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Opportunities to use secondary plant compounds to manage diet selection and gut health of
grazing herbivores
D .K . Revell , A . Kotze and D .T . Thomas
CS IRO L ivestock Industries , Priv ate Bag ５ ,Wembley WA ６９１３ ,A ustralia E‐mail : dean .revell＠ csiro .au

Key points :
１ . Grazing herbivores and plants have co‐evolved such that plant chemistry and animal metabolism are intimately linked .
２ . Whilst conventionally‐measured traits of plant nutritive value provide invaluable information to help predict animal
performance , there are many situations where knowledge of secondary plant compounds can provide insights into theinteractions between plants and herbivores .

３ . Secondary compounds can affect diet selection and , sometimes , longer‐term feed intake .
４ . Secondary compounds can interact with rumen microbes to alter fermentation profiles and can be toxic towards nematode
parasites in the gastrointestinal intestinal tract thereby providing a natural摧 means to help control these important pests .

５ . Combining plant traits with knowledge of animal behaviour can aid our design and management of mixed plant assembliesthat address both animal production and natural resource management goals .
Key words : Secondary plant compounds , diet selection , gut health
Introduction

Figure 1 Schematic rep resentation
o f the interactions between the
landscape , p lants and herbivores .

Grazing herbivores and the plants they consume interact with each other . The interactionsare complex , based on hundreds of plant compounds and plant physical characteristics andthe sensory and metabolic systems of animals . The ultimate goal of animals is to consumean optimal combination of nutrients that promotes survival , grow th and reproduction . Toselect an optimal diet , herbivores must find a balance between over‐and under‐consumptionof particular plant species and plant parts . Plants similarly need to find a balance betweenencouraging and discouraging herbivory . Animals can assist in pollination , seed dispersal ,reducing inter‐plant competition , and nutrient cycling , but excessive herbivory canseverely reduce plant grow th . Herbivores and plants have co‐evolved , and a complexbiological system has emerged to control the interactions ( Figure １ ) . In the followingpaper , we discuss and provide examples of how plant compounds can influence dietselection , feed intake and gut health of animals , and comment on the implications todesigning and managing grazing systems .
Plant compounds , diet selection and voluntary feed intake

