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Aluminum reproductive toxicity: a summary and interpretation of

scientific reports

Robert A. Yokel

Department of Pharmaceutical Sciences, University of Kentucky Academic Medical Center, Lexington, KY, USA

ABSTRACT

Publications addressing aluminum (Al)-induced reproductive toxicity were reviewed. Key details were com-
piled in summary tables. Approximate systemic Al exposure, a measure of bioavailability, was calculated
for each exposure, based on the Al percentage in the dosed Al species, Al bioavailability, and absorption
time course reports for the exposure route. This was limited to laboratory animal studies because no con-
trolled-exposure human studies were found. Intended Al exposure was compared to unintended dietary
Al exposure. The considerable and variable Al content of laboratory animal diets creates uncertainty about
reproductive function in the absence of Al. Aluminum-induced reproductive toxicity in female mice and
rats was evident after exposure to >25-fold the amount of Al consumed in the diet. Generally, the add-
itional daily Al systemic exposure of studies that reported statistically significant results was greater than
100-fold above the typical human daily Al dietary consumption equivalent. Male reproductive endpoints
were significantly affected after exposure to lower levels of Al than females. Increased Al intake increased
fetus, placenta, and testes Al concentrations, to a greater extent in the placenta than fetus, and, in some
cases, more in the testes than placenta. An adverse outcome pathway (AOP) was constructed for males
based on the results of the reviewed studies. The proposed AOP includes oxidative stress as the molecular
initiating event and increased malondialdehyde, DNA and spermatozoal damage, and decreased blood
testosterone and sperm count as subsequent key events. Recommendations for the design of future stud-
ies of reproductive outcomes following exposure to Al are provided.

Abbreviations: ACP: acid phosphatase; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST:
aspartate aminotransferase; CAT: catalase; FSH: follicle stimulating hormone; GD: gestation day; GPx:
glutathione peroxidase; GR: glutathione reductase; GSH: glutathione; GST: glutathione s-transferase; i.g.:
intragastric; i.m.: intramuscular; i.p.: intraperitoneal; i.v.: intravenous; LDH: lactate dehydrogenase; LH:
luteinizing hormone; MDA: malondialdehyde, the product of the thiobarbituric acid-reactive substances
assay for lipid peroxidation; NO: nitric oxide; PND: post-natal day; s.c.. subcutaneous; SOD: super-
oxide dismutase
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Focus

This review focuses on the pre-natal effects of aluminum (Al)
exposure on female and male reproduction, the embryo/
fetus, and offspring up to the time of birth. It does not
include developmental effects.

Value of this review

It has been some time since an extensive review and assess-
ment of the literature assessing Al effects on female and
male reproduction was published. Many studies on this topic
have been published recently. There is considerable current
interest in the potential for Al to produce reproductive tox-
icity, fueled in part by the controversy concerning its safety
as an adjuvant in vaccines. This has been addressed by the
proposed Cochrane Library assessment of the benefits and
harms of Al adjuvants used in vaccines versus placebo or no
intervention (Djurisic et al. 2017; Weisser et al. 2017).

Search strategy and literature reviewed

Prior reviews of this topic were obtained and the reports
cited therein reviewed (Tarig 1993; Domingo 1995; Domingo
et al. 2000; Domingo 2005; Krewski et al. 2007; ATSDR 2008;
Domingo 2011; Pandey and Jain 2013; Willhite et al. 2014;
Berihu 2015). A SciFinder search for “aluminum reproductive
toxicity” (no qualifiers) and SciFinder and PubMed searches
for “aluminum reproduction human” were conducted.
English-language reports of mammalian organisms, excluding
nanoscale Al forms, were reviewed. The introduction and dis-
cussion of reports cited herein were reviewed to identify cita-
tions to other reports that were reviewed.

Descriptions of female and male reproduction, including
illustrations, are available in physiology textbooks, such as
Ganong’s (Barman et al. 2019). The summaries below were
prepared to focus on and include the endpoints of the
reviewed studies.

Female reproduction as it relates to reported
Al effects

The development of an oocyte begins as a primordial germ
cell. Early in embryonic development these cells migrate into
the future site of the ovaries, undergo meiotic cell division,
and multiply, resulting in primary oocytes (primordial follicle)
within the ovary. Their development is arrested until puberty,
when follicle stimulating hormone (FSH) produced by the
pituitary gland stimulates some to begin to mature, develop-
ing through follicle stages (primary, secondary, and if fertil-
ized tertiary (Graafian) follicles), in the process of
folliculogenesis. Most die (atresia) during these stages.
During the resumption of cell division, the oocyte’s nucleus
(germinal vesicle) breaks down and the first polar body (that
forms concomitantly during oocyte division) is extruded.
Follicle cells secrete and release estrogen that feeds back to
the pituitary gland to decrease FSH release and increase
luteinizing hormone (LH) release. This causes the follicle to

rupture, resulting in release of the egg (ovulation), that
migrates into the fallopian tubes where it can be fertilized by
sperm. The ruptured follicle forms a corpus luteum, a transi-
tory endocrine organ that secretes estrogen and progester-
one. The latter feeds back to the pituitary gland to decrease
LH release. The fertilized oocyte forms a mature egg cell
(ovum). When the oocyte and sperm chromosomes combine,
it becomes a zygote, which divides as it migrates into the
uterus, creating the pregnant (gravid) state.

In animal species that give birth to multiple offspring at
the same time (multiparous), the fetuses are implanted
evenly down the uterine horns, where the fallopian tubes
and uterus meet. The zygote develops into an embryo then a
fetus. If fertilization does not occur, decreasing estrogen
feeds back to the pituitary gland to increase FSH to repeat
the cycle. FSH and LH act on their receptors. In addition to
estrogen, which effects ovarian follicle growth and develop-
ment, and progesterone, which effects embryo development
and implantation, the ovary synthesizes testosterone that
serves as a precursor to estrogen, promotes follicular growth,
and corpus luteum formation.

Male reproduction as it relates to reported
Al effects

The testes (singular testis) have two primary functions, to
produce sperm and hormones including testosterone. The
testes are composed of multiple seminiferous tubules and
interstitial tissue, housed within a fibrous covering, the tunica
albuginea. During embryonic development within the semin-
iferous germinal epithelium, Sertoli cells, which surround the
developing germ cells, associate with the latter to form sem-
iniferous tubules after birth. The seminiferous tubules are
coiled masses that produce sperm cells through spermato-
genesis, the maturation of germ cells to haploid spermato-
zoa. At birth, the seminiferous tubules contain
spermatogonial stem cells. During the first round of sperm-
atogenesis, Sertoli cells join to form tight junctions that com-
partmentalize the seminiferous epithelium into basal and
luminal compartments. Spermatogonia, which are in the
basal compartment, divide into type A spermatogonia that
remain to replenish the precursor cells or type B spermatogo-
nia. The latter, through meiosis in the luminal compartment,
become (primary) spermatocytes. These divide to form sec-
ondary spermatocytes which meiotically divide to from sper-
matids, which are initially round. Multinucleated giant cells in
the seminiferous tubules are degenerating germ cells.
Spermatids become spermatozoa during late
spermatogenesis.

Spermatozoa travel from the seminiferous tubule lumen
through efferent ductules to enter the head of the epididy-
mis, a long, coiled tube (duct) on the backside of each testis
that transports and stores the spermatozoa. The epididymis
is composed of its initial segment and head (caput) which is
characterized by its thick epithelium, body (corpus), and tail
(cauda), where spermatozoa are stored. Within the epididy-
mis, sperm mature while gaining mobility. During sexual
arousal, contractions force the sperm into the vas deferens.



The vas deferens is a long, muscular tube that travels from
the epididymis into the pelvic cavity to transport mature
sperm to the urethra in preparation for ejaculation. Seminal
vesicles are sac-like pouches attached to the vas deferens.
They produce fructose that provides sperm with an energy
source and assists the sperms’ motility. Seminal vesicle fluid
provides most of the ejaculate volume.

The prostate gland is composed of many secretory acini
that contain epithelial cells, which produce prostatic fluid,
and line a «central lumen that is filled with fluid.
Fibromuscular stromal tissue surrounds the acini. The seminal
vesicles and prostate gland produce seminal fluid which
mixes with sperm to form semen. The accessory organs are
internal organs (in contrast to the penis and scrotum contain-
ing the testes) of the male reproductive system, including
the vas deferens, seminal vesicles, prostate gland, and bul-
bourethral glands. The bulbourethral glands produce a clear,
slippery fluid that empties into the urethra. It lubricates the
urethra and neutralizes acidity from urine in the urethra.

Testes interstitial tissue contains connective tissue and
Leydig cells. LH and FSH, produced by the pituitary gland,
stimulate Leydig cells to release androgens, including testoster-
one, synthesized from cholesterol. Testosterone stimulates the
testes and prostate gland during embryological development
to adulthood and, with FSH and other factors, regulates sperm-
atogenesis. Estradiol, synthesized by Leydig and Sertoli cells
and mature spermatocytes, modulates spermatogenesis in a
complex manner. Testosterone acts on the androgen receptor.

Aluminum exposure

Aluminum is ubiquitous, quantifiable in all exposure sources
and biological materials. The main source of exposure for
humans and laboratory animals is food. Additional sources
for humans include beverages, air-borne particulates and
fumes, pharmaceuticals such as antacids and cosmetics, and
vaccines with Al as an adjuvant. Typical exposures from these
sources, estimated percentage absorbed, and resulting daily
Al absorbed are summarized in a mini-review (Yokel and
McNamara 2001). The calculation of daily Al absorption is
applied in this review.

Bioavailability expressed as approximate systemic
Al exposure

A challenge in relating the results of studies that used differ-
ent routes of exposure/administration is the different percent
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of Al that enters systemic circulation (bioavailability) and,
therefore, potentially enters the reproductive organs or other
sites affecting reproduction. It has been suggested that test-
ing in animals to determine the effects and human risks of
environmental toxicants could be improved if test substances
were administered to achieve pharmacokinetically equivalent
serum levels in the animal and the human (Brent 2004). To
relate Al uptake from different routes of administration, cal-
culation of approximate systemic Al load was based on the
extent of absorption from the site of absorption and absorp-
tion time course (WHO 2012). For this review, an approximate
systemic Al load was determined for the exposure and
administration routes used in studies assessing Al reproduct-
ive toxicity. This approach goes beyond the typical report of
Al exposure, that is often the amount added to drinking
water or the diet without documentation of actual intake;
normalizes the amount of Al in the different chemical species
of Al studied that can have Al content varying by 6-fold; and
takes into account absorption from the exposure route, that
can vary by 500-fold; to generate systemic exposures that
can be compared. Assumptions had to be made in some
cases, such as when the chemical species was ambiguously
reported or actual consumption was not reported.
Bioavailability was based on reported values, for which there
is often a range. For oral exposure, values were usually
obtained under conditions that have some differences from
the study to which the value is applied, e.g. a different Al
species was studied, in a different dose, in a different mam-
malian strain or species, in a different status of gastric con-
tents, and/or in a different dosing schedule. Nevertheless,
this approach advances the ability to compare the cited stud-
ies. The values used are in Table 1 and are based on
the following.

After orogastric intake or intragastric delivery of aqueous
solutions 0.2% of Al was assumed to enter into systemic cir-
culation (the blood stream) in the first 24 h, based on reports
of oral Al bioavailability (Hohl et al. 1994; Drieke et al. 1997;
Jouhanneau et al. 1997; Priest et al. 1998; Stauber et al. 1999;
Yokel et al. 2001; Zhou et al. 2008). Studies we conducted
found oral bioavailability of 2°Al incorporated into acidic
SALP in a biscuit or 1.5% basic SALP in cheese to be ~0.1%
(Yokel and Florence 2006; Yokel et al. 2008). Comparison of
normal urinary Al excretion to daily Al intake (the vast major-
ity being in the diet) resulted in estimated Al absorption of
0.1 to 0.3% (Ganrot 1986), ~0.1% (Priest 1993), and ~0.1%
(Nieboer et al. 1995). Therefore, the percent of Al entering
systemic circulation from food was assumed to be 0.1%. No

Table 1. Approximate systemic Al exposure for the first 24 h and total for the exposure/administration routes cited in this article.

Exposure/administration route

Approximate systemic Al exposure for the first 24 h

Total approximate systemic Al exposure for the
exposure/administration

Oral, intragastric (i.g.)

Intramuscular (i.m.) aluminum hydroxide

Intramuscular (i.m.) aluminum phosphate and
amorphous aluminum hydrophosphate sulfate in
Merck aluminum adjuvant

Intraperitoneal injection (i.p.)

Subcutaneous injection (s.c.)

Topical application

0.2% from solutions, 0.1% from food
0.5%
1.8%

100%
21%
0.01%

0.2% from solutions, 0.1% from food
0.5% daily up to 100% of the dose
1.8% daily up to 100% of the dose

100%
21%
0.01%

The generation of these values is described in the text.
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absorption from oral intake was assumed after 24 h. Al expos-
ure assessment for the orogastric route did not consider pos-
sible accumulation following multiple day dosing.

Many studies using the in situ rat gut preparation and
determination of Al in animal and human urine and plasma
and animal organs showed higher Al concentrations when
citrate was co-administered with Al, suggesting citrate
increased Al absorption from the gastrointestinal tract. The
increase, and number of demonstrations, with co-adminis-
tered citrate was greater than co-administration of other car-
boxylic acids (Yokel and McNamara 1988; Domingo et al.
1993; Gomez et al. 1994; Cunat et al. 2000; Poirier et al.
2011). Using the preferred method to quantitate oral bio-
availability, comparison of area under the curve after oral ver-
sus intravenous (i.v.) administration of the test substance, it
was shown that Al citrate absorption was twice that of the Al
ion (Zhou et al. 2008). Therefore, the percent of Al assumed
to enter into systemic circulation in the presence of citrate
was assumed to be 2-fold that in its absence.

It has been shown, with presumably similar daily Al intake
over time, mouse brain Al concentration increased several-
fold from 1 to 4weeks of age, was then fairly constant until
~1year of age, then declined several-fold from 1 to 2years
of age. Similar changes were not seen in rat brain (Takahashi
et al. 2001). Results of studies of Al concentration in humans
that presumably represent the general public showed lung,
liver, and kidney Al concentration in 1-12-year olds were
~4-, 1.5, and 2-fold of that in 0 to 3-month-olds (Stitch
1957). Serum Al increased with age from 20 to 80years in
healthy humans (Zapatero et al. 1995). Brain Al was ~2.3-fold
higher in 80-99year olds compared to premature infants to
6 month olds (Markesbery et al. 1984). Bone Al increased >
4-fold from the first to fourth quartile of 16-98-year-olds
(Hellstrom et al. 2005). No reports of longitudinal studies of
Al concentration in male or female reproductive organs were
found. The duration of increased Al exposure in most studies
that assessed its effect on reproductive function was much
shorter than the test subject’s life span. Expressing orogastric
route Al exposure on a daily basis without consideration of
sex organ Al accumulation over time when there is continued
Al exposure perhaps underestimates the resultant reproduct-
ive organ Al concentration.

The approximate systemic Al exposures after intramuscular
(i.m.) injection of Al hydroxide (0.5%) and aluminum phos-
phate and amorphous aluminum hydrophosphate sulfate in
Merck aluminum adjuvant (1.8%) are based on a study in rab-
bits (Flarend et al. 1997). The time course of Al absorption
from the injection site appears to depend on its chemical
species. In their, albeit limited, study addressing the rate and
extent of Al absorption after injection, Flarend et al. (1997)
gave i.m. injections of 2°Al-labeled aluminum hydroxide and
aluminum phosphate adjuvants to rabbits and determined
the area under the curve (blood concentration x time) for
26Al compared to i.v. injection (which delivers 100% into the
blood) of 2Al-labeled aluminum citrate. After im. 25Al-
labeled aluminum hydroxide adjuvant injection, 17%
appeared in the blood within 28 days. After the initial burst
of blood °Al at ~10h, blood %°Al was fairly constant for
28days, suggesting a relatively stable absorption rate. This

would equate to ~0.5% of the dose per day. After i.m. 2°Al-
labeled aluminum phosphate adjuvant injection the amount
in the blood was fairly constant for 28 days, representing a
total of 51% of the injected 2°Al, equating to 1.8% of the
dose per day. The daily approximate systemic Al exposure
after i.m. injection was assumed to be 0.5 or 1.8%, to a max-
imum of 100% if there was sufficient time.

After intraperitoneal (i.p.) injection 100% absorption in the
first 24 h was assumed, because absorption from the periton-
eal cavity is typically quite rapid and complete (Lukas et al.
1971; Braunlich et al. 1988; Suzuki et al. 1995). This is sup-
ported by a study showing liver had ~13% of an i.p. dose
5days later. Extrapolation to t=0 from the near linear liver
Al concentration at days 5, 10, and 25 suggests ~29% in the
liver (Kobayashi et al. 1990); this exceeds the percentage of
the human Al body burden in the liver (Krewski et al. 2007),
suggesting efficient Al absorption from the peritoneal cavity.

Absorption in the first 24 h after subcutaneous (s.c.) injec-
tion was taken to be 21%, based on Al lactate (Yokel and
McNamara 1985). After s.c. injection, no absorption from the
injection site was assumed after the first day based on the
~92% of injected Al (as the lactate) in the carcass (Al not
accounted for in 7 soft organs that did not include the skel-
eton, the major site of Al accumulation) after 20 injections
over 2 weeks (Melograna and Yokel 1984).

Following topical application, 0.01% of Al was assumed to
be absorbed based on reports of dermal Al absorption from
Al chlorohydrate in humans (Flarend et al. 2001; de Ligt
et al. 2018).

Once Al enters tissues and organs, it is slowly cleared.
Estimated half-lives for the rabbit liver, lung, and spleen were
74, 44, and 113 days, respectively (Yokel and McNamara 1989)
and ~150days for rat brain (Yokel et al. 2001). After human
i.v. injection of %Al citrate, approximately 50% of the °Al was
eliminated in the first day, 70% in the first 5days, and 98%
after approximately 3,000days. Estimated whole body 2°Al
half-lives were 1.4, 40, and 1700days, with a possible fourth
half-life of approximately 50years (Priest et al. 1995). Given
these long half-lives and the short interval between comple-
tion of Al exposure and termination of subjects in the studies
cited herein, the reduction of organ Al due to clearance would
be negligible and was not considered.

Animal diet Al content and daily food and water
consumption

Non-purified laboratory animal diets contain more Al than
the typical human diet due to their high grain content. Table
2 contains the reported Al concentration in laboratory animal
diets. Fifteen of the studies cited in Tables 3 and 6 reported
the source of the diet and its Al concentration (Table 2).
Some studies cited the diet source, but not its content or Al
concentration.! A few studies reported the diet contents but
not the Al concentration (McCollum et al. 1928; Myers and
Mull 1928; Yousef 2004; Yousef et al. 2005; Yousef et al. 2007;
Sakr et al. 2017). The rest of the studies cited in this report
did not state the diet source, contents, or Al concentration.



Table 2. Reported Al concentration of laboratory animal diets, as mg/kg diet.
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Species Al (mg/kg) Source Reference®
Mouse

160-180 Larsen diet Ondreicka et al. (1966)°

100 Standard mouse chow Golub et al. (1987)*

25 Dyets semi-purified diet Donald et al. (1989)?

200 Purina laboratory mouse chow Golub et al. (1992)

209-280 Panlab Domingo et al. (1993)

Essentially Al free Purified diet Fosmire et al. (1993)

134 Commercial rodent chow Fosmire et al. (1993)

7 Dyets purified diet Golub et al. (1996) and Golub and Germann (2001)?

257 Panlab Colomina et al. (1998)

350 Purina 5001C Oteiza et al. (1993)

3 Purified diet Oteiza et al. (1993)

64.5 Commercial mouse chow Dtugaszek et al. (2000)

370 Purina 5001 rodent chow Guo et al. (2001, 2002, 2005b, 2006, 2009)?

3.2 AIN-76 A purified diet for mice and rats https://altromin.com/products/specialdiets/aindiets/AIN-76A
Rat

119 Lab Blox McCormack et al. (1979)*

100 Gupta et al. (1986)

8300 Purina Rodent Chow 5001 Fleming and Joshi (1987)

190 Altromin 1320 Gawlik et al. (1987)

270 Sniff diet Gawlik et al. (1987)

73 Altromin C Gawlik et al. (1987)

66 Purina Certified 5002 rodent chow Hicks et al. (1987)

60 Panlab Domingo et al. (1987b)?

100 Wayne Lab Blox Fulton et al. (1989)

121 and 135 Purina rat chow Provan and Yokel (1990)

10.5 AIN-76 rat diet with lactalbumin as protein source Greger and Powers (1992)

103 Nohrlin Wilhelm et al. (1992)

279 AIN-76 rat diet Hsu and Hsu (1994)

110 Ralston Purina Rodent Kandiah and Kies (1994)

Chow

5 Semi-synthetic feed Glynn et al. (1995)

50 Animal diet Deng et al. (1998)

7-10 Semi-purified AIN-76 diet with lactalbumin (Teklad Test Diet) Sutherland et al. (1996) and Sutherland and Greger (1998)

20 Purified diet Deng et al. (2000)

227 Agway rat chow Yokel et al. (2001)

<9 Poirier et al. (2011)

22-29 Standard rat diet (CRF-1; Oriental Yeast Co., Ltd.) Hirata-Koizumi et al. (2011a, 2011b)?

988 Wu et al. (2012)

203 R/M-H, extruded (V1536) Weisser et al. (2019)
Guinea pig

~60 Proprietary chow Owen et al. (1994)

10 Special diet services, Ltd. Owen et al. (1994)

47 Purina guinea pig chow 5025 Golub et al. (1996)
Rabbit

1215 Purina rabbit chow Yokel (1985)?

54 Wayne rabbit feed Du Val et al. (1986)*

297 Purina rabbit chow Fulton and Jeffery (1990)

7-9 Bio-Serv purified rabbit diet Yokel and McNamara (1990)

@Aluminum reproduction studies that are summarized in this review.

Unless a semi- or purified diet was used, the diet may have
contained > 100mg Al/kg.

Typical daily food consumption for both male and female
mice is 0.2kg/kg body weight/day. Daily food and water
intakes are based on the average default values for rats and
mice (TERA). Assuming 100 mg Al/kg food and consumption
of 0.2kg food/kg/day, a mouse would take in 20mg Al/kg/
day from dietary sources. If absorption from the gastrointes-
tinal tract is 0.1%, 20 ug Al/kg would enter systemic circula-
tion daily. An assumption that oral Al bioavailability from
grain-based laboratory animal feed is comparable to other Al
sources is based on the fate of orally consumed Al It is
assumed to be solubilized at low gastric pH to a common
species that is then precipitated in the upper intestine due
to its pH being close to that of the nadir of Al solubility

(Reiber et al. 1995; Harris et al. 1996). It was speculated that
metal bioavailability from a purified diet would be consider-
ably greater than from commercial grain-based chows that
contain metal ligands (Donald et al. 1989). There are no
reports of Al bioavailability from grain or purified animal
diets to verify either assumption.

For rats, typical daily food consumption by males and
females is 0.09 and 0.1kg/kg body weight/day, respectively
(TERA). Assuming 100mg Al/kg food and consumption of
0.1 kg food/kg/day, a rat would take in 10 mg Al/kg/day from
the diet. This is consistent with calculations conducted in
two studies that estimated daily Al intake from drinking
water (which provides ~5% of daily Al intake in humans and
would represent <1% in laboratory animals due to much
higher dietary Al content) and food (containing 22-29 mg Al/
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kg) to be ~2mg Al/kg bw/day (Hirata-Koizumi et al. 2011a,
2011b). If absorption from the gastrointestinal tract is 0.1%,
this would produce a systemic Al intake (approximate sys-
temic Al exposure) of 10 ug/kg/day in the rat.?

The primary source of Al intake in the general human
population is from foods and beverages, with over 95% most
commonly from food. Daily Al intake by adults from 70
English-language published studies since 1990 averaged
7.4mg, with a median of 5.3mg (calculated by the author).
Assuming 70kg body weight, 7.4 mg/day results in a daily
intake of 106 ng/kg. Assuming 0.1% Al absorption, the daily
systemic Al exposure would be ~0.1ng/kg, or 0.5 to 1% of
that calculated for the mouse and rat. However, some people
consume much more dietary Al than these averages. The
highest average reported in these studies is 28.5mg/day
(Gharib 2004) and one individual’s daily consumption was
reported to be 176 mg (Aung et al. 2006). Major contributors
to Al in food are the approved food additives acidic sodium
aluminum phosphate as a leavening agent, resulting in high
Al levels in baked goods; basic sodium aluminum phosphate
as an emulsifying agent in cheese; and sodium aluminosili-
cate as an anticaking agent, in non-diary creamer and single
packets of salt (Yokel 2013). In China, fried bread, and in
Japan jellyfish treated with alum, often contain very high Al
levels. Tea beverage typically contains 1-4mg/L and can
significantly increase daily Al intake. Consumption of
Al-containing pharmaceuticals, such as antacids/phosphate
binders, can result in ingestion of up to 5000 mg Al/day
(Yokel and McNamara 2001). Because >90% of Al is elimi-
nated by the kidneys, reduced renal function and end-stage
renal disease can increase Al accumulation and the risk of Al-
induced adverse effects.

