pathways of SOC losses that occur with forest conversions, resulting in high 

uncertainties in SOC losses after tropical forest conversions. 

The establishment of fast-growing tree plantations throughout the world is 

championed as an efficient way to mitigate climate warming by increasing C 

sequestration in biomass and soil relative to that in natural forests (IPCC, 2007). Research 

has calculated that tree plantations could absorb two-thirds of CO2 emissions from human 

activities, due to the high rate of biomass C accumulation during forest growth (Bastin et 

al., 2019). China manages the largest area of tree plantations in the world, 69.33 million 

ha, and almost 65% of the area is currently made up of young and middle-aged 

plantations (Tang et al., 2018). The magnitude of C accumulation in tree biomass during 

the growth of tree plantations in China is fairly well known (Chen et al., 2013; Yang et al., 

2016). However, there is a paucity of information regarding the responses of SOC 

sequestration to the development of tree plantations, approximately 42 % of which are 

located in the subtropical region of China. As the primary C sources to soil, above- and 

below-ground plant inputs are largely controlled by tree plantation age, and they have 

differences in SOC sequestration efficiency between bulk and rhizosphere soils (Sokol et 

al., 2019). In turn, the quantity and quality of plant C inputs stimulate microbial activity 

to decompose soil organic matter, providing nutrients for tree growth. However, the 

dynamic competition for nutrients between plants and soil microorganisms, which varies 

with NPP and forest age, affects microbial carbon use efficiency, thereby influencing 

SOC storage and composition (Raich & Schlesinger, 1992; Schlesinger & Andrews, 

2000). These effects are especially pronounced in the rhizosphere, which is the primary 

zone for C and nutrient exchange (Phillips et al., 2012). A better understanding of 
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rhizosphere SOC changes under stands with different rates of NPP, and the interactions 

between C inputs and SOC in the rhizosphere, will improve our ability to model C and 

nutrient dynamics in these plantation forests. 

The subtropical moist evergreen broadleaved (SMEB) forest in eastern China is 

among the most biodiverse and productive of forest ecosystems globally (Song, 1988; 

Yang et al., 2006; Yu et al., 2014). This forest type is characterized as either temperate 

broadleaved rain forest or temperate broadleaved evergreen forest, and dominant tree 

species include Castanopsis carlesii, Castanopsis eyrei, Cyclobalanopsis chungii and 

Schima superba (Song, 1988; Wang et al., 2007). It occurs between 21°-35° N and 99°-

123° E, covering nearly 25 % of the land area of China. Due to the uplift of the Tibetan 

Plateau and prevalence of the East Asian monsoon, the climate and landscape in this 

region of China differs significantly from other regions in the same latitude, many of 

which are dominated by dry and hot desert. The mean annual temperature and annual 

precipitation in this region of China are 15-20 °C and 900-2000 mm, respectively. The 

SMEB in China differs from the Mediterranean and subtropical forests in the Southern 

hemisphere, which also occur at approximately the same latitudes. These differences in 

SMEB in China lead to higher forest net ecosystem productivity (NEP) and rate of soil 

microbial respiration than other tropical and temperate forests in Asia or other forest 

ecosystems at the same latitude (Sheng et al., 2010; Yu et al., 2014). The monsoon 

climate also leads to specific processes that affect soil microbial respiration (Ding et al., 

2018). Despite the uniqueness of these factors for soil microbial respiration and the large 

land area affected, there are only limited data on soil microbial respiration in this forest 

type. 
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Chinese fir (Cunninghamia lanceolata), an evergreen conifer that is native to East 

Asia, is insect and decay resistant and has been widely used in furniture and construction. 

In Southern China, Chinese fir is a crucial timber resource and plays an important role in 

the economy. The cultivated history of Chinese fir, which is widely planted in south 

China, Laos, Vietnam, and southern Japan, extends more than a thousand years since the 

first record of these plantations in a poem from the Tang Dynasty (Yang, 1998). Chinese 

fir plantations currently account for 19% of the total forest plantation area and 25 % of 

the timber volume in China (SFA, 2016). Chinese fir plantations are planted as 

monocultures converted from natural forests. Forest conversion typically involves intense 

human disturbances including clearcut harvest, slash burning, and site preparation. The 

large amount of harvest residues remaining on the soil surface is allowed to dry for 

several months and then burned, preparing the site for planting tree seedlings. This 

process of drying and burning results in considerable SOC loss through volatilization 

(Yang et al., 2005). Because most forests  across the south and east of China occupy 

mountainous and hilly areas that receive high amounts and intensity of precipitation, 

massive soil and water erosion can occur in the first few years following establishment of 

tree plantations (Ma et al., 2000; Yang et al., 2005; de Blécourt et al., 2013). The low 

canopy cover also leads to higher soil temperature than is found under mature tree 

canopies. In combination with high nutrient availability after harvest residue burning, 

these factors lead to high soil microbial respiration and accelerated SOC decomposition 

after forest conversion. Few studies have quantified the primary sources and mechanisms 

of SOC losses after the conversion of natural forest to Chinese fir plantation in Southern 

China. 
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While tree plantations have been shown to be effective at removing atmospheric 

CO2 (Bastin et al., 2019), most studies have focused on biomass C accumulation (Pan et 

al., 2011). There is considerable uncertainty regarding SOC sequestration with tree 

plantation growth, especially in China, where 65% of tree plantation area is made up of 

young and middle-aged forests (Tang et al., 2018). Litterfall and fine root production, 

which differ among tree plantation ages, are two major pathways for C input into soil 

(Raich & Tufekciogul, 2000; Cotrufo et al., 2013; Castellano et al., 2015). However, 

research has shown that litterfall and fine roots differ in efficiency for forming SOC 

(Sulman et al., 2014; Cotrufo et al., 2015; Sokol & Bradford, 2019). Furthermore, 

differences in forest productivity among forest ages could alter soil microbial activities 

and biogeochemical processes. All of these possible alterations in controls of the C inputs 

and outputs from these systems complicate our understanding of SOC sequestration 

across different aged forest stands. 

To close the gaps in our understanding of the controls on soil microbial respiration 

of SMEB forests, the pathways of SOC losses and changes in SOC dynamics during the 

development of Chinese fir plantations must be elucidated. This dissertation addresses 

three main knowledge gaps: (1) The temporal dynamics of soil microbial respiration, and 

the main drivers of soil microbial respiration and its C sources in SMEB forest in eastern 

China (Chapter Two); (2) The main pathways of SOC loss during the establishment of 

tree plantation and recovery of SOC during a typical Chinese fir plantation rotation 

(Chapter Three); and (3) The response of bulk and rhizosphere SOC to changing above- 

and below-ground C inputs under Chinese fir plantations of differing age and NPP. These 

research gaps were studied in a secondary naturally-regenerated SMEB forest and three 

different aged Chinese fir plantations (young, middle-aged, and mature) located near the 
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Research Station of Subtropical Forest Responses to Changing Environments near 

Sanming City, Fujian Province in southeast China. This research station is located in the 

central subtropical zone in China, which has the zonal vegetation typical of the 

subtropical forest in China and is also an important region for Chinese fir plantations, and 

a center for the ecological study of forest ecosystem function and its response to the 

future predicted changes in temperature and precipitation in future. These forests provide 

an opportunity to explore the characteristics and controls of soil microbial respiration in 

SMEB forests and to evaluate the effects of development of Chinese fir plantations on 

soil organic carbon pools.   
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CHAPTER TWO: WAVELET ANALYSIS REVEALS CURRENT 

PHOTOSYNTHATES ARE THE PRIMARY CARBON SOURCE FOR SOIL 

MICROBIAL RESPIRATION IN SUBTROPICAL MOIST BROADLEAVED 

EVERGREEN FOREST 

ABSTRACT 

Studies of soil microbial respiration are expanding globally, yet few have identified 

the temporal dynamics of carbon sources for soil microorganisms, especially in the 

tropics and subtropics. To address this gap, soil microbial respiration was measured 

continuously (hourly) in a subtropical moist evergreen broadleaved forest and from 

excavated soil cores incubated in a nearby open canopy site. I applied wavelet analysis to 

these continuous measures to identify the temporal dynamics of available carbon sources 

that fuel soil microbial respiration, and to examine the temporal correlations and time lags 

between soil microbial respiration and photosynthetically active radiation (PAR), soil 

temperature, and soil water content. The varying magnitude of soil microbial respiration 

at multiple periods in the continuous time series revealed the temporal variation of carbon 

sources supporting soil microorganism metabolism. PAR was the primary factor driving 

variation in soil microbial respiration at diel scales, and soil water content influenced the 

transfer rate of photosynthates to the soil. Current photosynthates were the primary C 

source fueling soil microbial metabolism, contributing 98% to soil microbial respiration 

in the growing season and 68 % in the winter months. The low temperature sensitivity 

(Q10 = 1.4) of soil organic carbon decomposition and the relationship between soil 
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microbial respiration and PAR supported the finding that soil microbial respiration rate is 

highly dependent on substrate C availability from current photosynthates and PAR, rather 

than on temperature. My results challenge empirical models based on the tenet that soil 

temperature regulates soil microbial respiration, and highlight the tight linkage between 

plant physiology and soil microbial activity in a subtropical forest. 

INTRODUCTION 

Tropical and subtropical forests play a vital role in terrestrial carbon (C) cycles, 

containing 55 % of the terrestrial C stock and contributing 70 % of the C sink of global 

forests (Pan et al., 2011). At the same time, the warm and moist climate in tropical and 

subtropical forests induces rapid C turnover, with the highest soil microbial respiration 

(Rm) rates in the world (Bond-Lamberty et al., 2004; Chen et al., 2014). As the largest 

CO2 source from terrestrial ecosystems contributing to the atmosphere, even a small 

change in Rm may cause significant changes in net ecosystem C gain, or the difference 

between net primary production (NPP) and Rm (Tian et al., 1998). However, the factors 

that control Rm in tropical and subtropical forests are not well known, with only 14% of 

global soil respiration data coming from these forests, and a particular lack of data from 

tropical and subtropical forests in Asia (Bond-Lamberty et al., 2018). With higher 

belowground C allocation and higher C turnover rates in tropical and subtropical forests 

compared to temperate and boreal forests, these regions should be of high priority for 

examining variability in Rm and potential response to climate change (Cavaleri et al., 

2015; Prestele et al., 2016). 
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Temperature has been documented as the primary environmental factor controlling 

soil microbial respiration in many earth system models (Ryan & Law, 2005; Davidson & 

Janssens, 2006). According to several model predictions, SOC will decline with global 

warming due to increases in SOC decomposition driven by increasing temperature 

(Davidson et al., 2000; Schlesinger et al., 2016). However, these predictions conflict with 

many field warming experiments and syntheses of global datasets, in which the changes 

of dead organic materials and SOC with respect to increases in temperature were much 

less than the response of Rm to increases in temperature (Giardina et al., 2014; Carey et 

al., 2016; Crowther et al., 2016; Bond-Lamberty et al., 2018). For example, based on a 

synthesis of a global soil respiration dataset, it has been shown that although Rm has 

increased by 1.2 % with warming of 0.7 °C in the last 25 years there was little change in 

SOC (Bond-Lamberty et al., 2018). These studies demonstrated that other important 

available C sources for soil microbial metabolism exist, and temperature is not the sole 

controlling factor for Rm. 

Studies have confirmed that plant productivity plays a key role in regulating soil 

respiration through transporting current photosynthates from the canopy to the soil to 

support root and microbial respiration (Janssens et al., 2001; Ryan & Law, 2005; Litton et 

al., 2011; Giardina et al., 2014). For example, a study using tree girdling to prevent 

belowground photosynthate allocation showed that soil respiration declined by 37% 

within 5 days of girdling treatment in a boreal forest (Hogberg et al., 2001). Unlike SOC, 

most of which is physically and chemically protected by soil minerals, rendering it 
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resistant to microbial attack and therefore characterized by slow turnover rates at 

millennia timescales (Townsend et al., 1992; Davidson et al., 2000; Trumbore, 2000; 

Giardina et al., 2014), current photosynthates can be easily used by soil microorganisms. 

It has been shown that a large fraction of low molecular weight carbohydrates, 

approximately 45% of belowground C allocation, entered soil through root exudates and 

was decomposed by soil microbes (Högberg et al., 2002; Kuzyakov, 2002). Despite these 

important findings, the importance of fresh plant-derived C for soil microbes is often 

neglected in studies of soil microbial respiration, partly because it is difficult to separate 

root respiration from soil microbial respiration in conventional soil CO2 efflux 

measurements in the field. 

The allocation and transport of photosynthates which is important for soil microbial 

metabolism are sensitive to soil temperature, soil moisture, and plant productivity. For 

example, diel variations in Rm and photosynthesis are highly correlated with soil water 

content, which affects the transport rate of photosynthates from canopy to soil (Tang et al., 

2005; Högberg & Read, 2006; Kuzyakov & Gavrichkova, 2010). The time lag between 

photosynthesis and soil respiration has been shown to vary, with a lag between peaks for 

both fluxes of 12 hours in September compared to 6 hours in June in the Sierra Nevada 

Mountains with Mediterranean climate (Tang et al., 2005). Studies in humid tropical 

forests have shown that warm temperature with little seasonal variability reduces 

temperature stress on soil microbes; instead, the high amount and greater frequency of 

precipitation brings plenty of dissolved organic carbon into the soil through canopy and 
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litter layer leaching, stimulating Rm (Cleveland et al., 2010). Heavy rain can also increase 

soil water content and decrease O2 concentration, changing soil redox conditions and 

releasing mineral-protected organic C into the soil solution (Silver, 1998). In addition, 

soil rewetting following drought may start plant and soil microbial activities and stimulate 

soil respiration rate by up to 10 times (Jarvis et al., 2007; Moyano et al., 2013). However, 

most of our understanding of the relationship between environmental factors and Rm 

comes from measurements on weekly or monthly time scales, limiting our understanding 

of impacts to short-term microbial processes (Kuzyakov & Gavrichkova, 2010; Vargas et 

al., 2010; Drake et al., 2016). This lack of knowledge regarding the relative and temporal 

contributions of photosynthates for soil microbes limits the ability to predict shifts in Rm 

with changing climate. High temporal resolution of Rm can help uncover the nuances of 

environmental controls over Rm and improve monthly and yearly CO2 flux estimation 

(Vargas et al., 2011). 

The trenching method is widely applied to separate contributions of root respiration 

and soil microbial respiration from field measurements of soil CO2 efflux, with materials 

such as a plastic sheet, fiberglass sheet, and cloth commonly used to prevent root invasion 

into measurement sites (Rey et al., 2002; Wang & Yang, 2007; Yang et al., 2007; Drake 

et al., 2012). However, these materials limit dissolved organic matter movement and 

change the soil environment inside the plot. Recently, nylon mesh sheets have been 

shown to effectively separate root and fungal mycelium respiration, with minimal 
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influences on soil environment, C flow, and nutrient exchange between plants and 

microbes (Moyano et al., 2008). 

In addition to experimental trenching, wavelet analysis has been demonstrated as an 

effective tool to resolve the role of variable C sources for soil respiration through the 

transformation of time series measurements of respiration rate into varied frequency sub-

signals to identify multiple C sources involved in Rm (Torrence & Compo, 1998; Vargas 

et al., 2010).  In physics, the phase of a periodic function of some real variable is an angle 

representing the number of periods spanned by that variable. Using wavelet coherence 

analysis, the phase relationship (i.e., the differences in the frequency distribution) 

between two time series can be used to establish possible cause-effect relationships 

between Rm and environmental variables (Vargas et al., 2010; Jia et al., 2018). Thus, in 

this study I used wavelet analysis to identify different substrate C sources for soil 

respiration. 

The subtropical moist evergreen broadleaved (SMEB) forests of China are among 

the most biodiverse and productive forests globally and occupy 25 % of the land surface 

of China (Yu et al., 2014). In this region, the East Asian summer monsoon brings much 

of the rainfall to southeastern China. The East Asian summer monsoon typically starts at 

the beginning of April, going through June in southern China, then moves north and then 

back to southern China in September, leaving a period of drought in mid-summer. The 

East Asian summer monsoon ends at the beginning of November; the East Asian winter 

monsoon lasts from December to February, during which this region is cold and dry 
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(Ding et al., 2018). The movement and transition of the monsoon leads to distinct 

seasonal weather patterns, providing an opportunity to study the relationship between 

above and belowground processes, and the contribution of different C sources to Rm in 

association with changes in environmental conditions. 

