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ABSTRACT OF DISSERTATION 
 
 
 
 
CORRELATING THE PHYSICOCHEMICAL PROPERTIES OF 

MAGNESIUM STEARATE WITH TABLET DISSOLUTION AND LUBRICATION 
 
Magnesium stearate (MgSt) is the most commonly used pharmaceutical excipient 

and is present in over half the tablet formulations on the market. In spite of its popularity 
as an effective lubricant, it has been repeatedly recognized that there is significant 
variability between MgSt samples, which can cause inconsistent lubrication between 
batches of MgSt. The hypothesis of this research is that the batch-to-batch variability in 
tablet lubrication and dissolution observed in tablet formulations containing different 
MgSt samples can be correlated with differences in MgSt physicochemical properties 
(fatty acid salt composition, crystal hydrate form, particle size and surface area). 
Developing correlations between MgSt properties has been challenging in part because 
there has not been a reliable method for determining crystal form. Recently, 13C solid-
state nuclear magnetic resonance (SSNMR) has been used to clearly identify the MgSt 
crystal forms.  

13C SSNMR is used extensively throughout this work to identify the crystal forms 
of  samples of MgSt. Thermogravimetric analysis and dynamic scanning calorimetry 
were used as complimentary techniques to understand thermal behavior of the samples. 
MgSt is typically used in tablets at low levels (0.2-5%), leading to challenges with 
detection of MgSt in formulations. To enhance detection in SSNMR, samples of MgSt 
have been synthesized in the lab using 13C-labeled stearic acid. Specific surface area 
(SSA) results were determined using N2 and Kr adsorption with BET calculations, and 
samples were dried using nitrogen flow for various times. A discriminating dissolution 
method was developed to differentiate between MgSt samples with varying properties. 
Lubrication efficiency was performed using a Presster compaction simulator and tensile 
strength determination using diametrical compression. 

Synthesis studies showed that the fatty acid composition and synthesis method 
affects the crystal form of MgSt produced, with higher stearic content preferring the 
dihydrate form. Temperature and humidity affect the form of MgSt and facilitate 
interconversion between forms. Drying MgSt was found to affect surface area results, 
with the dihydrate converting to the disordered form. Dissolution of indomethacin tablets 
containing various types of MgSt showed a strong dependence on particle size and 
surface area, with smaller particle size and higher SSA samples having slower dissolution 
rates. Fatty acid composition and hydrate form were investigated as secondary variables 



     
 

influencing dissolution, with fatty acid showing no correlation with dissolution. 
Lubrication efficiency and tabletability studies showed an effect of crystal form, with 
monohydrate and dihydrate forms showing good lubrication efficiency compared to the 
disordered form, but also poorer tabletability.  

In conclusion, the potential for variability in the crystal form of MgSt was found 
to be an important property of MgSt. There is variability in the form produced from 
synthesis, as well as interconversion between forms. Temperature, humidity and drying 
conditions are particularly important in controlling the crystal form of MgSt, as this can 
impact formulation stability and storage conditions. The primary variable affecting 
dissolution is particle size and surface area, but crystal form is a potential secondary 
variable. The physicochemical properties of MgSt, particularly crystal form and surface 
area, showed trends with lubrication and dissolution. This highlights the importance of 
choosing a MgSt material with the desired crystal form and surface area properties to 
match the lubrication and dissolution requirements for the formulation.  

 
 
KEYWORDS: Magnesium stearate, solid-state NMR, crystal form, surface area, 

dissolution, lubrication 
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CHAPTER 1.   INTRODUCTION TO MAGNESIUM STEARATE 
VARIABILITY 

1.1   Previous Investigations into the Variability of Magnesium Stearate (MgSt) 

 

Magnesium stearate (MgSt) is the most commonly pharmaceutical excipient in 

solid oral dosage forms and is used as a lubricant in over half of the tablet formulations 

on the market.(1) Tablet prescriptions include a paper insert listing the active 

pharmaceutical ingredient (i.e. the drug), along with dosing information and a list of the 

inactive ingredients (known as excipients) used in the tablet formulation. Tablets are 

often the preferred dosage form, as they are convenient to administer, have fewer 

physical and chemical stability problems and can be manufactured in large quantities. 

Still, the manufacturing process involves many steps to produce a tablet with the desired 

characteristics. To make a tablet, the excipients are mixed together with the drug, making 

a blend. Typically, MgSt is added as the last excipient at a level of only 0.5 – 2% to the 

powder blend prior to compaction with a tablet press. After the formulation powder is 

compacted, the tablet must be removed (or ejected) from the tablet die. Lubricants, such 

as MgSt, aid in the tablet ejection during the manufacturing process by reducing the 

friction between the compacted tablet and the tablet press die. Without proper lubrication, 

part of the tablet can adhere to the tablet die and punch faces of the tablet press, in what 

has been called “picking and sticking.” If the formulation is over-lubricated, such as by 

mixing too long or adding too much MgSt, the tablet will not dissolve in the proper 

amount of time. MgSt is a very effective powder lubricant and has been used in 

pharmaceutical formulations for decades.(2) 

In spite of its popularity as an effective lubricant, it has been repeatedly 

recognized that there is significant variability between MgSt samples which can cause 

inconsistent lubrication between lots and batches of MgSt. Figure 1-1 is an illustration of 

the balance between lubrication efficiency and dissolution which is necessary for good 

tablet manufacturing. Typically, this balance is achieved by pharmaceutical formulators 

by adjusting the mixing time in a trial-and-error process. Ideally, the mixing time would 
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be near the middle line, with high lubrication and minimal effect on dissolution. This 

process of adjusting the mixing time is acceptable as long as every MgSt sample behaves 

the same. However, many formulators have experienced lot-to-lot variability in the 

functional performance of different MgSt samples. For example, a new lot of MgSt 

mixed for the same amount of time may be under-lubricated, such that the line will shift 

to left, while another lot of MgSt may be over-lubricated, such that the line will shift to 

the right side of the figure. Either situation of under-lubrication or over-lubrication can 

yield unacceptable tablets, causing loss of time and money due to discarding the 

unacceptable tablet lots. In order to highlight the variability of MgSt impacting tablet 

lubrication, the current knowledge about magnesium stearate is reviewed in this chapter.  

 

 

Figure 1-1. Impact of Lubrication – Dissolution as a function of mixing time. An ideal 
MgSt has high impact on lubrication and low impact on dissolution, as indicated by the 
asterisks in the green areas and the vertical line.   

 

Magnesium stearate has been used in pharmaceutical formulations for decades. 

One of the early indications of MgSt variability came in 1970, when Hanssen et al. noted 

that different grades of MgSt affected compression properties (3) Soon after, Butcher et 

al. focused on how differences in packing and sieving affect lubrication (1972).(4) Then 

in 1984, Hoelzer published on “batch to batch variations of commercial magnesium 

stearate” focusing on surface area variations,(5) and Dansereau discussed how the 

variability in physicochemical properties of MgSt affects tablet lubrication, specifically 
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noting that excipients such as microcrystalline cellulose  had decreased tablet tensile 

strength with increasing MgSt surface area.(6, 7) A little later in 1996, Barra and Somma 

investigated the physicochemical variability of MgSt with thirteen commercial samples 

and showed a range of results with minimal correlation.(8) Researchers from 

Mallinckrodt, a prominent supplier of magnesium stearate, have extensively studied and 

presented on the properties of MgSt and their effects on tablet lubrication, with a focus to 

describing the specific materials they manufacture with minimal lot-to-lot variability. 

Their conclusion is that the dihydrate form is a better lubricant than the more popular 

monohydrate form. (9) More recently, Kushner et al. have used quality by design (QbD) 

experiments to study excipient variation(10) and Haware et al. have used multivariate 

analysis (MVA) methods to identify significant variables affecting the lubricating 

properties of commercial MgSt.(11, 12) Most recently, Wang, Potts and Hoag also used 

principal component analysis (PCA) to investigate the variability of MgSt using 

analytical techniques such as near-IR spectroscopy, Raman spectroscopy and scanning 

electron microscopy (SEM).(13, 14) It is clear that the variability of MgSt still warrants 

significant study.  

 

The hypothesis of this research is that the observed variability in lubrication 

efficiency and dissolution rate between batches of MgSt can be correlated with the 

physicochemical properties of MgSt samples, specifically fatty acid composition, crystal 

form, particle size and surface area. Several researchers (including reviews by Moody et 

al.,(2) Wang et al.,(15) Li et al.(16) and Kahner et al.(17) have identified chemical 

composition, particle size/surface area and crystal form as possible important variables 

impacting MgSt function,(7, 8) so these properties will serve as the starting point for the 

current investigation. The remainder of this chapter will focus on a review of the most 

prominent physicochemical properties of magnesium stearate (chemical composition, 

crystal form, particle size and surface area), followed by a discussion of how processing 

effects MgSt (focusing on mixing and disproportionation) and finally the effects of MgSt 

properties on function, in terms of lubrication and dissolution. 
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1.2   MgSt Physicochemical Properties 

1.2.1   Fatty Acid Composition and Synthesis of MgSt 

 

A wide range of chemical composition is allowed for magnesium stearate 

samples. The US Pharmacopeia is “a scientific, nonprofit organization that sets public 

standards for the identity, strength, quality and purity of medicines” and excipients.(18) 

The first US pharmacopeia was issued in 1820, with specific standards called 

monographs for a variety of drugs. Additionally, compounding standards are found in the 

USP and National Formulary (USP-NF) which includes monographs for many excipients, 

including magnesium stearate. The USP-NF monograph for MgSt allows for “variable 

proportions of magnesium stearate and magnesium palmitate”(19). To meet USP 

standards, the MgSt sample must be derived from at least 40% stearic acid, and at least 

90% of the sample must come from a combination of stearic and palmitic acids. The 

remaining 10% of the sample may be derived from other fatty acids, such as myristic, 

pentadecanoic, margaric, arachidic and behenic acids. This leads to a Mg metal content 

between 4-5%, depending on the chain lengths of the fatty acids and their ratios. The 

content of stearic and palmitic acids in a MgSt sample can be determined using a boron 

trifluoride-methanol extraction method to convert the stearate and palmitate to their 

methyl esters and separate and identify them using GC-MS. (19-22) Although 

commercial MgSt samples have a range of chemical compositions, and USP has set broad 

guidelines for chemical composition requirements, several researchers have suggested 

that within these guidelines the fatty acid composition does not seem to affect lubrication. 

Interestingly, Rajala et al. found that two lots with similar chemical composition behaved 

very differently, possibly due to their hydration state differences.(23)  

The synthesis preparation of MgSt has been described in the literature using two 

basic reaction methods. Equation 1-1 is the most basic reaction for MgSt synthesis, and 

was noted in Kahner’s 2017 review as one of two methods to make MgSt.(17) The 

second reaction, shown in Equation 1-2, is a two-step reaction published by Miller and 

York in 1985, Ertel et al. 1987 and Rajala et al. in 1995. (23-25)  

 



 5 

 2 H-St + Mg(OH)2 à Mg-St2 + 2 H-OH   Equation 1-1 
 

2 H-St + 2 NaOH à 2 Na-St + MgCl2 à Mg-St2 + 2 NaCl   Equation 1-2 
 

Parts of the reaction shown in Equation 1-2 has subsequently been patented by 

Mallinckrodt for manufacturing use with high ratios of stearate to prepare the dihydrate 

form of MgSt with a plate morphology. (26, 27) It is noted that other alternative salts may 

be substituted for NaOH and MgCl2 in Equation 1-2. In particular, Wu at Mallinckrodt 

has also presented the same synthesis reaction substituting MgSO4*7H2O for the 

MgCl2.(28) As Mallinckrodt recognized, the most important effect of chemical 

composition appears to be its effect on the hydrate form produced during synthesis.(29) 

Marwaha and Rubenstein suggested that the alignment of fatty acid chains in a crystal is 

governed by the chain length in the crystal packing structure, which would affect the 

shearing potential of MgSt.(30)  

Fatty acid composition has not yet been systematically investigated in relationship 

to dissolution and lubrication. To facilitate that study, the relationships between fatty acid 

composition and crystal form needs to be addressed. Also, the differences between the 

two synthesis methods for MgSt have not been defined in terms of their effects on the 

properties of MgSt produced. Chapter 4 addresses some of these questions around 

relationships between fatty acid composition and crystal form, in the context of MgSt 

synthesis. Of particular interest is the forms produced by the two known reaction 

methods, using varying fatty acid ratios.   

 
1.2.2   Hydration State, Crystal Forms and Pseudopolymorphism 

 

Magnesium stearate is currently known to exist in multiple pseudopolymorphic 

forms, but it has taken a few decades to reach this point. Back in 1977, Mueller et al. 

noticed that the amount of water in a MgSt sample was related to its lubrication 

properties, and that thermal drying can change its polymorphic properties. They 

suggested that drying changes the crystal structure from an orthorhombic or monoclinic 

crystal structure to hexagonal structure.(31) A few years later, Miller and York began 
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their investigation into physical characterization of MgSt powders by preparing and 

characterizing pure magnesium stearate and magnesium palmitate samples, without 

mixing fatty acids. They identified that both pure samples were associated with two 

molecules of water, and suggested that synthesis conditions such as pH played a role in 

hydration state.(25) Ertel and Carstensen also studied the physical properties of pure 

MgSt throughout the 1980s.(24, 32, 33) They determined that preparation conditions 

affect the hydration state and modifying the relative humidity (RH) can convert to a 

different hydration state. For example, heating at 105 °C led to water loss as well as 

crystal lattice collapse. In addition, they noted the importance of the long spacing of the 

crystal lattice structure, which is dependent on the hydration state.(18) Wada specifically 

looked at MgSt pseudopolymorphism and hydration using differential scanning 

calorimetry (DSC),(34) but it was not until 1997 that Sharpe et al. appears to be the first 

to identify the pseudopolymorphs as anhydrate, dihydrate and trihydrate (but without 

mention of a monohydrate form).(35) They proposed structures for the dihydrate and 

trihydrate phases based on the long crystal spacing from x-ray powder diffraction 

(XRPD) and deduce that the pseudopolymorphism is a result of “changes in the angle of 

inclination of the hydrocarbon chains relative to the plane of the Mg atom head groups, 

brought about by the water content in the lattice.”(35) Bracconi et al. performed a 

thorough XRPD investigation of two commercial lots without single crystals in an 

attempt to fully elucidate the crystal structure.(36) Their subsequent differential scanning 

calorimetry (DSC) evaluation of the same two lots did not “fully clarify the relation 

between thermal and structural properties.”(37) Although the single crystal structures of 

MgSt forms are still elusive, Delaney et al. showed that SSNMR can uniquely and 

reliably identify the different crystalline forms of MgSt. Five forms were identified as 

anhydrous, ordered monohydrate, dihydrate and trihydrate forms and an additional 

disordered monohydrate.(38) In terms of form conversions, Swaminathan and Kildsig 

published a schematic in 2001 showing conversions between the different hydrate 

forms,(39) which was updated to include the monohydrate form in a presentation by Wu 

et al. along with extensive evaluation of MgSt dihydrate properties from a commercial 

manufacturer’s point of view.(28)  
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The ability to identify MgSt crystalline forms using 13C SSNMR (Delaney et al.) 

is critical, as it not only allows for identification of the existing hydrate variability, but 

also provides a foundation for studying hydrate form interconversions, as well as the 

observation of MgSt forms in tablet formulations before and after processing.(38) 

Chapter 3 presents characterization data for MgSt, emphasizing the power of SSNMR to 

distinguish between crystal forms of MgSt and laying a foundation for the remainder of 

this research. Additionally, Chapters 5 and 6 take another step in furthering the 

understanding MgSt form conversions. 

 

1.2.3   Particle Size and Surface Area 

 

In addition to chemical composition variability and pseudopolymorphism 

variability, the particle size and surface area of MgSt have been investigated for their 

impact on MgSt performance variability.  

In 1984, Frattini and Simioni reported a correlation between MgSt surface area 

and tablet ejection force. (40) Hoelzer also published on “batch to batch variations of 

commercial magnesium stearate” focusing on surface area variations.(5) Phadke et al. 

suggested that particle size analysis would be a potential way to evaluate batch-to-batch 

variation in MgSt, and also studied the degassing effects on MgSt, associated with 

surface area analysis, hypothesizing that lower surface area after degassing could be due 

to hydrate form conversion.(41, 42) In 1996, Barra and Somma tested 13 commercial 

samples which showed a range of results with minimal correlation, although chemical 

composition, particle size/ surface area and crystal form were all believed to be 

significant contributing variables affecting MgSt function.(8) A study of MgSt surface 

area by Andres et al. in 2001 recognized the need for an improved understanding of MgSt 

isotherm mechanisms and degassing effects,(43) followed by Koivisto et al. who noted in 

2004 that although all hydrate forms converted to anhydrous at 105 °C, the hydrate 

surface area isotherms did not properly fit with BET theory, the standard method of 

surface area analysis. (44) Extensive investigation of the degassing of MgSt has recently 
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been undertaken by Lapham and Lapham, revealing dehydration and unreliable surface 

area results with degassing as low as 40 °C.(45, 46)  

In the Lapham 2019 paper, the surface area and isotherms of four commercial 

samples were analyzed before and after degassing at temperatures ranging from 30 – 110 

°C. The hydration state of the starting materials was determined from thermogravimetric 

analysis (TGA) weight loss and vacuum drying, with assumptions of anhydrous and 

hydrated forms based on weight loss temperatures. Looking closely at isotherms and low 

pressure hysteresis, the differences in adsorption/desorption isotherms for the samples 

were found to be related to the hydrated water in the starting form for each batch and a 

swelling effect causing adsorbate to be entrapped in the sample during the adsorption 

process.(45-47) The Lapham work stops short of relating the dehydration changes to 

MgSt crystal forms. This next step in understanding the dehydration of MgSt required a 

technique which can readily identify the crystal forms of MgSt. 13C SSNMR enables this 

type of study and the form changes of MgSt with dehydration were clearly identified in 

Chapter 6. 

 

 

1.3   Effects of Processing on MgSt 

1.3.1   Mixing 

 

In addition to the physicochemical properties of MgSt, processing conditions 

affect MgSt functional properties. The most important aspect of processing for MgSt is 

formulation mixing time. It is well-known that short mixing times for MgSt result in poor 

distribution of MgSt, but Ragnarsson et al. showed that this did not hurt lubrication 

efficiency in 1979.(49) However, longer mixing times with MgSt did affect tablet 

strength.(49) In 1993, Ong et al. compared surfactants mixed with MgSt in formulation 

blends and showed drug-excipient interactions taking place with extended mixing.(50) 

Chaudhuri discussed cohesion and mixture homogeneity with a description of the mixing 

model, finding that for free-flowing mixtures, higher mixing speed enhances mixing.(51) 

Virtanen showed that tablet crushing strength decreased with mixing time, and scale-up 



 9 

conditions led to a greater decrease in tablet strength.(52) Then in 2010, Perrault et al. 

used gamma ray detection to investigate the blending mechanisms of mixing performance 

of MgSt and sodium laurel sulfate with a V-blender. The results indicated that shear 

mixing (blender rotational speed and fill volume) was more important than dispersive or 

convective mechanisms of blending.(53) Kushner followed with a mixing model for 

Turbula blenders using 1% MgSt.(54) Jojart analyzed the optimal mixing time and 

Turbula speed using energy dispersive x-ray fluorescence analysis.(55) Nakamura et al. 

determined ideal mixing time and MgSt amount based on the relationships between 

Carr’s flowability index and practical angle of internal friction with tablet properties. It 

was found that powder flowability correlated with mixing time and tablet properties (but 

not with MgSt concentration).(56) A 2018 study by Horibe et al. used three different 

scales of V-type blenders to study mixing and lubrication with MgSt. Mixing time 

efficiency was determined to be related to the travel distance of the particles in the 

different blenders.(57)  

In all of these studies, ranging from effects of colloidal silica and surfactants, 

mixing models, gamma ray detection of MgSt in tablets and flowability index, it was 

assumed that all MgSt lots will behave the same way. However, the previous three 

sections have shown significant variability in MgSt sample properties that can affect 

performance. A discussion of the effects of hydrate form on mixing would be a good 

addition to this discussion of the effects of processing on MgSt. 

 

1.3.2   Chemical Reactions and Disproportionation 

 

Another aspect of processing involves the effect of water to mediate chemical 

reactions between MgSt and the salt of an API, such as with disproportionation reactions. 

A disproportionation reaction is where a salt converts back to the free form, particularly 

for systems where the slurry pH of formulation needs to be greater than pHmax of the salt 

of a weak base.(58, 59) In 2009, Guerrieri and Taylor introduced disproportionation of 

salts in the solid state as an important topic in pharmaceutical science, identifying 

solubility and pHmax as important parameters for understanding disproportionation.(60) 
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Stephenson et al focused their efforts on understanding the importance of pHmax, pH 

microenvironment and Gibb’s free energy, trying to determine what pH is too low to 

develop a salt. They concluded that active pharmaceutical ingredients (APIs) with low 

intrinsic solubility and low pKa are likely to disproportionate and John et al. noted that 

carboxylate groups with pKa above the pHmax of the salt are likely to disproportionate. 

(61) Hygroscopicity, alkalinity and stearate particle size were also found to impact the 

extent of disproportionation, as well as deliquescence of reaction products such as 

MgCl2.(62-64)  

With the basic theory of disproportionation established, the research turned to 

elucidating which materials promoted and hindered disproportionation. John et al. 

investigated several excipients for disproportionation likelihood. Formulations containing 

MgSt had a high water uptake above 31% RH and MgSt was the most likely to cause 

disproportionation because the disproportionation reaction yields the deliquescent MgCl2 

as a reaction product.(65) Merritt et al. performed quality by design (QbD) modeling for 

thirteen drugs in four formulations with XRPD and SSNMR analysis(66) while Wray et 

al. and Ewing et al. used NIR imaging and Raman mapping to study disproportionation 

during dissolution.(67, 68) Nie et al. studied the impact of polymers on 

disproportionation and investigated ways to stop or reduce disproportionation of 

Pioglitazone HCl (pHmax 2.8). In addition to using acidic pH modifiers such as maleic 

acid, crystalline solid dispersion with HPMC-AS was found to slow disproportionation of 

PIO HCl.(69) Further study by this group investigated the disproportionation of metallic 

stearates including MgSt, calcium stearate (CaSt) and sodium stearate (NaSt).(64) MgSt, 

CaSt and NaSt are stearate soaps with different counter ions, with NaSt being the most 

commonly used soap. It was suggested that sodium stearate (NaSt) may be an adequate 

lubricant to replace MgSt when disproportionation is a concern. Thakral studied the role 

of solubility and developed a flow chart to describe when to expect disproportionation 

based on the system conditions,(70) followed by a review of disproportionation from a 

material science perspective.(71) Koranne et al. investigated PIO-HCl mixtures with 

various excipients using synchrotron x-ray diffractometry to study disproportionation in 

tablets. It was found that MgSt showed greatest disproportionation followed by 

croscarmellose sodium. The reaction was mediated by water, initiated at the surface of 
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the tablets, and there was correlation between microenvironment pH acidity and 

disproportionation extent.(72) Patel et al. studied disproportionation using surface 

topography analysis and suggest that salt crystal structure plays a role in a drug’s 

propensity to disproportionate.(73) Hirsh et al. are recently using 35Cl SSNMR to 

quantify the disproportionation of Pioglitazone HCl in reaction with MgSt.(74)  

The tendency to disproportionate is important to consider when formulating with 

MgSt and basic salts in the lower pKa range. However, there have been no studies so far 

investigating the effect of MgSt hydrate forms or other physicochemical properties on the 

extent of disproportionation. Additionally, SSNMR might easily be used to follow 

disproportionation reactions. It is also interesting to note that much of the 

disproportionation investigation comes out of industry, with Merck, Eli Lilly, BMS, 

Amgen and Pfizer all represented. 

 

 

1.4   Effects of MgSt on Functional Properties 

1.4.1   Effects of MgSt on Lubrication 

 

Lubrication is the primary function of MgSt in pharmaceutical formulations. That 

is, a lubricant reduces friction by forming a film between two surfaces and is easily 

sheared.(2) MgSt has been used as a lubricant for many years and was recognized to 

reduce ejection force in 1979.(49) A review of lubrication was done by Moody et al. in 

1981,(2) defining MgSt as a low shear strength laminar solid that adheres to the 

lubricated surface with the polar head, with the long hydrophobic fatty acid chains toward 

the opposing surfaces. MgSt is considered to be an effective lubricant due to its high 

melting point and good shear properties, as well as being able to reduce static charges in 

the formulation powder.(75) Shear strength has been measured using punch 

penetration,(76) but shear strength evaluations have not found correlations with 

lubricity.(77) One mechanism of action says that the lubricating film for MgSt is thought 

to be only one or two molecules thick.(2) It has also been shown by SEM that in granule 

lubrication, MgSt can fill the particle cavities and spaces between the lubricated 
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surfaces.(78) Johannson et al had previously showed that granular MgSt had better tablet 

properties than powdered MgSt when used at 2-5%. At low concentrations, powdered 

MgSt works better to prevent adhesion to punch faces.(79)   

In 1988, Vromans et al. reported that MgSt did not always lubricate the same 

way. This was attributed to differences in particle size and surface area, flowability and 

mixing process.(80) Mixing time has often been implicated in MgSt lubrication 

performance.(81, 82) Many other studies have investigated the effects of different MgSt 

lots on lubrication properties. Marwaha et al. studied various % of St:Pa related to 

compression and ejection properties,(30) Ertel and Carstensen correlated MgSt fatty acid 

composition, moisture content and surface area with lubricant properties for three 

monohydrate commercial samples and three pure MgSt anhydrous, dihydrate and 

trihydrate samples.(33) Hussain looked at dissolution using different grades of MgSt.(83) 

Leinonen et al. noted that it was hard to make correlations because for most samples, too 

many properties varied at the same time, but they did find a correlation with particle 

size/surface area and lubricity.(84) Particle size and crystalline structure were found to 

impact the lubrication properties of MgSt in the thirteen commercial batches studied by 

Barra and Somma.(8) Six commercial samples and their physical properties were tested 

for lubrication efficiency using a texture analyzer in a study by Rao et al. again finding 

that particle size/surface area and crystal form impact lubrication.(85) Okoye, Hamad, 

Wu and Lugge also showed lubrication effects varied with hydrate form.(9, 86-88) A 

recent review by Kahner discusses the impact of hydration states on MgSt lubrication and 

demonstrates that more work is needed to understand the properties of the different forms 

and their effects on tablet performance.(17)  

None of these studies was designed to isolate and control the range of 

physicochemical properties of a variety of MgSt samples. In order to further the 

understanding of MgSt properties on lubrication, the crystal form needs to be 

deconvoluted from the other properties. Chapter 9 begins to address this by looking at the 

effect of crystal form on lubrication properties.  
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1.4.2   Effects of MgSt on Dissolution 

 

Dissolution is an important functional property for pharmaceutical formulations. 

It is known since before 1963 that MgSt causes slowed dissolution of API 

formulations(89) and that formulation mixing time and compression force, as well as the 

amount of MgSt in the formulations affect the dissolution rate.(90, 91) The mechanism of 

MgSt lubrication was investigated and the effect of MgSt on mixing time and 

compression force has been attributed to lamination and adhesion of MgSt to the other 

particles in the formulation, along with the flaking of MgSt causing an increase in surface 

area.(90, 92) Hussain et al. suggested that the extent of surface coverage of the 

hydrophobic film on the particles is the most important factor in affecting 

dissolution.(83) Patra et al. studied the effect of MgSt concentration and granule size on 

the dissolution rate of ciprofloxacin HCl and found that a hydrophobic lubricant like 

MgSt decreases the drug-solvent interface, causing slower dissolution due to decreased 

wettability and increased dissolution rate with smaller granules.(93) Possible interactions 

with MgSt have been explored for their effects on dissolution, including the addition of 

colloidal silica by Johansson et al.,(94) the interactions of surfactants with MgSt during 

mixing,(50) and the interaction of MgSt with HPMC-AS in ASDs and hydrogen bonding 

with itraconazole ASDs.(95, 96) The effects of acidic media was also investigated by 

Ariyasu et al. and indicates conversion of MgSt to stearic acid during dissolution.(97, 98) 

Additionally, other lubricants were explored as alternatives to MgSt, including calcium 

stearate,(98) glycerin fatty acid esters,(99, 100) Stear-o-Wet,(101) talc.(102) Hussain, 

York and Timmins compared the dissolution of paracetamol tablets with different grades 

of MgSt. No relationship between physical properties such as surface area and dissolution 

was found at the conditions used in their study.(83) In 2013, Okoye et al. observed 

differences in dissolution between naproxen and acetaminophen when comparing MgSt 

dihydrate, monohydrate and anhydrate forms.(87)  

In general, it is known that MgSt particle size and surface area can affect 

dissolution of tablet formulations. However, the relationship of surface area with 

dissolution is not well-defined, possibly due to other factors also contributing to the 



 14 

behavior of formulations containing MgSt. A definitive study of the influence of MgSt 

crystal forms on dissolution has not yet been published. 

 

 

1.5   Conclusions and Next Steps 

 

In conclusion, there has been significant research on many aspects of MgSt. 

However, there remains a lot to do. One of the primary knowledge gaps seen throughout 

the literature is a difficulty identifying crystal form. Without a technique to clearly 

identify the crystal forms, it is difficult to deconvolute the effects of form from the other 

physical properties, or to understand the relationships of the physical properties of MgSt 

with each other. It has also been challenging to monitor the forms of MgSt in a 

formulation, since MgSt is added to the formulation in a low amount. 13C SSNMR 

addresses both of these issues by allowing straight-forward identification of MgSt crystal 

forms, paving the way for the study of MgSt forms in pharmaceutical formulations.  

The theme of the present research is understanding the variability between 

different MgSt materials, as it relates to tablet function, with a focus on crystal forms. 

Investigations of the impact of MgSt physicochemical properties (chemical composition, 

hydrate crystal forms, particle size and surface area) on the functional properties of 

tablets in terms of dissolution and lubrication will be the subject of the following 

chapters.  

Chapter 2 is a discussion of solid-state NMR (SSNMR) theory and methods 

employed during this research. Chapter 3 is an adaptation of a paper focusing on the 

characterization of MgSt. In this paper by Delaney et al., SSNMR is shown to clearly 

identify five different forms of MgSt, paving the way for easier study of MgSt hydration 

states and crystalline forms. Chapter 4 discusses the synthesis of MgSt, showing the 

trends in crystal form produced with differences in fatty acid composition and synthesis 

method conditions. Chapter 5 discusses form conversions between the different MgSt 

crystal forms and the conditions required to affect the form conversions, specifically the 

effects of temperature, relative humidity and rehydration. Chapter 6 takes a further step to 

understand the MgSt form conversions that may result from drying and dehydration, for 
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surface area analysis. Chapter 7 describes the method development process for a 

discriminating dissolution method for MgSt in tablet formulations, followed by Chapter 8 

with an investigation into the effects of physicochemical properties (chemical 

composition, crystal forms, particle size and surface area) on dissolution of indomethacin 

tablet formulations. Chapter 9 is an investigation of the effects of MgSt hydrate form on 

the lubrication properties of ejection force, tensile strength, compactibility and 

compressibility. Chapter 10 has conclusions and next steps, followed by Appendices 

including tables of MgSt samples and their properties. 