Plants vary both spatially and temporally in their chemical and physical composition .Consequently , for grazing herbivores to meet their nutritional requirements and avoid theover‐consumption of toxins , they must continuously assess characteristics of what theyeat , link this to the post‐ingestive consequences of eating the plant , and modify theirselectivity for particular plants ( Provenza et al . , ２００７) .
A critical factor in animal production is the regulation of feed intake . Plant secondary compounds play an important role inregulating intake and influencing diet selection ( Villalba et al . , ２００２ ; Mote et al . , ２００７ ) . Animals use sensory perception todiscriminate among different plants , and the metabolic feedback from ingested nutrients and/ or toxins calibrates the smell ,flavour , sight and texture sensations with the positive and negative consequences of eating the food . This enables an animal toacquire preferences for foods that are nutritious and become averse to foods that are either deficient in nutrients or toxic( Provenza １９９５) .
Although our capacity to measure diet selection and intake is less than ideal , particularly in extensive grazing systems , there issome evidence of sensory discrimination during grazing . For example , when Thomas ( ２００５ ) offered sheep ２０ genotypes ofannual plants across three stages of plant phenology , a standard摧 set of measured traits ( nitrogen , sulphur , neutral detergentfibre , acid detergent fibre , water soluble carbohydrates , in v itro digestibility , shear and compression energy) accounted for upto ６０％ of the variation in relative preference values . However , during the vegetative stage , only ２０％ of the variation could beaccounted for by these particular traits . Principal component analysis showed that , at the senesced phase , the legumes thatwere preferred by the sheep had higher nitrogen content and digestibility , but this trend was not apparent when the pastureswere at the vegetative phase . At the reproductive and senesced stages , the nutritive value , or digestibility , of annual plantsdecline , and hence animals are motivated to select plants with higher than average digestibility . But during the vegetative phasewhen there was a uniformly high digestibility across all ２０ genotypes , other characteristics of the plants were used to
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discriminate between genotypes . Hence there is the possibility that secondary plant compounds may provide importantdistinguishing features of the different plant species to the animals . Such a conclusion has been reached with folivorousmarsupials offered Eucalyptus leaves ( Lawler et al . , １９９８ ) , where no correlation was found between feeding and severalmeasures of nutritional quality , total phenolics or condensed tannins . However , terpenes and a particular group of phenoliccompounds ( diformylphoroglucinols) did appear to alter feeding behaviour by acting as deterrents , with the latter being moreimportant .
Another example of how conventional nutritive value traits cannot always account for differences in selection comes from aseries of experiment with sheep grazing A trip lex spp ( saltbush) . The selection of saltbush by sheep is known to differ betweenindividual plants ( Maywald et al . , １９９８ ; Norman et al . , ２００４ ) . For example , Norman et al . , ( ２００４ ) found distinctpreferences for specific saltbushes by young Merino sheep , both within and between species ( old man saltbush , A .
nummularia , and river saltbush A . amnicola) . The basis for the strong preferences could not be explained by conventionalmeasures of nutritional composition ( digestibility or content of fibre , crude protein or minerals ) . Preferences betweenindividual old man saltbush plants was positively associated with nitrate concentration ( ２５０ v ９８ mg/ kg for most preferred vleast preferred plants) , whilst preferences for individual river saltbush plants was positively related to crude tannin content (０ .
１２ v ０ .０９％ for most preferred v least preferred plants) .
Sensory assessment of a food is achieved through sight , smell and taste . The odour of a plant can be a powerful signal toherbivores , but it is an aspect that has not received much attention in livestock production . Livestock species ( sheep , goats ,cattle and horses) have a more sensitive olfactory system than humans , and hence the power of olfaction in determining intakecan easily go unnoticed . Detecting odours can be beneficial in the process of food selection for at least four interrelated reasons .First , odour can be rapidly detected and thereby provides a means to influence feeding behaviour in the short term . Rapiddecision‐making may be important if a feed source is only temporarily available , as in a competitive feeding situation . Second ,the decision to select or reject a particular feedstuff can be made without actually consuming the feed , and thereby avoidtoxicosis . For example roe deer used odour to recognise and avoid undesirable plants once they learnt the consequences of eatingthese plants ( Tixier et al . , １９９８ ) . Conversely , once smelled , preferred plants are rarely refused . Third , the physiology ofodour detection allows animals to integrate a complex suite of odours that may reflect the biochemical composition of the food .This may be important in identifying whether a novel species is likely to be of low nutritive value , or toxic , prior to sampling .Although animals can detect individual odorants , the way in which the olfactory system processes information also allowsanimals to �generalise摧 the inputs to the central nervous system from a mixture of odours . Thus , the olfactory sense is able todistinguish among a practically infinite number of chemical compounds at very low concentrations ( Leffingwell ２００２) . Fourth ,neural processes link the detection of odour with memory , and hence the odour profile of a feedstuff can be used in learning anddemonstration of learnt behaviour . The links between olfaction and memory allows animals to develop learnt behaviours basedon associations between the sensory characteristics of feedstuffs and metabolic experiences ; in other words , a characteristicodour profile can trigger memory processes , and thus help an animal assess whether a familiar feedstuff is associated withfavourable or unfavourable metabolic consequences following its ingestion .
Examples of volatile plant compounds affecting feed intake include : ( i) Preferences in cattle being strongly correlated ( r２ ＝ ０ .
９７ ) w ith ６‐methyl‐５‐hepten‐２‐one , ( Z)‐３‐hexenyl propionate and acetic acid emitted from fresh tall fescue cultivars ( Mayland etal . , １９９７) ; ( ii ) Preferences of horses for particular oaten hays being strongly related to the abundance of two volatilecompounds released from the hay . One of the volatile compounds was negatively correlated ( r２ ＝ ０ .７７) to both preference andcrude protein content of the hays , suggesting that the horses may have used the odorant to identify and avoid low protein hays .Such a phenomenon would be consistent with the finding that rats can self‐select for dietary protein based on olfactory stimuli( Heinrichs et al . , １９９０ ) . Cox ( ２００４ ) did not identify the compound unambiguously , but based on preliminary gaschromatography analysis , it appeared to be a naphthalene compound . The second volatile compound was positively related tohay preference in horses ( r２ ＝ ０ .８３) , w ith preliminary analysis suggesting this compound was a decane , a class of compoundsthat have been linked to the odours from peaches that attract insects ( Natale et al . , ２００３ ) . It is conceivable that horses alsofound the odour attractive , or it was positively associated with a favourable nutritional trait of the hay ; ( iii) Individual volatilecompounds accounting for ２５‐４０％ of the variation in preferences between different batches of oaten or lucerne hays offered todairy cows or horses ( preliminary data reported in Pain and Revell , ２００７) . The abundance of particular volatile compounds maybe particularly useful in explaining �outlier hays摧‐i .e . , those for which animals select considerably more or less than predictedfrom nutritive value alone .
Secondary compounds and microflora of the gastrointestinal tract