The average age of first-time mothers and fathers in the
United States is 26 and 31years, respectively. Typical total
dietary Al intake in the first 26years of life for a female is
~1500mg/kg and for a 31-year old male ~1700mg/kg.
Assuming 0.1% absorption, total systemic Al exposures would
be approximately 1500 and 1700 png/kg, respectively. Some of
the studies assessing Al reproductive toxicity in mice and rats
provided calculated Al exposures during gestation that
exceeded these values.

Introduction to the tables of study summaries

The reports of studies assessing Al reproductive toxicity often
included some measure of variability. For this review, only
average (mean) values are reported. Endpoint-specific
responses of Al-treated subjects were calculated as a percent-
age of control subjects by the author, when not provided in
the report, from the report tables and/or figures. All indica-
tions of statistical significance are from the original reports.
In studies of Al in drinking water and other exposure/admin-
istration routes, concentration/dose entries of 0 indicate no
added Al. Daily Al exposure was calculated from the added
Al concentration in the food, water, or as administered by
another route to the subject; times the mass of Al/mass of
the Al species when the exposure was expressed as mass or
moles of Al species; and adjusted for body weight when the

Al exposure was expressed as mass of feed or volume of con-
sumed water. The ratios of Al mass/Al species mass are in a
footnote to Table 3. Systemic Al exposure was calculated
from the daily Al exposure times the Al mass/Al species mass
times the fraction absorbed, as described in a footnote to
Table 3.

Addition of Al to drinking water can decrease water
intake, possibly due its astringent property (Marcussen et al.
2013). For example, control mice consumed 6 ml water daily
whereas mice consuming 750 mg/L Al,(SO,)s-18H,0 (provid-
ing 61 mg Al/mL) in the drinking water consumed 4.4 ml
water daily (Clayton et al. 1992). Addition of 3000 ppm
Al5(SO,4); decreased water consumption ~30-35% (Hirata-
Koizumi et al. 2011b). As most studies did not report fluid
consumption, it was assumed that the target dose
was delivered.

All available literature was included in the tables, without
inclusion/exclusion or ranking based on quality. Some studies
were conducted following more rigorous protocols, providing
more confidence in their results. The European Union
enacted a chemical regulation (REACH; Registration,
Evaluation, and Authorization of Chemicals) that includes
requirements for reproductive toxicology for substances man-
ufactured in or imported into the European Union at >10
metric tons/year (Scialli 2008). The requirements for such
high production volume chemicals include screening tests for
reproductive toxicity (OECD Test Guideline 421 or 422) in one
animal species and for importation of 100-1000 metric tons/
year an extended one-generation reproductive toxicity test
(OECD Test Guideline 443) or a 2-generation reproductive
study if it was initiated before 13 March 2015 (OECD Test
Guideline 416). Three studies were conducted following an
OECD Test Guideline (Beekhuijzen 2007; Hirata-Koizumi et al.
2011a, 2011b). Four studies were conducted following good
laboratory practice (GLP) (Beekhuijzen 2007; Wise et al. 2008;
Hirata-Koizumi et al. 2011a, 2011b). When studies included
several treatment conditions, the results are presented in the
same order as the treatment conditions.

Studies and experimental conditions that did not
appreciably increase Al exposure above that
provided by the diet

There were many studies that included added Al exposures
that, by calculation, contributed less to systemic Al exposure
than the diet (20 and 10pug Al/kg/day for mice and rats,
respectively). These exposures are marked in italics in Tables
3 and 6. None of the female exposure studies using added Al
exposures that contributed less to the approximate systemic
Al exposure than the diet resulted in statistically significant
differences from controls, with the exception of the two
reports by Trif et al. (2008, 2010) and some significant differ-
ences in the Miska-Schramm et al. (2017) report. These low
additional Al exposures raise doubt about results that were
reported as significantly different from control (no added
Al) exposure.



Table 3. Results of studies of females exposed to additional Al.

CRITICAL REVIEWS IN TOXICOLOGY @ 7

Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and

(total pg/ kg)a'b

Study results*

Reference

Rats, 45-55 g, females
and males

A mixture of pied and
albino rats, females
and males

Mice

Albino rats,4 weeks, 30 to
509, females and males

Rats, 50 to 100 g, females
and males

Dobra Voda strain mice,
females and males

Holtzman rats,
200-240 g, females

Sprague Dawley
rats, females

Sprague Dawley rats and
New Zealand white
rabbits, females

Beagle dogs, 7-9 months,
females and males

NMRI strain mice, 6-8
weeks, 24-26 g, females

Rats, females

New Zealand white rabbits,
3.3-5.5kg, females

BALB/c mice, 43-50
days, females

Sprague Dawley rats,
240-280 g, females
and males

Sprague Dawley rats,

240-280 g, females

Swiss Webster mice, 6-8
weeks, 30 g, females

0, 0.067, or 0.063% Al as AlCl3-6H,0 or
baking powder in the diet started as
young rats and raised to maturity

0 or 2mg of Al as KAI(SO,), added to
the stock diet daily for >100 days
that delivered an average of 8 mg Al/
kg bw/day

Bread estimated to deliver 10.5-30 mg
Al/day (Lyman and Scott 1930)

Fed several generations a diet containing
2-4% sodium Al sulfate baking
powder for 2 years

Fed three generations a diet containing 2
to 3.4% sodium Al sulfate
baking powder

0 or 19.3 mg/kg/day Al as AlCl; in the
drinking water and 170 ppm Al in the
diet for 180-390 days

Single treatment: 0 or 40 mg/kg AlCl5 i.p.
on GD 9 or 13

Repeated treatment: 0, 75, 100, or
200 mg/kg on GDs 9-13 or 14-18

119 ppm Al in the diet supplemented
with 0, 500, or 1000 ppm Al as AlCl;
on GD 6, 9, 12, 15, and 18

74 or 1600 mg/kg Zeolite (20.1% Al) by
gavage GD 6-15 (rats) or 74, 345, or
1600 mg/kg by gavage GD
6-18 (rabbits)

112, 361, or 1087 mg sodium aluminum
phosphate/kg/ day in the diet for
6 months

0.1 ml of 50 or 100 mM AICl5-6H,0 on
GD 3 or 50mM on GD 8 i.v.

1:4 mixture of Maalox TC and water
starting GD 2

0, 25, 100, or 400 umol Al/kg as Al
lactate s.c. GD 2-6, 9-13, 16-20
and 23-27

0, 100, 150, or 200 mg/kg AICl; i.p. or
200 or 300 mg/kg i.g. GD 7 to 16

0, 180, 360, or 720 mg/kg Al(NO;);-

9H,0 i.g. daily for 60 days before mating
(males) and 14 days before and
throughout mating (females)

0, 180, 360, or 720 mg/kg/day Al(NOs);-
9H,0 i.g. GD 14 through lactation day 21

81-90 (100) [control], 413 (500), or 844
(1000) ppm Al as Al lactate in diet
from GD 0 to PND 21

0, 10, 20, or 40mg Al/kg as Al lactate s.c.

GD 3,5,7,9, 11,13, and 15

45 (~945)

9 (800)

~85-240 daily

~220-468 daily

~235-400 daily

7.8
(1403 over 180 days)

8080-40,400
(8080-210,080)

16 or 32
(80 or 160)

30 or 643

(297 or 6432)

30, 139, or 643

(387, 1803, or 8362)
9.5, 30, or 92

(1738, 5600, or 16,862)

621 or 1242
(621 or 1242)

142, 567, or 2268 per injection

(2268, 9072, or 36,288)

20,200, 30,300, 40,400, 81, or 121
(202,000, 303,000, 121,200, 808,

or 1212)

26, 52, or 104

(700, 1400, or 2800 through GD 13)

26, 52, or 104

(207, 415, or 829 through GD 21)

84, 171, 2100, 4200, or 8400
(1425, 2913, 14,700, 29,400,
or 58,800)

The growth, reproduction, external appearance, and autopsy of
rats on the Al-added diets were the same as controls

Four generations were raised consuming the diet. Average litter
size of the first and second litters was 120 and 112% of
controls. No gross abnormalities were seen at autopsy

Decreased number of offspring (fertility), ovarian atrophy, and
histological changes in the ovaries
No appreciable effect on reproduction

No effect on fertility

No significant differences in number of litters or offspring
between treated and control mice. Al-dependent growth
retardation was seen in the second and third generation. No
pathological tissue changes were seen.

After the single injection on GD 9 or 13 GD 20 fetal weight was
104 and 103% of controls.

The number of (a) implantations, (b) resorptions, and (c) normal
fetuses from GD 9 or 13 injection was (a) 122 and 134,

(b) 43 and 267, and (c) 111 and 100% of controls.

Repeated treatment with 100 and 200 mg/kg caused some
maternal death, with ascites, adhesions between organs, and
periheptic granulomas.

Fetal weight after (a) 75 mg/kg GDs 9-13 or 14-18, (b) 100 mg/
kg GDs 9-13 or 14-18, or (c) 200 mg/kg GDs 9-13 or 14-18
was (a) 83* and 98, (b) 110 and 106, and (c) 87* and 53%*
of controls.

Fetal crown-rump length was (a) 92* and 99, (b) 98 and 98,
and (c) 91* and 69%* of controls.

Implantations were (a) 110 and 81, (b) 60 and 93, and (c) 60
and 11% of controls.

Resorption percent was (a) 17 versus 0 and 3 versus 2, (b) 1
versus 3 and 10 versus 0, and (c) 37 versus 0 and 12 versus
5 compared to controls.

Malformation percent was (a) 0 and 0, 0 and 0; (b) 1 and 0, 8
and 1; and (c) 0 and 0, and 0 and 0 compared to controls
Live and resorbed or dead fetuses were 93 and 93, and 200 and

213% of controls.

Fetal body weight and crown-rump length were 101 and 104,
and 100 and 103% of controls.

There were no statistically significant increases of any
abnormalities

There were no adverse effects on the dam, embryo, or fetus

Gross autopsy and histopathological exam showed the normal
range of variations of the gonads

On GD 17 the % of injected mice with implantations was 130,
106, and not reported; % resorptions 114, 214, and 86%;
fetal body weight 98, 94, and 97; fetuses with less mature
skeletons 147, 57, and 180%; and fetuses with internal
hemorrhage 18, 424*, and 200% of controls

Pilot study showed 40% failed to deliver pups.

Offspring weighed 91%* of controls

The percentage of does bred producing offspring were 86, 90,
and 108; number of offspring 95, 90, and 80; and % of
stillborn or dead offspring within 2 days postpartum 57, 171,
and 828% of controls

Does died on the third day of 200 mg/kg/day i.p. dosing.

Placental and fetal weight was 53, 107, no result, 112, and 108;
and 62, 90, no result, 83, and 90% of controls.

Resorptions were 291,1609, no result, 581, and 939% of controls

The fertility index was 78, 111, and 111; corpora lutea 93, 87,
and 80%; total implants 96, 91, and 102; early resorptions
700, 100, and 800; late resorptions 60, 93, and 73; live
fetuses 92, 89, and 89; and dead fetuses on GD 13 400, 200,
and 300% of controls

Number of living offspring/litter after 1day of nursing was 100,
69, and 88% of controls.

Number of dead offspring/litter after 1day of nursing was 0,
0.3, 1.1, and 1.6.

Offspring body weight was 99, 96, and 81%; body length 100,
98, and 91%; and tail length 104, 100, and 84%™* of controls

Diet Al did not affect fertility.

Pup weights and crown-rump lengths at birth in 500 and 1000
groups were significantly lower than controls.

Completed pregnancies of s.c. injected females were 89, 71, and
31% of controls.

Al treatment did not affect fetal resorption; number of fetuses;
or fetal, placental, or uterine weight. No major

McCollum
et al. (1928)

Myers and
Mull (1928)

Schaeffer and
Fontes (1928)

Lyman and
Scott (1930)

Mackenzie(1932)

Ondreicka
et al. (1966)

Benett
et al. (1975)

McCormack
et al. (1979)

Nolen and
Dierckman
(1983)

Katz et al. (1984)

Wide (1984)

Anderson

et al. (1985)
Yokel (1985)

Cranmer
et al. (1986)

Domingo
et al. (1987a)

Domingo
et al. (1987b)

Golub
et al. (1987)

(continued)
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Table 3. Continued.

Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pg/kg)*®

Study results* Reference

Sprague Dawley rats,
240-280 g, females

Wistar rats,
~200 g, females

Swiss mice,
28-32g, females

Swiss Webster mice, 8-12
weeks, females

Wistar rats, females

Wistar rats,
~220g, females

Humans

Sprague Dawley rats,
230-260 g, females
and males

CBA mice, 25g, females

Swiss albino mice,
28-32 g, females

0, 180, 360, or 720 mg/kg Al(NOs);-
9H,0 i.g. GD 6-14

0, 96, 273 or 399 mg Al/kg/day as AlCl;
or 0, 96, 195, or 378 mg Al/kg/day as
Al lactate in the diet from GD1 to
parturition

0, 665, 133, or 266 mg/kg/day Al(OH);
i9. GD 6-15

25 (control), 500, or 1000 mg Al/kg diet
as Al lactate from GD 0
through lactation

0, 192, 384, or 768 mg/kg/day as Al(OH);
i.g. GD 6-15

0 or 400 mg Al/kg/day as Al lactate in
the diet GD 1-7, 1-14, or GD
1-parturition

88 pregnant women exposed to excess
Al in the drinking water

0 or 133 mg Al/kg as Al(OH)s, Al citrate,
or Al(OH); with citric acid (62 mg/kg)
i.g. GD 6-15

0 or 200 mg/kg Aly(SO4)s-

18H,0 i.p GD 10-13 or 0 or 750 mg/I
Aly(S04)3:

18H,0 i.g. GD 10-17

0 or 57.5mg Al/kg as Al(OH); or Al
lactate, or Al(OH); with lactic acid
(570 mg/kg) i.g. GD 6-15

26, 52, or 104
(233, 467, or 933)

96, 273, or 399
(2016, 5733, or 8379)
96, 195, or 378
(2016, 4095, or 7938)

46, 92, or 184
(460, 920, or 1841)

102 or 203
(2030 or 4060)

133, 266, or 531
(1329, 2657, or 5315)

400
(2800, 5600, or 8,000)

Excess Aly(SO,)3 in the drinking
water raising the maximum
recorded Al concentration to
600 mg/l. The EU guideline is
<0.1mg/I

266

(2660) as Al(OH)3

532

(5320) as Al citrate, or Al(OH); with
citric acid

648,000
(2,592,000)

4860
(38,880)

115
(1150)

malformations were seen. Minor abnormalities in 10 and
20 mg/kg offspring were 192 and 275% of controls. Fetal
crown-rump length was lower* in the 20 mg/kg offspring

On GD 20 doe gestational weight gain was 81%, 80*, and 81%*
and placental weight was 101, 78%, and 85%* of controls.

The number of litters was 80, 70, and 80; corpora lutea 96, 108,
and 106; implants 82, 106, and 107; resorptions 150, 250,
and 250; and live fetuses 76*, 102, and 109% of controls.

There were 0, 0.7, 0.2, and 0.1 dead fetuses/doe.

The percent of litters with runt fetuses was 0, 25, 43, and 62.

The fetal weight was 86%, 84%, and 66*; body length 86, 84,
and 66*; and tail length 88*, 90*, and 85%™ of controls.

Of 19 assessed malformations and variations, significant Al
effects were seen in micrognathia (360 mg/kg); and
decreased supraoccipital bone ossification, hypoplastic
deformed ribs, vertebral alterations, and sternebral variations
(all 3 groups). Significant hematomas were seen in the
768 mg/kg in the abdominal area, thorax, and limbs

Litter size at birth was 123,123, and 131; and 93, 96, and 96%
of controls.

Mortality PND 1 was 177, 1986*, and 1470*; and 46, 31, and
520%™ of controls.

Pup weight PND 1 was 97, 84*, and 78%; and 101, 100, and
85%* of controls.

On GD 18 the number of litters was 90, 95, and 90;
implantations 108, 103, and 97; resorptions 775, 625, and
350; live fetuses per litter 85, 83, and 88%; male/female sex
ratio 71, 76, and 84; fetal body weight 101, 102, and 101;
and fetal body length 100, 104, and 100% of controls.

There were no remarkable external malformations, internal soft-
tissue defects, or skeletal abnormalities

There were no differences in pregnancy rate, litter size, sex
ratio, birth weight, body length, or perinatal mortality.

Gestation length was shorter or longer than the controls in 4 of
17 litters.

Gravid uterine weight was 99, 101, and 95; number of litters 95,
95, and 100; corpora lutea/doe 109, 113, and 108; implants/
litter 107, 111, and 111; preimplantation loss 113, 104, and
94; live fetuses/litter 103, 96, and 105; post-implantation loss
662, 2269*, and 900; non-viable implants/litter (early and
late resorptions and dead fetuses) 675, 2375, and 1025; fetal
body weight 90, 95, and 93; and male/female sex ratio were
85, 119, and 89% of controls.

The litter size was 93, 89, and 81; post-natal mortality 212, 288,
and 154; and fetal body weight one day after parturition
were 91, 91 and 93% of controls.

There were no significant effects on the number of dead pups
or offspring sex

Births up to 42 weeks after the contamination showed a
significant reduction of the percentage with spontaneous
onset of labor among the exposed compared to unexposed,
but no difference in percentage of premature rupture of
membranes, mean gestation, pregnancies estimated to be <
37 weeks, or miscarriages in hospital.

Newborns showed no difference in mean birth weight;
percentage with low birth weight, admitted to special care
baby unit, or congenital defects; head circumference, male/
female ratio, or Apgar score among the exposed compared
to unexposed

GD 20 percent pregnant rats was 106, 88, and 112; gravid
uterine weight 106, 90, and 100; number of litters 106, 88,
and 112; corpora lutea/doe 101, 99, and 102; implantations/
litter 101, 84, and 103; preimplantation loss/litter 105, 185,
and 100; viable implants/litter 102, 81, and 96; nonviable
implants/litter 83, 150, and 250; post implantation loss/litter
95, 203, and 276; male/female sex ratio 108, 99, and 94; and
fetal body weight were 103, 104, and 94%™* of controls.

Fetal a) parietal, b) occipital, and c) sternebrae delayed
ossification; and d) absence of xiphoids indicating delayed
ossification were a) 100, 80, and 109; b) 70, 161, and 213%;
¢) 109, 107, and 134%; and d) 85, 165%, and 155%*
of controls

Al exposure did not affect gestation length, litter size, or sex
ratio.

Pups born to does that received i.p. Al weighed ~95%* of
controls. Weight of pups born to does that received oral Al
were not significantly different from controls

GD 18 gravid uterine weight was 91, 89 and 80% of controls.

The number of litters was 85, 77, and 100; implantation sites/
litter 86, 99, and 82; resorptions 121, 106, and 186; post-
implantation loss 141, 138, and 240; live fetuses/litter 84, 97,
and 77; male/female sex ratio 106, 101, and 98; and fetal
body weight/litter 102, 84*, and 102% of controls.

The number of dead fetuses was 0, 0, 1, and 1.

Cleft palate, dorsal hyperkyphosis, and parietal, delayed
ossification, not seen in controls, were produced, mostly in
Al lactate-exposed offspring

Paternain
et al. (1988)

(Bernuzzi
et al. (1989)

Domingo
et al. (1989)

Donald
et al. (1989)

Gomez
et al. (1990)

Muller

et al. (1990)

Golding
et al. (1991)

Gomez
et al. (1991)

Clayton
et al. (1992)

(Colomina
et al. (1992)

(continued)



Table 3. Continued.

CRITICAL REVIEWS IN TOXICOLOGY @ 9

Approximate systemic Al
exposure as pg/kg/day and

Al-treated subjects Al exposure (total pg/kg)*® Study results* Reference
THA strain rats, females 0, 90, 180, or 360 mg/kg AlCl; i.g. GD 8 36, 73, or 145 There were no differences in the mean number of implantation ~ Misawa and

to 20 (473, 945, or 1891) sites, birth rate, or mean litter size. Shigeta (1992)
THA strain rats, females 0, 900, or 1800 mg/kg AlCl; i.g. GD 15 364 or 727 There were no differences in the mean number of implantation ~ Misawa and

Wistar rats,
~260 g, females

CBA/T6 mice, 10-12
weeks old

Swiss albino mice,
28-32 g, females

B6C3F1 mice, 4 weeks old,

females and males

Charles River CD
rats, females

SPRD rats, 240-2809, 7
weeks, females
SPRD rats,
240-280 g, females

SPRD rats,
240-280 g, females

CBA/T6 and C57/BL/6J mice

Swiss albino mice,
28-32 g, females

Charles River CD-1 mice,
25-30g, females

Charles River CD-1 mice,
25-32 g, females

Mouse oocytes

Swiss mice, 5-6 weeks,
30-35g, females

Swiss Webster mice, 8
weeks, females

Naval medical

research institute mice,

24-33 g, females

0 or 400 mg Al/kg/day as Al lactate in
the diet GD 1-19

0 or 200 mg/kg Aly(SO4)5 i.p. GD10 to 13

0 or 103.8 mg Al/kg as Al(OH); or
Al(OH); with ascorbic acid (85 mg/kg)
i.g. GD 6-15

1, 2.5, 5, and 10% KAI(SO4),-12H,0 in
the diet for 20 months

0, 5, 25, 50, 250, 500, or 1000 mg/kg Al
lactate i.g. GD 5-15

0, 2.45, 4.9, or 9.8 mg/kg Al lactate s.c.
GD 7-15

0, 2.45, 4.9, or 9.8 mg/kg Al lactate s.c.
GD 7 to 15

0 or 9.8mg/kg Al lactate s.c. GD 7 to 15
0, 750, 1000, or 1250 mg/I

Aly(SO4)3 in the drinking water GD 10-17
or 200 mg/kg i.p. GD 10-13

0, 37.5, or 75 mg/kg AlCl; i.p. GD 6-15

0, 60, 120, or 240 mg/kg AlCl5 i.p.
GD 6-15

0 or 398 mg/kg Al(NOs)s-
9H,0
i.g. GD 6-15

Al nitrate, 30 or 60 mg/I

0 or 200 mg/kg AlCl; i.g. for 30 days

0, 100, 500, or 1000 mg Al/kg diet as Al
lactate GD 0 to PND 35

0 or 150 mg/kg AlCl; i.p. on GD 10, 11,
or 12

(364 or 727)

400
(7600)

31,600
(126,400)

208
(2076)

114, 285, 570, or 1140
(69,312, 173,280, 346,560, or
693,120)

0.92, 4.6, 9.2, 46, 92, or 184
(10, 51, 101, 506, 1012, or 2024)

47, 95, or 189
(473, 947, or 1893)
47, 95, or 189
(473, 947, or 1893)

189

(1893)

64, 86, or 107
(516, 688, or 860)
31,300

(126,400)

7575 or 15,150
(75,750 or 151,500)

12,120, 24,240, or 48,480
(121,200, 242,400, or 484,800)

57
(573)

81
(2424)

20, 102, or 203
(609, 3045, or 6090)

30,300
(30,300)

sites, birth rate, or mean litter size.

Female and male offspring weight was 76* and 66*; and 73*
and 64%* of controls

Litter size was 103% of controls.

GD20 fetus body weight was 97 (upper uterine horn) and 101%
of controls (lower uterine horn).

GD20 fetus calcium was 115%, phosphorus 104, Al 286, copper
48, zinc 103, and magnesium were 90%* of controls

Offspring birth weights were 88%* of controls.

There were no significant effects on GD 18 doe body and
uterine weight, number of implantation sites, post-
implantation loss %, resorptions/litter, live and dead fetuses/
litter, fetal body weight, or fetal sex ratio.

No fetal gross external, visceral, or skeletal malformations
were seen

Vaginal mucosal epithelium keratinization was 113, 94, 104, and
98% of controls.

Vaginal lymphocytic infiltration was 95, 127, 18, and 108%
of controls.

Female offspring weight was 101, 112, 103, 100, 99, and 101
and anogenital distance 100, 96, 99, 105, 95, and 93% of
controls.

Male offspring weight was 99, 105, 98, 94, 94* and 98;
anogenital distance 93*, 94%, 96, 97 and 90%, 98 and 93*,
and 97; and testicular weight 105, 112%, 92%, 99 and 110%,
119 and 102, and 96% of controls

The number of offspring/litter was 95, 111, and 111 and their
weights were 98, 96, and 93% of controls

The number of offspring/litter was 86, 105, and 112 and their
weights were 100, 100, and 98% of controls.