 

 



 
 

CHAPTER 2.   BACKGROUND ON SOLID-STATE NMR 
SPECTROSCOPY 

 

SSNMR is one of the primary analysis techniques used in this work. For 

magnesium stearate (MgSt), 13C SSNMR gives the clearest and most straight-forward 

distinction between crystal forms, compared to the other analytical techniques used to 

probe crystallinity. Using SSNMR to evaluate the crystal forms of MgSt, it was possible 

to separate and study the complicated and often convoluted properties of MgSt. Without 

SSNMR it has previously been impossible to accurately characterize the form of MgSt in 

tablets. Using 13C labeled stearate and palmitate, MgSt and Mg palmitate were 

synthesized to enhance the 13C level in the samples, enhancing the sensitivity by 

increasing the population of 13C in the samples. Using this technique, tablets containing 

MgSt at a level of 1% in the formulation can be easily detected by SSNMR. This enabled 

the analysis of MgSt crystal form changes in tablets before and after processing. Another 

SSNMR experiment used in this research was 1H T1 relaxation values, which were found 

to show important correlations with fatty acid composition, water content and other 

properties of MgSt, as well as useful information relating to structural order. Overall, 

SSNMR proved to be a critical part of this research work with MgSt. However, since it is 

a technique that is much less widely understood compared to the other analytical 

techniques, such as diffraction scanning calorimetry (DSC), gas chromatography (GC), 

etc., it is important to describe the essential components of solid-state NMR as it relates 

to MgSt characterization. 

This chapter will give an introduction to the basic theory of NMR, as well as basic 

SSNMR concepts as it applies to pharmaceutical industry, with special attention to 

techniques which are used in this dissertation research. For a more comprehensive study 

of SSNMR theory, the reader is directed to other sources.(103-106)  
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2.1   Basic NMR Theory 

2.1.1   Nuclear Magnetic Resonance 

 

Nuclear magnetic resonance is a technique that measures how nuclei in a 

magnetic field respond to an electronic pulse resonating at the same frequency. 

Specifically, nuclear magnetic dipole moments interact with the external magnetic field, 

providing chemical information on the sample. Nuclei contain protons and neutrons 

surrounded by electrons. In a strong magnetic field, B0, the nuclei are moving charges, 

which creates a nuclear magnetic dipole moment, µ. All nuclei have a spin quantum 

number, I, which are quantized and can be 0, 1 or multiples of ½ (I = ½, 1, 3/2, 2, 5/2, 

etc.). There are 2I +1 possible spin states for a nucleus. Nuclei with spin quantum 

numbers greater than 0 possess nuclear spin angular momentum, P, and are considered 

NMR active. In this dissertation, only 1H and 13C will be discussed, which are both spin 

½ nuclei.  

The spin angular momentum, P, is proportional to the spin quantum number, I, 

and the nuclear magnetic dipole moment, µ, according to Equation 2-1.  

 

   µ = g  P = g  I  !    Equation 2-1 
 

where h is Planck’s constant and g is the gyromagnetic ratio, specific to each type 

of nucleus. This means that nuclei having angular momentum with nuclear spin are like 

tiny bar magnets, precessing about the applied magnetic field at a frequency 

corresponding to the angular momentum of the nuclear spin. The rate of precession is 

called the Larmor frequency and is proportional to the external magnetic field, B0, and 

the gyromagnetic ratio, g. The gyromagnetic ratio is an indication of the magnitude of the 

interaction between nuclei, according to Equation 2-1: 

 

   P = B0  g      Equation 2-2 
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For a 1H nucleus in a 7.05 T magnetic field, the Larmor frequency will be 300 MHz, 

while a 13C nucleus in the same magnetic field will precess at 75 MHz.  

In an external magnetic field, the spin states of spin ½ nuclei split into m = + ½ 

and m = – ½, and their magnetic moments are aligned with and against the magnetic 

field. The spins that are aligned with the magnetic field have lower energy and the spins 

aligned against B0 have higher energy.  

 

   

Figure 2-1. Model of precessing nuclear spins in a magnetic field, B0, for a spin ½ nuclei 
with m = + ½ and m = - ½.   

 

There is a slight population difference between lower energy and higher energy states, 

which is governed by the Boltzmann distribution (see Figure 2-2):  

 

    DN0 = NeDE/kT     Equation 2-3 
 

where N is the number of nuclei present, DE is the energy between the two spin states, k 

is the Boltzmann constant and T is temperature. The slight excess of spins in the lower 

energy state allows for nuclear magnetic resonance to occur when a nucleus can change 

its spin state by absorbing energy equal to: 

 

    DE = hn = g ! B0   Equation 2-4  
 

where n is the resonance frequency, or Larmor frequency. Applying a pulse at the 

resonance frequency, n, excites the spins to absorb energy. The energy is also related to g 

and B0. A stronger external magnetic field, B0, increases the population difference of 

nuclei in the two spins states and increases the sensitivity of the NMR signal. The 

population difference between NMR states is very small, on the order of 10-6 compared 

m =#+#½# m =#& ½#

B0
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with other spectroscopic techniques such as IR with population difference on the order of 

108. As a result, NMR is a relatively insensitive technique requiring high magnetic fields 

as a primary way to enhance sensitivity.  

 

 

Figure 2-2. Diagram illustrating the splitting of nuclear spin states in a magnetic field. 
There will be a slight population difference between the states, according to the 
Boltzmann distribution of spins.  

 

In an NMR experiment, a sample is placed inside a coil in a static external 

magnetic field. A radiofrequency pulse at the Larmor frequency is applied to the coil, 

perturbing the precessing spins and creating an alternating current in the coil surrounding 

the sample. The 90 ° radiofrequency pulse is applied at the resonance frequency and 

interacts with the nuclear spins, pushing the nuclear spin from rotating around the z-axis 

to rotate around the x-axis. This excites the nuclei to absorb energy, DE, and a signal is 

recorded as the sample returns to equilibrium. The resonating signal rings out with all the 

frequencies in the sample. The decaying resonance signal is collected as a free induction 

decay (FID) in the time domain, which is then amplified and processed through Fourier 

transform into an NMR spectrum in the frequency domain.(107, 108)   

NMR is an inherently quantitative technique with the signal, S and magnetization, 

M0, directly proportional to the number of nuclei in the sample, N:  

 

!E"="" h"B0

m"="( ½"

m ="+"½"

I"="½"

B0 >"0B0 = 0

Increasing external magnetic field,"B0
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   S ~ M0 = N(g !)2 B0 /4kT    Equation 2-5 
 

where N is the number of nuclei in the sample, k is the Boltzmann constant and T is 

temperature.  

The relative amounts of two ingredients in a sample can be determined by 

comparing the ratios of the peak signals. Equation 2-5 illustrates that sensitivity is 

enhanced with higher external magnetic field and lower temperatures. The 

proportionality to N means that using isotopically-labeled material can have a significant 

effect on sensitivity. Throughout this dissertation, 13C labeled magnesium stearate is used 

to enhance the sensitivity of the carbonyl peak of MgSt when it is used low levels in 

tablets. Additionally, signal-to-noise is proportional to the square of the number of scans, 

so increasing the signal by a factor of two requires four times the number of scans. 

 

2.1.2   Chemical Shift 

 

The most common use of NMR is to determine the chemical structure of a 

molecule based on the resonance frequency of the nuclei. The resonance frequency is 

usually plotted as the difference from a reference standard in parts per million (ppm). The 

chemical shift was first observed by Arnold et al. in the 1950s when distinct 1H 

resonances were observed for ethanol, following the discovery of nuclear magnetic 

shielding(109). Nuclear magnetic shielding refers to the effect of electrons moving 

around the nucleus. When the negatively charged electrons circulate around the nucleus, 

a magnetic field is induced which changes the local magnetic field of the nucleus. The 

same type of nuclei experiencing a slightly different electronic environment can have 

different resonance frequencies, since magnetic field around the nucleus is affected by 

both the external magnetic field, B0, and the local magnetic field from the orbiting 

electrons around each individual nucleus. The local magnetic field lowers the total 

magnetic field experienced by the nucleus, lowering their Larmor frequencies, and this 

effect is called shielding. Small differences in local magnetic field between different 

nuclei in a molecule result in slightly different magnetic shielding, referred to as chemical 
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shift. Differences in electronegativity of different functional groups in a molecule affect 

the magnetic shielding and determine the chemical shift. In this way, the chemical shifts 

of peaks in the NMR spectrum are dependent on the electronic environments of the nuclei 

in the sample. The electronic environment can be affected by the electronegativity of the 

attached atoms/functional groups, the molecular conformation of the molecule (or crystal 

packing in solids), and the ionization state of the molecule and interactions between 

molecules (such as hydrogen bonding). As noted before, chemical shifts are the peak 

positions of the nuclei in the sample, reported in parts per million (ppm) with respect to a 

reference peak. The frequency of the nuclei in Hz with respect to the external magnetic 

field in MHz gives the value in ppm. 13C chemical shifts typically range from 0 – 200 

ppm, while 1H chemical shifts typically range from 0 – 10 ppm.  

Lower ppm chemical shift values in the NMR spectrum indicate stronger 

shielding, so methyl and aliphatic carbons have lower chemical shifts. In a 13C NMR 

spectrum, aliphatic carbons generally have a chemical shift of 10 – 40 ppm, alcohols are 

50 – 70 ppm and aromatics are typically found in the range 110-150 ppm. Carboxyl and 

carbonyl carbons experience greater deshielding due to the electronegativity of the 

attached oxygen atoms and are usually in the 160 – 200 ppm chemical shift range. 

 

 

2.2   Solid-State NMR Spectroscopy 

 

Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is an important 

analytical tool in pharmaceutical science. It is non-destructive, selective and quantitative 

and can be used to aid understanding of the structure and molecular dynamics of a solid 

material, particularly as it relates to identifying polymorphic forms. Solid-state NMR is 

unique in being able to provide information on structure (chemical identification), order 

(crystalline form) and dynamics (through relaxation properties). However, there are a few 

important differences between solution and solid-state NMR.(110)  

The chemical shift is orientation dependent, causing an important difference 

between solution NMR and solid-state NMR. In solution, molecules are able to move 

freely, resulting in sharp peaks with high resolution. In contrast, solids are rigid with 
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fixed orientation with respect to the magnetic field, leading to chemical shift anisotropy 

(CSA). CSA means that there is a distribution of chemical shifts, resulting in broad peaks 

and poor resolution in the solid state.  

Several techniques are commonly used in solid-state NMR to alleviate the effects 

of CSA and line broadening, which will be discussed here: magic angle spinning (MAS), 

high powered dipolar decoupling (DD), cross polarization (CP) and total spinning 

sideband suppression (TOSS). 

 

2.2.1   Magic Angle Spinning (MAS) and Total Sideband Suppression (TOSS) 

 

One of the causes of CSA in the solid state is the rigid structure of solid materials 

that do not move freely in space compared to molecules in solution. The observed 

chemical shift is described by Equation 2-6:  

 

   sobs = siso + saniso (3 cos2 q -1)  Equation 2-6 
 

where sobs is the observed chemical shift, siso is the isotropic component of the chemical 

shift and saniso is the anisotropic component of the chemical shift. Magic angle spinning 

is a technique where the sample is placed in the magnetic field at an angle of 54.7°. The 

magnetic pole of the proton nucleus sits at an angle of 54.7°.(110, 111) The nucleus 

cannot line up straight with the B0 field and instead precesses around the B0 axis. When 

the sample is spun at this angle, it spends equal amounts of time oriented at the x, y and z 

axes and most of the anisotropy averages to zero. Mathematically, the anisotropic 

contribution to sobs  in Equation 3 goes to zero when q = 54.7°. Samples are typically 

spun at rates between 2 kHz and 100 kHz, depending on the rotor size and capability of 

the sample probes holding the sample. When the spinning rate is changed, the width of 

the spinning sidebands changes, but the position of the isotropic chemical shift, siso, does 

not move with variable spin speeds. The spinning rate used for the experiments discussed 

in this dissertation is 4kHz.  
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When samples are spun at a spinning rate faster than the width of the anisotropic 

chemical shift, the anisotropic contribution is zero and a single peak is observed for the 

chemical shift. If the sample spinning is slower than this, a residual anisotropic peak 

intensity can manifest, called spinning sidebands. Spinning sidebands are observed on 

both sides of a peak at a distance equal to the spinning speed. These spinning sidebands 

can be mathematically removed using a pulse sequence called TOtal Suppression of 

Spinning Sidebands (TOSS). Using MAS and TOSS together produces a spectrum with 

only the isotropic chemical shifts present.(112) 

 

2.2.2   High-power Decoupling 

 

High-power decoupling is another technique to minimize the effects of peak 

broadening in the solid-state NMR spectrum. Dipolar decoupling is when two or more 

nuclei interact through space, with the magnetic moment of one nucleus interacting with 

the magnetic moment of another neighboring nucleus. Again, the fast molecular motion 

of molecules in solution averages out to zero, but the effect of dipolar decoupling is 

pronounced in solids with rigid molecular structure. Dipolar decoupling can be 

homonuclear (i.e. between 1H – 1H or 13C – 13C) or heteronuclear (i.e. 1H – 13C). The 

interactions are very strong, causing large line broadening in the solid state, so SSNMR 

primarily focuses on 13C analysis. The chance of 13C – 13C coupling is small due to the 

low relative abundance of 13C, but the dipolar decoupling effect of 1H – 13C is significant. 

The dipolar coupling effect is strongest for CH > CH2 > CH3 and less for quaternary 

carbons. In solution, the effects are averaged to zero, but anisotropy is seen in solids due 

to the fixed orientation dependence.  

High power 1H decoupling sequences such as Spinal 64 or two-pulse phase 

modulated (TPPM) sequences can be used to minimize this effect, giving narrower peaks 

and better resolution. In the decoupling phase of such an experiment, the magnetic 

moments are prevented from interacting by pulsing such that the nuclei are flipped back 

and forth between the up and down states very fast in order to average the dipolar 
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interaction to zero. The experiments in this work are performed using a Spinal 64 high 

power decoupling sequence. 

 

2.2.3   Cross Polarization 

 

Low sensitivity of the 13C nuclei is addressed in NMR by the cross-polarization 

technique. Cross-polarization (CP) is used to improve the sensitivity of SSNMR for low-

abundance nuclei such as 13C, which has only 1.1% natural abundance. During CP, the 

magnetization of a high abundance nucleus (i.e. 1H, 99.9% natural abundance) is 

transferred to a low abundance nucleus (i.e. 13C, 1.1% natural abundance). The increase 

in magnetization transfer from 1H to 13C is proportional to the gyromagnetic ratios and 

results in a gain in sensitivity of four for 1H to 13C.(113) A 90 ° pulse is applied at the 

proton resonance frequency, causing the magnetization to align in the xy plane. Then the 

phase of the pulse is rotated by 90 ° to lock the spins in the xy plane. At the same time, a 

pulse is applied to the resonance frequency of the 13C spin, for a specified “contact time”.  

When the pulse times and power levels are chosen according to the Hartmann-Hahn 

matching equation (see below), cross polarization is achieved. That is, the spins precess 

at the same frequency, allowing them to interact for the specified contact time. During 

CP, magnetization is transferred from the high abundance nuclei (1H) to the low 

abundance nuclei (13C), thereby increasing the sensitivity of the low abundance nuclei 

being detected. The Hartmann-Hahn matching condition is given as: 

 

   gH BH = gC BC     Equation 2-7 
 

where gH is the gyromagnetic ratio of the 1H nucleus,  gC is the gyromagnetic ratio of the 
13C nucleus, and BH and BC are the magnetic strength applied to the 1H and 13C nuclei, 

respectively. 

Using CP, the magnetization transfer rates are not the same for every nucleus in 

the sample. This means that CP is not quantitative without special considerations, which 

will be discussed in section D. This property also means that CP can be used for spectral 
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editing purposes, such as when a sample contains a solvent that is not chemically bound 

to the molecule of interest. CP can filter out the more mobile parts of the sample by 

varying the contact time. Using shorter contact times (i.e. 50 µs instead of 2 ms), CP will 

not transfer the magnetization of the more mobile carbons in the sample, such as unbound 

solvent and some CH3 peaks that relax fast. Using these techniques, the cross polarization 

can be exploited to understand the sample in greater detail. 

 

 

2.3   Relaxation 

 

SSNMR is a versatile technique which not only gives chemical structure 

information, but also information about the dynamics of a sample.(114) This information 

on sample dynamics (i.e. sample mobility) can be probed through relaxation experiments, 

three of which are discussed here. Relaxation is a term used to describe the process in 

NMR where the nuclear spins in a sample return to equilibrium after an NMR pulse. This 

usually happens through spin-lattice relaxation (T1), spin-lattice relaxation in the rotating 

frame (T1,rho) and spin-spin relaxation (T2).  

Spin-lattice relaxation (T1), also called longitudinal relaxation, occurs when the 

spins relax after a 90 ° pulse. In other words, the nuclear spins that were excited to a 

higher spin state during the pulse lose their energy and the population difference of the 

nuclear spin states returns to what it was before the pulse. The magnetization of the T1 

relaxation is described by Equation 2-8: 

 

   DN = DN0 (1-e-t/T1)     Equation 2-8 
 

where DN is the population difference, DN0 is the population difference at thermal 

equilibrium, and t is the recycle delay time. Note that DN is proportional to the 

magnetization of the spins. The relaxation decay is an exponential process where the T1 

value can be measured using a saturation recovery experiment or inversion recovery 

experiment. In a saturation recovery experiment, the spins are allowed to return to 

equilibrium after a pulse. The time, t, is varied and the time to return to 63% of 
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equilibrium is taken as the T1 value. In order to acquire quantitative data, the spins must 

fully relax between scans. This requires five times the T1 time. For non-quantitative 

analysis, the highest signal with the best signal-to-noise comes from using a recycle delay 

of approximately 1.2 times the T1 value.  
1H T1 relaxation happens through a process of spin diffusion. In spin diffusion, 

the magnetization of a nuclear spin is transferred to a neighboring spin through dipolar 

coupling. When one spin changes from + ½ to – ½ , it prompts the next one to change, 

and next and the next, until it reaches the end of the domain or edge of the particle. As a 

result of this spin diffusion, all the spins in a homogeneous sample have the same 1H T1 

time. Spin diffusion also allows for the measurement of domain sizes, and is related to 

particle size, in solid samples. 1H T1 values are used for the experiments shown here and 

were acquired using CP. For magnesium stearate samples, the 1H T1 value is related to 

the crystal hydration state, as well as disorder and crystal defects originating from 

processing conditions.  

Additionally, the 1H T1 values are typically much shorter than 13C T1 values, 

allowing for more scans in a shorter period of time, due to shorter relaxation time 

between scans. This greatly decreases the amount of time required for a 13C SSNMR 

experiment. The T1 relaxation experiment will be discussed in the next section. 
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Figure 2-3. T1 Relaxation Experiment. The magnetization intensity is plotted as a 
function of recycle delay time. The data is fitted to an exponential curve to determine the 
T1 value.   

 

Spin-spin relaxation (T2), also called transverse relaxation, describes the 

relaxation after the 90° pulse, when the magnetization fans out  in the x-y plane. The 

magnetization is losing coherence in the x-y plane and T2 is the time it takes to return 

back to equilibrium. It occurs prior to T1 relaxation and if the T1 is set shorter than the T2, 

then the T1 is affected by the T2 loss in coherence. The FID is dependent on the T2 and a 

longer T2 relaxation rings out longer in the FID, which is the order of milliseconds in 

solids. T2 is proportional to the line width (line width ~ 1/T2), being much longer in 

solution than in solids.  

T1,rho is the relaxation in the rotating frame (i.e. when the magnetization is spin-

locked in the yz plane). It can give information on dynamics in a system and is often used 

along with T1 to evaluate miscibility of mixed samples such as amorphous solid 

dispersions. T2 and T1,rho values are both shorter than the T1 relaxation, but effects of 

T1,rho on magnetization transfer can be seen when the CP contact time is varied. Offerdahl 

et al. describes quantitation of neotame using 13C SSNMR CP experiments where the CP 

contact time is varied. The magnetization of variable contact time experiments decays 

according to the T1,rho relaxation. Extrapolating back to contact time of zero corrects for 
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the variability in CP magnetization transfer between different nuclei. This allows for 

quantitation of different forms in a solid sample, specifically using the CP variable 

contact time method for quantitation of the various forms of MgSt in tablet formulations. 

 

 

2.4   Pharmaceutical Applications of SSNMR 

 

There are several reviews discussing solid-state NMR applications to 

pharmaceutical science.(114-119) Using SSNMR, there is a sensitivity trade-off between 

sample size, sidebands from the MAS spinning rate and magnet size. Larger samples 

provide more molecules to increase the signal based on the number of nuclei in the 

sample between spin states. Spinning sidebands can be eliminated by spinning fast, but 

spinning at ultrafast spin rates can be physically challenging. Consider that 4 kHz is 

250,000rpm, which is slow for SSNMR but 100X faster than a car engine. Smaller rotors 

can spin faster, but smaller samples have a lower number of nuclei, and therefore produce 

less signal. Large magnets can increase sensitivity, but cost is often prohibitive. Overall, 

in the current state of the field, 400 - 600 MHz magnets seem to be the sweet spot to 

balance between MAS rates and sample size.  

In a pharmaceutical setting, the most useful nuclei to study with solid-state NMR 

are 13C, 1H, 19F, 15N, 31P and 23Na. Table 2-1 shows some basic SSNMR data for these 

nuclei, including natural abundance and relative sensitivity, which are very important for 

choosing a nucleus that will give sufficient signal for useful analysis. The practical notes 

indicate nuclei-specific considerations. Proton (1H) is highly abundant and highly 

sensitive, allowing for single pulse experiments, but the resolution of peaks in the solid 

state is often very poor, requiring fast spinning to eliminate dipolar coupling. Carbon 

(13C) is the most common nuclei used, but it has low abundance and low sensitivity, and 

several accommodations are needed to get useful data, including magic angle spinning 

(MAS), cross polarization (CP), dipolar decoupling (DD) and total sideband suppression 

(TOSS). Nitrogen (15N) has lower abundance and sensitivity than carbon, but can supply 

information about ionization and pKa information if accommodations such as CP, MAS, 

DD are used. Fluorine (19F), with high abundance and high sensitivity, has been gaining 
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popularity in pharmaceutical settings in recent years, since fluorine is becoming more 

commonly incorporated into drug molecules. It can be ran using single pulse or DD 

experiments and is often ideal for quantification studies. Phosphorus (31P) has high 

abundance and low sensitivity, requiring only CP to obtain good signal. Sodium (23Na) 

has high abundance and is useful for studying Na salts, but has a quadrupolar spin which 

results in line broadening. Many other nuclei can be studied using SSNMR, but these 

nuclei are the most relevant to drug development and have NMR properties that facilitate 

their common use in pharmaceutical industry.(120)   

 
 

Table 2-1. NMR Information for Selected NMR-active Nuclei  
Nuclei % Natural 

Abundance  
Relative  
Sensitivity 

Gyromagnetic  
Ratio (MHz/Tesla) 

Frequency 
at 7.05 T 

Practical 
notes* 

1H 99.99 1 42.58 300 Fast spinning 
Single pulse 

13C 1.13 0.016 10.71 75.4 Most common 
CP/MAS/DD/
TOSS 

15N 0.37 0.001 -4.32 30.4 Ionization, pKa 
CP/MAS/DD  

19F 100 0.83 40.05 282.3 Quantitation  
Single pulse or 
HPdec 

31P 100 0.0663 17.24 121.4 High abund, 
Low sens CP  

23Na 100 0.0927 11.26 79.4 Quadrupolar 
spin 3/2  

*Note that all nuclei require magic angle spinning (MAS) 
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3.2   Abstract 

 

Magnesium stearate (MgSt) is the most popular pharmaceutical excipient used in 

tablet formulations. MgSt is the fatty acid salt of stearic acid and often is a mixture of 

fatty acid salts, such as palmitic acid. Additionally, there are several reported crystal 

forms. It is used as a powder lubricant in tablet formulations, typically added at a level of 

0.5 – 2% and is typically mixed into the formulation as the last step, with a controlled 

mixing time. Inadequate lubrication results from too low an amount of MgSt or too short 

a mixing time, too much MgSt or excessive mixing time often results in slower 

dissolution rates. Switching between MgSt samples with variability in the properties of 

MgSt can cause variable performance of samples with the same mixing time, so it is 

important to understand the variable properties of MgSt. Several advanced analytical 

techniques were used to characterize the properties of commercial MgSt and synthesized 

MgSt samples. Solid-state NMR (SSNMR) was able to uniquely identify several crystal 

forms of MgSt. Several additional techniques also showed correlations with MgSt crystal 

form, including thermogravimetric analysis (TGA), differential scanning calorimetry 

(DSC) and scanning electron microscopy (SEM). 

 

 

3.3   Introduction 

 

Magnesium stearate (MgSt) is the most popular pharmaceutical excipient used in 

tablet formulations. It is included as an excipient in over half of the tablet formulations on 

the market, and is an effective solid lubricant, reducing the friction between the 

formulation powder and manufacturing equipment during the tableting process. (23, 121, 

122) Chemically, MgSt is the fatty acid salt of stearic acid and often is a mixture of fatty 

acid salts, such as palmitic acid. The chemical structure of magnesium stearate is given in 

Figure 3-1. It is a di-salt of Mg, with Mg2+ ionically bonded with the carboxyl ends of 

two stearic acid (C18) fatty acid chains.  
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 Figure 3-1. Chemical structures of magnesium stearate, the magnesium di-salt of stearic 
acid, with chemical formula of Mg(C18H35O2)2.  
 

MgSt has been used as a solid lubricant in pharmaceutical tablet formulations 

since its introduction in 1970 by Hansen et al.,11 typically added at a level of 0.5 – 2% 

and is mixed into the formulation as the last step, with a controlled mixing time. 

Inadequate lubrication and tableting issues such as picking and sticking results from too 

low an amount of MgSt or too short a mixing time, (123-126) while too much MgSt or 

excessive mixing time often results in slower dissolution rates and potential 

bioavailability problems.(126-128) The proposed mechanism for MgSt is that it provides 

a hydrophobic coating on the surface of the drug and other excipients in the formulation, 

acting to reduce friction and lubricate on the one hand, and simultaneously inhibit 

dissolution on the other.(129)  

Although MgSt is very popular and investigated extensively,(33, 130) the 

complex nature of the crystal forms and hydration state of MgSt is still not well 

understood.(7) There are at least five different crystal forms of MgSt: an anhydrous form, 

a disordered form and three hydrate forms: monohydrate, dihydrate and trihydrate form. 

Delaney et al. have suggested that the disordered form is a monohydrate, ordered on the 

fatty acid end of the molecules, rather than the carbonyl end. Some MgSt samples, 

including many commercial samples, exist as mixtures of two or more forms. 

Distinguishing between crystal forms to identifying and/or quantifying these crystal form 

mixtures can be challenging using many traditional analytical techniques. For instance, 

results from XRPD are often complicated by the variability in chemical composition 

between MgSt samples. Other techniques provide results which are not specific. As an 
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example, TGA analysis provides information about dehydration temperatures and total 

water content, but not about where the water is located in the crystal lattice.  

In addition to the variety of crystal forms that may exist in a MgSt sample, the 

chemical composition can also vary. As noted earlier, the salt of the fatty acid (e.g. 

stearate) is present in MgSt, but the fatty acid may also be described using the acid form 

(e.g. stearic acid) and the two notations are used interchangeably in this work. 

Traditionally, MgSt is found as a natural product in both plants and animals, but 

pharmaceutical use is restricted to plant-based MgSt. (43) According to United States 

Pharmacopeia (USP) monograph for MgSt, at least 40% of MgSt must be derived from 

stearic acid (C18) and > 90% must come from a combination of stearic and palmitic 

acids. This allows for the remaining 10% to come from other fatty acids with varying 

chain lengths, including myristic, margaric, arachidic, etc.(19) Any crystal form can exist 

in any fatty acid combination and the chemical composition was found to vary with 

commercial suppliers. MgSt forms crystals in lipid bilayers with MgSt with the long fatty 

acid chains aligned together and the hydrophilic carboxylic acid groups aligned with the 

magnesium ions on the other end. (34, 131) The different hydrates are thought to 

incorporate water molecules into the crystal lattice between and around the magnesium 

ions.(36)  

Many investigations have attempted to understand the effects of MgSt on tablet 

properties, (132-135) York and coworkers were among the first to thoroughly investigate 

MgSt properties. Their early work focused on characterization of the synthesized 

dihydrate form of  MgSt, as well as the pure stearate and pure palmitate materials. (136, 

137) Later studies focused on tableting properties, finding that commercial MgSt samples 

affected the dissolution more than the pure stearate samples.(83, 138-140)  

Back in 1977, Mueller et al. noticed that the amount of water in a MgSt sample 

was related to its lubrication properties and that thermal drying can change its 

polymorphic properties. Their work investigating the pseudopolymorphism and crystal 

structure of MgSt(141) led to an interest in the hydration state and polymorphism of 

MgSt by many groups.(23, 24, 30, 33, 36, 131, 136) The most detailed study by Brittain 

and coworkers used DSC, PXRD and microscopy to analyze three forms of MgSt: the 

anhydrate, dihydrate, and trihydrate forms of pure magnesium stearate and magnesium 
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palmitate.(35) Their analytical and thermal investigation suggested that the dihydrate 

water of hydration is bound more tightly than the trihydrate water of hydration.   

In a 2005 paper, Bansal and coworkers thoroughly characterized six different 

MgSt lots by DSC, TGA, XRPD, particle size, morphology, specific surface area, optical 

microscopy and Fourier-transform infrared spectroscopy.(85) The lubrication 

performance of their six samples suggested that the interplay of particle-level 

characteristics (particle size, larger specific surface area, and plate-like crystal habit) 

were more important than molecular level characteristics in terms of lubrication potential. 

This interplay of characteristics highlights possible causes of lubrication issues when 

using MgSt.  

This chapter focuses on the variability that exists in MgSt samples using advanced 

analytical techniques to characterize MgSt materials from both commercial and lab-

synthesized sources. In addition, this work incorporates 13C solid-state NMR (SSNMR) 

spectroscopy(142) of MgSt, a non-destructive and quantitative technique that can provide 

detailed information about not only structure and form quantification, but also 

miscibility,  and mobility through 1H T1 relaxation values. The results show that 13C 

SSNMR can uniquely identify the distinct crystalline forms of MgSt, and these forms 

correlate well with other analytical techniques such as DSC, TGA, and PXRD. 

