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ABSTRACT OF DISSERTATION 
 
 
 

A THERMODYNAMIC AND FEASIBILITY STUDY OF GREEN SOLVENTS FOR 
THE FABRICATION OF WATER TREATMENT MEMBRANES 

 
 

Nonsolvent induced phase separation (NIPS) has been widely used to fabricate 
polymeric membranes. In NIPS, a polymer is dissolved in a solvent to form a dope solution, 
which is then cast on a substrate and immersed in a nonsolvent bath, where phase inversion 
occurs. Petroleum-derived organic solvents, such as N-methyl-2-pyrrolidone (NMP) and 
dimethylacetamide (DMAc), have been traditionally used to fabricate polymeric 
membranes via NIPS. However, these solvents may have negative impacts on 
environmental and human health; therefore, using greener and less toxic solvents, 
preferably derived from biomass, is of great interest to make membrane fabrication 
sustainable. In this dissertation, two low-hazard solvents, methyl 5-(dimethylamino)-2-
methyl-5-oxopentanoate (Rhodiasolv® PolarClean) and gamma-valerolactone (GVL), 
were investigated as sole- and as cosolvents to cast polysulfone (PSf) membranes via NIPS. 

In the first part of this project, methyl-5-(dimethylamino)-2-methyl-5-
oxopentanoate (Rhodiasolv PolarClean) was studied. PolarClean is a bio-derived, 
biodegradable, nonflammable and nonvolatile solvent. From cloud point curves, 
PolarClean shows potential to be a solvent for polysulfone. Membranes prepared with 
PolarClean were investigated in terms of their morphology, porosity, water permeability 
and protein rejection, and were compared to membranes prepared with traditional solvents. 
The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes 
displayed higher water flux values along with slightly higher solute rejection. On the other 
hand, PSf/DMAc membrane pores were finger-like with lower water flux and slightly 
lower solute rejection when compared to PSf/PolarClean membranes. Upon reverse-flow 
filtration to simulate membrane cleaning, it was observed that the pores of PSf/PolarClean 
membranes collapsed. To address this issue, GVL was investigated as a sole solvent and a 
cosolvent with PolarClean to fabricate PSf membranes. Membranes prepared using GVL 
as a sole solvent were observed to be gelatinous, hence not ideal for filtration. On the other 
hand, when GVL and PolarClean were used as cosolvents, viable membranes were cast 
with surface charge and hydrophicility not being significantly different from membranes 
made using PolarClean alone. Furthermore, the average pore size of membranes decreased 
as the weight percent of GVL in dope solutions increased. Therefore, the use of 
PolarClean/GVL as cosolvents shows promise for the fabrication of PSf membranes. With 
respect to operation, membranes cast from dope solutions containing equal amounts of 
PolarClean and GVL displayed the most similar flux curves and solute rejection to those 
made using the traditional solvent tested.  

Once it was determined that membranes made using PolarClean and GVL as 
cosolvents were viable and showed similar morphological and operational characteristics 
to those made using DMAc, the use of PolarClean/GVL cosolvents was then researched at 



     

 

the production scale. In the last portion of this study, a slot die-roll to roll (R2R) system 
was used to fabricate polysulfone (PSf) ultrafiltration membranes using low-hazard 
solvents individually and as cosolvents at a production scale. Production-scale membranes 
were compared structurally, morphologically and operationally to laboratory-scale 
membranes made using a doctor’s blade. The chemical structure of membranes was not 
affected by the use of different solvents nor by the differences in scale. On the other hand, 
cross-sectional images showed that the structures of the membranes were different most 
likely due to differences in diffusion rates between the different solvents/cosolvents into 
the nonsolvent, water. Furthermore, it was observed that slot die and doctor’s blade casting 
methods produced membranes with different roughness values likely due to evaporation 
time differences between the methods. While to protein filtration, all membranes displayed 
similar operational parameters, i.e., flux decline, permeability and recovery. Overall, this 
dissertation shows that membranes fabricated using greener/less toxic solvent mixtures are 
comparable to membranes cast using petroleum-derived solvents, and are scalable using 
slot die-R2R.  
 
 
KEYWORDS: Polymeric Membranes, Bio-derived solvent, Non-solvent induced phase 

separation, Membrane fabrication, Scaleup.  
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction  

Membrane technology has been used in liquid and gas separations for decades 

because membranes are easy to fabricate, simple to use, have high selectivity and do not 

need to regenerate sorbents. Membranes have played an increasingly important role in the 

desalination, water treatment, food and pharmaceutical industries. However, during 

membrane fabrication, large amounts of organic solvents are used [1], and solvents used 

in synthesis and post-synthesis steps can have a negative impact on operational safety, 

cost, the environment and human health [2-4]. Traditional solvents used for membrane 

preparation include dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and 

dimethylacetamide (DMAc). Due to their toxicity, solvents require specialized control 

measures. Therefore, the need for greener, low-toxicity and more sustainable solvents has 

prompted a great amount of research into the processing of renewable feedstocks to 

obtain platform molecules and downstream end products. The annual global solvent 

market is in the order of 20 million metric tons and billions of dollars, and bio-based 

solvent consumption in Europe is predicted to grow to one million metric tons by 2020 

[5, 6]. Using renewable solvents derived from biomass, which do not compete with food 

applications, satisfies both consumer and legislative demands with regards to 

sustainability.  

Therefore, in this dissertation, solvents involved in the manufacturing process of 

membranes are proposed to be replaced by greener/less toxic alternatives. A green solvent 

is expected to be non-toxic, non-volatile, and derived from renewable sources [7]. 

Polysulfone (PSf) was chosen as the membrane polymer material in order to investigate 
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the ability of two greener/low toxicity solvents to dissolve PSf and then fabricate 

membranes. The membranes were then characterized and compared with the membranes 

made of traditional petroleum-derived solvents. This was followed by an investigation of 

them scaling up of the membranes made with the greener solvents using slot die-roll to roll 

(R2R).  

1.2 Literature review 

 Membrane Fabrication  

Membranes are commonly made of polymeric [8, 9], ceramic [10, 11] and stainless 

steel materials [12, 13]. Of these, polymeric membranes are the most popular due to the 

high selectivity, easy operation and easy to perform surface modification, and have been 

deeply studied [14]. Therefore, the focus of this study is polymeric membranes and their 

phase separation-based fabrication methods, namely nonsolvent induced phase separation 

(NIPS), temperature induced phase separation (TIPS), vapor induced phase separation 

(VIPS), solvent evaporation induced phase separation (EIPS), interfacial polymerization 

and some other methods. Since phase separation-based methods are the focus of this 

dissertation, each phase separation method is defined and discussed in terms of a few 

literature studies, and later compared with respect to advantages and disadvantages.  

Nonsolvent induced phase separation (NIPS) is a conventional method to fabricate 

porous polymeric membranes. Figure 1.1 shows the NIPS method process. First, a polymer 

or a mixture of polymers with or without additives, such as pore formers, is dissolved by 

at least one solvent to form a homogeneous dope solution [15, 16]. The dope solution is 

then cast as a liquid film on a substrate, either a glass plate or a polymeric substrate. The 
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liquid film on the substrate is then immersed into a coagulation nonsolvent bath, water. 

Afterwards, phase inversion occurs as the solvent in the film exchanges with the nonsolvent 

[17]. This process results in an asymmetric polymeric membrane with a dense selective 

layer and a porous supportive sublayer. These two layers have their different functionality, 

with the selective layer providing the separation selectivity for the membranes either due 

to size exclusion or charge, and the porous support layer providing mechanical strength 

and stability underneath the selective layer [18]. Pagliero et al. [19] used NIPS to prepare 

polyvinylidene fluoride (PVDF) membranes for membrane distillation They found that the 

principal factor affecting the membrane structure was the rate of crystallization of PVDF 

during the liquid-liquid demixing process. 

 

Figure 1.1 Nonsolvent phase inversion casting process [20] 

Temperature induced phase separation (TIPS) is a process (Figure 1.2) in which a 

dope solution of polymers and solvents is prepared at high temperature, and then cooled 
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down to a low temperature. During the temperature changes, phase separation occurs, and 

a solid film can form [21]. 

 

Figure 1.2 Temperature induced phase separation process (Reproduced from Ref 

[22] with permission from The Royal Society of Chemistry.) 

M’barki et al. [23] used TIPS along with crosslinking to prepare porous poly(vinyl 

alcohol) (PVA) membranes. In this study, water was chosen to dissolve PVA to avoid the 

use of organic solvents. The membranes showed connected cellular pores throughout the 

cross-section of the membranes. However, due to water being used as the solvent, with a 

higher humidity, an open pore structure (larger than 10 μm) was obtained instead of a defect 

free skin layer.  

Vapor induced phase separation (VIPS) is another method to fabricate porous 

membranes. As shown in Figure 1.3, in VIPS, a dope solution is prepared and cast into a 

liquid film, and then exposed in the atmosphere of the nonsolvent vapors in a vapor 

chamber. It is a similar process to NIPS, but phase separation occurs with water vapor 

transfer into the film while the solvent diffuses into the vapor to form a solid membrane 

film.  
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Figure 1.3 Vapor induced phase separation process (Reproduced from Ref [24] 

published by Longdom Group) 

Zhao et al. [25] studied using VIPS to prepare poly(vinylidene fluoride) (PVDF) 

porous membranes. Membranes showed cellular structure when the vapor temperature was 

65 ℃ and relative humidity of 70% for 20 minutes of exposure time. Unlike NIPS, where 

the dope liquid film immersed into a nonsovent bath, in VIPS, the dope film is exposed to 

the vapor phase nonsolvent, which delayed the phase separation process and led to cellular 

membrane structure [25]. They found that with the cellular structures being bicontinuous, 

mechanical strength was enhanced [25].  

In the solvent evaporation induced phase separation (EIPS) method (shown in 

Figure 1.4), a homogeneous solution is prepared by dissolving a polymer in the mixture of 

a solvent and a nonsolvent, where the solvent has higher volatility than the nonsolvent. 

Through evaporation of the solvent, phase separation occurs and the demixing of polymer-

solvent-nonsolvent system happens, results in a porous film. The pore structures can be 

controlled by changing the composition of polymer-solvent-nonsolvent solutions [26].  
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Figure 1.4 Solvent evaporation induced phase separation (Reproduced from Ref 

[26]- Published by The Royal Society of Chemistry) 

Samuel et al. [27] investigated using EIPS to cast polymethylmethacrylate 

(PMMA) membranes in tetrahydrofuran (THF) solvent with water as the nonsolvent. 

During the rapid solvent evaporation, condensation of water droplets occurred and formed 

the porous polymer films. Therefore, water content affected the pore morphology on the 

membrane surface. The average pore size of the obtained membranes increased along with 

the water content.   

Table 1 summarizes the four phase-separations-based methods including their 

advantages and disadvantages. It is important to address that while all these phase 

separations methods convert a dope solution from liquid to solid, most of the phase 

separation methods are mass transfer processes, while TIPS alone is based on heat transfer. 

While other processes have significant differences, it is important to differentiate VIPS and 

EIPS. First, the mechanisms are different, the nonsolvent diffuses into the polymer solution 

film as vapor in VIPS. In EIPS, originally the solution film is a homogenous 

polymer/solvent/nonsolvent mixture system, and the solvent evaporation makes the phase 

separation occurs. Furthermore, the driving force of phase separation in VIPS is the 
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diffusion of the nonsolvent vapor into the solution film, while for EIPS, the driving force 

is the solvent diffusing out from the polymer-solvent-nonsolvent liquid film [28].  

Table 1.1 Comparison of four phase separation methods [29] 

 NIPS [14] TIPS [21] VIPS [28, 30] EIPS [26] 

Principle Mass transfer Heat transfer Mass transfer Mass transfer 

Components  Polymer 

Solvent 

Nonsolvent 

Polymer 

Solvent 

Polymer 

Solvent 

Nonsolvent 
(vapor) 

Polymer 

Solvent 

Nonsolvent 

Advantages Diverse porous 
structure, high 
selectivity,  

low operation 
temperature  

Easy control,  

uniform 
structure,  

good 
reproducibility. 

Crystallization, 

Gentle 
formation 
process 

Good 
reproducibility 

 

Disadvantages Many 
operation 
parameters, 
finger-like 
structures do 
not have good 
mechanical 
strength 

High energy 
consumption; 
requirements 
for solvents: 
low molecular 
weight, high 
boiling point, 
low volatility, 
high 
miscibility 
with polymers, 
thermal 
stability.   

Many 
operation 
parameters, 
high energy 
consumption  

Difficult to 
find suitable 
solvents and 
nonsolvents 
used in EIPS 

From Table 1 and literature studies, NIPS is able to produce different pore 

morphology as desired. Also, NIPS is a commonly used method to cast membranes and 

has been widely employed to fabricate membranes. Therefore, NIPS was chosen in this 
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dissertation to minimize the variables and focus on investigating greener/less toxic 

solvents.  

 Theoretical thermodynamics study 

A ternary phase diagram is commonly used to describe the thermodynamic 

properties of a polymer/solvent/non-solvent system [31-34] , as shown in Figure 1.5 [35]. 

It can also explain the solvent-nonsolvent exchange phenomena and the kinetics of solvent 

and nonsolvent exchange during the membrane formation process [34]. The theoretical 

study of ternary phase diagrams is also used to predict the corresponding binodal curves, 

spinodal curves and critical points using the calculation methods described in this section 

[33]. The ternary phase diagram theoretical curves are significant when a new polymer or 

solvent is to be investigated to fabricate membranes because these curves can quantitatively 

guide the specific polymeric membrane formation, including the compositions of the 

polymer/solvent/nonsolvent system, and the prediction of morphology of the membranes.    
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Figure 1.5 A detailed general ternary phase diagram for NIPS process (Reprinted 

with permission from [35] Copyright © 2015 Elsevier) 

To evaluate the thermodynamics of a membrane-forming system, the Flory-

Huggins theory of polymer solutions has been extended to the polymer/solvent/nonsolvent 

ternary system, and is used to predict the binodal curves, spinodal curves and tie lines of 

the ternary phase diagram in the immersion precipitation process [36]. The Flory-Huggins 

solution equation represents the Gibbs free energy change (∆𝐺𝐺𝑚𝑚) for mixing a polymer 

with a solvent[31]. In this theory, the Gibbs free energy (∆𝐺𝐺𝑚𝑚 ) of the mixing of the 

membrane casting system is calculated as shown in equation (1): 

∆𝐺𝐺𝑚𝑚
𝑅𝑅𝑅𝑅

= 𝑛𝑛1lnφ1 + 𝑛𝑛2lnφ2 + 𝑛𝑛3lnφ3 + 𝑔𝑔12𝑢𝑢2𝑛𝑛1φ2 + 𝑔𝑔13𝑛𝑛1φ3 + 𝑔𝑔23𝑛𝑛2φ3       (1) 

Where subscripts 1, 2 and 3 are respectively nonsolvent, solvent and polymer; while 

ni and φi are the amount and volume fraction of component i; R is the gas constant and T 

is temperature; g12 is the solvent/nonsolvent parameter, which is assumed to be a function 
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of u2 with u2 = φ2/(φ1 + φ2); g13 is the nonsolvent/polymer interaction parameter and 

g23 is the solvent/polymer interaction parameter, which are assumed to be constants. All 

the interaction parameters are determined through experiments or obtained from literature. 

The conditions for liquid-liquid equilibrium are as shown in equation (2): 

∆𝜇𝜇𝑖𝑖𝛼𝛼 = ∆𝜇𝜇𝑖𝑖
𝛽𝛽  (2) 

Where i represents different components, α and β denote polymer-rich and 

polymer-lean phases separately. The derivative of the Gibbs free energy of mixing results 

in the chemical potential of component i, as shown in equation (3): 

∆𝜇𝜇𝑖𝑖
𝑅𝑅𝑅𝑅

= 𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

(∆𝐺𝐺𝑚𝑚
𝑅𝑅𝑇𝑇

)𝑃𝑃,𝑇𝑇,𝑛𝑛𝑗𝑗  (3) 

For liquid-liquid equilibrium, the conditions can be calculated as equations (4-6): 

∆ 𝜇𝜇1
𝑅𝑅𝑅𝑅

= 𝑙𝑙𝑙𝑙𝜑𝜑1 + 1 − 𝜑𝜑1 −
𝑉𝑉1
𝑉𝑉2
𝜑𝜑2 −

𝑉𝑉1
𝑉𝑉3
𝜑𝜑3 + [𝑔𝑔12𝑢𝑢2𝜑𝜑2 + 𝑔𝑔13𝜑𝜑3](𝜑𝜑2 + 𝜑𝜑3) − 𝑉𝑉1

𝑉𝑉2
𝑔𝑔23𝜑𝜑2𝜑𝜑3 −

𝜑𝜑2𝑢𝑢1𝑢𝑢2
𝑑𝑑𝑔𝑔12𝑢𝑢2
𝑑𝑑𝑢𝑢2

  (4) 

∆ 𝜇𝜇2
𝑅𝑅𝑅𝑅

= 𝑙𝑙𝑙𝑙𝜑𝜑2 + 1 − 𝜑𝜑2 −
𝑉𝑉2
𝑉𝑉1
𝜑𝜑1 −

𝑉𝑉2
𝑉𝑉3
𝜑𝜑3 + �𝑉𝑉2

𝑉𝑉1
𝑔𝑔12𝑢𝑢2𝜑𝜑1 + 𝑔𝑔23𝜑𝜑3� (𝜑𝜑1 + 𝜑𝜑3) −

𝑉𝑉2
𝑉𝑉1
𝑔𝑔13𝜑𝜑1𝜑𝜑3 + 𝑉𝑉2

𝑉𝑉1
𝜑𝜑1𝑢𝑢1𝑢𝑢2

𝑑𝑑𝑔𝑔12𝑢𝑢2
𝑑𝑑𝑢𝑢2

   (5) 

∆ 𝜇𝜇3
𝑅𝑅𝑅𝑅

= 𝑙𝑙𝑙𝑙𝜑𝜑3 + 1 − 𝜑𝜑3 −
𝑉𝑉3
𝑉𝑉1
𝜑𝜑1 −

𝑉𝑉3
𝑉𝑉2
𝜑𝜑2 + �𝑉𝑉3

𝑉𝑉1
𝑔𝑔13𝜑𝜑1 + 𝑉𝑉3

𝑉𝑉2
𝑔𝑔23𝜑𝜑2� (𝜑𝜑1 + 𝜑𝜑2) −

𝑉𝑉3
𝑉𝑉1
𝑔𝑔12𝑢𝑢2𝜑𝜑1𝜑𝜑2 (6) 

Where Vi represents the pure molar volume of species i. Only binary interaction 

parameters are considered in these equations.  
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The binodal curve is the boundary between the thermodynamically favorable 

conditions for the system to be fully mixed and to be phase separated. Every composition 

inside the binodal curve demixes into a polymer-rich and a polymer-lean phase in 

thermodynamics equilibrium[32, 34, 37]. The line that connects a pair of equilibrium 

compositions in the polymer-rich phase (φ1, A, φ2, A, φ3, A) and polymer-lean (φ1, B, φ2, B, φ3, 

B) phase is a tie line. Thus, there are six unknowns, and the binodal curve should be 

obtained through determining these six volume fractions. To determine the compositions, 

a material balance equation is also be needed, as is proposed as equation (7) 

∑𝜑𝜑𝑖𝑖𝐼𝐼 = ∑𝜑𝜑𝑖𝑖𝐼𝐼𝐼𝐼 = 1  (7) 

Where φ3, B is considered to be an independent variable in the six unknowns, and 

then equations (2) and (4)-(7) are solved by the Newton-Raphson method. 