The number of pups/litter and their weights were 112 and 93%
of controls

There were no effects on gestation length, litter size, sex ratio,
or pup mortality.

Offspring weights of CBA pups exposed to 750 or 1000 weighed
less than controls. C57/BL/6J pups exposed to 1250 mg/I
weighed 5% less than controls. Pups of both strains exposed
to i.p. Al in utero weighed less than controls

GD 18 gravid uterine weight was 89 and 79%, implants/litter 83
and 82, live fetuses/litter 91 and 87, early resorptions/litter O
and 438, dead fetuses/litter 875 and 125, post-implantation
loss 368 and 521, % male sex 86 and 96, and fetal body
weight was 87 and 82%* of controls.

Al exposure did not increase fetal morphologic defects

GD 18 percentage of dead fetuses was 0, 0, 15*, and 50%;
abortions 0, 9, 30%, and 43%; early deliveries 0, 0, 0, and 0;
resorbed litters 0, 0, 5, and 0; and does with live fetuses
100, 91%, 50* and 0%*.

For the 60 and 120 mg/kg exposed does gravid uterine weight
was 84 and 76*, implants/litter 104 and 98, live fetuses/litter
94 and 91, non-viable implants/litter 192 and 154 , early
resorptions 36 and 55, late resorptions 950 and 600, male/
female sex ratio 100 and 93, and fetal body weight 79* and
79%* of controls.

There was an exposure-dependent increase in fetal asymmetrical
sternebrae and frontal bone reduced ossification

Al caused 56%™* doe mortality, abortion in 3% and early delivery
in 6%* compared to 0% in controls.

The doe body, gravid uterine, and fetal weights were 67*, 49%,
and 58%* of controls. Implants, live fetuses, and non-viable
implants per litter were 95, 82, and 727% of controls.

Of the non-viable implants Al increased early and late
resorptions and dead fetuses.

Male/female sex ratio was 112% of controls. Significant fetal
effects were internal alterations and reduced and delayed
ossification of multiple bones

First polar body extrusion was inhibited and viability affected,
but there was little effect on germinal vesicle breakdown

Ovarian protein was 69*, uterine protein 59*, ovarian 3-
hydroxysteroid dehydrogenase 44*, and 17B-HSD activities
(enzymes involved in steroid [estrogen and progesterone]
production) 46%, ovarian cholesterol 198*, uterine glycogen
164*, phosphorylase 43*, and serum estradiol 66%
of controls

There were no differences in the number of does completing
pregnancy, gestation length, or litter size at birth

Resorption rates were 25.5, 21.2, and 23.3% and 0% in vehicle-
exposed does.

GD 18 fetus body weights were 88*, 90*, and 93%* of controls.

Crown-rump length was not affected.

Shigeta (1993)

Muller
et al. (1993)

Rankin and
Manning
(1993)

Colomina
et al. (1994)

Oneda
et al. (1994)

Agarwal
et al. (1996)

Gonda

et al. (1996)
Gonda and

Lehotzky

(1996)
Gonda

et al. (1997)
Alleva

et al. (1998)

Colomina
et al. (1998)

Albina
et al. (1999)

Bellés et al. (1999)

Shen et al. (1999)

Chinoy and
Patel (2001)

Golub and
Germann
(2001)

Malekshah
et al. (2005)

(continued)
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Table 3. Continued.

Approximate systemic Al
exposure as pg/kg/day and

Al-treated subjects Al exposure (total pg/kg)*® Study results* Reference
Percent of Al-exposed offspring with fetal anomalies was 29%,
20*, and 13%*. Percent of vehicle-exposed offspring with
fetal anomalies: 3.4, 4.3, and 4.1
Wistar rats, females (~11 0, 40, 200, or 1000 mg/kg/day AICl; i.g. 20, 98, or 494 The mating index was 100, 90, 100, and 100; number of Beekhuijzen

weeks), males from 2 weeks prior mating to > (554, 2744, or 13832) pregnant females/number of females paired 100, 90, 90, and (2007)

Wistar rats,

females

Sprague Dawley rat, ~5

weeks, females

Humans giving 76,788

births, females

Wistar rats, females

and males

Sprague Dawley rats, 5

weeks, females
and males

0, 19, or 38 mg/kg/day AlCl; i.p. GD 0-6

50 (control), 200, 400, or 1000 ppb
Al as Aly(SO,)3 in the drinking
water for 6 months

0 or 0.1125mg Al as Merck Al adjuvant
i.m. into each hindlimb premating
weeks 5 and 2 and GD 6. FO females
bred at 12 weeks of age

Mean exposure to 0.042 ug/m? in PM, 5
captured Al in Connecticut for
3.5 years

0, 200, 400, or 1000 ppb Al,(SO,); in the
drinking water for 3 months before
mating FO generation. F1 offspring
had same exposure to
sexual maturity

0, 120, 600, or 3000 ppm Al;(S04)3

in the drinking water for 10 weeks
before mating and throughout the
lactation period for FO and F1
generation rats, resulting in mean
144, 71.5, or 316 mg/kg bw/day
Aly(S0,)3 intake by FO females and
15.3, 74.2, or 338 mg/kg bw/day
Aly(S0,)3 intake by F1 females

3838 or 7676
(26,866 or 53,732)

0.24, 0.48, or 1.2
(44, 87, or 218)

48.6 at GD21
(450 at GD21)

0.00021¢
(0.27)

0.24, 0.48, or 1.2
(22, 44, or 109)

FO females
4.6, 23, or 100

(319, 1582, or 6990 over 10 weeks)

F1 females
4.8, 23, or 107

(338, 1641, or 7477 over 10 weeks)

GD20 number of pregnant females was 50%, 50%, and 44*;
viable fetuses 91, 52*, and 83; implantation sites 107, 81,
and 116; and resorptions/implantation sites 1303*, 2481%,
and 1945%™* of controls.

Histology of ovarian sections showed highly congested blood
vessels throughout the ovary, with a large number of atretic
follicles at different stages of development

38mg/kg/day resulted in sluggishness, paralysis, decreased body
weight, diarrhea, and death in 40% of the does.

GD20 doe body weight was 48, 35*, and 28* g; placental
weight 0.17, 0.15, and 0g; fetal weight 1.2, 1.0 and 0g;
viable fetuses 8.3, 5.17*, and 0; implantation sites 8.3, 6.7,
and 3.0%; resorptions/implantation sites 0, 23* and 100%%*;
and pregnant females 100, 60* and 17%*.

The highest Al dose caused highly congested blood vessels over
the ovaries with a large number of atretic follicles at
different developmental stages

Sexual cycle duration was 108, 116, and 114% of the control
group. The percent normal proestrous was 100, 94*, 100,
and 97%; estrous 62, 29%, 31%, and 41%; diestrous | 62, 56*,
62, and 47*; and diestrous Il (estrous cycle phases) 97, 62%,
81*, and 94%*

No significant effect was seen on FO female body weight.
Fecundity index was 101, GD21 corpora lutea/pregnant female
100, peri-implantation loss 104, implantations/pregnant
female 100, resorptions/implants 112, post-implantation loss

112, live fetuses/pregnant female 99, female fetal weight
101, and male fetal weight 101% of controls.

No significant differences in fetal morphology were seen.

F1 generation showed no significant reproductive effects

The interquartile range gestational exposure (0.03 ug/m?®) was
associated with a 5% decrease in birthweight (95%
confidence interval) and 11% increase in risk of small-at
term birth (95% confidence interval).

The authors saw severe structural changes in FO and F1 ovary
and uterus of Al-exposed rats, summarized as congestive
and degenerative changes.

The ovary had vacuolar epithelial cells, follicles with large
oocytes, edema of the parenchymatosa zone, and follicle
and parenchyma destruction.

The uterus showed necrosis, uterine epithelium lining
destruction, vascular congestion, connective tissue necrosis
and reduction, and uterie epithelium detachment.

The mating index was 95.8, 100, 100, and 100% in the FO
generation and 100, 95.8, 100, and 95.8% in the F1
generation.

Fertility was 95.7, 91.7, 100 and 95.8% in the FO generation and
91.7, 82.6, 91.7, and 91.3% in the F1 generation.

There were no treatment-related differences in the number of
pups delivered.

There were no treatment-related alterations in the
histopathology of female reproductive organs or number of
primordial follicles in the ovary of F1 females between the
control and highest Al exposure group.

There was no significant effect of Al treatment on ovary weight
of F1 females.

(~9 weeks) 3 PNDs 100; fecundity index 100, 90, 90, and 100; and fertility index
90, 100, 100, and 100%.
Gestation duration (number of days between confirmation of
mating and the beginning of parturition) was 100, 100 and
100%; implantation sites 95, 84, and 98; and corpora lutea
98, 81, and 91% of controls.
PND 1 male offspring weight was 93, 97, and 98; female
offspring weight 100, 104, and 100; and live offspring 102,
103, and 99% of controls. There were 0, 1.3, 0.1, and 0 dead
offspring/litter.
Microscopic assessment of cervix, clitoral gland, ovaries, uterus,
and vagina showed no significant difference from controls
Wistar rats, 3 0 or 3mg Al as Al(OH); gel s.c. 10,161 Ovary weight 3 days later was 104% of controls Kimura
weeks, females (10,161) et al. (2007)
Japanese black cows, 15 or 30mg Al as AI(OH); gel i.m. once.  A) 0.78 or 0.36 A). Seven days after 30 mg Al the number of corpora lutea, total
411 kg, females 48h later luteolysis induced, then (1.3 or 2.6 after 7 days) ova recovered, transferable embryos, or large follicles was
artificially inseminated B) 0.18 115, 83, 78, and 243%* of those given 15mg.
0 or 15mg Al i.m. once (1.3 after 7 days) B) Corpora lutea, large follicles, total ova recovered, and
15mg Al i.m. on 5 occasions every 2to () 0.18 transferable embryos were 105, 98, 108, and 108% of
3 months over 1 year (182 after 1 year) controls.
All with porcine FSH (pFSH) to induce C) The number of corpora lutea was 111, 73, 79, and 97%; total
super-ovulation ova recovered 105, 57, 63, and 95%; and transferable
embryos 91, 58, 42, and 91% after the 2nd, 3rd, 4th, and
5th injection compared to the 1st
Swiss mice, 50 0, 75, 94, or 117 mg/kg/day AlCl; in the 30, 38, or 47 Body 82*, 90*, and 83*; uterus 100, 100, and 119%; and ovary ~ Mohammed
days, females drinking water for 12 weeks (2545, 3190, or 3971) weight was 72*, 89, and 89% of controls after the 12 weeks. et al. (2008)

Trif et al. (2008)

Wise et al. (2008)

Bell et al. (2010)

Trif et al. (2010)

Hirata-Koizumi
et al. (2011b)

(continued)



Table 3. Continued.

CRITICAL REVIEWS IN TOXICOLOGY 1

Al-treated subjects

Approximate systemic Al
exposure as pg/kg/day and

Al exposure (total pg/kg)*®

Study results* Reference

Sprague Dawley rats, 5
weeks, females
and males

Sprague Dawley
rats, females

C57BL/6 and
BALB/ ¢ mice, 10
weeks, females
Swiss-Webster mice, 10-12
weeks, females

Wistar rats, 5 weeks, 110-
120 g, females

C57BL/6 mice, 10
weeks, females

Albino rats, 150-200g

Wistar rats, 5 weeks,
110-120 g, females

Humans

Humans

Humans

Wistar rats, 250 g, female

FO females

1.5,13.4, or 114

(104, 935, or 7980 over 10 weeks)
F1 females

1.5, 14, and 118

(106, 988, or 8251 over 10 weeks)

0, 50, 500, or 5000 ppm NH4AI(SO,), in
the drinking water for 10 weeks
before mating and throughout the
lactation period for FO and F1
generation rats, resulting in mean
6.52, 58.6, or 500 mg/kg bw/day
NH,AI(SO,), intake by FO females and
6.65, 61.9, or 517 mg/kg bw/day
NH,4AI(SO,), intake by F1 females

3.1 from each injection
(280 on GD 20)

100 pl saline or AS04 (GSK Biologicals
proprietary Adjuvant System that
contains 500 pg Al(OH); salt and
50 ug of a lipopoly-saccharide
derivative per 500 pl) i.m. 30 days
before pairing with a male and on
GD 6, 8, 11, and 15

2% AI(OH)3 in 0.2ml as an adjuvant in 14,532 for the 1day after one

tetanus toxoid s.c. 3 times at 2-week injection
intervals. Mated one day after the (44,596)
last dose
0, 300, or 600 mg/kg AICl; in the 121 or 242
drinking water throughout pregnancy (2424 or 4848)
0, 64, 128, or 257 mg/kg AlCl; in the 26, 52, or 104

drinking water for 120 days (3103, 6205, or 12,459)

0 or 2% alhydrogel (AI(OH); wet gel 14,532 for the 1day after one

suspension) in 0.2ml s.c. 3 times at injection
2- week intervals (44,596)
0 or 200 mg/kg AlCl; i.g. GD 6 to 15 80.8
(808)

26, 52, or 103 (3103, 6205,
or 12,411)

0, 64, 128, or 256 mg/kg AlCl; in the
drinking water for 120 days

Urine Al above (26% of subjects) and
below 9 pg/L with fetus at gestational
age > 22 weeks and birth weight
> 5009

Mean exposure to 0.040 and 0.042 ug/m>  0.0002°
Al in PM, s captured in Florida during ~ (0.018 and 0.054)
the first trimester and entire
pregnancy, respectively
0 or 1 mg Al(NO);)3 i.p every other day 508
for 7 doses (3556)

Uterus weights of Al-treated F1 weanlings were 105, 84*, and
78%* of controls and 102, 87, and 87% of controls
normalized to body weight.

Ovary weights of Al-treated F2 weanlings were 95, 97, and
95%™* of controls and 97, 98, and 93% of controls
normalized to body weight.

Uterus weights of Al-treated F2 weanlings were 105, 107, and
81%™* of controls and 106, 105, and 90% of controls
normalized to body weight

The mating index was 100, 100, 100, and 100% in the FO
generation and 100, 95.8, 100, and 100% in the F1
generation.

Fertility was 100, 87.5, 100 and 100% in the FO generation and
91.7, 783, 95.8, and 95.8% in the F1 generation.

There were no significant differences in the number of
implantations, pups delivered, sex ratio, or pup viability on
delivery.

There were no treatment-related alterations in the
histopathology of female reproductive organs or number of
primordial follicles in the ovary of F1 females between the
control and highest Al exposure groups.

There was no significant effect of Al treatment on ovary weight
of F1 females.

Ovary weights of Al-treated F2 weanlings were 101, 98, and
83%™* of controls and 98, 100, and 92% of controls
normalized to body weight.

Uterus weights of Al-treated F2 weanlings were 94, 82, and
75%* of controls and 92, 85, and 84% of controls
normalized to body weight

The mating index was 102, fecundity 100, fertility index 100,
post-implantation survival 105, live birth 101, and viability
index 101% of controls.

GD 20 corpora lutea were 91, implantations 94, pre- and post-
implantation losses 82 and 108, live young 94, placental
weight 104, litter weight 95, female and male fetal weights
102 and 100, and minor visceral abnormalities 108%
of controls

Hirata-Koizumi
et al. (2011a)

Segal et al. (2011)

Fecundity index and fertility were 60 and 88% in C57BL/6 mice  Zivkovic
and 87 and 59%* in BALB/ ¢ mice compared to saline- et al. (2011)
treated controls

Al exposure non-statistically significantly decreased newborn Abu-Taweel
body weight et al. (2012)

Blood estrogen was 96*, 34*, and 15%; progestogen 91*, 69*
and 42%; LH 77%, 22*, and 4*, and FSH 59*, 16*, and 12%*
of controls. Blood testosterone increased ~2-, 8-, and 12-fold
of controls.

Wang et al. (2012)

Fecundity was 56%* in Al-injected mice and 83% in controls. Zivkovic
Fertility was 7.3 offspring in Al-injected mice and 7.0 et al. (2012)
in controls

Implantations, resorptions, live fetuses, and dead fetuses were Hussein and
52/60, 11/0%, 37/60, and 3/0* compared to controls Mahmoud

(2013)

Ovary ACP activity was 96*, 84*, and 78*; ALP 94*, 83*, and
78%; Mg-ATPase 97*, 93*, and 82*; Na-K-ATPase 7*, 84*,
and 81%; and Ca-ATPase 93*, 83* and 78%™* of controls.

Ovary FSH receptor expression was 104*, 107*, and 110* and
LHR 102*, 105, and 109%* of controls.

Ovary zinc was 90, 77*, and 68*; copper 103, 120%, and 131%;
and iron 89, 70*, and 59%* of controls.

Ovary ultrastructural changes in the highest exposure group
included: Margination and concentration of nuclear
chromatin showed ovary granulosa cell apoptosis. Irregular
nuclear envelope structure. Swollen mitochondria.
Disintegrated and vacuolated cristae. Dilated rough
endoplasmic reticulum with lost ribosomes. Disordered Golgi
body structure. Much higher electron density in nuclear and
cytoplasmic substances

Fu et al. (2014)

Median cell proliferation, as a measure of oxidative stress, of Karakis
erythrocytes in umbilical cord blood was 2.3-fold in those et al. (2014)
with higher Al

Newborns with cell proliferation above the median were more
likely to be diagnosed as small-for-gestational age and
weighed less.

Umbilical cord blood averaged 10.9 pg/L. There was no Rahbar
correlation with birth weight, crown-heel length, head et al. (2015)
circumference, Apgar scores or gestational age

Adjusted odds ratio risk of placental abruption was 1.10* (95%  Ibrahimou
C.l. 1.02-1.18) in the first trimester and 1.06™ (95% C.I. et al. (2017)
0.94-1.19) in the entire pregnancy

Electron-dense material was seen in endometrial, myometrial, Marwa
ovary internal theca, and granulosa cell cytoplasmic et al. (2017)

lysosomes. Increased number of endometrial and myometrial
cell cytoplasmic lysosomes, with varied shapes and sizes.
Endometrial cell swollen mitochondria with no visible cristae,
containing a very electron lucent matrix. Some endoplasmic

(continued)
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Table 3. Continued.

Approximate systemic Al
exposure as pg/kg/day and

Al-treated subjects Al exposure

(total pg/kg)*®

Study results* Reference

3 or 200
(252 or 16,800)

Bank voles, 4 weeks,
females and males

0, 1.5, or 100 mg Al/kg/day as AlCl;-6H,0
in the drinking water for 12 weeks

216 or 414
[3456 or 6624]

Slc: ICR mice, females 0, 108, or 207 mg/kg Al as AICl3-6H,0 in

the drinking water from GD

6-PND 21
Wistar rats, 0 or 500 mg/I AICl5 in the drinking water 28
180-200 g, females from GD 6 to the end of lactation [441]
Sprague Dawley rats, ~8 0 or 0.25mg Al as Al hydroxy-phosphate 142 at GD 21

weeks, females sulfate (in Merck’s aluminum
adjuvant) i.m. in each hindlimb
muscle 5 and 2 weeks prior to
cohabitation with untreated males

and GD 6

(5021 at GD 21)

Gerbils, 3 to 4 months
old, females

0 or 20.2mg Al/kg/day as AlCl; orally GD  40.4
17 versus24 [323]

Humans

reticulum alterations. Myometrium cells had relatively dense,
compact cytoplasm. There were collagen fibers in the
extracellular matrix, some cells had altered mitochondria,
dilated endoplasmic reticulum, and many eosinophils as
signs of inflammation produced by the damaged cells.

ary internal theca cells had lysosomes of various shapes and

sizes. Nuclei were elongated, polymorphous, with random
heterochromatin distribution. Mitochondria were round,
sometimes swollen, with decreased or altered endoplasmic
reticulum. Granulosa cells had euchromatic, indented nuclei;
intercellular vacuolations; cytoplasmic organelles with
degenerative ultrastructural changes; polymorphous or
swollen mitochondria with abnormal, altered cristae and
electron lucent matrix; and enlarged endoplasmic reticulum

Uterine weights were 155* and 124% of controls. Total number
of type 6 (355-418), type 7 (527-595), and type 8 (717-867
pum diameter) uterine follicles was 112 and 93% of controls.
The number of type 6, 7, and 8 follicles was 100 and 102;
153* and 75%; and 90 and 69% of controls.

Mouse follicle classification goes up to type 8 (the largest and
preovulatory follicle). (Pedersen and Peters 1968)

One animal in each Al-treatment group had an abortion.

The number of implantation sites, live offspring, and male/
female ratio were 104 and 103, 98 and 106, and 96 and
107% of control

The gestation period, litter number, males, females, and weight
were 102, 87%, 83, 94, and 107% of controls

Mating index was 100%.

Fecundity was 96 to 100%.

Mated and pregnant females were 100 and 95% of controls.
Corpora lutea were 102, peri-implantation loss 175, implants 100,
resorptions 119, post-implantation loss 120, live fetuses 99,

and female and male fetal weights 98 and 98% of controls.

GD 21 live fetus/litter was 104% of controls.

Fetuses with external malformations were 2/271 versus 0/275 in
controls, visceral malformations and visceral abnormalities 1/
142 and 1/142 versus 0/143 in controls; coronal
malformations 1/131 versus 1/132 in controls; skeletal
variations 18/142 versus 17/143 in controls; and incomplete
ossification 6/142 versus 1/143 in controls

Offspring body weight, anogenital distance; and prostate
epithelial buds, mesenchyme, and smooth muscle were 85*,
53%,126%, 9%, and 105% of controls.

Androgen receptor, estrogen receptor alpha, and proliferating cell
nuclear antigen in the prostate epithelial buds, mesenchyme,
and smooth muscle was 57*, 86, and 75; not reported, 244%,
and 290%; and 371%, 260*, and 209%* of control.

The results suggest Al acts as an endocrine disruptor

Maternal urinary Al concentration during the second and third
trimester positively correlated with increased umbilical cord
mitochondrial DNA number, suggesting increased reactive
oxygen species exposure

0

<

Miska-Schramm
et al. (2017)

Inohana
et al. (2018)

Kinawy and Al-
Eidan (2018)
Wise et al. (2018)

Gomes
et al. (2019)

Liu et al. (2019)

The approximate systemic Al exposure from the additional Al was calculated as described in the text. Daily exposures that did not add more Al than expected

from the diet are in italics.

Percentage of Al in Al(OH); 34.6%, AICl5 20.2%, AICl5-6H,0 11.5%, Al»(SO4); 15.8%, Al,(SO4)3-16H,0 8.6%, Al,(S04);-18H,0 8.1%, AI(NOs); 12.7%, Al(NOs)3-9H,0
7.2%, NH,4AI(SO,4); 11.4%, KAI(SO,); 10.5%, KAI(SO4),-12H,0 5.7%, NaAlzH;4(P0O,)g-4H,0 8.5%, Al lactate 9.2%, and Al acetate 13.2%.

PThe fraction absorbed from i.g. solutions was taken to be 0.002, from food 0.001, Al(OH); i.m. 0.005 daily, Al phosphate and amorphous aluminum hydrophos-
phate sulfate i.m. 0.018 daily, i.p. 1, s.c. 0.21, and topical 0.0001, as described in the text.

“The fraction absorbed for inhalation was taken to be 0.015-0.02, resulting in daily absorption of 0.001pg/kg for air containing 0.2pg/m® (Yokel and

McNamara 2001).
*Results that are statistically significantly different from controls.

Assessment of Al reproductive toxicity in
female animals

The assessment of Al reproductive toxicity focused on studies
in animals due to the lack of prospective or controlled-dose
human studies that provide insight into potential Al-induced
reproductive toxicity. Table 3 summarizes results of studies of
Al reproductive toxicity in females. The cited studies do not
consistently use the terms fecundity or fertility or their
indexes. The author could not find generally accepted
descriptions of these terms related to laboratory animals, as
noted in a review of non-clinical fertility study design
(Lerman et al. 2009). Four endpoints are used, following

published guidelines (Wolterbeek et al. 2004), and the
reported results categorized accordingly, irrespective of the
definition used by the authors. Mating (copulation) was
defined as positive mating (typically determined as sperm in
the vagina (vaginal smear) or a vaginal plug) and mating
index (%) as positive matings/cohabitated females. Fecundity
(conception) was defined as a pregnant female and fecundity
index (%) as pregnant females/successfully mated females.
Fertility was defined as the number of live offspring and fer-
tility (gestation) index (%) as the number of live off-
spring/litter.

The results of all studies are categorized as to whether
they showed significant toxicity and the daily and total
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Table 4. Studies conducted in females categorized according to study report of significant findings and approximate systemic Al exposure.