 

 

3.4   Materials and Methods 

3.4.1   Materials 

 

Eight magnesium stearate samples were obtained from six different commercial 

sources: Alfa Aesar (lots H03W054 and C01Y019), MP Biomedicals (lot 75281), Chem-

Impex International (lot 6301123019902), Acros Organics (lots A0288107 and 

A0235781), Sigma Aldrich (lot STBC0861V), and Fisher Scientific (lot 740042). The 

samples will be identified by their source and lot, as needed. 
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3.4.2   Synthesis of MgSt 

 

The dihydrate form of MgSt was synthesized by dispersing a combination of 

stearic, palmitic, and other fatty acids (~0.1 mole) in 600 mL of Milli-Q water previously 

heated to 90 °C.  Ammonium hydroxide solution (14.8 N) was added drop wise until the 

solution reached a pH of 9, generating a fatty acid soap with the stearic/palmitic acids.  

MgSt was precipitated out of solution by the addition of a stoichiometric excess of MgCl2 

* 6H2O.  Finally, the magnesium stearate was isolated by vacuum filtration and was 

washed with acetone and water for 24 hour periods.(24, 30)  Although ammonium 

hydroxide was used for this work, sodium hydroxide could also have been used to change 

the pH.(24, 131)  Utilizing sodium hydroxide for the reaction results in a sodium soap 

being formed which is then replaced by the magnesium ions with the addition of the 

MgCl2. 

A second method for synthesizing magnesium stearate, specifically magnesium 

stearate monohydrate, has been developed. In this synthesis, ~0.1 mole of a combination 

of stearic, palmitic, and other fatty acids was placed into a beaker with a stir bar and was 

heated in an oil bath to ~90 °C.  Once the fatty acids are melted, ~650mg of Mg(OH)2 

(Sigma Aldrich) was added to the melt followed shortly by 10mL of Milli-Q water to 

precipitate the magnesium stearate. The final product was washed with water for 24 hours 

and allowed to air dry (placing sample in a vacuum oven at 25 °C can also be done to 

hasten the drying process). 

The anhydrous form of MgSt was made by placing the dihydrate form in an oven 

overnight at 105 °C, while the trihydrate form of MgSt was made by placing the 

anhydrous form in a container with a relative humidity of 75% or greater (although other 

studies have determined that 50% RH will also produce the trihydrate).(131)  The 

disordered monohydrate form can be made by placing a monohydrate sample in the oven 

at 105 °C for two or more hours. 
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3.4.3   Solid-state NMR Spectroscopy 

 

SSNMR spectra were acquired at ambient conditions using a Tecmag Redstone 

spectrometer (Tecmag, Inc., Houston, TX) operating at 100.57 MHz for 13C (9.4 T static 

magnetic field). Samples were packed into 7 mm zirconia rotors and sealed with Teflon 

or Kel-F end caps (Revolution NMR, LLC, Fort Collins, CO). Experiments were 

performed using a 7 mm double resonance MAS probe (Varian, Palo Alto, CA). All 13C 

spectra were acquired under MAS(143) at 4 kHz, using ramped-CP(144), TOSS(145), 

and SPINAL64 decoupling(146) with 1H decoupling field about 66 kHz. A 1.5 ms 

contact time was used in all experiments. 3-methylglutaric acid (MGA) was used for 

optimizing spectrometer and as an external standard, with the methyl peak referenced to 

18.84 ppm(147).  Spectra were acquired with a 3 – 5 second pulse delay (~1.5 - 2 times 

the measured T1 value).  
1H T1 relaxation values were measured using a saturation-recovery experiment 

through 13C observation. In the Fourier-transformed spectra, the peak of interest was 

integrated and plotted against recovery delay times and the values were fitted to the 

following equation: 

 

   	
  	
  𝑀𝑀 = 𝑀𝑀$ × &1 − 𝑒𝑒
* +
,-.    Equation 3-1  

 

where M is the integrated signal intensity and 𝜏𝜏 is the recovery delay time. M0 is an 

amplitude parameter obtained from the fit and T1 is the obtained spin-lattice relaxation 

time. 

 

3.4.4   Thermal Analysis 

 

DSC thermograms were acquired using a Q2000 differential scanning calorimeter 

equipped with an RCS90 refrigerated cooling system (TA Instruments, Newcastle, DE). 

Nitrogen was used as the purge gas at a flow rate of 50 mL/min. Temperature and 
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enthalpy were calibrated using indium. Samples (~2-5mg) were placed in TZero 

aluminum pans and sealed with TZero aluminum hermetic lids with one pinhole (TA 

Instruments, New Castle, DE).  Samples were heated at 10 °C/min from room 

temperature to 200 °C. Data were processed using Universal Analysis software (TA 

Instruments, Newcastle, DE). 

A Q50 thermogravimetric analysis system (TA Instruments, Newcastle, DE) was 

used for investigation of the water content, i.e. hydration state, of the magnesium stearate 

samples. Nitrogen was used as the purge gas at a flow rate of 40 mL/min for the balance 

and 60 mL/min for the samples. Temperature was calibrated using a nickel standard and a 

magnetic bar for the Curie Point Temperature. Weight was calibrated using standard 

weights (200mg and 1g).  Approximately 10mg of sample was placed on a platinum pan 

and heated at 10 °C/min from room temperature to 200 °C. The total weight loss from 

room temperature to ~125 °C was analyzed for water content. 

 

3.4.5   X-ray Powder Diffraction 

 

Differences in the hydrate form of magnesium stearate samples were also 

investigated using a powder X-ray diffractometer (MiniFlex 600, Rigaku Corporation, 

Japan) with Cu K𝛼𝛼 radiation operating at 40 kV and 15mA. Samples were scanned from 

a 2𝜃𝜃 of 2-45° at the rate of 2°/min and a step size of 0.02°. 

 

3.4.6   Scanning Electron Microscopy 

 

Scanning electron microscopy (SEM, Hitachi S-4300) was used for visual aid and 

particle size approximations in the investigation of the commercial samples. The SEM 

used a cold-cathode field emission filament type and has SE/BSE/EBSD detectors 

attached. The image resolution was secondary electron (1.5 nm). Various images were 

taken between 500x and 10000x zoom, although only the 1000x images are shown 

herein. 
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3.5   Results and Discussion 

3.5.1   Synthesized MgSt Samples 

Thermal data (DSC thermograms and TGA gravimetric weight loss) for the five 

forms of MgSt are shown in Figure 3-2. The TGA weight loss for the monohydrate form 

indicates ~ 3.0% water, with ~ 6% for the dihydrate and ~ 9% for the trihydrate. The 

observed weight loss amounts are consistent with the expected stoichiometric weight loss 

of ~ 3%  weight loss per water molecule associated with the MgSt, with slight variations 

depending on fatty acid composition. The weight loss temperature range for the 

monohydrate, dihydrate and trihydrate are 100 - 125 °C, 80 - 110 °C and 60 - 80 °C, 

respectively. The dehydration difference between the hydrates suggests a difference in 

thermal stability between the mono-, di- and tri- hydrate forms. The disordered form 

shows a similar amount of total water loss as the monohydrate (~3%), but the weight loss 

event is much broader than for the hydrates. The monohydrate water loss is measured 

from around ~100 °C to 125 °C and the disordered weight loss is measured from 25 °C to 

125 °C, since it begins losing water at a much lower temperature compared to the 

monohydrate. This can be an indication of surface bound water for the disordered form, 

rather than hydrated water bound in the crystal lattice.  

The DSC thermograms show thermal transitions for the mono-, di-, and trihydrate 

forms, where the trihydrate has a dehydration onset around 60 °C, the dihydrate around 

80 °C and the monohydrate has the highest transition with dehydration onset around 90 

°C. Both the trihydrate and the dihydrate have a secondary transition with a peak around 

120 °C, potentially indicating that there is a second thermal event occurring for these 

samples. It is possible that this is a conversion to monohydrate and the onset is obscured 

by the first transition. The disordered form and the anhydrate form have low temperature 

thermal events, occurring around 55-70 °C. The early transition for the disordered form 

appears to be a glass transition, with a subsequent melting onset matching the anhydrate 

melting onset around 130 °C. This is supported by the observation that the disordered 
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form converts to the anhydrous form upon extended heating above 100 °C. The low 

temperature transitions in both the disordered and anhydrous samples are consistent with 

the idea that a disordered structure around the fatty acid head group does not retain the 

water as effectively as the ordered crystalline forms. 

 

 

Figure 3-2. Differential Scanning Calorimetry (DSC) thermograms and 
Thermogravimetric Analysis (TGA) gravimetric weight loss plots for the five different 
forms of MgSt.  DSC thermograms from top to bottom: Disordered, Anhydrate, 
Monohydrate, Dihydrate, and Trihydrate.  TGA plots from top to bottom (at 175° C): 
Anhydrate, Disordered, Monohydrate, Dihydrate and Trihydrate. Figure used with 
permission. 
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Figure 3-3 shows the X-ray powder diffraction (XRPD) patterns of the five forms 

of MgSt. In general, the peaks for the monohydrate, dihydrate and trihydrate forms are 

slightly sharper than the peaks for the disordered and anhydrous forms. The disordered 

and anhydrous forms do not show a broad amorphous halo, but each has several poorly 

crystalline peaks, consistent with a partially ordered crystal structure. It appears that the 

XRPD analysis of the crystal structure of these materials may be complicated due to the 

differences in ordered and disordered structures in the carbonyl and the aliphatic regions 

of the fatty acid chains, respectively. Diffraction peaks in the 10 – 30 degrees 2q region 

show clear differences in the diffraction patterns for the mono-, di- and tri- hydrate forms, 

allowing for identification of the different pure hydrate forms. However, other studies 

have shown that the peak positions can change depending upon fatty acid 

composition.(85, 131) Additionally, many MgSt samples are mixtures of forms. These 

variations in fatty acid composition and/or crystal forms make it very challenging to rely 

on XRPD to identify the form of MgSt. 
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Figure 3-3. Powder X-ray diffraction patterns (PXRD) of the five different forms of 
magnesium stearate.  Patterns from top to bottom: Disordered, Anhydrate, Monohydrate, 
Dihydrate and Trihydrate. Figure used with permission.  
  

The 13C CP/MAS NMR spectra of five crystalline forms of MgSt  are shown in 

Figure 3-4. These materials were prepared according to the synthesis methods described 

earlier. The spectra can be divided into two sections. The left side shows the chemical 

shift region 170 – 190 ppm, which corresponds to the carbonyl carbon of the fatty acid 

chain. Four of the samples show sharp peaks, indicating an ordered, crystalline region 

around the carbonyl carbon. The fifth spectrum shows a broad peak, indicating disorder 

and a lack of long-range order in the carbonyl region. It has been designated 
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“disordered,” rather than amorphous, due the apparent order in the aliphatic region. 

Multiple peaks for the carbonyl carbon indicate multiple molecules in the 

crystallographic unit cell. The dihydrate appears to have two molecules in the unit cell, 

while the anhydrate and monohydrate appear to have six molecules in the unit cell.   

 

 

Figure 3-4. 13C CP/MAS SSNMR spectra of five forms of magnesium stearate.  The 
spectra show the carbonyl region (170–200 ppm) and the aliphatic region (10-50 ppm), as 
there are no other peaks in the spectrum.  The forms are denoted in the figure by their 
hydration state, except for the disordered form, which is identified based on the disorder 
in the carbonyl region. 
 

The aliphatic region of the spectrum (10 – 50 ppm) shows distinct peaks 

corresponding to the C2, C3, C4-(n-2), Cn-1 and Cn carbons. The n designation refers to the 

carbon on the end of the fatty acid chain, e.g. n=18 for stearic acid, and n=16 for palmitic 

acid. The chemical shifts of the aliphatic carbon peaks can be observed for C2 (~38 – 41 

ppm), C3 (~28 ppm), C4-(n-2) (33 – 36 ppm), and Cn-1 (~25 ppm). The methyl carbon of the 

fatty acid chain, Cn, has a chemical shift around ~14 ppm in the aliphatic region of the 

spectrum. The fatty acid ratio affects the sharpness of the Cn peak, with pure samples 

having sharper peaks and mixed fatty acid samples having broader peaks in the aliphatic 

region. Pure fatty acid samples are expected to have sharper peaks than mixed fatty acid 
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samples, due to the overlap of peaks from different fatty acids (i.e. the C2 peaks of stearic 

and palmitic). The synthesized samples in Figure 3-4 are relatively pure mixtures, and the 

sharper peaks in the aliphatic region reflect this.  

 

Figure 3-5 shows the TGA weight loss and 1H T1 relaxation times for several 

monohydrate, dihydrate and disordered samples prepared in the lab. The low water 

content of the disordered samples reflects the fact that they were prepared by drying, as 

well as the extent of drying. The disordered samples also have the lowest 1H T1 relaxation 

times reflecting the lack of order in the sample particles. The monohydrate and dihydrate 

samples have TGA around 3% and 5.5% water loss, respectively. The corresponding 1H 

T1 relaxation times for the monohydrate cluster around 3s, while the dihydrate 1H T1 

relaxation times range from 5 – 17 s. It is interesting that the points for each form cluster 

together, suggesting distinctly different structural properties for each form. Figure 3-6 

shows that the scatter in the dihydrate 1H T1 relaxation values appears to be impacted by 

the fatty acid composition (% stearate), with lower 1H T1 relaxation values correlating 

with lower stearate content. This suggests a higher amount of order in the dihydrate 

samples with higher stearate content and lower order in the mixed fatty acid samples. The 

lack of spread in 1H T1 relaxation values for the monohydrate suggests that the order in 

monohydrate crystal structure is less affected by fatty acid composition, likely due to 

higher mobility in the carbonyl region due to relaxation sinks. It appears that the higher 

amount of water in the MgSt crystal structure gives the molecules less mobility and leads 

to longer relaxation times. Additionally, the 1H T1 relaxation values in Figure 3-5 are 

notably higher than those observed for the commercial samples, indicating that the 

particles in the samples have less order, possibly from smaller particles or other 

processing that may have affected the order in the commercial samples.  
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Figure 3-5. TGA weight loss and 1H T1 values for lab-synthesized MgSt samples, 
comparing pure monohydrate, pure dihydrate and disordered forms.  
 

 

Figure 3-6. 1H T1 relaxation values for MgSt dihydrate samples prepared with varying 
compositions of stearic acid.  
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The 13C SSNMR of a representative dihydrate sample from each stearate: 

palmitate composition is shown in Figure 3-7 with the 1H T1 relaxation values listed in 

Table 3-1. The carbonyl region (160 – 190 ppm) indicated the double peaks characteristic 

of the dihydrate form of MgSt, with no obvious differences in crystal form between fatty 

acid compositions. However, the aliphatic region (0 – 50 ppm) showed a trend with fatty 

acid composition, particularly with the methyl peak ~ 14 ppm. The 100:0 St:Pa spectrum 

showed a single, sharp methyl peak. Notably, the C16 peak of the pure palmitate (0:100 

St:Pa) sample also has a single, sharp peak. For the mixed fatty acid concentrations, a 

broader, double peak was observed, indicating a mixture of stearate and palmitate, with 

the C18 and C16 methyl carbons having slightly different chemical shifts. The 

implication of this is that fatty acid composition differences can be detected in the 

aliphatic region of the 13C SSNMR spectrum, and the extent of fatty acid mixture is 

reflected in the lower relaxation times. 

 

Table 3-1. 1H T1 relaxation values for lab-synthesized dihydrate samples 
St:Pa 1H T1 (s) Std dev 
0:100 11.3 n/a 
40:60 8.5 n/a 
66:34 5.8 1.3 
80:20 6.8 0.3 
90:10 10.5 1.1 
100:0 15.0 2.1 
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Figure 3-7. 13C SSNMR for lab-synthesized dihydrate samples with various St:Pa 
compositions  
 

This section has shown the different forms of MgSt may be identified by 13C 

SSNMR, DSC, TGA, and XRPD. Additionally, it is shown that 13C SSNMR is the only 

technique which can easily identify the unique forms of MgSt for samples when mixtures 

of fatty acids and form are present in the sample. 13C SSNMR also makes it possible to 

quantify mixtures of forms in MgSt, based upon the carbonyl region of the spectrum. 

Additionally, 1H T1 relaxation times appear to generally correlate with TGA weight loss 

for the different forms, with a possible influence of fatty acid composition on 1H T1 

relaxation times. 
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3.5.2   Commercial MgSt Samples 

 

Eight samples of MgSt from several different suppliers were characterized for 

physical form, to determine the typical variety of forms present in commercial MgSt 

materials. The 13C SSNMR spectra of these eight commercial MgSt is shown in Figure 

3-8. The two Alfa Aesar samples have a disordered form, as indicated by the broad peak 

in the carbonyl region between 170 – 200 ppm. The spectra of the Fisher and Acros 

A0235781 samples show a distinctive pattern of 6 peaks shown 178 – 184 ppm region, 

which corresponds to the monohydrate form. The spectra from MP Biomedicals, Chem-

Impex, Aldrich and Acros A0288107 samples show mixtures of monohydrate and 

dihydrate. The clear distinction between the monohydrate peaks and the two dihydrate 

peaks between 185 – 187 ppm allows for quantification of the forms in these samples, 

although quantitation analysis was not performed for these samples.  

In addition to the differences in the carbonyl region, there are also differences in 

the aliphatic region of the spectra. The disordered Alfa samples appear to have a sharper 

peak at the methyl group ~ 14 ppm, indicating increased order in the aliphatic end of the 

molecules. If the fatty acid chains are ordered in the aliphatic region, it could explain the 

disorder observed in the carbonyl region. However, all of the other aliphatic peaks are 

also broad, suggesting that the structure of the disordered material is not straight-forward. 

In the C2 region, differences between the monohydrate and dihydrate are observed, with 

several peaks for the monohydrate in the 38 – 41 ppm region, but only the samples 

showing dihydrate in the carbonyl region have a C2 peak at 36 ppm.  
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Figure 3-8. 13C CPMAS NMR spectra of the eight samples of commercial magnesium 
stearate.  The spectra show the carbonyl region (170–200 ppm) and the aliphatic region 
(10-50 ppm), as there are no other peaks in the spectrum. The samples are denoted in the 
figure by their source and, if two samples were obtained from the same source, lot 
number. Used with permission from Delaney et al.  
 

The 1H T1 relaxation times for the carbonyl peaks in the commercial samples 

were also measured and shown in Figure 3-9. A higher 1H T1 relaxation time typically 

indicates higher order in the crystal. The low 1H T1 values for the disordered samples are 

consistent with this idea, having 1H T1 values of 0.8 ± 0.2 s and 0.9 ± 0.2 s. Comparing 

the relaxation times for the mixed samples, we see that the dihydrate peaks have different 

relaxation times than the monohydrate peaks, indicating that the forms are not intimately 

mixed in the sample. Because the 1H T1 relaxation times are different for the two sets of 

peaks, these two forms are not intimately mixed at the 50 nm level in these samples.(148) 

It is likely that the samples are mixtures of monohydrate and dihydrate particles rather 

than crystals with large domains of both forms.  
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Figure 3-9. 13C CPMAS NMR spectra of the carbonyl region (170–200 ppm) of the eight 
samples of commercial magnesium stearate. The 1H T1 relaxation times for the 
monohydrate and dihydrate peaks are shown in the figure. Figure used with permission 
from Delaney et al.  
 

Figure 3-10 shows the DSC thermograms for the eight commercial samples. The 

forms observed in the thermograms for these samples are consistent with the DSC results 

in Figure 3-2. The Alfa Aesar samples assigned as disordered form from SSNMR show 

broad thermal events in the DSC and broad weight loss of ~ 3% in the TGA plots. The 

Acros and Fisher samples, which are both designated as monohydrates, have thermal 

events with onset around 105 °C, as well as weight loss events around the same 

temperature. The four samples with mixtures of monohydrate and dihydrate have 

overlapping peaks in the DSC thermograms consistent with the dehydration events 

described for the pure MgSt forms in Figure 3-2. These four monohydrate-dihydrate 

mixtures also show at least two weight loss dehydration events in each TGA plot, 

corresponding with the relative amounts of dihydrate and monohydrate present in each 

sample. From the DSC, the qualitative amount of dihydrate in the mixed form samples is 

MP Biomedicals > Chem-Impex > Acros ~ Aldrich, which is consistent with the SSNMR 

data. Although in general, it is possible to correlate the thermal data with the known 

forms of the MgSt samples, it is very challenging to identify the forms in the mixtures 
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from the complicated thermograms alone. Using the SSNMR and thermal data together, 

the differences between the forms of MgSt can be clearly identified and quantified.  

 

 

Figure 3-10. Differential Scanning Calorimetry (DSC) thermograms and 
Thermogravimetric Analysis (TGA) gravimetric weight loss plots for the eight samples 
of commercial magnesium stearate. DSC thermograms from top to bottom are listed by 
source and lot number, but are ordered as: Disordered, mixtures of dihydrate and 
monohydrate going to monohydrate. TGA plots from top to bottom are plotted in the 
same color as the DSC thermograms. Figure used with permission. 

 



 51 

XRPD diffraction patterns for the eight commercial samples are shown in Figure 

3-11. There are a few differences that can be observed between the samples, particularly 

between the disordered and monohydrate forms. The two Alfa Aesar samples show broad 

peaks indicating disorder, while rest of the samples have multiple sharp peaks. The 

Aldrich and Acros monohydrate samples show slight differences from the 

monohydrate/dihydrate mixtures, with the appearance of a peaks around 23° 2𝜃𝜃 and 30° 

2𝜃𝜃 indicates the dihydrate form. The relative ratios of the peaks for the Acros A0235781 

and Fisher monohydrate samples initially appear different, but this is likely due to 

preferred orientation in the sample preparation. Overall, the mixture of monohydrate and 

dihydrate forms is difficult to deconvolute using XRPD.  
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Figure 3-11. Powder X-ray diffraction patterns (PXRD) of the eight samples of 
commercial magnesium stearate.  Patterns are labeled based upon their source and lot 
number. Figure used with permission. 
 

This section has presented data characterizing the physical forms of eight 

commercial MgSt samples. DSC and TGA thermal data indicate differences between 

MgSt samples having different forms, but it is difficult to interpret mixtures of forms. 

XRPD also shows differences between samples having different forms, but mixtures of 
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forms and samples of mixed fatty acid compositions were difficult to interpret. In 

contrast, 13C SSNMR was able to clearly distinguish between monohydrate, dihydrate 

and disordered forms in the commercial MgSt samples. 

 

 

3.6   Conclusions 

 

This chapter presented solid-state characterization for eight commercial MgSt 

samples and five lab-synthesized samples having five different pure forms of MgSt. Five 

different crystalline forms of MgSt were identified using 13C SSNMR. The TGA water 

loss dehydration peaks were used to assign the proposed hydration states for 

monohydrate, dihydrate and trihydrate samples. DSC and XRPD data were consistent 

with SSNMR form trends and it was possible to identify the forms, especially for the pure 

forms. However, it is much more challenging to distinguish and/or quantify for mixtures 

of MgSt forms with traditional techniques, compared with 13C SSNMR. The additional 

correlation of 1H T1 relaxation values with TGA weight loss and potentially fatty acid 

composition may provide insight into structural aspects of the various forms.  
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4.2   Abstract 

 

Magnesium stearate (MgSt) is a popular pharmaceutical lubricant, but batch-to-

batch variations in physical properties can cause variability in performance. In order to 

understand the variability of MgSt properties, it is important to understand how MgSt is 

prepared and the effects of various factors on the crystal form produced from the 

synthesis reaction. Two synthesis reactions were investigated: the “melt method”, a one-

step spontaneous reaction of magnesium hydroxide with melted stearic and palmitic acids 

and the “bath method”, a two-step reaction involving addition of magnesium chloride to 

ammonium stearate soap. Samples of MgSt were prepared to investigate various reaction 

conditions: 1) including the effect of fatty acid content on the crystal form produced for 

both methods, 2) the amount of reaction water for the melt method, 3) reaction 

temperature for the bath method and 4) drying method. It was found that the synthesis 

method, fatty acid composition and reaction temperature all affect the crystal form 

yielded from synthesis, where high stearate content at 70 ° with the bath method is most 
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likely to produce the dihydrate form and 50:50 ratio of fatty acids at 90 °C with the melt 

method is likely to produce the monohydrate form. Addition of 10 mL of water during 

the melt reaction appeared to aid formation of the monohydrate form. In terms of drying, 

the monohydrate sample was less affected by drying method than the dihydrate and 

mixed form samples. The air-drying condition was found to affect the synthesized form 

the least and the nitrogen drying tends to dehydrate the dihydrate form. Overall, synthesis 

conditions likely to produce pure monohydrate and pure dihydrate were determined.  

 

 

4.3   Introduction  

 

The variability of MgSt can be a result of several key factors that influence the 

physicochemical properties (fatty acid composition, crystal form/hydration state and 

particle size) of the material, all of which are related to preparation and processing: 

synthesis conditions, mixing, milling and form conversion and/or stability conditions. In 

order to understand the variability of MgSt, it is important to understand the effect of 

each of these factors. The synthesis is the first step in the material preparation process 

and will be the primary focus in this chapter.  

A wide range of chemical composition is allowed for magnesium stearate 

samples. The USP monograph for MgSt allows for “variable proportions of magnesium 

stearate and magnesium palmitate”(19). To meet USP standards, the MgSt sample must 

be derived from at least 40% stearic acid and at least 90% of the sample must come from 

a combination of stearic and palmitic acids. The remaining 10% of the sample may be 

derived from other fatty acids, such as myristic, pentadecanoic, margaric, arachidic and 

behenic acids. This leads to a Mg metal content between 4-5%, depending on the chain 

lengths of the fatty acids and their ratios. The content of stearic and palmitic acids in a 

MgSt sample can be determined using a boron trifluoride-methanol extraction method to 

convert the stearate and palmitate to their methyl esters and separate and identify them 

using GC-MS. (19-22) Although commercial MgSt samples have a range of chemical 

compositions, and USP has set broad guidelines for chemical composition requirements, 

several researchers have suggested that within these guidelines the fatty acid composition 
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does not seem to affect lubrication. Interestingly, Rajala et al. found that two lots with 

similar chemical composition behaved very differently, possibly due to their hydration 

state differences.(23) The significance of fatty acid composition in relation to synthesis is 

being investigated and reported here.  

The synthesis preparation of MgSt has been described in the literature using two 

basic reaction methods. Equation 1-1 is the most basic reaction for MgSt synthesis, and 

was noted in Kahner’s 2017 review as one of two methods to make MgSt.(17) The 

second reaction, shown in Equation 1-2, is a two-step reaction published by Miller and 

York in 1985, Ertel et al. 1987 and Rajala et al. in 1995. (23-25)  

 

  2 H-St + Mg(OH)2 à Mg-St2 + 2 H2O  Equation 4-1 
 

2 H-St + 2 NaOH à 2 Na-St + MgCl2 à Mg-St2 + 2 NaCl  + H2O Equation 4-2 
 

Aspects of the reaction shown in Equation 4-1 and Equation 4-2 have 

subsequently been patented by Mallinckrodt for manufacturing use with high ratios of 

stearate to prepare the dihydrate form of MgSt with a plate morphology. (26, 27) It is 

noted that other alternative salts, such as NH4OH, may be substituted for NaOH in 

Equation 4-2. Additionally, Mallinckrodt has also presented the same synthesis reaction 

substituting MgSO4*7H2O for the MgCl2.(28) As Mallinckrodt recognized, the most 

important effect of chemical composition appears to be its effect on the hydrate form 

produced during synthesis.(29) Marwaha and Rubenstein suggested that the alignment of 

fatty acid chains in a crystal is governed by the chain length in the crystal packing 

structure, which would affect the shearing potential of MgSt.(98) This chapter addresses 

some of the trends observed in MgSt synthesis, for both reaction methods, using varying 

fatty acid ratios. 
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4.4   Materials and Methods 

4.4.1   Materials  

 

Stearic and palmitic acids were purchased from TCI. Magnesium hydroxide, 

ammonium hydroxide and magnesium chloride were purchased from Fluka (St. Louis, 

MO) , JT Baker (Radnor, PA) and EMD (Darmstadt, Germany), respectively. 

 

4.4.2   MgSt Synthesis Procedures 

 

Two preparation methods can be used to make MgSt. In this chapter they are 

referred to as the “melt method” and the “bath method”. The melt method is a straight-

forward, spontaneous reaction which entails melting the acids (stearic, palmitic, other) 

together above 70 °C, then adding Mg(OH)2 and water to the melted acids. Solid 

magnesium stearate (the magnesium salt of stearic acid) has a lower solubility than the 

melted fatty acids and is formed from the reaction, according to Equation 4-1.  

The bath method is a two-step reaction in which the acids are dissolved in a water 

bath heated to 70-90 °C. The pH of the system is adjusted to ~ pH 9 using ammonium 

hydroxide to create the ammonium soap of the fatty acids. Magnesium stearate is then 

precipitated out in a replacement reaction with magnesium chloride, as outlined in 

Equation 1-2. Alternative reactants may be substituted for the various salts, such as 

replacing NH4OH to make the calcium soap using Ca2OH. Or, NH4OH versus NaOH to 

adjust pH and make soap, or MgCl2 versus MgSO4 for the replacement step. The specific 

reaction in this study utilizes NH4OH in place of NaOH: 

 

 Stearic acid + NH4OH à NH4-Stearate 
 

2 NH4(Stearate) + MgCl2 à Mg(Stearate)2 + 2 NH4Cl  Equation 4-3 
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Following synthesis, the solid MgSt particles were subjected to a washing 

procedure involving a reflux with water and/or acetone, to remove any unreacted acids 

and impurities, such as excess MgO or Mg(OH)2. The samples were then dried to remove 

excess water. Drying procedure was either air drying at ambient conditions for a week or 

vacuum dried at 25 °C for 24 hours. 

 

4.4.3   SSNMR Method 

 
13C CP/MAS data were collected using a Tecmag Redstone NMR Spectrometer 

(Houston, TX), Bruker 400 MHz magnet (Billerica, MA), and a rebuilt H-X Chemagnetics 

(Ft. Collins, CO) NMR probe with 7.5 mm rotors spinning at 4000 Hz. A relaxation delay 

of 10 - 30s seconds was used with 2K acquisition points and 512, 1024 or 2048 scans. 

TNMR software (Houston, TX) was used to process the data. 3-methylglutamic acid was 

used as a reference standard, with the methyl peak referenced to 18.84 ppm.  

 

4.4.4   Thermogravimetric Analysis (TGA) 

 

TGA weight loss was measured using TA Q50 (TA Instruments, Newcastle, DE) 

with a 10 °C/min ramp from 25 °C to 250 °C.  