The boundary between the unstable and metastable regions is called spinodal, 

which is defined as equation (8): 

𝜕𝜕2∆𝐺𝐺
𝜕𝜕𝜑𝜑2

= 0  (8) 

The spinodal curve is evaluated using the Tompa equation, as equations (9) and 

(10): 

𝐺𝐺22𝐺𝐺33 = 𝐺𝐺232   (9)  

𝐺𝐺𝑖𝑖𝑖𝑖 = (𝜕𝜕2∆𝐺𝐺𝑚𝑚������/𝜕𝜕𝜑𝜑𝑖𝑖𝜕𝜕𝜑𝜑𝑗𝑗)𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟   (10) 
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Where ∆𝐺𝐺𝑚𝑚������ is the Gibbs free energy of mixing on a unit volume basis and 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 is 

the molar volume of the reference component. For the relationship for ∆𝐺𝐺𝑚𝑚������, the following 

expressions result as equations (11-13) 

G22 = 1
𝜑𝜑1
− 𝑉𝑉1

𝑉𝑉2𝜑𝜑2
− 2𝑔𝑔12 + 2(𝑢𝑢1 − 𝑢𝑢2) �𝑑𝑑𝑔𝑔12

𝑑𝑑𝑢𝑢2
� + 𝑢𝑢1𝑢𝑢2(𝑑𝑑

2𝑔𝑔12
𝑑𝑑𝑢𝑢22

) (11) 

G23 = 1
𝜑𝜑1
− (𝑔𝑔12 + 𝑔𝑔13) + 𝑔𝑔23

𝑣𝑣1
𝑣𝑣2

+ 𝑢𝑢2(𝑢𝑢1 − 2𝑢𝑢2) �𝑑𝑑𝑔𝑔12
𝑑𝑑𝑢𝑢2

� + 𝑢𝑢22(1 − 𝑢𝑢2)(𝑑𝑑
2𝑔𝑔12
𝑑𝑑𝑢𝑢22

) (12) 

G22 = 1
𝜑𝜑1

+ 𝑉𝑉1
𝑉𝑉3𝜑𝜑3

− 2𝑔𝑔13 − 2𝑢𝑢23 �
𝑑𝑑𝑔𝑔12
𝑑𝑑𝑢𝑢2

� + 𝑢𝑢23(1 − 𝑢𝑢2)(𝑑𝑑
2𝑔𝑔12
𝑑𝑑𝑢𝑢22

)  (13) 

Choosing φ3 as the independent variable, equation (9) and the material balance 

equation (7) are solved numerically using the Newton-Raphson method.  

The binodal and spinodal curves intersect at the critical point. It is expressed as 

equation (14):  

𝜕𝜕2∆𝐺𝐺
𝜕𝜕𝜑𝜑2

= 𝜕𝜕3∆𝐺𝐺
𝜕𝜕𝜑𝜑3

= 0 (14) 

The critical point composition is calculated through the following equation (15): 

𝐺𝐺222𝐺𝐺332 − 3𝐺𝐺223𝐺𝐺23𝐺𝐺33 + 3𝐺𝐺233𝐺𝐺232 − 𝐺𝐺22𝐺𝐺23𝐺𝐺333 = 0  (15) 

In this study, the theoretical binodal curves of PolarClean/PSf/water and 

GVL/PSf/water were calculated using the equations above and then compared with 

experimental curves. If they corresponded, the calculation method was used to as a standard 

to employ other green solvents to prepare membranes. If they did not correspond, the 

reasons causing the differences were analyzed and correction factors were added in the 

calculation method to improve the accuracy of theoretical curves.  
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 The mechanism of demixing processes 

A ternary phase diagram of polymer/solvent/water, as shown in Figure 1.6, is also 

commonly used to characterize the demixing processes in the phase inversion process. In 

Figure 1.6, the binodal curve is the liquid-liquid phase boundary, and the line that connects 

the two points of equilibrium compositions is the tie line, as discussed in section 1.2.2. Any 

composition point inside the binodal curve demixs into two different composition points, 

polymer-rich and polymer lean phases, which are in the thermodynamic equilibrium. The 

composition points outside the binodal curve are in the same liquid phase.  

As shown in Figure 1.6 (a), for the instantaneous demixing process, when the liquid 

film immerses into water, the liquid film demixes immediately into a polymer-rich phase 

and a polymer-lean phase. For the delayed demixing process, shown in Figure 1.6 (b), after 

immersion into water, the liquid film remains outside the binodal curve, indicating that no 

immediate demixing occurred, and the demixing process was relatively slow.  
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Figure 1.6 Composition paths of liquid film after immediately immersion into 

nonsolvent bath: (a) instantaneous demixing and (b) delayed demixing: T and B 

represent the top and the bottom of the film. (Reprinted with permission from [14] 

Copyright © 2011 American Chemical Society) 

Different demixing processes may be due to different factors; for instance, the 

miscibility of solvent in nonsolvent and the viscosity of the polymer/solvent liquid film 

[38-41]. Low miscibility of solvent in nonsolvent leads to a delayed demixing process, 

while high miscibility of solvent in nonsolvent results in an instantaneous demixing process 

[38, 39]. Similarly, high viscosity of the dope solution may lead to a delayed demixing 

process, and low viscosity may lead to an instantaneous demixing process [40, 41]. As 
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shown in Figure 1.7, for an instantaneous demixing process, the solvent/nonsolvent 

exchange is fast, and finger-like structures form; for a delayed demixing process, the 

solvent/nonsolvent exchange is slow, which results in spongey-like structures. The 

mechanism of demixing is used to explain the cross-section morphology in this 

dissertation. The speed of solvent/nonsolvent exchange was determined using UV-Vis to 

quantify the diffusion rate of the solvent into nonsolvent, and this method is used in Chapter 

6.  
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Figure 1.7 Cross sectional morphologies of membranes formed by instantaneous 

and delayed demixing processes. (Reprinted with permission from [14] Copyright © 

2011 American Chemical Society) 

 Scale up of the membrane fabrication process  

Despite extensive research on membrane development and fabrication at the small, 

laboratory scale [20, 42-46], there is a dearth of studies or reports on scaling up membranes. 

There is much research activity in laboratories on casting polymeric membranes; however, 

many of these methods, such as doctor blade casting, spin coating, dip coating, etc., only 

work in a batch mode and cannot be transferred to large-scale roll-to-roll (R2R) methods 

[47]. Recently there have been studies on scale-up of plain membranes, using profile roller 

coating [47] and slot die casting embedded on roll-to-roll (R2R) systems [48, 49]. Slot die 
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casting is the most prominent method because it is capable of scaling up thin film across a 

broad array of areas while keeping the functionality of the films [50, 51].  

Here, the doctor blade and slot die casting methods are compared as examples of 

the different fabrication scales. As shown in figure 1.8, in the doctor blade casting process, 

a dope solution is first placed on a substrate, and the doctor blade is placed at a set height 

above the substrate. The blade is then moved at a constant velocity to spread the solution 

onto the substrate to form a film [52].  

 

Figure 1.8  The doctor blade coating process (Reproduced from Ref [53]- Published 

by IOPscience) 

In the slot die coating process, a slot die (Figure 1.9 (a) and (b)) is used to deposit 

a liquid solution onto a substrate that is moving at a constant velocity to form a liquid film 

on the substrate. The difference between the slot die and doctor blade coating methods is 

that the slot die is fixed, and the substrate is moving, while for the doctor blade, the 

substrate is fixed, and the doctor blade is moving.  
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                       (a)                                                                 (b) 

Figure 1.9 The slot die coating process: (a) the slot die head structure (Reprinted 

with permission from [54] copyright ©2016 Springer Nature); (b) the schematic of 

slot die coating process (Reprinted with permission from [55] copyright ©2020 

Elsevier) 

1.2.4.1 Comparison of doctor blade casting and slot die casting of membranes 

Doctor blade casting has been a popular primary film casting method in the 

laboratory [56, 57], but it is not always the best method to fabricate membranes on an 

industrial scale because the membrane morphology is largely reliant on the viscosity of the 

dope solutions, and therefore, not suitable for continuous casting [48]. On the other hand, 

slot die casting is a well-developed and commonly used method to manufacture polymer 

films. It is suitable for continuous casting of liquid films and, therefore, has been 

investigated to scale up polymeric membranes [49]. There is a constant demand to increase 

the processing speed of the thin film since the processing speed can increase the production 

output. At the same time, there is also a constant demand for maintaining low thicknesses 

of the film considering its applications in coating and polymer industry [48]. However, if 

these two key factors are not balanced, the polymer film quality cannot be maintained 
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properly. Film quality is dependent upon several factors, such as the solution properties, 

fabrication process and processing parameters, and defects arise when these factors are 

altered [48, 49].   

Scaling up from a small production scale, such as doctor blade, to a larger one, such 

as slot die, is not intuitively obvious, and several parameters must be identified in order to 

determine dope flow rate and substrate velocity. One such parameter is the surface tension 

of the polymer since coating speed depends on surface tension values, and solutions with 

lower surface tension can restrict the coating speeds to lower values [48]. Another key 

parameter is viscosity, which plays a significant role in determining the processing 

conditions because fabrication defects, such as air bubble entrapment, highly depends on 

the solution viscosity [49]. Air entrainment rate is lower at lower solution viscosities [48].  

1.2.4.2 Advantage of Slot Die Casting for Scale Up    

Often laboratory methods, such as doctor blade casting, spin coating and solution 

casting, are not scalable and/or do not introduce the same stress on the membrane as those 

formed using scalable approaches e.g., slot die casting. Furthermore, different 

manufacturing techniques may lead to significantly different membrane properties (e.g. 

mechanical, chemical, etc.), particle distribution, overall membrane functionality, and its 

ability to treat water.  

Integration of slot die casting into a R2R system allows for continuous casting of 

polymeric membranes. An illustration of a simple R2R system is shown in Figure 1.10, 

which has been used to study scale up of AgNP membranes previously [58].  
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Figure 1.10 Schematic of a simple R2R experimental setup with a slot die coater 

(Reprinted with permission from [57] copyright ©2020 John Wiley and Sons) 

The slot die coating process consists of pumping a dope solution at a preset flow 

rate between two die halves set apart by a small gap onto a substrate moving with a relative 

velocity to the dies, as depicted in Figure 1.11.  
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Figure 1.11 Schematic of the lower section of a slot die coater with key parameters 

identified (Reprinted with permission from [49] copyright ©2013 Elsevier) 

The slot die process offers the advantage of controlled coating thickness (h) as it is 

only a function of specific process parameters, the pre-metered flow rate of solution per 

unit die (Q’) and substrate speed (uw) [48]. That is, h = Q’/uw. Other process parameters 

such as the slot gap width (W) and the coating gap height (H) can affect the quality of the 

film as cast, with defects being introduced into the film if the process is not properly 

controlled. The space of process parameters in which defect-free casting can occur for a 

given coating fluid is called the casting/coating window [59]. A graphical representation 

of this space as a function of the volumetric flow rate and the substrate speed during the 

coating process and the associated defects seen at the boundaries is shown in Figure 1.12.  
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Figure 1.12 Schematic of a generic casting window to illustrate the upper and lower 

boundaries of a slot die casting process before the onset of defects. (Reprinted with 

permission from [49] copyright ©2013 Elsevier) 

 Materials used in NIPS method  

This dissertation focuses on the NIPS method using doctor blade casting for 

membrane development and later on slot die-R2R systems for scale up. Materials involved 

in these fabrication methods include polymers, solvents, nonsolvents and additives. 

Additives, such as polyvinylpyrrolidone (PVP) [60, 61], polyethylene glycol (PEG) [62, 

63], propionic acid (PA) [64], and LiCl [65, 66], have been used to enhance the selectivity 

and/or mechanical strength of polymeric membranes [67-69]. However, this makes the 

analysis of polymer-solvent-nonsolvent systems significantly more complicated; therefore, 

only polymers and solvents are discussed here.  

1.2.5.1 Polymers 

Polymers play an important role as the backbone in the membrane matrix. 

Specifically, multiple polymers have been investigated in membrane fabrication including 
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conventional polymers such cellulose acetate (CA), polysulfone (PSf), polyethersulfone 

(PES), polyvinylidene fluoride (PVDF), and some sustainable polymers.  

CA is one of the most common polymers employed to fabricate membranes and has 

been widely researched. CA can be used to prepare microfiltration (MF) [70], ultrafiltration 

(UF) [71, 72], nanofiltration (NF) [73], and reverse osmosis (RO) [74] membranes, and it 

is usually used as a material for the application of dialysis [75]. However, CA has several 

disadvantages, such as low chemical and thermal resistance and mechanical strength [14]. 

Addition of additives or surface modification are often needed to improve the properties of 

CA membranes [71, 76, 77].  

PSf is another common polymer used in membrane fabrication. The popularity of 

PSf is not only because it is commercially available, but also easy to process. Compared to 

CA, PSf provides a portfolio of better thermal and chemical resistance, and better 

mechanical strength [14]. PES is similar to PSf structurally, with good chemical and 

thermal stability [78]. The ether groups make it easier to perform chemical modifications 

on PES than PSf [78-80].   

Lastly, PVDF exhibits high chemical and thermal resistance and mechanical 

strength, but it is also hydrophobic [81]. The hydrophobicity of PVDF makes it possible to 

be used in membrane distillation [82, 83]. Moreover, in order for the membranes to be used 

in water treatment, surface modification is necessary to increase the hydrophilicity of 

membranes [84].  

Besides these conventional petroleum-derived polymers, much research has been 

performed on sustainable polymers; for example, celluloses [85], poly(lactic acid) (PLA) 
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[86], bamboo fiber, chitosan, and others. Sustainable polymers have been investigated to 

minimize the use of petroleum-derived polymers to meet the requirements of membranes 

[87-89]. These polymers are derived from natural products, which significantly decrease 

the carbon footprint of the manufacturing process [90].  

Chitosan is a polysaccharide, a polymer derived from the deacetylation of chitin [91, 

92]. It has numerous advantages such as being commercially available, environmentally 

friendly, and having good chemical and thermal stability, biodegradability, and mechanical 

strength. However, looking for a solvent that can dissolve chitosan might be challenging 

[93-96]. Acetic acid is usually used to decrease the pH of a chitosan solution and then 

enable the solubility of chitosan in solution [97, 98]; however, it is a hazardous solvent [98, 

99]. Cui et al. [100] used an ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate 

([EMIM]AC), to dissolve chitosan and then prepare membranes. The obtained membranes 

had a smooth surface without curling, and a strong tensile strength of up to 24 Mpa, proving 

that ILs have the potential to be used as alternatives to acetic acid to cast chitosan 

membranes.  

Phuong et al. [101] investigated the use of PLA and bamboo fibers as membrane 

support materials. PLA is a polyester derived from biomass, and it is biodegradable. 

However, the low thermal stability and low mechanical strength restricted the use of PLA. 

Bamboo fiber was then introduced to increase the mechanical stability of the PLA matrix. 

PLA/bamboo matrix was then investigated as a membrane support. With an optimized 

recipe, the membrane support matrix was found to provide comparable tensile strengthen 

to that of a commercial membrane support as well as higher water permeance.   
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1.2.5.2 Solvents  

In NIPS, solvents play an essential role in shaping the morphology of obtained 

membranes and even affecting properties and performance of the membranes [14]. During 

membrane fabrication, large amounts of traditional organic solvents are used [1]. Solvents 

used in synthesis steps can have a negative impact on operational safety, cost, the 

environment and human health [2-4]. Traditional solvents used for membrane preparation 

include dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), dimethylacetamide 

(DMAc), dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF). Some of these solvents 

are volatile and hazardous to the environment or living cells. [102] Solvents, such as 

cyclohexanes, DMAc, and DMSO are mutagenic and tumorigenic; acetone is highly 

flammable; and NMP is an irritant [102, 103]. Acute effects of DMF include skin irritation 

and dizziness, while its long-term effects are known to cause birth defects [104]. Due to 

their hazard, solvents require specialized control measures. In addition to the high toxicity 

of the solvents used during polymeric membrane fabrication processes [1], energy 

consumption to remove or recycle solvents from the water is significant [105].  

While petroleum-derived solvents have been traditionally used in membrane 

fabrication, greener/low toxicity solvents are starting to attract attention due to decreased 

impacts on human health and the environment from their use [1]. The annual global solvent 

market is in the order of 20 million metric tons and billions of dollars, and bio-based 

solvents consumption in Europe has been predicted to grow to one million metric tons by 

2020 [5, 6].  Using renewable solvents derived from biomass, which do not compete with 

food applications, satisfies both consumer and legislative demands with regards to 

sustainability. As Europe moves towards a more bio-derived manufacturing base, the 
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opportunities for new and bio-derived low hazardous solvents are only expected to increase 

worldwide. Recently, low hazardous solvents have been investigated for membrane 

fabrication, and these include but are not limited to methyl lactate, triethylphosphate, ionic 

liquids, PolarClean, γ-valerolactone, and others.  

