

## University of Kentucky UKnowledge

International Grassland Congress Proceedings

21st International Grassland Congress / 8th International Rangeland Congress

## Investigations on Soil Fertility of *Medicago varia* and *Bromus inermis* Stands

Yongliang Zhang Inner Mongolia University for Nationalities, China

Kai Gao Inner Mongolia University for Nationalities, China

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/21/2-3/4

The 21st International Grassland Congress / 8th International Rangeland Congress took place in Hohhot, China from June 29 through July 5, 2008.

Proceedings edited by Organizing Committee of 2008 IGC/IRC Conference

Published by Guangdong People's Publishing House

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

## Investigations on soil fertility of Medicago varia and Bromus inermis stands

Yongliang Zhang, Kai Gao

Inner Mongolia University for Nationalities , Tongliao , 028042 , China . E-mail : Zhangyl@ imun edu .cn

Key words : Medicago varia, Bromus inermis, Soil organic matter, Soil available nitrogen

**Introduction** The effects of forage cropping on soil fertility have not been well determined even though positive results have been reported for some spieces in certain areas (Cadisch et al .,1994; Jianguo Han et al .,2004). The objective of this study was to determine the changes of soil organic matter and soil available nitrogen of *Medicago varia* and *Bromus inermis* stands during the subsequent years after establishment.

**Material and methods** The plots were established at the experimental farm of Inner Mongolia University for Nationalities , in Tongliao , Inner Mongolia on May 8 ,2003 . The initial soil fertility of the 0-30 cm layer : organic matter 18 .36 g/ kg , available N 58 .45 mg/ kg , available P<sub>2</sub>O<sub>5</sub> 38 .66 mg/ kg , available K<sub>2</sub> O 123 .67 mg/ kg . *Medicago varia* was seeded at the rate of 15 kg/ hm<sup>2</sup> in monoculture and 4 .5 kg/ hm<sup>2</sup> in the mixture ; *Bromus inermis* was seeded at the rate of 22 .5 kg/ hm<sup>2</sup> and 15 .75 kg/ hm<sup>2</sup> in the mixture . Soil samples were taken on April 17 ,2005 and April 12 ,2007 and the soil organic matter and soil available N were tested in the laboratory .

**Results** The greatest soil organic matter accumulation occurred in the *Bromus inermis* stand, and the intermediate accumulation occurred in the *Medicago varia and Bromus inermis* mixture (Table 1). Soil organic matter of all three layers of all the three stands increased with the advancement of time, reinforcing the opinion that perennial forages (either legumes or grasses) have an important role in soil structure improvement.

| Sampling time | Soil layer      | <u>Medicago varia</u> |                   | Mixture   |                   | Bromus inermis |          |
|---------------|-----------------|-----------------------|-------------------|-----------|-------------------|----------------|----------|
|               |                 | OM                    | AN                | OM        | AN                | OM             | AN       |
| 2005-4-17     | 0-10cm          | 24 .46bB              | 57 .49 <b>a</b> A | 26 .50aAB | 56 .80aA          | 27 .4aA        | 49 93bA  |
|               | 10-20cm         | 18 .56bB              | 79 .10aA          | 20 .48bAB | 78 .51aA          | 23 .31aA       | 73 .64bA |
|               | 20-30 <b>cm</b> | 11 .68aA              | 49 .77 <b>a</b> A | 12 .53aA  | 50 .44 <b>a</b> A | 12 .18aA       | 47 .68aA |
| 2007-4-12     | 0-10cm          | 26 .39bA              | 65 .41bA          | 28 .75abA | 70 .09 <b>a</b> A | 32 28aA        | 57 .73cB |
|               | 10-20cm         | 21 .00bA              | 60 .32abA         | 24 .63aA  | 61 .99aA          | 25 22aA        | 55 22bA  |
|               | 20-30 <b>cm</b> | 17 .14aA              | 40 .60abA         | 16 .82aA  | 45 .80aA          | 18 .43aA       | 37 .18bA |

Table 1 Contents of soil organic matter and available nitrogen of three stands

Note :Means with different capital letters in same soil layer indicate extremely significant differenc( $P \leq 0.01$ ) and small letters ( $P \leq 0.05$ ) for significant difference. OM-soil organic matter(g/kg); AN-soil available nitrogen (mg/kg).

For soil available nitrogen accumulation, the Medicago varia and Bromus inermis mixture showed the greatest positive effect, and the *Bromus inermis* stand showed the least. In 2007, available nitrogen content in the 0-10 cm soil layer of Medicago varia and Bromus inermis mixture was 21 41% higher than that of *Bromus inermis* stand.

**Conclusion** Both soil organic matter and soil available nitrogen increased gradually in three stands with the advancement of time. Soil organic matter increased most in the *Bromus inermis* stand, whereas, *Bromus inermis* and *Medicago varia* mixture was more beneficial to the accumulation of soil available nitrogen.

## References

Cadisch ,G .R , Schunke , M ., Giller , K .Z ., (1994) .Nitrogen cycle in monoculture grassland and Legume-grass mixture in Brazil Red soil . *Trop Grasslands* 28, 43-52 .

Jianguo Han, Yongwei Han, Tiejun Sun et al., (2004). Effects of returning cultivated land to herbage on soil organic matter and nitrogen in the agro-pastoral transitional zone of north China. A cta prataculturae sinica 13, 21-28.