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Review Article

Afatinib for the treatment of EGFR
mutation-positive NSCLC: A review
of clinical findings

R Donald Harvey1,2,3 , Val R Adams4, Tyler Beardslee3 and
Patrick Medina5

Abstract

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors represent the standard of care in patients with EGFR

mutation-positive (EGFRmþ) non-small cell lung cancer (NSCLC). The availability of several EGFR tyrosine kinase

inhibitors approved for use in the first-line or later settings in NSCLC warrants an in-depth understanding of the

pharmacological properties of, and clinical data supporting, these agents. The second-generation, irreversible ErbB-

family blocker, afatinib, has been extensively studied in the context of EGFRmþ NSCLC. Results from the LUX-Lung 3

and 6 studies showed that afatinib was more active and better tolerated than chemotherapy in patients with tumors

harboring EGFR mutations. Subanalysis of these trials, along with real-world data, indicates that afatinib is active in

patients with certain uncommon EGFR mutations (S768I/G719X/L861Q) as well as common mutations (Del19/L858R),

and in patients with active brain metastases. In LUX-Lung 7, a head-to-head phase IIb trial, afatinib improved

progression-free survival and time-to-treatment failure versus the first-generation reversible EGFR tyrosine kinase

inhibitor, gefitinib, albeit with a higher incidence of serious treatment-related adverse events. Nevertheless, afatinib is

generally well tolerated, and adverse events are manageable through supportive care and a well-defined tolerability-

guided dose adjustment scheme. In this review, we provide a detailed overview of the pharmacology, efficacy, and safety

of afatinib, discuss treatment sequencing strategies following emergence of different resistance mechanisms, and shed

light on the economic impact of afatinib. We also provide a comparison of afatinib with the available EGFR tyrosine

kinase inhibitors and discuss its position within treatment strategies for patients with EGFRmþ NSCLC.
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Introduction

Lung cancer is the most common cancer in the US,

with �228,000 estimated new cases of lung or bronchus

cancer in 2020.1 It is also the most common cause of

cancer-related deaths, with more than 135,000 people

estimated to die from the disease in 2020.1 Non-small

cell lung cancer (NSCLC) accounts for approximately

85% of all lung cancer cases.2 Recent advances in

tumor molecular analysis have facilitated testing for

possible genetic mutations and aberrations that drive

tumor growth and proliferation. Numerous oncogenic

drivers have been identified in NSCLC, including

mutations in the genes encoding the epidermal

growth factor receptor (EGFR), KRAS, and anaplastic
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lymphoma kinase (ALK), among others.2–4

Identification of abnormalities in these molecular path-
ways has prompted the development of agents with the
aim of targeting specific components of these
pathways.

EGFR is a member of the ErbB family of receptor
tyrosine kinases, which includes EGFR (ErbB1,
HER1), HER2 (ErbB2, Neu), HER3 (ErbB3), and
HER4 (ErbB4).5,6 The tyrosine kinase activity of
EGFR triggers numerous cellular signaling pathways
that regulate growth, proliferation, and survival.6

EGFR is a well-established molecular target in
NSCLC, and mutations have been identified in 10–
15% of Caucasian and up to 50% of Asian patients
with adenocarcinoma, the most frequent NSCLC sub-
type.2,6 The most common EGFR mutations are dele-
tions in exon 19 (Del19) and the point mutation L858R
in exon 21, which together account for 85–90% of all
presenting EGFR mutations.7 Numerous uncommon
mutations within exons 18–21 of the EGFR gene,
including S786I, G719X, and L861Q, have also been
identified in NSCLC tumors.8 These activating muta-
tions in EGFR lead to increased signaling downstream
of the receptor, resulting in cellular growth and prolif-
eration, and driving tumor development by promoting
metastatic spread and resistance to apoptotic signals.6,9

The presence of EGFR mutations that drive tumorigen-
esis makes EGFR an attractive therapeutic target.

Advances in EGFR mutation testing

Advances in molecular screening of tumors have
improved patient outcomes by allowing the develop-
ment and use of targeted therapeutics. Initial tumor
testing for EGFR or other mutations is routinely under-
taken using direct biopsy of the tumor10,11; however,
around 30% of NSCLC patients may be unable to pro-
vide a biopsy sample that is suitable for EGFR muta-
tion analysis at diagnosis or following disease
progression.11–13 In addition, tissue biopsies, particu-
larly re-biopsies at the point of progression on initial
treatment, are invasive and costly, and therefore not
always feasible.10,11,14–16 Given these drawbacks, the
less invasive liquid biopsy may be preferred over tradi-
tional tumor biopsy, particularly in monitoring for
resistance.11

The use of liquid biopsies, which may be obtained
from blood, saliva, or urine, provides a minimally inva-
sive method for collecting cell-free circulating tumor
DNA and circulating tumor cells.17,18 This approach
allows for regular testing of patients at various stages
of treatment, for efficacy monitoring and real-time
identification of potential new mutations.15,18,19