1.2.5.2.1 METHYL LACTATE  

  Methyl lactate is biodegradable, versatile, and has the potential to dissolve CA 

powders leading to a homogeneous dope solution [7]. Gonzalez et al. [7] produced a 

membrane polymer dope solution using CA and methyl lactate by phase inversion. 

Resulting membranes were defect-free, ultrafiltration range, and pressure resistant. The 

membranes prepared with methyl lactate followed a green process. Alqaheem et al. [106] 

investigated methyl lactate to fabricate polyetherimide (PEI) membranes based on the 

fact that the Hansen solubility parameter showed that methyl lactate had the potential to 

dissolve PEI but methyl lactate did not dissolve PEI in their experiments. Membranes 

prepared with methyl lactate have been found not to be homogeneous, to have micro-

voids appearing on the surface, and their water permeability has been observed to vary 

significantly [7]. Another disadvantage of methyl lactate is that it cannot dissolve a broad 

spectrum of polymers.  

1.2.5.2.2 TRIETHYLPHOSPHATE (TEP) 

  TEP is an industrial catalyst and an intermediate product in the manufacturing of 

pesticides and other chemicals. TEP may serve as the substitute for traditional toxic 

solvents, considering its low toxicity, high acid resistance, and good thermal stability 

[107]. Wang et al. [108] prepared polyvinylidenedifluoride (PVDF) flat-sheet membrane 
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and a hollow-fiber membrane using TEP as a solvent. Their studies suggested that when 

TEP was used as a solvent for copolymer blends, it led to delayed phase separation and as 

a result, sponge-like void membranes were formed. Sponge-like membranes result in low 

flux compared to finger-like membranes. Tao et al. [109] fabricated PVDF membranes 

using four different solvents, dimethylformamide (DMF), trimethylphosphate (TMP), 

hexamethylphosphoramide (HMPA), and TEP by phase inversion and evaluated the 

resulting membrane performance. They observed that the membranes prepared using TEP 

showed the lowest flux decline, highest pure water, and lowest rejection of proteins as 

compared to other membranes. This was mainly due to the larger pore size and less 

compaction of PVDF/TEP membranes as compared to other membranes. They suggest 

that PVDF membranes prepared using TEP have potential to become successful 

microfiltration membranes; however, the mechanical strength of the PVDF/TEP 

membrane was poor, which limited the use of TEP. Chang et al. [42] also employed TEP 

to fabricate PVDF hollow fiber membranes for membrane distillation. Without additives, 

the membranes processed a flux of 20 kg/m2h at 60 ℃ with the rejection of NaCl as 

99.99%; however, the mechanical strength of the membrane was compromised and to 

improve it, TEP had to be introduced in the coagulation bath, which increased the amount 

of TEP used. Karkhanechi et al. [110] investigated TEP to prepare 

polyvinylidenedifluoride-co-chlorotrifluoroethylene (PVDF-co-CTFE) hollow-fiber 

membranes and compared them to NMP. The trinary phase diagram and rheological 

properties were studied. The results showed that it was easier for phase separation to 

occur with the TEP system than with the NMP system and that the viscosity of the TEP 

system increased dramatically when water was added into the system.  
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However, the disposal of TEP/water mixtures may increase the concentration of 

phosphorus in receiving bodies of water, which can lead to the eutrophication in rivers 

and lakes [1]. Eutrophication can stimulate algae growth, which may lead to toxic algal 

blooms, such as red tides and brown tides, and can devastate the habitat for aquatic 

animals and plants [111-113].  

1.2.5.2.3 IONIC LIQUIDS (ILS) 

  Ionic liquids are types of organic salts, which consist of an organic cation and a 

polyatomic inorganic anion. The cation can be imidazolium or pyridinium, whereas the 

anion can be a halogen, triflate, or trifluoroborate. Ionic liquids are widely used to replace 

environmentally toxic organic solvents [7, 114-116]. Their vapor pressure is often 

negligible [117]. It should be noted that some ILs (for example, [EMIM][BF4] and 

[BMIM][PF6]) have been synthesized with a measurable vapor pressure [118, 119]. 

Moreover, the adequate selection of the organic cation and inorganic anion can change 

the physical and chemical properties of ILs, such as melting point, density, and viscosity, 

to meet different requirements. Another advantage is that ILs are nonflammable and have 

high thermal stability. Ionic liquids have been used in preparation of supported IL 

membranes, which use a porous solid polymer or ceramic membrane to support the liquid 

membrane phase [94].  

  Chichowska-Kopczynska et al. [120] used imidazolium ILs with alkyl fluoride 

anions in CO2  separation. They found that the supported IL membranes were stable, and 

the increase of alkyl chain length would lead to the decrease in permeation values of CO2. 

If a trifluoromethanesulfonate anion was used in CO2 separation, the solubility of CO2 
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could be lower. Supported IL membranes can also be used in hollow fibers. Xing et al. 

[121] used 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) to prepare flat-

sheet and hollow-fiber CA membranes and compared them to membranes prepared using 

traditional NMP and acetone solvents. The membranes prepared by IL showed a denser 

structure. The group also showed that the IL could be recycled and reused to make 

membranes. Xing et al. [122] used 1-ethyl-3-methylimidazolium thiocyanate 

([EMIM]SCN) and 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to fabricate CA 

hollow-fiber membranes. [EMIM]OAc interacted with CA more than [EMIM]SCN, and 

the CA/[EMIM]OAc dope solution presented a more highly entangled network than the 

CA/[EMIM]SCN dope solution. Therefore, the CA/[EMIM]OAc system was more 

practical to fabricate CA membranes. Colburn et al. [123] also investigated [EMIM]OAc 

to fabricate cellulose/graphene quantum dots (GQD) membranes. Cellulose is difficult to 

dissolve in common solvents but has the potential to be dissolved in this IL. Within the 

IL, GQDs were incorporated homogeneously into the cellulose membranes and improved 

the membranes performance on the perspectives of photoactivity and sensing. However, 

the viscosity of dope solutions significantly increased, which has the potential to lead to 

deficits on the surface of the membranes during the phase inversion process.  

  However, the synthesis of ILs is neither clean nor energy-efficient; hence, the cost 

of using ILs could be high [114]. The toxicities of ILs may vary significantly across 

organisms and tropic levels [114, 124-127]. Furthermore, the biodegradability of ILs is 

slow [124]. Considering these perspectives, ILs are adequate but they are not “green” 

substitutes for conventional solvents.  
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1.2.5.2.4 RHODIASOLV® POLARCLEAN 

  PolarClean is a water-soluble, eco-friendly, and biodegradable polar solvent with 

no reported health hazards when used for the casting PVDF membranes [128, 129]. It is a 

green solvent commercialized by Solvay Novecare, and it is derived from the valorization 

of 2-methylglutaronitrile (MGN), which is a byproduct from the synthesis of Nylon 6,6 

[130, 131]. The production of PolarClean can reduce the carbon footprint and minimize 

the environmental impact [130]. Hassankiadeh et al. [128] used PolarClean to fabricate 

PVDF hollow-fiber membranes via TIPS. However, in the PVDF/PolarClean system, the 

rate of PolarClean outflow was observed to be higher than the rate of water inflow, and 

this difference resulted in dense hollow-fiber membranes with low-water permeability. 

Due to PolarClean’s high miscibility with water, Jung et al. [129] further investigated its 

NIPS effect on the membrane surface during the TIPS process, along with the kinetics of 

the membrane formation process. In this study, over-dense top layers were also reported, 

and required a pore-former, such as Pluronic F-127, to improve water permeability at the 

expense of mechanical properties.  

1.2.5.2.5 GAMMA-VALEROLACTONE 

  Gamma-valerolactone (GVL) is a 5-carbon cyclic ester with 5 atoms in the ring. It 

is water-soluble and can be bio-derived from lignocellulosic biomass, specifically from 

hemicellulose and cellulose, according to the process shown in Figure 1.13 [132]. Briefly, 

hemicellulose is converted to furfural and furfural alcohol as intermediates by acid 

hydrolysis, and then furfural alcohol is esterified with ethanol to produce ethyl levulinate 

[132-134]. Cellulose is converted to hydroxymethylfurfural (HMF) as an intermediate 
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and then converted to levulinic acid also through acid hydrolysis [133, 135]. Both of 

ethyl levulinate and levulinic acid are hydrogenated to GVL [132]. Rasool et al [136] 

prepared membranes using GVL using a variety of different polymers, most notably CA 

and cellulose triacetate (CTA). Specifically, 15% CA/GVL and 10% CTA/GVL dopes 

were used to cast nanofiltration (NF) that rejected 90% Rhodamine B, at permeances of 

1.8 Lm-2h-1bar-1 (LMH/bar) and 11.7 LMH/bar, respectively. 
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Figure 1.13 Lignocellulosic biomass and reaction pathways to produce GVL 

(Reprinted with permission from [132] copyright ©2013 The Royal Society of 

Chemistry) 

1.3 Hypotheses and Objectives 

  The overarching goal of this dissertation was to investigate PolarClean and GVL 

as sole solvents and as solvent mixtures to replace a traditional petroleum-derived 

solvent, DMAc, in the fabrication of PSf membranes, along with the ability of scaling up 

these membranes. Based on the goal of replacing traditional petroleum-derived solvents 

with greener alternatives, the four hypotheses of this study were developed as follows 
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• The first hypothesis was that because of the similar chemical structures between 

PolarClean and DMAc, PolarClean would be able to be used as a replacement of 

DMAc to fabricate polymeric membranes using NIPS.  

• The second hypothesis was that based on the similarity of chemical structures 

between γ-Valerolactone (GVL) and NMP, a cellulosic biomass derived solvent, 

GVL would be able to replace NMP to fabricate polymeric membranes using 

NIPS. 

• The third hypothesis built on the fact that based on the Hansen solubility 

parameter model,  the dispersive force, the polar force and the hydrogen bonding 

of the cosolvent mixture fell in between those of the individual solvents, and were 

closer to the solubility parameters of PSf; thus, making the cosolvent mixture 

more suitable to fabricate polymeric membranes using NIPS.  

• The fourth hypothesis was that due to the Newtonian fluid behavior of dope 

solutions prepared using the greener solvents, the membranes developed using a 

laboratory-scale doctor blade could be scaled up using slot die-R2R.  

  To test these hypotheses, the following objectives were identified   

• Objective 1: The thermodynamics of mixing and demixing using PolarClean to 

fabricate polysulfone membranes in a NIPS process as compared to DMAc were 

investigated experimentally and theoretically. (Chapter 3) 

• Objective 2: PSf membranes were fabricated using PolarClean and characterized 

in terms of their morphology, porosity, water permeability and protein rejection, 

and compared to membranes prepared with DMAc. (Chapter 3) 
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• Objective 3: The thermodynamics of mixing and demixing using PolarClean and 

GVL as sole solvents and as a solvent mixture (or co-solvents) to fabricate 

polysulfone membranes in a NIPS process as compared to DMAc were 

investigated experimentally and theoretically. (Chapter 4 and Chapter 5) 

• Objective 4: PSf membranes were fabricated using PolarClean and GVL as sole 

solvents and solvent mixtures and characterized in terms of their morphology, 

porosity, water permeability and protein rejection, and compared to membranes 

prepared with DMAc. (Chapter 4 and Chapter 5) 

• Objective 5: Using dope solution viscosity, the kinetic of dope solution mixing 

process was quantified and used to characterize the homogeneity of dope 

solutions. (Chapter 5) 

• Objective 6: The scaling up of PSf membranes prepared using PolarClean and 

GVL as sole solvents and cosolvents along with DMAc via slot die-R2R systems 

was investigated, and then the structural, morphological and operational 

properties of the membranes were determined. (Chapter 6) 
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CHAPTER 2. OVERVIEW OF GENERAL METHODS 

2.1 Membrane preparation 

 Choice of solvents  

  The choice of solvent–nonsolvent system in NIPS membrane formation is crucial 

because it influences the morphology, mechanical properties, interfacial characteristics, 

and separation performance [14]. Several properties, including molecular weight, flash 

point, boiling point, and solubility in water, should be considered when choosing a NIPS 

solvent [1, 3, 7, 14, 137-139]. Toxicity is also a factor considered herein. The main 

properties of NMP, DMAc, GVL, and PolarClean are listed in Table 2 [131, 132, 140].  
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Table 2.1 Main properties of selected solvents 

Property NMP DMAc PolarClean GVL 

CAS no. 872-50-4 127-19-5 1174627-68-9 108-29-2 

Formula C5H9NO C4H9NO C9H17NO3 C5H8O2 

MW (g/mol) 99.133 87.122 187.239 100.112 

Density (g/mL) 1.03 0.94 1.043 1.05 

Flash point 

(℃) 

95 69 144–146 96 

Boiling point 

(℃) 

202 165 278–282 207–208 

Solubility in 

water (%) 

Miscible Miscible Miscible Miscible 

Signal Danger Danger Warning Warning 

Toxicity Reproductive 

toxicity 

Reproductive 

toxicity 
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 Hansen solubility parameter 

Based on the Hansen solubility parameter theory, the affinity of a polymer and a 

solvent is described as Ra, which is calculated by equation 1: 

Ra = �4(δd2−δd1)2 + �δp2−δp1�
2

+ (δh2−δh1)2  (1) 

Where δd is the dispersive force, δp is the polar force, and δh is hydrogen 

bonding [141]. A solvent is deemed to have good compatibility with a polymer when the 

value of Ra is small [136, 141]. In this study, PSf was dissolved using two co-solvents 

simultaneously (i.e., a binary solvent mixture) instead of a single solvent. Therefore, the 

corresponding parameters of the binary solvent mixture needed to be calculated by the 

two following procedures: first, the volume fraction of each solvent was calculated by 

equations 2 and 3; second, the values of solubility parameters were then calculated using 

equation 4, 5, and 6 [141]: 

V1 = W1 ρ1⁄
W1 ρ1⁄ +W2 ρ2⁄   (2) 

V2 = W2 ρ2⁄
W1 ρ1⁄ +W2 ρ2⁄  (3) 

δd = V1δd1 + V2δd2 (4) 

δp = V1δp1 + V2δp2 (5) 

δh = V1δh1 + V2δh2 (6) 

Where 1, 2 represents solvent 1 and solvent 2; Vi represents the volume fraction, 

and Wi represents the weight fraction.   



38 

 

 Relative energy difference  

In Hansen solubility parameter theory, three parameters of a polymer or solvent 

form a sphere [141]. The relative energy difference (RED) is used to describe the 

interaction between a polymer and a solvent [45]. A good solvent for a polymer is 

defined as having a RED value less than or equal to 1, which can be calculated by 

equation 7 [20, 141]: 

RED = Ra
R0

  (7) 

Where Ro represents the radius of the Hansen solubility parameter sphere for the 

polymer. 

 Preparation of dope solutions 

Dope solutions were prepared using a sonicator (Elmasonic P70H, from Elma 

Electronic Inc., Munich, Germany) and a planetary centrifugal mixer (Mazerustar KK-

250S, from Kurabo Industries Ltd., Osaka, Japan). The dope solutions were sonicated at 

65 °C at a frequency of 80 kHz and power of 900 W under pulse mode for 24 h to accelerate 

the mixing process, allowed to return to room temperature, and then mixed in the planetary 

mixer for 10 min. The process was repeated until the solutions became homogenous. After 

storing in room temperature for three months, the dope solutions did not turn cloudy, which 

indicated that no separations occurred during this period and the solutions remained 

homogenous.  

 Membrane fabrication  

2.1.5.1 Doctor blade  
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To study the scale up of the membranes prepared using low-hazardous solvents, an 

aluminum doctor blade (AP-G10/10, Paul N. Gardner company, Florida, United States) is 

used to cast membranes in laboratory scale and an aluminum slot die is used to fabricate 

the membranes in a production scale, to understand the viability of scaling up the 

fabrication process. When the doctor blade method is used, the gap between the blade and 

the glass plate is set at 200 μm.  

2.1.5.2 Slot die method  

In the slot die casting method, the slot gap is set at 90 μm, and the coating gap is 

set at 200 μm above the glass plate substrate, which is placed on top of the poly(ethylene 

terephthalate) (PET) film. The PET film is the moving conveyor that is pulled at a speed 

of 1.3 mm/s from a feed roller to the take-up roller. A syringe pump is used to set the 

flow rate of the dope solution dispensed from the slot die to fabricate defect free 

membranes. All casting is performed at 25 ˚C and 48% humidity. 

The glass substrates are cleaned with DI water and are then rinsed using isopropyl 

alcohol to guarantee no residual water on the surface before casting. After casting, the 

liquid films are inversed into a solid film via the NIPS method. Membranes pieces are 

then cast in the shape of 305×100 mm×mm (length×width).  

2.2 Membrane characterization methods  

 Morphology 

Flat sheet membranes, prepared using the phase inversion method, were immersed 

and fractured in liquid nitrogen and then sputtered with palladium. The top layers and the 
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cross sections of the PSf membranes were sampled by focused ion beam (FIB) and then 

observed by SEM (FIB-SEM, FEI Helios Nanolab 660 from Thermo Fisher Scientific, 

Waltham, MA, USA). FIB is an advanced method to sample preparation prior to SEM 

imaging to characterize the morphology of membranes [142]. FIB-SEM provides a more 

effective method to observe the cross sections of membranes as compared to the common 

SEM [143]. Moreover, the higher quality of FIB-SEM images shows the internal structure 

of polymeric membranes and shows the distribution of pores. FIB-SEM images showed 

the detailed images at scales of 5 nm. In order to observe the entire morphology of cross 

sections, the PSf membranes were observed by SEM (SEM, Hitachi S-4300 from Hitachi 

Group, Troy, MI, USA). 

 Contact Angle 

The contact angle was characterized to represent hydrophilicity of the 

membranes. It was measured by the sessile drop method using a drop shape analyzer 

connected to a high definition camera (DSA 100S, Kruss Company, Hamburg, 

Germany.) One drop water of 12 μL was deposited on the membrane surface. The 

interface between the water drop and the membrane surface was captured by the camera 

and the contact angle was calculated according to the image. The measurement was 

repeated six times and then the average values and deviations were calculated.    

 Roughness 

The topography of membranes is measured at the atomic scale to characterize the 

roughness on the membranes surface. The surface roughness values of the six membranes 

were measured using an atomic force microscope (AFM, Quesant Instrument Co., United 
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States). The surface roughness was measured under the tapping mode and then evaluated 

by root-mean-squared (RMS) roughness. Six areas of 20 × 20 μm on each membrane 

surface were randomly chose and measured.  