The main purposes of this study were to examine the importance of photosynthesis 

on soil microbial respiration, and to explore the temporal synchrony between soil 

microbial respiration and photosynthetically active radiation (PAR) on multiple time 

scales in a SMEB forest in southern China.  The temporal variation of soil microbial 

respiration was surveyed using automatic continuous measurement systems, and wavelet 

analysis was applied, to explore the temporal correlation between Rm and PAR, soil 

temperature, and soil water content. This approach aims to improve our understanding of 

the effect of environmental drivers (soil temperature, soil water content, and PAR) in 

regulating soil microbial respiration rate. I hypothesized that the monsoon transitions lead 

to changes in soil water content and plant phenology, which in turn influence allocation 

and transport of photosynthates, and therefore C sources for soil microorganisms and thus 

microbial respiration. I further hypothesized that photosynthesis influences soil microbial 

respiration at multiple time scales independent of soil temperature, because consistently 

warm temperature is not a limiting factor for Rm in subtropical forests. Instead, soil water 

content will affect the relative contribution and time lag of photosynthates to soil 

microbial respiration, and as such plays a vital role in plant-microbial interactions. 
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MATERIAL AND METHODS 

Site description 

The experiment was conducted in a SMEB forest, located within a state-owned 

forest farm (26° 19’ N，117° 36’ E) in Chenda County, Sanming City, Fujian Province in 

southeastern China. The mean annual temperature is 20.1 °C, with a mean annual rainfall 

of 1670 mm from 1959 to 2016 measured by the Sanming City meteorological station. 

Soils at the site are Ultisols according to the USDA soil taxonomy (Soil Survey Staff, 

1999), developed from biotite granite, and are characterized by low SOC content, low pH 

and cation exchange capacity, and abundant Fe and Al oxides (Fan et al., 2019). The soil 

is highly developed, and the profile exceeds 1 m in thickness in most areas. The dominant 

tree species of the SMEB forest are Castanopsis carlesii, Schima superba, and 

Cinnamomum camphora. Most of the litterfall inputs occur in April following the arrival 

of the summer monsoon, with the growth of new leaf buds and fine root growth. The fine 

root necromass increases during the summer drought period (Yang et al., 2004a,b). 

Soil microbial respiration measurements 

Three 20 m X 20 m plots randomly distributed in the study forest were used to 

conduct the experiment. Within each plot, three randomly selected 1 m × 1 m subplots 

were trenched in April 2010, for a total of 9 trenched subplots, and the trenches were 

backfilled with soil from the same layer.  I placed nylon mesh sheets with 150 µm pore 

size 1 m into the soil to exclude fine root entry while allowing for lateral water movement 

and ingrowth of mycorrhizal fungi, which have been shown to contribute more than 2/3 of 
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fresh root C transport into forest soils (Zhang et al., 2019). Based on previous research, 

most of the remaining root residue will be decomposed within nine months in subtropical 

forests (Sheng et al., 2010). After the trenching was completed, the subplots were kept 

free of ingrowth of new seedlings and understory vegetation. One polyvinyl chloride 

(PVC) collar (20 cm inside diameter×8 cm height) was inserted into the soil to 4 cm depth 

in each trenched subplot, and Rm was measured from March 28th, 2012 until December 

2014. 

Following the installation of the collar, I used a Li-8100-103 portable CO2 infrared 

gas analyzer (Li-Cor Inc, Lincoln, NE, USA) to measure in situ Rm rate (Rm-f). Soil 

temperature was measured by a portable thermometer (Model SK-250WP, Sato Keiryoki 

MFG. CO., LTD. Tokyo, Japan) and soil volumetric water content was measured using 

soil moisture meter (Model TDR-300, Spectrum Technologies, Aurora, IL, USA) at a 

depth of 8 cm soil, while taking measurements of Rm-f. The rates of Rm-f were 

monitored from 9:00 am to 12:00 pm based on previously established information that 

this period encompasses the average rate of daytime respiration (Sheng et al., 2010). 

After 16 months, a collar with the average Rm rate of each 20 m x 20 m plot was chosen 

for high frequency measurements by automated measurement using Li-8100-104 

automated long-term chamber. Soil temperature (Tf) and soil water content (Wf) were 

monitored using the temperature thermistor and moisture probe from 8100-401 chamber 

control kit (Li-Cor Inc, Lincoln, NE, USA). In these three sub-plots, Rm-f, Tf, and Wf 

were measured every 30 minutes from August 1st, 2013 until December 31st, 2014. 
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Meanwhile, photosynthetically active radiation (PAR), air temperature, and rainfall were 

monitored within 50 m distance at a weather station outside the forest. Rm and all the 

environmental variables were monitored with the same frequency simultaneously. The 

high frequency measurements allowed us to conduct wavelet analysis (see below). 

To evaluate the magnitude of SOC decomposition rate and its response to soil 

temperature in the absence of new C inputs. Five soil cores (length × wide × depth: 0.5m 

× 0.5m × 0.6 m) were excavated from the forest and incubated them in the open in a 

location 1 km from the forest in January 2015. The respiration rate (Rm-o), soil 

temperature (To) and soil volumetric water content (Wo) were monitored simultaneously 

from Jan 2015 through December 2016, as described above. However, to minimize the 

influence of disturbance to the soil structure and decomposition of litter and root residues 

likely stimulated by core excavation, only data collected from January 2016 to December 

2016 were used in this study. 

We used an exponential equation (R=a× e^(b×T)) to explore the function between 

the rate of SOC decomposition (Rm-o) with soil temperature (To) in the excavated soil 

cores incubated in the open. To quantify temperature-dependent SOC decomposition in 

the forest (Rm-fsoc), we assumed the thermodynamics of SOC did not differ between 

excavated soil cores incubated in the open and in situ forest soils. The fixed constants of 

the exponential equation developed using the open core data were used to calculate Rm-

fsoc using soil temperatures measured in the forest. The difference between total Rm in 
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the forest (Rm-f) and Rm-fsoc was defined as the contribution of current photosynthesis 

to Rm (Rm-fp). 

Wavelet analysis 

Wavelet analysis has emerged as a useful tool for analyzing temporal variation over 

different frequencies in non-stationary time series with wide applications in geophysics, 

hydrology, and soil respiration research (Torrence & Compo, 1998; Lafrenière & Sharp, 

2003; Vargas et al., 2010). Wavelet transform is an analytical approach that enables the 

distillation of data-dense time series measurements into patterns that reflect frequencies of 

change in measured variables through time. Detailed explanations of the wavelet analysis 

and the exact procedures can be found in Torrence & Compo (1998), Lafrenière and 

Sharp (2003), Grinsted et al. (2004), and Vargas et al. (2010). In brief, continuous 

wavelet transform was applied to analyze the non-stationary power at different 

frequencies of Rm and biophysical factors time series, by transforming an original 

measurement consisting of different wavelet functions into a series of wavelet functions. 

These wavelet functions are derived from the Morlet mother wavelet function. The 

mother wavelet was translated and scaled along the time series to obtain a series of sine 

wavelets. These wavelets can be localized in both time and frequency space. The 

extraction of frequencies over localized time series using wavelet functions reflects the 

changes in the non-stationary signal on a certain frequency, such as 24 hr, over the time 

series. The detailed features of the results can be displayed in a three-dimensional 

expression of time series by time (x; date of measurement), period (y; signal frequency), 
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and wavelet power (z; magnitude of variance at many different frequencies), defined as 

the wavelet power spectrum. 

The local wavelet power spectrum refers to the magnitude of the variance in the time 

series at a specific wavelet period and location in time. The global wavelet power 

spectrum is the time-averaged variance at a given period, and it provides a graph of power 

versus periods, or frequencies, which can be used to quantify the power, or strength, of a 

time series (Torrence and Compo, 1998). The wavelet coherence analysis was used to 

identify temporal covariance between Rm and biophysical factors in both time and 

period/frequency, and quantifies the phase differences, or time lags, between time series 

of Rm and biophysical factors.  Phase difference is the difference, in degrees of angle or 

in time, between two waves (or time series) that have the same frequency referenced to 

the same point in time. If two time series oscillate synchronously, with a phase difference, 

at a given period, or frequency, it would suggest a possible cause-effect relationship 

between Rm and a particular biophysical factor. The potential phase difference between 

two time series (such as Rm-f and Wf) ranges from 0 - 180°. A phase difference of 0°, for 

example, would mean the time series of Rm and soil water content have no phase 

difference, or no time lag, and are considered to be in phase; a 180° phase difference 

means the two times series are completely out of phase with each other. In our analysis, at 

a period of 24 hours, a 90° phase difference between soil respiration and a biophysical 

factor would indicate that the time series of the two variables were synchronized with a 6-

hour time lag (90°/360°24 hr = 6 hr). I also analyzed wavelet coherence, based on 
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wavelet transform, to examine intermittent cross-correlations between two time series at 

multiple time scales (Grinsted et al., 2004). 

The statistical significance (5 % significance level) of the wavelet power spectrum 

was tested against a null hypothesis, which assumes that the signal is generated by a 

stable process of a given background power spectrum. I used red noise (i.e., the noise 

produced by Brownian motion, also called Brownian noise) as the background spectrum 

in this study, because the red noise is widely used in geophysical time series. The 

variance of the red noise increases with the increasing period (or decreasing frequency). 

The comparisons between wavelet spectrum and background spectrum were tested within 

the cone of influence (COI). The COI is the zone where edge effects associated with zero-

padding ends are present. Zero padding is needed to avoid false periodic events (Cazelles 

et al., 2008). Outside of the COI the data are unreliable and are excluded from 

interpretation. Data analyses were computed using MATLAB_R2012b (The MathWorks 

Inc).  The wavelet analysis package can be downloaded from  

http://paos.colorado.edu/research/wavelets/ (Torrence & Compo, 1998; Grinsted et al., 

2004). 

Partial dependence plot 

The partial dependence plot (PDP) is a machine-learning model that estimates the 

potential relationship between two features, to show the functional relationships between 

one or two input variables. The PDP relies on a “black-box model” in which the marginal 

effect of a single factor is tested when the other factors are non-limiting, and generates a 
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function that depends exclusively on the explanatory factor of interest (Greenwell, 2017). 

In this study, I used one-way PDP to obtain the effect of biophysical factors on soil 

microbial respiration (Rm-f). First, the black-box model was obtained by using the tree-

based machine learning BRT algorithm (Elith et al., 2008). Secondly, the PAR or Wf data 

sets were submitted to the PDP function to obtain the average prediction of Rm-f using 

the black-box model. Finally, the relationships between predicted Rm-f and PAR and Wf 

were plotted graphically. These analyzes were run using the DALEX package in R studio 

(Biecek, 2018). 

RESULTS 

Seasonal variation in soil microbial respiration and biophysical factors 

Soil temperature and soil water content measured in the forest (Tf and Wf, 

respectively) and in the soil incubated in the open (To and Wo, respectively) showed 

different diel and seasonal patterns (Figure 2.1). The Tf had relatively low diel variation 

throughout the year compared to To (Figure 2.1). Average monthly Tf varied from 5.0 °C 

in February to 27.7 °C in August, and remained nearly constant at 22.3 °C from April to 

July, and was less than 10°C from December to February (Figure 2.1). Soil temperature in 

the open (To) had much higher diel and seasonal variation throughout the year compared 

to Tf, ranging from 0.7 °C in February to 45.6 °C in July (Figure 2.1). Soil water content 

in the open (Wo) also showed greater variability than Wf (Figure 2.1), although soil water 

content in both treatments responded rapidly to rainfall events. The annual rainfall was 

1789 mm, with rain starting at the beginning of March when air and soil temperatures 
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were low and ending in November. Most rainfall occurred from April to July during the 

East Asian summer monsoon (Figure 2.1). At the middle of the otherwise dry summer, 

typhoon Traimi brought 13 % (234 mm) of annual rainfall at the end of August 2014. The 

second rain stage, from November 11 to December 17, contributed 183 mm rainfall 

(~10 %) (Figure 2.1). 

Both the diurnal and seasonal variation of soil microbial respiration differed 

substantially between the forest (Rm-f) and the excavated soil cores in the open (Rm-o). 

The annual average of Rm-f, 2.66 µ mol m-2 s-1, was higher than the Rm-o, 0.37 µ mol m-

2 s-1 (Figure 2.1). Rm-o had very low diel and seasonal variation, with highest rates in 

July and lowest rates in winter (Figure 2.1), aligned with seasonal variation in soil 

temperature (Figure 2.1). By contrast, Rm-f showed significant diurnal variation during 

the two rainy periods, one from April to July, and one in November, with less-pronounced 

diurnal dynamics at other times (Figure 2.1). 

The Q10 of Rm-o was 1.4 when To was lower than 25 °C, but Rm-o declined when 

soil temperature exceeded 25 °C. Based on fitting of the exponential constants developed 

from the trenched plots, soil microbial respiration from SOC decomposition in the forest 

(Rm-fsoc) was 0.31 µ mol m-2 s-1 and only contributed 12% of Rm-f. The contributions of 

current photosynthates (Rm-f - Rm-fsoc) to Rm-f were most pronounced from April to 

November, during which Rm-fsoc was only 2 % of Rm-f, whereas Rm-fsoc was 32 % of 

Rm-f during the winter. 

Wavelet power spectrum of soil microbial respiration 
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The global wavelet power spectrum showed distinctive differences in 24h period 

between the forest soil and the soil in the open. Based on the global wavelet analysis, the 

24h period was the only prominent frequency for both Rm-f and Rm-fp (i.e., the 

difference between Rm-f and Rm-fsoc, or the contribution of current photosynthesis to 

Rm) across the yearly time series, indicating strong diurnal signatures of soil microbial 

respiration during the year (Figure 2.2). In contrast, the magnitude of the global wavelet 

power spectrum was low and not significant around the 24h period in the Rm-o time 

series, indicating no significant variance at the diel period for excavated soil cores 

incubating in the open (Figure 2.2). 

 Results of the local wavelet power spectrum, like the global wavelet power 

spectrum, revealed differences in the 24h period between the forest soil and soil in the 

open, but unlike the global wavelet power spectrum, the local wavelet power spectrum 

can provide short-term patterns. The local wavelet power spectrum showed that the 

statistically significant power of Rm-f was concentrated at the 24h period from April to 

July (days 90 to 220), and was strongest in April (days 90-106) and July (days 185-220) 

as shown with black contours outlining dark red areas in Figure 2.3. Rm-f also had 

significant power at the 12h period in April (days 93-108) and July (days 183-214), when 

Rm-f was at its highest of the year (Figure 2.3). During the second rainy season stage in 

October and November, there was weak but significant power of Rm-f around the 24h 

period (days 286-303; Figure 2.3, shown with green color). In contrast, the power of Rm-
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o at the 24h period was weak and scattered throughout the year (Figure 2.4, orange color 

areas). 

Temporal correlation between soil microbial respiration and biophysical factors 

Based on the analysis of wavelet coherence, which was used to identify the temporal 

relationships between Rm-f and biophysical factors, Rm-f was tightly correlated with 

PAR and soil temperature at the 24h period throughout most of the year, and Rm-f also 

had a significant correlation with PAR at the 12h period from April to July (Figure 2.5). 

The diel variations in Rm-f were mostly out of phase with variations in PAR. The phase 

differences between Rm-f and PAR increased from April and July to December and 

February at the 24 h period, during which Rm-f lagged PAR by 2.0 to 6.5 hours. The diel 

variations in Rm-f were also mostly out of phase with variation in Tf, with Rm-f leading 

Tf by 1.8 hours most of the time. 