Liquid biopsies have been tested in the context of
EGFR mutation-positive (EGFRmþ) NSCLC and can

be used for detection of Del19 and L858R.10,14,15,20,21

EGFR mutations detected in plasma and urine have
been shown to be concordant with those identified by
tumor biopsy, supporting the use of liquid biopsies as a
screening tool.10,14,22 In addition, use of liquid biopsies
from plasma to monitor tumor progression and identi-
fy EGFR mutations associated with resistance to ther-
apy (e.g., acquired T790M) has been documented, with
such biopsies showing 60–80% sensitivity and specific-
ity approaching 100% in detecting specific resistance
mutations.15,16,21,23–25

EGFR tyrosine kinase inhibitors

EGFR-driven tumors become dependent on EGFR sig-
naling for growth and survival, a phenomenon known
as oncogene addiction.5,26 Oncogene addiction postu-
lates that some tumors become dependent on a single
oncogene for growth and survival, such that inhibition
of this oncogene is sufficient to block tumor growth
and induce tumor regression.26 Consequently,
EGFRmþ tumors are particularly susceptible to treat-
ments that target the EGFR pathway.9

Three generations of EGFR tyrosine kinase inhibi-
tors (TKIs) have been developed and are available for
clinical use. The first-generation TKIs, gefitinib and
erlotinib, are reversible inhibitors of both wild-type
and common EGFR mutations,27,28 and have shown
improved efficacy and tolerability compared with che-
motherapy in numerous phase III trials (gefitinib:
IPASS, WJTOG3405, NEJ002; erlotinib: EURTAC,
OPTIMAL, ENSURE).29–34 In two head-to-head
trials of gefitinib versus erlotinib (CTONG0901 and
WJOG5108L), there were no significant differences
between the two first-generation agents with regard to
duration of progression-free survival (PFS), objective
response rate (ORR), or overall survival (OS) in any
line of treatment.35,36 The second-generation EGFR
TKIs include afatinib and dacomitinib, which are irre-
versible inhibitors of wild-type and mutant EGFR,
ErbB2, and ErbB4, thereby inhibiting signaling from
all possible homo- or hetero-dimers of ErbB family
receptors (Figure 1).27,37,38 This includes ErbB3-
containing heterodimers, as the second-generation
agents prevent the trans-phosphorylation of the
ErbB3 receptor and subsequent signal transduc-
tion.27,37,38 When compared with chemotherapy,
first-line afatinib has demonstrated significant improve-
ments in PFS for patients with EGFRmþ NSCLC, and
in OS for patients with Del19-positive disease.39,40

Compared in head-to-head trials, both afatinib and
dacomitinib have shown significantly improved PFS
versus gefitinib.41,42 With regard to OS in the same
trials, there was no statistically significant difference
with afatinib versus gefitinib, and exploratory analysis
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demonstrated prolonged OS with dacomitinib versus

gefitinib.43,44 The third-generation TKI, osimertinib,

selectively inhibits both EGFR-TKI-sensitizing and

EGFR T790M resistance mutations, with lower activity

against wild-type EGFR.13 The “gatekeeper” T790M

mutation is a well-characterized mechanism of

acquired resistance to first- and second-generation

TKIs, which has been reported to occur in >60% of

cases.45–47 Osimertinib has shown robust efficacy in

patients who have progressed on first- or second-

generation TKIs.47,48 In addition, in the recent

FLAURA head-to-head trial, first-line treatment with

osimertinib led to superior PFS and OS compared with

a first-generation TKI (gefitinib or erlotinib).13,49

EGFR TKIs represent the standard of care for first-

line treatment of EGFRmþ NSCLC; gefitinib, erloti-

nib, afatinib, dacomitinib, and osimertinib have all

been approved by the Food and Drug Administration

(FDA) in this setting.50–54 The availability of multiple

EGFR TKIs with distinct pharmacological, efficacy,

and safety profiles raises the question of which one

should be used at which stage in the treatment

sequence, and also highlights the need to identify an

optimal sequencing strategy for each of the TKIs, in

order to achieve long-term treatment benefit and opti-

mal survival. In this review, we will focus on the

second-generation TKI, afatinib, providing an in-

depth overview of its pharmacology, efficacy, and

safety. We will discuss the use of afatinib in clinical

settings, particularly in patients with NSCLC harbor-

ing common and uncommon EGFR mutations,

patients with central nervous system (CNS) metastases,

and in real-world settings. Furthermore, we will pro-

vide insight into the use of sequential first-line afatinib

and second-line osimertinib.

