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ABSTRACT OF DISSERTATION 

 
 
 

MEASURING CHANGE: 
PREDICTION OF EARLY ONSET SEPSIS 

 

Sepsis occurs in a patient when an infection enters into the blood stream and spreads 
throughout the body causing a cascading response from the immune system. Sepsis is one 
of the leading causes of morbidity and mortality in today’s hospitals.  This is despite 
published and accepted guidelines for timely and appropriate interventions for septic 
patients.  The largest barrier to applying these interventions is the early identification of 
septic patients.  Early identification and treatment leads to better outcomes, shorter lengths 
of stay, and financial savings for healthcare institutions.  In order to increase the lead time 
in recognizing patients trending towards septicemia a multivariate discrimination model 
was developed to create an early identification sepsis score to identify patients who are 
starting to show signs of sepsis.  The model utilizes the patient’s heart rate, respiratory rate, 
systolic blood pressure, temperature, and oxygen saturation and the change from each of 
their respective baselines.  Patient specific baselines are based on each patient’s previous 
vital sign measures leading up to the current set of measures. 

Theoretical assumptions are applied to this sepsis score to investigate distributional 
properties of the measure for applicable inferences.  Finally, a new approximation to the 
degrees of freedom of a t-distribution, 𝜈𝜈𝑠𝑠, is proposed.  This new approximation is 
investigated and compared to the Satterthwaite approximation. 
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CHAPTER 1. UNDERSTANDING SEPSIS 

1.1 Background 

Sepsis occurs in a patient when an infection that started in one part of their 

body enters into the blood stream and spreads throughout the body causing a systemic 

response from the immune system.  The initial infection can come from a variety of sources 

including pneumonia, a skin infection, central line infection, a surgical site infection, or a 

urinary tract infection.  The response from the immune system has a sweeping effect across 

a person’s vital signs, leading to a rising temperature, rapid breathing and heart rate, and a 

change in blood pressure.  According to the Centers for Disease Control and Prevention 

(CDC), more than 1.7 million people develop sepsis each year in the United States and 

around 270,000 of these expire each year from sepsis.  This is a significant increase from 

what the CDC published as recently as 2015 stating that 1.5 million develop sepsis each 

year in the United States and with around 250,000 sepsis related mortalities (CDC 2015).  

A staggering 33% of people who pass away in a hospital have sepsis as a contributing 

factor.  In fact, a CDC study discovered that seven out of 10 patients with sepsis either 

recently had healthcare services or had a chronic disease requiring frequent medical care 

(CDC 2020).  A study published in The Journal of the American Medical Association 

(JAMA) which included 173,690 patients with a sepsis diagnosis found that patients in 

their study with hospital-acquired sepsis had a 25.5% mortality rate compared to only 

13.4% of patients who were admitted with sepsis (Rhee, et al 2017).  

This connection between sepsis and healthcare is not a coincidence.  

Healthcare facilities are breeding grounds for bacteria. They are the destination both for a 
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person who has a severe infection and a person who has a serious wound.  Additionally, 

many of the devices used to help patients in hospitals also create easy paths for infections 

to enter into the body.  Central lines, ventilators, catheters, and peripheral intravenous lines 

give bacteria and other germs access into the body.  According to the CDC, one in twenty-

five patients contracts a hospital-acquired infection.  Infections that originate in hospitals 

are a serious risk for patients in today’s modern healthcare facilities and a looming problem 

for healthcare systems.  The U.S. Department of Health and Human Services declared the 

prevention and reduction of healthcare-associated infections a top priority (CDC 2015).  

Healthcare systems are required to absorb the costs of treating the effects of a hospital-

acquired condition.  The cost of treating a single central line associated infection can be 

nearly $50,000 (Daley, 2015).  According to Michael Eber in a paper published in the 

Archives of Internal Medicine in 2010, there were $8.1 billion in-hospital costs attributable 

to healthcare-acquired sepsis and pneumonia in 2006 (Eber 2010).  This is a number that 

will continue to climb higher over time, as infections become more difficult to treat due to 

antibiotic resistant strains and as the costs of healthcare continue to rise. 

Healthcare systems continue to pour money into preventing infections in 

hospitals.  Personal protective equipment, hand hygiene protocols, and countless staff 

education programs are aimed at reducing and preventing the spread of infections between 

patients.  Hospital-acquired infections that go unnoticed or untreated can lead to sepsis, 

and sepsis that is not treated in a timely and efficient manner leads to longer hospital stays, 

additional hospital costs, and too often, death.   

Sepsis is one of the leading causes of morbidity and mortality in today’s 

hospitals.  This is despite published and accepted guidelines for timely and appropriate 
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interventions for septic patients.  The largest barrier to applying these interventions is the 

timely detection of septic patients.  Early identification and treatment leads to better 

outcomes, shorter lengths of stay, and financial savings for healthcare institutions.  

Historically, early identification systems have utilized threshold based scoring systems.  

These systems usually define values on a set of vital signs and demographic variables. 

When a variable exceeds its threshold, then a point value is assigned and when the sum of 

these point values reaches a cutoff value, an alert is generated.  Different methods will use 

different sets of variables, different point values, or different threshold values, but they 

generally follow the same pattern. 

UK Healthcare in Lexington, Kentucky utilizes a track and trigger system 

that follows the scoring criteria depicted in Figure 1, modified from the 2007 work of Dr. 

Abel Kho, et al. 

 
Figure 1.1 Track and trigger scoring system used at the University of Kentucky Albert B. 
Chandler Hospital 

 
Following this criteria, anyone who has a heart rate between 51 and 100 beats per 

minute (bpm) receives a point value of zero for the heart rate variable.  Once a person’s 

heart rate passes the 100 bpm value, they receive a point.  When it passes 110 bpm they 
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receive two points, and so on.  The point values for each variable are summed and an alert 

is generated upon this total reaching another threshold.  In this example, if the sum reaches 

a value of six, an alert fires to the rapid response team to evaluate the patient.    

There are a few inherent challenges to this method.  Many patients will achieve the 

alerting criteria from the moment they enter the hospital until the moment they leave.  This 

is especially true with more obese and elderly patients.  Response teams have tried to 

counteract this alert fatigue by adjusting alert criteria, or for patients who continually alert, 

they will try contacting the patient’s nurse to first have a conversation before racing to the 

room.    

The contrasting issue is patients who never meet the alert criteria, even when they 

are in a state of decline.  This will often happen for younger or more fit patients.  A runner 

who is less than forty years of age may have a resting heart rate between 40 and 50 beats 

per minute.  When this person is in the hospital, their heart rate may never reach the 100 

bpm threshold even when in distress.  This type of alert criteria does not account for the 

differences in individual’s baseline metrics where one person’s resting heart rate could be 

95 beats per minute, another person’s resting heart rate could be 55 beats per minute.  Thus, 

a person with a resting heart rate of 55 beats per minute, could have a significant rise in 

their heart rate and jump to 100 beats per minute, an 82% increase, and only score one 

additional point on this scale.  Conversely, the person who has a resting heart rate of 95 

beats per minute could rise to 100 beats per minute, a 5.2% increase would receive the 

same one point on the scale. 

To address these challenges a new methodology is proposed that evaluates not only 

a patient’s current vital signs, but also monitors differentiation of the individual’s 
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immediate values from their baselines.  This is accomplished by tracking the patient 

throughout their entire hospital visit in order to continuously update patient specific 

baselines and to incorporate the change from the current set of vital signs.  A patient with 

a two day, or two week, length of stay has a wealth of data collected which can be used to 

establish a baseline and a measure of variability for each of their vital signs.  Thus, the 

baseline heart rate of a patient over the course of their stay is leveraged as a comparison 

to their current heartrate.  By comparing the current set of vital sign measures to the 

patient’s baseline measures valuable information is added to the model which aides in the 

discrimination between patients who are in a state of decline versus patients who are not.  

At any given point of time, each patient in the hospital has established a baseline heart 

rate, respiratory rate, blood pressure, etc. for their current visit.  When a new set of vital 

signs are collected and entered into the electronic medical record, the vitals are compared 

to the patient’s baseline values for their visit.   

Not every baseline measure is the same, however.  Look at the Figure 1.2, below, 

representing the heart rates of two patients, Patient A (blue) and Patient B (red).  The two 

graphs have approximately the same mean leading up to the final observation of a 98.  

Notice that the red line has much less variation as compared to the blue line and as such, 

the observation of 98 is a more striking difference for the patient represented by the red 

line.  The change in the current set of vitals from the baseline is essential, but it is also 

important to keep the change in perspective with the natural variation exhibited by the 

patient.   
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Figure 1.2 Illustration of variation between two different patient’s heart rates 
 
 
  

Under this new paradigm, if a fit younger patient, who has resting heart rate in the 

fifties, has a jump up to 98 bpm, the model will recognize this change as a significant jump 

from the patient’s established baseline.  In the traditional model as shown in Figure 1.1, 

this change would have gone unnoticed since this change did not cross the 100 bpm 

threshold. 

The vital sign measures that were included in the model were heart rate, respiratory 

rate, systolic blood pressure, temperature, and oxygen saturation (SpO2).  Along with the 

raw scores for these vitals sign measures, the change from baseline variable was also 

included for each variable along with the age and body mass index of the patient.  Lab 

values were excluded from the model since they are measured much less consistently and 

would have a dramatic impact to the lead time gained from the model.  Where vital sign 
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measurements are usually taken between three and six times daily, lab values, if taken at 

all, are usually only drawn once a day. 

At this point, it is also important to note the scope of this research.  This model is 

focused on identifying patients who are in an acute or progressive level of care who acquire 

sepsis during their hospital stay.  This model is not intended to identify patients with sepsis 

present on admission, as they would not have baseline information available and they are 

fully evaluated upon admission.  It is also not designed for patients in an intensive care 

model who are consistently monitored by physicians and nurses.  Instead, this model is 

aimed at finding patients outside of intensive care units who develop sepsis during the 

course of their stay in a hospital.  These patients often develop sepsis from a laceration or 

device used in the course of their care, which has allowed an infection access into the blood 

stream.  The most common sources are surgical site infections, central line infections, 

catheter associated infections or ventilator associated infections.  The goal of this research 

is to increase the lead time in recognizing these patients trending towards sepsis who are 

often left on the floor for hours or days before the deterioration is identified.  This delay 

can have significant impact to patient outcomes and the cost of the care incurred by the 

hospital. 



 
 

CHAPTER 2. CONTRASTING VITAL SIGNS OF STANDARD AND SEPSIS PATIENTS 

2.1 Introduction 

In order to better understand the changes in vital signs between a non-sepsis patient 

and a sepsis patient, the distribution of each vital sign is examined from a sample of in-

patients between 2012 and 2014.  This data was pulled from UKHealthCare’s electronic 

medical record located in Lexington, Kentucky.  The sample of vital sign data was 

collected along with diagnosis data in order to distinguish between the patient groups.  For 

those patients with a sepsis diagnosis, data was filtered to only observations directly before 

and after the sepsis diagnosis in order to obtain information about a patient who was 

entering into or actively in a septic state.  By determining the distributions of the different 

vital signs and demographics, we can hope to gain a better understanding of the effect of 

sepsis on patients.  Additionally, for each vital sign measure, a simulation of the data is 

conducted for both groups.  This will allow for a better understanding of the information 

and for inferences to be made on the distributions. 

2.2 Body Mass Index (BMI) 

Beginning with the demographic data, the body mass index (BMI) of non-

sepsis and sepsis patients are visualized with separate histograms.  BMI is a measure of 

body fat in adult men and women and is a calculation based on a person’s height and 

weight.  The graph below illustrates the distribution of BMI of non-sepsis patients.  The 

histogram is overlaid with a line representing a gamma distribution with a shape parameter 

equal to 14.2, a scale parameter of 2.2, and a threshold equal to -2.9.   
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Figure 2.1 BMI of Non-Sepsis Patients Histogram 
 

The gamma distribution seems to fit the data well with the addition of the 

slightly higher peak on the left side of the distribution.   

Looking at sepsis patients, the graph below shows a histogram of BMI 

measurements.  Again, the overlay line shows a gamma distribution with a shape parameter 

of 9.7, a scale parameter of 3.1 and a threshold of -1.09.   
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Figure 2.2 BMI of Sepsis Patients Histogram 
 

When comparing the distributions of BMI between non-sepsis and sepsis, 

the means, 28.3 versus 28.8, and the standard deviations 8.6 versus 10.2, respectively, are 

quite similar.  Looking at the composite of the two distributions, Figure 2.3 below, BMI 

remains consistent across both groups.  As such, it does not appear to be a good predictor 

of sepsis. 
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Figure 2.3 BMI Composite Non-Sepsis vs. Sepsis 
 

2.3 Admission Age 

The age, measured in years, of the patient at admission is included in the 

traditional track and trigger methodology.  Looking at the distribution of the age of patients 

with and without a sepsis diagnosis, they will be investigated to observe differences 

between the groups.  The graph below shows the distribution of age of non-sepsis patients.  

The mean of the distribution is 53.2 years, with a standard deviation of 17.9 years and a 

median of 54.   
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Figure 2.4 Age of Non-Sepsis Patients Histogram 
 

This distribution of age for sepsis patients is similarly shaped with a mean 

of 57.0 years, a standard deviation of 16.4 years and a median of 57 years.  Clearly a 

patient’s age is not affected by the onset of sepsis, however it is worth investigating if 

different age ranges are more or less susceptible to sepsis.   
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Figure 2.5 Age of Sepsis Patients Histogram 
 

Looking at the measures of centrality and the composite graph below, you 

will notice that the sepsis population is slightly older, on average 57 years, as compared to 

the non-sepsis population, 53 years.   
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Figure 2.6 Admission Age Composite Non-Sepsis vs. Sepsis 

2.4 Systolic Blood Pressure 

Beginning with the distributions of the vital signs, Figure 2.7 below shows 

the distribution of systolic blood pressure measurements of non-sepsis patients.  The blue 

line overlaid onto the graph illustrates a normal distribution with a mean of 126.7 and a 

standard deviation of 22.1. 
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Figure 2.7 Systolic Blood Pressure of Non-Sepsis Patients Histogram 
 

Now looking at a histogram of systolic blood pressure for sepsis patients, 

the graph below shows this data with an overlaid line in an effort to identify the 

distribution. The overlaid line illustrates a log normal distribution with a zeta of 4.73 and 

a sigma of 0.24.  When comparing the shape of systolic blood pressure for non-sepsis 

patients to sepsis patients, not only is there a systematic shift downward, but also the 

overall shape of the distribution changes from a symmetric normal shape to a non-

symmetric distribution skewed to the right.   
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Figure 2.8 Systolic Blood Pressure of Sepsis Patients Histogram 
 

Figure 2.9 below illustrates these two distributions graphed on top of each 

other.  The mean of the distribution drops from 126.7 for non-sepsis patients down to 116.7 

for sepsis patients.  The standard deviation also changes from a 22.1 for non-sepsis patients 

to 28.7 for sepsis patients.  Considering that a systolic blood pressure of 120 is considered 

normal (Cleveland Clinic 2014), non-sepsis patients have 39.7 percent of observations that 

fall below 120 compared to 58.7 percent of observations for sepsis patients. 
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Figure 2.9 Systolic Blood Pressure Composite Non-Sepsis vs. Sepsis 
 

2.5 Respiratory Rate 

A patient’s respiratory rate measures the number of breaths taken by the 

patient in a minute. The graph below shows the histogram of respiratory rate readings for 

non-sepsis patients, where the overlay line illustrates a gamma distribution with a shape 

parameter equal to 68.4, a scale parameter of 0.450, and a threshold parameter of -13.1.  

Additionally, the mean of the distribution is 17.7 with a standard deviation of 3.8.  As you 

can see, this distribution fits the data marginally well, with a higher peak at the center and 

a few outliers on the high side. 
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Figure 2.10 Respiratory Rates of Non-Sepsis Patients Histogram 
 

Figure 2.11 below shows the distribution of respiratory rates of patients 

who had a diagnosis of sepsis.  The overlay line illustrates a gamma distribution 

superimposed onto the distribution with a shape parameter of 16.7, a scale parameter of 

1.6 and a threshold equal to -7.0.  Notice that the distribution fits the gamma well with the 

exception of the high peak centered between 15 and 17.5.   
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Figure 2.11 Respiratory Rates of Sepsis Patients Histogram 
 

There is an interesting shift in the distribution of a patient’s respiratory rate 

when they have a sepsis diagnosis compared to a non-sepsis patient.  Looking at Figure 

2.10 of non-sepsis patients, it is observed that the distribution is narrow with the majority, 

93.1%, of the observations falling between 12 and 25 breaths per minute, the normal range 

for an adult’s respiratory rate (Cleveland Clinic 2014).  With the onset of sepsis into the 

human system, the overall distribution of respiratory rates has a shift upwards and a larger 

standard deviation, 6.8 breaths per minute, a 78.9 % increase over the non-sepsis standard 

deviation of only 3.8.  Additionally, more than three times the observations fell outside of 

12 to 25 breaths per minute for sepsis patients, 21.4%, comparted to 6.9% for non-sepsis 

patients.  Figure 2.12 below shows the distributions of respiratory rates for non-sepsis 

patients and sepsis patients together to better illustrate the distributional shift between the 
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patients.  Notice the large increase of observations in the tails of the distribution of Sepsis 

patients (blue) over non-sepsis patients (red). 

 
Figure 2.12 Respiratory Rate Composite Non-Sepsis vs. Sepsis 

2.6 Heart Rate 

The heart rate measures the number of heartbeats a patient has during a 

span of one minute.  The following graph shows a histogram of heart rates for non-sepsis 

patients.  The overlay line illustrates a Normal distribution with a mean of 82.2 and a 

standard deviation of 16.4.  The median of the distribution is 81 heartbeats per minute.   
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Figure 2.13 Heart Rate of Non-Sepsis Patients Histogram 
 

For sepsis patients, the distribution of heartrates shifts upward with a mean 

of 99.7, a standard deviation of 20.6 and a median of 99.0.  The graph below shows the 

histogram of heartrates for sepsis patients with an overlay of a normal distribution.   
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Figure 2.14 Heart Rate of Sepsis Patients Histogram 
 

Comparing the heart rate histograms of the two groups, the mean jumps 

from 82.2 for non-sepsis patients to 99.7 for sepsis patients.  Additionally, the median 

increases from 81 beats per minute to 99 beats per minute.  As can be seen from Figure 

2.15 below, the distribution of heartrates of sepsis patients shifts upwards nearly 20 beats 

per minute and does not follow the normal distribution as non-sepsis patients.  The normal 

heart rate for an adult is usually in the range of 60 to 80 beats per minute (Cleveland Clinic 

2014).  For non-sepsis patients, 58.4% of the patient sample fell outside of this range, 

compared to 84.3% for the sepsis patients, a 44% increase of patients outside of the normal 

range. 
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Figure 2.15 Heart Rate Composite Non-Sepsis vs. Sepsis 

2.7 Peripheral Capillary Oxygen Saturation 

Peripheral Capillary Oxygen Saturation, 𝑆𝑆𝑝𝑝𝑂𝑂2, measures the saturation of 

oxygen in the blood by measuring the percentage of oxygenated hemoglobin divided by 

the total amount of hemoglobin in the blood.  Since it is a percentage, it is naturally right 

truncated at 100%.  The normal range for peripheral capillary oxygen saturation should be 

between 95% and 100%.  A 𝑆𝑆𝑝𝑝𝑂𝑂2 below 92% is an indicator of hypoxia, or low blood 

oxygenation.  Looking at the graph below of the histogram of 𝑆𝑆𝑝𝑝𝑂𝑂2 measures for non-

sepsis patients, the distribution is skewed to the left with a mean of 96.7%, a median 97% 

and a standard deviation of 2.8. 