In contrast to the diel variation, both Rm-f and Rm-o had strong and statistically 

significant coherence with Tf at longer periods, around 256 h, with no phase difference 

when Tf was lower than 23 °C  (for Rm-f) and when To was below 25 °C (for Rm-o) 

(Figure 2.6). The coherence between Rm-f and Wf was statistically significant at time 

periods longer than 24h during the rainy seasons (around 128 – 512 h periods between 

days 90-130, and at the 256 h period between days 310-330). There was scattered 

distribution of coherence between Rm-f and Wf around the 24 h period in October and 

December when rains relieved the drought. 
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The PDP predicted that Rm-f increases with increasing PAR, reaching a peak Rm of 

2.7 µmol m-2 s-1 at 790 µ mol (photon) m-2 s-1, then decreased with increasing PAR 

(Figure 2.7a). In contrast to the relationship with PAR, the predicted Rm-f decreased with 

increasing soil water content when water content was very low, below 18 %, but 

increased with increasing soil water content when it was above 18 % (Figure 2.7b). The 

prediction of Rm-f by air temperature and soil temperature revealed a temperature 

threshold for Rm-f at 34 °C and 23 °C, respectively, above which Rm-f declined (Figure 

2.7c & d).  

DISCUSSION 

The large and significant differences in soil microbial respiration rate between the 

forest (Rm-f) and in the open (Rm-o) (Figure 2.1) indicated that current photosynthates 

are likely an important source of the C available for soil microbial activity and respiration 

in the subtropical forest. Based on the differences between Rm-f and Rm-fsoc, which was 

derived from the temperature-dependence of SOC decomposition of soil incubated in the 

open, current photosynthates contributed to more than 88 % of annual soil microbial 

respiration, which accounted for almost 98 % and 68 % of soil microbial respiration 

during the growing and winter seasons, respectively. This contribution was higher than 

those reported for temperate and boreal forests (50 %) but similar to that of tropical 

forests (90 %) (Trumbore, 1993; Giardina et al., 2014). The transfer of photosynthates 

belowground is the primary source of low molecular weight compounds in dissolved 

organic matter and root exudates, which can be directly assimilated by the soil microbes 
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(Högberg & Högberg, 2002; Van Hees et al., 2005; Drake et al., 2016; Kuzyakov et al., 

2019). In contrast, the complex chemical fractions of SOC, such as lignin, do not provide 

enough energy to support soil microbial enzyme formation, and the mineral protected C 

can be unavailable for microbial attack, especially organic matter bound by Fe and Al 

oxides in highly weathered tropical and subtropical soils (Giardina & Ryan, 2000; Six et 

al., 2002; Fissore et al., 2013). Previous studies using isotopic techniques have 

demonstrated that most of the belowground C fluxes were respired by soil microbes and 

were not used to form root biomass (Matamala, 2003; Körner et al., 2005; Högberg & 

Read, 2006), supporting the role of current photosynthates on regulating soil microbial 

activity and respiration. 

The role of current photosynthates in regulating soil microbial respiration is also 

supported by the results of wavelet spectrum analysis. The strong power of the global 

wavelet of Rm-f at the 24h period throughout the year (Figure 2.2) suggests that soil 

microbial respiration likely originated from carbohydrates from current photosynthesis, 

which can be directly assimilated by microbes. The strong and consistent temporal 

correlation between local wavelet spectrum of Rm-f and PAR at the 24 h period between 

April and July, when the Rm-f rate was the highest in the year (Figure 2.3), points to the 

role of substrate availability from current photosynthesis in regulating the temporal 

dynamics and magnitude of soil microbial respiration. The weak and non-significant 

power at the 24 h period in the Rm-o time series (Figure 2.4) provided further indication 

that, without a tree canopy and therefore no addition of current photosynthates as a C 
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source, the temporal dynamics of Rm-o were strongly tempered. The lagging behind of 

Rm-f relative to PAR at the 24 h period (Figure 2.5) showed that PAR leads to the 

dynamics of Rm-f. On the other hand the lagging behind of Tf relative to Rm-f by two 

hours at the diurnal scale (Figure 2.5) indicates that soil temperature was not the key 

factor controlling soil microbial respiration at the diurnal period, as has also been 

suggested previously (Tang et al., 2005; Jia et al., 2018). This is supported by the 

observed insensitivity of soil microbial respiration to soil temperature (Q10 < 1.4) and the 

precedence of shifts in Rm before temperature shift in the forest (Giardina & Ryan, 2000; 

Davidson et al., 2006). 

Through high frequency monitoring of Rm and environmental conditions, we 

provide the first empirical evidence illustrating that current photosynthate contributes 

most to soil microbial respiration in these subtropical humid forests and challenges many 

models, such as CENTURY, BPES, and bio-BGC models, in which soil microbial 

respiration derives primarily from SOC pool mineralization driven by temperature 

functions  (Ryan & Law, 2005; Davidson & Janssens, 2006). The similar responses of 

photosynthesis and soil microbial respiration to PAR (Figure 2.7a) strongly point to the 

dependence of soil microbial respiration on carbohydrates from photosynthesis, as has 

been suggested by several studies (Van Hees et al., 2005; Kuzyakov & Gavrichkova, 

2010). It has been shown that photosynthesis rate increases with increasing air 

temperature with a temperature threshold near 33 °C in tropical forests (Wood et al., 

2012), above which photosynthesis is limited so that the transport of carbohydrates from 
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the canopy to the soil stops, resulting in a reduced supply of substrate C sources for soil 

microbes. In our study, based on the PDP modeling, the predicted Rm-f response to 

increasing air temperature also shows a threshold temperature around 33 °C, above which 

Rm-f no longer increases with increasing temperature.  

In the studied forest and perhaps many SMEB forests, variation in rainfall likely has 

substantial effects on soil respiration while temperature effects are limited. The warm but 

not extremely high temperature during much of the year in SMEB forests results in little 

temperature stress on plant growth and soil microbial activity. Rainfall variation, on the 

other hand, may affect plant phenology and the quantity and quality of C inputs into soil, 

resulting in variation of soil microbial respiration (Cleveland et al., 2010; Yu et al., 2014; 

Han et al., 2014). The Rm-f rate was highest in the rainy season from April to July, and 

Rm-f rates in April and July were higher than in May and June (Figure 2.1). The higher 

Rm-f was likely due to increased temporal availability of substrate supply from 

photosynthates at 12 h and 24 h periods (Figure 2.5), which was influenced by the rainfall 

pattern. There were 35 rainy days in May and June, compared to 20 days in April and July, 

which likely led to lower photosynthetic activity in May and June because rainy days, in 

general, have lower PAR. As a result, the magnitude of carbohydrates from 

photosynthesis allocated for soil microbial respiration was likely lower in April and July 

relative to May and June. Furthermore, total belowground C allocation may decline in 

May and June due to higher nutrient availability associated with the higher amount of 

precipitation (624 mm) than in April and July (413 mm). High precipitation may have 
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resulted in higher throughfall and stem flow that brought high amount of nutrients from 

the canopy and litter layer via leaching (Vitousek, 1984; Jiang et al., 2019). 

Unlike the dominance of current photosynthates on the regulation of soil microbial 

respiration during the rainy periods, there was no evidence of current photosynthate 

driven Rm-f during the dry periods based on results of local wavelet power spectrum. The 

local wavelet power spectrum of Rm-f revealed strong power at long periods (> 256 h) in 

the summer drought season from August to October (Figure 2.3). The phase differences 

between Rm-f and PAR, Tf, and Wf in the drought season, from August to October, 

showed that Rm-f preceded both PAR and soil temperature around 512 h period, and 

lagged behind Wf around the 1024 h period in the dry summer (Figure 2.5). The phase 

differences and the lack of wavelet spectrum at 24 h period in the dry season indicated 

that current photosynthates are unlikely to be the substrate C source for soil 

microorganisms during this period. In a study of the effects of precipitation variability 

and fire on soil CO2 efflux, it was shown that longer periods (> 24 h) of the wavelet 

power spectrum are likely associated with C sources other than current photosynthates 

(Vargas et al., 2012). However, Rm-f in the drought season was still high and equal to 

Rm-f in May, indicating the stimulation of original SOC under low soil water content. 

This finding is supported by a warming experiment near our site where soil warming 

resulted in low soil water content and increased soil respiration (Lin et al., 2018). The 

decline in soil water content stimulated CO2 production from deep soils due to improved 

O2 availability (Silver et al., 1999). 
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My high frequency monitoring also showed rapid increases of soil microbial 

respiration in response to rewetting of dried soil by pulse rains during the drought season 

(Figure 2.1). The pulse rains may disturb soil aggregates and increase substrate C 

availability from previously protected C, and stimulate microbial population growth and 

activity during the otherwise dry period. The sudden increase of soil microbial respiration 

associated with pulse rains, known as the Birch effect, has been frequently reported in 

regions with rain pulses in the dry season (Jarvis et al., 2007; Matteucci et al., 2015). 

Although the rain pulses stimulate soil microbial respiration, it has been shown that water 

from rain pulses in the dry season is weakly available to plants, and so has limited effects 

on plant phenology (Unger et al., 2010). This may help to explain the lack of diel 

dynamics of canopy photosynthesis that led to the diminishment of variation of Rm-f at 

the 24 h period in the dry season in this study. 

Soil water availability is essential for plant photosynthesis and biogeochemical 

cycling in soils. The PDP predictive curve indicated that soil microbial respiration was 

negatively related to soil water content when soil water content was less than 18 % 

(Figure 2.7b), possibly due to increased CO2 production from deep soil to surface 

associated with improved aeration. The 18 % soil water content is close to the wilting 

point in this soil (15 %) (Yang, unpublished data). Plant growth and photosynthesis are 

limited below the wilting point so that there was a dramatic reduction of photosynthates 

inputs into soil (Wood et al., 2012). However, CO2 production in deep soil, where the 

water content was high, was likely enhanced by improved O2 diffusion and the lower 
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surface soil water content improved the diffusion of CO2 from deep soil to surface soil 

(Silver et al., 1999). When the soil water content was higher than 18 %, the relief of water 

limitation likely improved stomatal conductance and photosynthetic rate. This enhances 

carbohydrate synthesis and the subsequent transport of photosynthates belowground, 

which in turn stimulates soil microbial respiration as observed in this study (Figure 2.7b). 

The result suggests that the main location and source of Rm differed between the rainy 

period and the dry period. 

CONCLUSIONS 

This study demonstrates that current photosynthates are the primary C sources for 

soil microbial respiration in the SMEB forest, contributing 98 % of C sources for 

microbial respiration in the growing season and 68 % in winter. This is the first in situ 

study to demonstrate the importance of new photosynthates on soil microbial respiration 

and top-down regulation of soil microbial metabolism in tropical forests. The opposite 

time lags of soil microbial respiration with PAR and soil temperature on a diel scale 

indicated that soil microbial respiration dynamics responded to PAR but always preceded 

shifts in soil temperature. This finding strongly suggests that soil microbial respiration is 

not controlled by soil temperature in SMEB forests; instead, the diel dynamics of soil 

microbial respiration were strongly controlled by PAR. My results challenge the 

assumption of most empirical models that soil temperature regulates soil microbial 

respiration, and illustrates a scenario in which plant physiology plays a key role in 
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regulating soil microbial activity, a scenario which may be not uncommon in subtropical 

moist evergreen broadleaved forests. 

 

TABLES AND FIGURES 

 

Figure 2.1 Diel and seasonal trends of soil microbial respiration rate, soil temperature and 

soil volumetric water content at 10cm soil depth in the forest soil and excavated soil cores 
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incubated in open canopy. Diel and seasonal trends of precipitation, air temperature, and 

photosynthetically active radiation (PAR) measured during the studies. DOY, day of the 

year after January 1. 

 

Figure 2.2 Global wavelet power spectrum of (a) soil microbial respiration in forest soil 

(Rm-f), and (b) soil microbial respiration at open canopy (Rm-o), and (c) soil microbial 
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respiration from current photosynthates (Rm-p), which was calculated by the difference 

between Rm-f and the rate of SOC decomposition (Rm-fsoc) in forest soil 

 

Figure 2.3 The local wavelet power spectrum, which shows the magnitude of the variance 

in the time series at a specific wavelet period and location in time, for soil microbial 

respiration and environmental factors in the forest: (a) Rm-f; (b) PAR; (c) Tf; (d) Wf. The 

color codes for power values are from dark blue (low values) to dark red (high values). 

The black contour lines depict the areas where the power is significant. The thick black 

line indicates the cone of influence that delimits the region not influenced by edge effects. 

DOY, day of the year after January 1. 
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 Figure 2.4 The local wavelet spectrum for soil microbial respiration and biophysical 

factors measured beneath the open canopy: (a) Rm-o; (b) To; (c) Wo. The color codes for 

power values are from dark blue (low values) to dark red (high values). The black contour 

lines depict the areas where the power is considered significant, and thick black line 

indicates the cone of influence that delimits the region not influenced by edge effects. 

DOY, day of the year after January 1. 

 
 

35 



 

 

 

Figure 2.5 Wavelet coherence analysis and phase difference between soil microbial 

respiration and (Upper) PAR, (Middle) soil temperature, and (Below) soil water content 

in the forest. The phase difference is shown by arrows: in-phase pointing to the right (no 
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lags between time series), out of phase pointing in other direction (representing lags 

between time series). The color codes for power values of coherence are from dark blue 

(low values) to dark red (high values). Black contour lines represent the 5 % significance 

level, and thick black line indicates the cone of influence that delimits the region not 

influenced by edge effects. DOY, day of the year after January 1. 

 

 

Figure 2.6 Wavelet coherence analysis and phase difference between soil microbial 

respiration and (Upper) soil temperature, and (Below) soil water content in the open. The 

phase difference is shown by arrows: in-phase pointing right (no lags between time series), 
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out of phase pointing in other direction (representing lags between time series). The color 

codes for power values of coherence are from dark blue (low values) to dark red (high 

values). Black contour lines represent the 5 % significance level, and thick black line 

indicates the cone of influence that delimits the region not influenced by edge effects. 

DOY, day of the year after January 1 

 

 

Figure 2.7 Partial dependence plot (PDP) for the soil microbial respiration prediction 

model and (a) photosynthetically active radiation (PAR), (b) soil water content, and (c) 

Air temperature, and (d) Soil temperature. 
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CHAPTER THREE: LOSS OF SOIL ORGANIC CARBON FOLLOWING NATURAL 

FOREST CONVERSION TO CHINESE FIR PLANTATION 

ABSTRACT 

China manages the largest area of forest plantations on the globe, with most of them 

converted from natural forests. Establishment and management of forest plantations often 

involves severe human disturbances such as slash burning and intense site preparation 

which could lead to rapid and substantial soil organic carbon (SOC) losses and affect 

long-term SOC recovery. In this study I examined SOC dynamics and soil microbial 

respiration following the conversion of natural secondary forest to a Chinese fir plantation 

with slash burning in southern China. SOC decreased by 28 % in the first year after forest 

conversion, with more than 40% of the decrease due to volatilization from slash burning. 

Slash burning also increased soil microbial respiration in the first five months following 

forest conversion. SOC of the Chinese fir plantation did not recover to the pre-burning 

level in 40-years, indicating that the loss of SOC is a long-term phenomenon in forest 

conversion. I found that soil microbial respiration was largely controlled by 

photosynthesis in the natural secondary forest; however, in the young Chinese fir 

plantation both newly formed photosynthates and SOC were important C sources for soil 

microorganisms. The intensive burning of harvest residue not only induced direct SOC 

losses through volatilization, but may also have accelerated the decomposition of SOC in 

the first few years after forest conversion. I conclude that slash burning is the primary, 

initial pathway by which SOC is lost in these subtropical forest plantations, and that the 
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recovery of SOC in this subtropical forest system will likely be a slow process, requiring 

centuries or more. Replacing natural forest with Chinese fir plantations using slash 

burning is likely to substantially deplete C stored in the soil for many years and may 

negatively affect long-term SOC sequestration potential. 

INTRODUCTION 

China manages 69.33 million ha of tree plantations, accounting for 26.2 % of the 

world’s tree plantations as of 2013, with plantation area in China increasing by 

approximately 5 million ha year-1 between 2004 and 2013 (SFA, 2016). Most forest 

plantations in China are monocultures converted from former natural forests, with 

approximately 42 % of the forest plantations located in the sub-tropical region of China 

(FAO, 2010). The rapid increase of forest plantations is essential to meet the increasing 

timber demand in China; however, it also raises some environmental concerns, such as  

impacts on biodiversity conservation, soil fertility, and soil organic carbon (SOC) loss 

(Yang et al., 2009; Xu, 2011; Hua et al., 2016).  