Daily approximate systemic
Al exposure (ng/kg)

Total approximate systemic

Al exposure (ng/kg)

A. GLP compliant studies conducted following an OECD Test Guideline showing no statistically significant toxicity

Beekhuijzen (2007)
Hirata-Koizumi et al. (2011b)
Hirata-Koizumi et al. ( 2011a)

B. No statistically significant effects from exposures similar to A. above

McCollum et al. (1928)
Schaeffer and Fontes (1928)
Lyman and Scott (1930)
Mackenzie (1932)
McCormack et al. (1979)
Nolen and Dierckman (1983)
Nolen and Dierckman (1983)
Katz et al. (1984)

Yokel (1985)

Donald et al. (1989)

Muller et al. (1990)

Misawa and Shigeta (1992)
Colomina et al. (1994)

Gonda et al. (1996) and Gonda and Lehotzky (1996)

Gonda et al. (1997)

Alleva et al. (1998)

Golub and Germann (2001)
Wise et al. (2008)

Segal et al. (2011)
Abu-Taweel et al. (2012)
Inohana et al. (2018)

Wise et al. (2018)

20, 98, or 494
4.6, 23, or 100
1.5,13.4, or 114

45

~85-240
~220-468
~235-400

16 or 32

30 or 643

30, 139, or 643
9.5, 30, or 92
142, 567, or 2268
102 or 203
400

36, 73, or 145
208

47, 95, or 189
189

64, 86, or 107
20, 102, or 203
48.6

3.1

121 or 242
216 or 414
142

C. Study found some statistically significant results from exposures similar to A. above

Domingo et al. (1987a)
Domingo et al. (1987b)
Paternain et al. (1988)
Bernuzzi et al. (1989)
Domingo et al. (1989)
Gomez et al. (1990)

Gomez et al. 1991)
Colomina et al. (1992)
Misawa and Shigeta (1993)
Muller et al. (1993)

Agarwal et al. (1996)

Gonda et al. (1996)

Gonda and Lehotzky (1996)
Gonda et al. (1997)

Bellés et al. (1999)

Chinoy and Patel (2001)
Kimura et al. (2007) (cows)
Mohammed et al. (2008) (i.g.)
Trif et al. (2008)

Trif et al. (2010)

Wang et al. ( 2012)

Hussein and Mahmoud (2013)
Fu et al. (2014)
Miska-Schramm et al. (2017)
Kinawy and Al-Eidan (2018)
Gomes et al. (2019)

26, 52, or 104
26, 52, or 104
26, 52, or 104
96, 273, or 399; 96, 195, or 378
46, 92, or 184
133, 266, or 531
266 or 532

115

364 or 727

400

0.92, 4.6, 9.2, 46, 92, or 184
47,95, or 189
47, 95, or 189
189

57

81

0.18 or 0.36

30, 38, or 47
0.24, 0.48, or 1.2
0.24, 0.48, or 1.2
26, 52, or 104
80.8

26, 52, or 103

3 or 200

28

40.4

D. Study found some statistically significant results from higher exposure

Wide (1984)

Golub et al. (1987)
Clayton et al. (1992) i.p.
Rankin and Manning (1993)
Colomina et al. (1998)
Albina et al. (1999)
Malekshah et al. (2005)
Mohammed et al. (2008)
Zivkovic et al. (2011)
Zivkovic et al. (2012)
Marwa et al. (2017)

621 or 1242

84, 171, 2100, 4200, or 8400
648,000

31,600

7575

12,120, 24,240, or 48,480
30,300

3838 or 7676

14,532

14,532

508

E. Study found no statistically significant results from exposures similar to D. above

Clayton et al. (1992) i.g.
Oneda et al. (1994)
Kimura et al. (2007) (rats)

4860
114, 285, 570, or 1140
10,161

F. Study found statistically significant results associated with maternal mortality

Benett et al. (1975)
Mohammed et al. (2008)

8080-40,400
3838 or 7676

554, 2744, or 13,832
319, 1582, or 6990
104, 935, or 7980

~945

80 or 160

297 or 6432

387, 1803, or 8362
1738, 5600, or 16,862
2268, 9072, or 36,288
2030 or 4060

2800, 5600, or 8,000
473, 945, or 1891
2076

473, 947, or 1893
1893

516, 688, or 860

609, 3045, or 6090
450

280

2424 or 4848

3456 or 6624

5021

700, 1400, or 2800
207, 415, or 829
233, 467, or 933

2016, 5733, or 8379; 2016, 4095, or 7938

460, 920, or 1841

1329, 2657, or 5315

2660 or 5320

1150

364 or 727

7600

10, 51, 101, 506, 1012, or 2024
473, 947, or 1893

473, 947, or 1893

1893

573

2424

1.3, 2.6, or 182

2545, 3190, or 3971
44, 87, or 218

22, 44, or 109

3103, 6205, or 12,459
808

3103, 6205, or 12,411
252 or 16,800

441

323

621 or 1242

1425, 2913, 14,700, 29,400, or 58,800

2,592,000

126,400

75,750

121,200, 242,400, or 484,800
30,300

26,866 or 53,732

44,596

44,596

3556

38,880

69,312, 173,280, 346,560, or 693,120

10,161

8080-210,080
26,866 or 53,732
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calculated systemic Al exposure (Table 4). Overall, these stud-
ies suggest limited additional Al exposure above what would
enter systemic circulation from the diet did not affect female
reproduction. The 4 studies that were GLP compliant and 3
studies conducted following an OECD Test Guideline are not-
able in that they reported no significant effects following
daily Al exposures that, by calculation, would increase the
systemic Al exposure by up to 25-fold (Table 4, Category A
and Table 3). Additionally, there are numerous studies that
utilized comparable Al exposures that did not report any stat-
istically significant effects (Table 4, Category B and Table 3).
In contrast, several studies utilizing calculated added Al
exposure that was in the range of the above studies showed
some significant effects, although most of the studied end-
points were not significantly altered (Table 4, Category C and
Table 3). With seven exceptions (Bernuzzi et al. 1989; Gomez
et al. 1990; Gomez et al. 1991; Muller et al. 1993; Wang et al.
2012; Fu et al. 2014; Miska-Schramm et al. 2017), the total
calculated systemic Al exposure of these 25 studies was less
(up to 3,971 pg Al/kg) than the studies in Table 4, Category A
(6990-13,832 ng Al/kg), suggesting that the occasional signifi-
cant results are not a product of greater overall Al systemic
exposure. Daily systemic Al exposures greater than the high-
est of the Beekhuijzen 2007 study generally demonstrated
significant effects (Table 4, Category D and Table 3), with
three exceptions. The lack of toxicity reported after gestation
day (GD) 10-17 i.g. exposure (Clayton et al. 1992) is consist-
ent with the lower susceptibility to Al toxicity in the latter
stages of gestation, as noted by Benett et al. 1975, who
stated that GD 9-13 are critical for organogenesis and 14-18
for bone formation. With the exception of one study that
employed increased Al exposure starting at GD 14 (Domingo
et al. 1987b) and a single exposure on GD 15 (Misawa and
Shigeta 1993), all other studies in rats and mice in Table 4
category C increased Al exposure before mating or starting
from GD 3 Misawa 7. The lack of significant toxicity in one
study may be due to its limited endpoint (Kimura et al.
2007). Much higher daily and total calculated systemic Al
exposures (Table 4 category F) resulted in significant toxicity
associated with maternal morbidity or mortality (Benett et al.
1975; Mohammed et al. 2008).

The most sensitive endpoint to Al-induced toxicity in the
pregnant female was resorption, and in the fetus death.
Overall, these results suggest a positive exposure level-
adverse response relationship, as would be expected. One
study is notable for having a wide exposure range from less
Al than would be expected to reach systemic circulation
from the diet to well beyond that, with exposure throughout
most of the period of fetal susceptibility (Agarwal et al.
1996). With the exception of the two lower exposures in the
Agarwal et al. (1996) study, the two-Al-dose comparison in
cows (Kimura et al. 2007), the two studies reported by Trif
et al. (2008, 2010), and the lower dose of the Miska-Schramm
et al. (2017) study, the additional daily Al systemic exposure
of all other studies that reported statistically significant
results was greater than 100-fold above the typical human
daily Al consumption equivalent (0.1 ng/kg).

Assessment of Al reproductive toxicity in
female humans

The accidental addition of Al to the drinking water of some
residents in Camelford, Cornwall, England in July 1988
(Coggon 1991) did not result in documented reproductive
effects (Golding et al. 1991). Epidemiological studies suggest
Al in airborne particulates, although resulting in an approxi-
mate daily systemic Al exposure that is 1000-fold lower than
from the typical human diet, is associated with smaller new-
borns and increased risk of placental abruption (Bell et al.
2010; lbrahimou et al. 2017). Newborns of mothers who had
higher urine Al concentrations, and whose umbilical cord
blood showed greater evidence of oxidative stress, were
more likely to be smaller (Karakis et al. 2014; Liu et al. 2019).
These results are consistent with animal studies showing
smaller newborn weight after much higher Al exposures.
However, there remains a lack of correlation between umbil-
ical cord Al concentration and newborn size (Rahbar et al.
2015). The results of these studies do not provide consistent
evidence of Al-induced reproductive toxicity or enable expos-
ure-response determination.

Assessment of Al reproductive toxicity in
male animals

Many endpoints were quantified in the studies of Al repro-
ductive toxicity in males (Table 5). Table 6 summarizes
reports of the assessment of Al reproductive toxicity in males.
Quantitative endpoint results are presented in the order pre-
sented in Table 5. Two studies sought to model Al intake
from drinking water (Trif et al. 2007; Mouro et al. 2018).
However, as water would provide <1% of daily total Al
intake in laboratory animals, the additional Al exposure in
water in the Trif et al. (2007) and two lowest exposures in
the Mouro et al. 2018 studies were insignificant compared to
the basal exposure from feed.

The results of all studies are categorized as to whether
they showed significant toxicity and the daily and total
approximate systemic Al exposures (Table 7). Four studies are
notable because they were GLP compliant, and/or were con-
ducted following an OECD Test Guideline, and included
males and females (Beekhuijzen 2007; Wise et al. 2008;
Hirata-Koizumi et al. 2011a, 2011b). Two reported no statistic-
ally significant toxicity at their lower (<20 pg/kg/day;
<200pg/kg total) Al exposures, but statistically significant
toxicity at their higher (>50pg/kg/day, >500pg/kg total) Al
exposures, delineating NOAEL and LOAEL exposures
(Beekhuijzen 2007; Wise et al. 2008; Hirata-Koizumi et al.
2011b, 2011a) (Table 7, Categories A and C and Table 6). Six
other studies reported no significant effects from exposures
<60 png/kg/day (<10,000 pg/kg total), but did find some sig-
nificant effects from higher within-study exposures (>20 ng/
kg/day, >600ug/kg total) (Pettersen et al. 1990; Roy et al.
1991; Hichem et al. 2013; Kumar and Singh 2015, 2016;
Falana et al. 2017). Comparing Tables 4 and 7 suggests males
are more susceptible to Al-induced reproductive toxicity than
females. The GLP compliant studies that showed statistically
significant toxicity after their higher exposures (Table 7,
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Table 5. Endpoints quantified in the studies of Al reproductive toxicity in males.

Testis

Seminiferous tubules and sperm

Epididymis

Vas deferens

Seminal vesicle

Prostate and semen

Testis (and accessory gland) (testis tunica albuginea and parenchyma) weight

Protein content

Leydig cells/interstitial space or/testis, cell proliferation, proliferating cell area, epithelial wall thickness,
nuclear diameter, nuclear percentage, cytoplasm percentage, and visual field percentage

Non-Leydig cell visual field percentage

Calcium, copper, iron, magnesium, sodium, and zinc concentrations

MDA/reactive oxygen and nitrogen species, H,0,, and antioxidant capacity

SOD, CAT, GSH, GST, GPx, GR, thioredoxin reductase, and thiol groups

Protein carbonyls and lipid peroxides

AST, ALT, ALP, ACP, LDH, LDH isoenzyme, phosphorylase, succinate dehydrogenase, nucleotidase, gamma-
glutamyltransferase, gamma glutamyl transpeptidase, and 17-ketosteroid reductase

cAMP, total ATPase (ATPases), Na*-K"-ATPase, Mg®*-ATPase, and Ca®"-ATPase activity

Vitamins C and E

Cholesterol, triglycerides, and phospholipids

Bax and Bcl-2 expression

Activated macrophages

NO content; iNOS, tNOS, cNOS activity and expression; and NO products

Putrescine, spermidine, and spermine

Testosterone, LDH, and FSH

Androgen receptor mRNA, follicle stimulating hormone receptor, and luteinizing hormone

receptor expression

3- and 17-beta-hydroxysteroid dehydrogenase, steroidogenic acute regulatory protein, cytochrome P450
cholesterol side chain cleavage enzyme, caspase-3, and proliferating cell nuclear antigen protein

Seminiferous tubule diameter, duct diameter, luminal diameter, epithelial thickness/height, visual field
percentage, and interstitial space diameter

Sertoli cell count (number)

Spermatogenesis

Spermatogonia count (number)

Primary spermatocyte count (number)

Secondary spermatocyte count (number)

Spermatid (round) count (number)

Elongated spermatid count (number)

Spermatozoa count (number) and daily production
Testicular sperm production (count)

Motile sperm cell count (number)

Sperm mobility

Normal or abnormal sperm cell count (number)
Dead sperm or viability

Sperm plasma and acrosomal membrane intactness
Sperm MDA, SOD, CAT, AST, ALT, and ACP

Weight

Protein content

Percent epithelium

Caput epithelial height

Tubular diameter

Luminal diameter

Lumen with sperm

Empty efferent ducts

NO products

MDA/reactive oxygen and nitrogen species and antioxidant capacity
SOD, CAT, GST, GPx, and GR

ALP

Vitamins C and E

Putrescine, spermidine, and spermine
Nucleotidase and gamma glutamyl transpeptidase
ATPase

Sialic acid

Sperm/spermatozoa count/number
Sperm transit time

Cauda sperm count/number

Cauda sperm transit time

Weight
Spermatozoa count/number

Seminal vesicle and secretion weight
Fructose concentration

Weight
Prostate MDA, reactive oxygen and nitrogen species, and antioxidant capacity
Semen pH, MDA, GST, AST, ALT, and ACP

(continued)
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Bulbourethral gland
e  Weight
Blood/serum/plasma

e  Testosterone, FSH, LH, prolactin, and estradiol

Male sex performance

e Time to and number of mounts, time to and number of intromissions, time to ejaculation, and

copulatory efficiency
Female response

Corpora lutea/female
Implantations
Post-implantation loss
Resorptions

Fetus and offspring
Fetal weight
e Dead or live fetuses

Percent of pregnant females, fecundity, and fertility

Category C.) and other studies showing significant results
from lower exposures (2/3 <20 pg/kg/day) (Table 7, Category
D.) suggest Al-induced reduction of reproductive function in
males after exposure to additional daily Al systemic exposure
less than 100-fold the typical human daily Al consumption
equivalent (0.1 ng/kg). The most common male reproduction
endpoints from the summaries in Table 6 were tested for
adherence to a normal distribution and then correlation with
daily and total systemic Al exposure. (The number in brackets
is the number of values from Table 6.) Testes weight [69],
sperm number [51], abnormal sperm [37], motile sperm [34],
sperm viability [20], testes MDA [41], testes SOD [22], testes
CAT [20], and blood/serum/plasma testosterone [34] were
tested. Sperm number and SOD values compared to the daily
and total doses were normally distributed, but correlated sig-
nificantly, and negatively, only with the total Al dose
(p=0.0076 and 0.0235, respectively). Abnormal sperm were
not normally distributed but were correlated with the daily
and total Al dose (0.044 and 0.049, respectively). MDA was
consistently above, and testosterone consistently below val-
ues from subjects not given additional Al but they did not
correlate with Al exposure. These results suggest sperm num-
ber, sperm SOD, and abnormal sperm are the more sensitive
indicators of Al-induced male reproductive toxicity and that
prolonged exposure has a greater effect than short-term
exposure. More prolonged exposure is more likely to inhibit
the entire process of spermatogenesis that has a duration of
~35, 50, and 64 days in the mouse, rat, and human, respect-
ively (Adler 1996).

Assessment of Al reproductive toxicity in
male humans

A study of human semen showed sperm viability decreased
as semen Al concentration increased from averages of 18 to
101 pg/L (Table 10) (Dawson et al. 1998). A study by the
same group reporting an average semen Al concentration
among control subjects of 460 ng/L (Table 10) (Dawson et al.
2000). Other reported comparable values (540 in factory
workers and 870 ng/kg in sperm donor candidates (Hovatta
et al. 1998) and 299 in normal semen (Klein et al. 2014))

raises some doubt about the of Dawson
et al. (1998).

Sperm exposed to 0.125-30 mM AICl; showed concentra-
tion-dependent decreased motility and increased MDA (Table
6) (Jamalan et al. 2016), but these Al concentrations
(3375-810,000 ng/L) are greatly in excess of reported human
semen Al concentrations. The suggestion from animal and
these human studies of possible Al-induced reduced repro-
ductive function in males is supported by the reduction in
normal and mobile sperm and sperm concentration of
refinery and polyolefin factory employees and positive corre-
lations between high spermatozoa Al concentration and
decreased sperm motility and normal morphology (Hovatta

et al. 1998).

findings

Fetal, placental, amniotic fluid, meconium, and
testes Al concentrations

Al distribution into the fetus was reported in many studies
(Table 8). The additional maternal Al exposures are not nor-
mally distributed. The log of the fetal Al concentration as a
multiple of the Al concentration in fetuses that did not
receive additional maternal Al exposure was normally distrib-
uted. Correlation analysis of the log of the additional mater-
nal Al exposure dose and the fetal Al concentration multiple
resulted in a non-significant Pearson correlation (p=0.21).
Consequently, no relationship between the approximate
added total systemic Al exposure and fetal Al concentration
incorporating all studies was concluded. Individually, the
studies show the ability of Al to enter the fetus in an expos-
ure-dependent manner. Added Al exposure ranged from
that ~ equal to exposure from the diet that did not signifi-
cantly increase fetal Al concentration (McCormack et al. 1979)
or increased it up to 2-fold in some organs (Yokel 1985) to
exposures that were >1000-fold above the dietary exposure
that increased fetal Al concentration up to ~6-fold in some
organs and were associated with adverse fetal -effects
(Cranmer et al. 1986; Mestaghanmi et al. 2003). The highest
Al concentrations were seen in the bone of both controls
and animals exposed to additional Al.

Placental Al has been quantified in several studies
(Table 9). As in the fetus, the available studies show an



Table 6. Results of studies of males exposed to additional Al.
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgrkg)?

Study results*®

Reference

Rats, 45-55 g, males
and females

Rats, 100-120¢g
Swiss strain
mice, 20-30g

Sprague Dawley
rats, males

Rats, guinea pigs, and
rabbits, males

Beagle dogs, 7-9
months, females
and males

New Zealand white
rabbits, 2.9-4.3kg

Sprague Dawley rats,
48 days, males

Human sperm

Rats, 120-160 g,
Leydig cells

Beagle dogs, male
and female

Albino rats, 120-150g,
about 2 months
old, males

B6C3F1 mice, 4 weeks
old, females
and males

Swiss mice,
30-32g, male

Human sperm

Human semen

Sprague Dawley rats,
~300g, males

0, 0.067, or 0.063% Al as AlCl;-6H,0
or baking powder in the diet
started as young rats and raised
to maturity

One intra-testicular injection of
0.08 mmol/kg Al,(SO,); (rat) or
0.08 mmol/kg total in 30 daily
s.c. doses (mouse)

0, 44.8, 448, or 4476 mg/I AlCl;-6H,0
in the drinking water for 90 days
then housed serially with a
different virgin rat for 7-day
periods up to 70 days

0, 6, 17, or 50 mg/kg Al as AlCl;
orally to rats and guinea pigs for
20-30 days; 0, 3, 9, or 27 mg/kg
Al orally to rabbits for 20-30
days; 0, 0.0025, 0.25, or 2.5 mg/
kg orally to rats for 6-12 months

118, 317, or 1034 mg sodium
aluminum phosphate/kg/day in
the diet for 6 months

0 or 600 umol/kg Al as the lactate 5
days weekly for 4 weeks s.c.,
sacrificed 2 weeks later

5 (control), 67, 141, or 288 mg Al/
kg/day as sodium aluminum
phosphates or 302mg Al/kg day
as Al(OH)s in the diet for 28 days

Exposed for 0, 10, 30, or 60 min to
bovine estrous cervical mucus
that had been in contact with
10, 100, or 200 uM/ml AICl5

0, 1, 10, or 100 pM AICl5

0, 4, 10, 27 or 75mg/kg/day of Al as
basic sodium aluminum
phosphate in the diet for
26 weeks

0, 212, 265, 355, 530, 1060, or
2120 mg/kg Aly(SO4)3-18H,0 or
503 or 765 mg/kg KAI(SO,),-

12H,0 by gavage for 7, 14 or
21 days

1, 2.5, 5, and 10% KAI(S04,),-12H,0

0, 50, 100, or 200 mg/kg Al(NOs)s-
9H,0 i.p. 5 days/week for 4 weeks

In vitro incubation in 0, 2.5, 5, or
7.5% KAI(SO4),

12H,0

0 or 1000 ppm AICl3-6H,0 in the
drinking water for 12 weeks

45
(~945)

30, s.c.
(907)

1.5, 15, or 149
(135, 1350, or 13,410)

12, 34, or 100;

6, 18, or 54; 0.005, 0.5, or 5
(300, 850, or 2500;

150, 450, or 1350;

1.35, 135, or 1350)

10, 27, or 88
(1830, 4917, or 16,040)

3400
(68,000)

67, 141, 288, or 302
(1876, 3948, 8064, or 8456)

8, 20, 54, or 150
(1456, 3640, 9828, or 27,300)

34.4-343 (240-7203)
or

57.2 or 87.2
(401-1831)

114, 285, 570, or 1140
(69,312, 173,280, 346,560
693,120)

3600, 7200, or 14,400
(72,000, 144,000, or 288,000)

33
(2800)

The growth, reproduction, external appearance, and autopsy of
rats on the Al-added diets were the same as controls

Rat testes weight 2 and 7 days after intratesticular injection was
98 and 50% of controls, with focal (2 days) and partial (7
days) necrosis, and spermatozoa destruction.

After s.c. injections mouse testes weight 30 days later was 30%
of controls. Necrosis was not seen. Tubular shrinkage and
spermatogenic arrest were seen but there was no effect on
the interstitium

Fertility results showed no significant effects on the number of
implantation sites or average litter size

After 6-12-month exposure a decreased spermatozoa number
(to 74*% of controls) was only seen with the highest dose.
The tubular basal membrane was thickened with a layer of
Sertoli cells. The tubular lumen had some pathological forms
of spermatogenic epithelium. There was a substantial
proliferation of Leydig cells. There was increased Leydig cell
oxidizing enzyme activity and ATPase in seminiferous tubule
basal membranes and a tendency for decreased RNA with
the highest dose

Gross autopsy and histopathological exam showed normal range
of variations of the gonads and prostate.

Testis weight was 168% of controls

Testes calcification, degeneration with atrophy, and edema were
not significantly increased above controls

Al exposure inhibited sperm entry into the mucus. The effect
was not contact time or Al concentration (including 0 min
exposure) dependent, shedding doubt on the validity of
these results

Cell viability (trypan blue exclusion indicating live cells) was not
affected.

LH-stimulated testosterone production was 104, 90, and 104%
of controls

High dose males had a decrease (no details reported) in testis
weight and moderate seminiferous tubule germinal epithelial
cell degeneration and atrophy

No testes histological damage up to the 530 mg/kg
Al(S04)3-18H,0 or 765 mg/kg KAI(SO4),-12H,0 dose.

Some spermatogonial cell decrease after 21 days of 1060 mg/kg
or 14 days of 2120 mg/kg Aly(SO4)3-18H,0

Testes weight was 102, 102, 101, and 99% of controls.

Testes relative weight was 88*, 88*, 100, and 114%™ of
controls.

Ductus epididymis hyperplasia was 93, 107, 103, and 84% of
controls.

Epididymis atrophy was 120, 95, 98, and 43% of controls

At the end of dosing: (1) testes weight was 88, 88, and 76%;
and epididymis weight 89%, 97, and 79%* of controls, but
not significantly different when normalized to body weight;
(2) seminiferous tubule diameter was not affected, the two
higher doses significantly increased spermatocyte/spermatid
necrosis but did not affect giant cells, germ cell hypoplasia,
or Leydig cell vacuolization; (3) spermatid count was 97, 56*,
and 59%* and spermatozoa count 100, 86, and 50%* of
controls, but there were no significant effects on the % of
motile cells or abnormal morphologic forms.

GD 10-14 percentage of pregnant females was 120, 40*, and
30%* of controls.

The number of total implantations, early or late resorptions,
dead or live fetuses, or post-implantation loss was not
significantly different

Refinery and polyolefin factory employee (n = 27) normal sperm
was 85, mobile sperm 97, and sperm concentration 82% of
sperm donor candidate (N =45) values.

Regression analysis showed a correlation between high
spermatozoa Al concentration (Table 10) and decreased
sperm motility and normal morphology

Time to sperm immobility was 3.4%, 2.4%, and 1.4%* of
controls. Alum is a spermicide

Testis weight was 68* and seminal vesicle weight 70%* of
controls.