24 
 

 
Figure 2.16 Peripheral Capillary Oxygen Saturation of Non-Sepsis Patients Histogram 
 

Comparatively for sepsis patients, the mean of the distribution for 

peripheral capillary oxygen saturation is 96.9%, the median is 98% and the standard 

deviation is 4.14.  As you can see in the graph below, the shape and skewness of the 

distribution is the same as that for non-sepsis patients. 
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Figure 2.17 Peripheral Capillary Oxygen Saturation of Sepsis Patients Histogram 
 

Comparing the distribution of peripheral capillary oxygen saturation 

between non-sepsis patients and sepsis patients, the means are similar, 96.68% versus 

96.93%, respectively.  The median of the distributions are also similar, 97% versus 98%, 

respectively.  However, the spread of the distribution is smaller for non-sepsis patients, 

2.83, compared to 4.15 for sepsis patients.  Also, looking at the percent of patients whose 

𝑆𝑆𝑝𝑝𝑂𝑂2 value is below 92%, referred to as hypoxia, only 3.8% of non-sepsis patients are 

classified with hypoxia, which jumps up to 7.7% of sepsis patients.  This coincides with 

the graph below that shows that the distribution for sepsis patients has the same shape, but 

has a fatter tail. 
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Figure 2.18 Peripheral Capillary Oxygen Saturation Composite Non-Sepsis vs. Sepsis 

2.8 Body Temperature 

The temperature vital sign is measured in degrees Celsius.  The graph 

below, Figure 2.19, shows the distribution of temperatures for non-sepsis patients.  The 

mean of the distribution is 36.7 degrees, the median is 36.7 degrees and the standard 

deviation is 0.47 degrees.  The overlaid line represents a normal distribution. The line 

follows the distribution well, with the exception of the higher peak located at the mean.    
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Figure 2.19 Temperature in Degrees Celsius for Non-Sepsis Patients Histogram 
 

Figure 2.20 below shows the histogram of temperatures measured in 

degrees Celsius for sepsis patients.  The mean of the distribution is 37.7 degrees, the 

median is 37.8 degrees and the standard deviation is 1.3 degrees.  It is worth noting that 

the distribution is bi-modal with what appears to be a mixture of normal distributions. One 

distribution is centered around 37 degrees Celsius and the other is centered around 39 

degrees Celsius, the second of which appears to have a smaller variance.   
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Figure 2.20 Temperature in Degrees Celsius for Sepsis Patients Histogram 
 

Comparing the distributions of temperatures between sepsis and non-sepsis 

patients, the mean and the median both shift up a degree, while the standard deviation 

increases from 0.47 up to 1.26, over a 168% increase.  This large increase in the standard 

deviation is partially due to the change in the shape of the distribution.  For non-sepsis 

patients, the distribution is bell-shaped and symmetrical, a typical normally shaped 

distribution.  However, for the sepsis patients, the distribution is bi-modal and appears to 

be a mixture of two very separate distributions.  This is likely due to clinical staff 

artificially reducing a patient’s temperature when they spike a fever since a prolonged 

exposure to high fever can cause additional complications and long-term effects to the 

patient.  Because the sample of sepsis vital signs are taken both just before and after the 

patient is diagnosed with sepsis, this bi-modal distribution is due to the recording of some 
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temperature readings after the patient’s temperature has already been artificially reduced.  

The temperature of a normal patient should be around 37 degrees Celsius, and a patient is 

considered to have a fever when the temperature rises above 38 degrees Celsius.  For the 

non-sepsis patients, only 1.39% of the patients had a temperature above 38 degrees 

Celsius.  When looking at the distribution of temperatures for sepsis patients, 43.87% of 

the observations fall above the 38 degree Celsius limit even with the discrepancy noted 

above.  One of the human body’s natural responses to infection is to raise the temperature 

of the body to aide in the fight against the infection, thus this is not a surprising find. 

However the bimodal shape of the sepsis patients’ temperatures is somewhat surprising.  

This mixture of distributions is explained by how healthcare professionals respond to 

patients with high fevers.  Figure 2.21 below shows the composite graph of distributions 

of temperatures for non-sepsis patients and sepsis patients.   
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Figure 2.21 Temperature in Celsius Composite Non-Sepsis vs. Sepsis 

2.9 Vital Signs Comparison Summary 

When looking across the comparisons of distributions of the different vital 

signs for non-sepsis patients versus sepsis patients there are stark differences between the 

distributions.  However,  there is still a significant amount of overlap between the two 

patient populations.  Some comparisons show a complete change in the shape of the 

distributions.  For example, the systolic blood pressure (Figure 2.9) changes from a normal 

distribution for non-sepsis patients into a log-normal distribution for sepsis patients.  This 

change is accompanied by a systematic shift downward in blood pressure, but still the 

majority of the two distributions overlap.  This highlights why a simple threshold 

classification is not sufficient in distinguishing between these two populations.  The 



31 
 

addition of a set of variables looking at the change of each of the vital signs will add to the 

available information.  Looking at the distributions of heart rates (Figure 2.15), the shapes 

are the same, but there is a dramatic shift upward of the distribution.  Thus, a patient with 

a baseline heart rate on the lower side of the distribution would likely see a jump in their 

heart rate, but very likely not outside of the range of heart rates for standard patients.  A 

methodology to capture the systematic change across the vital signs of a patient when they 

are entering into a septic state will be developed to aide in the identification of patients 

from each population. 

 



 
 

CHAPTER 3. SIMULATING THE VITAL SIGNS 

3.1 Introduction 

In order to more fully understand the distributions and variation changes 

between the vital signs of sepsis and non-sepsis patients, each of the vital signs will be 

simulated for both groups.  This will also give a better understanding of the distributions 

that do not follow a standard distribution as noted above for both temperature and 

peripheral capillary oxygen saturation.   

3.2 Systolic Blood Pressure for Non-Sepsis Patients 

Begin by looking at the distribution of a non-sepsis patient’s systolic blood 

pressure.  Refer back to Figure 2.7, the histogram of systolic blood pressure for non-sepsis 

patients.  The histogram is symmetric and bell-shaped leading to an initial suggestion of a 

normal distribution.  To check this, an overlay of the normal distribution was added to the 

graph with a mean of 126.75 and a standard deviation of 22.12.   

Since the overlay line appears to fit the distribution well, the data was 

simulated using a normal distribution with a mean of 126.7 and a standard deviation of 

22.1.  Figure 3.1 shows the histogram of the simulated data with an overlay of the normal 

distribution. 
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Figure 3.1 Simulated Systolic Blood Pressure for Non-Sepsis Patients Histogram 
 

The graph below shows the two histograms superimposed onto each other.  

As you can see, the simulated data matches the patient data very well.  The original patient 

data is plotted in red and the simulated data is plotted in blue. 
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Figure 3.2 Systolic Blood Pressure for Non-Sepsis Patients Composite Simulated vs. 
Patient Data 

3.3 Systolic Blood Pressure for Sepsis Patients 

Now looking at simulating the systolic blood pressure for sepsis patients, 

recall Figure 2.8 showing a histogram of measures for active sepsis patients.  The shape of 

this histogram is no longer symmetric and instead is skewed to the right and resembles a 

log normal distribution.  To check this assertion, a log normal curve was overlaid onto the 

histogram showing it follows the shape of the distribution. 

To simulate the systolic blood pressure of sepsis patients, a log normal 

distribution is utilized with a mean, or zeta, of 4.73 and a standard deviation, or sigma, of 

0.24.  Figure 3.3, illustrates the simulated data with an overlay curve of the log normal 
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distribution.  The simulated data seems to follow the curve well and also resembles the 

patient data found in Figure 2.8. 

 
Figure 3.3 Simulated Systolic Blood Pressure for Sepsis Patients Histogram 
 

To better visualize the comparison between the patient data and the 

simulated data, the graph below shows both histograms superimposed on each other.  The 

patient data is graphed in red and the simulated data is in blue.  The shapes of the 

histograms and the centrality points appear to match well. 
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Figure 3.4 Systolic Blood Pressure for Sepsis Patients Composite Simulated vs. Patient 
Data 

3.4 Respiratory Rate for Non-Sepsis Patients 

Next, looking at the respiratory rate, recall Figure 2.10 of the histogram of 

respiratory rates for non-sepsis patients.  The graph has an overlay curve of the gamma 

distribution, however, it is not a perfect fit. Using this gamma distribution with a shape 

parameter 68.4, a scale parameter of 0.45 and a threshold of -13.1 gave a starting point for 

the distribution. 

To simulate this distribution, a base of a gamma distribution was used with 

shape parameter, alpha, of 68.4; a scale parameter, sigma, equal to 0.45; and a threshold 

parameter, theta, of -13.1.  Then to capture the higher peak, a narrow normal distribution 

with a mean of 17.5 and a standard deviation of one was added.  The two distributions 
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were combined using a binomial random variable with a probability of 0.7 leading to a 

70% mix of the gamma distribution and a 30% mix of the normal distribution. The graph 

below shows a histogram of the simulated distribution. 

 
Figure 3.5 Simulated Respiratory Rate for Non-Sepsis Patients Histogram 
 

To visualize the comparison between the patient data and the simulated 

data, the graph below shows both histograms superimposed on each other.  The patient 

respiratory rate data is graphed in red and the simulated respiratory rate data is in blue.  

The shapes of the histograms and the centrality points appear to match well with the 

exception that the peaks are flipped at around 15 breaths per minute and 17 breaths per 

minute.    
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Figure 3.6 Respiratory Rate for Non-Sepsis Patients Composite Simulated vs. Patient 
Data 

3.5 Respiratory Rate for Sepsis Patients 

Focusing on the respiratory rate for sepsis patients, recall Figure 2.11 

showing a histogram of patient respiratory rates who had an active sepsis diagnosis.  The 

graph shows an overlay of the gamma distribution with a shape parameter of 16.7, a scale 

parameter of 1.61 and a threshold parameter of -7.  The curve fits the data marginally well, 

with a higher peak around 17.5 breaths per minute. 

To simulate this distribution, a gamma distribution with a shape parameter 

of 16.7, a scale parameter of 1.61 and a threshold parameter of -7 was used as the base 

distribution.  Then, a small portion of a normal distribution with a mean of 16 and a 

standard deviation of 0.5 is mixed with the gamma distribution to account for the 
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uncharacteristic peak.  The final distribution has an 80% mix of the gamma distribution 

and a 20% mix of the normal distribution. 

 
Figure 3.7 Simulated Respiratory Rate for Sepsis Patients Histogram 
 

To compare the histograms between the patient data and the simulated data, 

the graph below shows both histograms graphed together utilizing a transparency feature.  

The patient respiratory rate data is graphed in red and the simulated respiratory rate data 

is in blue.  The shapes of the histograms and the centrality points appear to match well 

with the some exceptions in the tails.    
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Figure 3.8 Respiratory Rate for Sepsis Patients Composite Simulated vs. Patient Data 

3.6 Heart Rate for Non-Sepsis Patients 

Consider Figure 2.13 showing the distribution of heart rates for non-sepsis 

patients.  The histogram is shown with an overlay of a normal distribution which has a 

mean of 82.2 and a standard deviation of 16.4.  The normal curve is a good approximation 

to the heart rate histogram for non-sepsis patients.  To simulate the heart rate for this subset 

of patients, a normal distribution is used with a mean of 82.2 and a standard deviation of 

16.4.  The graph below, Figure 3.9, illustrates the simulated data with an overlay curve of 

the normal distribution.   
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Figure 3.9 Simulated Heart Rate for Non-Sepsis Patients Histogram 
 

The figure below shows the two histograms superimposed onto each other.  

The simulated heart rate data matches the non-sepsis patient data very well.  The original 

patient data is plotted in red and the simulated data is plotted in blue. 
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Figure 3.10 Heart Rate for Non-Sepsis Patients Composite Simulated vs. Patient Data 

3.7 Heart Rate for Sepsis Patients 

Looking at the distribution of heart rates for patients with an active sepsis 

diagnosis, recall Figure 2.14 showing the distribution.  The graph has an overlay of the 

normal distribution, which fits the data marginally well, with the exception of two peaks 

around 75 and 95.   

To examine if this distribution fits is normal distribution or if it needs to be 

mixed with an additional distribution, an Anderson-Darling test of normality is run using 

the Univariate procedure in SAS.  The test gives a p-value greater than 0.25 indicating that 

the distribution of heart rates for sepsis patients is normally distributed. 
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To simulate the data a normal distribution with a mean of 99.7 and a 

standard deviation of 20.6 will be utilized.  The graph below shows a histogram of the 

simulated heart rate data for the sepsis population with an overlay of the normal 

distribution. 

 
Figure 3.11 Simulated Heart Rate for Sepsis Patients Histogram 
 

In order to better visualize the fit between the patient data and the simulated 

data, the graph below shows the two histograms graphed together with the patient data in 

red and the simulated data in blue.  The simulated data is a good fit with the patient data. 
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Figure 3.12 Heart Rate for Sepsis Patients Composite Simulated vs. Patient Data 

3.8 Peripheral Capillary Oxygen Saturation 

Next focusing on the peripheral capillary oxygen saturation (𝑆𝑆𝑝𝑝𝑂𝑂2) for non-

sepsis patients, recall Figure 2.16 which visualizes the distribution of patient data.  The 

data is truncated on the right at 100% and the vast majority of patient measures stay above 

90% saturation with a shape skewed to the left.  To simulate 𝑆𝑆𝑝𝑝𝑂𝑂2 for non-sepsis patients, 

an exponential distribution is used as a base and mixed with a Poisson distribution to 

achieve the desired shape and tail of the distribution.  To simulate the right truncation, this 

mixture is subtracted from 100.  The final mixture uses 70% of a Poisson distribution with 

a mean parameter of four and 30% of a standard exponential distribution.  Figure 3.13 

shows the histogram of the simulated distribution. 
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Figure 3.13 Simulated 𝑆𝑆𝑝𝑝𝑂𝑂2 for Non-Sepsis Patients Histogram 
 

For comparison, of the distributions on the same size and scale, the two 

histograms are graphed together below.  The actual patient data is graphed in red and the 

simulated data is graphed blue.  The simulated data follows the patient data for peripheral 

capillary oxygen saturation well. 
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Figure 3.14 𝑆𝑆𝑝𝑝𝑂𝑂2 for Non-Sepsis Patients Composite Simulated vs. Patient Data 

3.9 Peripheral Capillary Oxygen Saturation for Sepsis Patients 

Turning our attention to patients with an active sepsis diagnosis, recall 

Figure 2.17 showing the peripheral capillary oxygen saturation.  The main difference 

between non-sepsis patients and sepsis patients is the higher spread of the data in the sepsis 

population.  This spread is manifested in the longer and fatter tail.  To simulate this 

distribution, the same base exponential distribution is utilized, but the spread of the Poisson 

distribution is increased and the mixture percentages are adjusted to better simulate this 

patient group.  For the active sepsis population, the mixture is 70% of a standard 

exponential distribution with 30% of a Poisson distribution with a mean parameter of 7 to 

increase the spread in the tail. 
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Figure 3.15 Simulated 𝑆𝑆𝑝𝑝𝑂𝑂2 for Sepsis Patients Histogram 
 

In order to compare the simulated data with the patient data, the histogram 

of the simulated data is superimposed on the sepsis patient data for peripheral capillary 

oxygen saturation in the graph below.  The patient data is shown in red and the simulated 

data is displayed in blue.  The simulated data fits the patient data well with a slightly lower 

peak in the mid 90% bin.   
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Figure 3.16 𝑆𝑆𝑝𝑝𝑂𝑂2 for Sepsis Patients Composite Simulated vs. Patient Data 

3.10 Body Temperature for Non-Sepsis Patients 

Refer to the distribution of temperature across non-sepsis patients in Figure 

2.19.  The histogram has an overlay of a curve with a normal distribution with a mean of 

36.7 degrees and a standard deviation of 0.47 degrees.  The curve fits the distribution well 

except for the higher peak at the mode of the distribution.  To simulate the temperature in 

degrees Celsius for non-sepsis patients, a foundation of a normal distribution was utilized 

with a mean of 36.7 degrees and a standard deviation of 0.47 degrees.  This distribution is 

mixed with a second normal distribution which has a mean of 36.7 degrees and a standard 

deviation of 0.1 degrees to accommodate the higher peak.  The mixture of normals is 

combined at a ratio of four to one. 
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Figure 3.17 Simulated Temperature (Celsius) for Non-Sepsis Patients Histogram 
 

To visualize the comparison between the patient temperature data and the 

simulated data for non-sepsis patients, the graph below shows the two histograms 

superimposed onto each other.  The sample of non-sepsis patient data is plotted in red and 

the simulated temperature data is plotted in blue.  The simulated data appears to fit the 

patient data well. 
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Figure 3.18 Temperature (Celsius) for Non-Sepsis Patients Composite Simulated vs. 
Patient Data 

3.11 Body Temperature for Sepsis Patients 

Next, looking at the temperatures for sepsis patients, recall Figure 2.20 

showing a histogram of their temperatures in degrees Celsius.  Notice again that the graph 

is bi-modal showing what appears to be a mixture of two normal distributions.  One is 

centered around 36.7 degrees, similar to the non-sepsis patients, and the other has an 

elevated mean showing patients with an active fever.   

To simulate the temperature data for patients with sepsis, a normal 

distribution with a mean of 36.9 degrees and a standard deviation of 0.8 degrees is mixed 

with a second normal having a mean of 39 degrees and a standard deviation of 0.5.  A 

mixture of 57% of the first normal distribution and 43% of the second normal distribution 
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approximated the temperature data with the highest level of accuracy.  The histogram of 

this simulated data is shown below. 

 
Figure 3.19 Simulated Temperature (Celsius) for Sepsis Patients Histogram 
 

To better visualize the comparison between the patient data and the 

simulation, the graph below shows the two histograms plotted together.  The patient data 

is graphed in red and the simulated data is plotted in blue.  The simulated data for the 

temperature of patients with an active sepsis diagnosis fits the sample data well. 
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Figure 3.20 Temperature (Celsius) for Sepsis Patients Composite Simulated vs. Patient 
Data 
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CHAPTER 4. MEASURING CHANGE 

4.1 Introduction 

The onset of sepsis spreading throughout a person’s body causes systematic 

changes that can be detected across a person’s vital signs.  However, not every person 

reacts to sepsis in the exact same way.  As mentioned above, when a sample of patients 

begin to develop sepsis there are marked changes in the distributions of non-sepsis patients 

versus sepsis patients, though those distributions are not disjoint.  Recall the graphs below, 

which are repeated for the reader’s convenience, that illustrate the distributions of each of 

the five vital signs contrasting sepsis patients from non-sepsis patients.  In each of the vital 

sign measures, notice the change between non-sepsis patients and sepsis patients.  The 

distributions are significantly different and the measures of centrality are different, 

however much of the distributions still overlap.    
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4.2 Heart Rate 

 
Figure 4.1 Non-Sepsis vs. Sepsis – Heart Rate 
 

As can be seen in Figure 4.1, when comparing the distribution of heart rates 

of non-sepsis patients to sepsis patients, the mean of the distribution jumps over 17 beats 

per minute from 82.2 beats per minute up to 99.7 beats per minute, a 21.3% increase in the 

mean.  This rise in the mean coincides with an increase of 25% more of the distribution 

falling outside of what is generally accepted as the normal range of an adult, 60 to 80 beats 

per minute (Cleveland Clinic 2014).  Even with this dramatic change in the distribution, 

the majority of the distributions for the two groups overlap.  A subset of the non-sepsis 

population exists who have a higher heart rate as their baseline as compared to other 

patients.  Given a single observation of 96 beats per minute, it would be difficult to state 

conclusively from which distribution this observation originated.  However, notice how 



55 
 

the information about the new observation would change if we knew that the baseline heart 

rate for this patient was 70 beats per minute as opposed to 92 beats per minute.   