In the subtropics, intensive burning and site preparation are traditional plantation 

establishment practices and can cause large SOC losses in a short period (Yang et al., 

2005; Huang et al., 2013; Guo et al., 2016). Although it is widely recognized that forest 

conversion can alter SOC storage, the magnitude and direction of SOC change after 

conversion of natural forest to tree plantation is still uncertain. For example, through a 

global meta-analysis, Guo and Gifford (2002) reported that when natural forests were 

converted to conifer plantations SOC decreased by 13 % but there was no significant 
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change when converted to broadleaf plantations (Guo & Gifford, 2002). Differences in 

SOC changes associated with the conversion of natural forests to forest plantations have 

been explained by differences in precipitation, clay mineralogy, and tree species among 

sites (Don et al., 2011; Powers et al., 2011; van Straaten et al., 2015). Interestingly, 

although anthropogenic disturbances associated with forest conversion, including harvest 

regime, residue burning, site preparation, and weeding, are known to have major effects 

on SOC (Yang et al., 2009; Nave et al., 2011; Guillaume et al., 2015), they have not been 

invoked to explain cross-site differences in SOC change following forest conversions.  

Both Guo and Gifford (2002) and Powers et al. (2011) highlighted the lack of 

studies of forest conversion effects on SOC in tropical regions. Although several studies 

have examined SOC alteration following forest conversion in Africa, South America, and 

East Asia recently, they focused on the conversion of natural forests to cash tree 

plantations, such as rubber, oil palm, and cacao agroforestry plantations, not forest 

plantations (Chiti et al., 2014; Guillaume et al., 2015; van Straaten et al., 2015). However, 

the most important driver of forest conversions in the subtropical region of China is the 

need for forest products and results in tree plantations being planted on former natural 

forest, with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) being the single most 

important plantation species accounting for 63 % of the total forest plantation area of 

China (SFA 2007). Given the fact that China manages the largest acreage of forest 

plantations in the world and most of the forest plantations were converted from natural 
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forests, the lack of studies from this region represents an important knowledge gap in our 

understanding of the effects of forest conversion on SOC.  

In subtropical China, forest conversion typically starts with clear-cutting natural 

forest followed by slash burning site preparation, and causes large SOC losses through 

volatilization, water run-off and soil erosion, and increased SOC decomposition after 

forest conversion (Ma et al., 2000; Andreu et al., 2001; Yang et al., 2005). The large 

amounts of residues post-harvest, such as small branches and leaves, are left on the site 

and burned before seedlings are planted which can lead to intensive fires causing SOC 

volatilization losses as high as 17-27 % in the surface mineral soil (Yang et al., 2005). 

Furthermore, deforestation followed by burning leaves the post-fire soil unprotected such 

that soils may experience heavy soil erosion in the following spring and summer rainy 

season (March to July), during which more than 60 % of the annual rain in southeastern 

China falls (Yang et al. 1998). Slash burning may also kill microorganisms in the surface 

soil, unlocking carbohydrates which may then stimulate the growth of soil 

microorganisms later (Knicker, 2007). Few studies have elucidated the relative 

contributions of these processes on SOC losses following forest conversion in the 

southeastern region of China. 

Soil organic C accumulates through litter and root turnover, and adsorption of 

dissolved organic carbon on minerals. However, many studies in tropical and sub-tropical 

regions have found that SOC content decreased in the first few years after forest 

conversion and then reached a relatively stable but lower level than before the conversion, 

 
 

42 



 

never fully recovering to pre-disturbance levels (Chen et al., 2013; de Blécourt et al., 

2013; Guillaume et al., 2015). For example, using a 2 to 88-year-old Chinese fir 

plantation chronosequence in southern China, Chen et al. (2013) showed that compared to 

an adjacent natural forest, SOC content was nearly 30 % lower in a 7-year-old plantation 

and remained at the low level throughout the chronosequence. Despite the accumulating 

evidence of reductions in SOC content following forest conversion coupled with a lack of 

recovery in tropical and subtropical forests, explanations for the underlying mechanisms 

accounting for these observations remain unclear.  

Soil microbes use and respire C from aboveground litter, belowground root 

exudates and detritus, and soil organic matter (Ryan & Law, 2005). The relative 

contribution of each component to substrate C for soil microbial activity may affect long-

term SOC storage (Binkley & Resh, 1999; Schlesinger & Lichter, 2001; Giardina et al., 

2014). If much of the microbial respiration stems from C in litter, root exudates and 

detritus, one might expect that eventually this flux of C will return to pre-harvest values 

or even increase as forest plantation regrowth gradually returns these inputs to pre-

disturbance levels. In contrast, if much of the heterotrophic C demand is met by soil 

organic matter, there could be persistent negative effects as SOC storage can take long 

time periods to recover from disturbance.  

In this study, I tried to better understand the processes contributing to the lack of 

short-term recovery of SOC following conversion of natural forests to Chinese fir 

plantations in the subtropical region of southeastern China by addressing three questions. 
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First, what are the magnitude and direction of SOC changes through time? Second, what 

are the relative contributions of burning and soil microbial respiration to initial SOC 

losses? Finally, how do the C sources for soil microbial respiration vary through time?  A 

thorough examination of these questions is critical to improve our comprehension of the 

mechanisms by which conversion of natural forests to forest plantations alters soil C 

storage. Given the large area that Chinese fir plantations occupy on a global scale, the 

answers to these questions have implications for the global C budget.  

MATERIAL AND METHODS 

Study Site  

The study site was located at Sanming City, Fujian Province, China. The 

landscape is characterized by low mountains and hills with an average elevation of 300 m 

and slope steepness of 25°- 45°. The soil was classified as sandy clay Ferric Acrisol 

according to the FAO/UNESCO soil classification system (FAO, 2017) and was 

developed from biotite granite. Subtropical evergreen broadleaved forests are the 

dominant natural vegetation of this area. The region has a typical maritime subtropical 

monsoon climate, with annual mean temperature of 20.1 °C and mean annual rainfall of 

1670 mm measured between 1959 and 2006, with approximately 80 % of rainfall 

occurring between March and August (Yang et al., 2018). 

The experiment was conducted at a state-owned forest farm in Chenda, Sanming 

City. Prior to 1958, the area was covered by natural broadleaf forests dominated by 

Castanopsis carlesii. However, with increasing timber demand for use in construction, 
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the natural forests were gradually logged and have been replaced by plantations (mainly 

Chinese fir) or allowed to naturally-regenerate into secondary forests (NRS).  

Experiment design 

In 2011, an area of 1.1 ha within the NRS was selected to study the effects of 

forest management treatments on SOC dynamics. The 1.1 ha area was divided into nine 

plots each with an area of 0.12 ha, evenly distributed in the upper, middle, and toe-slope 

positions. Within these nine plots, three treatments, assisted natural regeneration, Chinese 

fir plantation, and Castanopsis carlesii plantation, were each replicated three times and 

assigned using a randomized block design blocked by the slope positions. Because the 

main objective of this study was to explore how the conversion of a natural secondary 

forest to a Chinese fir plantation affects SOC, I only examined SOC changes associated 

with the conversion of secondary natural forest to Chinese fir plantation. Thus, this study 

incorporates only the three plots in Chinese fir plantation treatments and are referred to as 

young Chinese fir (YCF). The adjacent uncut and naturally regenerated secondary forest 

(NRS) was treated as the control, and three plots were also arrayed across the same three 

slope positions. To compare SOC dynamics in young vs. mature Chinese fir plantations, a 

mature Chinese fir (MCF) plantation, with similar slope positions and aspect 800 m away 

was identified, and three similar sized plots were established in upper, middle, and toe-

slope positions. Because plots in different slope positions are likely to differ in many 

important factors affecting plant growth and soil properties (e.g., soil moisture, exposure 

to wind and light), this design minimized the confounding of slope position with 
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treatments (see below) on my measurements. The two mature forests (NRS and MCF) 

were both converted from a natural C. carlesii forest in 1976 (i.e., both were 36 years old 

in 2012). Details of the experimental design are described in Yang et al. (2018). For this 

study, I compared SOC among YCF, MCF, and NRS (n=3 in each slope position) to 

quantify changes due to conversion to Chinese fir plantation and over time. The effects of 

slash burning on SOC and soil microbial respiration were determined by comparing pre- 

and post-burning data collected from YCF and comparing post-burn SOC in YCF to MCF 

and NRS on the YCF immediate post-burn date only (n=3 in each slope position). I 

assumed there would be no difference in SOC across a one-day time period in the 

unburned forest treatments (NRS and MCF; see burn details below).  

To create the young Chinese-fir plantation plots used in this study, a naturally-

regenerated mature secondary forest was clear cut in December 2011 and harvested. 

Following common management practices in southern China as described by Yang et al. 

(2005), residues (fine branches < 2 mm, twigs <2 mm, and leaves) were evenly spread 

over the land and tree stumps were left in the field (untreated). After a three-month 

exposure and drying period, the residues were burned on March 27th, 2012 before spring 

rains. Fire temperature reached as high as 330 °C in surface soil during prescribed 

burning in my study. Following burning, the area was planted with Chinese-fir seedlings 

at a density of 2,860 seedlings per hectare on March 29th, 2012. Following the common 

practices for establishing Chinese-fir plantations in China, weeds were cut with a wood 

chopper by hand twice a year, in June-July and again in October-November, in the first 
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three to five years depending on levels of canopy closure (i.e., when canopy was closed, 

weeding stopped).  

Because burning has the greatest impact on surface soil (Yang et al. 1998), the top 

0-5 cm surface soil was sampled in each plot to determine the effects of slash burning on 

SOC concentration. To study the immediate influence of burning on SOC loss, five 

samples of upper mineral soil were collected from each plot of the YCF using a soil corer 

(5 cm inside diameter) on March 27th 2012 immediately before the burning and on March 

28th 2012 immediately after the burning. To evaluate SOC changes following plantation 

establishment, I re-sampled surface soil on March 27th, 2013 and March 27th 2017. I also 

sampled surface soil in MCF and NRS on March 27th, 2012 and 2013, and again five 

years later on March 29th, 2017. All soil samples were air dried, sieved, and the < 2 mm 

fraction analyzed for SOC using a Vario MAX CN analyzer (Elementar, German). 

Because the soil in my study site is very acidic with pH of approximately 4.0, it is 

assumed that there was no inorganic C present in the soil. Soil bulk density of 0-5 cm soil 

was measured with a knife ring (diameter 5 cm) in pre-fire, post-fire, and 1-year later, 

respectively. Rock and gravel (> 2 mm diameter) were sieved from each soil sample. The 

amount of SOC per unit area was calculated by multiplying SOC concentration by soil 

bulk density (pre-fire:1.2 g cm-3, and post-fire: 1.0 g cm-3) and soil depth (5 cm). 

To evaluate the loss of SOC through mineralization (i.e., soil microbial respiration, 

Rm) I trenched three randomly selected 1 m × 1m subplots in each plot of the YCF and 

NRS treatments in April 2010. Roots were excluded by trenching 150 µm fiber net sheets 

 
 

47 



 

1 m into the soil to prevent root entry, but which allowed for lateral water movement and 

mycorrhizal fungi ingrowth. The trenches were back filled with the same soil. The 

subplots were left undisturbed until March 2012 when prescribed burning was conducted. 

I assumed that by then the contribution of the remaining roots to total respiration should 

be minimal. After the trenching was completed, the subplots were kept free of ingrowth 

of new seedlings and understory vegetation. One polyvinyl chloride (PVC) collar (20 cm 

inside diameter × 8 cm height) was inserted into the soil to 4 cm depth in each trenched 

subplot for sampling of Rm, starting on March 28th, 2012. To evaluate the response of Rm 

to burning, I began my measurements of Rm, from the first day after burning. The rate of 

Rm (together with soil water content and temperature) was manually measured at each 

collar from 9:00 am to 12:00 pm using a Li-8100-103 portable CO2 infrared gas analyzer 

(LiCor Inc, Lincoln, NE, USA). This timeframe was previously established as the average 

rate of daytime respiration (Sheng et al., 2010). I initially measured Rm on a daily basis 

and when the temporal fluctuation became much smaller four months later, Rm was 

measured biweekly. I assumed that the rate of soil microbial respiration measured 

biweekly represented the average rate of the two weeks, and the annual flux was the sum 

of C emitted during all sampling periods. 

To detect different C sources used for Rm, I added a high frequency measurement 

on one collar in the middle slope trenched subplots of the YCF and NRS treatments by 

automated measurements using Li-8100-104 long-term chamber on a 30-minute basis 

starting from the 16th month post-burn and lasting for one year (from August 1st, 2013 to 
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July 31st, 2014). The collar that had the Rm closest to the mean of all collars per treatment 

in the first 16 months was chosen for the high frequency measurements. The high 

frequency measurements were used to conduct wavelet analysis (Vargas et al., 2010).   

Data analysis 

I used a paired t-test to examine the difference of SOC immediately before and 

after the burning in YCF. For the post-burning measurements, I used a general linear 

model with repeated measurements to examine the differences of SOC among YCF, MCF 

and NRS and among different sampling times in 2012, 2013, and 2017, the within group 

factor. The difference in soil microbial respiration (Rm) flux from manual measurements 

between the NRS forest (control) and YCF plantation in the first year (i.e., measurements 

taken at one point in time) was examined using a t-test. For the SOC across forest 

treatments and the Rm analyses, slope position was included in the initial models, as I 

anticipated slope may affect my results. However, neither slope nor its interaction with 

forest treatment were found to be significant; therefore, only forest treatment and time 

effects are presented. The statistical analyses were conducted using JMP Pro 14 (SAS 

Institute Inc., USA). Assumptions of normality and homogeneity of variances were 

checked, and dependent variables were natural log transformed where necessary. All 

effects were considered significant at the P < 0.05 level. 

Wavelet analysis has been widely applied in the geosciences for time series data, 

and has been introduced into soil respiration research in a mixed conifer-oak forest in 

California and a grassland in New Mexico, USA (Vargas et al., 2010, 2012). The global 
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wavelet power spectrum, defined as the average variance contained in all wavelet 

coefficients of the same frequency, provides quantification of the main periodic 

components of a time series (Torrence and Compo 1998) and can be used to quantify the 

spectral characteristics of nonstationary time series. The high frequency component of the 

spectrum (i.e., high turnover rate) may be associated with respiration from immediately 

available C substrate (Mahecha et al., 2010; Vargas et al., 2012). I used Morlet wavelet as 

mother wavelet described by Torrence and Compo (1998) to calculate the global wavelet 

power spectrum of high temporal resolution measurements of Rm (Torrence & Compo, 

1998). A mother wavelet is a transformation function that forms the basis for various 

transformation processes. It could be considered as a windowed function that moves 

along the time-series signal from time t = 0 to time t =T. The portion of the signal in that 

window is multiplied by the mother wavelet and then integrated over all times to get the 

wavelet coefficients. The global wavelet power spectrum was computed using 

MATLAB_R2018a. Details of the wavelet analysis and the exact procedures are referred 

to Torrence & Compo (1998) and Vargas et al. (2010). 

RESULTS 

Magnitude and pathways of SOC losses in the early stage of forest conversion 

There was no significant difference (F = 0.045, df = 1, P = 0.842) in SOC between 

the naturally-regenerated secondary forest (NRS) (29.86±1.38 g kg-1, mean ± standard 

error) and the young Chinese-fir plantation (YCF) forest prior to burning (29.61±1.42 g 

kg-1).  Immediately following the slash burning in the YCF, SOC concentration in the 0-5 
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cm soil declined significantly by 5.06 g kg-1, or 15.2%, from 29.61 g kg-1 to 24.55 g kg-1 

(t = 5.774, df = 2, P = 0.029), representing a loss of 3.04 t C ha-1. The post-burning SOC 

concentration was not different between soils of the YCF and mature Chinese-fir 

plantation (MCF) but both were significantly lower than that of NRS and remained that 

way for the duration of the study (Figure 3.1). There was no significant difference in SOC 

among the three post-burn sampling years for any forest type (Figure 3.1). Although SOC 

appeared lower one year after burning compared to immediately after the burning in YCF 

(Figure 1A), the difference was not statistically significant (P = 0.162). 