The time to first mount was 57, number of mounts 60%,
intromission latency 254*, number of intromissions 41%,
ejaculatory latency 104, and copulatory efficiency 88%* of
controls.

McCollum et al. (1928)

Kamboj and Kar (1964)

Dixon et al. (1979)

Krasovskil et al. (1979)

Katz et al. (1984)

Melograna and
Yokel (1984)

Hicks et al. (1987)

Kaur (1988)

Ng and Liu (1990)

Pettersen et al. (1990)

Roy et al. (1991)

Oneda et al. (1994)

Llobet et al. (1995)

Hovatta et al. (1998)

Singh et al. (1998)

Bataineh et al. (1998)

(continued)
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Table 6. Continued.

Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

CD-1 mice, 8
weeks, males

CD-1 mice, males

New Zealand white
rabbits, 7 months,
2.9kg, males

Sprague Dawley rats,
130-150g, males

ICR (CD-1-derived)
mice,
32-35g, males
CD-1 mice, 8-9
weeks, males

Swiss mice, 50
days, males

New Zealand white
rabbits, 7 months,
2.9kg, males

CD-1 mice, males

0, 13, or 35mg Al/kg as AlCl; i.p. for
12 or 16 days

0, 13, or 35mg Al/kg as AlCl5 i.p. for
14 days

0 or 34mg Al/kg as AlCl; orally
every other day for 16 weeks

0 or 34mg/kg AICl; orally every
other day for 30 days

0 or 35mg Al/kg/day as AICl; i.p. for
12 days

0, 7, or 13 mg Al/kg/day, as AICl; s.c.
for 14 days, then housed with 3
non-treated females. Mated
females replaced with new
virgins, for 9 weeks

Ingestion of 0, 1000, 1200, or
1400 ppm AICl5 in the drinking
water for 12 weeks, then housed
for 10 days with an untreated
virgin female, that was
killed GD20

0 or 34mg Al/kg as AlCl; orally
every other day for 16 weeks

0, 7, or 35mg Al/kg/day, as AlCl; s.c.
for 14 days

13,000 or 35,000
(182,000 or 490,000)

13,000 or 35,000
(182,000 or 490,000)

68 every other day
(3808)

14 every other day
(206)

35,000
(420,000)

1470 or 2730
(20,580 or 38,220)

104, 125, or 145
(8755, 10,507, or 12,258)

68 every other day
(3808)

1470 or 7350
(20,580 or 102,900)

The percent of pregnant females was 108, number of
implantations 96, number of viable fetuses 96, and
percentage resorptions 50%* of controls

One day after 12 injections testis weight was 101 and 101, nitric
oxide products 422* and 1028%, and testosterone 60* and
42%* of controls.

Fifteen days after 16 injections testis weight was 97 and 96,
nitric oxide products 118* and 168*, and testosterone 91*
and 73%* of controls

Testis weight was not significantly affected.

Testis zinc was 95 and 65%, iron 130* and 180%, copper 148*
and 127*, MDA 125* and 121%, and angiotensin-converting
enzyme activity 68* and 58%* of controls.

Testis MDA was 148%, GST 69%, sulfhydryl groups 77*, AST 60%,
ALT 78*, ALP 75%, ACP 69*, LDH 124*, and phosphorylase
74%*  of controls

Testis MDA was 144*, GST 81%, sulfhydryl groups 80*, AST 71%,
ALT 76*, ALP 80*, ACP 73*, LDH 126*, and phosphorylase
69%* of controls

Testis weight was 104, nitric oxide products 421%, cholesterol
166*, CAMP 27* and testosterone 41%* of controls

Testis, epididymis, and seminal vesicle weights were 94 and
87%, 97 and 87%, and 99 and 77%* of controls 5 weeks
after dosing.

Testes showed slight, dose-dependent damage 2 weeks after
dosing.

Seminiferous tubule spermatid cell and spermatozoa necrosis
was seen 5 weeks after dosing.

Tubular diameters and epididymis were not affected.

The percentage of mated females significantly decreased from 1
to 10 weeks after dosing, to a nadir of 68* and 53%* of
controls 5 weeks after dosing.

The fecundity index significantly decreased 4 weeks to 83*

(13 mg/kg/day dose) and to 86™ and 75%* 5 weeks after
dosing.

From weeks 3 to 5 there were no significant effects on corpora
lutea/female or implantations per female.

The 13mg dose increased pre-implantation dead embryos to
148* and 162* of controls 3- and 5-weeks post dosing.

Resorptions per female 4 weeks after dosing were 227* and
186%* and at 5 weeks 254* and 313%™ of controls.

Dead fetuses/female were 520 and 760%* of controls 5 weeks
after dosing.

Survivals/female were 88%* of controls 5 weeks after 13 mg/
kg/day dosing.

Day 16 fetal weights 3-7 weeks after dosing were 88* and 88*,
96* and 94*, 94* and 94*, 95* and 92*, and 92* and 94%*
of controls

Testes weight as a percentage of body weight was not affected.
Seminal vesicle weight as a percentage of body weight was
58%, 43*, and 59%* of controls.

Testicular sperm production efficiency (sperm/g testes/day) after
6, 9, and 12 weeks averaged 70*, 58%, and 76%* of
controls. Epididymal sperm count after 3 weeks was 88, 115,
and 57*; 6 weeks 87, 74*, and 63*; 9 weeks 54*, 50*, and
62%; and 12 weeks 85, 81, and 69%* of controls.

Mice exposed to 1200 and 1400 ppm had congested testes
blood vessels and increased interstitial connective tissue.

Mice exposed to 1200 ppm showed seminiferous tubule and
tubule arrangement destruction.

Mice exposed to 1400 ppm had many spermatids in the center
of their seminiferous tubular lumen with few or none in the
periphery and absence of spermatozoa in the epididymis.

The percent of pregnant females was 95, 75, 80, and 56%*.

There was no difference in the number of implantation sites or
viable fetuses.

The percentage of resorptions was 0, 15*, 10*, and 17* and the
percentage of animals with resorptions 0, 67*, 62*, and 70*

Testes and epididymis body weight were 73* and 68%™* of
controls.

Weekly measurements of ejaculate volume averaged 87%*,
reaction time (mounting to complete ejaculation) 210%,
packed sperm volume 89%, sperm concentration 87*, total
sperm output 76%, sperm motility 91%, total motile sperm
72*, dead sperm 141*, normal sperm 95%, total functional
sperm fraction (sperm output x motility x normal
morphology) 86*, and initial fructose concentration 86%* of
controls. Semen pH was 8.08* versus 7.66 for controls.

Seminal MDA was 119%, GST 88*, AST 91*, ALT 88*, and ACP
91%* of controls

Testes and left epididymis weight as a percentage of body
weight were not affected.

Right epididymis weight as a percentage of body weight was 82
and 68%* of controls.

Guo et al. (2001)

Guo et al. (2002)

Yousef (2004)

El-Demerdash (2004)

Guo, et al. 2005a)

Guo, et al. (2005b)

Mayyas et al. (2005)

Yousef et al. (2005)

Guo et al. (2006)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and

(total pgr/kg)?

Study results*

Reference

Sprague Dawley
rats, males

Wistar rats, males (~ 9
weeks), females

Albino rats,
100-150g, males

Wistar rats, males

Albino mice, 60
days, 259

Wistar rats, males

New Zealand white
rabbit sperm

Sprague Dawley rats,
235-347 g, males

Albino rats,
230-250g, males
KM mice, males

Albino rats, 3-4
months,
190-215g, males

0 or 50 mg AlCl; i.p. for 20 days

0, 40, 200, or 1000 mg/kg/day AlCl3
i.g. 2 weeks prior to and during
mating for a total of 28 days

0, 15, or 30 mg/kg AICl; i.p. every
other day for 5 weeks

0 or 5mg/kg Al(SOy)5 i.p. 3 times
weekly for 2 weeks

Dosing (route not stated, assume
oral) of 0, 1, 2, or multiple doses
aluminum acetate 3.5 mg/kg

50 (control), 200, 400, or 1000 ppb
Aly(S04);

in the drinking water for 6 months

Incubation with 0, 1, 5, 10, 15, or
20mM AICl; for 2 or 4h

0 or 4.125 pmole AICl; (pH 3.4)
lateral ventricle injection twice
daily for 20 days

0 or 0.5mg/kg

as AlCl;-6H,0 i.g. for 30 days

0, 50, 75, or 100 mg/kg AlCl; i.p. for
2 consecutive days with a 1-day
interval for 2 weeks

0, 40, or 80 mg/kg AlCl; i.g. for 30
or 60 days

10,100

(202,000)

20, 98, or 494

(554, 2744, or 13832)

3030 or 6060 every other day
(53,025 or 105,050)

790 3 times weekly
(4790)

0.92

0.002 the control, 0.009, 0.018, or

0.045
(0.4, 1.7, 3.3 or 8.4)

0.12

(3.4)

7214, 10,821, or 14,428
(72,140, 108,210, or 144,280)

16 or 32
(485 or 970 for 30 days, 970 or
1940 for 60 days)

Testicular and epididymal nitric oxide products were 165* and
282* and 119 and 179%™ of controls.

Testis putrescine was 87 and 79*, spermidine 97 and 97, and
spermine 97 and 91%* of controls.

Epididymal putrescine was 100 and 86, spermidine 98 and 97,
and spermine 99 and 94% of controls

Blood testosterone was 53*, FSH 84, and LH 60%* of controls

Testes weight was 99, 103, and 102; and epididymis weight 104,

106, and 103% of controls.

Microscopic assessment of testes, epididymis, prostate gland,
and seminal vesicles showed no significant difference
from controls

Low dose: Seminiferous tubules had thickened basement
membrane with fibrous connective tissue. Spermatogenic
epithelium and Sertoli cell cytoplasm had focal areas of
vacuolar degenerative changes. Abnormal spermatozoa
distribution in the seminiferous tubule lumina. Swollen and
vacuolated spermatogonia mitochondria. Primary
spermatocytes smaller with dilated endoplasmic reticulum
and Golgi apparatus and condensed mitochondria.

High dose: Severe seminiferous tubule damage and cell
vacuolation, spermatid level arrest, germinal cell
degenerative changes, a few fragmented sperm in the
lumen, and a thick, irregular basement membrane.

Spermatogenesis arrest at the spermatid level with germ cell
degenerative changes. Spermatogonia, spermatocytes, and
spermatids more affected than after the low dose.

Sertoli cells more damaged than the spermatogonia.

Nuclear membrane distortion and some rupturing and
chromatin accumulation.

No spermatozoa in the seminiferous tubules

The germinal epithelium was thinner in places where
spermatids were absent. Some germinal cells lost their
cytoplasm. Cells with pyknotic nuclei were necrotic. The
tight junctions were broken down.

Some enlarged Sertoli cell mitochondria. Enlarged Sertoli cell
rough endoplasmic reticulum. Their cisternae had fewer
ribosomes. Increased lysosome number and nuclear
membrane irregularities

Some primary spermatocyte mitochondria showed size and
shape variations with tubular or vesicular appearing cristae.

Decreased luminal sperm numbers. Spermatogonia were only
seen on the basal membrane. There were no luminal sperm.

Low spermatid numbers.

There were free cells in the lumen.

Increased rough endoplasmic reticulum in
spermatocyte cytoplasm

Testes ATPase activity was 74, 50, and 34% of controls at an
unstated time after injection

Weights of the testes were 96, 86, and 70%*; epididymis 91%,
82*, and 75%*; seminal vesicle 79%, 63*, and 59%*;
prostate 97, 90, and 84%*; and bulbourethral gland 87, 78%,
and 69%* of controls.

Seminiferous tubule diameter was 96, 73*, and 66%*
of controls

Sperm mobility after 1-2 min was 100, 97, 94*, 76*, and 64%;
2h 98, 86, 83*, 35%, and 19%; and 4 h 94, 79%, 62*, 18%, and
8%* of controls.

Sperm viability after 1-2 min was 98, 94, 88*, 80*, and 70%; 2h
98, 90, 78%, 57*, and 40*; and 4 h 94, 87, 64*, 35*, and
22%* of controls.

Sperm MDA after 2 h was 101, 108, 114*, 119*, and 143*; SOD
100, 96, 94, 87*, and 74*; CAT 96, 92, 84*, 75*, and 53*;
AST 127, 146*, 198*, 238%, and 272*; ALT 103, 110, 114,
126* and 162*; and ACP 96, 94, 89, 82* and 70%* of
controls.

Sperm MDA after 4h was 109, 118, 124*, 134*, and 148*; SOD
98, 93, 88, 77*, and 65%; CAT 89%, 84*, 78*, 69*, and 45%;
AST 128%, 149%, 186, 224*, and 285*; ALT 110, 115, 131%,
142*, and 182*; and ACP 86*, 84*, 78*, 60*, and 46%*
of controls

Testis, epididymis, and vas deferens weights were 89, 88, and
89% of controls.

Epididymis and vas deferens spermatozoa counts were 76 and
74% of controls.

Serum testosterone was 43, FSH 59, and LH 76% of controls

Testis MDA was 368%, lipid hydroperoxides 145*, GSH 38*, SOD
62*%, and CAT 45%* of controls

Dose dependent increase of DNA damage and sperm nucleus
immaturity rate

Testis weight after 40 mg/kg for 30 or 60 days was 102 and
88%, and after 80 mg/kg for 30 or 60 days 81* and 73%™* of
controls.

Reza and Palan (2006)

Beekhuijzen (2007)

Khattab (2007)

Kutlubay et al. (2007)

Sushma and
Rao (2007)

Trif et al. (2007)

Yousef et al. (2007)

Shahraki et al. (2008)

Al-Hashem (2009)

Cui et al. (2009)

Entissar et al. (2009)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

CD-1 mice, males

Wistar rats,
180-200 g, males

Sprague Dawley
rats,160 g, males

Wistar rats, males

Sprague Dawley
rats,10
weeks, males

Swiss Webster mice,
259, males
Sprague Dawley rats, 5
weeks, males
and females

0, 7, or 35mg/kg AlCl; i.p. for
14 days

0 or 34mg/kg AlCl; orally for
70 days

0 or 20mg/kg AlCl; i.g. daily for
70 days

0 or 100 mg/kg AlCl; orally for
90 days

0 or 0.125mg Al as Merck aluminum
adjuvant i.m. into each hind limb
6 and 3 weeks and 3 days prior
to cohabitation with females

0, 300, or 600 mg/kg AICl; in the
drinking water for 20 days

0, 120, 600, or 3000 ppm Aly(SO,);
in the drinking water from 10
weeks before mating to lactation
for FO and F1 generation rats,
until parturition of paired

1414 or 7070
(19,796 or 98,980)
14

(962)

(566)

40
(3636)

34 at cohabitation
(745 at cohabitation)

121 or 242

(2424 or 4848)

FO males

2.7, 13, or 59

(247, 1179, or 5406 over 13 weeks)
F1 males

Epididymis head (caput), body, and tail weights after 40 mg/kg
for 30 or 60 days were 99 and 86, 106 and 88, and 90 and
92% of controls.

Epididymis head, body, and tail weights after 80 mg/kg for 30
or 60 days were 81* and 80*, 105 and 91, and 97 and 97%
of controls.

Seminal vesicle weight after 40 mg/kg for 30 or 60 days was
114 and 82%, and after 80 mg/kg for 30 or 60 days 97 and
88% of controls.

Prostate gland weight after 40 mg/kg for 30 or 60 days was 99
and 94%, and after 80 mg/kg for 30 or 60 days 96* and 77%
of controls.

Sperm counts after 40 mg/kg for 30 or 60 days were 60* and
62%%*, and after 80 mg/kg for 30 or 60 days 33* and 33%*
of controls.

Live sperm % after 40 mg/kg for 30 or 60 days was 83* and
65%%*, and after 80 mg/kg for 30 or 60 days 51* and 47%*
of controls.

Abnormal sperm % after 40 mg/kg for 30 or 60 days was 157
and 133%, and after 80 mg/kg for 30 or 60 days 176* and
175%* of controls.

Al exposure caused congested testes, hyperemic blood vessels,
interstitial edema, and multiplication of interstitial Leydig
cells. Seminiferous tubules showed germinal epithelium
hyperplasia and decreased tubular lumen sperm bundles.

There was desquamation and sloughing of spermatogonia into
the tubular lumen.

There was spermatogenic epithelial coagulative necrosis,
extensive sloughing into tubular lumen, absence of sperm
bundles, and inflammation cell infiltration as lymphocytic
infiltration

Testes MDA was 121* and 144*; GPx 88* and 78*, GR 87* and
77%; and thioredoxin reductase 89 and 93% of controls

Testes, epididymis, seminal vesicle, and prostate weights were
81%, 70%, 57*, and 88% of controls.

Testes protein content was 79%™* of controls.

Sperm concentration was 70*; and percent motile 70*, dead
179%, and abnormal 146%* of controls.

Testicular CAT activity was 43*, GST activity 55%, MDA 273%,
reduced GSH 67%, and testicular 17-ketosteroid reductase
activity 70%* of controls.

Plasma testosterone was 76%* of controls.

Interstitial space blood vessels were markedly dilated and
congested.

Some germ cells had small, darkly stained nuclei.

There was vascular degeneration of the spermatogenic and
Sertoli cell cytoplasm.

There were irregularities in the nuclear membrane, some
damaged mitochondria, a decrease of ribosomes, an increase
of lysosomes in the Sertoli cell cytoplasm, and an increase of
rough endoplasmic reticulum in the primary spermatocyte
cytoplasm.

Seminiferous tubule architecture was disorganized, with
intratubular accumulation of exfoliated germ cells,
maturation arrest, thinner germinal epithelium, near absence
of spermatids, and absence of sperm in the lumen.

There was Leydig cell hyperplasia in the interstitial tissue and
clumps of Leydig cells surrounding most
seminiferous tubules

Testis, seminal vesicle, and prostate weights were 53%*, 93, and
91%* of controls.

Sperm count was 46*, motility 51*, viability 58*, and
abnormalities 279%* of controls.

Testicular SOD and MDA were 46* and 157%* of controls.

Serum testosterone was 50%* of controls.

Testes interstitial blood vessels were congested, there was
marked degeneration and necrosis of seminiferous tubule
lining germ cells, and interstitial edema and testicular
degeneration with germ cell absence

Testis GSH and lipid peroxides were 43* and 155%™ of controls.

There was arrest at the spermatid level, germinal cell
degenerative changes, a few fragmented sperm in the
lumen, and a thick, irregular basement membrane

Sperm count was 107, sperm motility 99, and testis weight 99%
of controls ~ 4 weeks after the last injection.

Testis and epididymis histomorphology were not remarkable.

There was no effect on the number of mated or
pregnant females

Blood testosterone was 52* and 6%™* of controls

There were no significant differences in the number of testis
sperm, percentage of motile sperm, progressively motile
sperm, swimming speed and pattern, or percentage of
morphologically abnormal sperm between treated and
control groups in FO or F1 adults.

Guo et al. (2009)

Yousef and
Salama (2009)

Hala et al. (2010)

Thirunavukkarasu
et al. (2010)

Wise et al. (2010)

Abu-Taweel
et al. (2011)
Hirata-Koizumi
et al. (2011b)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

Sprague Dawley rats, 5
weeks, males
and females

Wistar
rats,190 g, males

Wistar rats, 4 weeks,
75-95 g, males

Wistar rats,
males

Wistar rats, 6 weeks,
120 g, males

Humans, 600 treated
for problems
related to
fertility, males

Wistar
rats,150-200 g,
males

Wistar rats,
207 g, males

Wistar rats, 6 weeks,
180-200 g, males

females, resulting in mean 0, 8.6,
41, or 188 mg/kg bw/day
Al5(S0O,); intake by FO males and
0, 10.7, 50.2, or 232 mg/kg bw/
day Aly(SO,)3

intake by F1 males.

0, 50, 500, or 5000 ppm NH,AI(SO,),
in the drinking water from 10
weeks before mating to lactation
for FO and F1 generation rats,
resulting in mean 0, 8.6, 41, or
188 mg/kg bw/day NH,4AI(SO,),
intake by FO males and 0, 10.7,
50.2, or 232 mg/kg bw/day
NH4AI(SO,), intake by F1 males.

0 or 34mg/kg AlCl; in the drinking
water for 70 days

0, 64, 128, or 257 mg/kg AlCl; in the
drinking water for 120 days

0, 475, 950, 1425, or 1900 mg/kg
AlCl5 i.g. for 8 weeks

10 mg/kg Al in gum acacia i.g. for
2 weeks
Soil contained a mean of 3.92% Al.

0 or 100 mg/kg AlCl; orally for
3 days

0 or 0.5mg/kg AlCl5 orally for
35 days

0 or 34mg/kg AlCl; orally for 30, 45,
or 60 days

34,16, 0r 73
(308, 1444, or 6671 over 13 weeks)

FO males

0.9, 8 or 70

(78, 695, or 6328 over 13 weeks)
F1 males

1.0, 10, or 85

(95, 867, or 7718 over 13 weeks)

14
(962)

26, 52, or 104
(3103, 6205, or 12,459)

192, 384, 576, or 768
(10,746, 21,493, 32,239, or
42,986)

20
(280)

40
(121)

02
7.n)

14
(412, 618, or 824)

Cauda epididymal sperm number in 3000 ppm FO adults was
11%* of controls, but the number/gram epididymal cauda
was not significantly changed. No changes were observed in
F1 adults.

The mating index was 91.7, 91.7, 100, and 91.7% in the FO
generation and 95.8, 91.3, 95.8, and 87.5% in the F1
generation.

Fertility was 95.5, 90.9, 100 and 95.5% in the FO generation and
91.3, 81.0, 91.3, and 95.2% in the F1 generation.

There was no significant effect on testis weight of F1 or F2
weanlings.

Epididymis weight of Al-treated F1 weanlings was 94, 94, and
88%* of controls, and 91, 94, and 101% of controls
normalized to body weight. Epididymis weight of Al-treated
F2 weanlings was 104, 100, and 94%* of controls, and 103,
100, and 104% of controls normalized to body weight

There were no significant differences in the number of testis
sperm, cauda epididymal sperm, motile sperm, progressively
motile sperm, swimming speed and pattern, or percentage
of morphologically abnormal sperm between control and Al-
treated groups.

The mating index was 100, 91.7, and 91.7% in the FO and 91.7,
91.7, 91.3, and 95.8% in the F1 generation.

Fertility was 100, 91.3, 100 and 100% in the FO and 90.1, 77.3,
95.2, and 100% in the F1 generation.

Testis weight of Al-treated F1 weanlings was 97, 97, and 90%*
of controls, and 100, 100, and 104% of controls normalized
to body weight. Epididymis weight of Al-treated F1
weanlings was 94, 98, and 84%* of controls, and 94, 98, and
84%* of controls normalized to body weight. Epididymis
weight of Al-treated F1 weanlings was 104, 100, and 84%*
of controls, and 98, 101, and 98% of controls normalized to
body weight. There was no significant of Al treatment on
testis or epididymis weight of F2 weanlings

Serum testosterone was 45%* of controls.

Testes exhibited interstitial blood vessel congestion, decreased
carbohydrates, disorganized germinal epithelium, and
degenerative germinal cells. Seminiferous tubules had thick
basal lamina with fibrous connective tissue, irregular
basement membrane, fragmented spermatozoa in their
lumen, and germinal cell spermatogenesis arrest at the
spermatid level with reduction in sperm density.

Spermatogonia type A and B cell cytoplasm had swollen
vacuolated mitochondria, vascular endoplasmic reticulum,
and periphery clumped chromatin particles.

Primary spermatocytes were small. There was condensed,
periphery chromatin and some nuclear membrane
irregularity. Cell cytoplasm was vacuolated with lipid
droplets. Golgi apparatus cisternae and smooth endoplasmic
reticulum were dilated with vacuolated swollen
mitochondria.

Spermatids had dilated vascular smooth endoplasmic reticulum.

Golgi apparatus cisternae were elongated and joined in groups
with mitochondrial fragmentation

Testis androgen receptor mRNA levels were 75%, 34%, and 17%
of controls.

Serum testosterone was 96, 64*, and 53*; FSH 101, 99, and 98;
and LH 101, 84*, and 81%* of controls

Misshaped seminiferous tubules, alteration of epithelial lining
distribution, and vacuolar cytoplasm after the highest dose.

The epididymis histological appearance was normal

*

Testis MDA was 87, GSH 98, SOD 84, CAT 180, GR 73, and GPx
119% of controls

Increased soil Al correlated with decreased poor sperm quality*.
The authors concluded that the anomalous Al concentration
appears to have no correlation with male fertility disorder

Testes weight was 99% of controls.

Testes MDA was 124*, SOD 65*, and CAT 44%™* of controls.

Sperm count was 51*, motility 50*, morphology 40*, and
viability 39%* of controls.