4.3 Systolic Blood Pressure 

 
Figure 4.2 Non-Sepsis vs. Sepsis – Systolic Blood Pressure 
 

The mean systolic blood pressure for a sepsis patient drops 10 mmHG 

compared to the mean of a non-sepsis patient.  This change in the central tendency 

coincides with nearly a 30% increase in the standard deviation of the distribution.  As can 

be seen in Figure 4.2, the two distributions almost completely overlap.  An observation of 

a systolic blood pressure measure of 105 mmHG reasonably fits into both distributions.  

However, the observation points to a change due to sepsis if the baseline observation for 

the patient was observed to be 140 mmHG as compared to 110 mmHG. 
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4.4 Respiratory Rate 

 
Figure 4.3 Non-Sepsis vs. Sepsis – Respiratory Rate 
 

The mean respiratory rate of a sepsis patient is only 2.2 breaths per minute 

higher than the respiratory rate for a non-sepsis patient.  However, in Figure 4.3, you can 

see that the distributions are quite different.  The standard deviation of the distribution 

jumps from 3.79 breaths per minute up to 6.79 breaths per minute, nearly an 80% increase.  

The small change in mean along with the large increase in spread leads to the non-sepsis 

distribution being completely encompassed by the sepsis distribution.  An observation of 

23 breaths per minute easily fits into both distributions, however the story changes if the 

baseline for the patient was 17 breaths per minute compared to 21.   
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4.5 Peripheral Capillary Oxygen Saturation 

 
Figure 4.4 Non-Sepsis vs. Sepsis – Peripheral Capillary Oxygen Saturation 
 

The mean peripheral capillary oxygen saturation (𝑆𝑆𝑝𝑝𝑂𝑂2) of both groups are 

nearly identical at 96.68% and 96.93%.  However, the standard deviations do show a larger 

change.  As can be seen in the larger tail of the sepsis patients, the standard deviation jumps 

from 2.83% up to 4.15%, a 47% increase in sepsis patients compared to non-sepsis 

patients.  Looking at Figure 4.4, it is worth noting that not all sepsis patients see a drop in 

their 𝑆𝑆𝑝𝑝𝑂𝑂2, but when they do, they generally see a larger drop as compared to non-sepsis 

patients. 
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4.6 Body Temperature 

 
Figure 4.5 Non-Sepsis vs. Sepsis: Body Temperature (Celsius) 
 

Temperature is perhaps the measure that shows the most dramatic change 

during the onset of sepsis.  However, as can be seen in Figure 4.5, it is one of the most 

easily masked of the vital signs.  The distribution of a non-sepsis patient is quite consistent 

with a mean of 36.7 degrees Celsius in our dataset and a small standard deviation of 0.47 

degrees.  The mean of the sepsis distribution is only one degree higher. However, as noted 

previously, the distribution for sepsis patients shows a clear bimodal distribution which 

has been shown to be a mixture of two different distributions.  The mean of the higher 

distribution is 39 degrees Celsius.  The onset of sepsis, with the spreading of an infection 

through the blood stream of a patient, leads to a fever.  This alone is not uncommon in sick 

patients and especially not uncommon in a hospital setting.  However, the treatment could 
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mask the symptoms of sepsis and again illustrates why it is important to incorporate the 

change in the vital sign along with the measure. 

4.7 Summary 

There is a consistent pattern across most of the vital signs, a dramatic shift 

in the central measure or shape of the distribution, but the majority of the distributions 

between sepsis and non-sepsis patients still overlap.  This leads to an interesting problem 

where a patient’s single observation from either distribution is difficult to discriminate.  

However, if that singular observation is compared to the patient’s baseline in each of the 

vital signs, the shift across each of the vital signs could be captured.  This has the potential 

to greatly improve the discrimination of a singular set of observations.  Thus, a patient who 

has a current heart rate of 100 beats per minutes and a baseline heart rate of 75 beats per 

minute is distinguished from a patient with a current heart rate of 100 beats per minute and 

a baseline of 103 beats per minute.  To establish a patient specific baseline, the mean 

measure for each observation prior to the current measure is used during that specific 

hospital visit.   
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CHAPTER 5. DISCUSSION ON VARIATION 

5.1 Introduction 

As a patient establishes a set of baseline measures for their vital signs, they 

not only establish a baseline measure of centrality, but also a baseline variation.  To 

investigate the variability of variation of patients across the different vital sign measures, 

the following graphs show histograms of standard deviations of non-sepsis patients for 

each measure.  This allows us to determine if it is important to consider patient specific 

standard deviations, for example, when evaluating the change in a person’s heartrate.  If 

one patient shows a very consistent heart rate with a standard deviation of five, and has a 

change of 20 beats per minute, this is distinguishable between a patient who has an erratic 

heart rate with a standard deviation of 18, and has a change of 20 beats per minute.  Since 

the focus of this research is to determine when patients residing in non-ICU settings enter 

into a septic state, only the standard deviations of non-sepsis patients are examined.  The 

histograms are shown in repetition with discussion held to the end. 



61 
 

5.2 Heart Rate Standard Deviation 

 
Figure 5.1 Histogram of Heart Rate Standard Deviations for Non-Sepsis Patients 

5.3 Respiratory Rate Standard Deviation 
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Figure 5.2 Histogram of Respiratory Rate Standard Deviations for Non-Sepsis Patients 

5.4 Systolic Blood Pressure Standard Deviation 
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Figure 5.3 Histogram of Systolic Blood Pressure Standard Deviations for Non-Sepsis 
Patients 

5.5 Peripheral Capillary Oxygen Saturation Standard Deviation 
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Figure 5.4 Histogram of 𝑆𝑆𝑝𝑝𝑂𝑂2 Standard Deviations for Non-Sepsis Patients 

5.6 Body Temperature Standard Deviation 



65 
 

 
Figure 5.5 Histogram of Temperature (Celsius) Standard Deviations for Non-Sepsis 
Patients 

5.7 Summary 

Table 5.1 summarizes the five histograms for the standard deviations of the 

vital signs.  As can be seen in each vital sign, the between patient variation of standard 

deviations is significant and needs to be considered when evaluating the change. 

Table 5.1 Summary of Variation Among Standard Deviations of Vital Signs 

Measure Mean 
Standard 
Deviation 

Heartrate 9.82 4.84 
Respiratory Rate 3.01 2.28 
Systolic Blood Pressure 14.76 5.88 
Oxygen Saturation 1.98 1.12 
Temperature 0.35 0.20 
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The amount of variation that is present across the standard deviations of the 

vital sign measures offers that it is also important to consider the patient’s baseline 

variation in each measure.  It is also informative that the variation in heart rate and systolic 

blood pressure is likely more patient specific given the amount of variation found between 

patients.  Recall Figure 1.2 that illustrates the heart rates of two different patients who have 

an average heart rate of approximately 80 beats per minute.  Patient A has a standard 

deviation of three beats per minute, and Patient B has a standard deviation of ten.  The 

final observation of 100 for each patient is likely telling a different story between patients 

even though they have very similar means.  For Patient A, the observation of 100 is over 

seven standard deviations from the mean and represents a significant change for the 

patient.  Conversely, the observation for Patient B is under two standard deviations from 

the mean, a much less significant change.   
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CHAPTER 6. THE SEPSIS SCORE 

6.1 Introduction 

In order to increase the lead time in recognizing patients trending towards 

septicemia, a partial least squares discriminate model was developed to identify patients 

who are starting to show signs of septicemia in their vital signs.  The multivariate model 

was utilized in order to keep the full set of variables without reducing the model.  This 

allows us to include variables where change may be detected even though they are not, on 

average, the best indicators.  This decision also allows for the detection of large single 

system changes, that although may not be indicative of sepsis, could be important to 

healthcare providers. These changes present differently in the model than the onset of 

sepsis.  Large single system changes cause the sepsis score to change significantly, but not 

always cross into the sepsis zone.  These are often significant changes to the patient that 

need the attention of a doctor or nurse, but can also be results of less emergent 

circumstances.  Examples include a nurse who accidently mistyped 205 instead of 105 

when entering a heart rate, or a patient who had recently been taken off of heart medicine 

causing their heart rate to jump.  In both of these examples, a notification to the nurse is 

all that was needed to address the issue.     

6.2 The Sepsis Score 

A random sample of 1275 observations from patients with and without 

sepsis was collected from the electronic medical records at the University of Kentucky 

Albert B. Chandler Hospital.  The sample included 872 non-sepsis observations and 403 

sepsis observations.  The non-septic patients were selected only if they did not have a 
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diagnosis related to sepsis and they did not expire during their visit.  Vital signs taken of 

the sepsis cohort were during a two hour window before and after the time they were 

identified with a sepsis diagnosis and interventions were started.  This sample was 

employed to ensure the measures were indicative of vital sign changes during and just prior 

to the onset of sepsis.  A partial least squares discriminate model was developed utilizing 

the patient’s age, current vitals, and the change variables defined below for each vital sign. 

𝐴𝐴𝑛𝑛 =
𝑋𝑋𝑛𝑛 − 𝑋𝑋�𝑛𝑛−1
𝑠𝑠𝑛𝑛−1

 

Where  𝑋𝑋�𝑛𝑛−1 = 1
𝑛𝑛−1

∑ 𝑋𝑋𝑗𝑗𝑛𝑛−1
𝑗𝑗=1  and 𝑠𝑠𝑛𝑛−12 = ∑ (𝑋𝑋𝑘𝑘−𝑋𝑋�𝑘𝑘−1)2𝑛𝑛−1

𝑘𝑘=1
𝑛𝑛−2

, the mean and 

standard deviation of the patient’s previous observations, respectively.  The overall model 

was significant with a p-value < 0.0001.  A resubstitution strategy was used for grading 

the linear discriminant function.  The specificity, identifying a non-sepsis patient as non-

sepsis, was 89.7%, giving a false positive rate of 10.3%.  Conversely, the sensitivity, 

identifying a sepsis patient as having sepsis, was 77.9%, giving us a false negative rate of 

22.1%.  The figure below shows the separation between groups given by the discriminant 

model.  Sepsis observations are denoted by a blue circle and non-sepsis observations are 

shown with a red x.   
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Figure 6.1 Projection of Data into a Two-Dimensional Space using the Discriminant 
Model.  Sepsis observations are blue circles and non-sepsis observation are denoted with 
a red x. 

6.3 Utilizing the Sepsis Score 

The sepsis score can be viewed over time for each patient as seen in Figure 

6.2 below.  The model designates zero as the line of discrimination, where a score above 

zero signifies a patient who is trending towards sepsis.   
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Figure 6.2 Visualizing the Sepsis Score.  The figure identifies the line of discrimination 
in black, the sepsis score in blue, and a two standard deviation control chart lines in red. 
 

There are three different types of alerts which are triggered by this 

calculated sepsis score.  A yellow alert is generated when a patient’s sepsis score has gone 

outside of their patient specific control chart.  A control chart is generated by calculating 

plus and minus two standard deviations from their mean sepsis score, and is designated 

above with the red dotted lines.  A visual example of a yellow alert can be seen between 

days three and four in Figure 6.2.  Generally, these alerts are caused by large single system 

changes.  This is a nursing centric alert that only notifies the nurse, who evaluates the 

situation and determines if any escalation is needed.  An orange alert is generated when a 

patient’s sepsis score touches the line of discrimination but does not jump across it.  This 

alert signifies that a patient is trending in the wrong direction.  This is also a nursing centric 

alert that notifies the nurse to perform a sepsis screening on the patient and look for a 

possible source of infection.  Based upon this screening the nurse can alert the rapid 

response team and the physician if necessary.  The final alert is a red alert and is generated 

when a patient’s sepsis score crosses the model’s line of discrimination for sepsis.  This 

alert generates a page to the rapid response team to evaluate the patient.  In the 

UKHealthCare environment, the rapid response team also carries a tool to take a point of 
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care lactate value to give baseline lab information to the physician.  Figure 6.3, below, 

outlines the process flow for the three alerts. 

 
Figure 6.3 Flow Chart for Sepsis Alerts 

6.4 Example Patients 

Three examples are provided to illustrate the sepsis score on patients while 

also showing the change in their vital signs.  Figure 6.5 is an example of the sepsis score 

actively being calculated during a patient’s visit.  The last two are retrospective patients 

who were coded with a sepsis diagnosis and had the sepsis score calculated on their vital 

signs post hoc.  A graph of the patient’s vital signs below the sepsis score graph is provided 

in order to see what changes in the vital signs caused the changes in the sepsis score.  Note 
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that the axis on the left is for the heart rate, respiratory rate, peripheral capillary oxygen 

saturation, and systolic blood pressure.  The axis on the right is utilized for the patient’s 

body temperature.  Figure 6.4, below, is a legend for the vital signs graphs of all three 

patients. 

 
Figure 6.4 Legend for Vital Sign Measures 
 



73 
 

6.4.1 Patient One 

 
Figure 6.5 Sepsis Score and Vital Signs for Patient One 
 

At time point one, signified by the yellow arrow, the patient’s heart rate 

jumped from a baseline around 60 bpm to 96 bpm.  However, at this time there was not a 

significant change in the patient’s other vital signs.  This single system change resulted in 

the sepsis score jumping outside of the control chart, a yellow alert, but not crossing the 

line of discrimination.  Contrast this with time point 2, when the patient had a similar jump 

in heart rate, but this time it coincided with a jump in temperature, a slight rise in the 

respiratory rate, and a jump in systolic blood pressure.  These combined changes resulted 

in the sepsis score jumping over the line of discrimination and a red alert. 
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6.4.2 Patient Two 

 
Figure 6.6 Sepsis Score and Vital Signs for Patient Two 
 

Patient two had a length of stay of fifteen days and coded out with 

bacteremia, an early form of sepsis.  At time point 1, the patient had a rise in their heart 

rate and systolic blood pressure.  This resulted in the sepsis score touching the line of 

discrimination, but not jumping over it.  This would have resulted in an orange alert and a 

sepsis screening from a nurse.  Time point two occurred at 3:38 PM on day six when the 

patient had jumps in their heart rate, systolic blood pressure and temperature resulting in a 

red alert.  Time point three on day seven at 10:33 AM, over eighteen hours after the red 

alert, is the first time that antibiotics were ordered.  At time point four, the antibiotics were 

changed and the patient began showing improvement.   
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6.4.3 Patient Three 

 
Figure 6.7 Sepsis Score and Vital Signs for Patient Three 
 

Patient three had a length of stay of 31 days, was diagnosed with septic 

shock, and expired during their hospital stay.  At time point 1 on day three at 8:00 am, the 

patient would have had a red alert and a baseline lactate taken.  At time point 2 on day 

eight at noon, the patient would have had a second red alert.  At time point 3 on day nine 

at 10:14 am is the first time that antibiotics were ordered, 22 hours later.  Time period 4 

on day 20 is the first time that the traditional track and trigger system fired on the patient.   

6.5 Results from Trial 

SAS was utilized to generate a partial least squares discriminant model.  

The overall model was significant, determined by an F test, to evaluate if the canonical 
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correlations are significantly different from zero (p < 0.0001).  The sepsis score was run 

in the background for four months at the University of Kentucky HealthCare.  During this 

time 200 patients were coded as having a hospital acquired diagnosis of sepsis.  For each 

of these patients, the first time each patient had any of the following antibiotics ordered 

was documented: cefepime, fluconazole, piperacillin, tobramycin, or vancomycin.  This 

time was compared with the time of a sepsis alert that would have fired preceding the start 

of the antibiotics to examine the possible lead time that could have been achieved through 

the alert.  Of the 200 patients, 117 of the patients had an alert before their first dose of 

antibiotics, 21 did not have an occurrence of the antibiotics in their charts, and 62 received 

antibiotics before any alerts.  However, of the 62 patients, 49 of them received antibiotics 

within the first 24 hours of their first vital signs which leaves little data to build baseline 

information on the patient.  Table 6.1 shows this breakdown. 

Table 6.1 Summary of 200 Sepsis Patients 
  Average Lead Time 

before Antibiotics 
Number of 

Patients Categories 
Alerted 25:37:09   117 
No Antibiotics (Abx) 0:00:00   21 
No Preceeding Alert     

Abx after 24 hrs 0:00:00 13 
Abx within first 24 hrs 0:00:00 49 

Grand Total 14:59:14 200 
 

As seen above, the average lead time for the 117 patients who would have 

alerted before they received antibiotics was approximately twenty-five and a half hours.  

Removing outliers beyond three days results in a mean of 14:46:49 (hh:mm:ss) and a 

median of 8:31:29 (hh:mm:ss) of lead time.  Figure 6.8 shows the histogram of lead times 

excluding outliers over three days. 
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Figure 6.8 Lead Time between Alert and Antibiotics Histogram 

6.6 Conclusions 

The model requires patient baseline data is kept up-to-date for each 

patient’s vital signs throughout their stay.  When a new set of vital signs is entered in the 

electronic medical record, the raw scores and the change from baseline data is utilized to 

calculate a sepsis score.   

The use of an automated system that utilize both raw data and the change 

of the data from patient specific baselines may prove useful for earlier detection of sepsis 

in progressive and acute care patients.  The results show that a median of eight and a half 

hours of lead time to start of interventions could be achieved using similar methods.  

However, given the large amount of variability within the human body, the onset of sepsis 

cannot be predicted with complete accuracy.  The goal is to identify patients at risk and 

bring them to the attention of qualified healthcare workers as early as possible.   
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CHAPTER 7. STATISTICAL THEORY 

7.1 Theory 

We will use the subscript 𝑎𝑎, 𝑏𝑏 to denote a sum going from 𝑎𝑎 + 1 to 𝑏𝑏. 

Lemma 1: Let {𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑛𝑛  be i.i.d. random variables from a normal distribution with mean 𝜇𝜇 

and variance 𝜎𝜎2.  Define 𝑋𝑋�0,𝑛𝑛−1 = 1
𝑛𝑛−1

∑ 𝑋𝑋𝑗𝑗𝑛𝑛−1
𝑗𝑗=1  and 𝑠𝑠0,𝑛𝑛−1

2 = ∑ �𝑋𝑋𝑘𝑘−𝑋𝑋�0,𝑛𝑛−1�
2𝑛𝑛−1

𝑘𝑘=1
𝑛𝑛−2

, and  

𝐴𝐴𝑛𝑛 = 𝑋𝑋𝑛𝑛−𝑋𝑋�0,𝑛𝑛−1
𝑠𝑠0,𝑛𝑛−1

.   Then, 1

�1+ 1
𝑛𝑛−1

𝐴𝐴𝑛𝑛~𝑡𝑡𝑛𝑛−2. 

Proof:  

(1) 𝐴𝐴𝑛𝑛 = 𝑋𝑋𝑛𝑛−𝑋𝑋�0,𝑛𝑛−1
𝑠𝑠0,𝑛𝑛−1

= 𝑋𝑋𝑛𝑛−𝑋𝑋�0,𝑛𝑛−1

�𝜎𝜎2+𝜎𝜎2 𝑛𝑛−1� ∙
𝑠𝑠0,𝑛𝑛−1

�𝜎𝜎2+𝜎𝜎2 𝑛𝑛−1�

= 𝑍𝑍 ∙ 1
𝑠𝑠0,𝑛𝑛−1

�𝜎𝜎2+𝜎𝜎2 𝑛𝑛−1�

, 

 

where 𝑍𝑍 = 𝑋𝑋𝑛𝑛−𝑋𝑋�0,𝑛𝑛−1

�𝜎𝜎2+𝜎𝜎2 𝑛𝑛−1�
 ~𝑁𝑁(0,1)  since 𝑋𝑋𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎2) and 𝑋𝑋�0,𝑛𝑛−1~𝑁𝑁 �𝜇𝜇, 𝜎𝜎2

𝑛𝑛−1
�. 