 Slash burning stimulated soil microbial respiration (Rm) in YCF compared to that 

measured in NRS in the first year post-burn (Figure 3.2A). C efflux through Rm was 2.00 

t C ha-1 or 39 % higher in the YCF (6.41 t C ha-1) than the NRS (4.41 t C ha-1) from April 

2012 to August 2012 (Figure 3.2B). The difference between forest types became non-

significant five months post-burning. Although the difference between treatments became 

significant again between December 2012 and April 2013, soil microbial respiration in 

both forests was considerably lower during this period than in the first five months 

following the burning, and there was no difference between the two forests when 

integrated over these months. 

Global wavelet analysis of soil microbial respiration 

From high temporal resolution measurements of soil microbial respiration between 

August 2013 to July 2014, average annual soil microbial respiration in NRS (10.06 t C ha-

1 y-1) was 65 % higher than YCF (6.51 t C ha-1 y-1). The differences in Rm between the 
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two forests were most pronounced in the main rainfall and growing seasons between 

March and July (Figure 3.3A). This corresponded to the period when temperature and soil 

water content were high (Figure 3.3B &C). Differences in soil microbial respiration 

between the two forests were much reduced in the dry period from August 2013 to 

October 2013 and dry and cold period from December 2013 to February 2014 in the next 

year. (Figure 3.3). 

The global wavelet spectrum derived from the high frequency measurements of soil 

microbial respiration indicated that soil microbial respiration in both YCF and NRS had a 

24 hour periodicity (Figure 3.4a & d); however the power, which reflects the number of 

times that  the periodicity occurred, was nearly 4x greater for NRS than YCF (Figure 3.4a 

& d). In addition to the 24-hour periodicity, YCF had another peak of periodicity at nearly 

72 hours during the rainy season (Figure 3.4b), which was not evident in the NRS (Figure 

3.4e). In contrast, both forests had similar, limited periodicity during the dry and cold 

season (Figure 3.4c and 4f).  

DISCUSSION 

SOC losses in relation to human disturbance associated with plantation establishment  

Despite the rapid expansion of forest plantations on former natural forest sites in 

the tropics and subtropics, the effects of forest conversion on SOC have not been well 

quantified. In the meta-analysis of the effect of land-use change on tropical soil C stocks 

by Powers et al. (2011), only 7 % of the observations involved natural forests replaced 

with forest plantations. In my study a total of 28 % of the SOC was lost in the first year 
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following forest conversion, 11% (3.04 t C ha-1) through fire-associated volatilization (i.e., 

the difference immediately before and after slash burning), 7 % (2.0 t C ha-1) through 

stimulated microbial respiration during the first 5 months post-burn, and 10% (2.6 t C ha-1) 

via erosion (from Yang et al. 2018), respectively. The 28 % loss of SOC following forest 

conversion in my study is in alignment with the 19.8 %-38.0 % losses reported in several 

studies in subtropical Australia and China (Chen et al., 2004; Yang et al., 2009), but are 

considerably greater than the -20% to +10% change reported for the conversion of 

tropical forests to forest plantations by Powers et al. (2011). Such differences highlight 

the need for a more comprehensive survey and mechanistic understanding of the effects 

of forest conversion on C sequestration because the effect varies considerably between 

regions, which could affect the contribution of forest conversions to plantation to the 

calculation of the global C budget. 

The large loss of SOC immediately following forest conversion and the lack of 

difference in SOC content between young (1-5 yrs old) and mature (35-40 yrs old) 

Chinese-fir stands (Figure 3.1) suggest that SOC does not recover to pre-burn NRS 

levels for more than three decades. The finding of high SOC loss immediately following 

forest conversion is similar to that of other studies in the tropics and subtropics (Yang et 

al., 2004; Solomon et al., 2007; Chen et al., 2013; de Blécourt et al., 2013). For example, 

following the conversion of forests to rubber plantation, 24 % of SOC was lost in the 

first three years, but only an additional 3 % of SOC was lost in the next 7 years (Yang et 

al., 2004). Many studies have reported that the reduction of SOC associated with the 
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conversion of tropical forests to cash tree plantations is related to management practices 

such as fruit harvest and litterfall exclusion (Chiti et al., 2014; Guillaume et al., 2015). 

The results from my cross-year measurements in the young and mature Chinese fir 

plantations provide the first evidence indicating that slash burning, a common practice in 

forest conversion, has an immediate, and pervasive effect on SOC loss that cannot be 

erased thirty years after forest conversion.   

The loss of SOC by slash burning depends on the intensity of fire, which is 

influenced by surface fuel abundance and quality, fuel moisture, and rate of spread 

(Yang et al., 2005; Wang et al., 2016). In most of subtropical China, harvest residues are 

left on the soil surface under the sun for several months. In my study site, the amount of 

residues was 15.3 t C ha-1 (Yang unpublished data) which was comparable to the fine 

wood fuel amount reported in wildfire (Raymond & Peterson, 2005). At my site, most of 

the harvest residues are fine woody debris and leaves that burn easily (Yang et al., 2005) 

and can reach temperatures (330 °C) higher than that required for SOC volatilization 

(220 °C - 315 °C, Knicker 2007; Yang et al., 2005).  

In addition to the fire-induced volatilization of SOC, the increased soil microbial 

respiration measured in the first 5 months after slash burning may have contributed 26 % 

of total loss of SOC. Temperature is a possible driver of the increases of Rm in the slash 

burning site as soil temperature was higher due to low plant coverage and low shade 

following the burning (Figure 3.3). However, if temperature is key, I would expect to see 

increases in Rm between August and October, not the decreases I observed (Figure 3.2). 
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It is also possible that burning and subsequent liming (also common in this region) 

altered soil pH and the availability of nutrients (Knicker, 2007), or that microbes were 

responding to carbohydrates released from cell lysis caused by burning (Certini, 2005; 

Dooley & Treseder, 2011) or to reductions in plant-microbe competition for nutrients. 

Furthermore, the addition of ash and carbohydrates following slash burning may 

stimulate soil microorganism activity, and increase SOC decomposition through priming 

effects, especially in deep soils (Fontaine et al., 2007). Ash-induced increases of Rm 

may be further maximized by the absence of plant competition for soil water and 

nutrients in the first five months of Chinese fir plantation.  

In this study, I found that SOC content in Chinese fir plantations did not recover 

to the level in the adjacent natural forest even > 30 years after the forest conversion. 

Despite continuous input of both above- and below-ground C to the soil over the > 30 

years study period, SOC levels in the Chinese fir plantation did not change with time, 

suggesting that little of the new plantation-derived added C was retained in the soil. This 

result is similar to that observed in a FACE experiment in the Duke forest where high 

CO2 concentrations increased foliage production and the litter layer, but had no effect on 

SOC in mineral soil (Powers & Schlesinger, 2002). Similarly, a study in a Eucalyptus 

woodland in Australia reported no effects of CO2 enrichment on SOC, and soil microbial 

biomass and activity, although it increased canopy photosynthesis and soil respiration 

(Drake et al., 2016). That study suggested that the increases of soil respiration came 

from photosynthate that was transported belowground (Drake et al., 2016). Studies of 
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belowground C cycling in some tropical forests have also suggested that most of the 

belowground C allocation was returned to the atmosphere by soil microorganisms, 

despite the overall increase of gross primary productivity with warming (Giardina et al., 

2014). Regardless of the exact causes, the lack of changes in SOC in the afforested site 

with time indicates that the initial loss of SOC following forest conversion cannot be 

remediated in several decades, which has major implications for soil C dynamics 

following forest conversion.  

Forest conversion changes C sources for soil microorganisms 

The short (24-hour) periodicity of Rm in the global wavelet spectrum is often 

attributed to rapid turnover of carbohydrate from photosynthesis (Mahecha et al., 2010; 

Vargas et al., 2012). This implies that newly formed carbohydrate from photosynthesis 

was an important source of C for microbial respiration in both YCF and NRS stands and 

suggests that plant activity plays an important role in soil microbial respiration, 

particularly in the NRS, where the 24-hour periodicity was 4x stronger than in YCF. This 

finding is consistent with others who have shown that spatial and temporal variation of 

soil CO2 is influenced by newly formed photosynthate (Steinmann et al., 2004; Tang et 

al., 2005). Using a dual isotope (13C and 14C) pulse label technique, Carbone & Trumbore 

(2007) found that more than half of new photosynthetic C was respired in 24 hours in 

Owens Valley, US (Carbone & Trumbore, 2007). I was able to detect the difference in 

power of 24-hour periodicity between NRS and YCF during the rainy season, which 

contributed most of the annual difference in Rm between the two treatments because there 
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was no difference in the power of 24-hour periodicity in the dry season. In addition, most 

of the differences in soil microbial respiration observed in the second year following the 

burning between these two forests also occurred in rainy season, which supports that 

carbohydrates from photosynthesis were an important determinant of soil microbial 

respiration. Thus, I was able to detect the possibility of using carbohydrates formed 

within 24 hours as the main C sources for soil microbes in subtropical forest based on 

high frequency measurements of soil microbial respiration.   

The lower 24-hour periodicity in YCF, coupled with another 72-hour periodicity 

appearing during the rainy season that was not measured in the NRS treatment indicated 

less reliance on active photosynthate and a greater importance of other C sources for soil 

microorganisms in YCF. While my plots were trenched and lined in an effort to separate 

root and microbial sources of respiration (Rey et al., 2002; Wang & Yang, 2007; Drake et 

al., 2012), which presumably should have reduced the photosynthate signal in my dataset 

as my liners did not allow re-growth of roots into the plots, my liners do not exclude fungi 

nor do they prevent the transport of root exudates and litter breakdown products into the 

plots via soil water movement. Root-associated mycorrizhae, which have access to 

photosynthate, could be contributing to the strong diurnal signal observed in my data, or 

newly formed photosynthetic C (e.g., root exudates) may have been moving into the plots 

with soil water. Both possible sources are likely greater under the older, more established 

NRS than the YCF, and thereby might have contributed to the stronger diurnal signal seen 

in NRS.  
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The 72-hour periodicity observed in the YCF, but not the NRS, during the rainy 

season indicates that microbes in the YCF were utilizing different C sources to support 

their activity. Longer periodicity has been suggested to reflect the use of low turnover rate 

C sources (Vargas et al., 2012). In other words, while NRS mostly used newly derived 

photosynthates for Rm, soil microorganisms in YCF used both newly formed 

photosynthates (24-hour periodicity) and SOC for respiration (72-hour periodicity). There 

are at least three possible causes driving my conclusion for the use of older C sources by 

soil microbes in YCF. First, the transport of photosynthates into soil through root 

exudates or mycorrhizal symbionts from plants outside the trenched plots was likely 

reduced by intensive slash burning. Burning has been shown to negatively affect 

mycorrhizae, destroying propagules when soil temperature exceeds 94 °C (Neary et al., 

1999; Xiang et al., 2015). In addition, the younger trees in YCF likely had less 

belowground C allocation and, therefore, less newly formed photosynthates were 

available for transport into the plots and used by soil microbes, causing microbes to 

potentially seek out other sources of carbohydrates (Ekblad & Högberg, 2001; Högberg & 

Högberg, 2002; Giardina et al., 2014). Second, slash burning and other site preparations 

(e.g., hole digging) have been shown to disrupt stability of soil aggregates, which may 

mobilize protected C thereby making it more available for soil microbes in forests 

experiencing those disturbances (Mataix-Solera et al., 2011; Mastrolonardo et al., 2015). 

Third, weeding, a common management practice in young forest plantations, killed much 
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of the understory vegetation, further cutting off transport of photosynthates into soil and 

requiring microbes to utilize other C sources (Tang et al., 2005; Högberg & Read, 2006).  

CONCLUSIONS 

My study showed that slash burning, commonly practiced in the conversion of 

subtropical natural forests to Chinese fir plantations, induced a total of 28 % SOC loss in 

the first year and did not recover to the levels measured pre-burning decades later. I also 

found that slash burning applied during forest conversion in a subtropical forest changed 

substrate available C sources for soil microbes, which accelerated SOC mineralization in 

young Chinese fir plantation. My results highlight that the establishment of tree 

plantations in subtropics can dramatically reduce SOC by slash burning with long-lasting 

effects on SOC recovery.  

 

TABLES AND FIGURES 
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Figure 3.1 (A) Soil organic carbon (SOC) concentration of young Chinese fir plantation 

(YCF), mature Chinese fir plantation (MCF) and naturally regenerated secondary forest 

(NRS) measured in three years. Note that the measurements in 2012 were taken after the 

burning in the YCF, when both the MCF and NRS were 35 years old. (B) soil organic 

carbon content changed before and after prescribed burning, and 1 year later on young 

Chinese fir plantation.  Error bars reflect ±1 SE (n=3). The capital letters indicate 

significant differences in SOC among forests within the same years.  
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Figure 3.2 Soil microbial respiration rate and CO2 fluxes between mature naturally 

regenerated secondary forest (NRS) and young Chinese-fir plantation (YCF) in the first 

year following burning. Error bars reflect ±1SE (n=3). The star symbols indicate 

significant differences in soil microbial respiration between the two treatments (2A). 

Capital letters indicate soil microbial respiration differences between forest types during 

two different time periods following burning (2B).  
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Figure 3.3 High temporal resolution of soil microbial respiration (Rm), soil temperature, 

and soil water content between natural regenerated forest (NRS) and young Chinese fir 

plantation (YCF) from August 2013 to July 2014. 
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Figure 3.4 Global wavelet power spectrum of soil microbial respiration signals in a 

mature natural regenerated secondary forest (a-c) and young Chinese-fir plantation (d-f) 

from August 2013 to July 2014, by year (a, d), monsoon rainy season (March-July) (b, e), 

and monsoon dry season (August – next February) (c, f). Note that the y-axis scales differ 

across panels, to better illustrate peaks. 
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CHAPTER FOUR: VARIATION IN FOREST PRODUCTIVITY INFLUENCES 

RHIZOSPHERE SOIL ORGANIC CARBON IN A CHINESE FIR PLANTATION IN 

SOUTHEASTERN CHINA 

 

ABSTRACT 

Tree plantations worldwide are a critically important terrestrial carbon (C) sink. 

Previous studies on the capacity of tree plantations to sequester atmospheric CO2 have 

mostly focused on aboveground biomass accumulation; the importance of soil organic 

carbon (SOC) to C sequestration remains relatively poorly understood. Living root C 

inputs influence SOC via plant-microbe interactions in the rhizosphere and play an 

essential role in nutrient cycling. Here, I examine changes in bulk and rhizosphere SOC 

and other soil nutrients across three developmental stages of Chinese fir plantation (6, 18, 

and 42 years old) in subtropical China and relate observed trends to differences in net 

primary productivity (NPP). SOC was separated into labile and recalcitrant C components 

using the acid-hydrolysis method. I also measured total and available nitrogen (N) and 

phosphorus (P), soil microbial biomass C and N, and C, N, and P-related enzymes. Soil 

organic C concentration in bulk soils did not vary significantly with NPP, but SOC 

concentration in rhizosphere soils was higher in young (6 yrs) and mature (42 yrs) stands, 

both of which had lower NPP compared to middle-aged stands (18 yrs). Labile and 

recalcitrant C pools in rhizosphere soils were lowest in the highest NPP stand (18 yrs). 

The decoupling of NPP from rhizosphere SOC concentrations may be driven by N and P 

tree growth requirements, belowground C allocation, and resultant microbial activity in 

this highly weathered subtropical soil. Positive correlations between labile C pools and 

MBC/MBN in the rhizosphere soil of the young stands suggests a tight linkage between 
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belowground C allocation and SOC dynamics. In mature stands, recalcitrant C pools in 

rhizosphere soil were positively correlated with total P, suggesting the importance of soil 

P in determining soil microbial characteristics, such as low microbial C/N and high 

enzyme activities, that stimulated the transformation of root-derived C to microbial 

residue and stable SOC formation. The relationships between forest NPP and rhizosphere 

SOC pools suggest top down regulation of SOC sequestration in a subtropical plantation 

forest mediated through tree demands for N and P. Accurate predictions of SOC 

sequestration dynamics in Chinese fir plantations require an improved understanding of 

rhizosphere processes during plantation development. 