 

4.4.5   Differential Scanning Calorimetry (DSC) 

 

DSC thermal analysis was performed using Q2000 DSC (TA Instruments, 

Newcastle, DE). The heating rate was 10 °C/min ramp from 25 °C to 250 °C. 
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4.5   Results and Discussion 

4.5.1   Effect of Chemical Composition on Crystal Form Produced from Synthesis 

 

Several batches of MgSt were prepared with the melt method at various St:Pa 

ratios, as shown in Figure 4-1. SSNMR of lab-synthesized MgSt prepared using the melt 

method. It appears that there is a trend in preferred form that correlates with fatty acid 

ratio. Specifically, 50:50 St:Pa ratio shows a clean monohydrate form, with dihydrate 

character increasing with increasing stearate content. This was observed to be a general 

trend for the melt method in our MgSt synthesis experiments.  

 

 

Figure 4-1. SSNMR of lab-synthesized MgSt prepared using the melt method 
 

Several batches of MgSt were prepared with the bath method at various St:Pa 

ratios, as shown in Figure 4-2. For the bath method, it appears that there is a trend in 
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preferred form that correlates with fatty acid ratio, which is different from that of the melt 

method. For the bath method, the 50:50 St:Pa ratio shows mostly the trihydrate form, 

with the dihydrate form dominating with increasing stearate content, with 90:10 showing 

pure dihydrate form. Additionally, significant amounts of a new form of monohydrate is 

observed in the 70:30 and 80:20 samples. These general trends for the bath method were 

observed repeatedly in our MgSt synthesis experiments, particularly with higher stearate 

ratios, such as the 90:10 ratio, yielding the dihydrate form from the bath method. 

 

 

Figure 4-2. 13C SSNMR of Lab-synthesized MgSt prepared using the bath method 
 

In order to investigate differences between the synthesis methods, pure 

magnesium stearate and pure magnesium palmitate, as well as 50:50 stearate: palmitate 
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mixtures were prepared using both the melt and the bath method. The SSNMR for these 

samples are shown in Figure 4-3. Overall, it appears that the melt method easily yields 

the monohydrate form for 50:50 mixture, while the bath method yields dihydrate for the 

pure acids.  

 

 

 

Figure 4-3. 13C SSNMR for MgSt batches showing the carbonyl region, 160-200 ppm  
 

It is also noted that the “Pa only Bath” and “St only Melt” samples have a small 

peak around 182 ppm. The trihydrate form of MgSt and the unreacted stearic and 
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palmitic acids have chemical shifts in this region, so thermal data is necessary to identify 

the small 182 ppm peak for these two samples. The DSC in Figure 4-4 shows the “Bath, 

Pa only” sample has a small peak with a melting onset ~ 65 °C, consistent with unreacted 

palmitic acid. Figure 4-5 also reveals a slight weight loss in the TGA for the “Bath, Pa 

only” sample, consistent with a small amount of trihydrate. For the “Melt, St only” 

sample, there is no visible melt in the DSC and no weight loss in the TGA. The melting 

point of stearic acid is ~ 70 °C, and a trace amount may be hidden under the larger 

dihydrate dehydration. The TGA is expected to show no weight loss for stearic acid, and 

the small peak at 182 ppm in the “Melt, St only” sample is more likely to be stearic acid 

than the trihydrate form.  

 

 

Figure 4-4. DSC of lab-synthesized MgSt samples, prepared with pure stearate and pure 
palmitate 
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Figure 4-5. TGA of lab-synthesized MgSt samples, prepared with pure stearate and pure 
palmitate 
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whereas mixed composition samples had more of the monohydrate form. This basic 

understanding enables synthesis of pure dihydrate with high stearate content and 

synthesis of pure monohydrate with 50:50 mixtures of stearate: palmitate.  

 

An important aspect of the synthesis method is to ensure that the crystal habit/ 

form of the acid starting material does not impact the form produced. The unit cell of 

MgSt crystal forms are not yet known, due to the shearing tendency of MgSt and the 

difficulty growing single crystals without twinning that are large enough to perform 

single crystal analysis. If the acids are not completely dissolved or melted prior to making 

the soap (or reacting with MgOH2 for the melt), the solid form of the acids could act as 

seeds for the MgSt, impacting the crystal form of MgSt generated. However, this is not 

likely to affect the observed trends in fatty acid composition. The thermodynamic driving 

force for the reaction for stearic vs. palmitate is similar: 1) The pKas for stearic acid and 

palmitic acid are both approximately 4.75. 2) The solubility of stearic acid is 0.6 µg/mL 

and palmitic acid is 0.04 µg/mL, giving stearic acid a slightly higher driving force, but 

both substances are virtually insoluble in water. Melting points are also similar, with 68.8 

°C for stearic and 61.8 °C for palmitic acid, and both acids will be melted at the reaction 

temperature range of 70 – 90 °C, for both synthesis methods.  

 

From Figure 4-3, we may speculate that the kinetics of crystal formation for the 

monohydrate and dihydrate are different, with the monohydrate crystals forming faster 

and the dihydrate crystals forming preferentially with longer time. This scenario would 

be reasonable if the dihydrate is the more stable form. However, thermal data is clear that 

the monohydrate has a dehydration temperature of 90 - 105 °C while the dihydrate 

dehydration temperature is lower, around 70 - 90 °C. Based on thermal stability, we 

would expect the dihydrate to form first as a metastable form, followed by the more 

stable monohydrate. It is possible that the molecules are oriented as pure strands (St-St) 

or mixed (St-Pa) and may crystallize out in that formation. This scenario fits with the 

observation that a higher stearate content yields a higher percentage of dihydrate form. 
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4.5.2   Effect of Reaction Water on MgSt Form for Melt Method 

For an investigation of the impact of water on the form produced from the melt 

method, six samples were synthesized at 50:50 St:Pa ratio with the melt method. 

Conditions were varied between 0 mL water, 10 mL water and 50 mL water and 

compared at 70 °C and 90 °C reaction temperatures. The results are shows in Figure 4-6. 

Monohydrate was produced at both 0 mL water conditions, with trace amounts of 

dihydrate in both 10 mL samples, as well as the 50 mL 90 °C sample. The 50 mL – 70 °C 

had significant dihydrate and this increase in dihydrate with additional water added is not 

unexpected for the 70 °C, as the dihydrate form requires more water to be incorporated 

into the crystal lattice. The 50 mL – 70 °C condition had significant dihydrate character, 

50 mL - 90 °C condition had only a small amount of dihydrate. Here it is reasonable that 

the 90 °C condition produces less dihydrate than the 70 °C condition because the 

monohydrate form is more stable at 90 °C. This is discussed in more detail in Chapter 5 

in relation to form conversions.  

 

 

Figure 4-6. 13C SSNMR of MgSt samples synthesized at 70 °C and 90 °C, using various 
amounts of water 
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4.5.3   Effect of Synthesis Reaction Temperature on MgSt Form 

 

To evaluate the effect of reaction temperature on form, a single lot of material 

was synthesized to make MgSt at 90:10 ratio with the bath method. Half of the sample 

was reacted at 70 °C and isolated as dihydrate after filtration. The remaining half of the 

sample was boiled at 100 °C, then filtered and subsequently isolated as monohydrate, as 

shown in Figure 4-7. The only difference between the two samples was the reaction 

temperature.  

The TGA clearly shows that the dihydrate form dehydrates around 70 °C and the 

monohydrate dehydrates around 100 °C. Between 70 – 90 °C, the dihydrate is expected 

to be the stable form based on its thermal properties. Above 100 °C, the monohydrate is 

expected to be the stable form, which is what we observe for this sample, with the 

preferential synthesized form of dihydrate between 70 – 90 °C and the monohydrate 

above 100 °C. This phenomenon suggests that the reaction temperature for MgSt 

synthesis is critical in controlling the physical form yielded from the synthesis.  

 

 

Figure 4-7. SSNMR of a batch of 90:10 St:Pa prepared using the bath method. The batch 
was split into two portions, the first portion with reaction temperature at 70 °C and the 
second portion boiled at ~100 °C. 

 

 

Four samples were synthesized at 66:34 St:Pa ratio, shown in Figure 4-8. The 

reaction temperature was varied between 70 °C and 90 °C for melt and bath methods. At 
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70 °C, the melt method produced monohydrate with trace dihydrate and the bath method 

had a higher amount of dihydrate content. At 90 °C, the melt method produced 

monohydrate with trace dihydrate and the bath method produced dihydrate. Overall, these 

results are consistent with the previous trends where 1) mixtures of stearate and palmitate 

tend to produce monohydrate, but 2) the bath method produces higher amounts of 

dihydrate and 3) higher reaction temperature produces higher amounts of dihydrate. 

These three variables in the synthesis process appear to be simultaneously impacting the 

crystal form of MgSt produced.  

 

 

Figure 4-8. 13C SSNMR of MgSt 66:34 St:Pa samples, synthesized with variations in 
temperature and synthesis method 
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flowing dry nitrogen gas for 7 days, 4) desiccated drying in a vial placed in a desiccator 

for 7 days.  

 

 

Figure 4-9. 13C SSNMR for MgSt samples from Bath method 90:10 after drying via 
various methods 

 

Figure 4-9 shows the drying for a 90:10 sample using the bath method. The air-

dry method is the least harsh and is the best representation of the material produced from 

the synthesis. The vacuum drying condition appeared to show higher monohydrate 

content and reduced dihydrate, suggesting possible rearrangement from dihydrate to 

monohydrate. The desiccator condition showed some evidence of dehydration, with the 

monohydrate peaks becoming less defined. Under nitrogen flow, the dihydrate appeared 

to partially dehydrate into the disordered form, accompanied by rearrangement of the 

monohydrate peaks. This behavior is consistent with other N2 drying data and this 

phenomenon is discussed at length in Chapter 6, as nitrogen drying may inhibit the 

normal lubricating effect of MgSt and result in fast dissolution and poor tablet lubrication 

properties.  
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Figure 4-10. 13C SSNMR for MgSt samples from Melt method 50:50 after drying via 
various methods 

 

For the 50:50 melt material, SSNMR showed a similar form for all four melt 

method samples dried in different ways, which are all monohydrates. (Figure 4-10) The 

drying method did not appear to significantly affect the crystal form for the monohydrate 

samples. However, it appeared from the 90:10 bath sample that the dihydrate, and 

mixtures containing the dihydrate form, were more sensitive to the drying method and 

conditions that may promote dehydration of the MgSt physical forms.  

 

4.5.5   Reproducibility of Lab-Synthesized MgSt Monohydrate and Dihydrate 

 

The primary goal of the synthesis study was to create samples to be studied. 

Therefore, it was important to evaluate reproducibility with regard to consistency of 

crystal form produced from MgSt synthesis. Additional lab-synthesized samples were 

prepared using the melt method at fixed fatty acid compositions of 55:45 and 90:10 

stearate: palmitate. Figure 4-11 and Figure 4-12 show monohydrate produced from 55:45 

melt condition and dihydrate produced from the 90:10 bath condition, with only very 

minor differences between the samples.  
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Figure 4-11. 13C SSNMR of monohydrate MgSt synthesized from melt method at 55:45 
St:Pa 

 

 

Figure 4-12. 13C SSNMR of dihydrate MgSt synthesized from bath method at 90:10 St:Pa 
 

However, additional samples were prepared at 55:45, shown in Figure 4-13 with 

some variations in crystal form produced. This illustrates the challenge of preparing 

consistent materials. Conditions believed to influence the form and morphology of the 
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material obtained from the synthesis process include reaction temperature, the amount of 

water present during the synthesis and impurities in the synthesis reagents. Stirring rate is 

also believed to impact the particle size of the MgSt formed. However, there was no clear 

explanation for the observed variation from the synthesis conditions for the samples in 

Figure 4-13. It was later discovered that some of the glassware contained residual solids 

from previous experiments, which may have contributed to inadvertent seeding with the 

dihydrate form.  

 

 

Figure 4-13. 13C SSNMR of additional lab-synthesized prepared with the melt method at 
55:45 St:Pa 

 

 

4.6   Conclusions 

 

There are several conclusions from this investigation of MgSt synthesis. First, the 

chemical composition (stearate: palmitate ratio) and the reaction method both affect the 

crystal form of magnesium stearate that is produced from synthesis reactions. Pure fatty 
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acid compositions (i.e. stearate only or palmitate only) showed a preference to produce 

the dihydrate form and fatty acid mixtures tended to yield more of the monohydrate form. 

The melt method, a spontaneous reaction of fatty acids with magnesium hydroxide, 

preferentially produced the monohydrate form, with increasing amounts of dihydrate 

yielded from higher stearate content samples. The bath method, a two-step reaction 

precipitating MgSt from soap and magnesium chloride, also yielded higher amounts of 

dihydrate form at higher stearate content samples. Combining the observed trends with 

fatty acid composition and method, it was found that the monohydrate form could be 

most easily produced from the melt method with a 50:50 St:Pa composition and the 

dihydrate form could most easily be produced from the bath method at 90:10 St:Pa 

composition.  

Second, addition of a small amount of water during the melt method reaction 

appeared to aid formation of the monohydrate form. Additionally, the reaction 

temperature in the bath method was found to affect the crystal form produced. For a 

90:10 St:Pa composition, dihydrate was yielded at 70 °C, but monohydrate was yielded 

when the temperature was increased to 100 °C.  

Additionally, drying magnesium stearate may affect the physical form of the 

material, with more significant effects seen for the dihydrate and form mixtures. On a 

practical level, air drying for a few days was found to be the most gentle and effective 

drying method for lab-scale synthesis of MgSt. The dihydrate appears to be more 

sensitive to drying than the monohydrate form, but both forms can dehydrate in harsh 

drying conditions such as nitrogen drying or desiccation. Further investigation of the 

effect of drying on magnesium stearate are discussed in Chapter 6. 
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5.2   Abstract 

 

Magnesium stearate (MgSt) is a popular pharmaceutical lubricant, but batch-to-

batch variations in physical properties can cause variability in performance. It is proposed 

that the variability in the dissolution and lubrication properties of MgSt can be related 

back to its complicated structural properties, specifically the crystal hydrate forms of 

MgSt. The crystal hydrate forms are believed to interconvert, which may affect 

performance of MgSt in formulations. Thermal analysis was used to choose temperature 

conditions to investigate the interconversions between the crystal forms. Dehydration 

temperatures for the trihydrate ranges from 60 - 80 °C, from 80 – 100 °C for the 

dihydrate and the monohydrate dehydrates around 105 °C. 13C SSNMR was used to 

identify the crystal forms at different temperature and humidity conditions. The dihydrate 

was found to dehydrate to the anhydrate form with a disordered intermediate form with 

heating to 105 °C. The disordered form was rehydrated to the monohydrate form at 105 

°C, 100 %RH and to the trihydrate form at 25 °C, 100 %RH. Direct conversions at 80 °C, 

100 %RH reflected increasing thermal stability from trihydrate < dihydrate < 

monohydrate. An updated schematic for MgSt form conversions was proposed, 

encompassing form conversions from the intermediate disordered form as well as from 

direct form conversions. Finally, tablet formulations stored at typical stability conditions 
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showed an increase in the dihydrate form at 40 °C/ 75% RH and dehydration of the 

dihydrate to the disordered form at 40 °C/ 0% RH. Overall, it was shown that the crystal 

form of MgSt can change under varying temperature and humidity conditions, both in 

bulk and in tablet formulations.  

 

 

5.3   Introduction 

 

Magnesium stearate (MgSt) is the most commonly used excipient for 

pharmaceutical tablet formulations, and is used in over half of the marketed 

formulations.(1) MgSt is typically added to tablet formulations as a lubricant at a 0.25 - 

5% level to prevent powder from sticking to the tablet die and manufacturing equipment 

during the tableting process. Many formulation labs have experienced unexplained batch-

to-batch and lot-to-lot variation with MgSt, where the lubrication capability and/or the 

dissolution rate varies unexpectedly.(16, 97) For example, one lot from a manufacturer 

may show picking and sticking after several thousand tablets are made as powder builds 

up on the equipment, but other lots do not show the same extent of picking and sticking. 

In addition, tablets manufactured from different lots of MgSt may have different 

dissolution properties. The reasons for the inconsistencies between lots and types of 

MgSt are still poorly understood, (8, 149-151) but it is proposed that the variability in the 

dissolution and lubrication properties of MgSt can be related back to its complicated 

physicochemical properties.(98, 126)  

One of the physicochemical properties of MgSt that have been proposed to have a 

significant effect on its lubrication and dissolution is the crystalline hydrate form.(152) 

Magnesium stearate is currently known to exist in multiple pseudo-polymorphic forms, 

but it has taken a few decades to reach this understanding. In 1977, Mueller noticed that 

the amount of water in a MgSt sample was related to its lubrication properties and that 

thermal drying can change its polymorphic properties. They suggested that drying 

changes the crystal structure from an orthorhombic or monoclinic crystal structure to 

hexagonal structure.(31) A few years later, Miller and York began to investigate the 

physical characterization of MgSt powders by preparing and characterizing pure 
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magnesium stearate and magnesium palmitate samples. They identified that both pure 

samples were associated with two molecules of water, and suggested that synthesis 

conditions such as pH played a role in hydration state.(25) Ertel and Carstensen also 

studied the physical properties of pure MgSt throughout the 1980s.(24, 32, 33) They 

determined that preparation conditions affect the hydration state and modifying the 

relative humidity (RH) and/or temperature can convert to a different hydration state. For 

example, heating at 105 °C led to water loss as well as crystal lattice collapse. In 

addition, they noted the importance of the long spacing of the crystal lattice structure, 

which was dependent on the hydration state. Wada specifically looked at MgSt pseudo-

polymorphism and hydration using DSC,(34) but it was not until 1997 that Sharpe et al. 

identified the pseudo-polymorphs as anhydrate, dihydrate and trihydrate (without 

mention of a monohydrate form).(35) They proposed structures for the dihydrate and 

trihydrate phases based on the long crystal spacing from XRPD and deduced that the 

pseudo-polymorphism is a result of “changes in the angle of inclination of the 

hydrocarbon chains relative to the plane of the Mg atom head groups, brought about by 

the water content in the lattice.”(35) Bracconi et al. perform a thorough XRPD 

investigation of two commercial lots without single crystals to fully elucidate the crystal 

structure,(36) and two years later, their DSC evaluation of the same two lots did not 

“fully clarify the relation between thermal and structural properties.”(37) In 2001, 

Swaminathan and Kildsig published a schematic showing form conversions between the 

different hydrate forms,(39) which was later expanded to include the monohydrate form 

along with extensive evaluation of MgSt dihydrate properties from a commercial 

manufacturer’s point of view.(28)  

Although the single crystal structures of MgSt forms are still elusive, Delaney et 

al. showed that SSNMR can uniquely and reliably identify the crystalline forms of MgSt. 

Using SSNMR, five forms were identified as anhydrous, ordered monohydrate, dihydrate 

and trihydrate forms and an additional disordered monohydrate.(38) The ability to 

identify MgSt crystal forms using 13C SSNMR by Delaney et al. not only clarifies the 

existing hydrate variability, but also provides a foundation for studying MgSt hydrate 

form conversions.(38) This research provides a study of the MgSt form conversions 

based on the dehydration and rehydration temperatures of the isolated MgSt hydrate 
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forms. Using 13C SSNMR, we were able to easily identify form conversions in neat MgSt 

samples. Additionally, we were able to study MgSt form conversions in tablet 

formulations at low levels of MgSt, using 13C labeled stearic acid to synthesize MgSt. In 

this chapter, we investigated in greater detail the form conversions of MgSt upon 

exposure to different relative humidity conditions, temperature and processing 

conditions.  

 

 

5.4   Materials and Methods 

5.4.1   Materials 

 

Stearic acid and palmitic acid were purchased from TCI (Tokyo, Japan). Labeled 

stearic and palmitic acids were purchased from Aldrich. Magnesium hydroxide was 

purchased from Fluka (St. Louis, MO). Magnesium chloride hexahydrate was purchased 

from EMD (Darmstadt, Germany). Tablet excipients Avicel (microcrystalline cellulose, 

MCC) and alpha-Lactose monohydrate were obtained as a complimentary sample from 

FMC Biopolymer (Philadelphia, MA) and purchased from Sigma (St. Louis, MO), 

respectively. The commercial samples used in this study were obtained from Peter 

Greven. 

 

5.4.2   Thermogravimetric Analysis (TGA) 

 

TGA weight loss was measured using TA Q50 (TA Instruments, Newcastle, DE) 

with a 10 °C/minute ramp from 25 °C to 250 °C. TGA 

 

5.4.3   Differential Scanning Calorimetry (DSC) 
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DSC thermal analysis was performed using Q2000 DSC (TA Instruments, 

Newcastle, DE). The heating rate was 10 °C/min ramp from 25 °C to 250 °C.  

 

5.4.4   Solid-state NMR Spectroscopy (SSNMR) 

 
13C CP/MAS/TOSS SSNMR data were collected using a home built Tecmag 

Redstone NMR Spectrometer (Houston, TX), Bruker 400 MHz magnet (Billerica, MA), 

and Chemagnetics (Ft. Collins, CO) NMR probe with 7.5 mm rotors spinning at 4000 Hz. 

A relaxation delay of 12 s was used with 2K acquisition points and 1024 scans. TNMR 

software (Houston, TX) was used to process the data. 3-methylglutamic acid was used as 

a reference standard, with the methyl peak referenced to 18.84 ppm. 

 

5.4.5   Conditions for Form Conversions 

 

Form conversions for MgSt samples were performed by placing ~ 500 mg powder 

samples in an aluminum pan and heating in an oven at defined temperatures. Humidity 

samples at 75 %RH condition were prepared using jars containing saturated salt solutions 

of sodium chloride. Drying was performed by placing powder in a vial and holding under 

nitrogen flow or in a desiccator.  

 

5.4.6   MgSt Synthesis  

 

Magnesium stearate lots were synthesized in various stearate: palmitate ratios of 

50:50, 55:45, 66:34, 70:30, 80:20, 90:10 and 100:0. Two synthesis methods were used. 

For the “melt” method, stearic and palmitic acids were melted at 70 °C, then reacted with 

magnesium hydroxide and water. For the “bath” method, stearic and palmitic acids were 

dissolved in a 90 °C  water bath, ammonium hydroxide was added to adjust the pH above 

pH 9, then magnesium chloride was added to precipitate magnesium stearate. The 
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recovered solids from both methods were washed using a reflux bath of 1:1 acetone: 

water for 24 hours to remove impurities and any unreacted starting materials. The MgSt 

samples were air-dried and/or dried in a vacuum oven at 25 °C to remove surface water. 

 

5.4.7   Mixing and Tableting  

 

Indomethacin tablet formulations were prepared by adding MgSt to a “Premix” 

mixture containing 16.7% indomethacin (Sigma, St. Louis, MO), 47.3% alpha-lactose 

monohydrate (Sigma, St. Louis, MO), 34% Avicel (FMC Biopolymer, Philadelphia, PA) 

in a ratio of 2:98 MgSt: Premix. The tablet powders were mixed as 1 g batches in 40 mL 

glass vials for 60 minutes using a Turbula T-2C mixer (WAB, Basel, Switzerland) on the 

highest setting. Six individual 150 mg tablets were made from each 1 g formulation batch 

and pressed using a single tablet press (Globe Pharma, North Brunswick, NJ) at 50 bar 

for 30 seconds. The tablet weights were recorded, and the dissolution results were 

adjusted for tablet mass. Ball mixing was performed by adding 1g of MgSt to a 40 mL 

glass vial with ten ¼-inch plastic balls and mixed for 60 minutes using the Turbula T-2C 

mixer. 

 

 

5.5   Results and Discussion 

5.5.1   Thermal Analysis for MgSt Form Conversions 

Magnesium stearate is known to be a physically stable powder at ambient 

conditions. It was observed that each of the hydrate forms is stable for > 2 years at 25 °C 

in closed vials. However, the hydrate forms have been reported to interconvert under 

specific temperature and relative humidity conditions,(39) so investigation was 

undertaken to confirm and define the conditions for interconversion of the MgSt crystal 

forms. Thermogravimetric weight loss data for the five forms of MgSt is displayed in 

Figure 5-1, showing the dehydration temperatures, which can be used to select 

appropriate temperature conditions to promote interconversions between forms. The 
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dehydration temperatures for the different hydrate forms are different, with trihydrate 

dehydration between 60-80 °C, dihydrate between 80-100 °C and monohydrate 

dehydration between 100-120 °C. The disordered form has a broad weight loss 

temperature, ranging from 40-125 °C, indicating surface bound water or a possible 

channel hydrate. It appears that all the hydrate forms can be completely dehydrated when 

heated above 105 °C and can then be converted from the dehydrated state to the desired 

hydrate form at selected temperature and humidity conditions.  

 

 

Figure 5-1. Thermal data showing the melting and dehydration temperature for different 
MgSt forms. Used with permission from Delaney et al. 
 

 

5.5.2   Form Conversions in MgSt with 100% Stearate Content 

Figure 5-2 shows the SSNMR for the form conversions of a MgSt sample, 

originally prepared as the dihydrate form, with 100% stearate content. When a portion of 

this material was heated at 105 °C in an oven without humidity control, it visually 

appeared melted. As this material was brought to room temperature, it solidified into an 

anhydrous form with apparent crystalline order, as determined by 13C SSNMR. This 

intermediate anhydrous melt was then rehydrated at 105 °C, 100%RH and recovered as 
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the monohydrate form of MgSt. It was clear from this experiment that a single sample of 

MgSt can undergo changes in hydrate form using the temperature and RH conditions.  

 

 

Figure 5-2. Form conversions for MgSt prepared from 100% stearic acid 
 

 

5.5.3   Form Conversions of MgSt due to Dehydration at 105 °C 

The first step in understanding the form conversions observed in Figure 5-2 is an 

examination of the dehydration process. Based on the thermogravimetric analysis in 

Figure 5-1, the different forms of MgSt will dehydrate at different temperatures, and all 

three hydrate forms will be dehydrated above 105 °C. Figure 5-3 shows a dihydrate 

sample after heating at 105 °C. After 3h heating, the material was changed to the 

disordered form. An additional 5h of heating, for a total of 8h, generated the anhydrous 
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form. The disordered form appears to be an intermediate form, with the anhydrous form 

as the stable form at 105 °C under dry conditions.  

 

 

Figure 5-3. 13C SSNMR of a MgSt dihydrate sample after drying at 105 °C 
 

 

5.5.4   Form Conversions of MgSt due to Rehydration at 100% RH 

Having established that dehydration by heating can generate the disordered form, 

the rehydration process was investigated. Rehydration temperature conditions were 

chosen with the aim of converting to specific forms of MgSt. Specifically, 105 °C, 100 

%RH was chosen as a rehydration condition which was expected to convert to the 

monohydrate form, since it is close to the dehydration temperature of monohydrate. 

Similarly, 25 °C, 100 %RH was chosen as a rehydration condition expected to convert to 

the trihydrate form, being below the dehydration temperature of the trihydrate form.  

 

Figure 5-4 shows the dehydration and rehydration conversions at 105 °C, 100% 

RH for several MgSt hydrate mixtures with a range of fatty acid ratios. These samples 

were dried at 105 °C to promote dehydration, followed by rehydration at 105 °C, 100% 

RH. As predicted from the thermal data, the monohydrate form was yielded at the 105 

°C, 100% RH condition. Furthermore, it appeared that the starting form was irrelevant 

when converting to the monohydrate form via the dehydration-rehydration process. This 

made sense, since the trihydrate and dihydrate were expected to dehydrate into the 
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disordered form at 105 °C. The disordered material rehydrated into the form dictated by 

the rehydration temperature, which in this case was the monohydrate form.  

 

 

 

Figure 5-4. 13C SSNMR of MgSt form conversions to monohydrate after heating at 105 
°C and subsequent rehydration at 105 °C/100% RH 

 

 

Figure 5-5 shows the dehydration and rehydration MgSt form conversions at the 

25 °C, 100 %RH condition. The starting materials contained mixtures of dihydrate and 

monohydrate and were dehydrated to the disordered form at 105 °C prior to the 

rehydration step at 25 °C, 100 %RH. The starting materials all had a 66:34 fatty acid 

composition and were labeled with about 30% palmitic acid 13C label on the C1 carbon. It 

was expected that the trihydrate would predominantly form from the disordered form at 

these conditions, since the temperature was below the dehydration temperature for the 

dihydrate and monohydrate. The results showed mixtures of the trihydrate form 

(indicated by the single sharp peak around 183 ppm) and/or the disordered form 
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(indicated by the broad peak). There appeared to be more of the disordered form when 

the starting material was predominantly monohydrate, and more of the trihydrate form 

with traces of the high melting anhydrate form when the starting material contained large 

amounts of dihydrate. This may be due to partial conversion to the anhydrate 

intermediate form during the drying step at 105 °C, if it was held at 105 °C for an 

extended period of time. The implication of this set of experiments is that the disordered 

form can be converted to the trihydrate form at moderate conditions of 25 °C/ 100 %RH, 

conditions which may be relevant to storage conditions for the bulk raw materials.   

 

 

Figure 5-5. MgSt conversions to trihydrate and/or disordered form by melting at 105 °C, 
then rehydrating at 25 °C/100% RH 

 

 

5.5.5   Direct Form Conversions at 80 °C/100%RH 

Thus far we have seen that MgSt form conversions readily occur from the 

dehydration of the hydrate forms to the disordered form, followed by rehydration of the 
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disordered form at temperatures corresponding to the hydrate forms. This section 

addresses the “direct” form conversions, without an intermediate disordered step.  

Dihydrate interconversions are expected to occur at conditions around 80 °C/ 100 

%RH. This condition represents the dehydration temperature of the dihydrate form and is 

intermediate between the monohydrate and trihydrate hydration temperatures, which are 

105 °C and 25-40 °C, respectively. Several MgSt mixtures of dihydrate-trihydrate were 

placed at 80 °C/ 100 %RH for one week (without the melt intermediate prior to 

rehydration). Figure 5-6 shows an increase in dihydrate content for these samples after 

storage at 80 °C/ 100 %RH, but complete conversion is not attained in these experiments 

after a week of storage. In addition to the increase in dihydrate, the trihydrate content 

appears to partially convert into monohydrate under these conditions. These results 

support the expected MgSt form conversions at this temperature and humidity. It is 

challenging to convert completely to the dihydrate form, with the hydration temperature 

transition existing between monohydrate and trihydrate hydration temperatures.  

 

 

Figure 5-6. MgSt form conversions to dihydrate after storage at 80 °C/100% RH 
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5.5.6   Form Interconversion Schematic 

As mentioned earlier, MgSt hydrate conversion schematics have been put forth by 

previous researchers.(39) Our study revealed a form conversions which can be organized 

into the schematic illustrated in Figure 5-7. The outer ring shows the conditions for direct 

conversions between hydrate forms, while the inner ring shows conditions for form 

conversions through the disordered or anhydrous intermediate step. This schematic shows 

the conversions in a systematic manner and is more elegant than previous MgSt form 

conversion schematics.  