Thus,  

(2)      𝐴𝐴𝑛𝑛 = 𝑍𝑍 ∙  
1

𝑠𝑠0,𝑛𝑛−1

�𝜎𝜎2 + 𝜎𝜎2
𝑛𝑛 − 1

∙ �1 + 1
𝑛𝑛 − 1

=
𝑍𝑍

�∑ �𝑋𝑋𝑘𝑘 − 𝑋𝑋�0,𝑛𝑛−1�
2𝑛𝑛−1

𝑘𝑘=1
(𝑛𝑛 − 2)𝜎𝜎2

∙ �1 +
1

𝑛𝑛 − 1
 

 

(3)      𝐴𝐴𝑛𝑛 =
𝑍𝑍

� 𝜒𝜒𝑛𝑛−22

(𝑛𝑛 − 2)

 ∙ �1 +
1

𝑛𝑛 − 1
 

where 𝜒𝜒𝑛𝑛−22  is a Chi-Square distribution with n-2 degrees of freedom. 
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Therefore, 1

�1+ 1
𝑛𝑛−1

𝐴𝐴𝑛𝑛~𝑡𝑡𝑛𝑛−2. 

 

Lemma 2: Let {𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑛𝑛+𝑚𝑚 be i.i.d. random variables from a normal distribution with mean 𝜇𝜇 

and variance 𝜎𝜎2.  Define 𝑋𝑋�𝑛𝑛,𝑚𝑚 = 1
𝑚𝑚
∑ 𝑋𝑋𝑗𝑗𝑚𝑚
𝑗𝑗=𝑛𝑛+1 ,  𝑋𝑋�0,𝑛𝑛 = 1

𝑛𝑛
∑ 𝑋𝑋𝑗𝑗𝑛𝑛
𝑗𝑗=1 , 𝑠𝑠𝑛𝑛,𝑚𝑚

2 = ∑ �𝑋𝑋𝑘𝑘−𝑋𝑋�𝑛𝑛,𝑚𝑚�
2𝑚𝑚

𝑘𝑘=𝑛𝑛+1
𝑚𝑚−1

, 

and 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛
𝑠𝑠𝑛𝑛,𝑚𝑚

√𝑚𝑚�
. 

Then,  1

�𝑚𝑚𝑛𝑛+1
∙ 𝐵𝐵𝑛𝑛,𝑚𝑚 ~ 𝑡𝑡𝑚𝑚−1.   

Proof:  

(4) 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛
𝑠𝑠𝑛𝑛,𝑚𝑚

√𝑚𝑚�
=  𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

�𝑚𝑚𝑚𝑚2

𝑛𝑛 +𝑚𝑚𝑚𝑚2

𝑚𝑚 ∙
𝑠𝑠𝑛𝑛,𝑚𝑚

�𝜎𝜎2
𝑛𝑛 +𝜎𝜎

2
𝑚𝑚

= 𝑍𝑍 ∙ 1
𝑠𝑠𝑛𝑛,𝑚𝑚

�𝑚𝑚𝑚𝑚2
𝑛𝑛 +𝑚𝑚𝑚𝑚

2
𝑚𝑚

= 𝑍𝑍 ∙ 1
𝑠𝑠𝑛𝑛,𝑚𝑚
𝜎𝜎
∙ �𝑚𝑚

𝑛𝑛
+ 𝑚𝑚

𝑚𝑚
 

 

where 𝑍𝑍 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

�𝜎𝜎
2
𝑛𝑛 +

𝜎𝜎2
𝑚𝑚

~𝑁𝑁(0,1) since 𝑋𝑋�0,𝑛𝑛~𝑁𝑁�𝜇𝜇, 𝜎𝜎
2

𝑛𝑛
� and 𝑋𝑋�𝑛𝑛,𝑚𝑚~𝑁𝑁 �𝜇𝜇, 𝜎𝜎

2

𝑚𝑚
�. 

 

(5) 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑍𝑍

�∑ �𝑋𝑋𝑘𝑘−𝑋𝑋�𝑛𝑛,𝑚𝑚�
2𝑚𝑚

𝑘𝑘=𝑛𝑛+1
(𝑚𝑚−1)𝜎𝜎2

∙ �𝑚𝑚
𝑛𝑛

+ 𝑚𝑚
𝑚𝑚

= 𝑍𝑍

�𝜒𝜒𝑚𝑚−1
2

(𝑚𝑚−1)

∙ �𝑚𝑚
𝑛𝑛

+ 𝑚𝑚
𝑚𝑚

 

 

Therefore, 1

�𝑚𝑚𝑛𝑛+1
∙ 𝐵𝐵𝑛𝑛,𝑚𝑚 ~ 𝑡𝑡𝑚𝑚−1. 
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Lemma 3: Let {𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑛𝑛+𝑚𝑚 be i.i.d. random variables from a normal distribution with mean 𝜇𝜇 

and variance 𝜎𝜎2.  Define 𝑋𝑋�𝑛𝑛,𝑚𝑚 = 1
𝑚𝑚
∑ 𝑋𝑋𝑗𝑗𝑚𝑚
𝑗𝑗=𝑛𝑛+1 , 𝑋𝑋�0,𝑛𝑛 = 1

𝑛𝑛
∑ 𝑋𝑋𝑗𝑗𝑛𝑛
𝑗𝑗=1  𝑠𝑠0,𝑛𝑛

2 = ∑ �𝑋𝑋𝑘𝑘−𝑋𝑋�0,𝑛𝑛�
2𝑛𝑛

𝑘𝑘=1
𝑛𝑛−1

, and 

    

𝐵𝐵0,𝑛𝑛 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛
𝑠𝑠0,𝑛𝑛

√𝑛𝑛�
.  Then 1

�1+𝑛𝑛
𝑚𝑚

∙ 𝐵𝐵0,𝑛𝑛 ~ 𝑡𝑡𝑛𝑛−1. 

Proof: 

(6) 𝐵𝐵0,𝑛𝑛 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛
𝑠𝑠0,𝑛𝑛

√𝑛𝑛�
= =  𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

�𝜎𝜎2

𝑛𝑛 +𝜎𝜎2

𝑚𝑚 ∙
𝑠𝑠0,𝑛𝑛

�𝑛𝑛𝑛𝑛2
𝑛𝑛 +𝑛𝑛𝑛𝑛

2
𝑚𝑚

= 𝑍𝑍 ∙ 1
𝑠𝑠0,𝑛𝑛

�𝑛𝑛𝑛𝑛2
𝑛𝑛 +𝑛𝑛𝑛𝑛

2
𝑚𝑚

= 𝑍𝑍 ∙ 1
𝑠𝑠0,𝑛𝑛
𝜎𝜎

∙ �𝑛𝑛

𝑛𝑛
+ 𝑛𝑛

𝑚𝑚
 

 

where 𝑍𝑍 = 𝑋𝑋�𝑛𝑛,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

�𝜎𝜎
2
𝑛𝑛 +

𝜎𝜎2
𝑚𝑚

~𝑁𝑁(0,1) since 𝑋𝑋�0,𝑛𝑛~𝑁𝑁�𝜇𝜇, 𝜎𝜎
2

𝑛𝑛
� and 𝑋𝑋�𝑛𝑛,𝑚𝑚~𝑁𝑁 �𝜇𝜇, 𝜎𝜎

2

𝑚𝑚
�. 

 

(7) 𝐵𝐵0,𝑛𝑛 = 𝑍𝑍

�∑ �𝑋𝑋𝑘𝑘−𝑋𝑋�0,𝑛𝑛�
2𝑚𝑚

𝑘𝑘=𝑛𝑛+1
(𝑛𝑛−1)𝜎𝜎2

∙ �𝑛𝑛
𝑛𝑛

+ 𝑛𝑛
𝑚𝑚

= 𝑍𝑍

�𝜒𝜒𝑛𝑛−1
2

(𝑛𝑛−1)

∙ �𝑛𝑛
𝑛𝑛

+ 𝑛𝑛
𝑚𝑚

 

 

Therefore, 1

�1+𝑛𝑛
𝑚𝑚

∙ 𝐵𝐵0,𝑛𝑛 ~ 𝑡𝑡𝑛𝑛−1. 
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Lemma 4: Let {𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑛𝑛  and �𝑌𝑌𝑗𝑗�𝑗𝑗=1
𝑚𝑚

 be independent and identically distributed random 

variables with distribution F, with mean 𝜇𝜇 and variance 𝜎𝜎2.  Define 𝑌𝑌�0,𝑚𝑚 = 1
𝑚𝑚
∑ 𝑌𝑌𝑗𝑗𝑚𝑚
𝑗𝑗=𝑛𝑛+1 , 

and  𝑋𝑋�0,𝑛𝑛 = 1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 , and 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑌𝑌�0,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

𝜎𝜎
√2𝑚𝑚�

. 

Then as 𝑛𝑛 → ∞ and 𝑚𝑚 → ∞ and 𝑚𝑚
𝑛𝑛
→ 1, 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑌𝑌�0,𝑚𝑚−𝑋𝑋�0,𝑛𝑛

𝜎𝜎
√2𝑚𝑚�

𝑑𝑑
→ 𝑁𝑁(0,1). 

Proof:  

(8) 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑌𝑌�0,𝑚𝑚−𝑋𝑋�0,𝑛𝑛
𝜎𝜎
√2𝑚𝑚�

=  𝑌𝑌
�0,𝑚𝑚−𝜇𝜇
𝜎𝜎
√2𝑚𝑚�

− 𝑋𝑋�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√2𝑚𝑚�

 

 

(9)         By the CLT, as 𝑚𝑚 → ∞, 𝑌𝑌
�0,𝑚𝑚−𝜇𝜇
𝜎𝜎
√𝑚𝑚�

𝑑𝑑
→ 𝑁𝑁(0,1) 

(10)      Also by the CLT,  as 𝑛𝑛 → ∞ , 𝑋𝑋
�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√𝑛𝑛�

𝑑𝑑
→ 𝑁𝑁(0,1).   

(11)      Since  𝑚𝑚
𝑛𝑛
→ 1, as  𝑛𝑛 → ∞, then 𝑚𝑚 → ∞.  

(12)      Thus by Slutsky’s Theorem, �√𝑚𝑚
√𝑛𝑛
� �𝑋𝑋

�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√𝑛𝑛�
� = 𝑋𝑋

�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√𝑚𝑚�

𝑑𝑑
→ 𝑁𝑁(0,1).    

(13)      Using (9) and (12) and the i.i.d. assumption, 𝑌𝑌
�0,𝑚𝑚−𝜇𝜇
𝜎𝜎
√𝑚𝑚�

− 𝑋𝑋�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√𝑚𝑚�

𝑑𝑑
→𝑁𝑁(0,2). 

(14)      Thus as 𝑛𝑛 → ∞ and 𝑚𝑚 → ∞ and 𝑚𝑚
𝑛𝑛
→ 1, 𝐵𝐵𝑛𝑛,𝑚𝑚 = 𝑌𝑌�0,𝑚𝑚−𝜇𝜇

𝜎𝜎
√2𝑚𝑚�

− 𝑋𝑋�0,𝑛𝑛−𝜇𝜇
𝜎𝜎
√2𝑚𝑚�

𝑑𝑑
→𝑁𝑁(0,1). 

 

 



82 
 

(Casella 2002) Lemma 5: If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent Normal random variables with 

means  𝜇𝜇1, … , 𝜇𝜇𝑛𝑛 and variances  𝜎𝜎1, … ,𝜎𝜎𝑛𝑛 respectively, then  

𝑌𝑌 = �𝑐𝑐𝑖𝑖𝑋𝑋𝑖𝑖~𝑁𝑁
𝑛𝑛

𝑖𝑖=1

��𝑐𝑐𝑖𝑖𝜇𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�𝑐𝑐𝑖𝑖2𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

� . 

 

Let 𝑋𝑋𝑣𝑣1 , … ,𝑋𝑋𝑣𝑣𝑛𝑛 be independent random variables with standard Student’s t distributions 

with degrees of freedom 𝑣𝑣𝑖𝑖 > 0 for all i.  Using numerical methods, the sum, 𝑋𝑋𝑣𝑣1 + 𝑋𝑋𝑣𝑣2 +

⋯+ 𝑋𝑋𝑣𝑣𝑛𝑛can be described as follows. 

As discussed in Ahsanullah(2014), a closed form proof of the general sum of t-distributions 

has yet to be proven with the exception of special cases.  Fisher(1935) explored the special 

case of a weighted sum of two random variables with a Student’s t-distribution called the 

Behrens-Fisher statistic.  Walker and Saw(1978) expressed that the sum of Student’s t-

distributions will converge to a normal distribution as the degrees of freedom approach 

infinity and that it does not have a closed form for degrees of freedom, 𝑣𝑣𝑖𝑖, where 0 < 𝑣𝑣𝑖𝑖 <

∞.  Additionally, Walker and Saw (1978) showed that if the 𝑣𝑣𝑖𝑖 = 1 for 𝑖𝑖 = 1,2, … , 𝑛𝑛, the 

sum will have a Cauchy distribution. 

By Walker and Saw above, let 𝑋𝑋𝑖𝑖 be i.i.d. from a t-distribution with 𝜈𝜈 degrees of freedom 

where 𝜈𝜈 > 0 and  𝑌𝑌𝑘𝑘 = ∑ 𝑋𝑋𝑖𝑖,𝑘𝑘
𝑖𝑖=1 . Then as 𝜈𝜈 → ∞, then 𝑌𝑌𝑘𝑘

𝑑𝑑
→ 𝑁𝑁(0,𝑘𝑘). 
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Lemma 6: Consider 𝑄𝑄𝑘𝑘 = ∑ 𝑋𝑋𝑖𝑖𝑘𝑘
𝑖𝑖=1
√𝑘𝑘

, where 𝑋𝑋𝑖𝑖~𝑡𝑡𝜈𝜈.   As 𝜈𝜈 → ∞, then, 𝑄𝑄𝑘𝑘
𝑑𝑑
→ 𝑁𝑁(0,1). 

The proof is trivial given the above, we are only multiplying a Normal distributed 

random variable with a mean of 0 and a variance = k by a constant 1
√𝑘𝑘

. 

 

Consider 𝑄𝑄𝑘𝑘 =
∑ 𝑋𝑋𝑣𝑣𝑛𝑛
𝑘𝑘
𝑖𝑖=1
√𝑘𝑘

, where 𝑋𝑋𝑖𝑖~𝑡𝑡𝜈𝜈.   For finite 𝜈𝜈, we will investigate if 𝑄𝑄𝑘𝑘 has 

approximately a t-distribution and if so, can we approximate the degrees of freedom. 

Different methods were considered and investigated in order to 

approximate the degrees of freedom for a t-distribution for 𝑄𝑄𝑘𝑘.  Two of these methods 

were further investigated using simulations.   

The second moment of the t-distribution, 𝛿𝛿2 = 𝑣𝑣
𝑣𝑣−2

, is defined by the 

degrees of freedom of the distribution.  Using a simulation to approximate the distribution 

of 𝑄𝑄𝑘𝑘, the sample statistic for the second moment can then be calculated from the 

distribution.  Solving the equation above for 𝑣𝑣 we get 𝑣𝑣 = 2𝛿𝛿2

𝛿𝛿2−1
.  Then substituting the 

sample statistic for the parameter we get 𝑣𝑣 = 2𝑠𝑠2

𝑠𝑠2−1
. 

A second approach to investigate if the Satterthwaite approximation for 

degrees of freedom for a t-test could be extended to this problem was also explored.  

Following Satterthwaite, 1946: If 𝑀𝑀𝑆𝑆1 and 𝑀𝑀𝑆𝑆2 are independent mean squares with 

𝑟𝑟1 and 𝑟𝑟2 degrees of freedom, the approximate degrees of freedom for 𝑎𝑎1(𝑀𝑀𝑆𝑆1) +

𝑎𝑎2(𝑀𝑀𝑆𝑆2) are given in equation (6) as: 
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(15) 𝑟𝑟𝑠𝑠 = [𝑎𝑎1𝐸𝐸(𝑀𝑀𝑆𝑆1)+𝑎𝑎2𝐸𝐸(𝑀𝑀𝑆𝑆2)]2
[𝑎𝑎1𝐸𝐸(𝑀𝑀𝑆𝑆1)]2

𝑟𝑟1
+[𝑎𝑎2𝐸𝐸(𝑀𝑀𝑆𝑆2)]2

𝑟𝑟2

 

Letting 𝑎𝑎1 = 𝑎𝑎2 = 1 gives,  

(16) 𝑟𝑟𝑠𝑠 = [𝐸𝐸(𝑀𝑀𝑆𝑆1)+𝐸𝐸(𝑀𝑀𝑆𝑆2)]2
[𝐸𝐸(𝑀𝑀𝑆𝑆1)]2

𝑟𝑟1
+[𝐸𝐸(𝑀𝑀𝑆𝑆2)]2

𝑟𝑟2

 

For an unbiased estimate, 𝐸𝐸(𝑀𝑀𝑀𝑀) is the second moment or 

the variance of the random variable.  Thus, considering 

𝑋𝑋11,𝑋𝑋12, … and 𝑋𝑋21,𝑋𝑋22, … coming from a standard normal 

distributions and substituting 𝜎𝜎2 𝑛𝑛⁄  for 𝐸𝐸(𝑀𝑀𝑀𝑀) yields: 

 

(17) 𝑟𝑟𝑠𝑠 =
�𝜎𝜎1
2

𝑛𝑛1
+𝜎𝜎2

2

𝑛𝑛2
�
2

�
𝜎𝜎1
2

𝑛𝑛1
�
2

𝑟𝑟1
+
�
𝜎𝜎2
2

𝑛𝑛2
�
2

𝑟𝑟2

 

 

Considering the two sample t-test, 𝑟𝑟1 and 𝑟𝑟2 are the degrees 

of freedom from the two independent samples and thus, 𝑟𝑟1 =

𝑛𝑛1 − 1 and 𝑟𝑟2 = 𝑛𝑛2 − 1.  Giving,  

(18) 𝑟𝑟𝑠𝑠 =
�𝜎𝜎1
2

𝑛𝑛1
+𝜎𝜎2

2

𝑛𝑛2
�
2

�
𝜎𝜎1
2

𝑛𝑛1
�
2

𝑛𝑛1−1
+
�
𝜎𝜎2
2

𝑛𝑛2
�
2

𝑛𝑛2−1

 

In practice, the parameters 𝜎𝜎12 and 𝜎𝜎22 are unknown and are 

substituted with their observed sample statistics giving: 

 



85 
 

(19) 𝑟̂𝑟𝑠𝑠 =
�𝑠𝑠1
2

𝑛𝑛1
+𝑠𝑠2

2

𝑛𝑛2
�
2

�
𝑠𝑠1
2
𝑛𝑛1

�
2

𝑛𝑛1−1
+
�
𝑠𝑠2
2
𝑛𝑛2

�
2

𝑛𝑛2−1

 

 

Which is the Satterthwaite approximation to the degrees of 

freedom for a two-sampled t-test.   