 

INTRODUCTION 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool, accounting for 

twice the C stocks of the atmosphere and terrestrial vegetation combined (Dixon et al., 

1994; Jobbagy & Jackson, 2000). Continued SOC storage in forest ecosystems plays a 

vital role in mitigating climate change and is also essential for promoting soil structure, 

soil fertility, and plant productivity. Globally, the growth of tree plantations has been 

identified as the most effective method to mitigate climate change, with the potential to 

absorb two-thirds of C emissions by human activity since the industrial revolution (Bastin 

et al., 2019). Although the factors that control C sequestration in tree plantation biomass 

are relatively well understood, there is considerable uncertainty regarding SOC 

accumulation. 

Plant C inputs from above- and belowground, which are controlled by plant 

productivity, are the primary sources for SOC sequestration (Cotrufo et al., 2013; 

Castellano et al., 2015).  Although we have a good understanding of the mass loss rate 
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and nutrient release of plant residues during decomposition, the role of incorporation of 

plant residues into SOC pools is still poorly understood and often neglects the influence 

of recent photosynthate from live root exudates on SOC sequestration (Sulman et al., 

2014; Sokol & Bradford, 2019). Root exudates contain higher concentrations of labile C 

than plant residues, including low molecular weight carboxylic acids, amino acids, and 

carbohydrates. These compounds can stimulate the formation of stable SOC pools 

because they promote high microbial use efficiency and high microbial residue 

production (Cotrufo et al., 2019; Sokol & Bradford, 2019). In fact, a new model suggests 

that bulk and rhizosphere soils have different mechanisms of SOC formation (Sokol & 

Bradford, 2019). Bulk SOC is thought to accrue through the direct sorption of plant 

residues to mineral surfaces, due to low soil microbial density and activity limiting 

microbial decomposition of plant material. Conversely, the enrichment of microbes in 

rhizosphere soils drives the high biogeochemical activity often observed there (Phillips et 

al., 2013; Finzi et al., 2015; Sulman et al., 2017; Sokol et al., 2019), and benefits the 

sequestration of stabilized microbial residues and mineral-protected SOC in this zone 

(Cotrufo et al., 2013; Castellano et al., 2015; Lavallee et al., 2019). Thus, there is a 

growing awareness of the need for adding the processes occurring in rhizosphere soil into 

global terrestrial C cycle models (Sulman et al., 2014; Terrer et al., 2018). This may be 

especially important in tropical and subtropical forests, which have higher plant 

productivity and a more extended growing season than other forests, but a relatively low 

quantity and quality of bulk SOC (Giardina & Ryan, 2000; Crowther et al., 2019). Soil 

microbial activity is highly reliant on living root inputs in these systems, with the 

rhizosphere having been found to contribute nearly 90 % of total soil respiration in 

tropical ecosystems, and may therefore be particularly important in determining relative 
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contributions to labile and recalcitrant soil C pools (Trumbore, 2000; Giardina et al., 

2014).  

Studies in tropical and subtropical forests have found that, despite observing changes 

in above- and belowground C inputs across both a plantation chronosequence and a 

warming experiment, bulk SOC was not affected (Chen et al., 2013; de Blécourt et al., 

2013; Giardina et al., 2014; Li et al., 2018). These findings were similar to the results of a 

FACE experiment in the Duke forest, where elevated CO2 led to increased plant biomass 

C accumulation but not bulk SOC (Schlesinger & Lichter, 2001; Drake et al., 2016; 

Kuzyakov et al., 2019). Because increased plant residues both above- and belowground 

did not appear to lead to an increase in SOC, it was hypothesized that increases in root 

exudates, rhizodeposits, and/or increased investment to symbiont mycorrhizal hyphal 

production stimulated SOC decomposition (the so-called priming effect) (Phillips et al., 

2012; Sulman et al., 2014), to meet the nutrient demand of increased plant productivity 

and soil microorganisms under elevated CO2. Most studies examining the effects of 

belowground C on nutrient availability have focused on temperate forests with abundant 

ectomycorrhizal fungi species (ECM) (Chapman et al., 2006), where N availability is 

often a limiting factor for tree growth. In contrast, highly weathered tropical and 

subtropical forest soils typically have relatively high abundances of inorganic N but are 

strongly limited by P availability (Vitousek, 1984; McGroddy et al., 2008). Phosphorus is 

an essential element for plant growth and soil microbial activity, and P limitation is one of 

the most critical factors influencing plant growth and soil microbial activity in tropical 

and subtropical forests, where P is present in low concentrations and is relatively 

immobile (McGroddy et al., 2004; Cleveland & Townsend, 2006; Li et al., 2006). Thus, P 

availability may be of primary importance in governing plant productivity, belowground 
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allocation, and SOC sequestration in forests of the tropics and subtropics. Increases in tree 

growth or areal plantation expansion in these areas, occurring in response to climate 

change or economic and policy changes, may exacerbate P limitation.  

China has the largest area of tree plantations in the world, and nearly 35% of these 

forests are less than 20 years old (Tang et al., 2018). Most tree plantations in China are 

monocultures and located in the subtropics; within that region, Chinese fir 

(Cunninghamia lanceolata) is the primary species. Previous studies have reported no 

SOC accumulation in mineral bulk soil across a Chinese fir plantation chronosequence 

spanning 88 years, despite increases in litter and fine root inputs stemming from 

increasing above- and belowground productivity with time (Chen et al., 2013). These 

studies also found that bulk soil respiration did not change among different plantation 

ages, but rhizosphere soil respiration was dynamic with time (Chen et al., 2016). Fine 

root biomass had positive linear relationships with microbial metabolic quotients (qCO2), 

suggesting a strong influence of labile C inputs, mediated by forest productivity, on soil 

microbial activity and efficiency (Chen et al., 2013, 2016). To date, changes in 

rhizosphere SOC with time have not been quantified. In this study, across three different 

aged Chinese fir plantations [six years old (young), 18 years old (middle-aged), and 42 

years old (mature)] that also differed in net primary productivity (NPP), I examined the 

mechanisms by which plant-microbe-soil interactions influence SOC concentration in 

highly weathered subtropical forest soil. I hypothesized that rhizosphere SOC 

concentration would differ with NPP, due to differences in fine root inputs, microbial 

activity, and related nutrient cycles. 

MATERIAL AND METHODS  

Site description 
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I conducted this study at a state-owned forest farm (26° 19’N，117° 36’E) in 

Chenda, Sanming City, Fujian Province, China. Based on the records of the local 

meteorological office and forestry department, the mean annual temperature is 20.1 °C 

with a mean annual rainfall of 1670 mm from 1959 to 2016, with most of the precipitation 

(80 %) occurring between March and August. The natural vegetation is subtropical moist 

evergreen broadleaved (SMEB) forest, and dominant tree species include Castanopsis 

carlesii, Schima superba, and Cinnamomum camphora. Soil at this site is sandy clay 

Ferric Acrisol according to the FAO/UNESCO soil classification system (FAO, 2010), 

developed from biotite granite. The soil profile exceeds 1 m in thickness in most areas. 

Chinese fir is the dominant species in tree plantations in this region, typically planted as a 

monoculture. The stands of Chinese fir used in this study were selected because they were 

converted from the naturally-regenerated secondary forest using standard practices for 

Chinese fir plantation management in southern China, consisting of clear-cutting, slash 

burning, digging to plant seedlings, and a scheduled weeding before the canopy closes, 

approximately three to five years after Chinese fir seedlings were planted. An additional 

thinning, conducted at 10-15 years old, is used to remove suppressed trees.  

I used a ‘space-for-time’ substitution experiment design, with young, middle-aged, 

and mature Chinese fir plantations that were 6, 18, and 42 years old in 2018, respectively. 

Within each of the three stands, I established three experimental plots, each 20m × 20m. 

In all nine plots, the diameter at breast height (DBH) and tree height were measured each 

December since 2012 when the young plantation was established, and the components of 

tree biomass (stem, branch, and coarse root) were calculated by allometric equations that 

were established in a previous Chinese fir chronosequence study (Chen et al. 2013). 

Litterfall was collected in six litter traps (50 cm × 50 cm) per plot every two weeks, and 
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fine root production was monitored using six minirhizotrons per plot to capture changes 

in fine root length to a depth of 60 cm; minirhizotron images were collected at monthly 

intervals and processed using BTC ICAP imaging software to record root diameter, new 

root production, length of live roots and root mortality (I-CAP version 4.01, Bartz 

Technology Corp. CA). 

Soil sampling protocol 

Soil samples were collected in June of 2018 from each of the three 20 m × 20 m 

replicate plots for each stand (n = 9 plots). I chose June for soil sampling because it is the 

peak of the growing season and coincides with the highest rates of aboveground biomass 

accumulation and fine root turnover for Chinese fir (Chen et al. 2016). Using the tree 

census data collected in each plot, we selected five trees with average tree height and 

DBH for the plot. Five to seven soil and root samples were collected under each tree. At 

each sampling point, I removed the organic layer and carefully followed the direction of 

root growth to find fine roots (< 2 mm diameter) still attached to the tree, as this is likely 

the most active area for root uptake (Yang et al., 2004). In this location, I collected 

surface soil (0-20 cm depth) using a 10cm diameter corer, because most Chinese fir fine 

roots are in the top 20 cm soil layer (Chen et al., 2013).  

Soil samples were processed within 24 h of collection, separating the soil samples 

into rhizosphere and bulk soil fractions. Soils from all five tree replicates were 

composited for each replicate plot into a sorting basin where large aggregates were gently 

broken by hand. I carefully collected fine roots and the adhering rhizosphere soil from the 

basin, shaking gently to remove loose soil. Soil adhering to fine roots after gentle shaking 

was defined as rhizosphere soil; the adhering soil was gently scraped and picked off of 

fine roots using tweezers. The soil not adhering to fine roots was defined as bulk soil. 
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After separation, the bulk soil fraction was sieved through a 2 mm mesh. Soil pH value in 

H2O (Soil: water ratio 1:2.5) was determined using pH meter (PHS-3B). In brief, 4 g air-

dry soil was added to each tube with 10 mL water for three replications. The solution was 

shaken for 10 minutes (250 rpm), then allowed to stand for 30 minutes. Soil moisture was 

expressed on a gravimetric basis; 10 g of moist soil (< 2 mm) was weighed and dried at 

105 °C for 12 hours.    

Soil organic carbon fractions 

I used the acid hydrolysis method to separate SOC into different C fractions (Rovira 

& Vallejo, 2002). In brief, to obtain labile C pool I (LPI-C), about 0.5 g of air-dried soil 

was passed through a 2 mm sieve and then hydrolyzed with 20 mL of 5 N H2SO4 for 30 

min at 105 °C in a Teflon tube. The hydrolysate was centrifuged for 10 min at 4000 rpm, 

and the solution was collected. Twenty mL of deionized water was added to the residue 

and centrifuged. Both hydrolysates were mixed and passed through a 0.45 µm glass fabric 

filter for C concentration measurement by TOC analyzer (Shimadzu, Japan). 

To separate labile C pool II (LPII-C), the remaining residue of the first step was 

hydrolyzed with 2 mL of 26 N H2SO4 for 12 hours at room temperature on a continuous 

shaking bed. Then, the solution was diluted with deionized water to 2 N, and samples 

were hydrolyzed for another 3 hours at 105 °C. The hydrolysate was centrifuged for 10 

mins at 4000 rpm, then filtered through 0.45 µm glass fabric filter, and C concentration 

measurement by TOC analyzer (Shimadzu, Japan). 

The remaining residue was washed with deionized water three times, then 

transferred to a pre-weighed plate, and dried at 60 °C for 24 hours. This fraction was 

regarded as the recalcitrant C pool (RP-C), and carbon and nitrogen concentrations of RP-

C were determined using C/N analyzer (ElementarVario, MAX, Germany). 

 
 

70 



 

Total SOC and N were also determined using the C/N analyzer (ElementarVario, 

MAX, Germany). Soil samples were analyzed for total P by HClO4-H2SO4 digestion and 

extractable P by Mehlich-3 (Kuo, 1996; Mehlich, 1994). The P concentrations in all 

extracts were measured using a continuous flow analyzer (SKALAR san++, The 

Netherlands). 

Dissolved organic carbon/nitrogen (DOC/DON), microbial biomass carbon/nitrogen 

(MBC/MBN), and ammonium (NH4
+) and nitrate (NO3

-) 

Dissolved organic C and DON were extracted by deionized water. Briefly, 20 mL 

deionized water was added to 5 g of fresh soil to make a solution. The solution was 

shaken for 30 min at 250 rpm, then centrifuged for 10 min at 4000rpm. The supernatant 

was collected and passed through a 0.45 µm glass fabric filter. The C and N 

concentrations in solution were measured using a TOC analyzer (Shimadzu, Japan) and a 

continuous flow analyzer (SKALAR san++, The Netherlands). The pentose and hexose 

concentrations of DOC were measured following the procedure in Carter and Gregorich 

(2006). In brief, for hexose analysis, 1 mL of DOC sample was added to a 10 mL glass 

test tube with 2 mL of anthrone-sulfuric acid reagent. The mixture was vortexed and left 

at room temperature for 15 minutes. The absorbance was read at 625 nm in a 

spectrophotometer. For pentose measurements, 1 mL DOC solution was added to 1 mL 

iron chloride reagent and 1 mL of orcinol reagent in a glass test tube, kept in a water bath 

at 95 °C for 20 minutes, and then incubated in ice water for 5 minutes. After that, 2 mL of 

95 % ethanol was added to the mixture and vortexed. The absorbance was read at 660 nm 

by a spectrophotometer. Pentoses are primarily composed of plant-derived carbohydrates, 

whereas, hexoses are mainly of microbial origin. Thus, the hexose/pentose ratio is 
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considered a useful index illustrating the relative contribution microbially-derived 

carbohydrates in dissolved organic matter. 

Soil ammonium (NH4
+) and nitrate (NO3

-) were extracted using 2N KCl. The 

procedure was the same as the process of DOC extraction. NH4
+ and NO3

- were measured 

using a continuous flow analyzer (SKALAR san++, The Netherlands).  

MBC and MBN were determined using the chloroform (CH3Cl3) fumigation and 

potassium sulfate (K2SO4) extraction techniques (Brookes et al., 1985). Briefly, 5 g fresh 

soil was weighed and placed in a dark vacuum container with CHCl3 fumigation for 24 

hours, paired with unfumigated controls. The unfumigated controls were extracted with 

20 mL 0.5N K2SO4 immediately when fumigation started. All soil solutions were 

centrifuged for 10 min at 4000 rpm, and the supernatant was collected and filtered by a 

0.45 µm glass fabric filter. The C and N of the solution was measured using a TOC 

analyzer (Shimadzu, Japan) and a continuous flow analyzer (SKALAR san++, The 

Netherlands). MBC and MBN were calculated by the difference between the fumigated 

and unfumigated samples, using the conversion factor for C of 0.45 (Back et al., 1997) 

and for N of 0.54 (Brookes et al., 1985). Data were expressed as µg C/N g-1 oven-dry soil 

(Drake et al. 2016). 

Soil enzyme assays analysis 

I analyzed six enzymes that are relevant to C, N, and P release from the labile and 

recalcitrant components of soil organic matter. Beta-glucosidase (βG) and 

cellobiohydrolase (CBH) are C-degrading enzymes that release glucose from cellulose 

and degrading cellulose, respectively. β-1,4-N-acetylglucosaminidase (NAG) is a 

hydrolytic enzyme and releases N-bearing polymers from cell walls of soil organisms, 

which is associated with the decomposition of chitin. Acid phosphatase (AP) is relevant 
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to the release of inorganic P from organic P. Both phenoloxidase (PHO) and peroxidase 

(PEO) oxidize recalcitrant C pools, such as lignin and humic compounds. Enzyme assays 

were based on the processes used in Saiya-Cork et al. (2002). The subsamples of 

rhizosphere and bulk soil for enzyme assays were kept at -20 °C and enzyme assays were 

performed within 48 hours after soil sampling. The substrates for enzyme assays are 

shown in Table 4.1. 