The intermediate form is a melt which forms upon dehydration at 105 °C and 

solidifies when removed from the oven and can be recovered as either the disordered 

form or the anhydrous form. The disordered form is generated with heating for ~ 2 hours. 

If the material is heated for longer periods of time, the equilibrium shifts further and the 

more crystalline anhydrate is formed. In the presence of water, both the disordered and 

anhydrous forms readily sorb water to form the trihydrate at 25 °C, the dihydrate around 

80 °C or the monohydrate at 105 °C.  

The dehydration temperatures of MgSt hydrates are unusual in that the higher 

order hydrates dehydrate at lower temperatures. In the presence of water, the trihydrate 

converts to dihydrate and/or trihydrate above the trihydrate dehydration temperature, and 

the dihydrate form converts to the monohydrate above the dihydrate dehydration 

temperature. Removing the water dehydrates all of the forms, and both the disordered 

form and the anhydrate will sorb water and form the hydrate that is most stable at the 

given temperature condition. Temperature is the primary driver for determining the 

crystal form, but the presence of water is required to form the hydrates. In the presence of 

water, the monohydrate is the most stable hydrate form of MgSt, with dehydration around 

105 °C, followed by the dihydrate at 70 – 90 °C and trihydrate below 50 °C. These 

conditions are relevant for formulation development processes such as wet granulation 

and the impact of MgSt form conversions should be considered when using processing 

techniques which introduce water into the system at elevated temperatures.  
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Figure 5-7. Proposed Schematic of MgSt Form Interconversions 
 

 

5.5.7   Form Conversions at 75 %RH 

The MgSt potential for form conversions in dry conditions and in 100 %RH 

conditions has been discussed in the previous sections. The interconversion of MgSt 

crystal forms may be a potential formulation stability concern. Therefore, storage 

conditions are also an important consideration in formulation development situations. 

Conditions such as 25 °C, 75 %RH, 40 °C, 75 %RH and 60 °C, 75 %RH may be 

evaluated for storage and stability. This section briefly addresses the 75 %RH condition 

at various temperatures, including some conditions commonly used in pharmaceutical 

stability studies. 

 

Figure 5-8 shows the conversion to monohydrate at 60 °C, 75 %RH, as well as a 

partial conversion at 40 °C, 75 %RH. Under high humidity conditions, the disordered 

form of MgSt was observed to convert to the monohydrate form. It was slightly curious 

that the dihydrate was not formed at 60 °C, instead of the monohydrate. This data 

suggests that the monohydrate is the more stable form at these temperatures, even though 

the dihydrate was expected at intermediate temperatures around 60 °C. It is speculated 
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that 75 %RH is not a high enough relative humidity to preferentially form the dihydrate 

crystal form at 60 °C.  

 

 

Figure 5-8. MgSt form conversions from disordered starting material under various 
temperature conditions at 75% RH 

 

 

5.5.8   Form Conversions in Tablets after Storage at Stability Conditions 

In addition to determining the form conversions in bulk MgSt, the possibility of 

form conversions of MgSt in tablets was investigated. Due to the low level of MgSt in 

most tablet formulations, it is often difficult to detect the MgSt in formulations. For this 

reason, several lots of MgSt were synthesized in the lab using labeled stearic acid. The 

stearic acid was 13C labeled at the C1 carbon of the carbonyl. This allows for enhanced 

sensitivity of MgSt in the carbonyl region and MgSt form differences can be detected in 

formulations prepared using labeled MgSt. For this study, the tablets were made on a 

hydraulic, single tablet press using 200 bar compaction pressure. The starting form of 

neat MgSt was compared with the form of MgSt in tablets.  

Figure 5-9 shows tablets containing 2% MgSt after storage at various temperature 

and humidity conditions. The starting form was a mixture of monohydrate, dihydrate and 

trihydrate. Form conversions were observed, corresponding with the forms expected at 

the temperature and humidity of each storage condition. The 25 °C, 75 %RH condition 

showed a slight change in the form of MgSt, with the trihydrate peak decreasing relative 
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to the dihydrate peaks, but this is can be attributed to an increase in resolution due to the 

effects of tablet compression. At 40 °C/ 75% RH, there is significant increase in the 

dihydrate peak relative to the monohydrate and trihydrate peaks. The dihydrate increase 

at 40 °C/ 75% RH is nominally consistent with the dihydrate dehydration conditions, 

suggesting the dihydrate is expected to exist at 40 °C/ 75% RH, which is in between the 

conditions to form the monohydrate and trihydrate. At 40 °C/ 0% RH, the dihydrate peak 

shrinks and almost disappears, accompanied by a small growth of disorder in the 

baseline, indicating dehydration. Additionally, a decrease in the trihydrate peak and 

shifting of the monohydrate peaks is observed, indicating a new form of MgSt. The 

effects of dehydration on the monohydrate form will be discussed further in Chapter 6. 

This dehydration and loss of crystallinity is particularly relevant for formulation 

development, as solid oral dosage forms are often packaged in 0% RH conditions.  

 

 

Figure 5-9. SSNMR of MgSt in tablet formulations after storage at various stability 
conditions 
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of MgSt. Dehydrating the sample pulls the water out of the crystal lattice, which may 

collapse the crystal structure and disrupt the lubrication ability. This is bad for lubrication 

efficiency, so the storage conditions prior to tableting should be chosen with this in mind. 

However, the dehydration of MgSt after tableting may be beneficial in decreasing the 

effect of MgSt on dissolution. After the tablets are made, this structure change may still 

affect the particle-particle interactions inside the tablets, with implications for dissolution 

and absorption, with the MgSt potentially affecting the ability of the drug to be released 

into the body. The MgSt coverage of particles in the formulation will be less effective 

after dehydration, increasing particle-particle adhesion and allowing for easier release 

and faster dissolution. All of these things should be considered in developing the best 

tablet formulations incorporating MgSt, with particular attention to the potential for form 

conversion at elevated temperature and relative humidity conditions.  

 

 

5.6   Conclusions 

This chapter provides an increased understanding of the form conversions of 

MgSt, both in bulk and in tablet formulations. Thermal data can be used as a guide to 

choose likely conversion conditions based on the dehydration temperatures of the MgSt 

hydrate forms. In dry conditions at 105 °C, the hydrates can be dehydrated into the 

disordered form. The disordered form may then be rehydrated at 100 %RH at 

temperatures corresponding to the various hydrate forms. It was shown that at 80 °C, 100 

%RH, the trihydrate converts into the dihydrate and/or monohydrate form, showing that 

in the presence of excess water, the crystal form depends on temperature. A form 

conversion schematic for MgSt is presented, proposing conditions for direct conversions 

between MgSt crystal hydrate forms, as well as form conversions through an intermediate 

disordered or anhydrous form. Stability conditions for bulk MgSt samples were briefly 

investigated and showed the monohydrate form was formed over the dihydrate form at 40 

°C/ 75%RH and 60 °C/ 75 %RH. Tablet formulations also showed MgSt form 

conversions at 40 °C/ 75%RH, with an increase in dihydrate form, and at 40 °C/ 0%RH 

with dihydrate being dehydrated. Overall, it is shown that the crystal form of MgSt can 

change under varying temperature and humidity conditions, both in bulk and in tablet 
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formulations. Understanding the form conversions of MgSt in bulk and in tablets is 

potentially relevant to formulation stability and storage conditions. 
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6.2   Abstract 

 

Purpose: Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in 

tablet manufacturing. However, batch-to-batch variability of MgSt can lead to 

inconsistency in performance. Surface area is known to impact tablet performance. The 

crystal form of MgSt has also been shown to affect lubrication performance. In this work, 

we investigate how drying impacts the surface area results and may also induce a change 

in crystal form.  

Methods: Surface area analysis was conducted using a Micromeritics ASAP 2460 

with Smart Vac Prep attachment to vary drying time and temperature. Specific surface 

area was calculated using the BET method. Solid-state NMR was used to identify the 

crystal form of MgSt samples. 13C spectra were acquired on a 9.4T spectrometer using a 

home-built 7.5mm MAS probe at 4 KHz at room temperature and processed using 

Tecmag software.  

Results: The extent of drying MgSt prior to surface area analysis impacts the 

surface area results, as well as the fit of the BET equation. Surface area after drying for 

2h at 40 °C (USP conditions) showed a notable decrease in surface area for some 

commercial samples, which also correlated with a physical form change in the MgSt 

sample. Specifically, the dihydrate form of MgSt appeared to disappear and the 

disordered form appeared with an increase in drying time. A similar form change for 

MgSt was observed in tablets after storage in desiccated conditions for 7 days.  

Conclusions: Drying is shown to affect the crystal form of MgSt, both in bulk and 

in tablets. This has implications for appropriate storage conditions and the physical 

stability of MgSt used in pharmaceutical formulations. 

 

 

6.3   Introduction 
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Magnesium stearate (MgSt) is the most common pharmaceutical excipient and is 

used as a lubricant in approximately half of the tablet formulations on the market. (1) In 

spite of its popularity as an effective lubricant, it has been repeatedly recognized that 

there is significant variability between MgSt samples which can cause inconsistent 

lubrication between lots and batches of MgSt. In addition to chemical composition 

variability and pseudopolymorphism variability, the particle size and surface area of 

MgSt have been investigated for their impact on performance variability. In 1984, Frattini 

and Simioni reported a correlation between MgSt surface area and tablet ejection force. 

(40) Phadke et al. suggested that particle size analysis would be a potential way to 

evaluate batch-to-batch variation in MgSt, and studied the degassing effects associated 

with BET surface area analysis, hypothesizing that lower surface area after degassing 

could be due to hydrate form conversion.(40-42) Andres et al. recognized the need for an 

improved understanding of MgSt degassing effects in 2001,(43) followed by Koivisto et 

al. who noted that although all hydrate forms converted to anhydrous at 105 °C, the 

hydrate surface area isotherms did not always fit properly with BET theory.(44)  

Extensive investigation of the degassing of MgSt was undertaken by Lapham and 

Lapham, revealing dehydration and unreliable BET results with degassing as low as 40 

°C. In their 2019 study, the surface area and isotherms of four commercial samples were 

analyzed before and after degassing at temperatures ranging from 30 – 110 °C. The 

hydration state of the starting materials was determined from TGA weight loss and 

vacuum drying, with assumptions of anhydrous and hydrated forms based on weight loss 

temperatures. Looking closely at isotherms and low pressure hysteresis, the differences in 

adsorption/desorption isotherms for the samples were found to be related to the hydrated 

water in the starting form for each batch and a swelling effect causing adsorbate to be 

entrapped in the sample during the adsorption process.(45-47)  Expanding on the current 

understanding of the degassing process from the Lapham work, we aim to relate the 

dehydration to changes in MgSt crystal form.  Our previous paper by Delaney at al. 

presents a variety of characterization techniques for several MgSt commercial samples, 

including SSNMR. The carbonyl region of the SSNMR spectrum clearly distinguishes 

between crystalline hydrate forms, as well as the anhydrate and disordered forms of 

MgSt.(48)  
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In this present chapter, we characterize the surface area of selected commercial 

and lab-synthesized MgSt samples, using various drying and degassing conditions prior 

to surface area analysis. The samples are characterized by SSNMR before and after 

drying, to evaluate the impact of drying conditions on neat MgSt. Drying/degassing leads 

to dehydration, and a form change for MgSt hydrates, with this form change being easily 

identified using SSNMR. It is also shown that the extent of drying time at 40 °C is 

critical to not only the observed surface area but also the physical form of MgSt. Finally, 

dissolution of tablet formulations before and after drying shows an effect of dehydration 

on the functional properties of MgSt. 

 

 

6.4   Materials and Methods 

6.4.1   Materials 

 

Magnesium hydroxide was purchased from Fluka (St. Louis, MO). Stearic acid 

and palmitic acid were purchased from TCI (Tokyo, Japan). Magnesium chloride 

hexahydrate was purchased from EMD (Darmstadt, Germany). Phosphate buffer was 

prepared from sodium phosphate monobasic and sodium hydroxide, purchased from 

purchased from BDH Analytical (Radnor, PA). Tablet excipients Avicel 

(microcrystalline cellulose, MCC) and alpha-Lactose monohydrate were obtained as a 

complimentary sample from FMC Biopolymer (Philadelphia, MA) and purchased from 

Sigma (St. Louis, MO), respectively. The commercial MgSt samples were ordered 

through VWR from Beantown (dihydrate) and Alfa Aesar (disordered), and the Peter 

Greven (monohydrate) sample was purchased in bulk by Genentech. 

 

6.4.2   MgSt Synthesis Methods 

 

Magnesium stearate lots were synthesized in ratios using 90:10 and 55:45 stearic: 

palmitic acids. To synthesize the 55:45 disordered sample, a “melt method” combined 
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magnesium hydroxide and water with melted stearic and palmitic acids at 70-90 °C. To 

synthesize the 90:10 samples, a “bath” method was used, where the stearic and palmitic 

acids were dissolved in water and ammonium hydroxide at pH 9 to generate the sodium 

soap, followed by addition of magnesium chloride to precipitate out the magnesium 

stearate. The monohydrate 90:10 sample was subsequently heated above 100 °C before 

the reflux step. In each case, the recovered solids were washed using a reflux bath of 1:1 

acetone: water for 24 hours to remove impurities and unreacted starting materials. The 

MgSt samples were dried in a vacuum oven at 25 °C overnight to remove surface water. 

 

6.4.3   Mixing, Tableting and Sieving 

 

MgSt tablets for dissolution were prepared by adding MgSt sample to a “Premix” 

mixture containing 16.7% indomethacin (Sigma, St. Louis, MO), 50% alpha-lactose 

monohydrate (Sigma, St. Louis, MO), 33.3% Avicel (FMC Biopolymer, Philadelphia, 

PA) in a ratio of 2:98 MgSt: Premix. The tablet powders were mixed as 1 g batches in 40 

mL glass vials for 60 minutes using a Turbula mixer (WAB, Basel, Switzerland) on the 

highest setting. Individual 150 mg tablets were made from each 1 g formulation batch 

and pressed using a single tablet press (Globe Pharma, North Brunswick, NJ) at 50 bar 

for 30 seconds. The tablet weights were recorded and the dissolution results were 

adjusted for tablet mass. When needed, MgSt samples were sieved using ASTM sieves 

that range between 75 µm and 125 µm sieve sizes.  

 

6.4.4   Dissolution 

 

Dissolution was performed by dissolving each tablet in 900 mL of pH 7.2 

phosphate buffer at 37 °C using a VanKel V7000 USP method 2 dissolution apparatus 

(Varian, Cary, NC).  The paddles were stirred at 100 rpm. µDISS fiber optic UV probes 

(pION, Billerica, MA) were used to collect data at various time points from 0 - 120 

minutes and processed using UV absorbance at 320 nm. The µDISS probes were 
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calibrated using indomethacin in phosphate buffer. The dissolution data was processed 

using the second derivative function to eliminate the effects of particles on the UV 

absorbance reading.  

 

6.4.5   Solid-state NMR Spectroscopy (SSNMR) 

 
13C CP/MAS and 1H T1 relaxation data were collected using a home built Tecmag 

Redstone NMR Spectrometer (Houston, TX), Bruker 400 MHz magnet (Billerica, MA), 

and Chemagnetics (Ft. Collins, CO) NMR probe with 7.5 mm rotors spinning at 4000 Hz. 

A relaxation delay of 12 seconds was used with 2K acquisition points and 1024 scans. 

TNMR software (Houston, TX) was used to process the data. 3-methylglutamic acid was 

used as a reference standard, with the methyl peak referenced to 18.84 ppm. 

 

6.4.6   Thermogravimetric Analysis (TGA) 

 

TGA weight loss was measured using TA Q50 (TA Instruments, Newcastle, DE) 

with a 10 °C/min ramp from 25 °C to 250 °C. 

 

6.4.7   Surface Area Analysis  

 

Surface area analysis was conducted using a Micromeritics ASAP 2460 with 

a Micromeritics Smart Vac Prep attachment (Micromeritics Instrumentation Corporation, 

Norcross, GA, USA). A sample of about 1000 mg was dried at 40 °C and outgassed 

under nitrogen flow conditions. Krypton adsorption-desorption isotherms were recorded 

at liquid nitrogen temperatures (77K) and specific surface area was calculated by the 

Brunauer-Emmett-Teller (BET) method. Data was analyzed using Micromeritics 

MicroActive version 5.0 software. 
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6.5   Results 

6.5.1   Surface Area Analysis for Commercial MgSt Samples 

 

To investigate the relationship of MgSt crystalline form with surface area, several 

commercial MgSt samples were compared, shown in Table 6-1. Samples were analyzed 

for BET surface area after degassing at 2h 40 °C and 48h 40 °C. This was done to 

compare the USP method for MgSt with a condition where the samples were completely 

dry. The surface area data reported in Table 6-1 includes the BET C constant values and 

the correlation coefficients for the curves. In BET theory, the C value is an indicator of 

the interaction of the sample with the adsorbate gas. A C value of 10 is considered a 

minimum for a sample that behaves according to BET adsorption theory.(47) Table 6-1 

shows that some of the MgSt samples have low C values (below 10) for the 2h drying 

condition. A second indication of suspect surface area data is the correlation coefficient. 

The correlation coefficients The BET curves were evaluated using 3 points in the range 

0.05 - 0.30 p/p0. The USP chapter for surface area analysis for MgSt specifies a 

minimum of 3 points.(19) Some of these samples had a poor correlation coefficient with 

more than 3 points, indicating a poor BET fit, and can be an indication of incomplete 

drying of the samples. A degassing step is generally required to be performed prior to the 

gas adsorption step, to remove surface bound water and surface impurities from the 

samples. Table 6-1 shows the C values for 48h drying are all > 10, indicating more 

complete drying at 48 hours compared with 2 hours. Additionally, the % difference in 

surface area before and after drying ranges from 5 – 21%, suggesting there may be a 

reason for the surface area change. The surface area results for MgSt samples are 

sensitive to drying conditions, as indicated by the noted differences between the samples 

that were outgassed at 40 °C for 2 hours and 48 hours.  
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Table 6-1. Surface area data for commercial samples dried at 2h 40 °C and 48h 40 °C 

 
 

 

6.5.2   Effect of Drying on MgSt Crystal Form 

 

To investigate the cause of these differences, the 2 hour drying samples and 

selected 48 hour drying samples were characterized by 13C SSNMR after the surface area 

analysis, to determine whether there was a form change during the surface area analysis. 

The 13C SSNMR of these samples before and after drying for surface area analysis is 

shown in Figure 6-1. The samples that were outgassed at 40 °C for 2 hours did not show 

observable changes in the 13C SSNMR spectra. Before drying, two of the commercial 

MgSt samples had a disordered form, four samples had a mixture of monohydrate-

dihydrate and one sample was a pure monohydrate form. There appears to be a 

relationship between the crystal form and the surface area recorded in Table 6-1. The 

BET surface area results listed showed that the disordered samples had the lowest surface 

area, while the monohydrate-dihydrate mixtures had intermediate surface area and the 

pure monohydrate samples had the highest surface area. However, after 48h drying, clear 

differences in the forms were observed, with a decrease in the dihydrate form, 

Drying: 2h 40 ℃ Drying: 48h 40 ℃

Sample Crystal form BET 
(m2/g) C value Correlation 

coefficient
BET 
(m2/g) C value Correlation 

coefficient

% 
Diff

Alfa Aesar
Lot C01Y019 Disordered 0.69 12.58 0.9986 0.77 14.22 0.9990 10.4
Alfa Aesar
Lot H03W054 Disordered 0.79 8.54 0.9995 0.89 13.98 0.9992 11.2
MP Biomedical
Lot 75281

Mono-
dihydrate 3.62 5.21 0.9985 3.83 15.47 0.9989 5.5

Chem-Impex
Lot 6301123019902

Mono-
dihydrate 4.02 10.71 0.9995 3.78 14.74 0.9988 6.0

Acros
Lot A0288107

Mono-
dihydrate 4.83 9.42 0.9991 3.92 12.85 0.9987 18.8

Sigma-Aldrich
Lot STBB0861V

Mono-
dihydrate 5.28 9.56 0.9993 4.17 13.66 0.9989 21.0

Acros
Lot A0235781 Monohydrate 6.62 12.86 0.9993 6.02 10.72 0.9996 9.1
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accompanied by the appearance of the disordered form. The monohydrate peaks also 

appear to shift with excess drying, indicating a form change for the monohydrate.  

 

 
Figure 6-1. 13C SSNMR for several commercial MgSt samples, before and after drying at 
40 °C for 48 hours. Only the carbonyl region of the spectrum (170 - 200 ppm) is shown, 
to identify the crystal form of the samples. The box around 185-187 ppm indicates the 
dihydrate peaks, and the box around 178-185 ppm indicates the monohydrate peaks.  

 

 

The ChemImpex sample in Figure 6-2 illustrates these changes well, showing a 

clear form change for the ChemImpex material after being outgassed at 40 °C for 48 

190 180 ppm

Alfa Aesar Lot 019

Alfa Aesar Lot 054

Peter Greven 

MP Biomedicals

Chem Impex

Acros Lot 107

Sigma-Aldrich

Acros Lot 781

190 180 ppm

48h 40 ºC

No drying
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hours. The dihydrate disappears and a broad, disordered peak appears in the spectrum. 

Additionally, the monohydrate peaks are clearly shifted, indicating a form change as a 

result of drying.  

 

 

 

Figure 6-2. 13C SSNMR of the ChemImpex MgSt lot before drying (bottom) and after 
drying (top) for 48h at 40 °C. After drying, the dihydrate peaks in the SSNMR spectrum 
disappear and a broad disordered peak appears in the spectrum.  

 

 

Having observed an initial effect of drying to impact the crystal form of MgSt 

during surface area analysis, more intensive work was performed for a single Peter 

Greven commercial lot (PG). Various drying conditions were compared for the PG lot. 

As shown in Figure 6-3, BET surface area analysis was performed on the same lot with 

various outgassing conditions: no drying, 2h at 40 °C, 12h 40 °C, 24h 40 °C and 48h at 

40 °C. It is clear from Figure 6-3 that the crystal form is changing with drying. The N2 

and Kr adsorption BET surface area results are shown in Table 6-2, including the 

correlation coefficients and C values. The surface area result decreased with additional 

drying, corresponding with form changes in the SSNMR spectra. The dihydrate peaks 

decreased and completely disappeared after 48h drying, accompanied by appearance of 

traces of the disordered form. There is also a change in the SSNMR spectra of the 

monohydrate peaks. The small peak on the left side of the monohydrate disappears at 12h 

and a new peak appears between the next two peaks. The space between the last two 

monohydrate peaks also increases slightly, as the peak on the right becomes sharper with 

200 190 180 170 160 ppm

ChemImpex - 48h 40 oC

ChemImpex - Before drying

Monohydrate

Disorder

Dihydrate
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an increase in resolution. This shifting of the peaks of the monohydrate indicates a new 

crystal form, which appears in the 12h, 24h and 48h dried samples.  

 

 

 

Figure 6-3. SSNMR for MgSt “PG” lot, showing the effect of the surface area drying 
method on MgSt hydrate forms.  

 

Table 6-2. Surface area data for MgSt PG lot under different drying conditions 

 

200 190 180

Dihydrate Monohydrate

No drying

2h 40 ºC

6h 40 ºC

12h 40 ºC

24h 40 ºC

48h 40 ºC

170 ppm

N2 gas adsorption Krypton gas adsorption TGA

Drying 
conditions BET (m2/g) C value Correlation 

coefficient BET (m2/g) C value Correlation 
coefficient % loss

No drying 9.47 + 0.66 13.87 0.9972 5.54 + 0.21 9.24 0.9991 3.3

2h, 40 ºC 7.95 + 0.54 15.02 0.9974 5.35 + 0.18 10.45 0.9993 3.2

6h, 40 ºC 6.74 + 0.11 22.48 0.9999 4.89 + 0.15 10.42 0.9994 3.3

12h, 40 ºC 6.42 + 0.09 23.00 0.9999 5.11 + 0.17 8.24 0.9993 3.2

24h, 40 ºC 6.37 + 0.09 22.00 0.9999 4.99 + 0.08 8.45 0.9998 2.8

48h, 40 ºC 6.08 + 0.11 20.86 0.9998 4.81 + 0.07 6.21 0.9998 2.8
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Comparing the N2 with Kr surface area analysis in Table 6-2, it is noted that the C 

values are slightly lower for Kr adsorption, but the correlation coefficients are higher for 

Kr. It is interesting that the absolute values for BET surface area are smaller when using 

Kr as the adsorbate, due to the adsorbate size. That is, the Kr cross sectional area is less 

than N2 cross sectional area, so the calculations of surface monolayer coverage give 

slightly different results. Kr also shows less variation in surface area, dropping 0.67 m2/g 

(from 5.54 m2/g to 4.81 m2/g) after 48h, unlike N2 which shows a significant drop in 

surface area from 9.47 m2/g to 7.95 m2/g after only 2h drying and 6.08 m2/g after 48h 

drying. From the SSNMR in Figure 6-3, we see that 2h drying does not appear to change 

the crystal form significantly, where drying for 12 - 48h appears to significantly change 

the crystal form. In this case, the Kr adsorption surface area results appear to track better 

with the crystal form change.  

 

 

6.5.3   Effect of Drying on Tablet Dissolution 

 

To evaluate the impact of the drying (dehydration) on functional property, 

dissolution was performed for tablet formulations prepared using MgSt from the before 

and after samples. Figure 6-4 shows the dissolution results indicate faster dissolution for 

the dried samples, with up to 20% difference at 5 minutes and 5-10% difference at 15 

minutes using this method. For clarity, 30 minutes dissolution is shown, but 95-100% 

dissolution is achieved for all samples before 2 hours. From previous work, it is known 

that the disordered form of MgSt leads to faster tablet dissolution, likely due to less 

effective lubrication of the formulation particles. 
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Figure 6-4. Tablet dissolution comparing formulations prepared with MgSt before drying 
(closed circles) and after drying (open circles). Drying appears to cause ~10% faster 
dissolution rate and may lead to less effective lubrication by MgSt. 

 

 

6.6   Discussion 

6.6.1   Correlation of MgSt Crystal Form with Surface Area 

 

The surface area for several commercial MgSt samples appears to trend with the 

crystal form of the material. The disordered samples have the lowest surface area, which 

is consistent with poor lubrication ability. Monohydrate MgSt has higher surface area 

above 5 m2/g, suggesting that this material may have the most effective lubricating ability 

compared to the other samples in this data set. The monohydrate-dihydrate mixtures of 

MgSt show an intermediate surface area in the range 3 - 5 m2/g. Looking closely at the 

height of the peaks corresponding to the MgSt forms in the SSNMR spectra for the 

monohydrate-dihydrate mixtures, it appears that the amount of dihydrate character in the 

mixtures may affect the surface area as well.  
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The surface area analysis for MgSt, as shown in Table 6-1, was challenging with 

respect to obtaining consistent and reliable data for the “as is” commercial samples. Even 

though the C values and correlation coefficients were met using 3 points, they were on 

the borderline of acceptability for meeting the USP criteria for reporting surface area. The 

difficulty of determining surface area for MgSt is well-known to those in the field(45) 

and it is believed that surface water can freeze during the analysis and cause an 

artificially high and often variable result. Outside of additional drying, the typical way of 

dealing with the analysis is to focus on the lower p/p0 region between 0.05 - 0.1 p/p0 and 

to use fewer points for the BET analysis to get an acceptable fit. The lower p/p0 region is 

more likely to be before a complete adsorbate monolayer coverage of the particles, and 

hydrated MgSt often behaves erratically with additional adsorbate added. The reasons for 

this are not well understood, but several possible explanations are discussed in Lapham 

and it is beyond the scope of this paper to pursue further.(46)  

 

6.6.2   Correlation of Crystal Form with Drying 

 

The 13C SSNMR for MgSt PG commercial material clearly shows the effect of 

drying MgSt on the crystal form. Specifically, the dihydrate character of the material is 

dehydrated. SSNMR clearly shows the decrease and disappearance of the dihydrate, with 

the appearance of disordered form conversion upon dehydration Figure 6-3. Additionally, 

a new form was observed in the shifting of the monohydrate peaks with drying. The 

significance of these changes is not only that the surface area changes, but that the 

lubrication ability of the MgSt sample also is likely to change as a result of the crystal 

form change. Other studies have shown that the presence of both the disordered form and 

the new monohydrate form, decreases the effect of MgSt on dissolution, and by 

extension, the lubrication ability of MgSt. It is possible that a batch of MgSt that is stored 

at 40 °C condition for an extended period could undergo a change in form, which could 

adversely affect its lubrication performance. 

 



 105 

6.6.3   Effect of Drying on Dissolution 

 

The dissolution of tablet formulations using MgSt before and after drying shows a 

clear effect of drying and dehydration on dissolution. The disordered form has faster 

dissolution compared to the monohydrate and hydrate mixtures, possibly due to less 

effective lubrication ability of the disordered form. It is suggested in the literature and we 

hypothesize that the drying removes the bound water from the crystal structure, causing 

dehydration and disrupting the crystal structure. The crystal structure can then collapse, 

resulting in the disordered form. This is consistent with the observed decrease in surface 

area with drying Table 6-2, which could be due to the removal of water, as well as the 

change in crystal structure. Overall, the dissolution is consistent with the effects of drying 

on MgSt, with increased dissolution rate for tablets using dried MgSt compared to non-

dried MgSt. The dissolution behavior supports the expectation that drying MgSt can 

affect its performance. 

 

 

6.7   Conclusions 

 

Several conclusions can be drawn from this study. First, there appears to be a 

significant correlation between MgSt crystal form and surface area. The disordered form 

shows low surface area and the monohydrate form shows higher surface area. Second, 

drying MgSt at 40 °C leads to dehydration of the material, with a decrease in surface area 

being accompanied by an increase in the amount of disordered form in the sample. In 

addition to the form change with drying, dissolution showed that drying MgSt can also 

have an impact on tablet performance. 
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7.2   Abstract 

 

Magnesium stearate (MgSt) is the most common pharmaceutical excipient and is 

used as a lubricant in approximately half of the tablet formulations on the market.(1) In 

spite of its popularity as an effective lubricant, it has been repeatedly recognized that 

there is significant variability between MgSt samples which can cause inconsistent 

lubrication and/or dissolution between lots and batches of MgSt. Dissolution is an 

important functional property for pharmaceutical formulations. Differences in dissolution 

for different crystal forms of MgSt have been reported, but an exhaustive study of the 

influence of MgSt hydrate form on dissolution has not yet been published. In this study, a 

dissolution method is developed for an indomethacin direct compression tablet 
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formulation. The method development discussed here covers: 1) manual dissolution 

sampling, 2) formulation mixing methods, 3) use of fiber optic UV probes, 4) calibration 

curves comparing UV spectrometer analysis and fiber optic probes, 5) effect of MgSt 

concentration on dissolution, 6) powder vs. tablet dissolution profiles, 7) effect of tablet 

compaction pressure, 8) effect of vial type and turbula speed, 9) effect of formulation 

mixing time on dissolution for monohydrate and dihydrate forms, 10) reproducibility and 

differentiation of tablets using various commercial MgSt lots, 11) sample homogeneity, 

12) effect of MgSt particle size sieve fractions on dissolution rates and 13) effects of 

grinding, sieving and ball-mixing of MgSt on tablet dissolution. A dissolution method is 

developed which can distinguish between MgSt samples with different physicochemical 

properties.  