Afatinib pharmacokinetics and

interactions

Afatinib (BIBW 2992; N-[4-[(3-chloro-4-fluorophenyl)

amino]-7-[[(3S)-tetrahydro-3-furanyl]oxy]-6-quinazo-

linyl]-4-(dimethylamino)-2-butenamide) is an adeno-

sine triphosphate (ATP)-competitive

anilinoquinazoline derivative containing a reactive

acrylamide group.27 Afatinib is administered orally,

at a recommended dose of 40mg once daily, with

peak plasma concentrations achieved 2–5 h post-

dose.50 Administration after a high-fat meal results in

an approximately 40% reduction in the area under the

time–concentration curve from time 0 to infinity

(414 ng � h/ml fed; 676 ng � h/ml fasted)55; consequently,

afatinib should be taken on an empty stomach, at least

1 h before or 2 h after eating.50 The elimination half-life

of afatinib is 37 h following repeat dosing,50,56 and

steady-state plasma concentrations are achieved

within 8 days of multiple dosing.50,55–57

Excretion occurs primarily via the feces (85%), with

the parent compound representing 89% of the recov-

ered dose.58 Moderate-to-severe renal impairment has

been shown to have a minor influence on afatinib phar-

macokinetics.59 Afatinib treatment can be considered

without the need for starting dose modifications in

patients with mild or moderate renal impairment,

although a starting dose of 30mg/day is recommended

in patients with severe renal impairment.50 Close mon-

itoring of patients with severe renal impairment is

advised, and dose adjustment is recommended if toler-

ability issues arise.59 No afatinib starting dose adjust-

ments are needed for patients with mild or moderate

hepatic impairment.60 However, afatinib has not been

studied in patients with severe hepatic impairment, and

EGFR WT, Del19,
L858R, G719X,

L861Q, and S768I
ErbB2

ErbB4

afatinib

Denotes receptor tyrosine kinase activity

Figure 1. Inhibition of ErbB family members, including WT and mutant EGFR, by afatinib.
EGFR: epidermal growth factor receptor; WT: wild-type.
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these patients should be closely monitored and the dose

adjusted, if needed.50

Afatinib is highly soluble across the physiological

pH range of 1–7.5 and is not expected to interact

with acid-reducing agents.61,62 This is in contrast to
gefitinib, erlotinib, and dacomitinib, which exhibit

pH-dependent solubility, such that absorption and bio-

availability may be decreased when co-administered
with treatments that increase gastric pH (e.g., hista-

mine H2-receptor antagonists and proton pump inhib-

itors).61 In vitro studies indicate that plasma
protein–binding of afatinib is high (�94%).60

However, enzyme-catalyzed metabolism of afatinib

plays a negligible role in its metabolism in vivo.61

Unlike other EGFR TKIs, which undergo metabolism

via cytochrome P450 (CYP) enzymes, CYP enzymes

play a negligible role in the metabolism of afatinib.61

Smoking status does not impact the pharmacokinetics

of afatinib,62 whereas for erlotinib, smoking reduces

exposure.61,63 Moreover, afatinib does not relevantly
inhibit or induce CYP enzymes, including those

involved in drug metabolism.62 Therefore, the risk of

interactions between afatinib and co-administered
drugs that undergo CYP enzyme metabolism is

thought to be minimal.62 In contrast, other EGFR

TKIs interact with different CYP enzymes to varying
extents, potentially impacting the metabolism of con-

comitant drugs.51,61

Afatinib is a substrate and inhibitor of P-glycopro-
tein in vitro, and concomitant use of strong P-glyco-

protein inhibitors can increase exposure to afatinib.62,64

Interestingly however, concomitant administration of
ritonavir, a well-known, potent inhibitor of P-glyco-

protein and BCRP (another ATP binding cassette

drug transporter inhibitor) has shown no relevant
impact on afatinib pharmacokinetics in healthy male

adults.62,64 P-glycoprotein inducers such as rifampicin

can reduce afatinib exposure.50,62,64 In vitro, afatinib is
both a substrate and inhibitor of BCRP,50 and gefiti-

nib, erlotinib, and osimertinib also function as inhibi-

tors and/or substrates of P-glycoprotein and/or BCRP
to varying degrees.51,53,61,65

Afatinib efficacy and safety data from

clinical trials

Afatinib versus chemotherapy: LUX-Lung 3 and

LUX-Lung 6

Afatinib was approved for the first-line treatment of

metastatic NSCLC harboring non-resistant EGFR
mutations based primarily on the outcomes of the

global phase III LUX-Lung 3 trial that compared

first-line afatinib with cisplatin/pemetrexed in 345

patients with advanced EGFRmþ adenocarcinoma.39

LUX-Lung 6 was another phase III trial that compared
first-line afatinib with gemcitabine/cisplatin in 364
Asian patients with EGFRmþ NSCLC.40