In brief, 1g of soil was weighed into 125 mL 50 mM (pH= 5.0) acetate buffer and 

homogenized for 10 minutes using a magnetic stirrer. 200 µL aliquots were dispensed 

into 96-well microplates; each soil had 16 replicates for each enzyme assay. For the four 

hydrolase analyses, 50 µL of 200 µM of each enzyme substrate solution was added to 

each sample well, and acetate solution as the blank. In total, there were eight replicate 

wells for each negative control (50 µL substrate solution (10 µM 4-methylumbelliferone 

or 7-amino-4-methyl coumarin) + 200 µL sample suspension), quench standard (50 µL 

standard + 200 µL sample suspension) and blank (50 µL acetate buffer + 200 µL sample 

suspension). All the microplates were incubated in the dark at 20 °C for 4 hours. Then 10 

µL aliquots of 1.0 N NaOH was added to each well to stop the reaction. Hydrolase 

activities were measured by a microplate fluorescence photometer with 365nm excitation 

and 450 nm emission filter. After correction with the negative control and quenching 

standard, the enzyme activity was quantified by the units of nmol h-1 g-1. For the PHO and 

PEO assays, DOPA was used for the substrate. 50 µL 25 mM DOPA was added to each 

well, and an additional 10 µL H2O2 was added to each well for PEO analysis. Overall, 

there were 16 replicate wells for each soil solution (50 µL DOPA + 200 µL sample 

suspension), 8 replicates for negative control (50 µL DOPA + 200 µL acetate buffer) and 

eight replicates for blank (50 µL acetate buffer + 200 µL sample suspension). We 
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incubated all the microplates in the dark at 20 °C for 18 hours, using the same method to 

stop the reaction as above. A microplate fluorescence photometer with 450nm excitation 

was used to measure the oxidase activities. 

Statistics 

I used two-way ANOVA to test for the effects of forest age (three levels: 6-, 18- and 

42-years old) and soil source (two levels: rhizosphere and bulk soil) on the SOC 

concentration, SOC fractions, total and available N and P, and soil microbial biomass and 

enzymes. The least significant difference (LSD) test was used when the ANOVA revealed 

significant differences in forest age and soil sources, with significant differences 

determined as P < 0.05. All analyses were conducted using JMP Pro 14.0 (SAS Institute 

Inc., USA). 

To test possible abiotic and biotic predictors of SOC concentration and fraction, 

redundancy analysis (RDA) was conducted to evaluate the influence of soil abiotic and 

biotic factors on SOC concentration variation with CANOCO 5.0 for windows in bulk 

and rhizosphere soils separately.  

RESULTS 

NPP dynamics, and SOC and nutrient concentrations in bulk and rhizosphere soils  

Net primary productivity (NPP) in the middle-aged (18 yrs) Chinese fir plantation 

was 1.61 and 1.74 times higher than young (6 yrs) and mature (42 yrs) plantations, 

respectively (Table 4.2). Although there was no statistically significant difference in NPP 

between young and mature plantation stands, they had contrasting allocation of NPP; 

mature plantations had higher litter C inputs, but lower root turnover and biomass 

production (stem, branch, and coarse root), compared to the young forest. 
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Soil organic C concentrations differed with stand age in rhizosphere soils (p < 0.001), 

but not in bulk soils (p=0.143; Table 4.3). The middle-aged plantation (18yrs) had the 

lowest SOC concentration in rhizosphere soil, but had the highest NPP among the three 

plantations. Relative to the middle-aged plantation, rhizosphere SOC concentrations in 

young and mature plantations were higher by 30 % (p < 0.001) and 36% (p < 0.001), 

respectively.  

Soil total nitrogen (TN) and total phosphorus (TP) differed in both rhizosphere and 

bulk soils among stand ages (Table 4.3). The mature plantation, with the lowest biomass 

production and fine root turnover (Table 4.2), had the highest TN and TP compared to 

young and middle-aged plantations in rhizosphere and bulk soils. Ammonium (NH4
+), the 

primary form of inorganic N in our study, was highest in bulk soil and lowest in 

rhizosphere soil in the middle-aged plantation compared to the other plantation ages. I 

found no significant differences in available P among the three plantation ages in 

rhizosphere soil. However, rhizosphere soils had higher available P than bulk soils. For 

bulk soil, middle-aged forests had more available P than young forests. 

SOC fractions in bulk and rhizosphere soils 

Although forest age did not affect overall SOC concentration in bulk soils, the 

mature plantation had a higher concentration of LPI-C and LPII-C than the middle-aged 

plantation (Figure 4.1). The LPI-C and LPII-C in bulk soil of the mature plantation were 

6.79 g kg-1 and 2.66 g kg-1, respectively, higher than middle-aged by 14 % (p = 0.017) 

and 37% (p = 0.016). However, RP-C in bulk soils did not vary with forest age (p=0.081). 

 In rhizosphere soils, the young plantation had higher LPI-C than the middle-aged 

plantation by 63 % (p < 0.001) and the mature plantation by 28% (p = 0.007) (Figure 4.1). 

However, the mature plantation had the highest LPII-C (p = 0.015) and RP-C (p < 0.001) 
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in rhizosphere soils. The middle-aged plantation had the lowest labile and recalcitrant C 

among all three plantations. 

LPI-C and RP-C were the main components of SOC in bulk and rhizosphere soils 

(Figure 4.2). Forest age did not influence the contribution of SOC fractions to SOC in 

bulk soil in Chinese fir plantations. However, in rhizosphere soil, the contribution of LPI-

C to SOC was lower with advancing age, decreasing from 47 % to 38 %. In contrast, the 

percentage of RP-C to SOC increased with increasing forest age, from 38 % to 52 %, in 

rhizosphere soil (P = 0.0146). These results indicate that not only was rhizosphere SOC 

concentration higher in mature plantation than young and middle-aged, but the SOC also 

was more stable. However for N, the proportions of RP-N to TN were 26 % in both bulk 

and rhizosphere soils, and no significant differences were found among stand ages. 

Rhizosphere soils had higher concentrations of DOC and DON than bulk soils in all 

forest ages, especially in the young plantation, where DOC and DON in rhizosphere soil 

were three times and 92 % higher, respectively, than in bulk soil (Figure 4.3). The 

DOC/DON ratio in bulk soils did not differ among the three Chinese fir plantations. In 

contrast, in rhizosphere soil the DOC/DON ratio was higher in the young plantation 

compared to the middle-aged and mature plantations. 

Forest age did not influence hexose and pentose concentrations in bulk soils, 

whereas rhizosphere soils in the young plantation had higher hexose and pentose 

concentrations than middle-aged and mature plantations (Figure 4.4). Because most 

hexoses in soil are microbially-derived carbohydrates, contrasting with pentoses which 

are plant-derived carbohydrates in DOC, hexose/pentose (H/P) ratio higher than two 

indicates most C in DOC is microbially-derived C. The rhizosphere in mature plantation 
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had the lowest H/P ratio, but all the H/P ratios in this study were 2.60 – 3.87, indicating 

most was microbially-derived. 

Soil microbial biomass and enzymes 

Forest age had few influences on MBC, MBN, and MBC/MBN ratio in bulk soils 

(Figure 4.5). Although no significant differences in MBC in rhizosphere soils were found 

among forest stands, MBN in the young plantation was lower than middle-aged and 

mature plantation by 116 % and 107 %, respectively. However, the young plantation had 

a higher MBC/MBN ratio in rhizosphere soils than middle-aged and mature plantations. 

The mature plantation had higher β-1,4-glucosidase (βG) and cellobiohydrolase 

(CBH) in bulk and rhizosphere soils than the young and middle-aged forests (Figure 4.6). 

There were no differences among stands in peroxidase (PEO) and phenol oxidase (PHO) 

in bulk or rhizosphere soils, except the young plantation had lower PEO in bulk soils and 

higher PHO in rhizosphere soils. However, N-releasing and P-releasing hydrolases were 

influenced by forest age in both bulk and rhizosphere soils. The middle-aged plantation 

with the highest NPP had lower β-1,4-N-acetylglucosaminidase (NAG) and acid 

phosphatase (AP) than the young and mature stands. 

Relationships between SOC fractions and abiotic and biotic variables 

Redundancy analysis (RDA) results indicated that the soil abiotic and biotic factors 

explained approximately 96.8 % and 99.5 % of the variance in SOC in bulk and 

rhizosphere soils among different aged Chinese fir plantations, respectively (Figure 4.7). 

Of all the quantified parameters, total phosphorus (TP) and MBC:MBN ratio were the 

two primary factors explaining SOC dynamics in rhizosphere forest soils (72.7 % and 

20.4 % of the variance, respectively), and TP and MBN explained 69.2 % and 9.9 % of 

the variance in bulk soils (Table 4.4). Soils from different-aged plantations separated 
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more clearly in the rhizosphere vs. bulk soil RDA. In rhizosphere soils, MBC:MBN and 

PHO were positively correlated with SOC in young stands, specifically with LPI-C. 

Rhizosphere RP-C, which was correlated with TP and TN, drove SOC trends in mature 

stands. The dynamics of rhizosphere SOC in middle-aged stands were correlated with 

NPP. Relationships across different aged stands were less obvious in bulk soils. 

DISCUSSION  

I found that the labile carbon pool I (LPI-C) and the recalcitrant carbon pool (RP-C) 

were the primary SOC pools in both bulk and rhizosphere soils in this study, contributing 

33-47 % and 38-52 % of SOC, respectively. The labile C pool II (LPII-C) only made up 

11-15% of the SOC. Studies have shown that both LPI-C and RP-C are a mixture of plant 

and microbially-derived C pools; LPI-C is comprised of non-cellulosic polysaccharides, 

and RP-C is composed of plant-derived lignin and microbial residues that associate with 

mineral particles, whereas LPII-C consists of cellulose primarily (Oades et al., 1970; 

Rovira & Vallejo, 2002). I also found the hexose/pentose ratio in DOC was > 2.6 in bulk 

and rhizosphere soils in all three plantations, which suggests that microbially-derived C 

constituted the majority of SOC in our sites (Kalbitz & Kaiser, 2008). Other studies have 

shown that plant-derived C only accounted for 10 % of RP-C by NMR analysis (Rovira & 

Vallejo, 2002). Our results support recent research showing that microbially-derived C is 

the primary component for SOC (Cotrufo et al., 2013; Castellano et al., 2015; Lavallee et 

al., 2019) and microbial residue C contributed up to 60 % of bulk SOC in subtropical 

forests (Shao et al., 2017; Huang et al., 2019; Liang et al., 2019). 

Forest age, and thereby NPP, did not influence bulk SOC concentration, but 

rhizosphere SOC concentration and composition differed with forest age (Table 4.5). The 

low NPP in young and mature plantations had higher rhizosphere SOC concentration than 
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middle-aged plantation with high NPP, illustrating that plant C inputs are important in 

driving rhizosphere SOC sequestration (Lavallee et al., 2019; Sokol & Bradford, 2019). 

Variation in rhizosphere SOC across forest ages was mostly explained by total 

phosphorus (TP) and MBC:MBN ratio, suggesting that changes in P and microbial 

activities with time were controlling the quantity and composition of rhizosphere SOC. 

Phosphorus is the primary limitation to forest productivity and microbial activity in 

tropical and subtropical forests on highly weathered soils (Giardina et al., 2003; 

Cleveland et al., 2011). It has been shown that the concentration of microbial residue C 

was positively related to soil P in subtropical forest when natural forest was converted to 

tree plantations (Yang et al., 2019a), and microbial residue C is the main agent to form 

microaggregation or to absorb on the surface of mineral particles to promote stable SOC 

formation (Cotrufo et al., 2013). I found that the variation of RP-C was positively 

correlated with TP in rhizosphere soils in mature stands (Figure 4.7). With this finding, I 

posit that low plant P demand in mature plantations, resulting from low overall NPP, 

improved soil microbial acquisition of P, which stimulated soil microbial biomass and C 

hydrolase production, and thereby enhanced the transfer of labile rhizosphere C to 

microbial residue C and stable SOC formation (García-Oliva et al., 2003; 

Schwendenmann et al., 2003; McGroddy et al., 2008).  

Although mature and young plantations did not differ statistically in total NPP, the 

young plantation had higher LPI-C and lower RP-C than mature plantation (Table 4.5), 

indicating a different strategy of SOC sequestration in the young plantation. The low LAI 

in the young stands likely resulted in the transport of fewer carbohydrates from 

photosynthesis to rhizosphere than in mature stands with higher LAI, which led to low 

substrate C availability for microbes. The limited canopy cover in young stands also led 
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to higher soil temperature than other stands, stimulating SOC mineralization in young 

stands (Chen et al., 2016). The low substrate C availability in young plantation than 

middle-aged and mature plantation led to different microbial community composition 

with high MBC:MBN. It has been indicated that microbial biomass with high MBC:MBN 

has low turnover rate. As the most active labile C pools in soil, soil microbial biomass is 

the primary source of LPI-C pools. Thus, the low turnover rate of soil microbial biomass 

by high MBC:MBN related with high LPI-C in rhizosphere soils of the young plantation. 

The low C use efficiency in SOC mineralization limited microbial residue production in 

young stands. Coupled with the mass of SOC lost by the intensive soil and water erosion 

during plantation establishment (Yang et al., 2019b), these processes together may have 

induced low recalcitrant C recovery in the young plantation.  

Up to 40 % of newly assimilated carbohydrates from photosynthesis are allocated to 

root exudates, upon which rhizosphere microorganisms rely as their primary available C 

source (Brüggemann et al., 2011). This flow of carbohydrate triggers soil microbial 

biosynthesis and N immobilization (Phillips et al., 2011; Huang et al., 2019; Liang et al., 

2019), which may limit N availability for plant growth. However, plants can produce 

microbial inhibitors in their root exudates to suppress microbial N immobilization in soils 

dominated by NH4
+ (Subbarao et al., 2007, 2015), thereby increasing plant N acquisition 

(Townsend et al., 1992; Templer et al., 2008). My results showed a decline of total N and 

P, soil microbial biomass C and enzyme activities in rhizosphere soil in middle-aged 

plantations with the highest NPP, and thus most likely the highest nutrient demand. High 

tree nutrient demand may constrain microbial residue C formation and contribute to the 

low rhizosphere SOC concentrations observed in these middle-aged stands, especially the 

LPI-C and RP-C pools, as both are mainly microbially-derived.  
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Fresh root C input into rhizosphere soils stimulates soil microbial activity and 

biomass to produce extracellular enzymes that release N and P from soil organic matter, 

making it available for plant uptake. This is known as the rhizosphere priming effect 

(Kuzyakov, 2010; Huo et al., 2017). Though the rhizosphere priming effect has been 

highlighted during interactions between root activity and soil organic matter (Kuzyakov 

& Xu, 2013; Spohn & Kuzyakov, 2013), there is limited research evaluating how 

rhizosphere priming is altered by stand development with time and related changes in 

plant productivity. In a temperate forest dominated by ectomycorrhizal tree species under 

elevated CO2, increased photosynthate C input belowground stimulated extracellular 

enzyme activities to access the labile and recalcitrant SOC pools to meet the enhanced N 

demand by the trees driven by increased NPP (Drake et al., 2011; Phillips et al., 2012; 

Brzostek et al., 2013). However, my findings showed that variation in rhizosphere SOC 

was not closely related to enzyme activities. I found no significant differences in MBC, 

recalcitrant N, or PEO in the rhizosphere soils among plantations, and low NAG, PHO, 

and AP in middle-aged plantation, despite having higher NPP than the other stands (Table 

4.5). These differences compared to temperate forest systems may be related to 

differences in mycorrhizal fungal types and soil clay minerals. Chinese fir associates with 

arbuscular mycorrhizal fungi species that have limited enzymatic capability to obtain 

enough N and P by decomposing SOM (Zak et al., 2000; Hodge et al., 2001; Lin et al., 

2019). In addition, amorphous clays which dominate in highly weathered tropical and 

subtropical soils (e.g.,Oxisols and Ultisols), such as Fe and Al oxides and hydroxides, 

bind organic matter strongly and inhibit microbial access (Vitousek & Matson, 1988; 

Torn et al., 1997). Together, these factors may lead to different C, N, and P dynamics 

than is observed in temperate forests.  
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CONCLUSIONS 

In this study, I demonstrated that NPP and tree nutrient demand strongly influence 

rhizosphere SOC dynamics in Chinese fir plantations in subtropical China. Variation in 

rhizosphere SOC was correlated with soil P and MBC:MBN, which drove labile and 

recalcitrant SOC dynamics in different ways depending on forest age. Lower competition 

for nutrients in mature stands due to lower NPP increased soil P and recalcitrant SOC 

sequestration in rhizosphere soils. In contrast, high NPP in middle-aged stands, and hence 

high tree demand for nutrients, reduced labile C and microbial activity and inhibited 

recalcitrant SOC sequestration in the rhizosphere. Results emphasized that plant 

productivity across different growing stages and varying rhizosphere soil microbial 

activities contribute to the regulation the quantity and quality of rhizosphere SOC in a 

subtropical forest plantation. There is growing evidence that models of C and N dynamics 

should incorporate the linkages between newly assimilated belowground C input and 

SOC sequestration in the rhizosphere. My results demonstrated that variability in forest 

productivity and nutrient demand with time is an important factor controlling rhizosphere 

SOC sequestration and composition. 
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TABLES AND FIGURES 

Table 4.1 Extracellular enzymes assayed (abbreviation in parentheses), enzyme 

commission number (EC), corresponding substrate in this study. 