Once ingested , plant compounds interact with the microbes of the gastrointestinal tract . Phytochemicals that can affect rumenfermentation include tannins , saponins and essential oils (鄙liw iński et al . ,２００２ ; Kamra et al . , ２００６) . Much of the literaturehas focussed on toxins and anti‐nutritional factors that limit the use of plants as feedstuffs ( see review of McSweeney et al . ,
２００２ ) . However , secondary compounds may have desirable effects on rumen fermentation by possessing specific antimicrobial ,antiproteolytic , antiprotozoal or antimethanogenic properties that positively impact rumen ecology . For example , oraladministration of an aqueous extract of saponin from Biophy tum petersianum reduced ruminal ammonia and increased volatile
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fatty acid concentrations in goats ( Santoso et al . , ２００７ ) . Similarly , a modest intake of A cacia cyanophy lla leaves ( １００ g )consumed before the ingestion of ２００ g of soybean meal reduced the ruminal digestion of crude protein and increased the grow thrate of lambs (Ben Salem et al . , ２００５) . Plant compounds also have the potential to reduce lactic acidosis , methane production ,or influence ruminal biohydrogenation ( Vercoe et al . , ２００７) .
Plants with anthelmintic properties are of special interest because of a growing problem of nematode resistance to the chemicalanthelmintics in many countries (Besier and Love ２００３ ) . Condensed tannins have received the most attention ( e .g . , Iqbal etal . , ２００７) but many other active compounds have been identified ( Githiori et al . , ２００６ ) . Condensed tannins are a goodexample of how a plant compound ( or group of plant compounds) can be detrimental at high doses ( Makkar ２００３ ; Min et al .,
２００３) , but beneficial at lower doses by protecting fermentable protein from degradation in the rumen ( Barry and McNabb ,
１９９９ , Ben Salem et al . , ２００５ ) or by controlling gastrointestinal parasites ( Aerts et al . , １９９９ ; Iqbal et al . , ２００７ ) . Whilstthere has been some research on the use of plant extracts to control intestinal parasites , there remains the need to furtherinvestigate the use of particular plants under commercial conditions to control parasite burdens . Such research has been initiatedby Ramí rez‐Restrepo et al . , (２００４) w ith sheep grazing either tannin‐containing pasture species ( Lotus corniculatus , birdsfoottrefoil) or perennial ryegrass /white clover pasture . More is required as specific environmental conditions and productionsystems ( e .g . , grazing rotations) may impact on responses , and there is a need to ensure that antinutritional effects to the hostanimals do not out‐weigh benefits from parasite control ( Athanasiadou et al . , ２００７) .
Compounds besides condensed tannins could also be exploited . For example , phytoecdysteroids have been detected in about ６％of all plant species ( Dinan １９９５ ) . These compounds induce abnormal moulting in many arthropods with lethal effects .Nematodes have a similar hormonal regulation of ecdysis , and phytoecdyseroids may provide a means of defence against freeliving , plant or animal nematodes ( see summary by Soriano et al . , ２００４) . Another class of plant compounds that may have arole in controlling gastrointestinal nematodes are the cysteine proteases ( Stepek et al . , ２００４ ) . These are known to digestnematode cuticles and are inducible by environmental stressors such as salinity ( Forsthoefel et al . , １９９８ ; Jones and Mullet ,
１９９５) and invertebrate herbivory ( Lopez et al . , ２００７) .