In both trials, which included patients with NSCLC
harboring common and/or uncommon EGFR muta-
tions, afatinib treatment resulted in improved median
PFS versus chemotherapy: LUX-Lung 3 (afatinib vs
cisplatin/pemetrexed): 11.1 versus 6.9months; hazard
ratio (HR), 0.58 (95% confidence interval (CI), 0.43–
0.78), P¼ 0.001; LUX-Lung 6 (afatinib vs gemcitabine/
cisplatin): 11.0 versus 5.6months; HR, 0.28 (95% CI,
0.20–0.39), P< 0.0001.39,40 While OS analysis of the
two studies, as well as both studies combined, indicated
no significant OS improvement with afatinib versus
chemotherapy (LUX-Lung 3/6 combined: 25.8 vs
24.5months; HR, 0.91 (95% CI, 0.75–1.11),
P¼ 0.37), a pre-specified subgroup analysis demon-
strated that afatinib prolonged OS versus chemothera-
py in patients with Del19-positive tumors, in both
LUX-Lung 3 (33.3 vs 21.1months; HR, 0.54 (95%
CI, 0.36–0.79), P¼ 0.0015) and LUX-Lung 6 (31.4 vs
18.4months; HR, 0.64 (95% CI, 0.44–0.94),
P¼ 0.023).66 It appears that not all EGFR TKIs
confer the same OS benefits; in a meta-analysis com-
paring patients with Del19-positive NSCLC who were
treated with erlotinib, gefitinib, or afatinib, only afati-
nib was associated with a statistically significant OS
benefit versus chemotherapy.67

Consistent with the results observed with other
EGFR TKIs,31,32 afatinib was better tolerated than
chemotherapy in both studies.39,40 The most common
adverse events (AEs) were class-related: gastrointesti-
nal (diarrhea, stomatitis) and cutaneous (rash/
acne).39,40,68 The discontinuation rate for afatinib due
to treatment-related AEs was low, despite patients
being on treatment longer with afatinib than with che-
motherapy (LUX-Lung 3: 8% versus 12%; LUX-Lung
6: 6% versus 40%, with afatinib and chemotherapy,
respectively; Table 1).39,40

Afatinib versus gefitinib: LUX-Lung 7

The phase IIb LUX-Lung 7 study was the first global
head-to-head comparison of a first-generation EGFR
TKI (gefitinib) and a second-generation EGFR TKI
(afatinib) in patients with EGFRmþ NSCLC.42 The
three co-primary endpoints of the study were PFS,
OS, and time-to-treatment failure (TTF). As an end-
point, TTF captures patients who are continued on
treatment beyond trial-defined radiological progression
in the absence of clinical deterioration. Afatinib signif-
icantly improved PFS (median 11.0 vs 10.9months;
HR, 0.73 (95% CI, 0.57–0.95), P¼ 0.017) and TTF
(median 13.7 vs 11.5months; HR, 0.73 (95% CI,
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0.58–0.92), P¼ 0.007) versus gefitinib. PFS was also
numerically longer with afatinib across most patient
subgroups investigated, including EGFR mutation
type (Del19 or L858R).42 Afatinib also significantly
improved ORR versus gefitinib (70% vs 56%;
P¼ 0.0083), with a longer median duration of response
(10.1months (interquartile range (IQR), 5.6–16.8) vs
8.4months (IQR, 6.2–13.1)), and a trend towards
improved OS with afatinib vs gefitinib observed

(median 27.9 vs 24.5months; HR, 0.86 (95% CI,
0.66–1.12), P¼ 0.258).43

The overall frequency of grade �3 treatment-related
AEs was higher with afatinib than with gefitinib
(31.3% vs 17.6%). Grade �3 diarrhea, rash/acne, and

stomatitis were more frequent with afatinib, while ele-
vated alanine aminotransferase/aspartate aminotrans-
ferase was more common with gefitinib.42 Serious
treatment-related AEs were reported in 11% of
afatinib-treated and 4% of gefitinib-treated patients;
however, discontinuations due to treatment-related
AEs were similar between treatment arms (6% in
each arm).42

Afatinib in patients with uncommon EGFR mutations

Uncommon mutations within exons 18–21 are present
in up to 23% of EGFRmþ NSCLC tumors.69–75 While
most phase III studies of EGFR TKIs in EGFRmþ
NSCLC included only patients with tumors harboring
common (Del19/L858R) EGFR mutations,29–34 the
LUX-Lung 2, 3, and 6 studies included patients with
uncommon mutations.75 In a pooled analysis of
patients with uncommon mutations (n¼ 75 across the

three studies), afatinib showed efficacy in a subgroup of
patients with tumors harboring the G719X, L861Q,
and S768I EGFR mutations, as well as other, rarer
mutations, but not against tumors harboring T790M

or exon 20 insertions.75 Median PFS (95% CI) was
13.8months (6.8–not evaluable) for patients with
tumors harboring G719X, 8.2months (4.5–16.6) for
L861Q, and 14.7months (2.6–not evaluable) for
S768I. Median OS (95% CI) was 26.9months (16.4–
not evaluable), 17.1months (15.3–21.6), and not evalu-
able (3.4–not evaluable), and ORR was 78%, 56%, and
100%, for patients with NSCLC harboring these three
uncommon mutations, respectively. The European
Medicines Agency indicated afatinib for the first-line
treatment of NSCLC with any activating EGFR muta-
tion on first approval in 2013.76 These results from
LUX-Lung 2, 3, and 6 led to the expansion of the
FDA label to include patients with metastatic
NSCLC harboring non-resistant mutations, including
G719X, L861Q, and S768I.50