 

 

7.3   Introduction 

 

Magnesium stearate (MgSt) is the most common pharmaceutical excipient and is 

used as a lubricant in approximately half of the tablet formulations on the market.(1) In 

spite of its popularity as an effective lubricant, it has been repeatedly recognized that 

there is significant variability between MgSt samples which can cause inconsistent 

lubrication and/or dissolution between lots and batches of MgSt. Incomplete lubrication 

can cause picking and sticking, so MgSt is typically added as a solid lubricant to tablet 

formulations as a lubricant at a 0.25 - 5% level to prevent powder from sticking to the 

tablet die and manufacturing equipment during the tableting process. Many formulation 

labs have experiences with MgSt where the lubrication capability and/or the dissolution 

rate varies unexpectedly, with unexplained batch-to-batch and lot-to-lot variation.(16, 97) 

For example, one lot from a manufacturer may show picking and sticking after several 

thousand tablets are made as powder builds up on the equipment, but other lots do not. In 

addition, tablets manufactured from different lots of MgSt may have different dissolution 

properties. The reasons for the inconsistencies between lots and types of MgSt are still 

poorly understood, (149-151) but it is proposed that the variability in the dissolution and 
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lubrication properties of MgSt can be related back to its complicated structural 

properties.(98, 126) 

Dissolution is an important functional property for pharmaceutical formulations. 

It is known since 1963 that MgSt causes slowed dissolution of API formulations(89) and 

that formulation mixing time and compression force affect the dissolution rate(90, 91) as 

well as the amount of MgSt in the formulations. The mechanism was investigated and the 

effect of MgSt on mixing time and compression force was attributed to lamination and 

adhesion of MgSt to the other particles in the formulation, along with the flaking of MgSt 

causing an increase in surface area.(90, 92) Hussain et al. suggested that the extent of 

surface coverage of the hydrophobic film on the particles is the most important factor in 

affecting dissolution.(83) Patra et al. studied the effect of MgSt concentration and granule 

size on the dissolution rate of ciprofloxacin HCl and found that a hydrophobic lubricant 

like MgSt decreases the drug-solvent interface, causing slower dissolution due to 

decreased wettability and increased dissolution rate with smaller granules.(93) Possible 

interactions with MgSt have been explored for their effects on dissolution, including the 

addition of colloidal silica by Johansson et al.,(94) the interactions of surfactants with 

MgSt during mixing,(50) and the interaction of MgSt with HPMC-AS in ASDs and 

hydrogen bonding with itraconazole ASDs.(95, 96) The effects of acidic media was also 

investigated by Ariyasu et al. and indicates conversion of MgSt to stearic acid during 

dissolution.(97, 98) Additionally, other lubricants were explored as alternatives to MgSt, 

including calcium stearate,(98) glycerin fatty acid esters,(99, 100) Stear-o-Wet,(101) 

talc.(102) Hussain, York and Timmins compared the dissolution of paracetamol tablets 

with different grades of MgSt. No relationship between physical properties such as 

surface area and dissolution was found. (83) In 2013, Okoye et al. observed differences in 

dissolution between naproxen and acetaminophen comparing MgSt dihydrate, 

monohydrate and anhydrate.(87) However, an exhaustive study of the influence on MgSt 

hydrate form on dissolution has not yet been published. 

In this study, a dissolution method is developed for an indomethacin direct 

compression tablet formulation. An appropriate dissolution method is needed to show 

distinguish between different MgSt samples, to enable a comprehensive investigation of 

the properties of various MgSt samples. This method is specifically designed to be an 
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over-lubricated situation, to differentiate between varying types of MgSt in the tablet 

formulations. The method development discussed here covers: 1) manual dissolution 

sampling, 2) formulation mixing methods, 3) use of fiber optic UV probes, 4) calibration 

curves comparing UV spectrometer analysis and fiber optic probes, 5) effect of MgSt 

concentration on dissolution, 6) powder vs. tablet dissolution profiles, 7) effect of tablet 

compaction pressure, 8) effect of vial type and turbula speed, 9) effect of formulation 

mixing time on dissolution for monohydrate and dihydrate forms, 10) reproducibility and 

differentiation of tablets using various commercial MgSt lots, 11) sample homogeneity, 

12) effect of MgSt particle size sieve fractions on dissolution rates and 13) effects of 

grinding, sieving and ball-mixing of MgSt on tablet dissolution. 

 

 

7.4   Materials and Methods 

7.4.1   Materials 

 

Magnesium hydroxide was purchased from Fluka (St. Louis, MO). Stearic acid 

and palmitic acid were purchased from TCI (Tokyo, Japan). Indomethacin was purchased 

from Sigma (St. Louis, MO). Magnesium chloride hexahydrate was purchased from 

EMD (Darmstadt, Germany). Phosphate buffer was prepared from sodium phosphate 

monobasic and sodium hydroxide, purchased from purchased from BDH Analytical 

(Radnor, PA). Tablet excipients Avicel (microcrystalline cellulose, MCC) and alpha-

Lactose monohydrate were obtained as complimentary samples from FMC Biopolymer 

(Philadelphia, MA) and purchased from Sigma (St. Louis, MO), respectively. The 

sources of the commercial samples were reported previously.(48) 

 

7.4.2   Tablet Composition 

 

The tablet formulation composition is 16.7% indomethacin, 50% alpha-lactose 

monohydrate, 33.3% microcrystalline cellulose (Avicel PH 102) and 2% magnesium 
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stearate (MgSt). Lactose is a commonly used filler/diluent known to have good 

compressibility. Avicel PH 102 is a binder often used in direct compression in tablet 

formulations. A “premix” containing all the formulation ingredients except MgSt was 

prepared first, to minimize the formulation variation in each tablet due to the other 

ingredients. The type of magnesium stearate was intentionally varied from batch to batch, 

to study the impact of MgSt properties on the functional properties of the tablets. 

Formulations of 1g size were prepared. The 1g size allows for six 150 mg tablets to be 

prepared from each formulation batch. 

 

7.4.3   Mixing and Tableting 

 

Indomethacin tablet formulations were prepared by adding MgSt to a “Premix” 

mixture containing 16.7% indomethacin (Sigma, St. Louis, MO), 47.3% alpha-lactose 

monohydrate (Sigma, St. Louis, MO), 34% Avicel (FMC Biopolymer, Philadelphia, PA) 

in a ratio of 2:98 MgSt: Premix. The tablet powders were mixed as 1 g batches in 40 mL 

glass vials for 60 minutes using a Turbula T-2C mixer (WAB, Basel, Switzerland) on the 

highest setting. Six individual 150 mg tablets were made from each 1 g formulation batch 

and pressed using a single tablet press (Globe Pharma, North Brunswick, NJ) at 50 bar 

for 30 seconds. The tablet weights were recorded and the dissolution results were 

adjusted for tablet mass. Ball mixing was performed by adding 1g of MgSt to a 40 mL 

glass vial with ten ¼-inch plastic balls and mixed for 60 minutes using the Turbula T-2C 

mixer. 

 

7.4.4   Drug Properties and Buffer Selection 

 

Indomethacin is a popular model NSAID drug, with low aqueous solubility of 0.9 

mg/L(153) and pKa of 4.5. The buffer for this project was potassium phosphate, pH 7.2. 

This is a simple and commonly used buffer for pharmaceutical drug development studies. 

This pH is more than 2 pH units above the pKa of indomethacin, to maximize the 
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solubility of the drug in the buffer. The solubility of indomethacin in the buffer at this pH 

is > 30 µg/mL. Each 150 mg tablet contains 25 mg of indomethacin (16.7% drug load). If 

the entire 25 mg of drug is completely dissolved in 900 mL of buffer, the concentration 

of indomethacin in the buffer is 27.8 µg/mL. This is below the solubility of the drug in 

the buffer, allowing for complete dissolution. Potassium phosphate buffer was prepared 

in 9 L batches by adding 2.0 L of 0.2M potassium phosphate solution, 1.4 L of 0.2M 

sodium hydroxide solution and 5.4 L of deionized water. The pH was confirmed to be 7.2 

+/- 0.2 with a pH meter. 

 

7.4.5   Dissolution  

 

Dissolution was performed by placing each tablet in 900 mL of pH 7.2 phosphate 

buffer at 37 °C using a VanKel V7000 USP method 2 dissolution apparatus (Varian, 

Cary, NC). The paddles were stirred at 100 rpm. µDISS fiber optic UV probes (pION, 

Billerica, MA) were used to collect data at various time points from 0 - 120 minutes, and 

processed using UV absorbance at 320 nm. The µDISS probes were calibrated using 

indomethacin in potassium phosphate buffer. The dissolution data was processed using 

the second derivative function to eliminate the effects of particles on the UV absorbance 

reading.  

 

7.4.6   Grinding, sieving and ball mixing 

 

Grinding was performed using a mortar and pestle. Ball mixing was performed by 

adding 1g of MgSt to a 40 mL glass vial with ten ¼-inch plastic balls and mixed for 60 

minutes using the Turbula T-2C mixer. MgSt samples were sieved on a Gilson Performer 

Model SS-3 sieve shaker for approximately 60 minutes, using ASTM sieves that range 

between 20 micron and 250 micron sieve sizes. 
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7.5   Results and Discussion 

7.5.1   Effect of Manual Sampling and Hand-mixing 

 

Method development was initiated with a simple experimental design. Tablets 

were prepared using four different commercial lots of MgSt and mixed by hand for two 

minutes. Dissolution samples were pulled at various time points and the drug 

concentration was analyzed by UV-vis. Figure 7-1 shows similar dissolution for the four 

formulations, after 2 minutes of mixing by hand.  

 

 

Figure 7-1. Indomethacin dissolution of tablet formulations comparing four commercial 
samples of MgSt. The formulations were hand-mixed for 2 minutes. 

 

 

A short mixing time is normal for formulation development, but it does not 

address the fundamental reason that MgSt variability sometimes causes dissolution 

failure. Over-lubrication is the underlying issue for MgSt dissolution failure, so to 

investigate MgSt with dissolution, we need to be looking at an over-lubricated state. The 

easiest ways to create an over-lubricated state is to increase the formulation mixing time 

or the % MgSt in the formulation. If some types of MgSt are more susceptible to over-
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lubrication than other types of MgSt, those differences will be observed by increasing the 

mixing time and the % MgSt in the formulation.  

Extending the formulation mixing time to 30 minutes of hand-mixing resulted in 

the dissolution shown in Figure 7-2. Five batches of tablets containing ChemImpex brand 

of MgSt performed similarly, with ~ 80% dissolution at 15 minutes. However, there was 

more variation between the five batches of tablets containing Fisher brand MgSt. 

Additionally, it is unclear whether 100% dissolution is reached for all of these curves, 

even after 60 minutes.  

 

 

Figure 7-2. Comparison of indomethacin dissolution for tablet formulations using 
ChemImpex (top) and Fisher (bottom) brands of MgSt. The formulations were hand-
mixed for 30 minutes. 
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Investigating the method details revealed several potential sources of error and/or 

variability in the method. First, hand-mixing could introduce inconsistency in mixing, 

depending on the angle of shaking and how rigorously the shaking was performed. This 

would be expected to vary between batches and analysts. A standardized mixing method 

is preferred. To address this, a Turbula mixer was obtained and used for subsequent 

studies. Second, the tablet weights were not tracked for these early studies, leaving room 

for significant error in calculating % dissolution. A large tablet weight variation could 

also affect the tablet hardness and disintegration of the tablets. Clearly, it would be 

preferred to compare tablets of a similar weight. Going forward, the tablet weights were 

recorded and % dissolution was adjusted accordingly for each individual tablet.   

 

 

7.5.2   Advantages of uDISS Fiber Optic UV Probes for Direct Sampling 

 

Manual sampling for dissolution studies can have several drawbacks. First, 

removing aliquots for sampling at various time points affects the total volume of the 

dissolution bath. If the volume is replaced after sampling, then the concentration in the 

bath is changed. Second, manual sampling is time consuming and labor-intensive, 

limiting the time points that can be collected in the early section of the curve. Third, 

transferring the aliquots of sample to another apparatus for concentration analysis can 

introduce error. In particular, for samples that need to be filtered to remove particle prior 

to HPLC analysis, the filtering process may affect the concentration of the aliquot, 

skewing the results of the experiment. For all these reasons, an in situ method is 

preferred. For this project, fiber optic UV probes were available to use with the 

dissolution bath, by placing the probes in the vessels at an appropriate height for 

sampling. The accompanying software was programmed to take many more points in 

every section of the curve, allowing for a more complete dissolution curve with minimal 

labor. A second-derivative function is built into the software to address concerns with un-

dissolved particles in the solution. Table 7-1 shows aspects of the traditional dissolution 

method compared with the new dissolution method being developed.  
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Table 7-1. Components of Traditional dissolution method vs. New dissolution method 

 
 

 

7.5.3   Calibration Curves Comparing UV-vis Spectrometer with UV Fiber Optic Probes 

 

To confirm the reliability of the fiber optic probes, indomethacin calibration curves for 

the manual sampling method using UV-vis analysis were compared with calibration 

curves for the fiber optic UV probes. The absorbance of indomethacin was measured at 

320 nm wavelength. As shown in Figure 7-3 both curves are linear through 30 µg/mL, 

with acceptable correlation coefficients for both curves. Additionally, the y-intercepts are 

close to zero for both curves. This data allows us to be confident in the ability of the fiber 

optic probes to provide acceptable quantitative analysis for our indomethacin tablets 

using the dissolution method.  

 

Traditional method New method

Hand-mixing Turbula mixing

Tablet weights uncontrolled Adjust for tablet weight

Labor-intensive Automated

Manual sampling Direct sampling

Sample each time point Multiple probes, more replicates

Volume corrections In situ sampling

UV-vis spectrometer Fiber optic probes

Need to filter samples 2nd derivative option
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Figure 7-3. Indomethacin curves comparing data from UV-vis spectrometer and fiber 
optic UV probes.  

 

 

7.5.4   Effect of MgSt Concentration in Indomethacin Tablet Formulations 

 

The concentration of MgSt in the formulation is known to affect the performance of 

tablets, so this % of MgSt used in the formulation was varied to determine the effect in 

our dissolution method. Figure 7-4 compares tablet formulations containing 0.5%, 1%, 

2% and 7% MgSt, using a commercial monohydrate MgSt designated “PG 193”. 

Decreased dissolution was observed for increasing amounts of MgSt in the formulations, 

with 7% MgSt having less than 30% dissolution at 15 minutes. Clearly, the amount of 

MgSt in the formulation  has an effect on dissolution. In order to promote over-

lubrication in this study, a 2% level of MgSt was chosen for the formulation.  
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Figure 7-4. Effect of amount of MgSt on indomethacin tablet dissolution  
 

 

7.5.5   Powder vs. Tablet Dissolution Profiles 

 

As a control, dissolution was performed for samples containing no MgSt. Two different 

batches of premix powder and tablets were analyzed in triplicate, shown in Figure 7-5. 

The powder was observed to float on top of the buffer solution and dissolved slowly, due 

to poor wetting properties of the formulation components. The tablets sank to the bottom 

of the vessel and were observed to dissolve quickly. In order to investigate dissolution, 

rather than wetting, it was decided to focus on tablet dissolution rather than powder 

dissolution. The control with no MgSt shows the expected dissolution when MgSt is 

having no effect on tablet dissolution.  
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Figure 7-5. Indomethacin dissolution of premix formulation containing no MgSt, 
comparing powder (top) and tablets (bottom) 

 

 

7.5.6   Effect of Tablet Compaction Pressure 

 

Disintegration can also affect dissolution profiles for tablet formulations. In order 

to minimize the impact of disintegration on dissolution for the method here. Figure 7-6 
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shows the effect of compaction pressure on indomethacin tablet dissolution for Premix 

and tablets containing 2% MgSt from Acros. The effect of compaction pressure to delay 

disintegration and dissolution is seen in the first few minutes. Clearly, the Acros MgSt is 

causing a delay in both disintegration and dissolution, whereas the Premix only shows an 

effect on disintegration. The delay in dissolution due to disintegration is the relevant issue 

for method development. To minimize the effect of disintegration on dissolution, a low 

compaction pressure of 50 psi was chosen for tableting. 

The solid fraction (SF) numbers show that for the premix tablets, the solid 

fraction is > 1. This indicates that, in the absence of MgSt, the lactose and/or Avicel is 

being compressed beyond the original density. However, the high solid fraction (i.e. more 

effective compression and likely greater hardness) does not prolong disintegration. 

Rather, the presence of MgSt is resulting in softer tablets and slower dissolution. This is 

due to the MgSt forming a hydrophobic film coating around the particles in the 

formulation, which has a two-fold effect. First, it keeps the formulation particles from 

interacting to compress like the non-lubricated particles would and second, it delays 

dissolution by slowing drug release from coated particles.  

 

 

Figure 7-6. Dissolution of indomethacin tablets showing the effect of compaction 
pressure on disintegration and dissolution 
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7.5.7   Effect of Mixing Configuration and Turbula Speed 

 

To test mixing configuration and Turbula mixing speed, three conditions were compared: 

a “slow-tumbling” condition where “slow” indicates a ~ 50-75 rpm setting on the 

Turbula, “fast” indicates ~ 100 rpm Turbula speed, and “tumbling” indicates a vial placed 

inside a plastic bottle to allow extra tumbling during the mixing process.  

Figure 7-7 compares these three mixing conditions for a 10 min mixing time and 

40 mL vial. All conditions were similar for the dihydrate formulations. However, the 

“fast-falling” condition was the most differentiating for the monohydrate. The “fast-

falling” condition uses a 40 mL vial on the fast Turbula setting, and this is the condition 

used for subsequent dissolution testing.  

 

 

Figure 7-7. Dissolution of tablets containing lab-synthesized dihydrate and monohydrate 
MgSt, after mixing the formulation in various ways 

 

 

7.5.8   Effect of Formulation Mixing Time on Dissolution 

Another important factor in over-lubrication with MgSt is mixing time. Longer mixing 

times allows for a greater extent of surface coating of particles by MgSt, and this results 
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in slower dissolution. This effect of MgSt mixing time is well-documented in the 

literature.  

Figure 7-8 shows the difference in dissolution as a function of mixing time. 

Monohydrate MgSt was compared with dihydrate MgSt after sieving to < 45 µm. The 

monohydrate MgSt shows greater sensitivity to over-lubrication compared to the 

dihydrate form of MgSt. A 60 minute mixing time was chosen as a standard mixing time 

for this method, to enable good discrimination between samples. This is significantly 

longer than the normal mixing time for formulation development and represents an over-

lubricated state for many MgSt samples. As such, it enables our study to discriminate 

between MgSt samples which are sensitive to over-lubrication and those MgSt samples 

which are less sensitive to over-lubrication.  

 

 

Figure 7-8. Effect of mixing time on MgSt dihydrate < 45 µm and MgSt monohydrate < 
45 µm.  

 

 

7.6   Conclusions 

 

A discriminating dissolution method was developed to study the over-lubrication 

of indomethacin tablets using various lots of MgSt. Several different factors were 
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explored in the method development, including mixing method, sampling technique, the 

effect of MgSt concentration, compaction pressure, formulation mixing speed, 

formulation mixing time, reproducibility of the overall method and differentiation 

between samples. Using this method, differences between variations in properties of 

MgSt samples are addressed in Chapter 8.  
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8.2   Abstract 

 

Magnesium stearate (MgSt) is a pharmaceutical excipient that is used in 

approximately half of all pharmaceutical tablet formulations. It is typically added as a 

lubricant prior to tableting to ensure proper ejection of the tablet from the press. The 

physicochemical properties of MgSt that have been proposed to impact lubrication and 

dissolution include fatty acid composition, crystalline form, and particle size and surface 

area. This study focuses on the dissolution properties of commercial and lab-synthesized 

MgSt samples. No obvious correlation between fatty acid composition and dissolution 
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performance was observed between commercial or lab-synthesized MgSt samples. 

However, higher surface area appeared to correlate with slower dissolution rate. 

Additionally, lab-synthesized samples showed that smaller particle size fractions 

correlated with slower dissolution compared to larger particle size fractions of the same 

starting material. A further effect of ball mixing was observed to slow dissolution rate for 

the disordered form, indicating the importance of processing effects by mixing and/or 

shearing. 

 

 

8.3   Introduction 

 

Magnesium stearate (MgSt) is the most commonly used excipient for 

pharmaceutical tablet formulations, with over half of the marketed formulations including 

MgSt as one of the formulation excipients.(1) MgSt is typically added to tablet 

formulations as a lubricant at a 0.25 - 5% level to prevent powder from sticking to the 

tablet die and manufacturing equipment during the tableting process. Many formulation 

labs have experiences with MgSt where the lubrication capability and/or the dissolution 

rate varies unexpectedly, with unexplained batch-to-batch and lot-to-lot variation.(16, 97) 

For example, one lot from a manufacturer may show picking and sticking after several 

thousand tablets are made as powder builds up on the equipment, but other lots do not. In 

addition, tablets manufactured from different lots of MgSt may have different dissolution 

properties. The reasons for the inconsistencies between lots and types of MgSt are still 

poorly understood, (149-151) but it is proposed that the variability in the dissolution and 

lubrication properties of MgSt can be related back to its complicated structural properties. 

(126, 154)  

The physicochemical properties of MgSt that have been proposed to have the 

greatest effect on the functional properties of MgSt include fatty acid composition, 

crystalline form and particle size/surface area.(152) Magnesium stearate is historically 

derived from vegetable and animal sources, and is usually composed of a mixture of 

magnesium fatty acid salts, although in this paper the salts are also referred to as fatty 

acids. The USP monograph for MgSt specifies that magnesium stearate must contain at 
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least 40% stearate, with at least 90% being a combination of stearate and palmitate fatty 

acid salts.(19) The remaining 10% may be magnesium salts derived from other fatty 

acids, typically the C12-C22 straight-chain fatty acids.(19) A large variation in fatty acid 

salts can exist between magnesium stearate lots and samples, which may or may not be 

specified in the certificate of analysis from the manufacturer. Magnesium stearate also 

exists in multiple hydrate forms as well as an anhydrate form.(35, 155) The monohydrate 

and dihydrate forms have been reported and characterized by various techniques.(37, 39) 

Delaney et al. showed that there are at least five forms of MgSt, where solid-state NMR 

(SSNMR) spectroscopy was able to clearly distinguish between the five forms - an 

anhydrous form, a disordered monohydrate form, an ordered monohydrate, a dihydrate 

and a trihydrate.(48) Particle size and surface area have also been shown to impact 

performance.(151, 152, 156) In addition, some of these properties, such as particle 

size/surface area and crystalline form, may change upon blending time, tableting pressure 

and particle size reduction method and other processing operations.  

Chapter 3, adapted from Delaney et al., describes a comprehensive analytical 

characterization of several commercial MgSt samples, where commercial refers to 

samples either purchased or obtained from various sources, as opposed to lab-synthesized 

samples.  In that study, analytical techniques such as gas chromatography-mass 

spectrometry (GC-MS), scanning electron microscopy (SEM), differential scanning 

calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction 

(PXRD), and SSNMR were used to investigate the properties of these samples. (48) It 

was shown that SSNMR is very useful for identifying the crystalline form of the MgSt 

samples, and GC-MS could be used to characterize the fatty acid composition.  However, 

the impact of these variables on the functional properties, specifically the lubrication and 

dissolution properties, was not investigated.   

Dissolution is an important functional property for pharmaceutical formulations. 

It is known since 1963 that MgSt can cause slower dissolution of formulations(89) and 

that formulation mixing time, compression force, and amount of MgSt in the 

formulations can affect the dissolution rate(90, 91).  The impact that MgSt has on 

dissolution rate is due to differences in mixing time and compression force was attributed 

to lamination and adhesion of MgSt to the other particles in the formulation, along with 
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the flaking of MgSt causing an increase in surface area.(90, 92) Hussain et al. suggested 

that the extent of surface coverage of the hydrophobic film on the particles is the most 

important factor in affecting dissolution.(83) Patra et al. studied the effect of MgSt 

concentration and granule size on the dissolution rate of ciprofloxacin HCl and found that 

a hydrophobic lubricant like MgSt decreases the drug-solvent interface, causing slower 

dissolution due to decreased wettability and increased dissolution rate with smaller 

granules.(93) The interactions of other formulation ingredients with MgSt have been 

explored for their effects on dissolution, including the addition of colloidal silica by 

Johansson et al.,(94) the interactions of surfactants with MgSt during mixing,(50) the 

interaction of MgSt with HPMC-AS in ASDs, and hydrogen bonding with itraconazole 

ASDs.(95, 96) The effect of acidic media was also investigated by Ariyasu et al., and 

their results indicated the conversion of MgSt to stearic acid during dissolution.(97, 98) 

Additionally, dissolution has been used to explore alternative lubricants for MgSt, 

including calcium stearate,(98) glycerin fatty acid esters,(99, 100) Stear-o-Wet,(101) and 

talc.(102) Hussain, York and Timmins compared the dissolution of paracetamol tablets 

with different grades of MgSt. Although marked differences between samples were 

noted, no clear relationship between physical properties of MgSt such as surface area and 

dissolution was defined. (83) In 2013, Okoye et al. observed differences in dissolution 

between naproxen and acetaminophen formulations comparing MgSt dihydrate, 

monohydrate and anhydrate. In their study, the monohydrate form slowed dissolution to a 

greater extent than the dihydrate and anhydrate forms of MgSt .(87) We hope to further 

this understanding of the effects of MgSt hydrate form on tablet dissolution with the aid 

of SSNMR characterization data.  

This chapter will focus on the dissolution properties of both commercial and lab-

synthesized MgSt samples. Dissolution was chosen as a discrimination method instead of 

lubrication, since formulated samples could be prepared at relatively small scales, and 

once the properties that impacted dissolution were identified, later studies could focus on 

their lubrication properties. It is important to note that the dissolution method developed 

for this study is only used to compare the performance of different MgSt samples. It was 

not designed for use in release testing, nor for meeting USP or product specifications, nor 

for correlations with bioavailability, but is specifically for discriminating between MgSt 
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lots used in tablet formulations. For this study, a simple direct compression tablet 

formulation comprised of 16.7% indomethacin, 35% microcrystalline cellulose, 47% 

lactose, and 2% MgSt was prepared with different MgSt samples, and the processing 

parameters (e.g. mixing time and compression forces) were optimized such that the 

dissolution data showed differences between MgSt samples.  Each of the MgSt 

commercial samples characterized previously in the Delaney paper was analyzed here by 

dissolution.(11, 48) The commercial samples showed that the disordered form of MgSt 

leads to a faster dissolution rate than formulations prepared with the other MgSt hydrate 

forms. No clear correlation with fatty acid composition was observed, but lower surface 

area appeared to correlate with faster dissolution rate and higher surface with slower 

dissolution rates. Additionally, lab-synthesized samples showed that smaller particle size 

fractions correlated with slower dissolution compared to larger particle size fractions of 

the same material. A further effect of ball mixing was observed to slow dissolution for 

the disordered form. 

 

 

8.4   Materials and Methods 

8.4.1   Materials 

 

Magnesium hydroxide was purchased from Fluka (St. Louis, MO). Stearic acid 

and palmitic acid were purchased from TCI (Tokyo, Japan). Magnesium chloride 

hexahydrate was purchased from EMD (Darmstadt, Germany). Phosphate buffer was 

prepared from sodium phosphate monobasic and sodium hydroxide, purchased from 

purchased from BDH Analytical (Radnor, PA). Tablet excipients Avicel 

(microcrystalline cellulose, MCC) and alpha-Lactose monohydrate were obtained as a 

complimentary sample from FMC Biopolymer (Philadelphia, MA) and purchased from 

Sigma (St. Louis, MO), respectively. The sources of the commercial samples were 

reported previously.(48) 
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8.4.2   MgSt Synthesis 

 

Magnesium stearate lots were synthesized in a range of fatty acid ratios, notated 

using either “% stearate” or “St:Pa” to indicate the stearic acid: palmitic acid (St:Pa) 

ratio. Two synthesis methods were used: 1) a “melt method” combined magnesium 

hydroxide and water with melted stearic and palmitic acids at 70-90 °C, in a spontaneous 

reaction producing magnesium stearate. 2) a “bath method” dissolved the fatty acids in a 

heated water bath, to which ammonium hydroxide was added to create the ammonium 

soap, followed by a titration with magnesium chloride to precipitate out the magnesium 

stearate solid. These methods are described in greater detail in Chapter 4. In each case, 

the recovered solids were washed using a reflux bath of 1:1 acetone: water for 24-48 

hours to remove impurities and unreacted starting materials. The MgSt samples were air-

dried and/or dried in a vacuum oven at 25 °C to remove surface water. The disordered 

form was prepared by heating a dihydrate or monohydrate-dihydrate mixture to 105 °C 

for 48 hours. LS 1 “rehydrated” monohydrate was dehydrated and then the disordered 

sample was rehydrated by heating to 105 °C for 1 hour, then placing the sample in a 

humidity chamber at 105 °C for 24 hours. The dehydration/rehydration process produced 

a mixture of monohydrate with disordered forms, which appears as mostly monohydrate 

by SSNMR.  

 

8.4.3   Mixing, Tableting and Sieving 

 

MgSt tablets were prepared by adding MgSt sample to a “Premix” mixture 

containing 16.7% indomethacin (Sigma, St. Louis, MO), 50% alpha-lactose monohydrate 

(Sigma, St. Louis, MO), 33.3% Avicel (FMC Biopolymer, Philadelphia, PA) in a ratio of 

2:98 MgSt: Premix. The tablet powders were mixed as 1 g batches in 40 mL glass vials 

for 60 minutes using a Turbula T-2C mixer (WAB, Basel, Switzerland) on the highest 

setting. Six individual 150 mg tablets were made from each 1 g formulation batch and 

pressed using a single tablet press (Globe Pharma, North Brunswick, NJ) at 50 bar for 30 
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seconds. The tablet weights were recorded and the dissolution results were adjusted for 

tablet mass. Ball mixing was performed by adding 1g of MgSt to a 40 mL glass vial with 

10 ¼ inch plastic balls and mixed for 60 minutes using the Turbula T-2C mixer. MgSt 

samples were sieved on a Gilson Performer Model SS-3 sieve shaker for approximately 

60 minutes, using ASTM sieves that range between 20 µm and 250 µm sieve sizes. 