 Surface pore analysis 

The pore size on the selective layer of a membrane is used to estimate the selectivity 

of a membrane based on size exclusion. The surface pores of membranes were measured 

using a Liquid-Liquid porometer (LLP-11000A, Porous Materials Incorporated, Ithaca, 

New York, United States). Two immiscible wetting liquids, silwick (purchased from PMI, 

Ithaca, New York, United States) and isopropyl alcohol (IPA, purchased from VWR 

international), were used for the measurement. The membranes were wetted with silwick 

for ten minutes, and IPA was pressurized to displace the silwick in the membrane pores. 

The pressure was increased gradually from 0 kPa to 5400 kPa. The silwick was forced to 

flow through the pores and the amount was measured using a balance equipped in the 

porometer. The mean flow pore diameter and bubble point pore diameter were used to 

represent the mean value of pore size and the largest pore on the membrane surface. 

 Porosity and MWCO 

The porosity (Pr, %) of PSf membranes were tested using differences in membrane 

weight [144-146]. Due to the hydrophobicity of PSf, water was not used in this 

measurement. Membranes were first wet by silwick (from Porous Materials Inc., Ithaca, 

NY, USA), then isopropyl alcohol (IPA, ≥99.7%, FCC, FG, from Sigma-Aldrich, St. Louis, 

MI, USA) was filtered through the membranes under 2 bars for 10 min [146]. The 

membranes with IPA were exposed to clean and dry air for three days. The wet and dried 
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state weights of membranes at the equilibrium were collected separately [144-147]. Then 

the porosity was calculated using the Equation (8): 

Pr = Vsil/Vtotal = (Wsil/ρsil)/(Wsil/ρsil + WPSf/ρPSf) (8) 

where Wsil and WPSf  are the weights of the silwick and PSf membranes; ρsil  is the density 

of the silwick, 0.93 g/mL and  ρPSf is the density of PSf, 1.24 g/mL [146, 148, 149]. 

Molecular weight cut off (MWCO) represents the lowest molecular weight of solute 

which could be 90% rejected by the membrane [150, 151]. Polyethylene glycol (PEG) with 

molecular weight from 200, 400, 1 k, 4 k, 10 k, 20 k, 40 kDa were used as feed to determine 

MWCO values for the different membranes. Since PEGs are linear polymers, the 

regression model of hydrodynamic radius (nm) and molecular weight (kDa) is given by 

Equation (9) [152]: 

rH = 0.06127(MW)0.3931 (9) 

Table 2 shows the corresponding hydrodynamic radius (nm) to tested molecular weights 

of PEGs calculated using Equation (9). 
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Table 2.2 Molecular weights and hydrodynamic radius of PEG used in MWCO 

study. 

Molecular Weight (kDa) Hydrodynamic Radius (nm) 

PEG 200 0.49 

PEG 400 0.65 

PEG 1000 0.93 

PEG 4000 1.60 

PEG 10,000 2.29 

PEG 20,000 3.01 

PEG 40,000 3.95 

 FTIR 

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, 

Thermo Nicolet iS50 FTIR Spectrometer, Thermo Scientific, Waltham, Massachusetts, 

USA) was performed to characterize the surface structure of membranes prepared using 

different solvents. A piece of each PSf membrane was freeze dried overnight and then 

placed on ATR-FTIR crystal (diamond) for analysis. The absorbance spectra of different 

membranes were normalized[153-156] and then adjusted in the same figure for 

comparison.  
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 Filtration Studies 

2.2.7.1 Dead-end filtration  

Water permeation experiments were carried out at a constant pressure of 4 bars in 

an Amicon dead-end filtration cell (Amicon Stirred Cell 8010-10 mL from Millipore Sigma 

Company, Burlington, MA, USA). The pure water flux was measured using deionized 

water until the water flux became constant, which is called precompaction. In this study, 

all the precompaction were performed by filtering 20 mL DI water at a constant pressure 

of 4 bars for consistency. After precompaction, 20 mL of solutions containing 1000 mg/L 

BSA; that is, 20 mg of BSA, were filtered through the membranes at a constant pressure 

of 4 bars and room temperature. BSA has a molecular weight of 66.5 kDa, is hydrophobic, 

and its isoelectric point is 4.7, which means it is negatively charged at neutral pH values. 

The permeability was recorded for every 2-mL filtration period, and permeate samples 

were collected to analyze the concentrations of BSA in the feed and permeate using a 

Fusion UV/Persulfate TOC analyzer (14-9600-100 from Teledyne Tekmar Company, 

Mason, OH, USA). All experiments were performed in triplicate. 

After BSA filtration, reverse flow filtration using deionized water was performed at 

a constant pressure of 2 bars for 30 min to remove foulants that were not adsorbed to the 

membrane (i.e., reversibly attached), and then flux recovery ratio (Re, %) was measured. 

The recovery ratio is related to the resistance of the fouled membrane.  

2.2.7.2 Crossflow filtration  

Filtration performance of membranes is characterized by using a crossflow apparatus 

Sterlitech HP4750 stirred cell (Kent, Washington, USA) to perform convective studies. 
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The crossflow filtration cell is run at a flowrate of 1.2 L/min through the precompaction 

stage, fouling stage and tangential washing stage. DI water permeability is determined for 

each membrane by precompacting at 6.9 bar overnight and then measuring the volumetric 

flux of deionized ultrafiltered (DIUF) water at 1.4, 2.8, 4.1, 5.5, 6.9 bar, respectively. The 

linear correlations of membranes are analyzed accordingly. 50 mg/L BSA solution is then 

filtered through the membranes to investigate long-term filtration. At the fouling stage, 

the initial flux is measured. When the flux reached 70% of the initial value, the 

membrane surface is tangentially rinsed with DI water for 10 min. This process is 

repeated until the flux reaches 35% of the initial flux, and the overall filtration time is 

recorded. Then BSA solution is used to filter through the membrane again. This process 

is repeated three times. The permeate is collected and the BSA samples for the feed and 

permeate are analyzed using a VWR UV-6300PC Spectrophotometer (Radnor, 

Pennsylvania, USA). The flux linearity study and the BSA filtration are duplicated for 

reproducibility.  
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CHAPTER 3. INVESTIGATION OF THE USE OF A BIO-DERIVED SOLVENT  
FOR NON-SOLVENT-INDUCED PHASE SEPARATION (NIPS) FABRICATION OF 

POLYSULFONE MEMBRANES 

This chapter has been published in the following report on an open access journal: 

Dong, X.; Al-Jumaily, A.; Escobar, I.C. Investigation of the Use of a Bio-Derived Solvent 

for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone 

Membranes. Membranes 2018, 8, 23. [20] 

3.1 Introduction 

Membrane technology has proven to be effective in recent years due to its promising 

benefits such as reduced footprint, easy control and easy scale-up, simple operational 

parameters, high throughput and automation [157]. Asymmetric membranes typically 

consist of a porous support layer that provides mechanical strength and stability, and which 

is covered by a thin selective layer or film responsible for providing the membrane with 

separation capabilities [137, 157, 158]. Phase inversion usually includes non-solvent-

induced phase separation (NIPS), thermally induced phase separation (TIPS), or a 

combination of both [158-160]. In the NIPS method, shown in Figure 3.1, a dope solution 

is prepared by dissolving a polymer in a solvent [15, 16]. A membrane is then formed by 

the precipitation of the polymer in an anti-solvent bath, such as water. Briefly, through the 

immersion of a substrate in a coagulation bath, a solvent in the casting solution film is 

exchanged with a non-solvent in the precipitation media, and phase separation occurs. This 

process results in an asymmetric membrane with a dense top layer and a porous sublayer. 
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Figure 3.1 Non-solvent phase inversion casting process. 

During membrane fabrication, large amounts of traditional organic solvents are 

used [1]. Solvents used in synthesis and post-synthesis steps can have a negative impact on 

operational safety, cost, the environment and human health [2-4]. Traditional solvents used 

for membrane preparation include dimethylformamide (DMF), N-methyl-2-pyrrolidone 

(NMP), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and tetrahydrofuran 

(THF). Some of these solvents are volatile and hazardous to the environment or living cells 

[102]. Solvents, such as cyclohexanes, DMAc, and DMSO are mutagenic and tumorigenic; 

acetone is highly flammable; and NMP is an irritant [102, 103]. Acute effects of DMF 

include skin irritation and dizziness, while its long-term effects are known to cause birth 

defects [104]. Due to their hazardousness, solvents require specialized control measures. 

Therefore, the need for greener, sustainable chemicals has prompted a great amount of 

research into the processing of renewable feedstocks to obtain platform molecules and 

downstream end products. The annual global solvent market is in the order of 20 million 
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metric tons and billions of dollars, and bio-based solvents consumption in Europe has been 

predicted to grow to one million metric tons by 2020 [5, 6]. Using renewable solvents 

derived from biomass, which do not compete with food applications, satisfies both 

consumer and legislative demands with regards to sustainability.  

Therefore, solvents involved in the membrane manufacturing process are proposed 

to be replaced by greener alternatives. A green solvent is expected to be non-toxic, non-

volatile, and derived from renewable sources [7]. In this research, a solvent produced from 

renewable sources, Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv® 

PolarClean, Solvay Novecare (Princeton, NJ, USA)), was used to replace the traditional 

solvents [128]. PolarClean is derived from the valorization of 2-methylglutaronitrile 

(MGN), a byproduct from the synthesis of Nylon 6,6 [130, 161]. PolarClean has been 

previously shown to be a water-soluble, eco-friendly and biodegradable polar solvent with 

an excellent toxicological and eco-toxicological profile [130, 131], and the major 

physicochemical properties of PolarClean are shown in Table 3.1 [102, 131, 140]. 

PolarClean has been previously investigated to cast polyvinylidene fluoride 

(PVDF) and polyethersulfone (PES) membranes [128-130, 162]. Hassankiadeh et al. [128] 

used PolarClean as a green solvent to fabricate PVDF hollow fiber membranes via 

temperature induced phase separation (TIPS) process. Due to PolarClean’s high miscibility 

with water, Jung et al. [129] further investigated its NIPS effect on the membranes surface 

during TIPS process, along with the kinetics of the membrane formation process. Marino 

et al. [130] prepared PES ultrafiltration and microfiltration membranes using PolarClean 

using NIPS and vapor induced phase separation (VIPS) processes. However, the 

thermodynamics of polymer/solvent/non-solvent mixing and demixing processes when 
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PolarClean is used as a NIPS solvent for the fabrication of polysulfone (PSf) membranes 

is unknown. Therefore, the research project described here first investigated the 

thermodynamics of mixing and demixing processes of PolarClean/PSf and compared them 

to NMP/PSf and DMAc/PSf. After mixing/demixing analysis (i.e., cloud point 

determination), DMAc was determined to be a more appropriate comparison for its greater 

similarity to PolarClean; subsequently, PolarClean was used to fabricate PSf membranes 

in a NIPS process and compared only to DMAc. 
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Table 3.1 Physicochemical properties of NMP, DMAc and PolarClean. 

Property NMP DMAc PolarClean 

CAS-No 872-50-4 127-19-5 1174627-68-9 

Formula C5H9NO C4H9NO C9H17NO3 

MW (g·mol−1) 99.133 87.122 187.239 

Density (g·mL−1) 1.03 0.94 1.043 

Flash point (°C) 95 69 144–146 

Boiling point (°C) 202 165 278–282 

Solubility in water (%) miscible miscible miscible 

Signal Danger Danger Warning 

Toxicity Reproductive toxicity Reproductive toxicity  

Polysulfone was chosen as the polymer to fabricate membranes due to its thermal 

stability, strong mechanical strength, good chemical resistance, and antifouling properties 

[163]. To dissolve PSf, NMP and DMAc were used as the traditional petroleum-based 

solvents since they are two of the most commonly used solvents in membrane fabrication 

and their performance has been studied for decades [14, 18, 139, 150, 163-167].  
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3.2 Experimental 

 Materials 

Polysulfone (PSf, average MW 35,000 by LS, average Mn 16,000 by MO, pellets) 

was purchased from Sigma-Aldrich (Saint Louis, MO, USA). Methyl-5-(dimethylamino)-

2-methyl-d-oxopentanoate (Rhodiasolv® PolarClean) was provided by Solvay Novecare 

(Princeton, NJ, USA). N,N-Dimethylacetamide (DMAc) was purchased from Tokyo 

Chemical Industry Co., Ltd. (Tokyo, Japan), and 1-Methyl-2-pyrrolidone (NMP, for 

peptide synthesis) was purchased from EMD Millipore Corporation (Burlington, MA, 

USA). Bovine Serum Albumin (BSA) was purchased from VWR Life Science (Radnor, 

PA, USA), and different sizes of polyethylene glycols (PEGs) were purchased from Alfa 

Aesar (Haverhill, MA, USA). 

 Thermodynamics 

3.2.2.1 Hansen Solubility Parameter Calculation 

To choose the appropriate solvent for a polymer, the polymer must be soluble or 

easily dispersible in the specific solvent [14]. To select potentially compatible solvents, the 

relative energy difference (RED) is calculated using Equation (1): 

RED = Ra/Ro (1) 

where Ro is the radius of interaction of a Hansen solubility parameter sphere and Ra is the 

solubility parameter distance between polymer (1) and solvent (2). Ra can be calculated 

based on their individual Hansen solubility parameters (𝛿𝛿𝑑𝑑 represents the dispersive force, 
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𝛿𝛿𝑝𝑝  represents the polar force and 𝛿𝛿ℎ  represents hydrogen bonding) using Equation (2) 

[168]: 

Ra = �4(δd2-δd1)2 + �δp2-δp1�
2 + (δh2-δh1)2 (2) 

The solubility increases as the value of Ra decreases towards 0 [168]. 

3.2.2.2 Cloud Point Curve Measurement 

In order to determine the compatibility of a solvent to fabricate membranes by the 

non-solvent phase inversion method, a cloud point curve must be obtained for the 

solvent/non-solvent/polymer ternary system [169]. For the PolarClean/PSf/water system, 

a cloud point curve was experimentally determined by titration [37]. In experiments, dope 

solutions were prepared using 1, 3, 5, 10, 15, 20, 25 and 30 wt % concentrations of PSf in 

NMP, PolarClean and DMAc. Each of these dope solutions was mixed using a sonicator 

(Elmasonic P70H, from Elma Electronic Inc., Munich, Germany) at 65 °C (with frequency 

of 80 kHz, power of 900 W under pulse mode) for 24 h. All dope solutions were then 

cooled to room temperature, and deionized water was gradually added to the dope solutions 

using a micropipette until the solutions were observed to become cloudy. Afterwards, the 

cloudy solution was sonicated for one additional hour to determine if it changed to a clear 

solution. If the solution was still cloudy, the composition of water/solvent/polymer was 

determined as the cloud point. 



53 

 

 Preparation of PSf Flat Sheet Membranes 

The homogeneity of the dope solution is important for the fabrication of membranes 

[170-172]. Two methods were used to achieve full mixing of the dope solution, sonication 

and planetary mixing. Sonication is a traditional mixing method, while planetary mixing is 

a 3-D mixing process to mix dry and wet materials using a planetary mixer [173]. The 

planetary mixing process combines high speed revolution and rotation to accelerate the 

mixing of polymer/solvent [174], therefore, it has the potential to be used in dope solution 

preparation [175].  

Dope solutions of 17% PSf in NMP, DMAc and PolarClean were prepared using a 

sonicator (Elmasonic P70H, from Elma Electronic Inc., Munich, Germany) and a planetary 

centrifugal mixer (Mazerustar KK-250S, from Kurabo Industries Ltd., Osaka, Japan). The 

planetary mixer is set up to mimic planetary motion to accelerate the mixing process, where 

the sample rotates and revolves simultaneously, as shown in Figure 3.2. The dope solutions 

were sonicated at 65 °C at a frequency of 80 kHz and power of 900 W under pulse mode 

for 24 h to accelerate the mixing process, allowed to return to room temperature, and then 

mixed in the planetary mixer for 10 min. The process was repeated until the solutions 

became homogenous. After storing in room temperature for three months, the dope 

solutions did not turn cloudy, which indicated that no separations occurred during this 

period and the solutions remained homogenous. Room temperature was used for cooling 

the dope solutions, casting and phase inversion.  
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Figure 3.2 The illustration of the working principle of the planetary centrifugal 

mixer. 

Distilled water was used as the non-solvent. Once the dope solutions were fully 

dissolved, as determined by the solution becoming clear, the solution was degassed in an 

ultrasonic bath at room temperature for approximately three hours to remove any air 

bubbles. After the dope solution was prepared, membranes were cast using the NIPS 

casting process [176-179], in which a thin film of the casting solution is deposited onto a 

glass plate using an aluminum casting knife under room temperature and evaporated for a 

period between 30 and 120 s in air before being immersed in the non-solvent. Membrane 

films were cast with thicknesses ranging from 80 to 100 microns. After fabrication, the 

membranes were stored in deionized (DI) water at room temperature for seven days.  

Numerous membrane treatment methods have been applied to polymeric 

membranes after casting to achieve desired properties, such as permeability and selectivity 

[180-182]. Some of these include using room temperature ovens, solvent exchange and 
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freeze drying processes to improve membrane performance as measured by flux values 

[180]. However, to minimize the number of design variables here, only the effect of 

evaporation time on PSf/PolarClean dope solution prior to casting was investigated using 

30, 45, 60, 90 and 120 s. It was determined that evaporation time had a strong effect on 

water permeability. With increasing evaporation time, the polymer concentration of the 

polymer-rich phase increases, and a denser and thicker selective layer forms on the surface 

of the membranes [183]; as a consequence of the increase in selective layer thickness, the 

permeability of membranes decreases [184, 185]. All filtration experiments were 

performed by first precompacting the membranes using DI water, and then filtering BSA 

solutions through an Amicon dead-end filtration cell (Amicon Stirred Cell 8010-10 mL 

from Millipore Sigma company, Burlington, MA, USA) under a constant pressure at 4 bars 

at room temperature.  

As shown in Figure 3.3, after precompaction, water flux values for evaporation 

times of 30 s (1633 ± 449 LMH), 45 s (1769 ± 509 LMH) and 60 s (2423 ± 125 LMH) 

were not significantly different. As evaporation time increased from 60 s to 120 s, in 

agreement with literature studies [183-186], membrane pure water permeability decreased 

by over one order of magnitude (Figure 3.3). Specifically, the water flux value decreased 

from 2423 ± 124.9 LMH for 60 s to 1055 ± 346.7 LMH for 90 s, and continued decreasing 

to 67 ± 26.7 LMH for 120 s. Furthermore, at the start of filtration of 1000 ppm BSA feed 

solution, all membranes displayed declined flux values likely due to instantaneous fouling. 