Afatinib in patients with baseline brain metastases

Brain metastases are common in patients with NSCLC,
occurring in around 25% of patients during the course
of their disease.77 The incidence of brain metastases is
higher among patients with EGFRmþ NSCLC than in
patients whose tumors have wild-type EGFR (31.4 vs
19.7% in one report, P< 0.001).77 However, patients
with brain metastases have been excluded from clinical
trials.41 This is of particular significance as it limits the
ability to generalize the outcomes of such clinical trials
to patients in the clinic. Although little is known about
the brain penetrance of afatinib in humans, preclinical
pharmacology studies in rats suggest low distribution
to the brain.78 Nevertheless, several clinical studies with
afatinib and osimertinib, including head-to-head trials
with first-generation TKIs, have included patients with
EGFRmþ NSCLC with CNS involvement, which has
shed light on the effect of these TKIs on patients with
CNS metastases.

Table 1. Incidence of AEs leading to dose reduction and treatment discontinuation, and the most common afatinib-related AEs in the
major afatinib clinical trials.a

LL339 LL640 LL742 LL884

Patients with dose reductions due to AEs, % 52.2c 28.0c 41.9 26.5

Patients discontinuing treatment due to

afatinib-related AEs, %

8.0 5.9 6.3 20.2d

Incidence of most common afatinib-related

AEs (all grades/grade �3), %

Diarrheab 95.2/14.4 88.3/5.4 90.0/12.5 69.9/10.5

Rash/acneb 89.1/16.2 80.8/14.6 88.8/9.0 67.1/5.9

Stomatitisb 72.1/8.7 51.9/5.4 64.4/4.0 28.8/4.1

AEs: adverse events; LL: LUX-Lung.
aAll tumors in LL3 and LL6 were adenocarcinomas, 99% of tumors were of purely adenocarcinoma histology in LL7, and 96% of tumors were of purely

squamous histology in LL8.
bGrouped term.
cAll dose reductions (reason not specified).
dIncludes any-cause AEs.
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In the LUX-Lung 3, 6, and 7 trials, the inclusion
criteria allowed recruitment of patients with asymp-
tomatic and stable brain metastases.39,40,42 Baseline
brain metastases were present in 12%, 13%, and 16%
of patients in LUX-Lung 3, 6, and 7, respectively.42,79

In a combined analysis of the LUX-Lung 3 and 6 stud-
ies, 81 patients with brain metastases at baseline (afa-
tinib: n¼ 48; chemotherapy: n¼ 33) showed improved
PFS (8.2 vs 5.4months; HR, 0.50 (95% CI, 0.27–0.95),
P¼ 0.0297) and ORR (combined analysis: 73% vs
24%; LUX-Lung 3: 70% vs 20%, p¼ 0.0058; LUX-
Lung 6: 75% vs 28%, P¼ 0.0027) with afatinib
compared with chemotherapy, while there was no
improvement in OS (22.4 vs 25.0months; HR, 1.14
(95% CI, 0.66–1.94), P¼ 0.6412).79 Improvements in
PFS in patients with brain metastases were similar to
those observed among patients without brain metasta-
ses. In LUX-Lung 7, 50 patients with brain metastases
(afatinib: n¼ 26; gefitinib: n¼ 24) showed similar PFS
improvement between the two treatments (afatinib vs
gefitinib: 7.2 vs 7.4months; HR, 0.76 (95% CI, 0.41–
1.44)) and also compared with patients without brain
metastases.42

Competing risk analyses of LUX-Lung 3 and 6
showed that in patients with baseline brain metastases
the cumulative incidence of CNS progression (31.3%)
was lower than that of non-CNS progression (52.1%;
Figure 2).28 A recent single-center, real-world study of
306 EGFRmþ NSCLC patients from Taiwan with or
without baseline brain metastases assessed the impact
of first-line erlotinib, gefitinib, or afatinib in treating
and preventing brain metastases.80 PFS was significant-
ly longer and OS numerically longer with afatinib
(compared with erlotinib or gefitinib) in the overall
patient population, although it must be noted that
higher proportions of patients treated with afatinib
had better Eastern Cooperative Oncology Group
(ECOG) performance status and Del19 mutations.
PFS and OS were similar across the three EGFR
TKIs in a subgroup analysis comparing patients with
an ECOG performance status of 0–1 and Del19 muta-
tions. Another subgroup analysis, involving patients
without baseline brain metastases, found that after
adjusting for possible confounding factors, those in
the afatinib group had a significantly lower HR for
the development of subsequent brain metastases than
did those in the gefitinib group. However, the three
treatments showed similar efficacy in patients with
baseline brain metastases.