 

Next, again starting from equation (6) in (Satterthwaite, 1946), we will 

extend this for more than two samples.  Given k samples 

𝑋𝑋11,𝑋𝑋12, … ,𝑋𝑋1𝑛𝑛1 ,𝑋𝑋21,𝑋𝑋22, … ,𝑋𝑋2𝑛𝑛2 ,𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2, … ,𝑋𝑋𝑘𝑘𝑛𝑛𝑘𝑘  coming from normal distributions 

with means 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑘𝑘 and standard deviations 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑘𝑘: 

(20) 𝑟𝑟𝑠𝑠 = [𝑎𝑎1𝐸𝐸(𝑀𝑀𝑆𝑆1)+𝑎𝑎2𝐸𝐸(𝑀𝑀𝑆𝑆2)+⋯ ]2
[𝑎𝑎1𝐸𝐸(𝑀𝑀𝑆𝑆1)]2

𝑟𝑟1
+[𝑎𝑎2𝐸𝐸(𝑀𝑀𝑆𝑆2)]2

𝑟𝑟2
+⋯

 

(21) = [∑ 𝑎𝑎𝑚𝑚𝐸𝐸(𝑀𝑀𝑆𝑆𝑚𝑚)]𝑘𝑘
𝑚𝑚=1

2

∑ [𝑎𝑎𝑚𝑚𝐸𝐸(𝑀𝑀𝑆𝑆𝑚𝑚)]2
𝑟𝑟𝑚𝑚

𝑘𝑘
𝑚𝑚=1

 

Setting 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑘𝑘 = 1, gives: 

 

(22) 𝑟𝑟𝑠𝑠 = [∑ 𝐸𝐸(𝑀𝑀𝑆𝑆𝑚𝑚)]𝑘𝑘
𝑚𝑚=1

2

∑ [𝐸𝐸(𝑀𝑀𝑆𝑆𝑚𝑚)]2
𝑟𝑟𝑚𝑚

𝑘𝑘
𝑚𝑚=1

 

 

For unbiased estimators 𝐸𝐸(𝑀𝑀𝑆𝑆𝑚𝑚) = 𝜎𝜎𝑚𝑚2 𝑛𝑛𝑚𝑚⁄ , giving: 
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 (23) 𝑟𝑟𝑠𝑠 =
�∑ 𝜎𝜎𝑚𝑚2

𝑛𝑛𝑚𝑚
𝑘𝑘
𝑚𝑚=1 �

2

∑
�
𝜎𝜎𝑚𝑚2
𝑛𝑛𝑚𝑚

�
2

𝑟𝑟𝑚𝑚
𝑘𝑘
𝑚𝑚=1

 

 

Again, the 𝑟𝑟𝑚𝑚 equals the degree of freedom for each of the k 

samples, giving: 

 (24) 𝑟𝑟𝑠𝑠 =
�∑ 𝜎𝜎𝑚𝑚2

𝑛𝑛𝑚𝑚
𝑘𝑘
𝑚𝑚=1 �

2

∑
�
𝜎𝜎𝑚𝑚2
𝑛𝑛𝑚𝑚

�
2

𝑛𝑛𝑚𝑚−1
𝑘𝑘
𝑚𝑚=1

 

Finally, substituting the observed sample statistics for the 

unknown parameters gives our Satterthwaite approximation 

for the degrees of freedom for the linear combination of k 

variables. 

 

(25) 𝑟̂𝑟𝑠𝑠 =
�∑ 𝑠𝑠𝑚𝑚2

𝑛𝑛𝑚𝑚
𝑘𝑘
𝑚𝑚=1 �

2

∑
�
𝑠𝑠𝑚𝑚2
𝑛𝑛𝑚𝑚

�
2

𝑛𝑛𝑚𝑚−1
𝑘𝑘
𝑚𝑚=1

 

Thus, the Satterthwaite approximation for the degrees of 

freedom for a linear combination of five random variables 

from a normal distribution with means 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4, 𝜇𝜇5 and 

standard deviations 𝜎𝜎12,𝜎𝜎22,𝜎𝜎32,𝜎𝜎42,𝜎𝜎52 is: 
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𝑟̂𝑟𝑠𝑠 =
�𝑠𝑠1

2

𝑛𝑛1
+ 𝑠𝑠22
𝑛𝑛2

+ 𝑠𝑠32
𝑛𝑛3

+ 𝑠𝑠42
𝑛𝑛4

+ 𝑠𝑠52
𝑛𝑛5
�
2

�𝑠𝑠1
2

𝑛𝑛1
�
2

𝑛𝑛1 − 1 +
�𝑠𝑠2

2

𝑛𝑛2
�
2

𝑛𝑛2 − 1 +
�𝑠𝑠3

2

𝑛𝑛3
�
2

𝑛𝑛3 − 1 +
�𝑠𝑠4

2

𝑛𝑛4
�
2

𝑛𝑛4 − 1 +
�𝑠𝑠5

2

𝑛𝑛5
�
2

𝑛𝑛5 − 1

 

 

The table below shows the results for the exact degrees of freedom given 

by 𝑟𝑟𝑠𝑠 above and the Satterthwaite approximation given by 𝑟̂𝑟𝑠𝑠 above for a single sample of 

the sum of two through five random variables with 30 observations each from standard 

normal distributions.   

Table 7.1 Comparison of Exact vs. Satterthwaite Degrees of Freedom 
Linear combination 𝑟̂𝑟𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 

𝑋𝑋�1 + 𝑋𝑋�2 57.3988 58 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 84.1006 87 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 113.0751 116 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 + 𝑋𝑋�5 138.8825 145 

 

The formulas for the 95% confidence intervals utilizing the 

exact and Satterthwaite approximation for the sum of the 

five variables are below. 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 + 𝑋𝑋�5 ± 𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠,95%�𝑠𝑠𝑝𝑝2 �
1
𝑛𝑛1

+
1
𝑛𝑛2

+
1
𝑛𝑛3

+
1
𝑛𝑛4

+
1
𝑛𝑛5
� 

 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 + 𝑋𝑋�5 ± 𝑡𝑡𝑟̂𝑟𝑠𝑠𝑠𝑠𝑠𝑠,95%�𝑠𝑠𝑝𝑝2 �
1
𝑛𝑛1

+
1
𝑛𝑛2

+
1
𝑛𝑛3

+
1
𝑛𝑛4

+
1
𝑛𝑛5
� 
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In this case,  𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛3 = 𝑛𝑛4 = 𝑛𝑛5 = 30 and thus 1
𝑛𝑛1

+

1
𝑛𝑛2

+ 1
𝑛𝑛3

+ 1
𝑛𝑛4

+ 1
𝑛𝑛5

= 1
6
 and 𝑠𝑠𝑝𝑝2 is the pooled variance estimate.  

Using the exact and Satterthwaite approximation for the 

degrees of freedom above, the two confidence intervals are 

given in the table below.   

Table 7.2 Comparison of Exact vs. Satterthwaite Confidence Intervals 
Linear combination  95% CI using 𝑟̂𝑟𝑠𝑠𝑠𝑠𝑠𝑠  95% CI using 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 

𝑋𝑋�1 + 𝑋𝑋�2 (-0.7525, 0.2638) (-0.754, 0.2637) 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 (-0.7226, 0.5957) (-0.7222, 0.5953) 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 (-0.6663, 0.8501) (-0.6661, 0.8499) 
𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 + 𝑋𝑋�5 (-0.2277, 1.4070) (-0.2274, 1.4067) 

 

To further investigate the Satterthwaite approximation and 

the exact degrees of freedom, the confidence intervals for 

5000 samples were generated and the following coverage 

probabilities were found.  The table below shows the 

proportion of 5000 samples where the confidence intervals 

for the sum of t distributions contained the true 𝜇𝜇 = 𝜇𝜇1 +

𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4 + 𝜇𝜇5 = 0 + 0 + 0 + 0 + 0 = 0.   
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Table 7.3 Proportion of Confidence Intervals that Contained  𝜇𝜇 
Linear combination  𝐶𝐶𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 ⊃ 𝜇𝜇  𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⊃ 𝜇𝜇 

𝑋𝑋�1 + 𝑋𝑋�2 0.9524 0.952 
𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 0.9514 0.9512 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 0.949 0.9488 

𝑋𝑋�1 + 𝑋𝑋�2 + 𝑋𝑋�3 + 𝑋𝑋�4 + 𝑋𝑋�5 0.9524 0.9522 

7.2 Simulations 

Numerical methods will be utilized to further explore the distributional 

properties of the change variable, 𝐴𝐴𝑛𝑛 = 𝑋𝑋𝑛𝑛−𝑋𝑋�𝑛𝑛−1
𝑠𝑠𝑛𝑛−1

, the sum of t-distributions and 

transformations of the sum such as 𝑄𝑄𝑘𝑘 = ∑ 𝑋𝑋𝑖𝑖,𝜈𝜈𝑘𝑘
𝑖𝑖=1
√𝑘𝑘

.  There are three variables in these 

simulations that can be scaled and manipulated to understand their impact on the problem.  

All three have direct connections into the real world sepsis prediction model. The number 

of different clinical measures, or vital signs, that are measured on a patient, the number of 

touch points, or sets of observations on each patient, and the total number of patients 

sampled.  All three of these can vary and have an impact on the outcome of the simulation.  

The number of touch points gives an indication of the information that is known about 

each patient.  If the patient has been in the hospital for less than a day and only a few sets 

of observations exist, much less information about the patient is known compared to 

someone who has been in the hospital for over a week.   To better understand their effects, 

the notation must be clearly defined. 

The first variable, the number of clinical measures, is the number of t-

distributed random variables (𝑋𝑋𝑖𝑖).  The logistics of the sepsis prediction problem focuses 

on five random variables, as this is the number of vital signs that are being monitored to 
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use in the prediction: heart rate, respiratory rate, temperature, peripheral capillary oxygen 

saturation, and systolic blood pressure.  However, additional numbers of random variables 

are considered to better understand how this fluctuation impacts the distribution on 𝑌𝑌𝑘𝑘 and 

𝑄𝑄𝑘𝑘 as defined above.  For the purposes of this paper, the number of clinical measures will 

be referred as k, thus 𝑄𝑄5 would imply a problem that includes the sum of five clinical 

measures. 

The second variable that will be scaled and manipulated is the number of 

degrees of freedom (𝜈𝜈) of each of the t-distributed random variables.  In the context of the 

sepsis prediction problem, the ν represents the number of observations of vital sign 

measurements that have been collected on the patient.  This is a highly variable number, 

however, a couple of assumptions are made in order to maintain the integrity of the 

problem.  First, since vital signs are generally captured as a set and recorded at the same 

time, it is assumed that the degrees of freedom for each of the t-distributed random 

variables are equal, effectively saying that a patient will not have 15 heart rate observations 

and only 10 blood pressure observations.  Additionally, degrees of freedom ranging from 

two through 25 will be the focus, and an additional observation with 40 degrees of freedom 

will be added to represent an approximation to the normal case.  The special case of 

random variables with one degree of freedom (ν = 1) has already been expressed as 

mentioned above.  The simulation will focus on ν < 25 and resolve that observations 

significantly larger than 25 will be approximated with normally distributed random 

variables. 

The third variable that will be influenced in the simulation is the number of 

observations used to determine the underlying distribution of the random variables 𝑌𝑌𝑘𝑘 and 
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𝑄𝑄𝑘𝑘.  This is equivalent to the number of patients that have a series of measurements 

documented.   These measurements will be used to approximate the overall distribution of 

the variables.  Since this has a direct impact on the power and sensitivity of the test, the 

number will vary from smaller samples of 1000 in simulations looking for a t-distribution 

up to samples of 10,000 when looking for normality.   

 

7.2.1 Simulating 𝐴𝐴𝑛𝑛 from Different Distributions 

A simulation was created to investigate the distributional properties of the 

change variable: 

𝐴𝐴𝑛𝑛 =
𝑋𝑋𝑛𝑛 − 𝑋𝑋�𝑛𝑛−1
𝑠𝑠𝑛𝑛−1

 

where 𝑋𝑋�𝑛𝑛−1 and 𝑠𝑠𝑛𝑛−1 are the mean and standard deviation of the first n-1 observations and 

𝑋𝑋𝑛𝑛 is the nth observation. Simulations were created where the underlying 𝑋𝑋𝑛𝑛 come from a 

normal distribution, a gamma distribution, a binomial distribution, and a Student’s t-

distribution.  During this simulation the number of 𝑋𝑋𝑛𝑛, ie. the number of observations per 

patient, was iterated from n=3 to n=20.  In regards to the clinical problem, this is equivalent 

to the number of observations of a single vital sign that are obtained on a patient. Thus, if 

n was 20, 𝐴𝐴𝑛𝑛 was calculated by finding the mean and standard deviation of the first 19 

observations, 𝑋𝑋�𝑛𝑛−1 and 𝑠𝑠𝑛𝑛−1 respectively, and subtracting 𝑋𝑋�𝑛𝑛−1 from the 20th observation, 

𝑋𝑋20, and then dividing the difference by 𝑠𝑠𝑛𝑛−1.  For each underlying distribution, this was 

repeated 1,000 times, representing having clinical measures from 1,000 patients.  Then, 

histograms were constructed and the distribution was tested for normality utilizing the 
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Anderson-Darling and Kolmogorov-Smirnov test for normality inside of the Univariate 

procedure in SAS. 

As can be seen in the table below, when 𝑋𝑋𝑛𝑛 originates from a normal 

distribution, the distribution of 𝐴𝐴𝑛𝑛 begins to fail to reject the hypothesis, 𝐻𝐻0:𝐴𝐴𝑛𝑛 is normally 

distributed, when the sample size, 𝑛𝑛 ≥ 14. 
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Table 7.4 Normality of 𝐴𝐴𝑛𝑛 when 𝑋𝑋𝑛𝑛 ~ 𝑁𝑁(0,1) 

Distribution n 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Normal 3 <0.0050 <0.0100 
Normal 4 <0.0050 <0.0100 
Normal 5 <0.0050 <0.0100 
Normal 6 <0.0050 <0.0100 
Normal 7 <0.0050 <0.0100 
Normal 8 <0.0050 <0.0100 
Normal 9 <0.0050 <0.0100 
Normal 10 <0.0050 0.0237 
Normal 11 <0.0050 0.032 
Normal 12 <0.0050 0.0352 
Normal 13 <0.0050 0.0144 
Normal 14 >0.2500 >0.1500 
Normal 15 0.0234 0.0949 
Normal 16 0.1305 >0.1500 
Normal 17 0.2173 >0.1500 
Normal 18 0.1384 >0.1500 
Normal 19 0.2494 0.0537 
Normal 20 >0.2500 >0.1500 
Normal 40 >0.2500 >0.1500 

 

When the 𝑋𝑋𝑛𝑛 come from a gamma distribution, the distribution of 𝐴𝐴𝑛𝑛 is 

skewed to the right and never trends towards a normal distribution. When the underlying 

observations, 𝑋𝑋𝑛𝑛, are distributed with a student’s t-distribution, the 𝐴𝐴𝑛𝑛exhibit a distribution 

which is unimodal, symmetric and centered at zero.  However, this distribution has some 

outliers and fatter tails and as such it does not reach normality. Figure 7.1 shows the 

distribution of 𝐴𝐴𝑛𝑛 when the underlying data originates from t-distributions with five 

degrees of freedom.  Notice the fatter tails and the large outliers in the distribution. 
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Figure 7.1 Histogram of 𝐴𝐴𝑛𝑛 when 𝑋𝑋𝑛𝑛 ~ 𝑡𝑡5  
 

Data that originates from a normal distribution produces an 𝐴𝐴𝑛𝑛 that reaches 

normality with a sufficiently large sample size.  However, the distribution of 𝐴𝐴𝑛𝑛 for finite 

n has previously been shown above to have a t-distribution plus an error term.  The 

distribution of the sum of t-distributions and transformations of that distribution will be 

further explored.   

7.2.2 Approximating the Sum of t-distributions 

Let 𝑋𝑋1,𝑣𝑣1 , … ,𝑋𝑋𝑘𝑘,𝑣𝑣𝑘𝑘 be independent random variables with standard 

Student’s t-distributions with degrees of freedom 𝑣𝑣𝑖𝑖 > 0.  Numerical methods will be used 

to describe the sum, 𝑋𝑋1,𝑣𝑣1 + 𝑋𝑋2,𝑣𝑣2 + ⋯+ 𝑋𝑋𝑘𝑘,𝑣𝑣𝑘𝑘.  For the purposes of our problem, it will 

be assumed that 𝜈𝜈1 = 𝜈𝜈2 = ⋯ = 𝜈𝜈𝑘𝑘 = 𝜈𝜈.  The problem where k = 5 and the sum of 𝑋𝑋1,𝜈𝜈 +
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𝑋𝑋2,𝜈𝜈 + 𝑋𝑋3,𝜈𝜈 + 𝑋𝑋4,𝜈𝜈 + 𝑋𝑋5,𝜈𝜈 for different values of 𝜈𝜈 will be explored first.  Five independent 

and identically distributed variables from a t-distribution were randomly generated 1000 

times each with degrees of freedom from one to ten and additionally for twenty, thirty and 

forty and the variable 𝑆𝑆𝑘𝑘 = ∑ 𝑋𝑋𝜈𝜈,𝑖𝑖
5
𝑖𝑖=1  was calculated.  The histograms for each 𝑆𝑆𝑘𝑘 were 

created using the Univariate procedure in SAS.  Figure 7.2 shows the histogram for 𝜈𝜈 = 1.  

Note the distribution is highly skewed left and ranges from -2750 up to 750.  The mean is 

-4.04 with a standard deviation of 113.40. 

 
Figure 7.2 Histogram of ∑ 𝑡𝑡𝑖𝑖,15

𝑖𝑖=1  
 

Figure 7.3 shows the histogram of the sum of five t-distributions with two 

degrees of freedom.  Note that the distribution has a much smaller variance than Figure 
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7.2 but still ranges from -135 up to 75.  It has a mean of -0.03 and a standard deviation of 

8.03. 

 
Figure 7.3 Histogram of ∑ 𝑡𝑡𝑖𝑖,25

𝑖𝑖=1  
 

Figure 7.4 shows the distributions of the sum of five t-distributions with 

degrees of freedom ranging from three to six.  All four histograms remain centered around 

zero, but their standard deviations are decreasing as the degrees of freedom increases. 
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Figure 7.4 Histogram of ∑ 𝑡𝑡𝑖𝑖,𝜈𝜈5

𝑖𝑖=1  for 𝜈𝜈 = 3, 4, 5, and 6 
 

Figure 7.5 shows the distributions of the sum of five t-distributions with 

degrees of freedom ranging from seven to ten.  All four histograms remain centered around 

zero and their ranges continue to decrease. 
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Figure 7.5 Histogram of ∑ 𝑡𝑡𝑖𝑖,𝜈𝜈5

𝑖𝑖=1  for 𝜈𝜈 = 7, 8, 9, and 10 
 

For completeness, the graphs of the sum of five t-distributions with degrees 

of freedom of twenty, thirty and forty are shown in Figure 7.6, below.  As the degrees of 

freedom increases, the histograms follow a normal distribution more closely.  For each of 

the histograms below the p-value for the Anderson-Darling test for normality is greater 

than 0.25. 
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Figure 7.6 Histogram of ∑ 𝑡𝑡𝑖𝑖,𝜈𝜈5

𝑖𝑖=1  for 𝜈𝜈 = 20, 30, and 40 
 

The distribution of the sum of the five t-distributions appears to converge 

to a normal distribution as the degrees of freedom increase.  To determine when the sum 

of t-distributions converges to a normal distribution, the simulation is expanded to capture 

the Kolmogorov-Smirnov test for normality.  Additionally, what are the characteristics of 

the distribution of a sum of t-distributions for finite samples?  Five simulated t-

distributions were generated with 10,000 repetitions with degrees of freedom ranging from 

one to twenty.  The distribution of the sum of these random variables was tested for 

normality using the Kolmogorov-Smirnov (KS) test with the Univariate procedure in SAS.  