Enzyme EC Substrate 

β-1,4-glucosidase (βG) 3.2.1.21 4-MUB-β-D-glucoside 

Cellobiohydrolase (CBH) 3.2.1.91 4-MUB-β-D-cellobioside 

β-1,4-N-acetylglucosaminidase (NAG) 3.1.6.1 4-MUB-N-acetyl-β-D-glucosaminide 

Acid phosphatase (AP) 3.1.3.2 4-MUB-phosphate 

Phenol Oxidase (PHO) 1.10.3.2 L-DOPA 

Peroxidase (PEO) 1.11.1.7 L-DOPA 

(DOPA=L-3,4-dihydroxyphenylalanine; 4-MUB=4-methylumbelliferyl) 

Table 4.2 Stem density, basal area, leaf area index, and allocation of NPP in three Chinese 

fir plantations in Sanming City, Fujian Province, China ranging in age from 6 to 42 years 

since plantation planting. 

Stan

d age 

in 

2018 

Stem 

density 

 (stems 

ha-1) 

Basal area  

(m2 ha-1) 

Leaf area 

index  

(m2 m-2) 

 

Net primary productivity 

 (t C ha-1 y-1, NPP) 

Biomass 

production 

Litterfall 

production 

Fine root 

production 

Total 

production 

6 2124(76)

A 

7.59(0.41)C 2.13(0.11)

B 

3.51(0.23)

B 

1.34(0.12)

B 

1.69(0.15)

A 

6.54(0.49)B 

18 1594(58)

B 

37.84(1.85)

B 

5.76(0.26)

A 

4.45(0.21)

A 

3.98(0.18)

A 

2.12(0.23)

A 

10.50(0.61)

A 

42 1461(54)

B 

48.45(2.31)

A 

4.98(0.23)

A 

1.17(0.07)

C 

3.42(0.16)

A 

1.43(0.06)

B 

6.02(0.28)B 

Note: Capital letters indicated significant differences among plantation ages at P < 0.05. The values are 

means (standard error).  
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Table 4.3 Rhizosphere and bulk SOC and nutrients across different aged Chinese fir 

plantations 

 Bulk soil Rhizosphere soil P-values 

6 yrs 18 yrs 42 yrs 6 yrs 18 yrs 42 yrs Forest 

ages 

Soil 

sour

ces 

Intera

ction 

Soil 

moisture 

(%) 

23.2(2.3)

AB 

26.4(0.

2)A 

21.2(2.4

)B 

24.0(5.2)

A 

26.9(1.

7)A 

23.8(1.0)

A 

0.0472 0.30

54 

0.756

0 

pH 4.44(0.08) 4.44(0

.06) 

4.48(0.0

5) 

4.47(0.0

6) 

4.38(0.

03) 

4.37(0.0

6) 

0.1866 0.91

05 

0.791

4 

SOC (g 

kg-1) 

17.62(0.9

5)b 

15.49(

1.03) 

18.35(0.

68)b 

20.90(0.

48)Ba 

14.61(

0.07)C 

22.99(0.

29)Aa 

<0.000

1 

0.00

12 

0.004

2 

TN（g 

kg-1） 

1.14(0.08)

AB 

1.02(0

.05)B 

1.29(0.0

5)A 

1.14(0.0

3)AB 

0.99(0.

04)B 

1.36(0.0

7)A 

0.0004 0.68

42 

0.685

2 

NH4
+

（mg kg-

1） 

4.81(0.11)

B 

6.81(0

.24)Aa 

4.53(0.1

5)Bb 

4.68(0.2

7)B 

4.64(0.

09)Bb 

5.70(0.2

1)Aa 

0.0009 0.03

38 

0.000

1 

NO3
-

（mg kg-

1） 

1.27(0.15)

A 

0.61(0

.08)B 

0.43(0.0

3)Bb 

1.36(0.1

6)A 

0.69(0.

07)B 

1.44(0.0

9)Aa 

0.0002 0.00

08 

0.001

4 

TP（mg 

kg-1） 

64.73(2.4

4)Aa 

44.04(

4.96)B 

72.97(3.

02)A 

52.28(2.

29)Bb 

42.50(

2.75)B 

83.24(3.

01)A 

<0.001 0.64

40 

0.013

5 

Availabl

e P（mg 

kg-1） 

1.35(0.16)

Bb 

1.92(0

.14)A 

1.57(0.0

3)ABb 

2.28(0.2

4)a 

2.34(0.

12) 

2.43(0.2

2)a 

0.2125 0.00

02 

0.291

1 
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Note: Upper case letters indicate significant differences among plantation ages in either rhizosphere or bulk 

soils. Lower case letters indicate significant differences between rhizosphere and bulk soils within the same 

plantation age. Missing letters indicate no significant differences among forest ages or soil sources. The 

significant differences were tested at P < 0.05. The values are means (standard error). 

 

Table 4.4 Correlations between soil abiotic and biotic factors and RDA ordination of SOC 

pools in bulk and rhizosphere soils. Significant parameters are bolded. 

Bulk soil (BS) Rhizosphere soil (RS) 

Factors 
Explains 

(%) 
Pseudo-F P values Factors 

Explains 

(%) 
Pseudo-F P values 

TP 69.2 15.7 0.004 TP 72.7 18.7 0.002 

MBN 9.9 4.9 0.04 MBC/MBN 20.4 17.6 0.002 

DON 3 1.6 0.188 PHO 0.9 8.8 0.044 

Soil 

moisture 
2.3 1.4 0.292 βG 3.4 4.7 0.054 

Biomass 

production 
1.6 1 0.432 

Biomass 

production 
1.2 2.1 0.154 

AP 2.9 7.8 0.104 Litterfall 1.2 3.3 0.114 

CBH 0.4 0.09 0.990 AP 0.2 8.9 0.288 
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Table 4.5 Variations of SOC, nutrients, and enzyme activities in rhizosphere soil among 

three plantations showing young plantations as the baseline, marked as “⃝”. Values 

higher than the young forest were marked “↑”, those lower than the young forest were 

marked “↓”. The “↓↓” indicates the values were lower than both of the other two 

forests.  And “⃝” means no difference from the young plantation. 

Variables Young Middle-age Mature 
NPP ⃝ ↑ ⃝ 

SOC concentration ⃝ ↓ ↑ 
Total P ⃝ ↓ ↑ 
Available P ⃝ ⃝ ⃝ 
Total N ⃝ ↓ ↑ 
NH4

+ ⃝ ⃝ ↑ 
NO3

- ⃝ ↓ ⃝ 
Labile C pool - I ⃝ ↓↓ ↓ 
Labile C pool - II ⃝ ↓ ⃝ 
Recalcitrant C pool ⃝ ↓ ↑ 
Beta-glucosidase  ⃝ ⃝ ↑ 
Cellobiohydrolase  ⃝ ↓ ↑ 
Peroxidase ⃝ ⃝ ⃝ 
β-1,4-N-acetylglucosaminidase ⃝ ↓↓ ↓ 
Acid phosphatase ⃝ ↓ ⃝ 
Phenoloxidase ⃝ ↓ ↓ 
MBC ⃝ ⃝ ⃝ 
MBN ⃝ ↑ ↑ 
MBC/MBN ⃝ ↓ ↓ 
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Figure 4.1 SOC fractions in bulk and rhizosphere soils (BS vs. RS, respectively) of 

different Chinese fir plantation ages. Upper case letters indicate significant differences 

among plantation ages in rhizosphere and bulk soils, respectively. Lower case letters 

indicate significant differences between RS and BS in the same plantation age. Missing 

letters indicate no significant differences among forest ages or soil sources. The 

significant differences were tested at P < 0.05, and error bars are standard error. 
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Figure 4.2 The ratio of LPI-C, LPII-C and recalcitrant C to SOC, and recalcitrant N to 

total N ratio among soils of different Chinese fir plantation ages. RS: Rhizosphere soil; 

BS: Bulk soil. Upper case letters indicate significant differences among plantation ages in 

rhizosphere and bulk soils. Lower case letters indicate significant differences between RS 

and BS in the same plantation age. Missing letters indicate no significant differences 

among forest ages or soil sources. The significant differences were tested at P < 0.05, and 

error bars are standard error. 
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Figure 4.3 Dissolved organic C and N and dissolved organic C:N ratio in BS and RS 

among different Chinese fir plantation ages. Upper case letters indicate significant 

differences among plantation ages in RS and BS. Lower case letters indicate significant 

differences between RS and BS in the same plantation age. Missing letters indicate no 

significant differences among forest ages or soil sources. The significant differences were 

tested at P < 0.05, and error bars are standard error. 

 

 

 
 

89 



 

 

Figure 4.4 Hexose and pentose concentrations in DOC among soils of different Chinese 

fir plantation ages. Upper case letters indicate significant differences among plantation 

ages in RS and BS. Lower case letters indicate significant differences between RS and BS 

in the same plantation age. Missing letters indicate no significant differences among 

forest ages or soil sources. The significant differences were tested at P < 0.05, and error 

bars are standard error. 
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Figure 4.5 Microbial biomass carbon (MBC) and nitrogen (MBN), and MBC/MBN ratio 

in BS and RS among soils of different Chinese fir plantation ages. Upper case letters 

indicate significant differences among plantation ages in RS and BS. Lower case letters 

indicate significant differences between RS and BS in the same plantation age. Missing 

letters indicate no significant differences among forest ages or soil sources. The 

significant differences were tested at P < 0.05, and error bars are standard error. 
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Figure 4.6 Soil enzymes in BS and RS among soils of different Chinese fir plantation 

ages. Upper case letters indicate significant differences among plantation ages in RS and 

BS. Lower case letters indicate significant differences between RS and BS in the same 

plantation age. Missing letters indicate no significant differences among forest ages or 

soil sources. The significant differences were tested at P < 0.05, and error bars are 

standard error. 

 

Figure 4.7 Redundancy analysis illustrating the linkages between SOC pools and soil 

abiotic and biotic factors in the bulk (a) and rhizosphere soils (b). 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS 

Soil organic carbon (SOC) is the largest terrestrial C pool and soil respiration is 

the largest CO2 flux from soil to atmosphere, releasing about 60 Pg y-1. Thus, even a 

slight change in the rate of soil respiration could considerably alter the concentration of 

atmospheric CO2. Although many studies have examined soil respiration in relation to 

biophysical factors, few such measurements are from tropical and subtropical forests. The 

tropical and subtropical regions have very diverse climate conditions containing 66 of the 

world’s 116 life zone such that the relationships between soil respiration and 

environmental factors are likely also diverse and cannot be generalized from the limited 

studies. Subtropical moist evergreen broadleaved (SMEB) forests of China are among the 

most biodiverse and productive forests globally covering 25 % of the land surface of 

China. However, our limited understanding of soil microbial respiration in relation to 

biophysical factors in SMEB hinders our predictions of how climate change affects C 

cycling both in the region and at the global scale.   

The temperature responses of SOC decomposition have been used in earth system 

models (ESMs), leading to greater variability of soil microbial respiration predictions in 

the tropics than in any other region. Through field measurements of soil microbial 

respiration, I found that current photosynthates, but not SOC, are the primary C sources 

for soil microbial respiration. I also found that photosynthetically active radiation (PAR) 

controlled the diurnal variation of soil microbial respiration in the SMEB forests. 

Although the role of recent photosynthates in regulating soil microbial respiration has 

been suggested previously, through high frequency measurements (every 30 minutes), I 

found unambiguous evidence showing that plant productivity regulates soil microbial 

respiration through transporting current photosynthates from the canopy to the soil to 
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support microbial respiration. Furthermore, I also observed that available C sources and 

soil microbial respiration rates were affected by precipitation and soil moisture. Future 

work to develop accurate ESMs should take into account the supply of available C from 

belowground allocation to improve confidence in future climate predictions. 

Soil microbial activity is highly dependent on C inputs, which is ultimately linked 

to primary productivity, but many models use temperature to predict SOC sequestration. 

Long-term SOC sequestration is strongly linked to forest productivity, which regulates C 

inputs from the aboveground litter to bulk soils and belowground root inputs in 

rhizosphere soils. These two different pathways of C inputs lead to differences in the 

efficiency of SOC sequestration. I found that the plant-microbe-soil continuum dominated 

rhizosphere SOC sequestration, and variation in rhizosphere SOC was correlated with soil 

phosphorus and the ratio of microbial biomass carbon and nitrogen, which drove SOC 

dynamics in different ways depending on forest age and productivity. I suspect that recent 

photosynthates could also play an important role in regulating soil microbial processes in 

other regions and recommend a thorough examination of its role at the global scale as it 

could improve our predictions of climate effects on global C cycling. 

Conversion of natural forests to tree plantation, agricultural lands, and grasslands 

result in large SOC losses in the tropics. However, the magnitude and direction of SOC 

losses remains highly uncertain due to the paucity of direct measurements of the 

responses of SOC losses to anthropogenic activities during forest conversions. I found 

that slash burning immediately following the conversion of natural forest to forest 

plantations in SMEB forests is a major cause for the loss of a large quantity of SOC. My 

study casts doubt of the report of the Intergovernmental Panel on Climate Change (IPCC) 

Guidelines for Greenhouse Gas Inventory, in which SOC does not change, with a default 
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value of 1, when natural forest is converted to forest plantations. Moreover, I found that 

the losses of SOC did not re-accumulate to pre-conversion levels within the timeline of a 

forest rotation, showing the need for a new approach to management of forest plantations 

in tropical and subtropical forests. Thus, I propose that the IPCC should revise the default 

value in the future reports through a more comprehensive survey of changes in SOC 

during forest conversions.  

Altogether, the findings from this dissertation had one broad objective: to 

investigate the factors that drive C cycles and SOC dynamics in an effort to reduce their 

uncertainty in current ESMs and guide effective C sequestration through forest 

management. I found current photosynthates are the main C sources to soil microbial 

respiration in SMEB forests, and the variation of soil microbial respiration is controlled 

by PAR on diurnal scales. Current photosynthates also dominated variation in rhizosphere 

SOC, and factors related to SOC dynamics varied with forest age and productivity. The 

dramatic reduction in SOC by slash burning during the establishment phase did not re-

accumulate to pre-conversion levels, indicating the anthropogenic activities accelerated 

the loss of SOC to the atmosphere by forest conversions in SMEB forests. The allocation 

and transport of photosynthates, which drive soil microbial respiration and SOC 

sequestration, are sensitive to warming, increased atmospheric CO2 concentration, and 

precipitation changes under global changes. However, current ESMs are highly dependent 

on the direct measurement of the responses of soil microbial respiration to biophysical 

factors, to infer long-term SOC sequestration. Perhaps the greatest future research needs 

are for more recognition of the influence of plant physiology on the soil C dynamics, 

documented through direct measurements made in diverse forest settings, and especially 

in the highly diverse tropics. Such studies could address key questions, such as: What are 
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the responses of belowground C allocation to changes in environmental factors? How 

does microbial C use efficiency respond to different sources of new C inputs (e.g., root 

exudates and litter leachate)? What are the key needs for constraining uncertainty in 

models and to improve model performance? And perhaps most importantly, how can 

research like that conducted for this dissertation guide future forest management to 

enhance C sequestration in forest plantations? Answers to these questions will improve 

our ability to stabilize atmospheric CO2 concentration under changing climate. 
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