Serum testosterone was 54*, FSH 28%, and LH 39%* of controls.

Degenerative necrosis with degeneration of spermatogenic cells
lining the seminiferous tubules was seen

Testis and epididymis weights were 101 and 100% of controls.

Sperm motility was 84*, count 90, abnormalities 176*, and live
sperm 70%* of controls

Weights of the testes were 84, 116, and 109; epididymis 83,
143, and 100; seminal vesicles 63, 115, and 121; and
prostate gland 64, 115, and 118% of controls.

Testes MDA was 111, 108, and 163%* of controls.

Sperm motility was 32*, 33*, and 29%; live/dead ratio 18*, 31%,
27%; and abnormalities 304*, 212*, and 284%* of controls.

Serum testosterone was 32*, 14*, and 33%* of controls.

Hirata-Koizumi
et al. (2011a)

Mahran et al. (2011)

Sun et al. (2011)

Buraimoh

et al. (2012b)
Buraimoh

et al. (2012a)
Chaitanya et al. (2012)

Giaccio et al. (2012)

Ige and
Akhigbe (2012)

Ighodaro et al. (2012)

Moselhy et al. (2012)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

Swiss mice,
15-20g, males

Wistar rats,
200-250g, males

Wistar rats, 90 days,
190-210g, males
Swiss mice, 25-30g,
~75 days
old, males

Kunming or BALB/c
mice,
20-24 g, males

Swiss mice, 8
weeks, males

Wistar rats, 90 days,
190-200 g, males

Human semen

Wistar rats,
2509, males
Wistar rats, 90 days,
190-200 g, males

Wistar rats, 5 weeks,
110-120 g, males

25mg/kg AlCl; once i.p.

0, 100, 200, or 400 mg/kg AICl; in
the drinking water for 6, 12 or
18 months

0 or 50 mg/kg AlCl; orally for
45 days

0 or 78.4mg/kg Al orally for 7 days
or 7.8mg/kg Al as
Al(S04)3-16H,0 i.g. for 90 days

0, 20, 40, and 60 mg/kg AlCl, i.p.
once weekly for 3 weeks

0, 50, 100, or 150 mg/kg aluminum
acetate i.p. for 7 days

0, 50, or 100 mg/kg AlICl; orally for
45 days

0 or 28 mg/kg Al(NOs)s i.p. every
other day for 7 injections

0, 50, or 100 mg/kg AlCl; orally for
48 days

0, 64, 128, and 257 mg/kg AlCl3 in
the drinking water for 120 days

5050

40, 81, or 162

(7373, 14,746, or 22,119 for 6
months; 14,746, 29,492, or
44,238 for 12 months; 29,492,
58,984 or 88,476 for 18 months)

20
(909)

157
(1098)

(1404)

577, 1154, or 1731
(1731, 3464, or 5194)

6600, 13,200, or 19,800
(46,200, 92,400, or 138,600)

20 or 40
(909 or 1818)

3556 every other day
(24,892)

20 or 40

(970 or 1939)

26, 52 or 104
(3103, 6205, or 12,459)

Increased testes small DNA fragments, peaking at 60 days.

Spermatogenic cell degeneration with some exfoliated lumen.
Seminiferous tubule thinning and disorganization.

Severe degeneration of spermatogenic epithelium with necrosis.

Sperm depletion in seminiferous tubule lumen.

Marked desquamation and vacuolation of epididymal epithelial
lining, diminished to lack of intraluminal sperm.

Prostatic acini were smaller without intra-luminal secretions.

The prostatic epithelium was hardly seen and very flat with
intraluminal calcified materials

24 h later: Light microscopy showed spermatogenic and Sertoli
cell cytoplasm vacuolar generation, mild detachment of
germ cells, irregularly shaped and some atrophied
seminiferous tubules, and Leydig cell hyperplasia.

Electron microscopy showed Sertoli cell mitochondrial damage,
inter-Sertoli cell tight junction destruction, spermatogonia
and spermatocyte apoptosis, spermatid morphological
abnormalities, and Leydig cell mitochondrial damage

Testes weight at 6, 12, and 18 months was 84, 101, and 112%;
89%, 94%, and 91%; and 72*, 79%, and 86%™* of controls.

At 6 months testes showed perturbation of spermatogenesis
(200 and 400), intense necrosis (400), and adhesive junction
alterations.

At 12 months there were seminiferous tubule alterations (200),
changes seen at 6 months with 400, and degradation of
seminal epithelium (200 and 400).

At 18 months the alterations seen at 12 months were seen after
a lower Al dose

Testes ALP activity was 64*, ACP 70%, LDH 74*, succinate
dehydrogenase 69*, and MDA 135%* of controls

After 7 days Al exposure sperm count and motility were 26*
and 33%* of control. Sperm abnormalities were 118% of
controls.

After 90 days Al exposure sperm count and motility were 70*
and 79%* of control. Sperm abnormalities were 188% of
controls.

90 days after completion of the 90-day Al exposure sperm
count and motility were 90 and 85% of control. Sperm
abnormalities were 139% of controls

Testes total SOD was 77*, 68*, and 67*; GPx 71%, 46*, and 50%;
H,0, 106, 121%, and 126*; and MDA 111*, 117*, and 114%*
of controls.

Testes Bax and Bcl-2 expression were 105, 127%, and 172%; and
89*, 84*, and 80%* of controls. There was a dose-
dependent reduced number of seminiferous tubules with
basement membrane decay or irregular shape, some with
wide lumen and without spermatocytes and filled vacuoles.
Most tubules were distorted with necrotic spermatocytes,
reduced spermatogonia, secondary spermatocyte, and
spermatid number.

The middle dose increased apoptosis (DNA laddering)

Five weeks later testis weight was 100, 92, and 96; sperm count
94, 74*, and 73%; and abnormal sperm 203*, 291*, and
328%™ of controls

Testis MDA was 126* and 147%; SOD 76* and 60*, CAT 77* and
58*, GST 95 and 83, GPx 75* and 63*, GR 96 and 70*,
vitamin C 74* and 63%; and vitamin E 58* and 49%* of
controls.

Epididymis MDA was 138* and 150*, SOD 84 and 70*, CAT 83*
and 66*, GST 94 and 88, GPx 75* and 57*, GR 94 and 65%*,
vitamin C 77* and 72%*, and vitamin E 61* and 56%*
of controls

The authors state that patients with low sperm counts had a
statistically higher semen Al concentration than others but
also state that semen Al concentration was significantly
lower in patients with low sperm counts (based on sperm
number, progressive motility, vitality, and morphology)

Testis weight was 100, MDA 219%, protein carbonyls 287*, GSH
158, and thiol groups 179%™ of controls

Testis weight was 95 and 85*, epididymis 97 and 89*, seminal
vesicles 94 and 83*, and prostate 98 and 93%* of controls.

Testis total protein was 93* and 88%* of controls.

Testes ALP was 75* and 59*, 5 nucleotidase 88* and 73*,
gamma-glutamyltransferase 103 and 137*, and ATPase
activity 89* and 80%* of controls.

Epididymis total protein was 97 and 88%™* of controls.

Epididymis ALP was 81* and 68*, 5’ nucleotidase 96 and 73*,
gamma-glutamyltransferase 107 and 118%, and ATPase
activity 86* and 73%* of controls

Testis weight was 94, 83*, and 75* and epididymis 95, 77*, and
62%* of controls.

Testes zinc was 90, 77%, and 67*; copper 105, 130%, and 145%;
and iron 87, 70%, and 59%* of controls.

Testes ACP was 97, 93%, and 8%; succinate dehydrogenase 102,
90, and 85%; LDH 91, 89, and 82*; and LDH isoenzyme
activity 85, 73*, and 60%* of controls.

Sperm count was 87, 29%, and 12* and malformation rate 125%,
170%, and 209%™ of controls

Abdel-Moneim (2013)

Hichem et al. (2013)

Tiroumavalavane
et al. (2013)
Yadav et al. (2013)

Chen et al. (2014)

D'Souza et al. (2014)

Kalaiselvi et al. (2014)

Klein et al. (2014)

Maghraoui

et al. (2014)
Ramalingam

et al. (2014)

Zhu et al. (2014)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

Mice, 12 weeks,
20-30g, male

Wistar rats, 3-4
months,
190-210g, males

Albino rats, 160g

Wistar rats
120-150g, males
Albino rats
140-160 g, males

Wistar rats,
190-240 g, males
Wistar rats, 12 weeks,
male (non-diabetic
and diabetic)

Rats, males

Wistar rats 250-260 g

0, 25, 50, and 100 mg/kg AICI; orally
for 30 days

0 or 34mg/kg AlCl;-6H,0 i.g. for
10 weeks

0 or 50 mg/kg Aly(SO,)s i.g. for
45 days

0 or 20 mg/kg AlCl; orally for
28 days

0 or 30mg/kg AlCl; orally for
8 weeks

0 or 75mg/kg AlCl5-6H,0 orally for
30 days

250 ppm AICl; in the drinking water
for 30 days

0 or 30 mg/kg AlCl; i.p. every other
day for 8 weeks

0 or 100 mg/kg AlICl; orally for
60 days

10, 20, or 40
(303, 606, or 1212)

7.8
(547)

16
(711)

8.1
(226)

(679)

17
(518)

(439)

6060 every other day
(169,680)

40
(2424)

Testes weight was 95, 88, and 80*; epididymis 100, 81, and
66*; and seminal vesicles 90, 79, and 57%* of controls.
Testis MDA was 118, 124, and 169%; SOD 93, 88, and 56*; CAT
96, 79, and 46*; GPx 89, 69, and 49%™*; and cholesterol 106,

113, and 127%* of controls.

Sperm motility was 94, 88%, and 62*; viability 98, 85*, and 68%;
count 100, 88, and 44*; and abnormalities 110, 187*, and
233%™ of controls.

Epididymal sialic acid was 56, 54, and 37%* of controls.

Seminal vesicle fructose concentration was 97, 96, and 69%* of
controls.

Serum testosterone was 90, 94, and 61%* of controls.

100 mg/kg/day reduced mating ability, reducing fertile females
to 20% of control and live blastocysts to 62% of control and
increased pre- and post-implantation losses to 243* and
700%* of controls.

Testis histology of the 25 mg/kg/day mice was normal.

50 mg/kg/day caused mild degenerative seminiferous changes
(tunica propria thinning, germ cell loosening, and Leydig cell
regressive changes).

100 mg/kg/day caused seminiferous tubule shrinkage and
lumina devoid of spermatozoa or carbohydrate cell debris
and Leydig cell atrophy.

Seminal vesicle histology of the 25 mg/kg/day mice was normal.
50 mg/kg/day caused a slight increase of mucosal folding.
100 mg/kg/day caused increased mucosal folding and
reduced lumen secretory material

Testes weight was 75%™* of controls.

The number of Leydig cells/interstitial space was 24%™* of
controls.

Testes zinc was 66%* of controls.

Testes nitric oxide was 286*, GSH 38*, CAT 25%, GPx 35*, and
SOD 25%* of controls.

Testes CAT was 23*, GPx 18*, SOD 19%, and cAMP expression
28%* of controls.

Expression of testes steroidogenic genes for 3-beta-
hydroxysteroid dehydrogenase was 26*, 17 beta-
hydroxysteroid dehydrogenase 24*, steroidogenic acute
regulatory protein 15%, and cholesterol side-chain cleavage
enzyme 25%* of controls.

Testes testosterone was 44*, LDH 26*, and FSH 36%*
of controls

Testis weight was 58%* of controls.

Testis protein was 54%, lipids 120, cholesterol 56*, triglycerides
75, and phospholipids 53%* of controls.

Serum testosterone was 42*, FSH 73*, LH 68*, and prolactin
150%* of controls.

Seminiferous tubules showed shrinking, vacuolation, loss of
spermatogenic cells, and increased focal Leydig cell
proliferation. The tunica propria was separated from these
structures, the seminiferous tubule lumen was very compact
with cells, and there was some spermatogenic cell pyknosis
and seminiferous tubule bleeding

Testis triglycerides were 129, cholesterol 48%, and phospholipid
99% of controls

Al caused seminiferous tubule basement membrane disturbance,
disorganized germinal epithelium, interstitial vacuolation,
and an 18%* decrease of diagonal diameter.

Most spermatogenic cells were undifferentiated and decreased
in number.

There were decreased polysaccharides in the seminiferous
tubule basement membrane, spermatogenic, and Leydig
cells. There was decreased germ and Leydig cell
proliferation, 68%* decrease in proliferating cell area, 37%*
reduction of interstitial cell number, and 29%* reduction of
epithelial wall thickness

Testis weight was 85*, SOD 48*, GPx 43*, and MDA 322%*
of controls

Sperm count and epididymal spermatozoa motility were 82*
and 92%* of controls.

Serum testosterone and estradiol were 120* and 122%* of non-
diabetic controls.

Shrunken seminiferous tubules with germinal epithelium erosion

Serum testosterone was 48, FSH 65*, and LH 72%™* of controls.

Oligospermia, hypoplasia, exfoliated tubules progressed starting
after 2 weeks.

Increased space between tubules seen after 6 and abnormal
Leydig cells after 8 weeks

Testes weight was 86, epididymis 75*, seminal vesicles 88*
and prostate 90%* of controls.

Sperm count and motility were 80* and 60%* of controls.

Sperm abnormalities (headless, banana head, bent neck, and
bent tail) were 706%, live sperm 43*, and dead sperm
320%™ of controls.

Serum testosterone was 68%™* of controls

Kumar and
Singh (2015)

Mohammad
et al. (2015)

Rawi and Al
Nassr (2015)

Ugbaja et al. (2015)

Afeefy et al. (2016)

Akay et al. (2016)

Akinola et al. (2016)

Al Nahari and Al Eisa
(2016) and Al-Eisa
and Al-

Nahari (2017)

Arumugam and
Venugoapal (2016)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results®

Reference

Guinea pigs

Sprague Dawley rats,
200-250 g, males

Albino rats, 60 days,
1759, males

Humans

Swiss mice,

25-35¢, males

Wistar rats, 280-330g,
males and females

Albino rats,
150-200 g, males

Wistar rats,

250-300g, males

Wistar rats,
150 — 200 g, males

Wistar rats,
240-260 g, males

Sprague Dawley rats,
adult, males

0 or 100 mg/! AICl5 in the drinking
water for 13 weeks

0 or 18 mg/kg AlCl; orally for
30 days

0 or 98 mg/kg Aly(SO,); orally for 30
or 60 days

Sperm exposed to 0, 0.125, 0.25, 0.5,
1 or 5mM AICl; for 2 h (motility)

Sperm exposed to 0, 0.5, 1, 5, 10,
15, 20, 25 or 30 mM AICl; for 2h
(lipid peroxidation)

0, 25, 50, and 100 mg/kg AlCl; orally
for 30 days

0, 200, 400, or 1000 ppb
Al;(SO4)3-18H,0 in the drinking
water for 6 months to produce
Fo males, mated with females
similarly exposed during
gestation and lactation, then
offspring exposed to 6 months
(— F; males), F; males mated
with females similarly exposed
during gestation and lactation,
then offspring exposed to 6
months (— F, males)

0 or 100 mg/kg AlCl; i.g. for 4 weeks

0, 2 or 10mg/kg Aly(SOy)s i.v. once
or 0 or 3mg/kg Al,(SO,)s i.p. for
7 days

0 or 43 mg/kg AlCl; i.p. for 21 days

0 or 10mg/kg AICl; i.p. for 28 days

0, 75, 150, or 300 mg/kg AICl3
presumably orally for 59 days

6.1
(551)

73
(218)

31
(929 or 1858)

10, 20, or 40
(303, 606, or 1212)

0.005, 0.009, or 0.023
(11, 21, or 53)

40
(1131)

316 or 1580
474
(3318)

869

(18,241)

2020
(56,560)

20, 61, or 121
(1788, 3575, or 7151)

Sperm count was 94, motility 97, and abnormal sperm 111% of
controls.

Testes steroidogenic acute regulatory protein and cytochrome
P450 cholesterol side chain cleavage enzyme protein
expression were 94 and 81%* of controls.

Testes steroidogenic acute regulatory protein and cytochrome
P450 cholesterol side chain cleavage enzyme mRNA were 83
and 79% of controls.

Serum testosterone was 96% of controls.

Seminiferous tubule morphology almost normal.

Appearance of tiny cavities and decreased sperm
bundle number

Sperm count was 49*, motility 67*, viability 66, and
abnormalities 174%* of controls.

Testes germ cell layer irregularity, distorted seminiferous
tubules, spermatogenic cell degeneration, necrotic debris in
the tubules, multinucleated giant cell appearance, interstitial
blood vessel congestion, interstitial edema, and abnormal
luminal spermatozoa distribution were seen

Testes MDA after 30 and 60 days was 369* and 610*, and GSH
42* and 19%* of controls.

Loss of Sertoli cell integrity. Interstitial cell size reduction with
nuclear pyknosis.

Marked distortion of seminiferous tubules with almost complete
disintegration of connective tissue between them.

After 30 days spermatogonia detached from seminiferous tubule
basal lamina, germ cell desquamation, and interstitial blood
vessel engorgement.

After 60 days seminiferous tubule cell nuclear fragmentation,
nuclear pyknosis, and germ cell cytoplasmic disintegration.

Spermatogonia and spermatocyte cytoplasm vacuolization.

Reduced sperm amount in seminiferous tubule lumen, many
totally devoid of sperm

Sperm motility was 100, 97, 93, 76*, and 17%* of controls.

MDA was 100, 200*, 284%, 432*, 579*, 664*, 655, and 648%*
of controls

Blood testosterone was 68%™* of controls

Testes MDA was 124, 127, and 181*; SOD 90, 84, and 48*; CAT
86, 69, and 38*; GPx 64, 66, and 36™; ALP 111, 124, and
164*; and LDH 114, 203*, and 312%™ of controls

Testes weight of Fy, F;, and F, males was 93, 85%, and 80%; 85%,
83*, and 77*%; and 82*, 76%, and 66%* of controls.

Sperm count in Fy, F;, and F, males was 96, 92, and 85*; 89%*,
85%, and 72%; and 72%, 67%, and 59%* of controls.

Immobile sperm in Fo, F, and F, males was 218%, 245*, and
345%; 128*, 193* and 175%; and 507*, 575%, and 588% of
controls.

Serum testosterone in Fo, F;, and F, males was 87*, 73*, and
40%; 61%, 63*, and 33*; and 58%*, 49%, and 27%* of controls.

Testes had interstitial edema, seminiferous epithelial necrosis
and exfoliation, basal membrane disintegration, and Leydig
cell necrosis and disintegration.

Sperm abnormalities included heads without tails, broken tails,
and flexed heads

Testes had small shrunken seminiferous tubules with irregular
basement membrane, necrotic germinal epithelial cells, and
giant cell formation.

Reduced spermatogenesis (single or double germ cell layers),
necrotic and calcified tubules.

Intertubular blood vessel congestion.

Epididymal ducts had reduced density or no sperm and
sloughed necrotic germinal cells in their lumina

Acute Al reduced intracavernosal pressure/mean arterial pressure
(ICP/MAP) 39 and 71%.

Subacute Al reduced ICP/MAP ~ 30%, serum testosterone to
45%* of control and increased corpus cavernosum MDA,
GSH, and Al to 128%, 119, and 354%* of control

Testes MDA was 148* and 147*, SOD 80* and 94*, CAT 80*
and 77%, GST 70* and 77*, and GPx 78* and 80%* of
controls in the two studies.

Al produced shrunken seminiferous tubules; severe sperm cell
aplasia; basement membrane thickening and rupture; and
interstitial and peritubular tissue vacuolization and fibrosis

Testis weight was 80*, sperm count 48*, motility 52*,
abnormalities 325%, and viability 45%* of controls.

The seminiferous tubule germinal epithelial thickness was 65%%*,
tubule diameter 87%, tubule lumen 128%, and spermatogonia
nuclear diameter 100% of controls.

Plasma testosterone was 35%, FSH 116, LH 32*, and SOD 39%*
of controls

Sperm count was 100, 92, and 44*; sperm motility 96, 88*, and
62*; normal sperm 97, 87*, and 75*; and abnormal sperm

Dong et al. (2016)

Hadi and Jaffat (2016)

Jakkala and Ali (2016a)

Jakkala and Ali (2016b)

Jamalan et al. (2016)

Kumar and
Singh (2016)

Muselin et al. (2016)

Oda (2016)

Senbel et al. (2016)

Arhoghro and
Sule (2017a)

Arhoghro and
Sule (2017b)

Cheraghi et al. (2017)

Falana et al. (2017)
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Al-treated subjects

Al exposure

Approximate systemic Al
exposure as pg/kg/day and
(total pgr/kg)?

Study results® Reference

Rats, 6-7 weeks,
90-120g, males

Albino rats,
1809, males

Wistar rats, 3 months,
3629, males

Bank voles, 4 weeks,
males and females

Albino rats,
180-200 g, males

0 or 30mg/kg of AlCl; i.p. for 35
days followed by 0 Al for
60 days

0 or 100 mg/kg of AlCl; i.g. for
8 weeks

0, 1.5, or 8.3 mg/kg Al as AlCl;-6H,0
in the drinking water for 60 days
0 or 100 mg/kg Al i.g. daily for
42 days

0, 1.5, or 100 mg Al/kg/day as
AlCl5-6H,0 in the drinking water
for 12 weeks

0 or 10mg/kg AlCl; i.g. daily for
3 months

6060 first 35 days
(212,100)

40
(2262)

3 or 17 in the 60-day study
(180 or 996)

200 in the 42-day study
(8400)

3 or 200
(252 or 16,800)

(364)

115, 135%, and 170%™ of controls.

Serum testosterone was 98, 95%, and 73%* of controls.

Testes histology was normal for the 75 and 150 mg/kg-treated
rats.

300 mg/kg resulted in severe testicular damage, abnormal
seminiferous tubules, incomplete maturation of germinal cell
layers, absence of luminal sperm and Leydig cell hyperplasia

On day 61 testes weight was 73, epididymis 54, seminal vesicle
2, and ventral prostate 24% of controls.

Testes protein was 75, MDA 177, SOD 11, CAT 50, cholesterol
140, and gamma-glutamyltransferase 44% of controls.

Epididymal protein was 63, MDA 149, SOD 14, CAT 30, and
gamma-glutamyltransferase 9% of controls.

Sperm count was 31, motility 40, and viability 22% of controls.

Libido test mounts and intromissions on day 55 were 35 and
13% of controls.

Testes showed spermatogenesis impairment and disorganized
seminiferous tubule germinal epithelium with spermatozoa-
free lumen, degeneration, and necrosis. There was interstitial
tissue reduction.

The epididymal tubule lumen contained immature nucleated
spermatocytic cells. Partial recovery was seen after Al
termination.

Spermatogenesis seemed to be taking place in the seminiferous
tubules. Some spermatozoa were seen in epididymal lumen

Serum testosterone was 51%* of controls.

Testes exhibited completely atrophied seminiferous tubules,
with germinal epithelial necrosis and sloughing.

Interstitial edema and congestion were seen.

There was multinucleated giant cell aggregation.

Ductal germinal epithelial vacuolization and sloughing was seen
and the absence of sperm.

The lumen of some tubules had acidophilic foamy material
admixed with exfoliated necrotic germ cells.

Epididymal tissues showed alteration of most ductules that
appeared devoid of mature spermatozoa

60-day study testes were 118 and 122, epididymis 108 and 106,
full seminal vesicle 100 and 100, vesicular secretion 100 and
122, vas deferens 87 and 102%, and ventral prostate 89 and
95% of controls.

MDA in the testes was 141* and 162*, epididymis 142 and
224%*, and prostate 136 and 156%* of controls.

Reactive oxygen and nitrogen species in the testes were 138
and 160*, epididymis 137* and 141%, and prostate 133* and
131%* of controls.

Antioxidant capacity in the testes was 73* and 83, epididymis
120 and 66*, and prostate 69* and 117% of controls.

60-day study normal sperm were 96* and 90*, abnormal sperm
171 and 248, testis sperm number 73* and 65%, daily
production 73* and 65*, sperm that were motile with
progressive movement 85 and 53*, sperm that were motile
without progressive movement 122 and 167*, immotile 161
and 197*, epididymis sperm number 95 and 93, epididymis
transit time 128* and 162*, cauda sperm number 78 and 84,
and cauda transit time 107 and 132% of controls.

For the 8.3 mg/kg subject’s testis activated macrophages were
265%*, seminiferous epithelial thickness 76%*, empty
seminiferous tubule number 273%™, and empty epididymis
efferent ducts 100% of controls.

42-day study testes weights were 100, epididymis 93, ventral
prostate 84*, full seminal vesicle 108, vesicular secretion 129,
and vas deferens 89% of controls.

Testes MDA was 177%, epididymis 170*, and prostate 138% of
controls.

Testes antioxidant capacity was 126*, epididymis 97, and
prostate 69%* of controls.