Next, utilizing the Npar1way procedure, a KS test was run to compare the sum to a set of 

t-distributions with different degrees of freedom.  Early in the process it was determined 

that though the distribution was symmetric and unimodal, the variance of the sum was too 
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large to be a t-distribution.  A simple transformation could reduce the variance and possibly 

change the distribution to a t-distribution.  The mean, dividing the sum by the number of 

random variables, was initially investigated, followed by dividing the sum by the square 

root of n.  Finally, a macro was developed to iterate through t-distributions with different 

degrees of freedom to narrow down the selection which fail to reject the KS. 

The initial question to address was: does the sum of t-distributions with 

varying degrees of freedom converge to a normal distribution as n goes to infinity?  To 

determine where this distribution begins to converge to a normal distribution, a simulation 

was conducted using 10,000 iterations calculating the sum of five generated t-distributions 

with degrees of freedom varying from one to twenty.  The table below shows the results 

of these simulations with the mean, standard deviation, and the p-value of a Kolmogorov-

Smirnov test using the Univariate procedure in SAS, testing the hypothesis that the 

distribution is a normal distribution.   
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Table 7.5 Testing the Normality of the Sum of Five t-Distributed Random Variables 

d.f. Mean 
Standard 
Deviation 

p-value for H_0: 
Distribution is 

Normal 
1 1.1658 226.9733 < 0.01 
2 -0.0010 8.0925 < 0.01 
3 -0.0459 4.0433 < 0.01 
4 -0.0225 3.0829 < 0.01 
5 0.0196 2.9026 < 0.01 
6 0.0175 2.7464 < 0.01 
7 -0.0320 2.6410 0.03 
8 0.0085 2.5934 > 0.15 
9 -0.0100 2.5585 0.14 

10 0.0166 2.5186 0.09 
11 -0.0001 2.4706 > 0.15 
12 -0.0077 2.4554 0.14 
13 0.0328 2.4326 > 0.15 
14 0.0008 2.4020 > 0.15 
15 -0.0191 2.3847 0.03 
16 -0.0144 2.3724 > 0.15 
17 0.0303 2.3603 > 0.15 
18 0.0218 2.3691 > 0.15 
19 0.0185 2.3724 > 0.15 
20 -0.0436 2.3571 > 0.15 

 
As can be seen above, the sum of five t-distributions begins to reach 

normality when the original t-distributions have degrees of freedom between eight and 

fourteen.  The graph below shows the histogram of 10,000 observations from the sum of 

t-distributions with ten degrees of freedom and a normal curve superimposed on the graph. 
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Figure 7.7 Histogram of ∑ 𝑡𝑡𝑖𝑖,105

𝑖𝑖=1  with 10,000 Observations 
 

It can be seen from the table and graph above that although the distribution 

of the sum of t-distributions attains normality, the variance of the distribution is too large 

to be a t-distribution at smaller degrees of freedom.  Looking at Table 7.5 above, the mean 

of the distributions are centered on zero and have a standard deviation around 2.4.   

It was determined to see if the standard deviation of the distribution could 

be better described and if it could be transformed into a standard normal.  This would allow 

for a better description of the standard deviation and for further investigation into whether 

it follows a t-distribution at lower degrees of freedom of the original random variables in 

the sum.   

The distribution of the sum of the t-distributed random variables is already 

centered at zero, so the focus was reducing the standard deviation to one.  The first 
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hypothesis tested was if the average of the five t-distributed random variables converged 

to a standard normal distribution.  Figure 7.8 shows an illustration of the sum of five 

random variables compared to the average, or 𝑅𝑅𝑘𝑘 = ∑ 𝑡𝑡𝑖𝑖𝑘𝑘
𝑖𝑖=1
𝑘𝑘

, of k = 5 t-distributed random 

variables with seven degrees of freedom.   

 
Figure 7.8 Comparing the Sum vs. Mean of Five t-Distributed Random Variables with 
Seven Degrees of Freedom 
 

Both distributions follow a normal distribution and the standard deviation 

of the mean of the variables is significantly smaller than the standard deviation of the sum 

of variables.  Using the simulated data from above that generated the five t-distributed 

random variables with varying degrees of freedom, the mean and standard deviation was 

calculated across the 10,000 observations. The simulation was repeated using degrees of 

freedom from one to twenty seeding the initial t-distributed random variables.  Table 7.6 
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shows the results of this simulation along with the p-value from the Kolmogorov-Smirnov 

test of normality within the Univariate procedure in SAS.   

Table 7.6 Testing Normality of the Mean of Five t-Distributed Random Variables 

d.f. Mean 
Standard 
Deviation 

p-value for H_0: 
Distribution is 

Normal 
1 0.2332 45.3947 < 0.01 
2 -0.0002 1.6185 < 0.01 
3 -0.0092 0.8087 < 0.01 
4 -0.0045 0.6166 < 0.01 
5 0.0039 0.5805 < 0.01 
6 0.0035 0.5493 < 0.01 
7 -0.0064 0.5282 0.03 
8 0.0017 0.5187 > 0.15 
9 -0.0020 0.5117 0.14 

10 0.0033 0.5037 0.09 
11 0.0000 0.4941 > 0.15 
12 -0.0015 0.4911 0.14 
13 0.0066 0.4865 > 0.15 
14 0.0002 0.4804 > 0.15 
15 -0.0038 0.4769 0.03 
16 -0.0029 0.4745 > 0.15 
17 0.0061 0.4721 > 0.15 
18 0.0044 0.4738 > 0.15 
19 0.0037 0.4745 > 0.15 
20 -0.0087 0.4714 > 0.15 

 
The p-values for the normality of the distributions are identical since the 

resulting variable is only divided by a constant.  However, notice the standard deviation is 

now approximately 0.48, or 2.4/5.  In order to transform this distribution into a standard 

normal distribution, the sum of the t-distributions needs to be divided by a smaller number 

to bring the standard deviation up to one.   

The sum of the random variables divided by the square root of k was next 

tested to find if the standard deviation of this distribution was approaching one.  Using the 



105 
 

previously simulated data, this variable was calculated for each of the 10,000 observations 

across the different degrees of freedom from one to 20.  Let 𝑋𝑋𝜈𝜈,𝑖𝑖 be k independent and 

identically distributed t-distributions with 𝜈𝜈 degrees of freedom, then define: 

𝑆𝑆𝑘𝑘 = �𝑋𝑋𝜈𝜈,𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,𝑅𝑅𝑘𝑘 = �
𝑋𝑋𝜈𝜈,𝑖𝑖

𝑘𝑘

𝑘𝑘

𝑖𝑖=1

, and 𝑄𝑄𝑘𝑘 = �
𝑋𝑋𝜈𝜈,𝑖𝑖

√𝑘𝑘

𝑘𝑘

𝑖𝑖=1

 

The table below shows the mean, standard deviation and the p-value for the 

Kolmogorov-Smirnov test for normality for 𝑆𝑆𝑘𝑘,𝑅𝑅𝑘𝑘 and 𝑄𝑄𝑘𝑘 from the simulation while 

iterating the degrees of freedom from one to 20.  The p-value is only reported once as the 

p-values for 𝑆𝑆𝑘𝑘,𝑅𝑅𝑘𝑘 and 𝑄𝑄𝑘𝑘 are equal as the transformation is only multiplying the original 

sum by a constant. 
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Table 7.7 Comparing Mean and Standard Deviation for 𝑆𝑆5,𝑅𝑅5, and 𝑄𝑄5 Computed with t-
Distributions with Seven Degrees of Freedom 

d.f. 
𝑅𝑅𝑘𝑘 

Mean 
𝑆𝑆𝑘𝑘 

Mean 
𝑄𝑄𝑘𝑘 

Mean 
𝑅𝑅𝑘𝑘 

St. Dev 
𝑆𝑆𝑘𝑘 

St. Dev 
𝑄𝑄𝑘𝑘 

St. Dev p-value 
1 0.233 1.166 0.521 45.395 226.973 101.506 0.010 
2 0.000 -0.001 0.000 1.619 8.093 3.619 0.010 
3 -0.009 -0.046 -0.021 0.809 4.043 1.808 0.010 
4 -0.004 -0.022 -0.010 0.617 3.083 1.379 0.010 
5 0.004 0.020 0.009 0.581 2.903 1.298 0.010 
6 0.004 0.018 0.008 0.549 2.746 1.228 0.010 
7 -0.006 -0.032 -0.014 0.528 2.641 1.181 0.028 
8 0.002 0.008 0.004 0.519 2.593 1.160 0.150 
9 -0.002 -0.010 -0.004 0.512 2.558 1.144 0.137 

10 0.003 0.017 0.007 0.504 2.519 1.126 0.095 
11 0.000 0.000 0.000 0.494 2.471 1.105 0.150 
12 -0.002 -0.008 -0.003 0.491 2.455 1.098 0.145 
13 0.007 0.033 0.015 0.487 2.433 1.088 0.150 
14 0.000 0.001 0.000 0.480 2.402 1.074 0.150 
15 -0.004 -0.019 -0.009 0.477 2.385 1.066 0.025 
16 -0.003 -0.014 -0.006 0.474 2.372 1.061 0.150 
17 0.006 0.030 0.014 0.472 2.360 1.056 0.150 
18 0.004 0.022 0.010 0.474 2.369 1.059 0.150 
19 0.004 0.019 0.008 0.474 2.372 1.061 0.150 
20 -0.009 -0.044 -0.019 0.471 2.357 1.054 0.150 

 
As has earlier been discussed, the sum of t-distributions with one degree of 

freedom is a special case that has a Cauchy distribution, (Walker 1978).  Additionally, the 

standard deviation for 𝑄𝑄𝑘𝑘 is approaching one which would make it possible that it could 

have a t-distribution for lower degrees of freedom.  Figures 7.9 and 7.10 below show the 

distributions for 𝑆𝑆𝑘𝑘,𝑅𝑅𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑘𝑘 calculated using t-distributions with seven degrees of 

freedom superimposed on each other and 20 degrees of freedom, respectively.   



107 
 

 
Figure 7.9 Comparing 𝑆𝑆5,𝑅𝑅5, and 𝑄𝑄5 Comprised of t-Distributed Random Variables with 
Seven Degrees of Freedom 
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Figure 7.10 Comparing 𝑆𝑆5,𝑅𝑅5, and 𝑄𝑄5 Comprised of t-Distributed Random Variables 
with 20 Degrees of Freedom 
 

Notice that the standard deviation of 𝑄𝑄𝑘𝑘 is now trending towards one.  This 

convergence gives us a couple opportunities.  First, the sum of five t-distributed random 

variables can more accurately be describe as converging to a normal distribution with a 

mean of zero and a variance of five, or conversely, the distribution has a standard deviation 

of 𝜎𝜎 = √5.  Additionally, we can begin to investigate whether the distribution of the sum 

divided by the square root of n follows a Student’s t-distribution at lower degrees of 

freedom for the seeding t-distributed random variables. 

7.2.3 Simulation to Test if 𝑄𝑄5 has a t-Distribution 

In pursuit of this question, a simulation was created following the pattern 

of the previous simulation.  This simulation is designed to study both varying the degrees 
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of freedom of the underlying t-distributions and test the distributions of 𝑄𝑄𝑘𝑘 to see if they 

are possibly t-distributions.  The simulation is designed such that it has a smaller loop 

inside of a larger loop.  The outer part is a loop that iterates the degrees of freedom of the 

underlying t-distributions from two to 16.  For each iteration, 1000 samples of five t-

distributions is generated and the variable 𝑄𝑄𝑘𝑘 is calculated. Inside of this loop is a second 

loop that takes each sample of 1000 observations and tests to see if the distribution of 𝑄𝑄𝑘𝑘 

is significantly different from a t-distribution with degrees of freedom ranging from one to 

20 plus one additional observation with forty degrees of freedom.  This test is 

accomplished by generating a t-distribution with degrees of freedom D, and utilizing a 

Kolmogorov-Smirnov (KS) D statistic for two-sample data based on the empirical 

distribution function found in the Npar1way procedure in SAS to test the hypothesis: 

𝐻𝐻0: 𝑄𝑄𝑘𝑘~𝑡𝑡𝐷𝐷.  In each instance 𝑄𝑄𝑘𝑘 is calculated using five randomly generated t-

distributions. 

Figure 7.11 shows the results of 𝑄𝑄𝑘𝑘 which is comprised of t-distributions 

with ten degrees of freedom superimposed on the graph of a t-distribution with ten degrees 

of freedom.  Table 7.8 shows the p-value for this KS test is 0.90, meaning the distributions 

are not significantly different from each other.   
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Figure 7.11𝑄𝑄5 Comprised of 𝑋𝑋𝜈𝜈,𝑖𝑖 ~ 𝑡𝑡10 Compared to a t-Distribution with Ten Degrees of 
Freedom 
 

The table below shows the results of the simulation.  The degrees of 

freedom for the five t-distributions that comprise 𝑄𝑄𝑘𝑘 are going across the top of the table 

and the degrees of freedom for the t-distribution that being tested against 𝑄𝑄𝑘𝑘 are going 

down the left of the table.  The p-values of the KS test for each combination is displayed 

in the table.  P-values that fail to reject the null hypothesis are highlighted in yellow. 
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Table 7.8 P-values of KS Test for 𝐻𝐻0:𝑄𝑄5 ~ 𝑡𝑡𝜈𝜈 (𝑛𝑛 = 1000).  The columns represent the 
seed degrees of freedom in 𝑄𝑄5 and the rows are the degrees of freedom in 𝑡𝑡𝜈𝜈. 

d.f. 
t_v 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.01 0.26 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 
3 0.00 0.02 0.10 0.46 0.50 0.07 0.07 0.18 0.07 0.22 0.01 0.01 0.16 
4 0.00 0.01 0.02 0.31 0.16 0.25 0.02 0.32 0.53 0.20 0.15 0.07 0.16 
5 0.00 0.00 0.11 0.30 0.23 0.69 0.11 0.76 0.91 0.35 0.33 0.17 0.26 
6 0.00 0.00 0.01 0.23 0.53 0.67 0.34 0.30 0.21 0.61 0.60 0.03 0.63 
7 0.00 0.00 0.06 0.01 0.09 0.02 0.49 0.15 0.04 0.84 0.99 0.48 0.41 
8 0.00 0.00 0.00 0.11 0.27 0.28 0.03 0.25 0.57 0.01 0.33 0.85 0.42 
9 0.00 0.00 0.00 0.04 0.09 0.04 0.01 0.08 0.28 1.00 0.06 0.18 0.37 

10 0.00 0.00 0.00 0.02 0.11 0.01 0.08 0.08 0.90 0.08 0.17 0.11 0.75 
11 0.00 0.00 0.00 0.00 0.24 0.18 0.04 0.05 0.31 0.56 0.30 0.11 0.67 
12 0.00 0.00 0.00 0.01 0.34 0.38 0.01 0.03 0.11 0.55 0.32 0.28 0.60 
13 0.00 0.00 0.00 0.04 0.04 0.13 0.01 0.63 0.43 0.42 0.59 0.34 0.72 
14 0.00 0.00 0.01 0.00 0.16 0.30 0.03 0.34 0.05 0.54 0.35 0.55 0.08 
15 0.00 0.00 0.00 0.05 0.11 0.14 0.01 0.09 0.62 0.28 0.07 0.04 0.73 
16 0.00 0.00 0.00 0.00 0.02 0.05 0.12 0.29 0.01 0.01 0.34 0.02 0.89 
17 0.00 0.00 0.00 0.02 0.10 0.07 0.13 0.02 0.16 0.04 0.11 0.43 0.51 
18 0.00 0.00 0.00 0.00 0.00 0.24 0.02 0.01 0.05 0.32 0.31 0.61 0.83 
19 0.00 0.00 0.00 0.00 0.01 0.03 0.14 0.12 0.03 0.25 0.47 0.22 0.67 
20 0.00 0.00 0.00 0.00 0.30 0.02 0.18 0.07 0.22 0.34 0.03 0.37 0.02 
21 0.00 0.00 0.00 0.00 0.02 0.22 0.12 0.02 0.21 0.08 0.09 0.41 0.16 
22 0.00 0.00 0.00 0.00 0.16 0.11 0.29 0.25 0.17 0.15 0.13 0.27 0.23 
23 0.00 0.00 0.00 0.02 0.07 0.01 0.00 0.12 0.51 0.22 0.61 0.04 0.30 
24 0.00 0.00 0.01 0.02 0.02 0.06 0.07 0.07 0.02 0.11 0.07 0.29 0.93 
25 0.00 0.00 0.00 0.02 0.03 0.01 0.03 0.23 0.07 0.13 0.53 0.34 0.65 
40 0.00 0.00 0.00 0.09 0.01 0.08 0.00 0.16 0.39 0.44 0.14 0.38 0.11 

 

Table 7.8 shows that 𝑄𝑄5 is not significantly different from some t-

distributions using a KS test when the degrees of freedom of the underlying variables is 

greater than three.  Also, there are a range of t-distributions that fail to reject the KS test 

when 𝑄𝑄5 is computed using t-distributions with four or more degrees of freedom.  At this 

point, 𝑄𝑄𝑘𝑘 has only been investigated with the sum of five variables. 
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7.2.4 Simulation to Test if 𝑄𝑄15 has a t-Distribution 

Another simulation is constructed to investigate how the number of t-

distributions, k, used in the calculation of 𝑄𝑄𝑘𝑘 affects the distribution.  The previous 

simulation was repeated expanding k from five random variables to include the sum of 

fifteen t-distributions in the calculation of 𝑄𝑄𝑘𝑘. 

Again, the simulation is constructed utilizing two nested loops.  The outer 

loop iterates the degrees of freedom for the underlying t-distributions used in the 

construction of 𝑄𝑄𝑘𝑘 from two degrees of freedom up to 20.  Once the selection is made, 15 

t-distributed variables are randomly generated and 𝑄𝑄15 is calculated.  This is repeated 

10,000 times in order to create a distribution of 𝑄𝑄15 at each level of the degrees of freedom 

of the underlying t-distributions.  For each iteration, an inner loop tests the distribution of 

𝑄𝑄15 against t-distributions with degrees of freedom ranging from one to 25 and one 

additional observation with forty degrees of freedom.  The two distributions are tested 

using a Kolmogorov-Smirnov D statistic for two-sample data based on the empirical 

distribution function found in the Npar1way procedure in SAS.  𝑄𝑄𝑘𝑘 is constructed using 

15 randomly generated t-distributions using the rand call in SAS. 