 

8.4.4   Dissolution 

 

Dissolution was performed by placing each tablet in 900 mL of pH 7.2 phosphate 

buffer at 37 °C using a VanKel V7000 USP method 2 dissolution apparatus (Varian, 

Cary, NC).  The paddles were stirred at 100 rpm. µDISS fiber optic UV probes (pION, 

Billerica, MA) were used to collect data at various time points from 0 - 120 minutes and 

processed using UV absorbance at 320 nm. The µDISS probes were calibrated using 

indomethacin in potassium phosphate buffer. The dissolution data was processed using 

the second derivative function to eliminate the effects of particles on the UV absorbance 

reading.  

 

8.4.5   Solid-state NMR Spectroscopy (SSNMR) 

 
13C CP/MAS and 1H T1 relaxation data were collected using a home built Tecmag 

Redstone NMR Spectrometer (Houston, TX), Bruker 400 MHz magnet (Billerica, MA), 

and Chemagnetics (Ft. Collins, CO) NMR probe with 7.5 mm rotors spinning at 4000 Hz. 

A relaxation delay of 12 s was used with 2K acquisition points and 1024 scans. TNMR 

software (Houston, TX) was used to process the data. 3-methylglutamic acid was used as 

a reference standard, with the methyl peak referenced to 18.84 ppm.  

 

8.4.6   Thermogravimetric Analysis (TGA) 
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TGA weight loss was measured using TA Q50 (TA Instruments, Newcastle, DE) 

with a 10 °C/minute ramp from 25 °C to 250 °C. 

 

8.4.7   Gas Chromatography-Mass Spectroscopy (GC-MS) 

 

MgSt samples were derivatized using a boron trifluoride-methanol procedure to 

convert the acids to their methyl derivatives. An Agilent 7890A GC with 5975C Mass 

Spec Component and 7693 autosampler was used with an HP-5 capillary column (30 m 

0.320 mm bore 0.25 mm Film) and helium carrier gas at 0.9 mL/min flow rate. A 48-min 

program was used, with an injection temperature of 270 °C. The oven temperature was 

held at 70 °C for 2 min, then ramped up at 5 °C /min to 240 °C, held for 5 min, then 

ramped at 10 °C /min to 260 °C and held for 5 min. Data were collected using the Agilent 

ChemStation software, and was processed using OpenChrom software with the Agilent 

plugin. The identity of fatty acid derivative peaks was confirmed based on MS spectra 

using the NIST database. 

 

8.4.8   Surface Area Analysis  

 

Surface area analysis was conducted using a Micromeritics ASAP 2460 with 

a Micromeritics Smart Vac Prep attachment (Micromeritics Instrumentation Corporation, 

Norcross, GA, USA). A sample of about 1000 mg was dried at 40 °C and outgassed 

under nitrogen flow conditions. Krypton adsorption-desorption isotherms were recorded 

at liquid nitrogen temperatures (77K) and specific surface area was calculated by the 

Brunauer-Emmett-Teller (BET) method. Data was analyzed using Micromeritics 

MicroActive version 5.0 software. 
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8.5   Results 

8.5.1   Control and Reproducibility of the Dissolution Process 

 

In order to ensure that the dissolution data could be used to discriminate between 

samples, it was critical that the formulation, processing, and testing of the tablet 

dissolution was both extremely reproducible and gave consistent results. We found that 

the formulation mixing process and the dissolution measurement conditions were the 

critical aspects of the testing process that impacted dissolution rate, as discussed in 

Chapter 7. This method was used to investigate all the samples described here. 

The mixing process was standardized by using an automated Turbula mixer. 

Kushner and co-workers have published a comprehensive comparison of the properties of 

a Turbula mixer and the formula necessary to translate results from a Turbula mixer to 

larger scale mixing equipment. (54)  As Kushner has noted, the Turbula mixer does not 

represent the more common V-mixer blending used in many formulation labs, but it does 

provide a consistent and reproducible blending process. Because the Turbula mixer is a 

small-scale mixer, it likely does not produce the same shear forces as would be used on a 

manufacturing scale. For this reason, a longer mixing time is required to achieve the same 

shear effect with formulations containing MgSt. To accentuate differences between lots 

and batches, a 60-minute mixing condition was chosen as the standard method for the 

remaining dissolution studies. This is probably on the extreme edge of the Turbula 

mixing reported in the Kushner paper, but was chosen to enhance differences in the 

variability of the MgSt samples, and not necessarily to correlate with scale-up to larger 

batches.  

All of the conditions for the dissolution measurement were standardized and 

found to be reproducible for replicate tablet formulations from the same lot when 

processed in the same way. Figure 8-1 shows the reproducibility of dissolution data for 

three commercial samples for multiple runs of the same sample. Six separate formulation 

samples were prepared from each lot and 3 tablets were prepared from each formulation, 

making a total of 18 tablets per lot. Our method shows RSD < 10% for replicate samples 

in each lot, as indicated by the error bars. There is also significant differentiation between 
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the three commercial lots presented in Figure 8-1. These three commercial samples have 

differences in their physicochemical properties (hydrate form, fatty acid composition and 

particle size) which may contribute to the observed differences in dissolution.(154, 157)  

 

 

 

Figure 8-1. Dissolution of three commercial samples (n=18) shows reproducibility for 
multiple runs of each sample. Commercial lots are from Mallinckrodt 1726, Mallinckrodt 
5712 and Chem-Impex suppliers, listed from fastest to slowest dissolution.  

 

 

8.5.2   Variation in Dissolution using Commercial Samples 

 

Figure 8-2 shows the dissolution profiles for eight commercial samples, all of 

which had been previously characterized in the literature, including determining the 

crystalline form from the carbonyl peak in the 13C SSNMR spectrum.(48) For these 

samples, our dissolution method shows a tight RSD <10% for triplicate samples, as 
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indicated by the error bars in Figure 8-2. All the samples indicate > 95% dissolution in 

less than 2 hours, with most of dissolution occurring within 30 minutes.  

 

 

Figure 8-2. Dissolution of indomethacin tablets containing MgSt from several different 
commercial suppliers. Listed from fastest to slowest dissolution: Alfa Aesar Lot 
C01Y019, Alfa Aesar Lot H03W054, Mallinckrodt 1726, Mallinckrodt 5712, Chem-
Impex, Acros Lot A0235781, MP Biomedicals, Aldrich Lot STBC0861V, Acros Lot 
A0288107.  

 

 

The commercial samples in Figure 8-2 were evaluated with respect to how their 

physicochemical properties related to dissolution. Previous studies have suggested that 

the dissolution performance may be related to different crystalline forms, chemical 

composition and/or particle size. Accordingly, crystal form, fatty acid composition, 

particle size, surface area and dissolution rate characterization data for these samples are 

indicated in Table 8-1. For commercial MgSt samples, it can be particularly challenging 

to define the properties of the sample, since the sample preparation and manufacturing 

process of the samples is largely unknown, aside from what may be listed in a certificate 
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of analysis from the manufacturer. In particular, the processing is unknown, including 

how the materials were prepared and the extent to which the particles were milled. Both 

of these types of processing can affect the dissolution.  

 

Table 8-1. Physicochemical properties of MgSt commercial samples: Crystal form, fatty 
acid composition, surface area and dissolution 

Supplier   Crystal Form   Fatty Acid   
Composition  

Surface Area 
 (m

2
/g)  

% Dissolution   
at 15 min  

Alfa Aesar   
Lot 019  

Disordered   64:27:9   0.77   86.1  

Alfa Aesar   
Lot 054  

Disordered   66:28:6   0.89   84.2  

Mallinckrodt   
1726  

Monohydrate-
dihydrate  

90:10   2.83   78.6  

ChemImpex   Monohydrate-
dihydrate   

55:35:10   3.78   73.1  

MP 
Biomedical  

Monohydrate-
dihydrate  

58:36:6   3.83   72.0  

Acros   
Lot 107  

Monohydrate-
dihydrate   

64:34:2   3.92   69.3  

Sigma-
Aldrich  

Monohydrate-
dihydrate   

63:34:3   4.17   71.6  

Mallinckrodt   
5712  

Monohydrate   55:45   4.31   75.3  

Acros   
Lot 781  

Monohydrate   63:35:2   6.02   72.7  

 

A significant correlation between the disordered form and fast dissolution was 

observed. The two lots with the fastest dissolution are from Alfa Aesar, with 84 - 86% 

dissolution at 15 minutes. The Alfa Aesar lots shown in Figure 8-2 have a disordered 

crystal form, and indomethacin tablets made with these MgSt samples had the fastest 

dissolution. There is a large variability between the rest of the commercial samples, with 

dissolution from 69 - 79% at 15 minutes. As indicated in Table 8-1, these samples are 
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monohydrate and monohydrate-dihydrate mixtures by SSNMR. It is difficult to draw any 

further conclusions about the relationship between MgSt crystal form and dissolution 

with these commercial samples, largely because crystal form appears not to be the only 

variable affecting dissolution. Fatty acid composition and surface area also need to be 

investigated for correlation with dissolution rate.  

 

 

8.5.3   Effect of Fatty Acid Composition on Indomethacin Tablet Dissolution 

In addition to analyzing the commercial MgSt samples, and in order to better 

elucidate the effects of fatty acid composition, crystalline form and particle size/surface 

area on dissolution rate, additional MgSt samples were synthesized under controlled 

conditions to enable better control and identification of each of these properties 

individually. Table 8-2 lists these lab-synthesized samples and their properties. 

Specifically, the fatty acid composition (stearate: palmitate ratio) was controlled by the 

fatty acids used in synthesis and the crystal form was identified by 13C SSNMR. To 

assess the influence of particle size within an individual sample, the sample was sieved 

into different size sieve fractions prior to preparing the formulations. For comparison 

between samples, the MgSt surface area was measured using BET adsorption analysis.  

 

Figure 8-3 shows the % stearate for each commercial and lab-synthesized samples 

plotted against % dissolution at 15 minutes. Since the USP monograph for magnesium 

stearate specifies a range of acceptable fatty acid content for MgSt samples, chemical 

composition was evaluated as a potential important variable affecting functional 

properties such as dissolution. There does not appear to be an obvious correlation 

between fatty acid composition and dissolution, especially for the samples with stearate 

concentrations below 70%. In an attempt to control particle size, several lab-synthesized 

samples were sieved to a 75 – 125 µm sieve fraction, shown in Figure 8-4 and listed in 

Table 8-3. No correlation with fatty acid content was apparent for the commercial 

samples and unprocessed lab-synthesized samples.  
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The fatty acid content was measured for the commercial samples using GC-MS 

analysis, and the fatty acid ratio used in synthesis was used for the lab-synthesized 

samples. While fatty acid composition for the commercial samples was measured with a 

GC-MS extraction method using boron trifluoride, the composition of the lab-synthesized 

samples is defined from the acids used in synthesis, since the stearate and palmitate are 

chemically independent molecules and do not interconvert. That is, after the synthesized 

samples are prepared and dried, the fatty acid ratio is fixed for the samples. In a separate 

study (data not shown), some of the lab-synthesized MgSt samples were analyzed by GC-

MS and found to have the same fatty acid ratio as used in preparation.  

 

 

Figure 8-3. Dissolution of tablet formulations as a function of chemical composition (% 
stearate). Indomethacin tablet formulations were prepared containing different samples of 
MgSt from either commercial or lab synthesized sources.  
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Figure 8-4. Dissolution of tablet formulations containing different samples of MgSt with 
75-125 µm sieve fraction, as a function of chemical composition (% stearate)  

 

 

8.5.4   Effect of Crystal Form on Indomethacin Tablet Dissolution 

Figure 8-5 shows the effect of crystal form on dissolution for a few dozen 

commercial and lab-synthesized samples of MgSt, listed in Table 8-4. Monohydrate, 

dihydrate, trihydrate and disordered forms are compared. The dissolution observed for 

these lab-synthesized MgSt samples for each form is shown, ranging from 65 – 92% for 

monohydrate, 73 – 90% for dihydrate, 71 – 92% for trihydrate and 75 – 89% for 

disordered. Overall, it appears inconclusive that crystal form alone has a strong 

correlation with dissolution.   
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Figure 8-5. Comparison of tablet dissolution using different lab-synthesized crystal forms 
of MgSt 

 

 

8.5.5   Effect of Particle Size and Surface Area on Indomethacin Tablet Dissolution 

 

To investigate the effect of particle size on dissolution rate, a single sample of 

MgSt was sieved into different sieve fractions sizes and the dissolution rates were 

measured for formulations prepared using each sieve fraction. A pure monohydrate 

sample with 55:45 stearate: palmitate chemical composition, was used for this purpose. 

Figure 8-6 shows the dissolution rate of indomethacin tablets prepared using various 

sieve fractions. There is a clear effect of particle sieve size on dissolution rate when the 

crystalline form and fatty acid composition are controlled. For example, the particle size 

sieve fraction of 20-45 µm shows 67.8% dissolution at 15 minutes, where the 125-250 

µm sieve fraction shows 86% dissolution at 15 minutes. As indicated by the error bars in 
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Figure 8-6, there is good reproducibility in the dissolution rates between formulation 

batches prepared from the same lot.  

 

 

Figure 8-6. Effect of Particle Size for MgSt Monohydrate 55:45. Dissolution of 
indomethacin tablet formulations using MgSt of various particle size sieve fractions.  

 

 

Figure 8-6 addresses the size of MgSt particles within a sample, and surface area 

was used to assess whether this trend holds between samples. Surface area was 

determined to be the most relevant measure of particle size for the purposes of 

dissolution, since it is the surface of the particles that is affected by the hydrophobic film 

coating of MgSt around the particles. Additionally, surface area eliminates differences 

based on agglomeration and particle morphology, which may differ significantly between 

the monohydrate and dihydrate forms. 

Figure 8-7 showed a clear relationship between tablet dissolution and MgSt 

surface area for the commercial MgSt samples. A regression line drawn through the 

dissolution-surface area points shows a r2 value of 0.74, as in Figure 8-8, indicating a 

0

20

40

60

80

100

0:00 0:07 0:14 0:21 0:28

%
 In

do
m

et
ha

ci
n 

D
is

so
lv

ed
 a

t 1
5 

m
in

ut
es

Time (Hours:Mins)

125-250µm
75-125µm
45-75µm
20-45µm



 141 

possible relationship with other factors, such as crystal form. In order to discern whether 

MgSt crystal form impacts dissolution rate, additional lines were drawn, separating the 

points corresponding to the different crystal forms. Interestingly, the surface area-

dissolution relationship for the five monohydrate samples has a r2 = 0.97. To confirm the 

relationships for all the forms, additional surface area-dissolution data for the different 

MgSt crystal forms is needed. While surface area is clearly the primary impact on 

dissolution between MgSt samples, additional studies separating out the effects of MgSt 

crystal forms will confirm (or deny) the secondary impact of MgSt crystal form on 

dissolution. Additional studies are needed to confirm the correlation of surface area and 

dissolution with crystal form. 

 

 

Figure 8-7. Correlation of surface area with dissolution for formulations containing 
commercial MgSt.  
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Figure 8-8. Correlation of surface area with dissolution for tablet formulations containing 
various samples of MgSt. Trend lines are added corresponding to the MgSt crystal forms 
present in the samples. 

 

 

In summary, no relationship between fatty acid composition and dissolution is 

apparent. However, there does appear to be a correlation between surface area and 

dissolution, with a possible secondary effect of crystal form on dissolution rates. 

Additional studies are needed to confirm the correlation of surface area and dissolution 

with crystal form.  
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Table 8-2. List of lab-synthesized and commercial MgSt samples with physicochemical 
properties, used for Dissolution – Fatty Acid graph in Figure 8.3  

Source NB#/Lot# 
Form by 
SSNMR St Pa % Disso at 15min 

Lab Synth SD1-6 Trihydrate 40 60 70.9 
Lab Synth SD1-7 Di, tri  40 60 77.6 
Lab Synth CM1-71 Monohydrate 50 50 75.6 
Lab Synth BM1-20 Mono, di 55 45 83.1 
Lab Synth BM1-22 Mono, di 55 45 84.6 
Lab Synth JC3-52 melt Mono, di 55 45 84.3 
Lab Synth JC3-58 bath Di, tri  55 45 81.5 
Lab Synth CM1-14  Monohydrate 66 34 80.2 
Lab Synth CM1-95 Dihydrate 66 34 76.1 
Lab Synth MS1-07 Dihydrate 80 20 72.5 
Lab Synth JC3-51 melt Di, tri  90 10 78.7 
Lab Synth JC3-56 melt Mono, di 90 10 90.1 
Lab Synth JC4-49B  Monohydrate 90 10 64.6 
Lab Synth SD1-17 Dihydrate 90 10 87.8 
Lab Synth SD1-83 bath Dihydrate 90 10 84.6 

      
Commercial ChemImpex Mono, di 55 35 72.8 
Commercial Mallinckrodt 5712 Monohydrate 55 45 74.0 
Commercial MP Biomedicals Di, mono 58 42 73.8 

Commercial 
Sigma Lot 
STBB0861V Mono, di 63 37 70.5 

Commercial Acros Lot 781 Monohydrate 63 37 71.8 
Commercial Acros Lot 107 Mono, di 64 36 69.0 
Commercial Alfa Aesar 019 Disorder 64 36 86.6 
Commercial PG 315377 Mono, di 66 34 62.0 
Commercial Alfa Aesar 054 Disorder 66 34 85.2 
Commercial Mallinckrodt 1726 Mono, di 90 10 78.4 
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Table 8-3. List of lab-synthesized samples, sieved to 75 – 125 µm, with physicochemical 
properties used for Figure 8.4 

Source NB#/Lot# 
Form by 
SSNMR St Pa Disso % at 15min 

Commercial ChemImpex Mono, di 55 35 72.8 
Lab Synth JC3-76 75-125 µm Monohydrate 50 50 81.3 
Lab Synth JC4-45 75-125 µm Mono, di 50 50 77.2 
Lab Synth JC4-47 75-125 µm Mono, di, tri 50 50 77.2 
Lab Synth JC4-51 75-125 µm Monohydrate 50 50 76.7 
Lab Synth JC4-53 75-125 µm Monohydrate 50 50 77.5 
Lab Synth JC4-55 75-125 µm Monohydrate 50 50 71.3 
Lab Synth SD1-9 75-125 µm Trihydrate 50 50 76.6 
Lab Synth BM1-1 75-125 µm Monohydrate 55 45 78.6 
Lab Synth BM1-10 75-125µm Mono, di, tri 55 45 75.1 
Lab Synth BM1-19 75-125µm Monohydrate 55 45 72.7 
Lab Synth BM1-21A 75-125µm Monohydrate 55 45 72.0 
Lab Synth BM1-21 75-125 µm Trihydrate 55 45 83.8 
Lab Synth BM1-24 75-125µm Mono, di 55 45 70.2 
Lab Synth BM1-25 75-125µm Mono, tri 55 45 70.2 
Lab Synth BM1-4 75-125 µm Monohydrate 55 45 81.1 
Lab Synth BM1-6 75-125 µm Monohydrate 55 45 91.4 
Lab Synth JC4-37 75-125 µm Mono, di 66 34 82.5 
Lab Synth JC4-39A 75-125 µm Dihydrate 66 34 78.7 
Lab Synth JC4-41 75-125 µm Monohydrate 66 34 74.7 
Lab Synth JC4-43A 75-125 µm Mono, di 66 34 63.8 
Lab Synth MS1-13 75-125µm Dihydrate 80 20 77.2 
Lab Synth SD1-23 75-125µm Dihydrate 80 20 81.2 
Lab Synth BM1-12 75-125µm Dihydrate 90 10 77.9 
Lab Synth BM1-15 75-125µm Mono, di 90 10 77.0 
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Table 8-4. List of Lab-synthesized MgSt samples with physicochemical properties, used 
for Dissolution – Crystal Form graph 
Source NB#/Lot# SSNMR Form % Disso at 15min 

    
Lab synthesized mono CM1-71 Monohydrate 75.6 
Lab synthesized mono CM1-14  Monohydrate 80.2 
Lab synthesized mono JC4-49B   Monohydrate 64.6 
Lab synthesized mono JC3-76 75-125µm Monohydrate 81.3 
Lab synthesized mono JC4-53 75-125 µm Monohydrate 77.5 
Lab synthesized mono JC4-51 75-125 µm Monohydrate 76.7 
Lab synthesized mono JC4-55 75-125 µm Monohydrate 71.3 
Lab synthesized mono BM1-19 75-125µm Monohydrate 72.7 
Lab synthesized mono BM1-4 75-125 µm Monohydrate 81.1 
Lab synthesized mono BM1-6 75-125 µm Monohydrate 91.4 
Lab synthesized mono BM1-1 75-125 µm Monohydrate 78.6 
Lab synthesized mono JC4-41 75-125 µm Monohydrate 74.7 
Lab synthesized mono JC4-37 75-125 µm Monohydrate 82.5 
Lab synthesized mono CM1-16 < 45 µm Monohydrate 84.0 

    
Lab synth dihydrate JC3-1A > 45 µm Dihydrate 86.9 
Lab synth dihydrate JC3-59 bath Dihydrate 87.0 
Lab synth dihydrate JC3-37A 75-125 µm Dihydrate 88.9 
Lab synth dihydrate CM1-95 Dihydrate 76.1 
Lab synth dihydrate MS1-07 Dihydrate 72.5 
Lab synth dihydrate SD1-17 Dihydrate 87.8 
Lab synth dihydrate SD1-83 bath Dihydrate 84.6 
Lab synth dihydrate NW1-33 75-125 µm Dihydrate 87.9 
Lab synth dihydrate JC4-39A 75-125 µm Dihydrate 78.7 
Lab synth dihydrate MS1-13 75-125 µm Dihydrate 77.2 
Lab synth dihydrate SD1-23 75-125 µm Dihydrate 81.2 
Lab synth dihydrate BM1-12 75-125µm Dihydrate 77.9 
Lab synth dihydrate BM1-17 125-250 µm Dihydrate 89.4 
Lab synth dihydrate JC4-49A1 125-250  Dihydrate 85.6 

    
Lab synth trihydrate JC3-6B Trihydrate 92.4 
Lab synth trihydrate JC3-53AA 75-125µm Trihydrate 75.0 
Lab synth trihydrate SD1-6 Trihydrate 70.9 
Lab synth trihydrate SD1-9 75-125 µm Trihydrate 76.6 
Lab synth trihydrate BM1-21 75-125 µm Trihydrate 83.8 
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Table 8.4 continued 
Lab synth Disordered JC4-16A 75-125µm Disordered 89.2 
Lab synth Disordered JC4-14A Disordered 85.4 
Lab synth Disordered JC4-12A Disordered 87.9 
Lab synth Disordered JC4-16B   75-125µm Disordered 80.3 

 

 

8.6   Discussion 

8.6.1   Variability of Dissolution with Commercial MgSt Samples 

 

The dissolution profiles of the commercial samples reported here vary from 69% 

to 86% at 15 minutes.  The dissolution profiles show a consistent logarithmic trend, as 

opposed to a bi-exponential curve, suggesting that the samples are uniformly changed 

during the preparation. Fatty acid composition did not seem to directly correlate to any 

particular dissolution trend, for commercial or lab-synthesized samples. This exemplifies 

one of the problems with MgSt variability, as one variable that was expected to exhibit an 

influence showed no obvious trends with dissolution rate. However, MgSt particle size 

and surface area did show correlations with dissolution rate. The fastest dissolving 

commercial samples were the disordered samples, which have 84 - 86% dissolution at 15 

minutes. The disordered samples also have a lower surface area, which is consistent with 

the fast dissolution, potentially resulting from a lack of lubrication. The commercial 

monohydrate lots have much slower dissolution and higher surface area. It is 

hypothesized that the monohydrate form consists of MgSt agglomerates of small fines 

and flakes surrounding the particles. These flakes and small fines are imagined to break 

off from the larger particles to provide a hydrophobic coating to other drug and excipient 

particles in the formulation and thereby slowing dissolution. The higher surface area of 

the monohydrate and slower dissolution are consistent with more effective lubrication 

coating of the other formulation particles by MgSt. Low surface area for the disordered 

samples is consistent with fast dissolution for formulations containing MgSt which does 

not coat the other formulation components as well. Similarly, the higher surface area 

observed for mixtures and pure monohydrate samples is consistent with fines and flakes 
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breaking off and coating the other formulation components. An implication of this is that 

switching MgSt suppliers could have a very large impact on dissolution profiles, 

especially if the existing supplier has MgSt that has properties that are closer to the fast-

dissolving profile and was switched to a supplier with MgSt properties closer to the slow-

dissolving profile.  

The presence of significant dihydrate form in some of the commercial samples, 

such as the Chem-Impex and MP Biomedicals lots, did not seem to correlate with 

dissolution rates, as the MP Biomedicals sample had the greatest dihydrate concentration 

but also one of the slowest dissolution profiles. However, surface area data suggests not 

only a trend with dissolution, but also with hydrate form in general. It may be possible 

that monohydrate-dihydrate mixtures exhibit slightly slower dissolution due to crystal 

form inhomogeneity/defects which allow the particles to break apart easier, thus 

providing the lubricating coating characteristic of magnesium stearate.  

 

 

8.6.2   Significant Variables Impacting MgSt Performance 

 

Clearly one of the challenges that exists with MgSt is the fact that there are 

multiple variables that could impact dissolution rate, including the fatty acid composition, 

crystalline form, surface area, particle size, morphology and processing. Of these 

variables, surface area was clearly observed to trend with dissolution, with low surface 

area samples showing fast dissolution rate. Fatty acid composition showed no clear trend 

with the dissolution data for commercial or lab-synthesized samples.  

In these studies, sieving was used to control particle size by selecting particle size 

fractions. The process of sieving can potentially cause changes in the structure of MgSt 

by reducing agglomerate size of the MgSt original particles. MgSt particles are often 

agglomerates of smaller particles with an “intrinsic” particle size of < 10 µm. Sieving 

may allow some of the more loosely bound particles on the surfaces of the agglomerates 

to come apart from the large agglomerates. These smaller particles may be described as 
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fines with  < 1-2 µm size. It is believed that such small particles will more readily 

participate in lubrication by coating the other particles in the formulation.  

Most of our data shows a clear correlation between surface area and dissolution, 

where samples prepared using smaller particle size sieved fractions of MgSt have a 

slower dissolution rate. One interpretation that can be drawn is that for samples sensitive 

to processing, such as the monohydrate form, smaller particles lead to slower dissolution. 

Surface area results for the samples discussed here indicate a correlation between surface 

area and hydrate form, as indicated in Figure 8-8. Surface area appears to be the primary 

factor in determining the impact of MgSt on dissolution rate. However, the surface area-

dissolution curve is not perfectly linear, suggesting crystal form as a secondary variable 

impacting dissolution. The surface area-dissolution curves for the different crystal forms 

appear to differ and may account for the deviations from linearity in the surface area-

dissolution curve. 

 

 

8.7   Conclusions 

 

Several conclusions could be made about the impact of MgSt variability on 

dissolution rate. First, no clear correlation could be made for the commercial samples or 

lab-synthesized samples based on fatty acid composition. Second, there is a clear impact 

of particle size on dissolution. Sieve fraction was used to show the particle size effect 

within a sample and surface area was used to assess the effect of size differences between 

samples on dissolution. Third, dissolution rate was found to trend with surface area for 

both commercial and lab-synthesized MgSt samples. Finally, the surface area-dissolution 

relationship may be impacted by crystal form as a secondary factor, where variation is 

observed in the slopes of the surface area-dissolution lines corresponding to different 

crystal forms. 
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9.2   Abstract 

 

Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in tablet 

manufacturing. However, batch-to-batch variability in hydrate form and surface area can 

lead to inconsistency in tablet performance. In this work, the role of solid-state form and 

particle properties on lubrication efficiency, tabletability, and dissolution are studied 

using a model direct compression (DC) tablet formulation. It was found that the 

monohydrate and dihydrate forms had good lubrication efficiency compared to the 

disordered form, but also had poorer tabletability. The dissolution rate correlated with 

surface area, where monohydrate samples had high surface area and slower dissolution, 

and disordered samples had low surface area and faster dissolution. Of the dihydrate 

samples, a higher surface area sample had a slower dissolution rate, and a lower surface 

area sample had a faster dissolution rate. The choice of the best MgSt grade depends on 

the comprehensive evaluation of not only lubrication efficiency but also tabletability and 

dissolution. Overall, the lower surface area dihydrate MgSt had the best performance for 

this DC formulation. 

 

 

9.3   Introduction 

 

Magnesium stearate (MgSt) is the most commonly used excipient in solid oral 

dosage forms, with over half of the tablet formulations on the market using it as a 

lubricant. (1) The main function of MgSt is to reduce friction during the tableting process 

by forming a film between the tablet and the die wall,(2) reducing the tendency of a the 

active pharmaceutical ingredient (API) to stick to the tablet punch or die. However, 

because of its hydrophobicity, MgSt can also significantly impact the dissolution rate of 

API from tablets, especially if the amount of MgSt added is too high or the blending time 

is too long. Additionally, the weak bonding strength of MgSt can reduce tablet 
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mechanical strength, resulting in poor tabletability (tensile strength as a function of 

compaction pressure). Hence, the use of excessive MgSt may cause unacceptably slow 

API dissolution rate or poor tabletability.(16) 

The popularity of MgSt as a lubricant in tablet formulation is linked to several 

distinct aspects of its lubricating mechanism: a) It is characterized as a “low shear 

strength laminar solid” that adheres to the lubricated surface with the polar head, with the 

long hydrophobic fatty acid chains pointing outward. (49) b) It can form a lubricant film 

one to two molecules thick. (2) c) It has a high melting point and is able to reduce static 

charges in the formulation powder. (49, 75) d) It can fill the particle cavities and spaces 

between the lubricated surfaces.(78)  

The lubrication efficiency (ejection force as a function of compaction pressure) 

has been shown to be affected by several factors related to MgSt: a) amount in the 

formulation, (86) b) fatty acid composition, (30) c) particle size and surface area, (8, 85) 

d) mixing process, (80-82, 158) e) tableting speed, and f) crystal form. (85) It is generally 

accepted that higher surface area and/or smaller particle size corresponds to better 

lubrication. It has also been suggested that the hydration state likely affects lubrication 

properties,(84) with some sources suggesting the dihydrate form of MgSt was a better 

lubricant than other forms,(9, 28, 33, 87) but more work is needed to clarify the trends for 

the different crystal forms. 

Because multiple factors can simultaneously affect lubrication efficiency of MgSt, 

it is hard to identify a single factor that accounts for different performance among 

commercial MgSt samples, (84) especially because there has been a general lack of form 

control when studying lubrication efficiency. A thorough investigation of lubrication 

efficiency of MgSt requires a technique capable of reliably identifying its crystal forms. 