It is also worth noting that osimertinib has also
demonstrated efficacy in patients with brain metasta-
ses.13,81 Based on analysis of CNS activity in the
FLAURA trial, osimertinib appears superior to first-
generation TKIs in treating CNS metastases and in
reducing the incidence of de novo CNS lesions.81

Afatinib in squamous cell carcinoma

While EGFR mutations are rare in lung squamous cell
carcinoma (SCC) tumors, they are often associated
with increased EGFR protein expression and occasion-
ally, altered EGFR copy number.82 Certain clinical fea-
tures, such as an absence of tobacco exposure have
indicated a higher likelihood of a targetable mutation
(including EGFR and ALK) and it is therefore reason-
able to recommend testing for such alterations in non-
smoker patients with lung SCC.83 Identification of
increased EGFR copy number and high levels of
EGFR protein expression in SCC have served as ratio-
nale to assess the impact of EGFR-targeted agents in
the treatment of SCC.82 The LUX-Lung 8 study com-
pared afatinib with erlotinib in patients with stage 3 b/4
SCC of the lung who had progressed after at least four
cycles of platinum-based chemotherapy.84 Treatment
with afatinib resulted in significantly longer PFS (2.6
vs 1.9months; HR, 0.81 (95% CI, 0.69, 0.96),
P¼ 0.0103) and improved OS (7.9 vs 6.8months; HR,
0.81 (95% CI, 0.69, 0.95), P¼ 0.0077) compared with
erlotinib. Biomarker analysis indicated that, among
patients treated with afatinib, PFS and OS were numer-
ically longer in patients with ErbB mutation-positive
tumors than in those without mutations; this was not
observed for erlotinib. Interestingly, the benefit of afa-
tinib over erlotinib among patients with ErbB-positive
tumors appeared to be driven by mutations in HER3
(ErbB3), HER4 (ErbB4), and in particular, HER2
(ErbB2).85 Based on the overall LUX-Lung 8 results,
afatinib has been approved by the FDA for the treat-
ment of metastatic, squamous NSCLC progressing
after platinum-based chemotherapy.50

Management of afatinib-related AEs

The most common afatinib-related AEs across the
LUX-Lung 3, 6, 7, and 8 studies were diarrhea, rash/
acne, and stomatitis (Table 1).39,40,42,84 A supportive
care strategy combining patient education, frequent
communication, routine monitoring, early recognition,
proactive management, and adherence to the recom-
mended tolerability-guided dose adjustment schema is
important to help maximize clinical benefits, optimize
symptom management, and reinforce adherence, there-
by limiting treatment discontinuation.86 The manage-
ment of afatinib-related AEs has been well
characterized, and guidelines are available that describe
recommended strategies for prevention and manage-
ment.68,87 For example, patients who experience diar-
rhea should receive medication, such as loperamide,
immediately.

In addition, the availability of several different doses
(20, 30, or 40mg) of afatinib facilitates the
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implementation of a tolerability-guided dose adjust-
ment strategy (described below) that can help patients

to remain on afatinib long term.50 Of note, analysis of
data from LUX-Lung 3 indicated that higher exposure
to afatinib increased the risk of experiencing grade �3

toxicity or grade �2 diarrhea.78 Afatinib should be
withheld in patients who experience any adverse reac-

tions of grade �3, diarrhea of grade 2 persisting for �2
consecutive days while taking anti-diarrheal medica-
tion, or cutaneous reactions of grade 2 that last
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>7 days or are intolerable. Treatment should be