Figure 7.12 shows the distribution of 𝑄𝑄15 comprised of 𝑋𝑋𝜈𝜈,𝑖𝑖~ 𝑡𝑡10compared 

to a t-distribution with ten degrees of freedom.  Looking at Table 7.9 below, you can see 

the results from the KS test showing that there is a significant difference between these 

distributions with a p-value of 0.02. 
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Figure 7.12 𝑄𝑄15 Comprised of 𝑋𝑋𝜈𝜈,𝑖𝑖 ~ 𝑡𝑡10 Compared to a t-distribution with Ten Degrees 
of Freedom 
 

Table 7.9 shows the results of the simulation with 10,000 observations at 

each level.  The columns of the table are the degrees of freedom for the 15 t-distributions 

that comprise 𝑄𝑄15 and the degrees of freedom for the t-distribution that is being tested 

against 𝑄𝑄𝑘𝑘 are going down the rows of the table.  The p-values of the KS test for each 

combination are displayed in the table.  P-values that fail to reject the null hypothesis that 

𝑄𝑄15~𝑡𝑡-distribution are highlighted in yellow. 
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Table 7.9 P-values of KS Test for 𝐻𝐻0:𝑄𝑄15 ~ 𝑡𝑡𝜈𝜈 (𝑛𝑛 = 10,000).  The columns represent 
the seed degrees of freedom in 𝑄𝑄15 and the rows are the degrees of freedom in 𝑡𝑡𝜈𝜈. 

d.f. 
t_v 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.14 0.04 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.09 0.01 0.26 0.26 0.27 0.10 0.05 0.01 0.01 0.03 0.01 
4 0.00 0.00 0.02 0.01 0.03 0.07 0.56 0.47 0.04 0.48 0.10 0.29 0.32 
5 0.00 0.00 0.00 0.06 0.02 0.13 0.59 0.97 0.68 0.19 0.80 0.80 0.50 
6 0.00 0.00 0.00 0.10 0.06 0.02 0.12 0.12 0.84 0.23 0.45 0.97 0.47 
7 0.00 0.00 0.00 0.01 0.05 0.03 0.11 0.00 0.36 0.30 0.25 0.77 0.49 
8 0.00 0.00 0.00 0.00 0.04 0.42 0.03 0.05 0.04 0.02 0.07 0.65 0.29 
9 0.00 0.00 0.00 0.01 0.08 0.05 0.84 0.05 0.02 0.24 0.86 0.40 0.28 

10 0.00 0.00 0.00 0.00 0.29 0.23 0.03 0.29 0.67 0.27 0.13 0.25 0.14 
11 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.09 0.27 0.10 0.31 0.79 0.20 
12 0.00 0.00 0.00 0.00 0.07 0.30 0.18 0.13 0.05 0.32 0.10 0.45 0.27 
13 0.00 0.00 0.00 0.00 0.01 0.13 0.14 0.24 0.23 0.12 0.19 0.10 0.66 
14 0.00 0.00 0.00 0.01 0.04 0.22 0.01 0.29 0.29 0.28 0.14 0.83 0.72 
15 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.12 0.16 0.13 0.53 0.55 0.39 
16 0.00 0.00 0.00 0.00 0.00 0.09 0.07 0.11 0.17 0.30 0.51 0.13 0.35 
17 0.00 0.00 0.00 0.03 0.00 0.05 0.01 0.00 0.04 0.25 0.27 0.48 0.04 
18 0.00 0.00 0.00 0.00 0.07 0.01 0.18 0.23 0.47 0.45 0.39 0.03 0.37 
19 0.00 0.00 0.00 0.00 0.00 0.03 0.21 0.08 0.04 0.05 0.10 0.59 0.09 
20 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.21 0.20 0.05 0.12 0.15 0.13 
21 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.02 0.08 0.24 0.96 0.75 0.03 
22 0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.40 0.25 0.10 0.21 0.53 0.46 
23 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.13 0.24 0.19 0.83 0.19 
24 0.00 0.00 0.00 0.00 0.01 0.01 0.07 0.14 0.01 0.13 0.46 0.30 0.03 
25 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05 0.30 0.22 0.78 0.63 0.26 
40 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.01 0.02 0.82 0.18 0.63 0.93 

 
The random variable, 𝑄𝑄𝑘𝑘, where k = 15 is not significantly different from 

some t-distributions when the degrees of freedom for the underlying t-distributions is 

greater than three.  However, there is still a large range of t-distributions that fail to reject 

the hypothesis.   
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7.2.5 Normality of 𝑄𝑄𝑘𝑘 when k Ranges from Five to Fifty 

It has been shown 𝑄𝑄5 fails to reject the hypothesis that it has a normal 

distribution when the underlying t-distributions have around seven or more degrees of 

freedom.  Is the normality a function of k?  Standard rhetoric states that normality is 

achieved around a sample size of 30.  It is postulated that the normality achieved around 

seven degrees of freedom may be a function of k as in 5 × 7 = 35 > 30.  To test this 

hypothesis, a new simulation was devised to investigate 𝑄𝑄𝑘𝑘 for 𝑘𝑘 =

5, 10, 15, 20, 25, 30, 35, 40, 45 and 50.  A macro was written to cycle k from five to 50 in 

intervals of five.  For each instance a loop was written to iterate over the degrees of 

freedom of the underlying t-distributions from two to 25 and one additional loop with 40 

degrees of freedom.  For each iteration, 𝑄𝑄𝑘𝑘 was calculated and tested for normality using 

a Kolmogorov-Smirnov test for normality in the Univariate procedure in SAS.   

The figure below shows the histogram of 𝑄𝑄10 calculated with randomly 

generated t-distributions with six degrees of freedom.  The graph is overlaid with a normal 

distribution.  Looking at Table 7.10, the p-value of this KS test for normality is 0.04. 
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Figure 7.13 Histogram of 𝑄𝑄10 Comprised of t-distributions with Six Degrees of Freedom 
 

The table below shows the p-value for the Kolmogorov-Smirnov test for 

normality from the Univariate procedure in SAS.  The degrees of freedom used in the 

underlying t-distributions in the calculation of 𝑄𝑄𝑘𝑘 are going down the rows on the left of 

the table and the number of variables, k, is going across the top of the table.  Thus the p-

value for 𝑄𝑄35, when it is calculated using t-distributions with seven degrees of freedom, is 

0.01. 

  



117 
 

Table 7.10 P-values of KS Test for 𝐻𝐻0:𝑄𝑄𝑘𝑘 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎)  (𝑛𝑛 = 10,000).  Values of k are 
going across the columns and the rows represent the seed degrees of freedom in 𝑄𝑄𝑘𝑘. 

d.f. of t 5 10 15 20 25 30 35 40 45 50 
2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
4 0.01 0.01 0.01 0.03 0.01 > 0.15 0.07 0.04 0.04 > 0.15 
5 0.01 0.03 0.02 0.06 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 
6 0.01 0.04 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.08 > 0.15 
7 0.01 > 0.15 0.15 > 0.15 > 0.15 > 0.15 0.01 > 0.15 > 0.15 > 0.15 
8 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.04 > 0.15 > 0.15 > 0.15 
9 0.05 0.02 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 

10 0.05 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.02 > 0.15 > 0.15 > 0.15 
11 0.03 > 0.15 > 0.15 > 0.15 > 0.15 0.09 > 0.15 > 0.15 0.14 > 0.15 
12 0.01 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.13 0.02 
13 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 
14 0.09 > 0.15 > 0.15 > 0.15 0.10 > 0.15 0.04 > 0.15 > 0.15 > 0.15 
15 > 0.15 > 0.15 0.11 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 
16 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 
17 > 0.15 > 0.15 > 0.15 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.01 
18 0.03 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.06 > 0.15 > 0.15 
19 > 0.15 0.10 > 0.15 > 0.15 > 0.15 0.01 > 0.15 > 0.15 > 0.15 > 0.15 
20 > 0.15 > 0.15 0.10 0.03 > 0.15 > 0.15 > 0.15 > 0.15 0.06 0.02 
21 0.01 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.15 
22 > 0.15 > 0.15 > 0.15 > 0.15 0.03 0.09 > 0.15 > 0.15 > 0.15 0.09 
23 0.08 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.01 > 0.15 
24 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.10 0.15 > 0.15 0.07 > 0.15 
25 0.09 > 0.15 > 0.15 0.04 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 0.14 
40 > 0.15 0.01 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 > 0.15 

 

Normality is achieved by 𝑄𝑄𝑘𝑘 with lower degrees of freedom as k increases 

up to k = 30.  At 𝑘𝑘 ≥ 30, normality is achieved around four degrees of freedom.   

 

7.2.6 𝑄𝑄𝑘𝑘 ~ 𝑡𝑡 for Finite Samples when k Ranges from Five to Fifty 

Given what was learned in the previous simulation, it is questioned how k 

impacts the distribution of 𝑄𝑄𝑘𝑘 with smaller finite samples.  Specifically, under what 
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circumstances is the distribution of 𝑄𝑄𝑘𝑘 a t-distribution with different values of k.  With this 

in mind, a larger simulation was created that iterated over three variables: the degrees of 

freedom of the underlying t-distributions, the degrees of freedom of the t-distribution 

tested against 𝑄𝑄𝑘𝑘, and the size of k. The variable k was investigated from five to 50 at 

intervals of five.   

A simulation is created that cycles through three nested loops.  The first 

loop takes initial values for k and the degrees of freedom for the underlying t-distributions, 

randomly samples 1000 iterations of k t-distributions, calculates 𝑄𝑄𝑘𝑘, tests the distribution 

of 𝑄𝑄𝑘𝑘 against t-distributions from two to 25 and one additional test with 40 degrees of 

freedom.  This is repeated for the degrees of freedom for the underlying t-distributions 

from two to 20.  This cycle is repeated at different levels of k from five to 50 at intervals 

of five.  𝑄𝑄𝑘𝑘 is compared to different t-distributions with a Kolmogorov-Smirnov D statistic 

for two-sample data based on the empirical distribution utilizing the Npar1way procedure 

in SAS. 

Tables 7.11, 7.12, and 7.13 show the p-values from the KS test for each of 

the levels of k for 𝑄𝑄𝑘𝑘 calculated with t-distributions with degrees of freedom five, 10, and 

15, respectively.  Each table is highlighted with higher p-values in blue and lower p-values 

in red.  The goal is to identify trends where the highest p-values are occurring.  The 

different levels of k are going across the columns at the top and the different degrees of 

freedom of the t-distributions that are compared with 𝑄𝑄𝑘𝑘 are going down the rows on the 

left of the table.    
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Table 7.11 P-values for KS Test for (𝑄𝑄𝑘𝑘 Comprised of 𝑡𝑡5) ~ 𝑡𝑡𝜈𝜈 (𝑛𝑛 = 1000). Values of k 
are going across the columns and the rows represent the degrees of freedom in 𝑡𝑡𝜈𝜈. 

df of t 5 10 15 20 25 30 35 40 45 50 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.14 0.06 0.12 0.00 0.01 0.03 0.11 0.13 0.03 0.06 
3 0.49 0.17 0.10 0.01 0.18 0.01 0.11 0.54 0.03 0.01 
4 0.01 0.04 0.06 0.01 0.36 0.13 0.10 0.13 0.02 0.01 
5 0.09 0.20 0.02 0.13 0.00 0.04 0.00 0.02 0.09 0.10 
6 0.00 0.03 0.01 0.01 0.08 0.01 0.00 0.03 0.00 0.00 
7 0.00 0.01 0.05 0.02 0.03 0.03 0.01 0.00 0.03 0.01 
8 0.01 0.00 0.00 0.04 0.00 0.02 0.01 0.00 0.00 0.03 
9 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

10 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 
11 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 
12 0.00 0.00 0.00 0.02 0.02 0.01 0.00 0.01 0.00 0.00 
13 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 
14 0.04 0.01 0.05 0.00 0.00 0.00 0.02 0.00 0.00 0.01 
15 0.01 0.03 0.00 0.04 0.01 0.00 0.00 0.00 0.01 0.00 
16 0.01 0.00 0.05 0.00 0.00 0.04 0.00 0.00 0.00 0.00 
17 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
18 0.02 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.02 
20 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
21 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
23 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
25 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

 

Focusing on the table above, most of the non-significant p-values for 𝑄𝑄𝑘𝑘 

comprised of t-distributions with five degrees of freedom are found in the comparison with 

t-distributions with two to four degrees of freedom.  As previously shown in Table 7.10, 

𝑄𝑄𝑘𝑘 fails to reject the hypothesis that it is normally distributed for higher levels of k. 
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Table 7.12 P-values for KS Test for (𝑄𝑄𝑘𝑘 Comprised of 𝑡𝑡10) ~ 𝑡𝑡𝜈𝜈 (𝑛𝑛 = 1000). Values of k 
are going across the columns and the rows represent the degrees of freedom in 𝑡𝑡𝜈𝜈. 

df of t 5 10 15 20 25 30 35 40 45 50 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.26 0.11 0.04 0.03 0.04 0.06 0.03 0.19 0.11 0.11 
4 0.39 0.15 0.30 0.22 0.50 0.06 0.16 0.22 0.34 0.08 
5 0.57 0.01 0.16 0.32 0.21 0.75 0.15 0.46 0.38 0.30 
6 0.05 0.60 0.29 0.29 0.25 0.13 0.30 0.88 0.43 0.01 
7 0.32 0.12 0.60 0.02 0.38 0.40 0.64 0.07 0.09 0.63 
8 0.85 0.53 0.46 0.11 0.36 0.90 0.70 0.12 0.36 0.08 
9 0.80 0.09 0.83 0.20 0.47 0.13 0.62 0.84 0.06 0.78 

10 0.20 0.16 0.08 0.24 0.33 0.22 0.36 0.14 0.01 0.06 
11 0.54 0.39 0.05 0.05 0.10 0.26 0.37 0.42 0.03 0.19 
12 0.26 0.21 0.70 0.29 0.64 0.07 0.22 0.42 0.08 0.01 
13 0.09 0.01 0.06 0.14 0.18 0.69 0.22 0.51 0.02 0.20 
14 0.32 0.10 0.05 0.21 0.02 0.15 0.81 0.01 0.37 0.10 
15 0.22 0.28 0.12 0.01 0.88 0.18 0.31 0.10 0.40 0.05 
16 0.21 0.01 0.03 0.13 0.04 0.14 0.59 0.19 0.25 0.29 
17 0.18 0.00 0.28 0.01 0.06 0.16 0.02 0.40 0.37 0.40 
18 0.12 0.06 0.00 0.25 0.24 0.62 0.07 0.51 0.24 0.20 
19 0.29 0.41 0.11 0.23 0.03 0.02 0.16 0.17 0.11 0.07 
20 0.67 0.03 0.05 0.17 0.08 0.35 0.01 0.14 0.12 0.09 
21 0.21 0.15 0.01 0.08 0.02 0.12 0.42 0.05 0.51 0.45 
22 0.82 0.00 0.14 0.01 0.06 0.25 0.08 0.14 0.17 0.11 
23 0.34 0.06 0.08 0.04 0.71 0.03 0.24 0.09 0.01 0.02 
24 0.05 0.07 0.46 0.04 0.02 0.01 0.26 0.02 0.01 0.00 
25 0.01 0.44 0.07 0.08 0.15 0.19 0.16 0.03 0.00 0.20 
40 0.09 0.00 0.11 0.07 0.02 0.02 0.41 0.31 0.52 0.03 

 

Looking at the table above it appears there is a pattern of higher p-values 

in the range of t-distributions with seven to nine degrees of freedom. 
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Table 7.13 P-values for KS Test for (𝑄𝑄𝑘𝑘 Comprised of 𝑡𝑡15) ~ 𝑡𝑡𝜈𝜈 (𝑛𝑛 = 1000). Values of k 
are going across the columns and the rows represent the degrees of freedom in 𝑡𝑡𝜈𝜈. 

df of t 5 10 15 20 25 30 35 40 45 50 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.01 0.09 0.02 0.10 0.03 0.03 0.04 0.04 0.17 0.01 
4 0.16 0.07 0.05 0.36 0.13 0.27 0.18 0.43 0.00 0.41 
5 0.28 0.34 0.31 0.32 0.68 0.04 0.12 0.68 0.31 0.69 
6 0.33 0.08 0.82 0.30 0.32 0.66 0.54 0.19 0.42 0.28 
7 0.85 0.17 0.43 0.34 0.45 0.46 0.92 0.80 0.49 0.56 
8 0.93 0.08 0.89 0.60 0.36 0.07 0.48 0.35 0.48 0.35 
9 0.19 0.02 0.72 0.71 0.69 0.01 0.19 0.42 0.86 0.35 

10 0.49 0.20 0.79 0.50 0.92 0.82 0.28 0.93 0.24 0.42 
11 0.86 0.76 0.85 0.28 0.43 0.02 0.18 0.89 0.86 0.51 
12 0.98 0.74 0.44 0.00 0.07 0.39 0.47 0.70 0.77 0.41 
13 0.74 0.01 0.96 0.09 0.73 0.24 0.84 0.37 0.33 0.39 
14 0.10 0.92 0.65 0.66 0.05 0.12 0.00 0.99 0.40 0.13 
15 0.60 0.51 0.00 0.16 0.82 0.90 0.46 0.24 0.05 0.34 
16 0.12 0.65 0.02 0.32 0.59 0.02 0.22 0.02 0.96 0.64 
17 0.48 0.78 0.44 0.06 0.95 0.16 0.46 0.71 0.29 0.13 
18 0.40 0.23 0.37 0.52 0.21 0.06 0.83 0.45 0.93 0.33 
19 0.97 0.80 0.61 0.31 0.52 0.24 0.56 0.05 0.59 0.13 
20 0.09 0.35 0.02 0.16 0.29 0.10 0.06 0.20 0.02 0.51 
21 0.68 0.47 0.32 0.15 0.19 0.37 0.10 0.28 0.87 0.11 
22 0.00 0.30 0.24 0.40 0.69 0.03 0.96 0.02 0.55 0.07 
23 0.38 0.16 0.42 0.57 0.54 0.24 0.20 0.05 0.76 0.13 
24 0.93 0.40 0.24 0.29 0.34 0.41 0.62 0.25 0.24 0.04 
25 0.11 0.29 0.04 0.35 0.24 0.01 0.29 0.04 0.19 0.07 
40 0.04 0.80 0.21 0.91 0.14 0.07 0.04 0.09 0.77 0.13 

 
The table above shows a pattern of higher p-values for t-distributions with 

eight to ten degrees of freedom.  Across the tables there are many instances of 𝑄𝑄𝑘𝑘 which 

fail to reject the null hypothesis that they have t-distribution.  In each case there is a range 

of possibly acceptable t-distributions, but not a clear cut solution.  Additionally, it is likely 

that the optimal t-distribution does not have an integer degrees of freedom.   
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7.2.7 Introduction and Simulation using 𝜈𝜈𝑠𝑠 = 2𝑠𝑠2

𝑠𝑠2−1
 

This thought led to possible ways to narrow down the optimal degrees of 

freedom for the t-distribution.  It was noted that the second moment for a t-distribution, 

𝛿𝛿2 = 𝑣𝑣
𝑣𝑣−2

,  is defined by its degrees of freedom, 𝜈𝜈.  Using a simulation to approximate the 

distribution of 𝑄𝑄𝑘𝑘, the sample statistic for the second moment can then be calculated from 

the distribution.  Solving the equation above for 𝜈𝜈 gives 𝑣𝑣 = 2𝛿𝛿2

𝛿𝛿2−1
.  Then substituting the 

sample statistic for the parameter gives 𝑣𝑣𝑠𝑠 = 2𝑠𝑠2

𝑠𝑠2−1
.  A simulation is constructed to test if 

𝑄𝑄𝑘𝑘~𝑡𝑡𝜈𝜈𝑠𝑠 where 𝑣𝑣𝑠𝑠 = 2𝑠𝑠2

𝑠𝑠2−1
. 

A simple example is provided before a larger simulation to illustrate the use 

of 𝜈𝜈𝑠𝑠.  Five hundred independent observations from a t-distribution with 4.6 degrees of 

freedom were randomly generated.  The univariate procedure in SAS was utilized to test 

the distribution for normality.  As expected, the hypothesis that the distribution was 

normally distributed was rejected with a p-value < 0.0001.  The sample variance, 𝑠𝑠2, of 

the distribution was equal to 1.950.  Using the sample variance, 𝜈𝜈𝑠𝑠 was calculated and 

found to be equal to 4.106.  A one sample KS test was utilized to test the hypothesis that 

the distribution had a t-distribution with 𝜈𝜈𝑠𝑠 = 4.106 degrees of freedom.  Using the 

ks.test.t function in R, the p-value from the one sample KS test was equal to 0.896, thus 

the hypothesis fails to be rejected.  Additionally, the two sample KS test using a randomly 

generated t-distribution with 𝜈𝜈𝑠𝑠 = 4.106 degrees of freedom was completed using the 

Npar1way procedure in SAS finding a p-value of 0.935.  Repeated tests showed similar 

results where the two KS test with a randomly generated dataset aligned with the one 

sample KS test utilizing R software.  Given these results the decision was made to move 
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forward with the two sample test in SAS in order to allow for a larger simulation that can 

be automated in SAS and remove the need for manual manipulation of the dataset in order 

to transfer the individual dataset to R for the one sample KS test.  