　 　 Figure 2 V ariation in the inhibition o f parasite larval
development in an in vitro screening test o f １００

indiv idual p lants o f one p lant species .

We are currently screening about １００ native shrub species for arange of characteristics , including in v itro inhibition of parasitelarvae as a measure of anthelmintic activity . About ２０％ of the
plants under evaluation reduce larval development to ＜ ４０％ ofcontrols ( A . Kotze and J . O摧Grady , unpublished data ) . Asthese plant species have not been through any plantimprovement program , there is potentially a high degree ofvariation between individual plants within a species ; i . e .different chemotypes . For example , we have tested １００individual plants of one species growing at one location . Mostbut not all plants possessed anthelmintic properties ( Figure ２ ) .The plants have been scored for morphological traits , and plantstoxic to parasites tended to be bigger , more upright instructure , with larger , thicker and darker green leaves — butnone of these traits on their own were significantly differentbetween toxic and non‐toxic plants . The aim is to further
quantify between‐plant variation across sites and with plantphenology or maturity .
Putting it all together : how plant compounds can influence the design and use of diverse plant mixtures

The nature of interactions between plants and animals influences ecosystem function ( Foley and Moore , ２００５) . There are manyexamples from non‐agricultural systems that have explored aspects of these interactions ( e . g . , Crone and Jones １９９９ ;Smallegange et al . , ２００７ ; Staudt and Lhoutellier , ２００７) , but there is great scope to build knowledge of interactions betweensecondary compounds and livestock to design and manage forage systems for the simultaneous benefit of livestock and theenvironment . In particular , when benefits of secondary plant compounds to herbivores can be combined with other desirabletraits of the plants , such as a capacity to tolerate dry conditions and low soil fertility , provide ground cover on soils prone toerosion , or provide out‐of‐season feed , then we have an exciting proposition to re‐design plant assemblies for grazing systemsthat take into account animal health and landscape function . The challenge is to ensure we optimise both the animals摧 long term
performance and health and the persistence of the desired plant mix ture . How can we best incorporate plants with bioactivecompounds into grazing systems ? This is a particularly pertinent question when one considers that beneficial plant compoundsare often detrimental at higher concentrations in the diet , but there are signs it can be done . Frutos et al . ( ２００７ ) recentlyreported that grazing goats supplemented ad libitum with freshly cut heather were able to self‐select the plant such thatbeneficial effects of the condensed tannins in heather ( reduced nematode eggs in faeces , reduced ruminal ammonia and increasedVFA concentrations) were not accompanied by anti‐nutritional effects of ten associated with condensed tannins . Indeed , Villalba
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et al . (２００６ ) have shown that , with conditioning , sheep are able to self‐medicate by consuming an appropriate remedy to aspecific malaise . Despite the capacity of livestock to self‐regulate and possibly self‐medicate , livestock managers still have acrucial role to play . Even in low‐input systems , there is the opportunity to intervene relatively easily by designing or modifyingthe plant combinations on offer , the spatial layout of plants , the duration or intensity of grazing . Here , some interrelated basic
principles can be used inform our decisions :
(i) The combinations o f p lants made available to animals w ill in f luence intake and diet selection .Palatability , so often considered a fixed trait for a particular plant , is very much a dynamic phenomenon that depends on thecombinations of food on offer and the previous experience the animals have had with them ( Provenza １９９５) . When animals areoffered two or more feeds simultaneously ( usually the case with grazing herbivores) , there are at least two levels at which thecontrasts between the options can be interpreted by the animal ( see Bergvall et al . , ２００７ ) . First , the animals compare theoptions on offer in �real time摧 , w ithout relying on memory or expectations of the future . Second , the reward ( e .g . , nutrientsupply ) or penalty ( e .g . , metabolic discomfort ) of consuming one of the feeds is compared with the memory of a previouslyexperience .
(ii) The combinations o f secondary p lant compounds af f ect animal responses .Experiences of secondary plant compounds are strongly influenced by the degree of complementarity or antagonism betweencompounds ( Lyman et al . , ２００８a ) . Furthermore , the sequence of offering bioactive plants or secondary compounds caninfluence the response of animals ( Lyman et al . , ２００８b ) . So when considering the impact of plants and their secondarycompounds , we need to be mindful that different circumstances may yield different outcomes . If a particular plant is consideredto have high concentrations of an undesirable compound , the plant may still be a valuable component of the feedbase if it can becoupled with complementary species . Issues relating to duty of care摧 ( Revell and Revell , ２００６ ) become important here to avoidundesirable outcomes whilst maximising the chances of beneficial effects of incorporating particular plants into the mixture .
(iii) The ex periences o f animals can strongly in f luence diet selection .If we want animals to eat a particular species in the pasture mix on offer , a situation should be created where the animals samplethe plant‐little by little‐and have a positive experience of doing so . The positive experience may be achieved easily if a plant isnutritious , or it may require intervention such as the provision of a supplement ( or a complementary plant species) to overcomea nutrient deficiency or avoid toxicosis . A positive experience usually leads to a situation where animals eventually choose toinclude the plant into their regular diet . An example of the influence of previous experience on selection was shown by Thomas(２００５ ) . In this study , the intake of three pasture species ( T ri f olium incarnatum L , Biserrula pelecinus L . , and Lolium
rigidum Gaud) offered simultaneously to sheep was heavily dependent on what species and what combinations had been offeredto the animals in the past .