For PSf/PolarClean membranes, the initial BSA flux values were 131 ± 41.5 LMH for an 

evaporation time of 30 s, 151 ± 41.0 LMH for 45 s, 176 ± 8.8 LMH for 60 s, 108 ± 18.7 

LMH for 90 s, and 17 ± 9.2 LMH for 120 s.  
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Figure 3.3 Pure water and BSA solution permeability (at 4 bar). 

For PSf/DMAc membrane, an evaporation time of 60 s was studied, and the 

associated BSA flux value was 63 ± 12.4 LMH. The probable reason for the significant 

difference as compared to PSf/PolarClean might be that the selective layers of 

PSf/PolarClean membranes made with short evaporation times were relatively thinner as 

compared to PSf/DMAc, as later discussed in Section 3.5. Without a thick selective layer, 

BSA molecules might have blocked the pores faster, which would lead to instantaneous 

cake formation, and therefore, a larger decrease the water flux [187-191]. Since 60 s was 

originally used for DMAc membranes, it was decided to use 60 s evaporation time for 

PolarClean membranes for a direct comparison. 

 Characterization of PSf Membranes 

3.2.4.1 Morphology 
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Flat sheet membranes, prepared using phase the inversion method, were immersed 

and fractured in liquid nitrogen and then sputtered with palladium. The top layers and the 

cross sections of the PSf membranes were sampled by focused ion beam (FIB) and then 

observed by SEM (FIB-SEM, FEI Helios Nanolab 660 from Thermo Fisher Scientific, 

Waltham, MA, USA). FIB is an advanced method to sample preparation prior to SEM 

imaging to characterize the morphology of membranes [142]. FIB-SEM provides a more 

effective method to observe the cross sections of membranes as compared to the common 

SEM [143]. Moreover, the higher quality of FIB-SEM images shows the internal structure 

of polymeric membranes and shows the distribution of pores. FIB-SEM images showed 

the detailed images at scales of 5 nm. In order to observe the entire morphology of cross 

sections, the PSf membranes were observed by SEM (SEM, Hitachi S-4300 from Hitachi 

Group, Troy, MI, USA). 

3.2.4.2 Contact Angle 

The contact angle data of PSf membranes prepared with different solvents were 

determined by the sessile drop method using a drop shape analyzer equipped with a high 

definition camera (DSA100S from Krüss company, Hamburg, Germany).  

3.2.4.3 Porosity and MWCO 

The porosity (Pr, %) of PSf membranes were tested using differences in membrane 

weight [144-146]. Due to the hydrophobicity of PSf, water was not used in this 

measurement. Membranes were first wet by silwick (from Porous Materials Inc., Ithaca, 

NY, USA), then isopropyl alcohol (IPA, ≥99.7%, FCC, FG, from Sigma-Aldrich, St. 

Louis, MI, USA) was filtered through the membranes under 2 bars for 10 min [146]. The 
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membranes with IPA were exposed to clean and dry air for three days. The wet and dried 

state weights of membranes at the equilibrium were collected separately [144-147]. Then 

the porosity was calculated using the Equation (3): 

Pr = Vsil/Vtotal = (Wsil/ρsil)/(Wsil/ρsil + WPSf/ρPSf) (3) 

where Wsil and WPSf  are the weights of the silwick and PSf membranes; ρsil  is the density 

of the silwick, 0.93 g/mL and  ρPSf is the density of PSf, 1.24 g/mL [146, 148, 149]. 

Molecular weight cut off  (MWCO) represents the lowest molecular weight of 

solute which could be 90% rejected by the membrane [150, 151]. Polyethylene glycol 

(PEG) with molecular weight from 200, 400, 1 k, 4 k, 10 k, 20 k, 40 kDa were used as feed 

to determine MWCO values for the different membranes. Since PEGs are linear polymers, 

the regression model of hydrodynamic radius (nm) and molecular weight (kDa) is given 

by Equation (4) [152]: 

rH = 0.06127(MW)0.3931 (4) 

Table 2 shows the corresponding hydrodynamic radius (nm) to tested molecular weights 

of PEGs calculated using Equation (4). 
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Table 3.2 Molecular weights and hydrodynamic radius of PEG used in MWCO 

study. 

Molecular Weight (kDa) Hydrodynamic Radius (nm) 

PEG 200 0.49 

PEG 400 0.65 

PEG 1000 0.93 

PEG 4000 1.60 

PEG 10,000 2.29 

PEG 20,000 3.01 

PEG 40,000 3.95 

 Filtration Studies  

Water permeation experiments were carried out at a constant pressure of 4 bars in 

an Amicon dead-end filtration cell (Amicon Stirred Cell 8010-10 mL from Millipore Sigma 

Company, Burlington, MA, USA). The pure water flux was measured using deionized 

water until the water flux became constant, which is called precompaction. In this study, 

all the precompaction were performed by filtering 20 mL DI water at a constant pressure 

of 4 bars for consistency. After precompaction, 20mL of solutions containing 1000 mg/L 

BSA; that is, 20 mg of BSA, were filtered through the membranes at a constant pressure 
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of 4 bars and room temperature. BSA has a molecular weight of 66.5 kDa, is a hydrophobic, 

and its isoelectric point is 4.7, which means it is negatively charged at neutral pH values. 

The permeability was recorded for every 2-mL filtration period, and permeate samples 

were collected to analyze the concentrations of BSA in the feed and permeate using a 

Fusion UV/Persulfate TOC analyzer (14-9600-100 from Teledyne Tekmar Company, 

Mason, OH, USA). All experiments were performed in triplicate. 

 Recovery and Fouling Performance 

After BSA filtration, reverse flow filtration using deionized water was performed at 

a constant pressure of 2 bars for 30 min to remove foulants that were not adsorbed to the 

membrane (i.e., reversibly attached), and then flux recovery ratio (Re, %) was measured. 

The recovery ratio is related to the resistance of the fouled membrane.  

3.3 Results and Discussion 

 Hansen Solubility Parameter Calculation 

RED values of selected solvents (including water as comparison) and PSf are 

shown in Table 3. The RED value of PolarClean is slightly larger than that of NMP and 

DMAc; however, a solvent is determined to be a good solvent when the RED value is equal 

to or smaller than 1 [14]; thus, PolarClean has the potential to fabricate PSf membranes. 
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Table 3.3 Relative energy density calculation for picked solvents and PSf. 

Polymer 𝛿𝛿𝑑𝑑 (MPa1/2) 𝛿𝛿𝑝𝑝 (MPa1/2) 𝛿𝛿ℎ (MPa1/2) Ro (MPa1/2)  

PSf 19.7 8.3 8.3 8.00  

Solvents 𝜹𝜹𝒅𝒅 (MPa1/2) 𝜹𝜹𝒑𝒑 (MPa1/2) 𝜹𝜹𝒉𝒉 (MPa1/2) Ra (MPa1/2) RED 

NMP 18 12.3 7.2 5.36 0.67 

DMAc 16.8 11.5 10.2 6.89 0.86 

PolarClean  15.8 10.7 9.2 8.21 1.03 

Water  15.5 16 42.4 35.95 4.49 

 Cloud Point Curve 

The ternary phase diagram is the general method to illustrate the thermodynamics 

of a polymer/solvent/non-solvent system [37, 163, 169, 192]. The cloud point curve, which 

is considered as the experimentally binodal curve, represents the composition where the 

solution is not thermodynamically stable and phase transition occurs. Experimental cloud 

point curves were developed here for PSf/NMP/H2O and PSf/DMAc/H2O, and these 

agreed with literature reported curves [163, 192, 193]. Thus, the experimental cloud point 

curve of PSf/PolarClean/H2O using the same method was considered valid. The 

experimental cloud point curves for polymer/solvent/non-solvent are shown in Figure 3.4. 

The cloud point curves illustrate that the NMP/PSf solution system had the highest non-
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solvent (i.e., water) tolerance, while the water tolerance of PolarClean/PSf and DMAc/PSf 

solutions were not significantly different. Therefore, the miscibility area of the 

PolarClean/PSf/water and DMAc/PSf/water systems was found to be less than 

NMP/PSf/water system, while the precipitation rate of PolarClean/PSf and DMAc/PSf 

solutions was higher than then NMP/PSf solution. 

 

Figure 3.4 Experimental cloud point curves of PSf/solvent/water system. 

Moreover, as shown in Figure 3.5, NMP has a 5-membered ring, which is a 

distinctly different structure as compared to DMAc and PolarClean since the latter two 

have similar chain structures, specifically, the structure of PolarClean is a combination of 

DMAc and isopropyl acetate. Therefore, based on the similar cloud point curves and 

chemical structures, it was concluded that PSf membranes prepared with PolarClean were 

best compared to membranes prepared with DMAc for this research. 
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(a) (b) (c) 

Figure 3.5 Chemical structure of three solvents: (a) PolarClean (b) DMAc (c) NMP. 

(Blue: Nitrogen, Red: Oxygen, Grey: Carbon, White: Hydrogen). 

 Porosity and MWCO 

To determine the types of membranes made here and predict their filtration 

performance, molecular weight cut-off (MWCO) and porosity studies were performed. 

Figure 3.6 showed that there was no significant difference in the MWCO of 17% PSf 

membranes cast using DMAc and PolarClean, with all the membranes showing rejection 

to large molecules in the range of 400–1000 Daltons (0.65–0.93 nm of hydrodynamic 

radius) through the size-exclusion process. The PSf/DMAc membranes showed 68 ± 5% 

overall porosity, while the PSf/PolarClean membranes showed 71 ± 1%. As with MWCO, 

the porosity of these two different membranes showed no significant difference.  
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Figure 3.6 Molecular weight cut-off of PSf membranes. 

 Hydrophobicity of Membranes 

Membrane hydrophobicity affects permeability, rejection and fouling behavior of 

membranes [137, 194-197]. The contact angle of 17% PSf membranes prepared using 

DMAc was found to be 64 ± 4°, while that using PolarClean was 68 ± 2°. Therefore, the 

hydrophobicity of membranes would not account for any differences in water permeability, 

selectivity or fouling observed here, and differences were more likely due to structural 

differences, as discussed in Section 3.5. 

  Morphology 

The cross sections of the selective layers of 17% PSf membranes prepared with the 

two solvents are shown in Figure 3.7 a,b, and the entire cross sections of the PSf 

membranes are shown in Figure 3.7 c,d. Figure 3.7 a,b show, at a magnification of 5 μm, 

the details of the selective layers of the membranes and also the thicknesses of the selective 

layers, while Figure 3.7 c,d show the entire cross section morphology of the membranes at 
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a magnification of 50 μm. Figure 3.7 a–d show that the PSf membranes prepared with 

DMAc had finger-like pore structures, whereas membranes prepared with PolarClean had 

sponge-like pore structures. This difference in morphology is influenced by several factors, 

including the polymer type, additives, solvent and non-solvent combinations, as well as 

fabrication techniques [160, 198, 199]. In NIPS, an instantaneous liquid-liquid demixing 

process leads to finger-like pore structures, while a delayed liquid-liquid demixing process 

results in sponge-like pore structures [14, 183]. The demixing process happens when the 

composition profile intersects with the binodal line and the delayed demixing process leads 

to the slow precipitation, and therefore forms the spongy-like structures [14]. The speed of 

the liquid-liquid demixing process is determined by the diffusion rate between the solvent 

and non-solvent. Therefore, from Figure 3.7c, d, it was hypothesized that the diffusion rate 

of DMAc and water was faster than that of PolarClean and water. Furthermore, it has been 

shown that finger-like pores result in higher water fluxes along with lower solute rejection 

rates as compared to sponge-like pores [81, 200, 201]. Therefore, it was expected that the 

membranes prepared using the two different solvents would display differences in 

permeability. 

Another observation was that the thicknesses of the selective layers of the 

membranes were different. From Figure 3.7a, PSf/DMAc membranes displayed an 

approximate selective layer thickness of 400 to 800 nm, while PSf/PolarClean membranes 

(Figure 3.7b) did not show an obvious selective layer. The thickness of the selective layer 

is influenced by several factors, including polymer concentration, evaporation time and 

coagulation bath conditions [183-186]. In this case, it is proposed that evaporation time 

might have been the most probable cause of the difference in thicknesses. Since different 
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solvents have different volatilities, the evaporation time to form the selective layers with 

same thicknesses may differ significantly. If the boiling point is used to represent the 

volatility [202], for a given solvent, the higher the vapor pressure and the lower boiling 

point, the higher volatility [202]. The vapor pressure at 20 ℃ is 300 Pa for DMAc [203] 

and less than 0.01 Pa for PolarClean [204]. The boiling points at 101.3 kPa of DMAc and 

PolarClean are reported to be 165 ℃ and 282 ℃ [131, 205], respectively, which indicated 

that DMAc had higher volatility than PolarClean. Therefore, a longer evaporation time 

would be needed to form the same thickness of selective layer for PSf/PolarClean 

membranes as PSf/DMAc membranes, which agrees with experimental effects of 

evaporation time (Figure 3.3). From Figure 3.3, an evaporation time of 120 s for 

PSf/PolarClean led to membranes of similar permeability as an evaporation time of 60 s 

for PSf/DMAc.  
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Figure 3.7 Cross-sectional FIB-SEM images of the top layers of PSf ultrafiltration 

membranes prepared with: (a) DMAc; (b) PolarClean. Cross-sectional SEM images 

of PSf ultrafiltration membranes prepared with: (c) DMAc; (d) PolarClean. 

 Filtration performance 

From Figure 3.8, during BSA filtration, the flux of PSf/DMAc membranes declined 

from 63.1 ±  12.4 to 40.0 ±  13.6 L/m2·h (LMH), while the flux of PSf/PolarClean 

membranes declined from 176.0 ± 8.8 to 125.0 ± 4.5 LMH. This decline was likely due 

some compression under the 4-bar pressure [206, 207] along with accumulation of BSA on 

the surface of the membrane, which increased resistance to flow. It was also observed that 

the water flux values of PSf/PolarClean membranes were higher than PSf/DMAc 

membranes, which did not agree the expectation from the morphology (Figure 3.7). 
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However, as previously mentioned, for different solvents, the evaporation time impacted 

the thickness of the selective layer of the membranes, which consequently impacted the 

water permeability [185, 186, 208], which may explain the higher flux values observed 

with PSf/PolarClean membranes. In this case, the thickness of the selective layers of 

membranes were the dominant parameter influencing water permeability.  

 

Figure 3.8 BSA solution permeability (at 4 bar). 

BSA rejection analysis was also performed, and it was determined that 99 ± 1% of 

BSA was removed by the PSf/PolarClean membranes, which was slightly higher than 96 

± 2% BSA rejection by the PSf/DMAc membranes. The higher rejection rate of 

PSf/PolarClean membranes agreed with their sponge-like pore structures as shown in 

Figure 3.7b. In addition to comparing the performance of PSf/PolarClean membranes 

fabricated here to the performance of PSf/DMAc membranes fabricated using similar 

controlled conditions, a comparison was made to literature PSf/DMAc membranes [158, 

209-212]. It is important to note that evaporation times were not available for membranes 

from the literature. It is clearly observed that PSf/PolarClean membranes are within the 
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acceptable range of pure water flux, permeability and BSA rejection. This validates the 

potential of PolarClean to be used as a bio-derived greener alternative equivalent to DMAc.  

To determine the extent of the irreversible adsorption of BSA to the membranes 

after filtration, or the amount of irreversible fouling, reverse-flow filtration using DI water 

was performed after BSA filtration to represent a backwash cycle. The flux was then 

measured after reverse-flow filtration to determine the recovered flux, or the percentage of 

the flux decline due to reversible fouling. The average recovered flux for PSf/PolarClean 

membranes was 30 ± 1%, which was lower than that for PSf/DMAc membranes (77 ± 

13%). The lower flux recovery using PolarClean was hypothesized to have been due to the 

sponge-like pores collapsing after filtration, which would make it more difficult for water 

to pass through the pores. In order to verify this hypothesis, PSf/PolarClean membranes 

were analyzed using FIB after BSA filtration and reverse-flow filtration. Figure 3.9 shows 

the surface morphology, while Figure 3.10 displays the cross-sectional structures. As 

observed from Figure 3.9b, BSA molecules accumulated on the surface of the membranes 

to foul them, and reverse-flow filtration was able to remove most of the foulants (Figure 

3.9c). However, comparing Figure 3.7b (cross-section using PolarClean) and Figure 3.10a 

(cross-section using PolarClean after BSA filtration) shows that the pores of the 

PSf/PolarClean membranes slightly collapsed after BSA filtration, which might have been 

due to the pressure applied on the membranes [213-215]. Likewise, by comparing Figure 

3.10a (cross-section using PolarClean after BSA filtration) and Figure 3.10b (cross-section 

using PolarClean after backwash), it was observed that the pores collapsed further and the 

thickness of the selective layer increased after backwash. This was likely the cause of the 

lower recovery rate observed for PSf/PolarClean membranes. One reason for the collapse 
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of the pores might have been that the mechanical strength of the sponge-like pores was 

lower than finger-like pores; hence, the sponge-like pores might have been easier to 

compress under the same backwash pressure.  

Another reason might be the selective layer of the PSf/PolarClean membranes were 

thin, in agreement with Figure 3.7b, and possibly fragile. Considering that the MWCO of 

PSf/PolarClean membranes was less than 1 nm (Figure 3.6) while the apparent the pore 

size of PSf/PolarClean membranes was at micrometer level (from SEM images, Figure 

3.7b, a thin selective layer might have been present. This selective layer might have 

collapsed or been damaged during filtration and/or recovery. Then, the selectivity of the 

membrane became a function of the porous structure and tortuosity, indicating it started to 

behave as a depth filter instead of a membrane. This also correlates with the low recovery 

following backwashing, indicating that the pores collapsed.  
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Figure 3.9 FIB-SEM images of PSf/PolarClean membranes surface: (a) Original; (b) 

After BSA filtration; (c) After DI water backwash. 

 

Figure 3.10 Cross-sectional FIB-SEM images of PSf/PolarClean ultrafiltration 

membranes: (a) After BSA filtration; (b) After DI water backwash. 