A simulation was created that randomly generated k t-distributions each 

with 𝜈𝜈 degrees of freedom.  The degrees of freedom were iterated from two to 20 and the 

number of variables, k, included inside the calculation for 𝑄𝑄𝑘𝑘 was iterated from five to 50 

in intervals of five.  For each cycle, 𝑄𝑄𝑘𝑘 was calculated 1000 times and then the sample 

variance of the distribution was computed.  Using the sample variance 𝜈𝜈𝑠𝑠 was calculated 

and the distribution of 𝑄𝑄𝑘𝑘 was compared with 𝑡𝑡𝜈𝜈𝑠𝑠with a Kolmogorov-Smirnov D statistic 

for two-sample data based on the empirical distribution with the Npar1way procedure in 

SAS. 

Table 7.14 shows the calculated 𝜈𝜈𝑠𝑠 for each iteration of k across the columns 

at the top and each iteration of the degrees of freedom used to generate the underlying t-

distributions used in the calculation for 𝑄𝑄𝑘𝑘 go down the rows on the left of the table. 
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Table 7.14 Calculated 𝜈𝜈𝑠𝑠 for Different k and Underlying 𝑡𝑡𝜈𝜈 in 𝑄𝑄𝑘𝑘.  Values of k are going 
across the columns and the rows represent the seed degrees of freedom in 𝑄𝑄𝑘𝑘. 

df of 
t_v 5 10 15 20 25 30 35 40 45 50 
2 2.39 2.16 2.11 2.22 2.22 2.24 2.25 2.26 2.23 2.13 
3 3.16 3.00 3.07 3.11 3.17 2.97 3.16 3.05 3.01 3.15 
4 4.19 3.83 3.76 4.07 3.82 4.05 3.87 3.85 3.86 3.95 
5 5.03 5.29 4.51 5.31 4.65 5.69 5.39 4.93 4.77 5.03 
6 5.13 7.55 5.73 5.90 5.65 6.64 6.08 6.68 6.43 6.18 
7 6.77 6.93 6.63 6.09 6.66 7.06 9.02 6.68 7.81 5.68 
8 8.31 8.77 7.81 7.42 8.65 5.88 6.37 8.17 7.74 7.98 
9 11.55 8.91 9.01 13.20 8.31 10.44 8.58 9.31 8.22 6.82 

10 12.11 11.76 10.40 13.17 10.26 8.66 11.32 9.84 11.23 9.82 
11 11.81 10.32 15.18 11.30 9.57 13.21 9.92 10.26 13.71 17.73 
12 12.77 13.80 15.75 13.01 11.49 13.97 10.65 15.96 19.24 11.07 
13 11.35 14.64 10.45 12.01 14.24 8.58 18.38 10.35 8.92 13.26 
14 21.06 12.05 10.17 17.71 17.34 10.24 11.10 15.69 14.48 14.89 
15 21.84 12.68 12.21 27.29 11.84 14.46 14.50 17.98 15.59 12.90 
16 29.79 14.40 38.10 11.50 12.49 12.32 25.46 12.09 17.16 13.89 
17 12.13 38.20 18.78 14.89 16.88 12.09 21.55 33.96 22.52 20.03 
18 17.39 50.52 33.12 12.21 17.94 21.97 22.77 13.56 20.44 15.30 
19 14.03 23.45 24.54 27.25 13.89 14.32 51.45 43.93 15.31 16.74 
20 23.74 94.11 19.03 38.57 26.41 12.67 19.09 31.80 14.67 15.05 

 

Table 7.15 shows the p-values for the KS test comparing the distribution of 

𝑄𝑄𝑘𝑘 with the simulated distribution 𝑡𝑡𝜈𝜈𝑠𝑠 where 𝜈𝜈𝑠𝑠 is shown in the table above.  Again, the 

levels of k go across the columns at the top of the table and the degrees of freedom used in 

the underlying t-distributions used in the calculation of 𝑄𝑄𝑘𝑘 go down the rows on the left of 

the table. 
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Table 7.15 P-values for 𝐻𝐻0:𝑄𝑄𝑘𝑘 ~ 𝑡𝑡𝜈𝜈𝑠𝑠. Values of k are going across the columns and the 
rows represent the seed degrees of freedom in 𝑄𝑄𝑘𝑘. 

df of 
t_v 5 10 15 20 25 30 35 40 45 50 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.04 0.06 0.00 0.02 0.00 0.00 0.00 
5 0.37 0.61 0.15 0.12 0.37 0.16 0.31 0.03 0.12 0.03 
6 0.26 0.20 0.43 0.31 0.15 0.26 0.47 0.22 0.34 0.47 
7 0.12 0.69 0.29 0.10 0.08 0.16 0.99 0.43 0.07 0.18 
8 0.22 0.89 0.43 0.43 0.91 0.11 0.01 0.22 0.50 0.29 
9 0.24 0.26 0.01 0.31 0.20 0.79 0.08 0.99 0.24 0.50 

10 0.16 0.31 0.18 0.06 0.20 0.20 0.72 0.26 0.76 0.00 
11 0.03 0.12 0.03 0.24 0.50 0.18 0.24 0.29 0.43 0.29 
12 0.83 0.95 0.22 0.72 0.47 0.43 0.43 0.76 0.99 0.95 
13 0.91 0.11 0.47 0.12 0.50 0.40 0.12 0.12 0.29 0.54 
14 0.57 0.18 0.72 0.99 0.05 0.76 0.10 0.29 0.04 0.24 
15 0.95 0.47 0.03 0.40 0.89 0.47 0.31 0.86 0.76 0.69 
16 0.69 0.97 0.65 0.13 0.83 0.02 0.97 0.15 0.02 0.15 
17 0.37 0.50 0.12 0.57 0.24 0.79 0.94 0.34 0.01 0.61 
18 0.20 0.08 0.50 0.40 0.65 1.00 0.15 0.95 0.29 0.54 
19 0.94 0.79 0.37 0.94 0.54 0.08 0.26 0.76 0.40 0.72 
20 0.57 0.89 0.65 0.04 0.43 0.26 0.29 0.15 0.91 0.91 

 

The table shows t-distributions with 𝜈𝜈𝑠𝑠 degrees of freedom appear to 

accurately match the distributions of 𝑄𝑄𝑘𝑘.  For 𝑄𝑄𝑘𝑘 comprised of t-distributions with degrees 

of freedom greater than four, 91.9% of the tests fail to reject the null hypothesis, providing 

evidence that 𝑄𝑄𝑘𝑘 ~ 𝑡𝑡𝜈𝜈𝑠𝑠.  There are a couple of instances where the 𝜈𝜈𝑠𝑠 seemed 

uncharacteristically large.  Delving into these occurrences, the issue was found in the 

structure of the definition.  

𝑣𝑣𝑠𝑠 =
2𝑠𝑠2

𝑠𝑠2 − 1
 

Notice if the sample variance is very close to one, then the denominator is 

nearly zero and 𝜈𝜈𝑠𝑠 can be inflated.  It is worth noting that 𝜈𝜈𝑠𝑠 = 94.11 for k = 10 and the 



126 
 

underlying t-distributions used in the calculations of 𝑄𝑄𝑘𝑘 have 20 degrees of freedom.  

However, the p-value for this KS test is 0.89 showing that the null hypothesis fails to reject 

that 𝑄𝑄10 ~ 𝑡𝑡94.11.  Another limitation is that the distribution of the test statistic would need 

to be known in order to compute 𝜈𝜈𝑠𝑠.  This limitation can be overcome with simulations or 

resampling techniques. 

 

7.2.8 The Satterthwaite Approximation 

The idea to test the Satterthwaite approximation to the degrees of freedom 

was brought up as a possibility for a solution.  In order to test this hypothesis and compare 

the Satterthwaite approximation to the degrees of freedom, 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠 with 𝜈𝜈𝑠𝑠 a simulation was 

created to calculate both approximations and compare 𝑡𝑡𝜈𝜈𝑠𝑠𝑎𝑎𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝜈𝜈𝑠𝑠 with the appropriate 

test statistic, which will be designated 𝑊𝑊𝑘𝑘. Let 𝑋𝑋𝑖𝑖𝑖𝑖 be independent and identically 

distributed observations from a standard normal distribution where 𝑖𝑖 = 1, … ,𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 =

1, … ,𝑛𝑛, then define: 

𝑊𝑊𝑘𝑘 =
∑ 𝑋𝑋�𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑆𝑆𝑝𝑝�
𝑘𝑘
𝑛𝑛

 

Where 𝑆𝑆𝑝𝑝 is the pooled variance estimator and 𝑋𝑋�𝑖𝑖 =
∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
. 

A simulation was created with 5000 iterations.  With each iteration six 

observations of each 𝑋𝑋𝑖𝑖 were randomly generated from a standard normal distribution 

which resulted in 5000 replicas of 𝑊𝑊𝑘𝑘.  The mean and variance for each 𝑋𝑋𝑖𝑖 array were 

calculated along with the pooled variance estimators, Satterthwaite approximations for the 

degrees of freedom (𝜈𝜈2,𝑠𝑠𝑠𝑠𝑠𝑠, 𝜈𝜈3,𝑠𝑠𝑠𝑠𝑠𝑠 , 𝜈𝜈4,𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝜈𝜈5,𝑠𝑠𝑠𝑠𝑡𝑡) and 𝑊𝑊𝑘𝑘 for 𝑊𝑊2,𝑊𝑊3,𝑊𝑊4,𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊5.  This 
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led to a sample of 5000 observations for the four Satterthwaite approximations and 𝑊𝑊𝑘𝑘.  

The sample variance of each 𝑊𝑊𝑘𝑘, 𝑠𝑠𝑊𝑊𝑘𝑘
2 , was calculated in order to calculate 𝜈𝜈𝑘𝑘,𝑠𝑠 defined as: 

𝜈𝜈𝑘𝑘,𝑠𝑠 =
2𝑠𝑠𝑊𝑊𝑘𝑘

2

𝑠𝑠𝑊𝑊𝑘𝑘
2 − 1

 

Since each distribution of 𝑊𝑊𝑘𝑘 has only one 𝜈𝜈𝑘𝑘,𝑠𝑠, but has 5000 observations 

of 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠, the mean of the Satterthwaite approximations was utilized in order to make 

comparisons with 𝜈𝜈𝑘𝑘,𝑠𝑠. 

Next, 5000 observations from random t-distributions were generated with 

each of the degrees of freedom 𝜈𝜈𝑘𝑘,𝑠𝑠 and 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠.  Finally, the distribution of each 𝑊𝑊𝑘𝑘 was 

compared to the appropriate t-distribution with 𝜈𝜈𝑘𝑘,𝑠𝑠 and 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 degrees of freedom utilizing 

a KS test in the Npar1way procedure in SAS.   

The simulation was also repeated for n = 10, where n is the number of 

observations of each of the k standard normally distributed random variables in 𝑊𝑊𝑘𝑘. 

Figure 7.14 shows a comparison of the histograms of 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 for k = 2, 3, 4 

and 5 for the 5000 iterations of the simulation with n = 6.   
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Figure 7.14 Histograms of 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠  for 𝑘𝑘 = 2, 3, 4, and 5 (𝑛𝑛 = 6) 
 

It is worth noting that each histogram is bounded on the right by the exact 

degrees of freedom.  For k = 2, the exact degrees of freedom is equal to 𝑛𝑛1 + 𝑛𝑛2 − 2 =

6 + 6 − 2 = 10, and for k = 5 the exact degrees of freedom is 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4 + 𝑛𝑛5 −

5 = 25. 

Figure 7.15 shows a comparison of the histograms for 𝑊𝑊2,𝑊𝑊3,𝑊𝑊4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊5 

for n = 6.  Notice as k increases, the degrees of freedom for the Satterthwaite approximation 

increases and the standard deviation of the distributions decreases. 
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Figure 7.15 Histograms of 𝑊𝑊𝑘𝑘 for 𝑘𝑘 = 2, 3, 4, and 5 (𝑛𝑛 = 6) 
 

Table 7.16 shows the two approximations to the degrees of freedom where 

n = 6 for k = 2, 3, 4, and 5.  In addition, the table displays the p-value for the Kolmogorov-

Smirnov D statistic for two-sample data based on the empirical distribution for the null 

hypothesis 𝐻𝐻0:𝑊𝑊𝑘𝑘~𝑡𝑡𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐻𝐻0:𝑊𝑊𝑘𝑘~𝑡𝑡𝜈𝜈𝑘𝑘,𝑠𝑠. 

Table 7.16 Values of 𝜈𝜈𝑠𝑠, 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠 , and p-values from KS Tests (𝑛𝑛 = 6) 

k v_s 

KS p-
value for 

v_s 
Mean 
v_sat 

KS p-
value for 

v_sat 
2 8.7215 0.9124 8.7864 0.8222 
3 12.7623 0.2296 12.4463 0.3154 
4 15.7402 0.0794 16.1141 0.3036 
5 18.7854 0.6272 19.7332 0.6440 
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The simulation was repeated for n = 10.  Figure 7.16 shows the histograms 

for the Satterthwaite approximations for the degrees of freedom for k = 2, 3, 4 and 5.  

Again, note that the histograms are bounded on the right by the exact degrees of freedom. 

For k = 2, the exact degrees of freedom are 𝑛𝑛1 + 𝑛𝑛2 − 2 = 18 where 𝑛𝑛 = 𝑛𝑛1 = 𝑛𝑛2 = 10 

and for k = 5 the exact degrees of freedom is equal to 45. 

 
Figure 7.16 Histograms of 𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠  for 𝑘𝑘 = 2, 3, 4, and 5 (𝑛𝑛 = 10) 
 

Figure 7.17 shows the histograms for the test statistics, 𝑊𝑊𝑘𝑘, for k = 2, 3, 4 

and 5 where n = 10. 
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Figure 7.17 Histograms of 𝑊𝑊𝑘𝑘 for 𝑘𝑘 = 2, 3, 4, and 5 (𝑛𝑛 = 10) 
 

Table 7.17 shows the approximations for the degrees of freedom 𝜈𝜈𝑘𝑘,𝑠𝑠 and 

𝜈𝜈𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠.  Additionally, it shows the p-value for the KS test comparing the distribution of the 

test statistic 𝑊𝑊𝑘𝑘 with the two hypothesized distributions 𝑡𝑡𝑣𝑣𝑠𝑠  and 𝑡𝑡𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠. 

Table 7.17 Values of 𝜈𝜈𝑠𝑠, 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠, and p-values from KS Tests (𝑛𝑛 = 10) 

k v_s 

KS p-
value for 

v_s 
Mean 
v_sat 

KS p-
value for 

v_sat 
2 15.4709 0.3791 16.5060 0.1177 
3 19.0833 0.6104 23.9258 0.2024 
4 29.9204 0.2921 31.3566 0.7112 
5 35.9918 0.1777 38.7916 0.2809 

 

The estimate to the degrees of freedom, 𝜈𝜈𝑠𝑠, tracks well with the 

Satterthwaite degrees of freedom for both of the samples.  Additionally, 𝜈𝜈𝑠𝑠 is tracking with 
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the mean of the distribution of 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠 given multiple samples, adding confidence that 𝜈𝜈𝑠𝑠 is 

an accurate approximation to the degrees of freedom.  Since the Satterthwaite 

approximation is calculated from the sample, it is easier to calculate with a single sample.  

However, it has a greater variability, as can be seen in Figures 7.14 and 7.16.  The 𝜈𝜈𝑠𝑠 

approximation of the degrees of freedom is easily applied in situations, like simulations 

and resampling techniques, where the distribution can be estimated and where the test 

statistic is non-standard.  Both of these situations make 𝜈𝜈𝑠𝑠 an attractive solution for the 

approximation of the degrees of freedom for 𝑄𝑄𝑘𝑘 with finite samples.   
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CHAPTER 8. CONCLUSIONS 

Sepsis is an increasing problem in modern medical facilities.  Additionally, 

patients who develop sepsis while in the hospital have worse outcomes and the costs for 

care are attributed to the healthcare facility.  The largest barrier to better sepsis outcomes 

is the early identification and treatment of septic patients.  Early interventions lead to better 

outcomes, shorter lengths of stay, and financial savings.  It has been shown that the 

distributions of vital signs exhibit large measurable changes during the onset of sepsis.  

Utilizing variables that measure the change for each vital sign from the patient’s specific 

baselines, a discriminant model was constructed in order to proactively identify patients at 

risk for developing sepsis while on acute and progressive levels of care in hospitals.  

Running this sepsis score in the background at the University of Kentucky Chandler 

Hospital, it has been shown to be successful in the early identification of sepsis patients. 

Extensive simulations were completed to investigate the sum of t-

distributions with 𝜈𝜈 > 0 degrees of freedom.  Results from simulations showed that 𝑄𝑄𝑘𝑘,𝜈𝜈, 

the sum of random variables that have a t-distribution divided by the square root of k, fails 

to reject the hypothesis that 𝑄𝑄𝑘𝑘,𝜈𝜈 has an approximate normal distribution.  In addition, for 

finite 𝜈𝜈 > 4, simulations also showed that 𝑄𝑄𝑘𝑘,𝜈𝜈 failed to reject the hypothesis that it is well 

approximated by a t-distribution.  However, each 𝑄𝑄𝑘𝑘,𝜈𝜈 failed to reject the hypothesis that 

had an approximate 𝑡𝑡𝜈𝜈∗ distribution for a range of 𝜈𝜈∗.  In order to better approximate the 

degrees of freedom for the approximate t-distribution an estimate, 𝜈𝜈𝑠𝑠, was developed from 

the second moment of a t-distribution.  Simulations show that 𝑄𝑄𝑘𝑘,𝜈𝜈 failed to reject the 

hypothesis that it had an approximate t-distribution with 𝜈𝜈𝑠𝑠 degrees of when the underlying 

t-distributions in 𝑄𝑄𝑘𝑘,𝜈𝜈 had degrees of freedom 𝜈𝜈 > 4.  A simulation was constructed to 
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compare the approximate for the degrees of freedom for a t-distribution 𝜈𝜈𝑠𝑠 with the 

traditional Satterthwaite approximation for degrees of freedom.  The approximate 𝜈𝜈𝑠𝑠 

compared favorably with the Satterthwaite approximation.  Additionally, the approximate 

𝜈𝜈𝑠𝑠 can be utilized for a wider range of situations than the Satterthwaite approximation. 

8.1 Future Research 

Opportunities to apply the change in vital signs prediction technique in a 

children’s hospital setting are planned for future research.  Decline in a pediatric setting is 

most often associated with respiratory distress and decline.  This presents challenges to 

add additional variables to the model including calculated variables that explore trends 

over time.  Early research has included looking at changes in respiratory settings and 

devices utilized for the patient.   

Research directions will also be explored in PICU and NICU settings where 

more continuous measurements are being taken on each patient.  This leads to occasions 

where multiple measurements may be able to be used for the current state instead of only 

one.   

Additionally, opportunities to add a fully automated simulation that 

includes a one sample KS test comparing 𝑄𝑄𝑘𝑘 with a t-distribution with 𝜈𝜈𝑠𝑠 degrees of 

freedom will be explored.  Given a sample distribution, an automated package could be 

developed such that 𝜈𝜈𝑠𝑠 is calculated from the sample variance and a one sample KS test is 

run with a single function call.  This would greatly simplify the process since it would not 

necessitate the researcher providing a guess for the degrees of freedom.
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