resumed at a reduced dose when the adverse reaction

has fully resolved, improved to grade 1, or returned to

baseline. Dosing should be reduced by 10mg decre-

ments, to a minimum of 20mg/day.50 Importantly, afa-

tinib dose reductions in the LUX-Lung 3 and 6 trials

(in line with the criteria described above) resulted in a

major reduction in treatment-related grade �3 AEs

(from 73.0% to 20.5% in LUX-Lung 3 and from

80.6% to 11.9% in LUX-Lung 6) without affecting

therapeutic efficacy, as assessed by PFS.88

Furthermore, in a noninterventional, observational

study conducted in a real-world setting, dose reduc-

tions with afatinib were shown to reduce the frequency

and intensity of adverse drug reactions, without

compromising treatment effectiveness.89

It has been suggested that the severity of afatinib-

related skin reactions may be prophylactically reduced

using a general skin care regimen combined with oral

antibiotics, such as tetracyclines.90 Others recommend

the regular use of emollients and protection from exces-

sive sun exposure.68 For patients who receive prophy-

lactic treatment but still develop skin reactions in

response to EGFR TKIs, topical antibiotics, cortico-

steroids, and potentially antihistamines are recom-

mended. If the patient’s skin condition does not

improve, dose reduction or treatment discontinuation

is recommended, along with referral to a

dermatologist.68,90

Acquired resistance and treatment

sequencing strategies

Despite the efficacy of EGFR TKIs in the first-line

treatment of EGFRmþ NSCLC, acquired resistance

to therapy occurs in the majority of patients.45

Identifying the molecular mechanisms of acquired

resistance is essential in order to determine the subse-

quent treatment that would yield greatest benefit. The

most common mechanism of resistance to first-

generation EGFR TKIs is the development of the

gatekeeper T790M mutation, which occurs in approx-

imately 50–70% of patients.45,46,91 Likewise, T790M is

detected in around 50–70% of patients with resistance

to afatinib91,92 and is also likely to be associated with

clinical resistance to dacomitinib.93A variety of other

mechanisms of resistance to the first- and second-

generation EGFR TKIs have been identified, including

other EGFR alterations, Erb2 amplification, MET

amplification, and transformation to squamous or

small cell morphology.45,94,95

In T790M-positive tumors, following progression

after first- or second-generation EGFR TKIs, second-

line osimertinib has demonstrated significant efficacy

compared with chemotherapy (median PFS: 10.1 vs
4.4months; HR, 0.30 (95% CI, 0.23–0.40),
P< 0.001).48 In the LUX-Lung 7 trial, the 3-year OS
rate was up to 90% in patients who received a third-
generation EGFR TKI (osimertinib (10.3% of
patients) or olmutinib (3.4%)) after discontinuing afa-
tinib.43 However, given the recent positive results of the
FLAURA study showing improved efficacy with first-
line osimertinib compared with a first-generation TKI
in patients with EGFRmþ NSCLC,13 and the subse-
quent approval of osimertinib in this setting,51 the
most appropriate sequencing of the EGFR TKIs for
optimal benefit is unclear. The second- and third-
generation TKIs have shown significantly longer PFS
compared with first-generation TKIs, and the third-
generation TKI, osimertinib, has shown superior OS
compared with first-generation TKIs.41,42,49 While the
major mechanism of resistance to first- and second-
generation TKIs is well defined, mechanisms of
acquired resistance to osimertinib are more heteroge-
neous, and include EGFR C797S, acquired KRAS, and
targetable gene fusions.96–98 These data suggest that the
net survival benefit could potentially be optimized by
reserving osimertinib for second-line use in the >60%
of patients who develop T790M-mediated resistance
(Figure 3). This is supported by recent data from a
global, noninterventional study of patients with
EGFRmþ NSCLC receiving sequential afatinib and
osimertinib in a real-world setting, which showed
median time to treatment failure of 28.1months (90%
CI, 26.8–30.3) and median OS of 41.3months (90% CI,
36.8–46.3).99 In addition, MET amplification has also
been shown to co-exist with the T790M mutation,95

suggesting that the combination of osimertinib with a
MET inhibitor may be beneficial for such patients.100

Detractors of this sequencing strategy will note that
first, many patients experience disease progression on
first-line EGFR TKIs and are not able to receive
second-line therapy, due to death or deterioration of
performance status, among other reasons. Indeed, dis-
continuation of erlotinib or gefitinib in patients with
acquired resistance has been reported to cause rapid
progression (disease flare).101 In the FLAURA trial,
12% of patients treated with osimertinib and 17%
treated with first-generation EGFR TKIs died without
commencing a second-line therapy.13 Second, it is
impossible to prospectively predict which patients will
develop T790M and thus benefit from this sequencing
strategy. One study identified de novo T790M muta-
tions more frequently within L858R tumors than
within Del19 tumors among 20 EGFR TKI-naı̈ve
patients,102 while mutation analysis of EGFR TKI-
pretreated patients in the osimertinib AURA extension
and AURA2 trials detected T790M mutations in a
higher proportion of patients with Del19 mutations
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versus those with L858R.91 Patients who do not devel-

op T790M upon progression on first- or second-
generation EGFR TKIs may have been better treated
with osimertinib as first-line therapy, which has shown

the longest median PFS of all EGFR TKIs, at
18.9months (assessed by investigator review) in the
FLAURA trial.13

In contrast to T790M-positive tumors, subsequent

treatment options for patients with T790M-negative
acquired resistance are less well defined, reflecting the
large variety of possible resistance mechanisms identi-

fied.103 Currently, the standard treatment for these
tumors is platinum-doublet chemotherapy. However,
several other targeted treatments and combinations

are under investigation in this setting (Figure 3). In
tumors with MET amplification, the use of MET inhib-

itors together with EGFR TKIs has shown preliminary
efficacy.95,104 Other approaches include the combina-
tion of afatinib with EGFR antibodies or bevacizu-

mab, which have shown promise but some may be
associated with considerable treatment-related toxic-
ities.105–108 In addition, novel combinations incorporat-

ing checkpoint inhibitors may be effective for patients
with T790M-negative acquired resistance. Recent

results from the IMPOWER 150 trial indicate that
the combination of atezolizumab, bevacizumab, and
chemotherapy is effective in patients with NSCLC,

regardless of PD-L1 expression and EGFR or ALK
genetic alteration status.109 This combination was
assessed in patients with EGFRmþ NSCLC who had