3.4 Conclusions 

In this study, PolarClean was used as a NIPS solvent to cast PSf membranes and 

then compared with DMAc. Based on the ternary phase diagram, the cloud point curve of 

PSf/PolarClean/water was similar to that of PSf/DMAc/water. Dope solutions for 

PSf/PolarClean and PSf/DMAc were prepared at 65 °C and membranes were cast and 

characterized afterwards. The overall porosity, MWCO and hydrophobicity of membranes 

made using PolarClean and DMAc were not significantly different. However, the cross-

sections images of the membranes were different, with PSf/DMAc membranes showing 

finger-like structures and PSf/PolarClean membranes showing sponge-like structures. 
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Regarding membrane performance, PSf/PolarClean membranes showed slightly higher 

BSA rejection rates (99 ± 1%) as compared to PSf/DMAc membranes (96 ± 2%), which 

agreed with their sponge-like pores structures. Furthermore, PSf/PolarClean membranes 

also showed higher flux values (176.0 ± 8.8 LMH) than PSf/DMAc membranes (63.1 ± 

12.4 LMH), which disagreed with the sponge-like structure theory and might have been 

due to evaporation time. However, pore collapsing was observed in the study, which means 

the stability of PolarClean membranes is uncertain. In conclusion, bio-derived solvents 

should be investigated further and may become promising replacements to traditional 

solvents.  
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CHAPTER 4. INVESTIGATION OF POLARCLEAN AND GAMMA-VALEROLACTONE AS 
SOLVENTS FOR POLYSULFONE MEMBRANE FABRICATION 

This chapter has been published in the following report and adapted with permission 

from: 

Dong, X.; Shannon, H.D.; Escobar, I.C. Investigation of PolarClean and Gamma-

Valerolactone as Solvents for Polysulfone Membrane Fabrication Green Polymer 

Chemistry: New Products, Processes, and Applications. January 1, 2018 , 385-403 [46] 

Copyright © 2018 American Chemical Society. 

4.1 Introduction 

Immersion precipitation, or nonsolvent induced phase separation (NIPS), is a 

conventional method used to fabricate porous polymeric membranes. In this method, a 

polymer is first dissolved in a solvent. The polymer and the solvent are mixed often through 

mechanical mixing with or without heating until a homogenous dope solution is obtained. 

In the laboratory, flat-sheet membranes are often obtained using a doctor blade or the spin 

coating method. A doctor blade is used to cast the dope solution on a substrate, usually a 

glass plate or a polymeric support film, to form a liquid film with a desired thickness [1, 

170]. The doctor blade is easy to operate, controls the conditions of the membranes formed, 

and it wastes minimum dope solution [216, 217]. However, it is difficult to keep 

consistency because different operators have different habits and the speed of casting is 

hard to control. In spin coating, a small amount of coating material is applied on a solid 

substrate by spinning at low speed [218, 219]. Spin coating is more suitable to fabricate 

small sizes of films and easier to keep the consistency; however, the homogeneity of the 
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membranes is often a concern [216, 218, 219]. With both the doctor’s blade and spin 

coating method, after casting, the substrate with the film is immersed into a coagulation 

nonsolvent bath, typically water [16]. Through immersion, solvent in the film is exchanged 

with the nonsolvent in the coagulation bath, where the phase separation occurs [17]. The 

phase separation is due to the presence of nonsolvent and so it is named NIPS.  

The NIPS process leads to a membrane with two layers, a dense surface layer and a 

porous support layer, where the porous support layer, which provides mechanical strength 

and stability and which is covered by a thin selective layer or film, is responsible for 

providing the membrane with separation capabilities. After phase inversion, the solvent 

from the dope solution remains in the nonsolvent bath, which is a hazardous liquid waste 

that must be treated to minimize environmental impacts because large amounts of 

traditional petroleum-derived solvents are used to prepare the dope solutions. As Europe 

and China move toward a more bio-derived manufacturing base, the opportunities for new 

and bio-derived solvents are only expected to increase worldwide. To address this issue, 

traditional solvents involved in the membrane manufacturing process are proposed to be 

replaced by environmentally friendly solvents. Two recently developed and bio-derived 

solvents show structures similar to traditional solvents along with similar properties. These 

solvents are methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv 

PolarClean) and gamma-valerolactone (GVL). The structure of PolarClean is similar to 

Dimethylacetamide (DMAc), whereas GVL has a similar structure to N-Methyl-2-

pyrrolidone (NMP). Therefore, PolarClean and GVL were investigated individually and as 

a mixture of solvents for their ability to cast membranes. 
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4.2 Experimental Section 

 Materials  

Polysulfone (PSf, average Mw 35000 by LS, average Mn 16000 by MO, pellets) 

was purchased from Sigma-Aldrich (St. Louis, Missouri, United States); GVL was 

purchased from Acros Organics (Fair Lawn, New Jersey, United States); Methyl-5-

(dimethylamino)-2-methyl-d-oxopentanoate (Rhodiasolv® PolarClean) was kindly 

provided by Solvay Novecare (Princeton, New Jersey, United States). 

 Preparation of Dope Solution 

Dope solutions were prepared as described in Table 1. Each dope solution was 

mixed using a magnetic stirring bar at 65 ℃ for 24 h, and then a planetary centrifugal mixer 

(Mazerustar KK-250S, Kurabo Industries Ltd., Osaka, Japan) was used to ensure the 

homogeneity of the dope solutions [20]. The dope solutions with different solvent 

compositions are numbered in Table 1 for convenience. The main purpose of choosing 17 

wt. % of polysulfone was to target the casting ultrafiltration membranes, which has been 

previously determined to be at 17% [20]. The same polymeric dope solutions were used in 

this research to maintain consistency. 
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Table 4.1 Composition of PSf dope solutions in this study 

Polymer Weight 

percent 

Solvent 1 Weight 

percent  

Solvent 2 Weight 

percent 

Number 

PSf 17 PolarClean 0 GVL 83 1 

PSf 17 PolarClean 1/4 × 83 GVL 3/4 × 83 2 

PSf 17 PolarClean 1/2 × 83 GVL 1/2 × 83 3 

PSf 17 PolarClean 3/4 × 83 GVL 1/4 × 83 4 

PSf 17 PolarClean  83 GVL 0 5 

 Membrane Casting 

Once the dope solutions were homogenous, they were degassed in an ultrasonic 

bath at room temperature for 1 h to remove air bubbles. The membranes were cast afterward 

using the NIPS process [14, 20]. A thin film of dope solution was deposited on a glass plate 

at room temperature, and then cast using a doctor casting blade which was set at the 

thickness of 200 µm. According to previous studies [20], the evaporation rate of different 

solvents in air vary. In this study, to minimize the influence of evaporation rates of different 
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solvents, the evaporation time was chosen to be 0 s before the dope solutions were 

immersed into water. The thickness of membranes was measured using a digimatic deep 

throat digital thickness gage (547-520S, Mitutoyo Co., Kawasaki, Japan) with the range of 

80–100 µm. Afterward, the membranes were store in deionized water at room temperature 

for 1 week. 

 Characterization Methods 

The viscosity of dope solutions was measured using a rheometer (AG-G2, TA 

Instruments, Delaware, United States). The average pore size of membranes was measured 

through a Liquid-Liquid porometer (LLP-11000A, Porous Materials Incorporated, Ithaca, 

New York, United States). The zeta potential values (i.e., membrane surface charge) were 

determined by an electrokinetic analyzer (Anton Paar SurPASS, Ashland, Virginia, United 

States), and the adjustable gap cell was adjusted to a gap with 90–110 μm with 0.01 M KCl 

used as the electrolyte solution. The contact angles of membranes in this study were 

measured by sessile drop method, using a drop shape analyzer (DSA 100S, Kruss 

Company, Hamburg, Germany). The tests were repeated 6 times and contact angles were 

calculated with deviation. The surface roughness of membranes was investigated in 

atmosphere under tapping mode using an atomic force microscope (AFM, Quesant. 

Instrument Co., United States). It was evaluated by root-mean-squared (RMS) roughness 

over six membrane surface areas of 20 × 20 μm (2), which were randomly picked on the 

top layer of membranes.  
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 Membrane Performance 

For membranes #1 to #5, pure water filtration (PWF) tests were performed at a 

constant pressure of 4.1 bars in an Amicon dead-end filtration cell (Amicon Stirred Cell 

8010-10 mL, Millipore Sigma Co., Burlington, Massachusetts, United States). When the 

water flux became constant, the flux was recorded. Afterward, 100 mg/L BSA solution was 

filtered through the membranes at 4.1 bars. The permeability was recorded. The permeate 

samples were collected and then the concentration was analyzed using a UV/Vis 

spectrophotometer (UV-6300PC, VWR International bvba/sprl, Leuven, Belgium).   

4.3 Results and Discussion 

 Viscosity of Dope Solutions 

The viscosity values of different dope solutions are presented in Table 2. For all the 

dope solutions, the viscosity decreased slightly while the shear rate increased from 0.1/s to 

1/s and then 10/s. This indicated that the viscosity of PSf dope solutions did not change 

significantly with shear rate.  

At the shear rate of 0.1/s, from #1 to #5, the viscosity increased gradually from 1.44 

Pa.s to 5.448 Pa.s, showing that the viscosity increased as the percent of GVL decreased in 

the dope solutions. Hence, dope solutions prepared using PolarClean alone (membrane #5) 

showed the highest viscosity, while the dope solutions using GVL alone (membrane #1) 

showed the lowest. At the same shear rate of 0.1/s, the viscosity of PSf membranes made 

using traditional petroleum-derived solvents, NMP and DMAc, was 0.3517 and 0.1657 

Pa.s, respectively. Based on the viscosity of dope solutions made using traditional solvents, 
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low viscosity values were targeted here. Therefore, adding GVL as a co-solvent mixture 

with PolarClean can effectively decrease the viscosity of dope solutions. It is important to 

note that membranes made using GVL as the sole solvent would stick to themselves like 

glue, while membranes made with PolarClean alone were found to not produce membranes 

with stable pore structures after cleaning using backwash [20].  

Table 4.2 Viscosity of dope solutions under certain shear rates 

Shear rate (1/s) Viscosity (Pa.s) 

 

#1 #2 #3 #4 #5 

0.1 1.44 1.967 2.864 4.086 5.448 

1 1.431 1.899 2.689 4.081 5.417 

10 1.424 1.875 2.668 4.046 5.326 

 Membrane Hydrophobicity 

Membrane hydrophobicity is measure by contact angles, with smaller contact 

angles reflecting more hydrophilic materials. Contact angles for membranes tested are 

presented in Figure 4.1. The contact angles of the membranes decreased gradually from 

78.46 ± 1.73° (pure GVL) to 60.01 ± 3.71° as the weight percent of PolarClean increased 

from 0% to 75%. The contact angle of membrane #5, pure PolarClean, was approximately 

64.13 ± 2.08°, which is higher than the membrane #4. However, the contact angles of 

membranes #2 to #5 displayed overlapping standard deviations; therefore, the membranes 
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prepared using PolarClean, and PolarClean/GVL solvents mixture presented similar 

hydrophilicity. Moreover, the membranes prepared using GVL were significantly more 

hydropobic than the membranes prepared using PolarClean and PolarClean/GVL solvent 

mixtures.  

Hydrophilicity represents the surface property of membranes. Since the polymer 

used and the weight percent of polymer in dope solution were same, the reason that 

PSf/GVL membranes had higher hydrophobicity may be that water is harder to penetrate a 

rougher surface with smaller pores. This agreed the results in the roughness and the average 

pore size sections.  

 

Figure 4.1 Contact angles of different membranes. 

 Membrane Surface Charge  

The surface charge of membranes, measured by the zeta potential of the membrane, 

is an important factor in the designing of membranes because it can be manipulated to 

reject charged solutes via charge repulsion and aid in fouling control [220]. As shown in 
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Figure 4.2, the zeta potential value of membranes #1 to #5 were measured to be –10.58 ± 

0.05 mV, –20.85 ± 1.34 mV, –21.32 ± 0.56 mV, –18.99 ± 0.26 mV, and –23.76 ± 0.41 mV, 

respectively. All the PSf membranes were negatively charged, which is desirable since 

most dissolved organic matter in water is negatively charged. It was noticed that the 

membranes prepared using PolarClean (#5) and PolarClean/GVL (#2 to #4) showed no 

significant difference with respect to surface charge, and showed higher negative charge 

density as compared to the membranes prepared using GVL alone (#1). This again shows 

that the addition of GVL to PolarClean produced membranes with properties closer to 

PolarClean alone membranes.  

The reason that the surface charges are different with the same amount of polymer 

may be due to the use of GVL. The use of GVL may lead to less functional groups on the 

membrane surface than the circumstance of using PolarClean, which would account for the 

lower charge; however, this should be further verified.   



82 

 

 

Figure 4.2 Zeta potential of different membranes. 

 Membrane Surface Roughness 

The surface roughness was determined by the root-mean-squared (RMS) roughness 

of the surface of membranes, and is shown in Figure 4.3. The RMS roughness values of 

membranes #2 to #4 were measured as 72.46 ± 28.49 nm, 10.36 ± 4.78 nm, and 8.97 ± 6.15 

nm, respectively. The RMS roughness value of membrane #1 was 39.78 ± 18.71 nm, 

whereas the value of membrane #5 was 30.55 ± 17.71 nm. The results indicate that the 

membranes prepared using pure PolarClean or GVL showed overlapping surface 

roughness values. When 25% GVL was added into the dope solutions, the membrane 

surface was smoothest. After adding GVL to 50%, the membrane surface became slightly 

rougher. The membrane surface was the roughest when 75% GVL was added to the dope 

solutions. The same conclusion could be observed from the 3D images of membrane 

surfaces shown in Figure 4.4.  
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Figure 4.3 RMS roughness of membranes. 
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               (a)                       (b)                                       (c) 

 

        (d)               (e) 

Figure 4.4 AFM 3D images of PSf membranes using different solvent: (a) GVL,  

(b) 25%PolarClean/75%GVL, (c) 50%PolarClean/50%GVL,  

(d) 75%PolarClean/25%GVL, and (e) PolarClean. 

 Membrane Average Pore Size  

Figure 4.5 shows that the average pore size of membranes #1 to #5 was <1 nm, 1.7 

nm, 9.3 nm, 21.8 nm, and 48.1 nm, respectively. For membrane #1 (GVL alone), the result 

was less than 1 nm since it was below the detection limit of the porometry. For membranes 

#2 to #5, the average pore size increased as a function of decreasing the GVL percentage 

in the dope solution.  

The influence of weight percent of GVL in dope solutions on the average pore size 

of membranes may be due to the difference in the water solubility of the two solvents. At 
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room temperature, the water solubilities of PolarClean and GVL are larger than 490 g/L 

and larger than 100 g/L, respectively [131].  Therefore, a larger amount of PolarClean may 

diffuse into the water bath, resulting in larger pores on the membrane surface. 

 

Figure 4.5 Average pore size of different membranes. 

 Filtration Performance 

During the precompaction process, the pure water flux and the flux during BSA 

filtration were measured. In Figure 4.6, the DI water flux of membranes #1 to #5 was 0.53 

± 0.02 LMH, 33 ± 2 LMH, 320 ± 90 LMH, 500 ± 98 LMH, and 660 ± 84 LMH. The pure 

water flux increased with the increase in the amount of PolarClean in the dope solution. 

The tendency of increasing pure water flux from membranes #1 to #5 also agreed with the 

increasing average pore size of the membranes as shown in Figure 4.5.  

The flux of membrane #1 was too low to continue the BSA filtration study. 

Therefore, membranes #2 to #5 were used to filter BSA solutions. The flux values of #2 to 

#5 were 29 ± 2 LMH, 198 ± 23 LMH, 258 ± 37 LMH, and 314±20 LMH, respectively. The 
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trend was similar to that observed with pure water. Moreover, the BSA rejection of all 

membranes were measured to all be above 99.9%. It should be mentioned that although the 

average pore size of PSf/PolarClean (#5) membranes was larger (as shown in Figure 4.5), 

the rejection rate was not significantly different because of the sponge-like structures of 

the membranes, as previously observed [20]. Other substances can be used to distinguish 

the size selectivity of different membranes in future work.  

 

Figure 4.6 Average flux of different membranes. 

 Implications 

Membranes fabricated using PolarClean alone were found to be similar to those 

made using traditional petroleum-derived solvents with respect to flux and solute rejection. 

However, the pores of these membranes may collapse during filtration [20]. Thus, GVL 

was investigated as an individual and as a co-solvent to PSf membranes. Membranes made 

using GVL as a sole solvent were observed to be gelatinous, so they were not likely to be 

mechanically strong for filtration. On the other hand, the mixture of these two solvents 

seemed to be promising, as the hydrophilicity and charge of fabricated membranes were 
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determined to be similar with the membranes using PolarClean. Moreover, membranes 

fabricated using mixtures (50%PolarClean/50%GVL and 75%PolarClean/25%GVL) 

showed a smoother surface than membranes made using PolarClean alone. The average 

pore size of the membranes using mixtures was within the range of membranes using GVL 

or PolarClean. 

The results of the membranes prepared using the mixture of green solvents showed 

their potential to replace petroleum-derived traditional solvents, which can make the 

process of membrane fabrication eco-friendlier. Therefore, using these two solvents can 

reduce dependency on petroleum products; hence, the price of petroleum would not 

influence the cost of manufacturing membranes. The use of environmentally friendly 

solvents also has the potential to lessen environmental impacts and reduce the carbon 

footprint of membranes. Moreover, the utilization of PolarClean and GVL is a method to 

use by-products [130] and biowastes [132, 221] from the chemical and agricultural 

processes; thus, finding uses for what would otherwise be waste to be disposed. Due to 

these reasons, fabricating membranes using PolarClean and/or GVL supports the principles 

of green chemistry [222, 223]. 