42-day study normal sperm were 89%, abnormal sperm 219,
testis sperm number 78%, daily production 78*, sperm that
were motile with progressive movement 33*, sperm that
were motile without progressive movement 173*, immotile
258%, epididymis sperm number 94, epididymis transit time
118, cauda sperm number 84, and cauda transit time 107%
of controls.

Testes reactive oxygen and nitrogen species were 181%,
epididymis 141*, and prostate 124%™ of controls.

Testis activated macrophages were 114% of controls

Testis seminiferous epithelial thickness was 74%* of controls.

Empty seminiferous tubule number was 126% of controls.

Empty epididymis efferent ducts were 80% of controls

Testis and accessory gland weights were 102 and 104; and 103
and 117% of controls.

Sperm count was 61* and 48%; sperm motility 91* and 75%;
swollen sperm 91 and 70%; viable sperm 85* and 64*;
sperm cell head abnormalities 132 and 195%; and
spermatogenic index (a measure of seminiferous epithelium
activity, spermatogenesis) 96 and 77%* of controls

Testes MDA was 147%, GSH 52*, CAT 64*, and SOD 63%* of
controls.

Serum testosterone was 30%* of controls.

Francine et al. (2017)

Khafaga (2017)

Martinez et al. (2017)

Miska-Schramm
et al. (2017)

Mohamed and El-
Moneim (2017)
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Table 6. Continued.

Al-treated subjects Al exposure

Approximate systemic Al
exposure as pg/kg/day and

(total pgr/kg)?

Study results® Reference

Wistar rats, 0 or 0.5mg/kg AlCl; i.g. daily for
100-196 g, males 3 weeks

Wistar rats, 0 or 20 mg/kg AlCl; orally daily for
160 g, males 6 weeks

Wistar rats, 40 mg/kg AlCl; in the drinking water
160 g, males for 21 days

Mice, 3 months, 0 or 55.45mg/kg AlCl; i.p. daily for
30-35g, males 60 days

0, 0.000067, 0.000335, 10, and
40 mg/kg Al as AlCl; i.g. daily for
112 days

Wistar rats, 70 days,
264-368 g, males

Wistar rats, 3 weeks,
70-95 g, males

0, 64, 128, or 256 mg/kg AlCl; in the
drinking water for 120 days

0 or 0.4-0.55mg Al as Al hydroxy-
phosphate sulfate (in Merck’s

Sprague Dawley rats,
~ 8 weeks, males

02
(4.2)

(339)

16

(339)

11,200

(78,406, 168,014, 336,027, or
672,054 after 7, 15, 30, or
60 injections)

0.000134,
0.00067, 20, or 80
(0.015, 0.075, 2240, or 8960)

25, 52, or 103
(3103, 6205, or 12,411)

77-106
(2658-4616)

Testis showed marked necrosis and degeneration of
seminiferous tubule spermatogonia lining cells, incomplete
spermatogenesis, and intraluminal spermatid giant cells

Serum testosterone was 78, FSH 43, and LH 33% of controls Olawuyi et al. (2017)

Testis caspase-3 and proliferating cell nuclear antigen (a Sakr et al. (2017)
measure of cell replication) expression were 278 and 22% of
controls.

Seminiferous tubule diameter and thickness were 58 and 48%
of controls.

Serum testosterone and LH were 18 and 33% of controls.
Testes blood vessels were enlarged and congested, tubule germ
layers were detached from the basal lamina, intertubular
spaces had blood hemorrhages, germ layers had vacuoles,
and there was a severe reduction of spermatogenic cells

with appearance of giant cells

Testis total protein was 63*, MDA 148*, GSH 59*, CAT 43*, and
SOD 27%* of controls

After 7, 15, 30, or 60 injections sperm count was 72*, 75%, 25%,
and 13%; live sperm 95, 92*, 78*, and 60*; and abnormal
sperm 91, 161*, 206*, and 261%* of controls.

After 30 injections sperm abnormalities included amorphous
head, bent at the cephalocaudal junction, bent with
projecting filaments, microcephaly with tail defects and
defective head with tail duplication.

Testes were enlarged after 60 injections.

Testis showed fibrin deposition; seminiferous tubule
vacuolization with hyalinization; Leydig cell proliferation;
tunica albuginea fibrous thickening; lack of spermatocytes in
some seminiferous tubule lumens; spermatogenic cell
sloughing in seminiferous tubule lumens; seminiferous
tubule necrosis, interstitial fibrosis, distension, and giant cell
formation; mononuclear cell infiltration;

Epididymis showed destruction of ductal epididymal epithelia,
mild interstitial fibrosis, mononuclear cell infiltration,
spermatid loss and spermatid clumping in some tubules, and
epithelial caput destruction.

Prostate stromal tissue showed fibromuscular proliferation with
mononuclear cells aggregation and epithelial hyperplasia
Testis total weight was 92*%, 88*, 87*, and 86*; tunica albuginea
118, 94, 82, and 61; and parenchyma 89*, 88*, 88*, and

88%* of controls.

Leydig cell nuclear diameter was 87*, 85*, 80*, and 83%;
nuclear percentage 105, 110, 126, and 128; and cytoplasm
percentage 117, 135, 131, and 204%* of controls.

Number of Leydig cells/testis was 124, 168, 168, and 160% of
controls.

Epididymis weight was 84%, 74*, 78%, and 77%* of controls.

Epididymal caput epithelial height was 94, 98, 98, and 111%;
tubular diameter 108, 96, 101, and 96; luminal diameter 111,
94, 103, and 92; lumen with sperm 93, 83*, 96, and 84*;
and percent epithelium 105%, 118*, 102, and 119%* of
controls.

Normal sperm morphology was 104, 97, 100, and 96; sperm
motility 88, 90, 93, and 84*; and sperm with tail defects 58,
110, 102, and 127% of controls.

Sperm with intact plasma and acrosomal (secretory vesicle of
sperm head with enzymes that digest the oocyte’s
investments) membranes were 63, 47*, 12* and 9%* of
controls.

Serum testosterone was 31%, 31*, 56*, and 54%* of controls

Testis volumetric proportion; tubular and intertubular volume;
tubular morphometry; and seminiferous tubule diameter,
luminal diameter, and length were not different from
controls.

Epididymal lamina propria volumetric proportions, lumen
without sperm, blood vessels, connective tissue, and smooth
muscle were not different from controls

Testes Nat-K*-ATPase activity was 94, 90 and 74*; Mg*"-
ATPase 100, 72*, and 66*; and Ca®"-ATPase 96 84, and
78%* of controls.

Testes follicle stimulating hormone receptor and luteinizing
hormone receptor expression were 89, 73, and 64*; and 86,
74* and 68%* of controls.

Testes from the 64 mg/kg group stroma were slightly expanded,
with decreased spermatogenic cells and sperm count.

Testes sperm in the 128 mg/kg group were in the lumen and
sperm count was significantly decreased.

Testes from the 256 mg/kg group showed congestion, blood,
edema, and were withered.

Testicular stroma from the 256 mg/kg group were significantly
expanded, the seminiferous tubules narrow, with decreased
sperm count.

Testes showed cell disintegration, incomplete cell membranes,
foal-like structures, mitochondrial swelling, and irregular
nuclear envelope

Adedosu et al. (2018)

Mohammed
et al. (2018)

Mouro et al. (2018)

Sun et al. (2018)

Wise et al. (2018)
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Approximate systemic Al
exposure as pg/kg/day and

Al-treated subjects Al exposure (total pgr/kg)? Study results* Reference
aluminum adjuvant) i.m. on There was no effect on testis or prostate weight, or testis,
study days 1, 22, 43, and 64 epididymis, seminal vesicle, prostate, or prostate
Terminated 3 or 21 days later histomorphology
Gerbils, 3-4 months 0 or 20.2mg Al/kg/day as AlCl3 40.4 Offspring body weight; anogenital distance; and prostate Gomes et al. (2019)
old, females orally GD 17-24 [323] epithelial buds, mesenchyme, and smooth muscle were 87%,

98, 122*, 80*, and 131%™ of controls.

Androgen receptor and proliferating cell nuclear antigen in the
prostate epithelial buds, mesenchyme, and smooth muscle
were 82%, 73%, and 77; and 484*, 174*, and 267%* of
control.

The results suggest Al acts as an antiandrogenic
endocrine disruptor

Wistar rats, 0 or 0.5mg/kg AlCl; i.g. daily for 02 The visual field percentage of seminiferous tubules was 89%, Olawuyi et al. (2019)
100-196 g, males 3 weeks (4.2) Leydig cells 122, and non-Leydig cells 190% of controls. The
volume of seminiferous tubules was 89%, Leydig cells 115,
and non-Leydig cells 185% of controls.

Seminiferous duct diameter was 116, luminal diameter 106,
epithelial height 24*, and interstitial space diameter 992%*
of controls.

Spermatogonia were 30, primary spermatocytes 60, secondary
spermatocytes 31, round spermatids 62, elongated
spermatids 14, spermatozoa 6, and Sertoli cells 33%

of controls
Wistar rats, 0, 64, 128, or 257 mg/kg AlCl;-6H,0 15, 30 or 59 Progressively motile, dead, and abnormal sperm were 70*, 51%, Yuan et al. (2019)
180-200 g, males in the drinking water for (1653, 3307, or 6613) and 26%; 155%, 282*, and 434*; and 131%, 163*, and 220%*
16 weeks of controls.

Mitochondrial membrane potential and membrane permeability
transition pore were 82*, 69%, and 51%; and 181*, 238*, and
423%* of controls.

Al exposure increase sperm mitochondrial swelling

Kunming mice, 4 0 or 10mg/kg Al (form not 20 Testis weight was 96% of controls. Cao et al. (2020)
weeks, reported) i.g. for 4 weeks (560) Testis Na was 151%, K 77%, Ca 154%, and Mg content 83%™* of
18-23 g, males controls.

Testis MDA was 195%, H,0, 135%, CAT 49*, SOD 70*, and total
antioxidant capacity 45%* of controls.

Testes NO content was 134%; activity of iNOS was 105, tNOS
177*, and cNOS 270*; and mRNA expression of nNOS 151%*,
iNOS 435*, and cNOS 180%* of controls.

Testes Nat-K*-ATPase activity was 82*, Mg?"-ATPase 68*,
Ca®*-ATPase 55%, and Ca*"-Mg*"-ATPase 68%* of controls.

Seminiferous tubules were disorderly with loose arrangement
and damage. Mature sperm count was decreased with
enlarged and loose cells and swollen sperm heads

Wistar rats, 8-10 0 or 34mg/kg AlCl; orally for 14 Testis MDA, GSH, GPX, CAT, Nrf-2, HO-1, and caspase 3 and Bcl2  Giiveng et al. (2020)
weeks old, 10 weeks (962) expression were 125%, 65%, 83, 77*, 47*, 68*, 1750* and
220-250g, males 470%* of controls.

Johnsen testicular biopsy score was 41%* of controls.

Sperm motility, concentration, dead/live ratio, and abnormal
sperm were 58%, 53*, 220%, and 209%* of controls.

Tubular germ cells were largely separated from the basement
membrane, the tubulus membrane was thickened, tubules
were

closer to each other, interstitial space was narrowed, there was

significant cell loss or tubule disorganization, increased space
between Sertoli cells, increased spermatogonia, degenerated
germinal cells, spermatogonial nuclei shrinkage, halted or
decreased spermatogenesis, and interstitial edema and
vascular congestion

Albino mice, 3-4 0 or 50 mg/kg AICl; presumably 20.2 Testis weight and as a percentage of body weight after 15, 30, Sajjad et al. (2020)
months, orally for 45 days (303, 606, and 909 after) 15, 30, and 45 days were 100, 99, and 90%; and 80, 85, and 81%*
23-35g, males and 45 days) of controls.

Epididymis and vas deferens weight and as a percentage of
body weight after 15, 30, and 45 days was 91, 87, and 73;
and 73, 73, and 70% of controls.

Seminal vesicle weight and as a percentage of body weight
after 15, 30, and 45 days was 72, 72, and 68%; and 57, 63,
and 85% of controls.

Sperm count after 15, 30, and 45 days was 98, 90, and 55%* of
controls.

Sperm mobility after 15, 30, and 45 days was 80, 78, and 64%
of controls.

Serum testosterone, FSH, and LH after 15, 30, and 45 days were
189%, 46, and 36%; 80, 79, and 62*; and 13, 3, and 0.3%* of
controls.

After 15 days shrunken interstitial cells and damaged basement
membrane were seen; after 30 days irregularly shaped
seminiferous tubules; and after 45 days vacuolation,

damaged spermatocytes, and irregularly shaped
seminiferous tubules

The approximate systemic Al exposure from the additional Al was calculated as described in the text. Daily exposures that do not add more Al than expected
from the diet are in italics.

See the footnote in Table 3.

*Results that are statistically significantly different from controls.
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exposure-dependent increase in placental Al concentration.
The considerably higher placental Al levels in mice and rats
compared to humans may be due to the higher Al content
of rodent than human diet (see the Animal diet Al content
and daily food and water consumption section). Exposure of
human placental brush-border membranes and microsomes
to 0.05-10mM Al salts increased MDA in a concentration-
dependent manner (Anand and Kanwar 2001), suggesting Al-
increased lipid peroxidation could have detrimental effects
on the placenta. No association was seen between placental
Al concentration and orofacial clefts (Pi et al. 2019).

The fetus inhales and swallows amniotic fluid. In mice
exposed to topical AlCI; solution for 20days, estimated to
provide negligible systemic Al exposure (see Table 8), amni-
otic fluid was 35 compared to 29pug/L in controls (Anane
et al. 1997). Human samples obtained at 16-19 weeks of ges-
tation averaged 93pg/L (Hall et al. 1983), 111pug/L at
16-26 weeks and 160 ng/L at 21-26 weeks (Suliburska et al.
2016), 19 ug/L at 12-20 weeks (Jalali and Koski 2018), and at
birth 78 (Takacs et al. 1992) and 144 ng/L (Markiewicz et al.
2017). Amniotic fluid Al was higher for male than female
fetuses, 179 versus 107 pg/L, respectively (Suliburska et al.
2016). Amniotic fluid Al concentration did not significantly
correlate with fetal heart rate, umbilical artery pulsatility
index, biparietal diameter, head or abdominal circumference,
femur length, or estimated fetal weight (Suliburska et al.
2016). There was no relationship between Al concentration
and ultrasound measures (estimated weight, bi-parietal diam-
eter, head circumference, abdominal circumference, and
femur length) at 16-20 or 32-36weeks (Jalali and Koski
2018). Amniotic fluid Al in women whose fetus was found to
have congenital neural tube defects averaged 440 ug/L, sig-
nificantly higher than women with healthy fetuses (256 ng/L)
(Ovayolu et al. 2019).

Infant meconium of low socio-economic mothers from 19
sites in Karachi, Pakistan, averaged 130 ppm Al (Aziz et al.
2017). The authors found a significant correlation among
maternal blood, cord blood, and meconium Al concentration
at 13 of the 19 sites.

Only two reports were found of Al concentration in female
reproductive organs. Ovary Al concentration in Wistar rats
that consumed 0, 200, 400, or 1000ppb Al;(SO4)s in the
drinking water for 3 months before mating was 38, 95*, 101%,
and 77* ug/g after offspring weaning. The corresponding
uterus and fallopian tube Al concentrations were 7.0, 8.9%,
8.2*%, and 8.7* pg/g. Ovary Al concentration in similarly
exposed F1 offspring was 40, 99%, 102*, and 104* ng/g after
weaning. Uterus and fallopian tube Al concentration was 7.8,
9.2*%, 9.4*, and 10.2* ug/g (Trif et al. 2010). Some of these
values are much higher than reported for the placenta and
non-reproductive organs of pregnant rodents (perhaps they
are expressed as dry weight, although this cannot be deter-
mined from the report). Ovary Al concentration in Wistar rats
that consumed 0, 64, 128, or 257 mg/kg AlCl; in the drinking
water for 120days was 0.16, 0.54*%, 1.14* and 1.18* pg/g.
Since the authors do not report if these are based on wet or
dry weights, these data only provide a basis for within-study
comparisons (Wang et al. 2012). Both reports show increased
female reproductive organ Al concentration as a result of

increased Al exposure, associated with structural changes in
the ovaries and uterus, and decreased female hormones and
increased testosterone in the blood (Table 3).

There are many reports of Al quantification in mouse and
rat testes, four in rabbits, and one in humans. Details are
summarized in Table 10. Aluminum deposits in human
Leydig cells and seminiferous tubules were visualized using
laser microprobe mass analysis (Reusche et al. 1994). Many of
the reports found an Al-exposure-dependent increase in tes-
tes Al concentration. For the studies that determined testes
Al concentration shortly after completion of exposure in the
absence of citric acid, there is a strong correlation between
total systemic Al exposure and the dietary plus added Al con-
tribution (e.g. Pearson correlation r(30) = 0.67, p=0.000027
for the log,y mouse and rat total Al exposure versus log;q
testes Al concentration as a fold of control). An increase in
seminal fluid Al concentration was found in humans exposed
to occupational environments that might increase Al expos-
ure (Hovatta et al. 1998; Dawson et al. 2000), along with an
inverse relationship between sperm quality and Al concentra-
tion (Dawson et al. 1998; Klein et al. 2014). These results sug-
gest seminal fluid Al concentration may be a sensitive
indicator of Al-induced male reproductive toxicity and that
Al-induced decreased male fertility may be fairly common.

The two studies that reported both fetal and placental Al
concentrations found higher levels in the placenta than in
the fetus and a greater increase in the placenta after add-
itional Al exposure (Cranmer et al. 1986; Colomina et al.
1994). The logs of the fetal and placental Al concentrations
as a multiple of the Al concentration in animals that did not
receive additional Al (Tables 8 and 9) are normally distrib-
uted. The linear regression best fit slope of the placental Al
concentrations is greater than the slope of the fetal Al con-
centrations, further indicating greater Al distribution into the
placenta than fetus. Similarly, a study that quantified Al in
the placental body and membrane and umbilical cord found
less Al in the cord (0.56 and 0.53 versus 0.27, respectively)
(Kruger et al. 2010). A normally distributed transform of the
testes Al concentration as a multiple of the Al concentration
in animals that did not receive additional Al (Table 10) was
not identified. The slopes of the logs of the placental and
testes Al concentrations are significantly different from zero.
The slope of the log of the testes Al concentration is greater
than the placental Al concentration, suggesting greater Al
distribution into testes. Comparison of the Al-exposure-
dependent increased testes Al concentration (up to
>100-fold, Table 10) compared to Al-exposure-dependent
increased placental Al concentration (up to 10-fold, Table 9)
further suggests greater Al distribution into testes than
placenta.

Initial adverse outcomes pathways for Al-induced
reproductive toxicity

An adverse outcome pathway (AOP) is a conceptual construct
creating a link between a molecular initiating event (MIE)
produced by exposure to a substance and an adverse out-
come (AO). It captures key biochemical and physiological
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Table 7. Studies conducted in males categorized according to study report of significant findings and approximate systemic Al exposure.

Daily approximate systemic Total approximate systemic
Al exposure (ng/kg) Al exposure (ng/kg)

A. GLP compliant studies conducted following an OECD test guideline showing no statistically significant toxicity

Beekhuijzen (2007) 20, 98, or 494 554, 2744, or 13,832
Hirata-Koizumi et al. (2011b), FO generation 2.7 or 13 247 or 1179
Hirata-Koizumi et al. (2011b), F1 generation 34 o0r16 308, 1444
Hirata-Koizumi et al. (2011a), FO generation 0.9 or8 78 or 695
Hirata-Koizumi et al. (2011a), F1 generation 1.0 0r 10 95 or 867

B. No significant effects from exposures similar to A. above

McCollum et al. (1928) 90 ~ 1890

Dixon et al. (1979) 1.5, 15, or 149 135, 1350, or 13,410
Katz et al. (1984) 10, 27, or 88 1830, 4917, or 16,040

Hicks et al. (1987)
Pettersen et al. (1990)

67, 141, 288, or 302
8, 20, 54, or 150

1876, 3948, 8064, or 8456
1456, 3640, 9828, or 27,300

Roy et al. (1991) Al,(SO,4)s-18H,0 34 or 58 721 or 1208

Roy et al. (1991) KAI(SO,4),-12H,0 57 1204

Wise et al. (2010) 34 745

Chaitanya et al. (2012) 20 280

Hichem et al. (2013) 40 7373

Kumar and Singh (2015) 10 303

Kumar and Singh (2016) 10 303

Falana et al. (2017) 20 1788

Wise et al. (2018) 77-106 2658-4616

C. GLP compliant studies conducted following an OECD Test Guideline showing statistically significant toxicity

Hirata-Koizumi et al. (2011b), FO generation 59 5406
Hirata-Koizumi et al. (2011b), F1 generation 73 6671
Hirata-Koizumi et al. (2011a), FO generation 70 6328
Hirata-Koizumi et al. (2011a), F1 generation 85 7718

D. Studies with some significant results from exposures similar to A. above

Kamboj and Kar (1964) 30 907

Krasovskii et al. 1979) 5 1350

Pettersen et al. (1990) 150 27,300

Roy et al. (1991) Al,(50,);-18H,0 86 1803

Roy et al. (1991) KAI(SO,4),-12H,0 87 1831

Bataineh et al. (1998) 33 2800

Yousef (2004) 34 3808
El-Demerdash (2004) 7 206

Mayyas et al. (2005) 104, 125, or 145 8755, 10,507, or 12,258
Yousef et al. (2005) 34 3808

Trif et al. (2007) 0.009, 0.018, or 0.045 04,1.7,33 0r 84
Al-Hashem (2009) 0.12 34

Entissar et al. (2009) 16 or 32 485 to 1940
Yousef and Salama (2009) 14 962

Hala et al. (2010) 8 566
Thirunavukkarasu et al. (2010) 40 3636
Abu-Taweel et al. (2011) 121 or 242 2424 or 4848
Mabhran et al. (2011) 14 962

Sun H et al. (2011) 26, 52, or 104 3103, 6205, or 12,459
Ige and Akhigbe (2012) 40 121

Ighodaro et al. (2012) 0.2 7.1

Moselhy et al. (2012) 14 412, 618, or 824
Hichem et al. (2013) 40, 81, or 162 14,746 to 88,476
Tiroumavalavane et al. (2013) 20 909

Yadav et al. (2013) 16 or 157 1098 or 1404
Kalaiselvi et al. (2014) 20 or 40 909 or 1818
Ramalingam et al. (2014) 20 or 40 970 or 1939
Zhu et al. (2014) 26, 52 or 104 3103, 6205, or 12,459
Kumar and Singh (2015) 20 or 40 606 or 1212
Mohammad et al. (2015) 7.8 547

Rawi and Al Nassr (2015) 16 711

Ugbaja et al. (2015) 8.1 226

Afeefy et al. (2016) 12 679

Akay et al. (2016) 17 518

Akinola et al. (2016) 15 439

Dong et al. (2016) 6.1 551

Hadi and Jaffat (2016) 73 218

Jakkala and Ali (2016a) 31 929 or 1858
Arumugam and Venugoapal (2016) 40 2424

Kumar and Singh (2016) 20 or 40 606 or 1212
Muselin et al. (2016) 0.005, 0.009, or 0.023 11, 21, or 53
Oda (2016) 40 1131

Falana et al. (2017) 61 or 121 3575 or 7151
Khafaga (2017) 40 2262

Martinez et al. (2017) 3, 17, or 200 180, 996, or 8400
Miska-Schramm et al. (2017) 3 or 200 252 or 16,800

(continued)
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Table 7. Continued.