received prior EGFR TKI treatment, and it is possible

that these findings may translate into the more specific

setting of EGFRmþ NSCLC with T790M-negative

acquired resistance.109

Finally, rather than switching to second-line thera-

py, continuation of EGFR TKI treatment beyond

radiological progression may help maintain clinical

benefit for some patients with acquired resistance to

first-line EGFR TKIs.110 This approach may be bene-

ficial to help avoid rapid disease progression with wors-

ening of disease-related symptoms following treatment

discontinuation (rebound tumor flare), which, as pre-

viously mentioned, can occur in some patients after

discontinuation of EGFR TKIs.110 Indeed, one analy-

sis found that 14/61 patients (23%) who discontinued

erlotinib/gefitinib treatment experienced a disease flare

(defined as hospitalization or death due to disease pro-

gression), with a median time to disease flare following

EGFR TKI discontinuation of 8 days.101

Cost-effectiveness of afatinib

Economic assessments are essential to the healthcare

decision-making process. In EGFRmþ NSCLC,

EGFR TKIs have a clear benefit over platinum-based

chemotherapy in terms of cost-effectiveness.111 For

example, one US study showed that erlotinib and afa-

tinib were more cost-effective than cisplatin-

pemetrexed, with erlotinib holding a cost-effectiveness

advantage over afatinib.112 Importantly, a budget

impact analysis of first-line afatinib use in patients

with EGFRmþ NSCLC in the US estimated that

EGFRm+ NSCLC

Afatinib

Acquired resistance

T790M-positive T790M-negativeT790M + MET amplification

OsimertinibOsimertinib
+ MET inhibitora

Platinum-doublet chemotherapyb

EGFR TKI rechallenge ± bevacizumabd

Checkpoint inhibitor + EGFR TKId

EGFR TKI + MET or MEK1/2 inhibitord

Atezolizumab + carboplatin,
paclitaxel, bevacizumabc

Figure 3. Potential treatment strategies following acquired resistance to afatinib. (a) Investigational therapy100; (b) platinum-doublet
chemotherapy represents the principal treatment option outside of the clinical trial setting103; (c) this combination showed consid-
erable efficacy in EGFRmþ NSCLC but has not yet been investigated specifically in patients with EGFRmþ T790M-negative tumors109;
and (d) Investigational treatment options with some activity in EGFRmþ NSCLC in early-phase studies.103,105–108

EGFR: epidermal growth factor receptor; EGFRmþ: EGFR mutation-positive; NSCLC: non-small cell lung cancer; TKI: tyrosine kinase
inhibitor.
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increasing the treatment share of afatinib in a health
plan would lead to an increase in the proportion of
treated patients who remained progression-free after
5 years, while having only a small impact on the health
plan budget.113 In contrast, a recent analysis of the cost-
effectiveness of first-line EGFR TKIs in patients with
EGFRmþ NSCLC suggested that osimertinib is not a
cost-effective first-line therapy compared with first- or
second-generation TKIs.114 Further cost-benefit analy-
ses of afatinib and other EGFR TKIs in patients with
EGFRmþ NSCLC and SCC are needed to adequately
assess the economic impact of the different treatment
options and to identify the optimal sequencing strategy.

Summary and conclusions

In a little over a decade, developments in the molecular
analysis of lung tumors have revealed that alterations
in EGFR are major oncologic drivers in certain sub-
types of lung cancer, with EGFR TKIs quickly becom-
ing the “weapon of choice” for the treatment of
patients with EGFRmþ NSCLC or SCC. Afatinib
has been shown to provide significant improvements
over chemotherapy and gefitinib in the first-line setting
in patients with EGFRmþ NSCLC,39,40,42,43 and over
erlotinib in the second-line setting in patients with SCC
following chemotherapy.84 Afatinib also has proven
efficacy in patients with tumors harboring certain
uncommon EGFR mutations,75 and in patients with
brain metastases.79 The clinical effectiveness of afatinib
has been confirmed by recent results of real-world stud-
ies.89,99 In addition, afatinib-related AEs are manage-
able by means of tolerability-guided dose adjustments,
along with the use of AE-specific treatment adminis-
tered either prophylactically or as needed.68,87,89,90 The
optimal EGFR TKI sequencing strategy is still under
debate. While some data show that a sequential treat-
ment strategy consisting of afatinib followed by osi-
mertinib can provide a viable, long-term treatment
option for patients who develop T790M-mediated
resistance,99 this strategy would not be beneficial for
the 30–50% of afatinib-treated patients who do not
develop the T790M mutation.91,92 Head-to-head studies,
including those of afatinib and osimertinib, are needed
to adequately assess the optimal sequence of EGFR
TKI therapies to achieve long-term treatment benefit.
Additional studies are required to define optimal man-
agement approaches for patients with T790M-negative
resistance, as are further pharmacoeconomic analyses to
confirm preliminary findings that afatinib is cost-
effective in the treatment of EGFRmþ NSCLC.112,113
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