On the other hand, there are drawbacks and concerns toward the use of green 

solvents. From the most updated (July 20, 2018) prices listed online (www.alibaba.com): 

PolarClean is approximately $6/kg; GVL fluctuates around $2/kg; NMP is about $2.7/kg; 

and the price of DMAc is around $1/kg. The cost of distillation of these different solvents 

should be investigated and compared to determine the economic feasibility of solvent 

recovery. Lastly, these solvents are biodegradable, so they may cause eutrophication of 

receiving waters.  
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4.4 Conclusions 

As an individual solvent, PSf/GVL membranes showed an average zeta potential 

value of –10.58 ± 0.05 mV, while PSf/PolarClean membranes showed –23.67 mV ± 0.41 

mV. The average contact angle of PSf/GVL membranes was 78.46 ± 1.73°, while 

PSf/PolarClean showed 64.13 ± 2.08°. The average pore size of PSf/GVL membranes was 

less than 1 nm, while it was 48.1 nm for PSf/PolarClean membranes. The surface roughness 

of PSf/PolarClean and PSf/GVL membranes were overlapping. The addition of GVL in 

dope solutions was able to significantly decrease the viscosity of dope solutions, which is 

desirable because the viscosity of dope solutions prepared using traditional petroleum-

derived solvents, NMP and DMAc, were lower than the viscosity of PSf/PolarClean dope. 

The zeta potential values and the contact angles did not vary significantly by adding GVL 

to dope solutions. On the other hand, the surface roughness of membranes prepared using 

GVL/PolarClean solvent mixtures varied significantly, with the smoothest membranes 

arising from the 75% PolarClean/25% GVL solvent mixture in the dope solution. Lastly, 

the average pore size of the membranes decreased as the weight percent of GVL in dope 

solutions increased. Therefore, the use of PolarClean and GVL as co-solvents for PSf 

membrane fabrication has the potential to be a promising replacement to traditional 

solvents, and to be a better option than using PolarClean or GVL alone.  
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CHAPTER 5. COMPARISON OF TWO LOW-HAZARD ORGANIC SOLVENTS AS INDIVIDUAL AND 
CO-SOLVENTS FOR THE FABRICATION OF POLYSULFONE MEMBRANES 

This chapter has been published in the following report and adapted with permission from: 

Dong, X.; Shannon, H.D.; Parker, C.; De Jesus, S.; Escobar, I.C. Comparison of two low‐

hazard organic solvents as individual and cosolvents for the fabrication of polysulfone 

membranes. AIChE J. 2020; 66:e16790. [224] 

Copyright © 2019 American Institute of Chemical Engineers.  

5.1 Introduction  

Membranes possess the ability to treat a wide variety of source waters such as 

brackish and seawater for desalination[83, 225-227], as well as low quality surface 

water[228] and even wastewater[229-231]. They can produce water that is of higher quality 

than traditional water treatment processes, such as coagulation, flocculation, 

sedimentation, sand filtration, etc. For this reason, membranes and membrane processes 

have gained much popularity in recent years. In liquid separations, polymeric membranes 

tend to be widely used. For example, ultrafiltration (UF) commercial membranes are made 

of selective layers ranging from highly hydrophilic polymers such as cellulose acetate 

(CA), to hydrophobic polymers such as polypropylene (PP) and polyethylene (PE). 

Various polymers with intermediate hydrophilicity such as the polysulfone (PS) / polyether 

sulfone (PES) family, polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) are 

also used as selective layers for the membranes.   

To cast the polymeric membranes in a laboratory scale, different methods have been 

investigated, for instance, non-solvent induced phase separation (NIPS)[232], temperature 
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induced phase separation (TIPS)[21], vapor induced phase separation (VIPS)[233], etc. In 

this study, NIPS was chosen to fabricate polymeric membranes, as shown in Figure 5.1. 

First, a solvent is used to dissolve a certain concentration of polymers to form a 

homogenous dope solution. Then, the dope solution is deposited on a substrate and then 

cast using a doctor’s casting blade to form a thin liquid film on a substrate, which is 

immersed into a non-solvent bath. The solubilities of the polymer and solvent are different; 

therefore, the solvent diffuses into the non-solvent while the polymer remains on the 

substrate to form the polymer film, which is the membrane. However, in this process, the 

solvent remains in the non-solvent. If the solvent is toxic or environmentally hazardous, 

the mixture of solvent/non-solvent threatens not only the environment, but also the health 

of operators[1]. Currently, traditional solvents are derived from petroleum, such as N-

methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) 

etc., are used for the NIPS process. The toxicity profiles of these solvents are well-known 

and have been discussed in the previous studies[234-237]. However, due to their highly 

toxic nature, the European Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) has banned the use of NMP and DMAc by 2020 and listed the use of 

DMF on the watching list[46]. Therefore, the search for low-hazard/low toxicity solvents 

to substitute traditional solvents in membrane fabrication is necessary and urgent.  
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Figure 5.1 NIPS process using green solvents or a traditional solvent 

Multiple solvents have been explored in the fabrication of polymeric membranes in 

the recent years. In previous studies, several low-hazard solvents have been studied, 

including methyl lactate, ehtyl lactate, triethylphosphate (TEP), ionic liquids (ILs), etc[46]. 

Recently, additional ones have been reported. Marino et al.[238] presented 

dihydrolevoglucosenone (CyreneTM) to cast polyethersulfone (PES) and poly(vinylidene 

fluoride) (PVDF) membranes via the VIPS/NIPS method. CyreneTM was synthesized from 

cellulose and had a nontoxicity, environment-friendly profile. PES and PVDF membranes 

cast using CyreneTM were characterized and showed that CyreneTM was a promising option 

for casting PES and PVDF membranes; however, these membranes were not used in 

filtration experiments. Recently, dimethylsulfoxide (DMSO) has become the focus of 

several studies. Xie et al.[45] used DMSO to partially replace traditional solvents to cast 

poly(vinyl chloride)-graft-poly(ethylene glycol) methyl ether methacrylate (PVC/PVC-g-
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PEGMA) UF membranes via the NIPS method. The reason to partially instead of fully 

replacing traditional solvents was that DMSO cannot dissolve PVC, so traditional solvents 

were still needed. Evenepoel et al.[239] proposed DMSO as a benign solvent to replace 

NMP in the fabrication of PES ultrafiltration membranes and, potentially, nanofiltration 

membranes. Marino et al.[240] reported an improved version of DMSO, DMSO EVOLTM 

in casting PES microfiltration membranes via the NIPS/VIPS method. Dong et al.[46] 

investigated Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv® 

PolarClean) and gamma-valerolactone (GVL) for PSf membrane fabrication, but found 

that PolarClean made membranes that did not stand well to reverse-flow filtration while 

GVL was not effective for the casting of PSf membranes. Lastly, Rasssl et al.[136] 

theoretically explored GVL and glycerol derivatives as environment-friendly solvents for  

membrane preparation using different polymers; however, fabricted membranes were not 

fullly characterized or analyzed.  

In this study, PSf was chosen because PSf membranes can be applied over a wide 

pH range from 2 to 12 and can be used at temperatures up to 105 ℃[20, 46, 158, 241, 242]. 

PSf is also resistant to chlorine oxidation[241, 243-245]. Moreover, PSf is commercially 

available and has been widely used. However, casting PSf membranes using low-hazard 

solvents has not been significantly explored as compared to PVDF and PES membranes. 

Therefore, an in-depth investigation of low-hazard solvents, namely PolarClean and GVL, 

as compared to a traditional petroleum-derived solvent, DMAc, for the fabrication of PSf 

membranes was the main objective of this study. The chemical structures of DMAc, 

PolarClean and GVL are shown in Figure 5.2, and their chemical/physical properties are 

shown in Table 1. PolarClean is the byproduct of the manufacturing process of Nylon 6-6, 
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and it is an environment-friendly product commercialized by Solvay Novecare. GVL is a 

bio-derived solvent from lignocellulosic biomass, specifically, from hemicellulose and 

cellulose. Hemicellulose is converted to furfural and furfural alcohol as intermediates by 

acid hydrolysis, and then furfural alcohol is esterified with ethanol to produce ethyl 

levulinate[132-134]. Cellulose is converted to hydroxymethylfurfural (HMF) as an 

intermediate and then converted to levulinic acid also through acid hydrolysis[133, 135]. Both 

ethyl levulinate and levulinic acid are hydrogenated to GVL[132]. While this current method 

of producing GVL can minimize the use of petroleum-derived products, it is not sustainable 

because of high energy consumption and water usage[246], as well as the requirement of 

strong acidic catalysts[247]. However,  more sustainable approaches to produce GVL are 

currently being investigated[221].   

In this work, the term “low hazardous” refers to low toxicity to human contact. The 

Globally Harmonized System (GHS) classification, toxicity of PolarClean, GVL and 

DMAc, shown in Table 1, verify that PolarClean and GVL have lower toxicities as 

compared to DMAc.  PolarClean was classified as H319 because its use might lead to eye 

irritation[130, 248], while GVL did not meet the GHS hazard criteria[249, 250]. On the 

other hand, DMAc was classified as H312, H332 and H360D[251]; that is, harmful in 

contact with skin, harmful if inhaled and may damage unborn children, respectively.  

Furthermore, all of these three solvents are reported as biodegradable in the environment 

and will not cause bioaccumulation[248, 250, 251]; however, biodegradable compounds 

might lead to eutrophication. Regarding toxicity to fish, the lethal concentration required 

to kill 50% of population is defined as LC50. For DMAc, the LC50 is >500 mg/L after an 
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exposure time of 96 h[251]. There are no reported GVL and PolarClean studies on their 

toxicity to fish.   

Since in the previous studies, membranes produced using PolarClean suffered from 

pores collapsing during filtration and backwash, while those fabricated using GVL 

hydrolyzed, PolarClean and GVL were investigated as co-solvent, here, to cast PSf 

membranes and then compared to the membranes cast using DMAc.  

 

Figure 5.2 Chemical structure of (a) DMAc, (b) PolarClean, and (c) GVL 

 

 

 

 

 

 

 



95 

 

Table 5.1 Properties of solvents studied here 

Properties DMAc PolarClean  GVL Water 

CAS no. 127-19-5 1174627-68-9 108-29-

2 

7732-18-5 

Formula C4H9NO C9H17NO3 C5H8O2 H2O 

MW (g/mol) 87.122 187.239 100.112 18.02 

Density (g/mL) at 

25℃ 

0.94 1.043 1.05 0.997 

Viscosity (mPa·s) 0.945 9.78 2.18 0.890 

Boiling point (℃) 165 278–282 207–208 100 

Flash point (℃) 69 144–146 96  

Solubility in 

water (%) 

Miscible Miscible Miscible  

Signal Danger Warning Warning  

Toxicity Reproductive toxicity    
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5.2 Experimental  

 Materials  

The polymer used was PSf (average MW 35000 by LS, average Mn 16000 by MO, 

pellets) purchased from Sigma-Aldrich (St. Louis, Missouri, United States). Three solvents 

were investigated in this study, (1) GVL, purchased from Acros Organics (Fair Lawn, New 

Jersey, United States); (2) Rhodiasolv® PolarClean, provided by Solvay Novecare 

(Princeton, New Jersey, United States); and (3) DMAc, purchased from Tokyo Chemical 

Industry Co., Ltd. (Tokyo, Japan). Lastly, to study the filtration performance of 

membranes, bovine serum albumin (BSA), purchased from VWR Life Science (Radnor, 

PA, USA), was used. Grade I deionized water (DI) of resistivity of 18.2 mΩ·cm at 25℃ 

was provided by the Chemical Engineering Undergraduate Laboratory at University of 

Kentucky. 

 Mixing Studies 

Based on the Hansen solubility parameter theory, the affinity of a polymer and a 

solvent is described as Ra, which is calculated by equation 1: 

R𝑎𝑎 = �4(𝛿𝛿𝑑𝑑2−𝛿𝛿𝑑𝑑1)2 + �𝛿𝛿𝑝𝑝2−𝛿𝛿𝑝𝑝1�
2

+ (𝛿𝛿ℎ2−𝛿𝛿ℎ1)2  (1) 

Where 𝛿𝛿𝑑𝑑 is the dispersive force, 𝛿𝛿𝑝𝑝is the polar force, and 𝛿𝛿ℎ is hydrogen bonding[141]. A 

solvent is deemed to have good compatibility with a polymer when the value of Ra is 

small[136, 141]. In this study, PSf was dissolved using two co-solvents simultaneously 

(i.e., a binary solvent mixture) instead of a single solvent. Therefore, the corresponding 

parameters of the binary solvent mixture needed to be calculated by the two following 
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procedures: first, the volume fraction of each solvent was calculated by equations 2 and 3; 

second, the values of solubility parameters were then calculated using equation 4, 5, and 

6[141]: 

𝑉𝑉1 = 𝑊𝑊1 𝜌𝜌1⁄
𝑊𝑊1 𝜌𝜌1⁄ +𝑊𝑊2 𝜌𝜌2⁄   (2) 

𝑉𝑉2 = 𝑊𝑊2 𝜌𝜌2⁄
𝑊𝑊1 𝜌𝜌1⁄ +𝑊𝑊2 𝜌𝜌2⁄  (3) 

𝛿𝛿𝑑𝑑 = 𝑉𝑉1𝛿𝛿𝑑𝑑1 + 𝑉𝑉2𝛿𝛿𝑑𝑑2 (4) 

𝛿𝛿𝑝𝑝 = 𝑉𝑉1𝛿𝛿𝑝𝑝1 + 𝑉𝑉2𝛿𝛿𝑝𝑝2 (5) 

𝛿𝛿ℎ = 𝑉𝑉1𝛿𝛿ℎ1 + 𝑉𝑉2𝛿𝛿ℎ2 (6) 

Where 1, 2 represents solvent 1 and solvent 2; Vi represents the volume fraction, and Wi 

represents the weight fraction.   

In Hansen solubility parameter theory, three parameters of a polymer or solvent 

form a sphere[141]. The relative energy difference (RED) is used to describe the interaction 

between a polymer and a solvent[45]. A good solvent for a polymer is defined as having a 

RED value less than or equal to 1, which can be calculated by equation 7[20, 141]: 

RED = 𝑅𝑅𝑎𝑎
𝑅𝑅0

  (7) 

Where Ro represents the radius of the Hansen solubility parameter sphere for the polymer. 

 Preparation of dope solutions 

The following combinations of solvents and co-solvents were used to dissolve PSf: 

(1) PolarClean, (2) 75 wt% PolarClean/25 wt% GVL, (3) 50 wt% PolarClean /50 wt% 
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GVL, (4) 25 wt% PolarClean/75 wt% GVL, (5) GVL, and (6) DMAc. The weight 

percentages of polymer and solvent were maintained constant at 17% and 83%, 

respectively, for proper comparison of membranes. These weight percents of polymer and 

solvent were chosen to cast ultrafiltration membranes based on literature recipes[20, 46], 

and the different compositions were labeled M1-M6 as shown in Table 2. Each dope 

solution was mixed using a magnetic stirring bar at 65℃ for 72 h. 

In order to study PSf dissolution kinetics in different solvents/co-solvents, 2 mL 

samples were taken at 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 16 h, 24 h and 72 h, and the viscosity of 

each sample was measured using a rheometer (AG-G2, TA instrument, Delaware, United 

States) at the shear rate of 1/s. This experiment was triplicated for reproducibility. M4 was 

not included in the dissolution study due to the previous study showed the recipe was not 

ideal to fabricate PSf membranes[46]. The concept of Normalized viscosity (NV) is 

introduced here to represent the homogeneity and estimate the required mixing time of 

different dope solutions. To calculate NV, the ultimate viscosity (as defined by the 

viscosity at the 72th hour) of each dope solution was used as the baseline for homogeneity 

and, hence, complete dissolution. Viscosities were then measured as a fraction/percentage 

of the ultimate viscosity, which was called NV. 
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Table 5.2 Recipes of PSf/solvent membranes (all dope solutions were made using 

17% PSf and 83% solvent) 

 Fabrication of membranes 

After dope solution homogeneity was achieved, based on 90% NV (i.e. dope 

viscosity equal to 90% of the ultimate viscosity of the dope after 72 hours of mixing), the 

membranes were cast using the NIPS method, as shown in Figure 5.1. In this study, distilled 

water was used as the non-solvent. Briefly, dope solutions were first degassed in an 

ultrasonic bath at room temperature for 1 h to remove air bubbles. Then, a small amount 

(approximate 3 mL) of dope solution was poured on a glass plate and cast using an 

aluminum casting knife. The gap of the casting knife was set at 200 μm. Thin films 

produced were evaporated for 30 seconds for consistency before immersion into the 

distilled water/non-solvent bath in order to allow phase inversion to occur. The thickness 

of produced membranes was measured using a thickness gage with the thickness range of 

100-130 μm. The thickness of membrane was less than the gap of the casting knife because 

Weight 

percent (%) 

M1 M2 M3 M4 M5 M6 

PSf 17 17 17 17 17 17 

PolarClean 83 75%×83 50%×83 25%×83 
  

GVL 
 

25%×83 50%×83 75%×83 83 
 

DMAc 
   

 
 

83 
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the casting knife was applied on the liquid dope with 83 wt% solvent in it, while after phase 

inversion occurs, only the solid polymer was left on the glass substrate. Fabricated 

membranes were stored in DI water for a week before use.   

In this case, the gap of the casting knife was set at 200 μm but the membranes 

obtained were about 100-130 μm, which is an acceptable range for membranes prepared 

using the NIPS method[232]. A mass balance was used to analyze the thickness under the 

following two lower and upper boundaries: (1) if there were no pores in the structure (a 

film formed with polymer without any void/microvoid space), the thickness should be the 

doctor’s blade thickness setting multiplied by the polymer weight percentage, or 200 × 

17% = 34 μm; (2) if the solvent diffused into the non-solvent while the membrane structure 

was maintained as liquid film, the thickness should be the setting of the doctor’s blade, or 

200 μm[232, 252]. The thickness of 100-130 μm is in between the boundaries, meaning 

that after depositing on the substrate and before immersion into the nonsolvent bath, the 

dope solutions spread on the substrate[253], which might have decrease the thickness. 

Furthermore during phase inversion, the solvent diffused into the nonsolvent, and resulted 

in some of decrease of the thickness of the film[20, 232, 252].    

 Membrane Characterization  

Membranes were characterized using several different techniques to determine how 

similar or different membranes fabricated using different solvents/co-solvents were. The 

membrane fabricated using DMAc was set as the standard since this solvent is 

commercially used[20]. Therefore, optimal membrane recipes were defined as being most 
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similar to DMAc membranes with respect to roughness, pore size distribution, 

morphology, hydrophobicity and surface charge.  