Daily approximate systemic
Al exposure (ng/kg)

Total approximate systemic
Al exposure (ng/kg)

Mohamed and Abd El-Moneim (2017)
Sakr et al. (2017)
Adedosu et al. (2018)
Mouro et al. (2018)
Sun et al. (2018)
Gomes et al. (2019)
Olawuyi et al. (2019)
Yuan et al. (2019)
Cao et al. (2020)
Glveng et al. (2020)
Sajjad et al. (2020)

E. Study found some statistically significant results from higher exposure

Melograna and Yokel (1984)

Oneda et al. (1994)

Llobet et al. (1995)

Guo et al. (2001)

Guo et al. (2002)

Guo et al. (2005a)

Guo et al. (2005b)

Guo et al. (2006)

Reza and Palan (2006)

Khattab (2007)

Kutlubay et al. (2007)

Guo et al. (2009)

Cui et al. (2009)

Buraimoh et al. (2012b)

Abdel-Moneim (2013)

Chen et al. (2014)

D'Souza et al. (2014)

Maghraoui et al. (2014)

Al Nahari and Al Eisa (2016)
Al-Eisa and Al-Nahari (2017)

Senbel et al. (2016)

Arhoghro and Sule (2017a, 2017b)

Cheraghi et al. (2017)

Francine et al. (2017)

Mohammed et al. (2018)

4
8

16

0.000134, 0.00067, 20, or 80
25,52, or 103

40

0.2

15, 30 or 59

3400

114, 285, 570, or 1140
3600, 7200, or 14,400
13,000 or 35,000
13,000 or 35,000
35,000

1470 or 2730

1470 or 7350

10,100

3030 or 6060

339

1414 or 7070

7214, 10,821, or 14,428
768

5050

577, 1154, or 1731
6600, 13,200, or 19,800
1778

3030

316, 474, or 1580
869

2020

6060

11,200

364

339

339

0.015, 0.075, 2240, or 8960
3103, 6205, or 12,411
323

4.2

1653, 3307, or 6613
560

962

909

68,000

69,312, 173,280, 346,560, or 693,120
72,000, 144,000, or 288,000
182,000 or 490,000

182,000 or 490,000
420,000

20,580 or 38,220

20,580 or 102,900

202,000

53,025 or 105,050

4790

19,796 or 98,980

72,140, 108,210, or 144,280
42,986

5050

1731, 3464, or 5194
46,200, 92,400, or 138,600
24,892

169,680

3318

18,241

56,560

212,100

78,406, 168,014, 336,027, or 672,054

Italicized entries are reports that include results at lower exposures that did not result in significant findings and higher exposures that did result in signifi-

cant findings.

events (KE) and key event relationships (KER) that link the
MIE to the AO. The OECD and US EPA actively support AOP
development. The OECD maintains a wiki-based interface for
developing AOP descriptions that issues formal descriptions
of well-defined AOPs (https://aopkb.oecd.org). The OECD site,
SciFinder and Google searches, and the review of the reports
summarized in this review failed to identify an AOP for Al for
any endpoint. Unlike organic molecules whose primary activ-
ities often result from interaction with specific receptors,
such as enzymes, the biological and toxicological effects of
an element are usually not limited to a single mechanism of
action. Al-induced reproductive dysfunction is likely to be
mediated by more than one MIE, as has been suggested
(Pandey and Jain 2013). The frequency, consistency, and dir-
ection of reported changes following Al exposure summar-
ized in Table 6 show decreased SOD and CAT and increased
MDA in the testes, and decreased testosterone in the blood,
as discussed in section Assessment of Al reproductive toxicity
in male animals. These results were incorporated into an ini-
tial proposed AOP for Al-induced male reproductive toxicity
(Figure 1). The role of oxidative stress in Al-induced male
reproductive impairment is supported by the reversal of Al-
induced increased oxidative stress reported by many studies

cited in Table 6, reflected in the report titles. In the spirit of
AOP development, researchers are encouraged to challenge,
and more importantly, scientifically address, the pro-
posed AOP.

Conclusions

The inherent Al content of the diet, and very much less the
drinking water, represent appreciable contributors to total Al
exposure, as noted in 1932 (Mackenzie 1932). The lack of
documentation of dietary Al content in most studies creates
some uncertainty about total Al exposure, complicating
extrapolation of results from animal studies to the human.
Aluminum can produce reproductive toxicity in female and
male rodents. Studies that were GLP compliant and followed
an OECD Test Guideline in females, as well as numerous
other studies that utilized comparable Al exposures, reported
no significant effects following daily Al exposures that deliv-
ered up to 25-fold the typical equivalent human daily Al con-
sumption. In contrast, numerous studies utilizing similar Al
exposure showed some significant effects, although more
often the studied endpoints were non-significant. Generally,
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Table 8. Al concentration in fetuses of mothers exposed to additional Al.
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Maternal diet Al
concentration (mg/kg)

Additional maternal Al exposure

Al species and route

Approximate added total
systemic Al exposure (ng/kg)

Fetal Al concentration (pg/g) [as multiple of no
added All°

Reference

Mouse

Rat

119

380 from the diet from GD 1 to
19 assuming it contained 100 mg
Al/kg

Purina 5010 rodent feed

AlCl; i.p.

AlCl; ig.

Panlab

AI(OH); i.g.

Al lactate i.g.

Panlab

AI(OH); i.g.

UAR4 chow

AlCl; topically

Lab Blox

AlCl3 in the diet

Extra Labo food pellets

Al lactate in the diet

N° GPF81 de la société INAAM

AlCl; i.p.

400 from the diet from GD 7 to
16 assuming it contained
100 mg Al/kg

202,000

303,000

808

1212

400 from the diet from GD 6 to
15 assuming it contained

100 mg Al/kg
1150

1150

400 from the diet from GD 6 to
15 assuming it contained
100 mg Al/kg

2076

800 from the diet over 20 days
assuming it contained 100 mg
Al/kg

0.0090

119 from the diet GDs 6, 9, 12,
15, and 18
160

319
380 from the diet from GD 1 to
19 assuming it contained

100 mg Al/kg
15,200

100 from the diet from GD 9 to
13 assuming it contained
100 mg Al/kg

206,122

412,245

824,490

0.59 (dry weight, whole fetus)

2.0° (dry weight, whole fetus)
[3.4]

1.3° (dry weight, whole fetus)
[2.2]

1.1° (dry weight, whole fetus)
[1.9]

0.85° (dry weight, whole fetus)
[1.4]

< 0.05 (wet weight, whole fetus)
< 0.41dry weight

0.18 (wet weight, whole fetus)
1.5 (dry weight)

[3.5]

17 (wet weight, whole fetus)
142 (dry weight)

[344]

0.66 (wet weight, whole fetus)
5.5 (dry weight)

0.88 (wet weight, whole fetus)
7.3 (dry weight)
[1.3]

0.040% brain

0.040 kidney

0.031 liver

0.029 lung

Assume wet weight
0.042" brain

[1.05]

0.042° kidney
[1.05]

0.036" liver

[1.16]

0.029 lung

[1.0]

0.68 (dry weight, whole fetus)

0.74 (dry weight, whole fetus)
[1.09]

1.37 (dry weight, whole fetus)
[2.0]

0.023 (wet weight, whole fetus)
0.19 (dry weight)

0.066 (wet weight, whole fetus)
0.55 (dry weight)
[2.9]

1.00 pg/ml Plasma
0.25 Liver

0.3 Kidneys

0.20 Intestine

(dry weight)

0.98 ug/ml Plasma
[0.98]

0.23 Liver

[0.92]

0.47 Kidneys

[1.6]

0.19 Intestine
[0.95]

(dry weight)

0.97 ug/ml Plasma
[0.97]

0.82"° Liver

[3.3]

0.92° Kidneys
[3.1]

0.90° Intestine
[4.5]

(dry weight)

1.06 pg/ml Plasma
[1.06]

1.5° Liver

(6]

Cranmer et al. (1986)

Colomina
et al. (1992)

Colomina
et al. (1994)

Anane et al. (1997)

McCormack
et al. (1979)

Muller et al. (1993)

Mestaghanmi
et al. (2003)

(continued)
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Table 8. Continued.

Maternal diet Al
concentration (mg/kg)

Additional maternal Al exposure

Al species and route

Approximate added total
systemic Al exposure (pg/kg)

Fetal Al concentration (pg/g) [as multiple of no

added Al

Reference

Rabbit

1215

26AICl5 s.c.
25AICI; s.c.

25AICI; s.c.

Purina rabbit chow

Al lactate s.c.

48
48

34

2430 from the diet GD 2-6, 9-13,
16-20, and 23-27

2268

9072

36,288

1.8° Kidneys

[6]

1.4° Intestine

[71

(dry weight)

0.21% of dose whole fetus
0.23% of dose whole fetus
0.00038% of dose in the brain
0.0038% of dose in the liver
0.0001% of dose/gm brain
0.0002% of dose in the brain
0.0005% of dose/gm kidney
0.0008% of dose/gm liver
0.0006% of dose in the liver
0.001% of dose/gm blood
0.013% of dose/gm bone

0.6 brain (hippocampus)
39 bone

2.1 heart
1.1 kidney
1.7 liver

1.0 lung

4.9 muscle
7.5 spleen
(dry weight)
1.1° brain (hippocampus)
[1.8]

60 bone
[1.5]

1.4 heart
[0.67]

2.4° kidney
[2.2]

0.6 liver
[0.35]

1.9 lung
[1.9]

4.2 muscle
[0.86]

17 spleen
[2.3]

(dry weight)
1.4° brain (hippocampus)
[2.3]

92° bone
[2.4]

2.1 heart
[11

4.2° kidney
[3.8]

1.7 liver

[1]

1.6 lung
[1.6]

7.9° muscle
[1.6]

13 spleen
[1.7]

(dry weight)
3.6° brain (hippocampus)
[6]

169° bone
[4.3]

6.8° heart
[3.2]

20° kidney
[18]

16° liver
[9.4]

4.7° lung
[4.7]

15° muscle
[3.1]

37 spleen
[4.9]

(dry weight)

Yumoto et al. (2000)
Yumoto et al. (2001)

Yumoto et al. (2010)

Yokel (1985)

The maternal diet Al concentration is from the cited report or based on the assumption that the diet contained 100 mg Al/kg, as described in the text. For stud-
ies reporting the fetal Al concentration on a wet weight basis, the concentration on a dry weight basis was calculated using fetal-age-dependent dry/wet
weight ratios (Davis 1989; Gardner et al. 1999).

“Not known if reported as wet or dry weight.

PResults that are statistically significantly different from controls.
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Additional maternal Al exposure

Maternal diet Al

Approximate added total

Placental concentration (ng/g) [as

concentration (mg/kg) Al species and route systemic Al exposure (png/kg) multiple of no added AlJ® Reference
Mouse
Purina 5010 rodent feed 400 from the diet from GD 7 2.7 (dry weight) Cranmer
to 16 assuming it et al. (1986)
contained 100 mg Al/kg
AlCl; i.p. 202,000 27.6% (dry weight) [10]
303,000 17.8 (dry weight) [6.6]
AlCl; i.g. 808 5.97 (dry weight) [2.2]
1212 3.1 (dry weight) [1.1]
60 Panlab 240 from the diet GD 6-15 2.35 (wet weight) Colomina
14 (dry weight) et al. (1994)
Al(OH); i.g. 2076 4.497 (wet weight)
28 (dry weight)
[1.9]
Al(OH)3 with ascorbic acid i.g. 2076 4.43% (wet weight)
28 (dry weight)
[1.9]
Rat
60 Panlab 120 from the diet GD 6-15 1.92 (wet weight) Gomez
12 (dry weight) et al. (1990)
Al(OH)3 i.g. 1329 2.51 (wet weight)
16 (dry weight)
[1.3]
2657 1.60 (wet weight)
10 (dry weight)
[0.83]
5315 1.71 (wet weight)
11 (dry weight)
[0.89]
60 Panlab 120 from the diet GD 6-15 3.19 (wet weight) Gomez
20 (dry weight) et al. (1991)
Al(OH); i.g. 2660 3.02 (wet weight)
19 (dry weight)
[0.95]
Al citrate i.g. 5320 9.24% (wet weight)
58 (dry weight)
[2.9]
Al(OH)3 with citric acid i.g. 5320 5.08 (wet weight)
32 (dry weight)
[1.6]
ZAICl; s.c. injection 48 0.2% of dose Yumoto
et al. (2000)
ZAICl; s.c. injection 48 0.29% of dose Yumoto
et al. (2001)
Guinea pig
47 Purina Guinea Pig Chow 5025 0.1, 0.09, and 0.13 on GD 30 and 45 and  Golub et al. (1996)
PND 0
Human

1.51 (dry weight) Ward et al. (1987)
0.56 (dry weight, placental body) Kruger

0.53 (dry weight, placental membrane) et al. (2010)
0.88 (dry weight) Pi et al. (2019)

The maternal diet Al concentration is from the cited report or based on the assumption that the diet contained 100 mg Al/kg, as described in the text. When
reported, it enabled the approximate total systemic exposure, calculated as described in the text, and for studies citied in Tables 3 and 4. For studies reporting
the placental Al concentration on a wet weight basis, the concentration on a dry weight basis was calculated using a placenta dry/wet weight ratio of 0.16,

based on (Husain et al. 2001).
“Results that are statistically significantly different from controls.

the additional daily Al systemic exposure of studies that
reported statistically significant results in females was greater
than 100-fold above the typical human daily Al consumption
equivalent. Three studies that were GLP compliant and fol-
lowed an OECD Test Guideline studied both females and
males, delivering similar or lower Al exposures to the males.
In contrast to the lack of significant toxicity in females, sig-
nificant toxicity was seen after the highest exposure in males
in two of the studies. Many other studies found significant

effects after exposures comparable to the highest exposure
in males in two of the studies, suggesting male rodents are
more susceptible to Al-induced reproductive toxicity than
females. Increased Al intake increases fetus, placenta, and tes-
tes Al concentration, to a greater extent in the placenta than
fetus, and perhaps to a greater extent in the testes than pla-
centa. One human study showing reduction in normal and
mobile sperm and positive correlations between high sper-
matozoa Al concentration and decreased sperm motility and
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Table 10. Al concentration in male reproductive organs and fluids.

Additional Al exposure

Approximate added total

Al concentration (pg/g) [as multiple of

Diet Al concentration (mg/kg) Al species and route systemic Al exposure (png/kg) no added All* Reference
Testes mouse
Panlab 800 from the diet over 20 0.10 (wet weight) Llobet
days assuming it contained et al. (1995)

370

370

370

370

370

370

370

Testes rat
170

279

Purina 5001 rodent chow
AlCl5 i.p.

Purina 5001 rodent chow
AlCl5 i.p.

Purina 5001 rodent chow
AlCl3 i.p.

Assume Purina 5001
rodent chow

AlCl3 i.p.

Purina 5001 rodent chow

AlCl; s.c.

Purina 5001 rodent chow
AlCl5 s.c.

Purina 5001 rodent chow
AlCl; s.c.

Purina 5001 rodent chow
AlCl3 s.c.

Purina 5001 rodent chow
AlCl5 i.p.

AlCl; i.g.

Larsen diet
Al sulfate in the diet

AIN-76 diet

Panlab

AI(NOs)3-9H,0
with citric acid i.g.
Panlab

AI(NOs3)3-9H,0 with citric
acid i.g.
Panlab

AI(NOs3)3-9H,0 with citric
acid i.g.

AlCl; ig.

100mg Al/kg

72,000

144,000

288,000

1776 over 12 days
156,000

208,000

2368 over 16 days
420,000

560,000

2072 over 14 days
98,000

490,000

1776 over 12 days

420,000

2072 over 14 days

20,580

38,220

2072 over 14 days

20,580

38,220

2072 over 14 days

20,580

38,220

2072 over 14 days

20,580

102,900

2072 over 14 days

98,000

490,000

1200 from the diet over 30
days assuming it contained
100mg Al/kg

303

606

1212

952 from the diet for 28 days
15876 from the diet for

28 days
11 daily

560 from the diet over 28
days assuming it contained
100mg Al/kg

300,000 as one injection

280,000 as 28 injections

3690 from the diet over 6.5
months assuming it
contained 100 mg Al/kg

39600

79200

3690 from the diet over 6.5
months assuming it
contained 100 mg Al/kg

39600

79200

3690 from the diet over 6.5
months assuming it
contained 100 mg Al/kg

39600

79200

3650 from the diet over 6
months assuming it
contained 100 mg Al/kg

7373 over 6 months

14,746 over 6 months

0.92° (wet weight) [9.2]

1.197 (wet weight) [12]

1.47% (wet weight) [15]

5.1¢

77% 1day after injections [15]
141% 1 day after injections [28]
5.7

32% 15 days after injections [5.6]
597 15 days after injections [10]

5(
62° [12]
120 [24]
5(

133% [27]

5° 3 weeks later

227 3 weeks later [4.4]
352 3 weeks later [7]
55 weeks later

20° 5 weeks later [4]
287 5 weeks later [5.6]
5 11 weeks later

8% 11 weeks later [1.6]
112 11 weeks later [2.2]
7.7

40% [5.2]

1302 [17]

5.1¢

37 [7.2]

1207 [24]

0.55 (wet weight)

0.90 (wet weight) [1.6]
1.1 (wet weight) [2]
2.4% (wet weight) [4.4]

1.7 (wet weight)
[2.8]

0.61 (wet weight)
1 (dry weight)

198? (dry weight) [198]
1267 (dry weight) [126]

< 0.001 (wet weight) 3-weeks old

0.41% (wet weight) 3-weeks old [410]
0.58" (wet weight) 3-weeks old [580]

0.99 (wet weight) 8-months old

0.82% (wet weight) 8-months old [0.83]
0.85° (wet weight) 8-months old [0.86]
0.42 (wet weight) 16-months old

0.51 16-months old [1.2]
4.2° 16-months old [10]
0.015°¢

0.016 [1.1]
0.021 [1.4]

Guo et al. (2001)

Guo et al. (2002)

Guo et al. (2005a)

Guo et al. (2005b)

Guo et al. (2006)

Guo et al. (2009)

Kumar and
Singh (2016)

Ondreicka
et al. (1966)

Que Hee and
Boyle (1988)
Julka et al. (1996)

Gomez
et al. (1997)

Hichem
et al. (2013)

(continued)
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Diet Al concentration (mg/kg)

Additional Al exposure

Al species and route

Approximate added total
systemic Al exposure (pg/kg)

Al concentration (ng/g) [as multiple of

no added Al®

Reference

Testes rabbit

Testes human

Prostate human

Epididymis mouse
370

Epididymis rat

Epididymis human

Seminal vesicle human

Seminal fluid human

AlCl; ig.

AlCl5 i.g.

AlCl; ig.

AICl;-6H,0 i.g.

AL(SO.); i.g.

AlICl;-6H,0 i.g.

AlCl3-6H,0 i.g.
Purina rabbit chow

Al chloride s.c.
Wayne rabbit food
Al chloride s.c.
Purina rabbit chow
Al lactate i.v. once

Al lactate 20 i.v. injections
Al citrate 20 i.v. injections

Purina 5001 rodent chow

AlCl5 i.p.

AlCl;-6H,0 i.g.

22,119 over 6 months

7300 from the diet over 12
months assuming it
contained 100 mg Al/kg

14,746 over 12 months

29,492 over 12 months

44,238 over 12 months

10,950 from the diet over 18
months assuming it
contained 100 mg Al/kg

29,492 over 18 months

58,984 over 18 months

88,476 over 18 months

2400 from the diet over 120
days assuming it contained
100mg Al/kg

3103

6205

12,459

1400 from the diet over 10
weeks assuming it
contained 100 mg Al/kg

547

900 from the diet over 45
days assuming it contained
100mg Al/kg

71

600 from the diet over 30
days assuming it contained
100mg Al/kg

518

1200 from the diet over 60
days assuming it contained
100mg Al/kg

996

2440 from the diet over
20 days
68,000
15 from the diet over 28 days
14,818
122 daily
5400
54,000
54,000

2072 from the diet over
14 days

20,580

102,900

1200 from the diet over 60
days assuming it contained
100mg Al/kg

996

Apparently healthy 21- to 35-year olds

0.026% [1.7]
0.011 [0.73]

0.018% [1.2]
0.029% [1.9]
0.031% [2.1]
0.028

0.043% [1.5]
0.085° [3.0]
0.03 [1.1]
6.6

8.8 [1.3]

13.57 [2.0]

19.5% [3.0]

13.7 (wet weight)

37.9 (wet weight) [2.8]
0.18¢ (wet weight)

1.2% (wet weight) [6.7]
2.9% (wet weight)

6.1° (wet weight) [2.1]
1.79 (dry weight)

3.35% (dry weight) [1.9]
0.3 (dry weight)

19 (dry weight) [63]
0.12 (wet weight)

1.8% (wet weight) [15]
3.9 (dry weight)

No significant change
39

4.0

42°¢

36 €

12°¢

25 [2.1]
527 [4.3]

6.4 (dry weight)

6.1 (dry weight) [0.95]

5.0¢
2.5¢
3.3¢

18 ug/L > 50% sperm viability
59 ug/L 25-50% sperm viability

Zhu et al. (2014)

Mohammad
et al. (2015)

Rawi and Al
Nassr (2015)

Akay et al. (2016)

Martinez
et al. (2017)

Melograna and
Yokel (1984)

Du Val

et al. (1986)
Yokel and
McNamara (1989)
Yokel et al. (1996)

Yamamoto
et al. (1959)

Yamamoto
et al. (1959)

Guo et al. (2006)

Martinez
et al. (2017)

Yamamoto
et al. (1959)

Yamamoto
et al. (1959)

Yamamoto

et al. (1959)
Dawson
et al. (1998)

(continued)
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Table 10. Continued.

Additional Al exposure

Approximate added total

Al concentration (ng/g) [as multiple of

Diet Al concentration (mg/kg) Al species and route systemic Al exposure (pg/kg) no added All* Reference
101 pg/L < 25% sperm viability
0.87 sperm donor candidates Hovatta
0.54 refinery and polyolefin et al. (1998)
factory employees
460 pg/L medical center (control) work Dawson
environment et al. (2000)

Spermatozoa human

2200 pg/L metal ore smelter work
environment

1530 pg/L petroleum refinery work
environment

270 ug/L chemical plant work
environment

299 nug/L normal semen

385 ng/L semen with pathology

Klein et al. (2014)

Hovatta
et al. (1998)

2.52 sperm donor candidates
0.93% refinery and polyolefin
factory employees

A dry/wet weight ratio for rat testis of 0.78 was used (Takhtfooladi et al. 2015).

“Results that are statistically significantly different from controls.
PUnknown units.

“Not known if reported as wet or (dry weight).

9Reported as mg/g; assumed to be pg/g.

Reported as ng/g; assumed to be pg/g.

normal morphology suggest the rodent studies are predictive
of human outcomes.

Recommendations

Studies to further define the potential for Al to produce
reproductive toxicity in animals should include the following
design parameters. Female exposure should be long-term, at
least starting from sexual maturity and preferably from wean-
ing. Male exposure duration should be at least as long as the
time course of spermatogenesis. Studies should utilize a diet
containing a known Al concentration that is comparable to
that consumed by humans. An exposure route of known Al
bioavailability, probably oral to be relevant to the human,
should be used. An Al species that is human relevant should
be used. An example might be a diet to which FDA-approved
food additives have been added at known concentrations.
Given the most sensitive endpoint to Al-induced toxicity in
the pregnant female rodent was resorption; in the fetus,
death; and in males, sperm number, sperm SOD, and abnor-
mal sperm, these endpoints should be included in the study.
Studies verifying the contribution of oxidative stress, and/or
other molecular initiating events, and the key event relation-
ships, mediating Al-induced reproductive toxicity are needed
to advance understanding of the AOP proposed here.

Due to concerns about potential Al toxicity, controlled-
exposure human studies, particularly including high expos-
ure, create ethical concerns (Molloy et al. 2007). However,
there are humans exposed to higher Al intake than most
people who could serve as epidemiological study subjects.
Aluminum welding results in release of airborne Al, higher
exposure, and persistent elevated Al body burden (Elinder
et al. 1991). Dietary studies have identified some foods high
in Al, particularly those containing Al as a food additive, such

as baked goods including Chinese fried bread and salted
jellyfish, that could identify highly exposed subjects worth
studying. Large volume, prolonged, consumption of Al-con-
taining antacids/phosphate binders presents another study
opportunity. For reasons noted above, those with prolonged,
high, Al exposure are of greatest potential value in
future studies.

Notes

1. Benett et al. (1975), Dixon et al. (1979), McCormack et al. (1979), Katz
et al. (1984), Wide (1984), Cranmer et al. (1986), Hicks et al. (1987),
Bernuzzi et al. (1989), Muller et al. (1990), Roy et al. (1991), Misawa
and Shigeta (1992), Muller et al. (1993), Agarwal et al. (1996), Gonda
et al. (1996), Gonda and Lehotzky (1996), Gonda et al. (1997), Albina
et al. (1999), Guo et al. (2005b, 2006287), Beekhuijzen (2007), Wise
et al. (2008), Guo et al. (2009), Hala et al. (2010), Wise et al. (2010),
Segal et al. (2011), Abu-Taweel et al. (2012), Ighodaro et al. (2012),
Yadav et al. (2013), D’Souza et al. (2014), Kalaiselvi et al. (2014),
Ramalingam et al. (2014), Akinola et al. (2016), Falana et al. (2017),
Miska-Schramm et al. (2017), Inohana et al. (2018), Mouro et al.
(2018), and Gomes et al. (2019).

2. For the calculation of the approximate systemic Al exposure from
rabbit diet consumption of 5% of body weight daily was assumed
http://agritech.tnau.ac.in/animal_husbandry/animhus_rabbit%20feed-
ing.html,  https://www.purinamills.com/rabbit-food/products/detail/
purina-fibre3-rabbit-feed. Daily water intake for guinea pigs was
assumed to be 0.15l/kg. When necessary to estimate Sprague
Dawley rat body weight, Taconic Biosciences I. (2020)_. Sprague
Dawley® Outbred. was used.

3. Asterisks indicate data obtained from the abstract. The full report
was not obtained.
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Figure 1. Adverse outcomes pathways for Al-induced reproductive toxicity in males.
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