(8, 39, 43, 84, 159)  

Identifying the crystal form of MgSt is challenging with traditional analytical 

techniques. Thermal analyses are non-specific, which leaves room for error in assigning 

crystal hydration state, particularly for a mixture of forms. When XRPD is used to 

identify the crystal forms, the diffraction patterns can be hard to interpret due to the 

mixtures of fatty acid salts, as well as mixtures of hydrate forms in the sample.(30)  
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We have recently shown that SSNMR can reliably characterize MgSt crystal 

forms, regardless of particle size and fatty acid content.(38) SSNMR is particularly 

powerful for analyzing mixtures of crystal forms of MgSt, especially because it can be 

used to analyze the state of MgSt in a formulation.  

In this paper, six samples of MgSt, two monohydrates, two dihydrates and two 

disordered samples of MgSt were studied with respect to lubrication efficiency, 

dissolution, and tabletability. In addition to crystal form, the samples also varied with 

respect to surface area, fatty acid content and water content. (160) It was found that the 

monohydrate and dihydrate samples had the best lubrication efficiency, but the 

disordered form had the best tabletability. The dissolution rate was fastest for the low 

surface area materials. The best performing MgSt sample was the dihydrate with low 

surface area.  

 

 

9.4   Materials and Methods 

9.4.1   Materials 

 

Magnesium hydroxide was purchased from Fluka (St. Louis, MO). Stearic acid 

and palmitic acid were purchased from TCI (Tokyo, Japan). Magnesium chloride 

hexahydrate was purchased from EMD (Darmstadt, Germany). Phosphate buffer was 

prepared from sodium phosphate monobasic and sodium hydroxide, purchased from 

BDH Analytical (Radnor, PA). Tablet excipients Avicel PH102 (microcrystalline 

cellulose, MCC) and alpha-Lactose monohydrate were obtained as a complimentary 

sample from FMC Biopolymer (Philadelphia, MA) and Sigma Aldrich (St. Louis, MO), 

respectively. The commercial MgSt samples were ordered through VWR from Beantown 

(dihydrate) and Alfa Aesar (disordered), and the Peter Greven (monohydrate) sample was 

purchased in bulk by Genentech (South San Francisco, CA). The commercial and lab-

synthesized MgSt samples are denoted “C” and “LS”, respectively, throughout the 
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manuscript. Indomethacin (Sigma Aldrich, St. Louis, MO) was used as model drug for 

direct compression formulation. 

 

9.4.2   MgSt Synthesis 

 

Magnesium stearate lab-synthesized lots were prepared using stearate: palmitate 

ratios of 55:45 for the lab-synthesized disordered sample (LS-Disordered) and 90:10 for 

LS-Dihydrate and LS-Monohydrate.(38) The synthesis “melt” method for the LS-

Disordered material combined magnesium hydroxide and water with melted stearic and 

palmitic acids at 70 - 90 °C, followed by heating/dehydrating the solid MgSt sample at 

105 °C. To synthesize the 90:10 samples, a “bath method” was used, where the stearic 

and palmitic acids were dissolved in water, followed by addition of ammonium 

hydroxide at pH 9 to generate the ammonium soap. MgSt was then precipitated with the 

slow addition of MgCl2 at 70 - 75 °C. Half of the reacted MgSt slurry was transferred to a 

filter before a reflux step to remove impurities and this material was recovered as the 

dihydrate form. The second half of the slurry was further heated up to 105 °C, then 

filtered and refluxed, producing the monohydrate form of MgSt. The only difference 

between LS-Monohydrate and LS-Dihydrate was the reaction temperature. The reflux 

step for all three LS samples involved washing the recovered solids using a reflux bath of 

1:1 acetone: water for 24 hours to remove impurities and unreacted starting materials. 

The MgSt samples were dried in a vacuum oven at 25 °C overnight to remove surface 

water. 

 

 

9.4.3   Mixing and Tableting 

 

MgSt tablet formulations were prepared by adding the MgSt sample to a “Premix” 

containing 16.7% indomethacin, 50% alpha-lactose monohydrate and 33.3% Avicel 
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PH102. The lab-synthesized MgSt samples were sieved to 75–125 µm sieve fraction prior 

to mixing. Tablets for lubrication studies were prepared using 1% MgSt in the premix 

and blended for 15 minutes, then 300 mg tablets were compacted on Presster (Presster, 

Metropolitan Computing Corp., NJ) simulating Korsch XL100 press (10 stations) at a 

dwell time of 50 ms using 10 mm round flat-faced tooling. Necessary parameters such as 

in-die thickness, ejection force and take-off force were recorded as a function of pressure.  

 

For dissolution studies, the powders were prepared using 2% MgSt in the premix, 

then mixed as 1 g batches in 40 mL glass vials for 60 minutes using a Turbula mixer 

(WAB, Basel, Switzerland) at ~ 100 rpm. Individual 150 mg tablets were made from 

each 1 g formulation batch and pressed using a single tablet press (Globe Pharma, North 

Brunswick, NJ) at 50 bar for 30 seconds. The tablet weights were recorded and the 

dissolution results were adjusted for tablet mass. A 2% level of MgSt was used for the 

dissolution studies to enhance the dissolution rate differences between samples. 

 

9.4.4   Determination of Particle Density 

 

The particle or true density (ρt) of formulated blends with different forms of MgSt 

was determined by helium pycnometry (Quantachrome Instruments, Ultrapycnometer 

1000e, Byonton Beach, Florida). 1-2 g of powder was accurately weighed and placed into 

the sample cell. The measurement was allowed to repeat for a maximum of 100 

iterations. The experiment was terminated when the coefficient of variation of five 

consecutive measurements was below 0.005%. The mean of the last five measurements 

was reported as the absolute density of the sample. The tablet porosity was obtained from 

Equation 9-1 where ρ is the tablet density:  
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9.4.5   Compressibility Analysis 

 

The powder deformability of different formulations under compressive stress was 

assessed by nonlinear fitting of the pressure (P) – porosity (ε) data using Kuentz –

Leuenberger equation as follows:(161) 
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  Equation 9-2 

 

The parameter 1/C is related to yield stress of the material where a higher 1/C value 

corresponds to lower plasticity. εc denotes the porosity at which a powder bed just starts 

to approach a state with mechanical rigidity.(162) 

 

 

9.4.6   Diametric Tablet Strength 

 

Tablets were broken on a texture analyzer (Texture Technologies Corp., Surrey, 

UK) at 0.01 mm/s. Tablet tensile strength, σ, was calculated using Equation (3),  
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  Equation 9-3 

 

where F, D, and h are the breaking force, tablet diameter, and thickness, 

respectively(163). 
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9.4.7   Compactibility Analysis 

 

Compactibility profile (σ vs. ε) of each formulation was analyzed by non-linear 

regression of data using Equation (4) (84, 164).  
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  Equation 9-4 
 

where σ0 is the tensile strength of the tablet at zero porosity and b is an empirical constant 

that quantifies sensitivity of σ to changes in ε. 

 

 

9.4.8   In Vitro Dissolution 

 

Dissolution was performed by suspending each tablet in 900 mL of pH 7.2 

phosphate buffer on a VanKel V7000 USP method 2 (paddle type) dissolution apparatus 

(Varian, Cary, NC) which was thermo-regulated at 37°C and equipped with 100 rpm 

stirring speed. The µDISS fiber optic UV probes (pION, Billerica, MA) were used to 

collect UV absorbance data at 320 nm over a 120-min period and the concentration of 

drug in solution was calculated based on an indomethacin standard curve. The µDISS 

probes were calibrated using indomethacin in phosphate buffer. The dissolution data was 

processed using the second derivative function to eliminate the effects of particles on the 

UV absorbance reading.  

 

9.4.9   Solid-state NMR Spectroscopy (SSNMR) 
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13C CP/MAS and 1H T1 relaxation data were collected using a home-built 

SSNMR system consisting of a Tecmag Redstone NMR Spectrometer (Houston, TX), 

Bruker 400 MHz magnet (Billerica, MA), and rebuilt Chemagnetics (Ft. Collins, CO) 

NMR probe with 7.5 mm rotors spinning at 4000 Hz. A relaxation delay of 12 seconds 

was used with 2K acquisition points and 1024 scans. TNMR software (Houston, TX) was 

used to process the data. 3-methylglutamic acid was used as a reference standard, with 

the methyl peak referenced to 18.84 ppm. 

 

9.4.10   Thermogravimetric Analysis (TGA) 

 

TGA percent weight loss was measured using TA Q50 (TA Instruments, 

Newcastle, DE) with a 10 °C/min ramp from 25 °C to 250 °C. 

 

 

9.5   Results and Discussion 

9.5.1   Characterization of MgSt Samples 

 

Six MgSt samples, having a variety of physicochemical properties, were used to 

study lubrication and tableting properties, as listed in Table 9-1. To evaluate the impact 

of MgSt crystal form, samples of three forms (monohydrate, dihydrate and disordered) 

are compared from both commercial and lab-synthesized sources. The crystal form of 

MgSt is differentiated based on crystal packing differences in the carbonyl end of the 

molecules, observed in the 160 - 200 ppm region of the 13C SSNMR spectrum (Figure 

9-1). The monohydrate form has six signature peaks in the 177 - 183 ppm range, while 

the dihydrate has two peaks between 183 - 187 ppm and the disordered form is 

differentiated by a single broad peak centered around 182 ppm. Multiple peaks indicate 

different possible orientations of the carbon atoms in the crystal structure, arising from 
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the atoms being in different molecular environments. This is often an indication of having 

more than one molecule in the crystal unit cell.(165) 

 

 

Figure 9-1. 13C SSNMR spectra of the three lab-synthesized (LS) and three commercial 
(C) MgSt samples. Crystal form can be differentiated by the distinct peaks for 
monohydrate (177-183 ppm), dihydrate (183-187 ppm) and a single broad peak for 
disordered (around 182 ppm). SSNMR peaks indicate orientations of the carbon atoms in 
the crystal structure. 

 

  

190 180 170 160 ppm200

LS-Disordered

C-Disordered

LS-Dihydrate

C-Dihydrate

LS-Monohydrate

C-Monohydrate



 160 

 
Table 9-1. Physicochemical characterization of lab-synthesized and commercial 
monohydrate, dihydrate and disordered forms of MgSt 
 Source Crystal Form Surface area 

m2/g 
TGA 

% weight loss 
 Lab-synthesized Monohydrate 5.6 3.1 

 Commercial Monohydrate 5.8 3.0 

 Lab-synthesized Dihydrate 1.2 5.5 

 Commercial Dihydrate 5.5 5.4 

 Lab-synthesized Disordered 0.7 0.4 

 Commercial Disordered 0.8 3.3 

 

 

 

The two monohydrate samples had 3.1 or 3.0% weight loss when heated on TGA 

(Figure 9-2), consistent with the theoretical 3.0% water in the monohydrate. The 5.5 and 

5.4% weight losses of the two dihydrate samples also reasonably agreed with the 

theoretical 5.7% of water for MgSt dihydrate. The disordered samples, on the other hand, 

showed broad weight loss from 25 - 100 °C, where the LS-Disordered and the C-

Disordered materials showed 0.4% and ~3.3% weight loss, respectively. 
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Figure 9-2. Thermogravimetric Analysis (TGA) for the three lab-synthesized (LS) and 
three commercial (C) MgSt samples. The monohydrate and dihydrate weight loss agreed 
with the theoretical water content. 

 

 

9.5.2   Lubrication Properties 

 

Lubrication efficiency of formulations containing various lots of MgSt in a 

lactose-MCC-indomethacin mixture was assessed in terms of the ejection force (EF) 

profile, i.e., EF vs. compaction pressure. EF is strongly associated with residual die-wall 

pressure.(158, 162, 166) Materials with greater rigidity tend to shrink less in the radial 

direction during decompression, resulting in greater residual die-wall pressure and higher 

EF than elastic or plastic materials. These forces could also be influenced by particle size 

and surface roughness, where EF could be higher as a result of greater friction caused by 

irregular small particles sliding against the die-wall. When the contact area between 
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tablet and die wall is controlled, EF is indicative of die-wall friction. In this study, EF 

increased with compaction pressure (Figure 9-3). The overall lubrication efficiency 

follows the order of Disordered > Monohydrate ≥ Dihydrate MgSt (Figure 9-3). The 

monohydrate and dihydrate forms, irrespective of their source, showed comparable EF 

profiles, hence, similar lubrication efficiency. The higher lubrication efficiency of the 

monohydrate and dihydrate is consistent with their particle structures that favor easy 

flaking off during mixing. Both disordered forms had higher EF, corresponding to poorer 

lubrication efficiency. The much lower lubrication efficiency of the LS-Disordered 

sample, indicated by the highest EF profile, corresponds to its much lower water content 

(0.4 %) compared to the C-Disordered form (3.3 %). Thus, water content in disordered 

MgSt may be critical for the lubrication efficiency of MgSt. The poor lubrication of the 

LS-Disordered sample (0.4 %) suggests that surface bound water (as opposed to hydrate 

water incorporated into the crystal lattice) could be an important factor in providing 

lubrication efficiency for the disordered samples. 
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Figure 9-3. Lubrication efficiency (ejection force as a function of compaction pressure) 
of formulations containing different MgSt samples. 

 

 

9.5.3   Effects on Tablet Compression Properties 

At 1% MgSt level, the different solid-state forms of MgSt had a significant effect 

on the tabletability profiles. The tablet tensile strength (σ) increased with compaction 

pressure for all formulations. However, tabletability diverged with increasing pressure, 

leading to large variations in σ (4 - 6 MPa) at 330 MPa (Figure 9-4). The tabletability 

followed the order of LS-Disordered > C-Disordered > C-Dihydrate =LS-Dihydrate > 

LS-Monohydrate > C-Monohydrate (Figure 9-4). The reduced tabletability by MgSt was 

attributed to the coating of particles by the MgSt film, which leads to reduced inter-

particulate bonding due to the low bonding strength of MgSt. Thus, a better lubrication 

efficiency is expected to be accompanied by greater reduction in tabletability for 

materials that do not undergo extensive brittle fragmentation during compaction. This 
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view is supported by the observation in this work, where bonding strength, σ0, which 

indicates the inter-particulate bonding strength in a pore-free tablet, followed 

approximately the same order as that of tabletability (Table 9-2 and Figure 9-4). The 

tabletability of all the formulations was adequate despite the deteriorating effect by MgSt, 

since all the formulations could form tablets with tensile strength higher than the 

minimum proposed values of 2.0 MPa, and 1.7 MPa.(167-169) 

 

 

 

Figure 9-4. Tabletability (tensile strength as a function of compaction pressure) profiles 
of formulations containing different MgSt samples. 
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Table 9-2. Tensile strength at zero porosity (σ0) and plasticity parameter (1/C) of tablet 
formulations containing different MgSt samples. Standard errors of fitting are shown in 
parenthesis. 

MgSt source and form σ0 (MPa)1 1/C (MPa)2 

LS-Disordered 

C-Disordered 

LS-Dihydrate 

C-Dihydrate 

LS-Monohydrate 

12.4 (0.5) 

11.8 (0.7) 

8.9 (0.8) 

11.4 (0.7) 

9.5 (0.2) 

635 (107) 

661 (102) 

444 (56) 

672 (104) 

624 (105) 

C-Monohydrate 8.9 (0.3) 744 (106) 

 

 

According to the bonding area - bonding strength (BABS) theory, (170, 171) 

another factor that controls tablet tensile strength is bonding area, which is assessed by 

compressibility (porosity as a function of compaction pressure). The compressibility plots 

did not visually differ among the different MgSt containing formulations (Figure 9-5), 

indicating that bonding area differences did not significantly contribute to the differences 

in tabletability among the formulations. The plasticity parameter, 1/C, obtained from 

quantitative analysis of compressibility data using the Kuentz –Leuenberger (K-L) 

method, shows the plasticity of the formulation containing LS-Dihydrate was 

significantly higher (p < 0.05) than all other five formulations (Table 9-2). The 1/C 

values of these five formulations were not significantly different. The K-L analysis was 

shown to be superior to the commonly used Heckel analysis in assessing deformability of 

diverse materials.(161) The significantly higher plasticity of the formulation containing 

LS-Dihydrate suggests the LS-Dihydrate had much higher plasticity than the other 

samples of MgSt. 
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Figure 9-5. Compressibility profiles (porosity as a function of compaction pressure) of 
formulations containing each of the six different samples of MgSt. 

 

 

9.5.4   In Vitro Dissolution 

 

The tablet dissolution of the two monohydrate MgSt formulations was slowest, 

whereas dissolution from tablets using the two disordered MgSt formulations was fastest 

(Figure 9-6). To accentuate the differences in dissolution between the MgSt samples, the 

formulation mixtures were over-lubricated by using a 2% MgSt level and mixing the 

formulations for 60 minutes with a Turbula mixer. Minimal difference was observed 

between the lab-synthesized and commercial monohydrate samples, or between the lab-

synthesized and commercial disordered MgSt samples. However, the lab-synthesized 

MgSt dihydrate had faster dissolution and the C-Dihydrate had slower dissolution (Figure 

9-6). This may be attributed to the difference in their particle surface areas (Table 9-1), 

where the C-Dihydrate had surface area of 5.5 m2/g, similar to surface area for the 
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monohydrate samples, and the LS-Dihydrate had surface area of 1.2 m2/g, slightly higher 

than surface area for the disordered samples. Dissolution showed a trend with surface 

area, where monohydrate samples with high surface area had slower dissolution and 

disordered samples with low surface area had faster dissolution. In terms of dissolution, 

the primary factor differentiating between MgSt samples appears to be surface area. The 

difference observed between the dissolution of tablets made from the two dihydrate 

samples is also likely due to MgSt surface area variability, which affected the extent of 

MgSt covering particle surfaces during the mixing process. MgSt with a much larger 

surface area can more efficiently coat drug particles, which slows down dissolution due 

to the hydrophobicity of MgSt. 

 

 

 

Figure 9-6. Dissolution of tablets containing different lots of MgSt 
 

 

The comparable lubrication properties of the two sources of monohydrate and 

dihydrate MgSt (Figure 9-3), despite the very different  specific surface area (Table 9-1), 
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suggests that the crystalline nature of MgSt is a more important variable in determining 

the lubrication efficiency than particle properties. Tabletability also suggests that the 

crystal form of MgSt impacts hardness more than specific surface area or water content 

(Figure 9-4). This may be explained from the mechanism of lubrication by MgSt, which 

is the shearing of lamellar layers of MgSt crystals during mixing to provide a 

hydrophobic coating of MgSt around the other particles in the formulation.  

The formulation containing MgSt LS-Monohydrate had a lower EF profile than 

the formulation containing C-Disordered MgSt, despite similar water content. Here we 

note that the monohydrate has hydrated water incorporated into the crystal lattice, where 

the disordered water is not bound into the crystal. Thus, the lattice water in crystalline 

MgSt, rather than total water content, appears critical for good lubrication efficiency of 

MgSt. However, between the two disordered samples, the one with more water 

corresponded to much lower EF. This indicates the amount of non-lattice water also plays 

an important role in lubrication efficiency of disordered MgSt. Therefore, the role of 

water content on the lubrication efficiency of MgSt depends on the type of water in the 

sample. Total water content between disordered MgSt samples is critical, but the 

presence of hydrated water (i.e. crystalline MgSt hydrates) is even more important for 

lubrication efficiency.  

While the main functionality of MgSt is to reduce EF to facilitate tablet 

manufacturing, the same mechanism of lubrication (i.e., covering of particle surfaces by 

MgSt) also tends to reduce tablet tensile strength and slow dissolution. Overall, the 

monohydrate form appears to be most effective in all these aspects of lubrication. 

However, low tensile strength and slow dissolution are not ideal for many formulations. 

The direct compression formulations in this work contained an appropriate proportion of 

plastic MCC and brittle lactose to attain a balanced mechanical property. This was to 

avoid the expected high sensitivity of tabletability to MgSt by a predominantly plastic 

powder, and insensitivity to MgSt by a brittle powder.(163, 172). Among the six MgSt 

samples evaluated in this study, LS-Dihydrate exhibited low EF, acceptable tabletability, 

and fast dissolution. Thus, the LS-Dihydrate MgSt is the best lubricant for this 

formulation. Although previous studies have suggested that the dihydrate performs better 

than the monohydrate, the choice of optimum MgSt depends on the nature of the 
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formulation that needs to be lubricated. For a formulation requiring stronger tablets and 

less effect on dissolution, the disordered form of MgSt may be a better choice. Instead of 

categorically claiming superiority for one type of MgSt, a comprehensive evaluation of 

lubrication efficiency, tabletability, and dissolution should be performed for the 

formulation, if possible. 

 

 

9.6   Conclusions 

 

Monohydrate and dihydrate forms of MgSt exhibited similar lubrication 

efficiency, while disordered MgSt was less effective, presumably due to differences in 

the extent of MgSt coating particle surfaces in the formulation. However, more efficient 

MgSt coating also tends to decrease the tabletability of the formulation. For tabletability, 

the lab-synthesized and commercial samples performed similarly for each form, with 

monohydrate MgSt leading to softer tablets (lower tensile strength), followed by the 

dihydrate and disordered forms. Disordered MgSt was least efficient in terms of 

lubrication efficiency, but also exhibited the least effect on dissolution, consistent with a 

low surface area and less effective particle coating by MgSt. These clear differences 

between monohydrate, dihydrate and disordered forms suggest that the crystal form of 

MgSt is an important variable in determining the lubrication properties, along with 

particle size which appears to be the primary factor affecting dissolution.  

Given the different performance among these MgSt solid forms, the best choice of 

MgSt properties in a formulation depends on the desired formulation properties. To 

obtain lower ejection force, the monohydrate or dihydrate form is preferred. However, if 

the dissolution slowdown must be avoided, disordered MgSt with low surface area is 

preferred. For the six samples of MgSt evaluated in this work (monohydrate, dihydrate 

and disordered samples from lab-synthesized and commercial sources) with the model 

direct compression formulation, the lab-synthesized dihydrate MgSt was the best 

lubricant, with good lubrication efficiency and acceptable dissolution. 
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CHAPTER 10.   CONCLUSIONS 

 

10.1   Physicochemical Properties of MgSt and their Relationships 

10.1.1   Characterization of Magnesium Stearate Solid-state Properties 

 

The solid-state characterization for eight commercial MgSt samples and five lab-

synthesized samples identified five different pure forms of MgSt and that 13C SSNMR 

was the best technique to distinguish between the forms, particularly for mixtures of 

forms. The TGA water loss dehydration peaks were used to assign the proposed 

hydration states for monohydrate, dihydrate and trihydrate samples. DSC and XRPD data 

were consistent with SSNMR form trends and it was possible to identify the forms for the 

pure form samples. However, it is much more challenging to distinguish and/or quantify 

for mixtures of MgSt forms with traditional techniques, compared with 13C SSNMR. The 

additional correlation of 1H T1 relaxation values with TGA weight loss, and potentially 

fatty acid composition, may provide insight into structural aspects of the various forms. 

 

10.1.2   Fatty Acid Composition – Synthesis and Fatty Acid Effects on Crystal Form 

 

The investigation of magnesium stearate synthesis revealed an important role of 

fatty acid composition for MgSt, particularly in the relationship between fatty acid 

composition and crystal form. First, the chemical composition (stearate: palmitate ratio) 

and the synthesis reaction method both affect the crystal form of magnesium stearate that 

is produced from synthesis reactions. Pure fatty acid compositions (i.e. stearate only or 

palmitate only) showed a preference to produce the dihydrate form and mixtures of fatty 

acids tended to yield more of the monohydrate form. The melt method, a spontaneous 

reaction of fatty acids with magnesium hydroxide, preferentially produced the 

monohydrate form, with increasing amounts of dihydrate yielded from higher stearate 

content samples. The bath method, a two-step reaction precipitating MgSt from soap and 
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magnesium chloride, also yielded higher amounts of dihydrate form at higher stearate 

content samples. Combining the observed trends with fatty acid composition and 

synthesis method, it was concluded that the monohydrate form could be most easily 

produced from the melt method with a 50:50 St:Pa composition and the dihydrate form 

could most easily be produced from the bath method at 90:10 St:Pa composition.  

Second, synthesis reaction conditions, such as reaction water and reaction 

temperature, affect the form of MgSt produced. Addition of a small amount of excess 

water during the melt method reaction appeared to aid formation of the monohydrate 

form. The reaction temperature in the bath method was also found to affect the crystal 

form produced. For a 90:10 St:Pa composition, dihydrate was yielded at 70 °C, but 

monohydrate was yielded when the temperature was increased to 100 °C.  

Additionally, drying magnesium stearate was found to affect the physical form of 

the material, with more significant effects seen for the dihydrate and form mixtures. On a 

practical level, air drying for a few days was found to be the most gentle and effective 

drying method for lab-scale synthesis of MgSt. The dihydrate appears to be more 

sensitive to drying than the monohydrate form, but both forms can dehydrate in harsh 

drying conditions such as nitrogen drying or desiccation. 

 

10.1.3   Crystal Form – Conditions for Form Conversions 

 

An increased understanding of the form conversions of MgSt, both in bulk and in 

tablet formulations was gained by investigating the crystal form at various storage 

conditions. Thermal data was used as a guide to choose likely conversion conditions 

based on the dehydration temperatures of the MgSt hydrate forms. It was shown that at 

80 °C, 100 %RH, the trihydrate converts into the dihydrate and/or monohydrate form, 

indicating that in the presence of excess water, the crystal form depends on temperature. 

A form conversion schematic for MgSt is presented, proposing conditions for direct 

conversions between MgSt crystal hydrate forms, as well as form conversions through an 

intermediate disordered or anhydrous form. Tablet formulations also showed MgSt form 
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conversions at 40 °C/ 75%RH, with an increase in dihydrate form, and a loss of dihydrate 

form at 40 °C/ 0%RH due to likely dehydration. Overall, it is shown that the crystal form 

of MgSt can change under varying temperature and humidity conditions, both in bulk and 

in tablet formulations. 

 

10.1.4   Surface Area – Effect of Drying on Crystal Form 

 

Several conclusions can be drawn from the study of surface area and the effects of 

drying on MgSt samples. First, there appeared to be a correlation between MgSt crystal 

form and surface area, where the disordered form showed low surface area and the 

monohydrate form showed higher surface area. Second, drying MgSt at 40 °C led to 

dehydration of the material, with a decrease in surface area being accompanied by an 

increase in the amount of disordered form in the sample. In dry conditions, the dihydrate 

appeared to dehydrate into the disordered form and the monohydrate also changed form. 

In addition to the form change with drying, dissolution showed that drying MgSt can also 

have an impact on tablet performance. 

 

 

10.2   Effects on Functional Properties 

10.2.1   Dissolution 

 

A discriminating dissolution method was developed to study the over-lubrication 

of indomethacin tablets using various samples of MgSt. Several different factors were 

explored in the method development, including mixing method, sampling technique, the 

effect of MgSt concentration, compaction pressure, formulation mixing speed, 

formulation mixing time, reproducibility of the overall method and differentiation 
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between samples. Using this method, differences between variations in properties of 

MgSt samples were addressed in Chapter 8. 

Several conclusions could be made about the impact of MgSt variability on 

dissolution rate. First, no clear correlation could be made for the commercial samples or 

lab-synthesized samples based on fatty acid composition. Second, there is a clear impact 

of particle size on dissolution, in terms of sieve fraction within a sample and surface area 

between samples. Sieve fraction was used to show a clear effect particle size on 

dissolution rate within a sample and surface area was used to assess the effect of size 

differences between samples on dissolution. Third, a correlation between surface area and 

dissolution rate was found for both commercial and lab-synthesized MgSt samples. 

Additionally, the surface area-dissolution relationship may also be impacted by crystal 

form as a secondary factor, where variation was observed in the slopes of the surface 

area-dissolution lines corresponding to different crystal forms. 

 

10.2.2   Lubrication 

 

In terms of lubrication, several conclusions were made. Monohydrate and 

dihydrate forms of MgSt exhibited similar lubrication efficiency, while disordered MgSt 

was less effective, presumably due to differences in the extent of MgSt coating particle 

surfaces in the formulation. However, more efficient MgSt coating also tended to 

decrease the tabletability of the formulation. For tabletability, the lab-synthesized and 

commercial samples performed similarly for each form, with monohydrate MgSt leading 

to softer tablets (lower tensile strength), followed by the dihydrate and disordered forms. 

Disordered MgSt was least efficient in terms of lubrication efficiency, but also exhibited 

the least effect on dissolution, consistent with a low surface area and less effective 

particle coating by MgSt. These clear differences between monohydrate, dihydrate and 

disordered forms suggest that the crystal form of MgSt is an important variable in 

determining the lubrication properties, along with particle size which appears to be the 

primary factor affecting dissolution.  
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Given the different performance among these MgSt solid forms, the best choice of 

MgSt properties in a formulation depends on the desired formulation properties. To 

obtain lower ejection force, the monohydrate or dihydrate form is preferred. However, if 

the dissolution slowdown must be avoided, disordered MgSt with low surface area is 

preferred. For the six samples of MgSt evaluated in this work (monohydrate, dihydrate 

and disordered samples from lab-synthesized and commercial sources) with the model 

direct compression formulation, the lab-synthesized dihydrate MgSt was the best 

lubricant, with good lubrication efficiency and acceptable dissolution. 

 

 

10.3   Overall Conclusions 

 

Overall, this work showed that the variability in the physicochemical properties of 

magnesium stearate samples can affect the dissolution and lubrication performance of 

tablet formulations. A major factor in understanding this variability is the ability to 

identify and track the crystal forms of MgSt. This is most easily done using 13C SSNMR, 

an important analytical technique used throughout the project. The synthesis process 

showed the effect of fatty acid composition and other reaction conditions on crystal form. 

It was then shown that the crystal forms can interconvert based on temperature and 

humidity conditions, both in bulk and in tablet formulations. A dissolution method was 

developed to distinguish between MgSt samples and this method showed that the primary 

property of MgSt affecting dissolution was particle size and surface area, with a possible 

secondary effect of crystal form. Specifically, lower surface area correlated with faster 

dissolution rates, while higher surface area correlated with slower dissolution rates. In 

terms of lubrication, MgSt crystal form was found to impact lubrication efficiency and 

tabletability. An overall trend with crystal form was observed, with disordered < 

dihydrate ~ monohydrate in terms of lubrication efficiency but monohydrate < dihydrate 

< disordered for tabletability. It has been shown that the physicochemical properties of 

MgSt, particularly crystal form and surface area, show trends with functional properties 

of MgSt dissolution and lubrication. This highlights the importance of choosing a MgSt 
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material with the desired form and surface area properties to match the lubrication and 

dissolution requirements for the formulation.  
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