Figure 3 Relative p re f erence in sheep that had grazed p lots f or ４ weeks p rev iously sown w ith either B . pelecinus (B IS ) or T .incarnatum (CRI ) or L . rigidum (RYE) or B . pelecinus and L . rigidum (B IS / RYE) or T . incarnatum and L . rigidum (CRI /
RYE) . During the p re f erence testing , the sheep were o f f ered all three species simultaneously : open bars , B IS ; hatched
bars , CRI and closed bars , RY E .

For example , in some cases , animals selected for B . pelecinus whilst others almost completely avoid it ( Figure ３ ) . Learntfeeding responses can be developed not only through trial and error , but also by animals observing others . The most powerfulexample is that of young animals learning from their mother . The offspring observe and mimic the eating behaviours of theolder flock or herd members . Young animals tend to be more willing to experiment with novel feeds , so exposing young animalsto new foods is more likely to lead to those foods being voluntarily incorporated into their diet ( even many years later ) thanoffering novel foods to older animals . The management of grazing herbivores should take into account the capacity of animals tolearn about the plants on offer to ensure dietary preferences include a broad range of the plants on offer and to create theopportunity for animals to optimise their nutrition and/ or self‐medicate .
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Capitalising on designed or naturally diverse plant combinations

Livestock production systems must address multiple challenges associated with economic , environmental and social issues . Tomeet multiple goals there is a need to embrace the challenges of using plant diversity across the landscape . No single plant willachieve all purposes , from the timely provision of nutrients and other benefits to livestock through to managing the naturalresources of soil and water . In an attempt to simplify management , we have tended to reduce biological complexity and plantdiversity in grazing systems . Yet simplified systems are inevitably incomplete systems that ultimately require more inputs to besustained . Building in plant diversity across a landscape not only offers opportunities to improve flexibility and meet diversechallenges in land management , but it is consistent with the design摧 of grazing animals . An enormous opportunity exists tocapitalise on emerging knowledge of the role of secondary plant compounds , and in particular their role in the regulation of dietselection , feed intake and gut health . This knowledge should help uncover new opportunities to manage livestock and diverseplant mix tures to improve economic , animal health and environmental outcomes .
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