5.2.5.1 Roughness 

The topography of membranes is measured at the atomic scale to characterize the 

roughness on the membranes surface. The surface roughness values of the six membranes 

(M1- M6) were measured using an atomic force microscope (AFM, Quesant Instrument 

Co., United States). The surface roughness was measured under the tapping mode and then 

evaluated by root-mean-squared (RMS) roughness. Six areas of 20 × 20 μm on each 

membrane surface were randomly chose and measured.  

5.2.5.2 Surface pore analysis 

The pore size on the selective layer of a membrane is used to estimate the selectivity 

of a membrane based on size exclusion. The surface pores of membranes were measured 

using a Liquid-Liquid porometer (LLP-11000A, Porous Materials Incorporated, Ithaca, 

New York, United States). Two immiscible wetting liquids, silwick (purchased from PMI, 

Ithaca, New York, United States) and isopropyl alcohol (IPA, purchased from VWR 

international), were used for the measurement. The membranes were wetted with silwick 

for ten minutes, and IPA was pressurized to displace the silwick in the membrane pores. 

The pressure was increased gradually from 0 kPa to 5400 kPa. The silwick was forced to 

flow through the pores and the amount was measured using a balance equipped in the 

porometer. The mean flow pore diameter and bubble point pore diameter were used to 

represent the mean value of pore size and the largest pore on the membrane surface.  

5.2.5.3 Morphology  
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To prepare membrane samples for SEM image, the PSf membranes were immersed 

and fractured in liquid nitrogen, freeze dried overnight and then sputtered with palladium 

for 4 minutes. The surfaces and the cross sections of the PSf membranes were observed by 

a scanning electron microscope (SEM, Hitachi S-4300 from Hitachi Group, Troy, MI, 

USA). All the images were presented as a scale bar of 50 μm.  

5.2.5.4 Hydrophilicity 

The contact angle was characterized to represent hydrophilicity of the membranes. 

It was measured by the sessile drop method using a drop shape analyzer connected to a 

high definition camera (DSA 100S, Kruss Company, Hamburg, Germany.) One drop water 

of 12 μL was deposited on the membrane surface. The interface between the water drop 

and the membrane surface was captured by the camera and the contact angle was calculated 

according to the image. The measurement was repeated six times and then the average 

values and deviations were calculated.    

5.2.5.5 FTIR 

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, 

Thermo Nicolet iS50 FTIR Spectrometer, Thermo Scientific, Waltham, Massachusetts, 

USA) was performed to characterize the surface structure of membranes prepared using 

different solvents. A piece of each PSf membrane was freeze dried overnight and then 

placed on ATR-FTIR crystal (diamond) for analysis. The absorbance spectra of different 

membranes were normalized [153-156] and then adjusted in the same figure for 

comparison.  

5.2.5.6 Permeability and separation performance  
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While characterization comparisons determine which membranes are chemically 

and morphologically similar, filtration experiments were used to investigate operational 

similarities between membranes cast using the solvents/co-solvents. Filtration experiments 

were performed using a dead-end filtration cell (Amicon Stirred Cell 50 mL, UFSC05001, 

provided by Millipore Sigma, Burlington, MA, United States). First, a circular membrane 

piece with diameter of 44.5 mm and effective area of 13.4 cm2 was cut. Then, 20 mL of 

deionized water were filtered through the membrane for precompaction[20, 254, 255], 

followed by 20 mL of 1 g/L BSA. All experiments were performed at a pressure of 400 

kPa under room temperature. The permeability was recorded for every 2 mL of permeate 

samples. The concentrations of BSA in the feed and permeate were analyzed using a 

UV/Vis spectrophotometer (UV-6300PC, VWR International bvba/sprl, Leuven, Belgium) 

at a wavelength of 277 nm in order to calculate the rejection of BSA. The experiments were 

triplicated.  

After the BSA filtration, reverse flow filtration using deionized water was performed 

at 200 kPa for 30 minutes to remove any reversibly attached BSA (i.e. reversible fouling) 

from the membranes. Then, flux recovery ratio (Re, %) was calculated to characterize the 

resistance of the fouled membrane.  

5.3 Results and Discussion  

This chapter focused on the fabrication of ultrafiltration membranes, using viscosity 

to characterize the kinetics of the dope solution mixing process, using normalized viscosity 

as a parameter to determine the homogeneity of dope solution, and the influence of 

viscosity of dope solutions. Therefore, to isolate the impact of viscosity on the above-
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mentioned parameters, we kept all the other parameters unchanged. The thickness of 

membranes was maintained at 100-130 μm. Furthermore, 17 wt% PSf dope solution, which 

is approximately 14.6 volume percent, was chosen based on literature studies that show 

this is suitable for the fabrication of ultrafiltration membranes[20, 46].  

 Mixing Studies 

Ra and RED values for dope solutions made by mixing polysulfone and different 

solvents, including individual solvents and co-solvents, were calculated using the Hansen 

Solubility Parameter theory and are shown in Table 3. Ra represents the affinity of a 

polymer and a solvent, with high affinity being calculated as a small Ra value because it 

requires that the solubility parameters of the polymer and solvent need to be similar, based 

on the equation (1). Likewise, a good solvent for a polymer has a RED value smaller than 

or approximately 1 because it represents that the interaction between solvent and polymer 

is within the sphere of the polymer. The similarity of polymer and solvent results in a good 

affinity[136, 141].  

For baseline, Ra and RED values were calculated for the traditional solvent DMAc, 

and were 6.9 MPa1/2 and less than 1, respectively. RED values of PolarClean and GVL 

were slightly larger than 1, which indicated that PolarClean and GVL might not be ideal 

as sole solvents for PSf. However, when PolarClean and GVL were used as co-solvents, 

the RED values dropped to below 1, which indicated that the co-solvents may be a 

promising option. The reason is that the Ra value is calculated by three parameters, 𝛿𝛿𝑑𝑑, 𝛿𝛿𝑝𝑝, 

and 𝛿𝛿ℎ. The difference of the dispersive force between PSf and PolarClean is 3.9 MPa1/2, 

which is larger than the difference between PSf and GVL (0.7 MPa1/2). Likewise, the 
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difference of the polar force between PSf and PolarClean is 2.4 MPa1/2, less than the 

difference between PSf and GVL (8.3 MPa1/2). The difference between PSf and PolarClean 

is the same with PSf and GVL at 0.9 MPa1/2. By using them as co-solvents, the differences 

of dispersive forces and polar forces decreased, leading to a decrease in the RED values of 

the PSf/co-solvent systems. It implicated that, theoretically, the use of PolarClean and GVL 

as co-solvents might be a promising option. The lowest RED value was obtained at 50% 

PolarClean and 50% GVL, as shown in Table 3. 

Table 5.3 Ra and RED values of polymer, solvents and co-solvents used in this study 

Polymer δd (MPa1/2) δp (MPa1/2) δh (MPa1/2) Ro (MPa1/2) 
  

PSf 19.7 8.3 8.3 8.0 
  

Solvent δd (MPa1/2) δp (MPa1/2) δh (MPa1/2) Ra (MPa1/2) RED Membrane 
label 

PolarClean 15.8 10.7 9.2 8.2 1.03 M1 

75% PolarClean 
25% GVL 16.6 12.2 8.8 7.3 0.92 M2 

50% PolarClean 
50% GVL 17.4 13.6 8.3 7.1 0.88 M3 

25% PolarClean 
75% GVL 18.2 15.1 7.9 7.5 0.93 M4 

GVL 19.0 16.6 7.4 8.5 1.06 M5 

DMAc 16.8 11.5 10.2 6.9 0.86 M6 

Water 15.5 16.0 42.4 36.0 4.49 
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 Dissolution kinetics 

The achievement of a homogeneous dope solution is the key to the fabrication of 

polymeric membranes since it prevents the formation of defects during casting. In this 

study, viscosity was used as the parameter to demonstrate the dissolution process of the 

PSf/solvent system since viscosity is related to water transport during phase inversion. The 

viscosity of polymeric dope solution reflects hydrogen bonds in between the solvent and 

polymer[123, 256]. High viscosities are undesirable since they retard the transport of water 

during phase inversion and ultimately form dense outer layers. At the beginning of 

dissolution, the solvent and the polymer are not fully in contact with each other. Therefore, 

in this stage, the viscosity of the dope solution mainly reflects the viscosity of solvents. As 

time moves along the dissolution process, the polymer swells, so the polymer and solvent 

diffuse into each other[257]. The viscosity increases exponentially during the swelling 

phase because hydrogen bonds increase exponentially with the diffusion of 

polymer/solvent. Once the polymer fully swells and the polymer/solvent is fully diffused, 

an equilibrium state is reached, and the viscosity of dope solution reaches its highest 

sustained value.  

Dope viscosities as a function of time are shown in Figure 5.3. It needs to be 

mentioned that 25wt% PolarClean/ 75wt% GVL (M4) was not included in Figure 5.3- 5.5 

because this recipe was proved not ideal for PSf fabrication based on the reported 

study[46]. As previously stated, the dope solution made using DMAc was used as baseline 

for comparison. During mixing, the viscosity of PSf/DMAc dope solution mainly increased 

during the 2nd hour, from 0.069 to 0.174 Pa·s, and then remained approximately constant 

at 0.18 - 0.19 Pa·s; therefore, homogeneity was achieved after two hours of mixing. On the 



107 

 

other hand, the viscosity of PSf/PolarClean dope solution increased gradually during the 

first 8 hours, then increased exponentially from 8th h (0.45 Pa·s) to 24th h (5.50 Pa·s), 

indicating that PolarClean required additional dissolution time to reach dope homogeneity. 

Another observation was that PolarClean led to the most viscous dope solutions, which 

poses issues during casting[50, 253]. The PSf/GVL dope solution increased majorly during 

2nd h to 6th h, from 0.12 to 1.18 Pa·s and then remained approximately constant, which was 

faster than the PSf/PolarClean dope solution. However, it is important to note that GVL is 

not desirable when water is the non-solvent to cast membranes[46], which is needed to 

keep the NIPS process greener; therefore, co-solvents were investigated. 

When PolarClean and GVL were used as co-solvents, the viscosity of the produced 

dope solutions stayed in between the individual curves for PolarClean and GVL, as shown 

in Figure 5.3. At the beginning of the mixing, the standard deviations were large (average 

viscosity and their corresponding standards). Therefore, there was no significant decrease 

in the viscosity when comparing M2, M3 and M5. The most likely reason for this initial 

large standard deviation might be because dope solutions might not have yet reached 

equilibrium mixing, so individual samples used to measure viscosity might not have been 

representative of the mixture. The large standard deviation supported the notion that the 

mixing process required a minimum period of time for the polymer to swell and diffuse 

with the solvent.  

Both co-solvent dopes showed similar trends of viscosity increasing during the first 

24 h, before reaching homogeneity and constant viscosity values. Therefore, while the use 

of PolarClean/GVL as co-solvents did not change the time required for the dissolution 

process/homogeneity, as measured by reaching a constant viscosity values, of PSf dope 
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solutions, it did decrease the ultimate viscosity of the dope solution. While the ultimate 

viscosities of the co-solvent dope solutions still were over one order of magnitude higher 

than PSf/DMAc, they were lower than that of PolarClean alone.  
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Figure 5.3 Viscosity changes of dope solutions as a function of time  

The effect of the use of co-solvents on reaching complete dissolution/homogeneity 

was deconvoluted for adequate comparison using the concept of normalized viscosity 

(NV), as shown in Figure 5.4. For each dope solution, the ultimate viscosity (as defined by 

the viscosity at the 72th hour) was used as the baseline for homogeneity and, hence, 

complete dissolution. Viscosities were then measured as a fraction/percentage of the 

ultimate viscosity, called NV. For M6, 3 hours were required to achieve 90% of the ultimate 

viscosity, and 8 hours later, the NV was 100%, indicating a completely dissolved polymer. 

For M1, NV values were at 7.7% at the 8th h, 27.3% at the 16th h, and 98.4% at the 24th h. 
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For M5, NV values were 7.5%, 72.2% and 94.6% at the 2nd, 16th and 24th h, respectively. 

For the co-solvents, NV values of 75 M2 were 18.8% after 8 h and 48.4% after 16 h, while 

the NV values of M3 were 32.0% after 8 h and 62.7% after 16 h. It was observed that after 

8 h and 16h, NV values were M5>M3>M2>M1. The reason might be that the dispersive 

forces and polarity of solvents increased as the weight percent of GVL increased, as shown 

on Table 3. At 24 h, all the dope solution displayed NV values at or over 90%, indicating 

that the dope solutions were mostly homogenous.  

1 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
vi

sc
os

ity

Time (h)

 M1
 M2
 M3
 M5
 M6

 

Figure 5.4 Related viscosity (RV) changes of dope solutions as a function of time 

In a laboratory setting, a casting knife is usually manually controlled. In this case, 

a Newtonian fluid is preferred because the viscosity does not change as a function of shear 

rate; moreover, it is difficult to control the shear rate manually. However, the effect of shear 

rate on viscosity is important since it defines large-scale casting conditions. Therefore, the 
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behavior of viscosity changes as a function of the shear rate was investigated in Figure 5.5. 

The viscosity of PSf/DMAc and PSf/PolarClean dope solutions did not change 

significantly as a function of shear rate over the 0.1 /s to 10 /s range, which supported that 

the dope solutions were Newtonian fluids. On the other hand, the viscosity of PSf/GVL 

decreased from 1.69 to 1.27 Pa·s, a 24.8% decline, which meant that the PSf/GVL dope 

solution showed shear thinning behavior, an undesirable trait for laboratory casting[253]. 

However, when PolarClean/GVL were used as co-solvents, the dope solutions were 

Newtonian fluids because the viscosity of these solutions did not change as a function of 

shear rate, as shown in Figure 5.5.   
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Figure 5.5 Viscosity changes as a function of shear rate 
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 Morphology (SEM surface images) 

In Figure 5.6, SEM images showed that from a large scale (50 μm), none of the 

membranes fabricated using the dope/solvent recipes shown in Table 3 showed any defects, 

which indicated that the solvents were effective to cast defect-free membranes. There were 

likely some impurities on the surfaces of M5 and M6 that were visible under SEM, but 

were deemed not to influence membrane properties. The topology was analyzed in detail 

using AFM. Pores were not observed on the images at this scale, which meant that the 

pores were likely less than 1 μm and were studied further using porometry.  

 

Figure 5.6 Surface SEM images of membranes 

 Pore size analysis 

The bubble point pore diameter refers to the largest pore size on the membrane 

surface, while the mean pore diameter refers to the mean size of the pores on the surface. 

It was measured that the bubble point pore diameter of M5, the PSf/GVL membrane, was 
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less than the instrument limit of 1 nm. From M1 to M4, the mean pore diameter was 

measured to be 48.1, 21.8, 9.3 and 1.7 nm, respectively. The mean pore decreased as the 

weight percent of GVL in the dope solution increased; that is, as the viscosity of the dope 

solution decreased as compared to the PSf/PolarClean dope (Figure 5.3). When DMAc was 

used, the mean pore diameter was 3.8 nm, which was the least viscous dope solution 

(Figure 5.3). These results indicate that pore sizes were not a direct relation of dope solution 

viscosity, but instead polar interactions between the polymer and the solvent/co-solvent 

impacted the phase inversion and pore formation. The largest surface pores, measured by 

the bubble point pore diameters of M1-M6 were 58.2, 28.9, 17.4, 21.7, and 9.7 nm, 

respectively, which also mostly decreased as the viscosity of dope solutions decreased. 

Therefore again, viscosity alone was insufficient to explain surface pore sizes, and possibly 

hydrogen bonding (δh, Table 3) between sole-/co-solvents and polymer in combination 

with viscosity influenced the pore formation during the phase inversion process. For high 

viscosity dope solutions, water transport during phase inversion is retarded, so hydrogen 

bonding plays a greater role. From Table 3, hydrogen bonding decreased as the GVL 

fraction increased, which is the same trend as the mean pore sizes. 
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Figure 5.7 Pore analysis on the membrane surface 

 Topology (AFM) 

The topologies of M1-M6 were determined using AFM, and the average RMS 

roughness of each membrane is shown quantitatively in Figure 5.8 and qualitatively in 

Figure 5.9. It was observed that the surface roughness was not significantly different when 

sole solvents, PolarClean (M1), GVL (M5) or DMAc (M6), were used to cast the 

membranes. The average RMS roughness of these membranes averaged between 30-40 

nm. On the other hand, using the PolarClean/GVL as co-solvent systems led to different 

results. M2 showed an average RMS roughness of 9.0 nm with the deviation of 6.2 nm. 

M3 showed an average RMS roughness of 10.4 nm with the deviation of 4.8 nm. These 

two co-solvent recipes produced the smoothest membranes in this study. When GVL was 

the dominant solvent, M4 showed the average RMS roughness of 72.5 nm with deviation 
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of 28.5 nm. However, when standard deviations are considered, it is important to note that 

no significant differences were observed between the roughness values of different 

membranes. 
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Figure 5.8 Surface roughness of different membranes 

The topology profiles are presented in Figure 5.9. While there were no significant 

differences in the average RMS values among the membranes, there were visual 

differences among the membranes, as observed in Figure 5.9. M1 and M6 showed relative 

smooth surfaces with a few large peaks. The M5 image featured numerous hills and valleys 

on the membrane surface. For the co-solvent systems, M2 showed the smoothest surface 

with no obvious hills or valleys, while the majority of the M3 area was smooth with few 

hills. M4 was the roughest membrane and the topology image showed that multiple peaks 

provided the large roughness for the membrane. Based on the topology analysis, M4 
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showed the roughest (Figure 5.8) and most irregular surface (Figure 5.9). Thus, the recipe 

of 25wt% PolarClean/75wt% GVL was not recommended and was removed from further 

evaluation. 
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Figure 5.9 Topology images of PSf membrane 

 Hydrophilicity  

The contact angle between water and the membrane surface is used to measure the 

hydrophility of the membranes (Figure 5.10). The contact angles of the membranes tested 

here varied from 68° to 72°. The contact angle slightly increased from M1 to M5, indicating 

that the hydrophilicity slightly decreased with more GVL in the co-solvent. However, the 
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difference of these contact angels was unnoticable because the material and weight percent 

of the polymer used in this study were the same.   
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Figure 5.10 Contact angles of different membranes 

 FTIR 

The polysulfone membranes prepared using different solvents were analyzed using 

FTIR. The primary structure of polysulfone has been previously investigated[258-260] and 

is listed in Table 4. Figure 5.11 shows the peaks associated with the primary structures of 

polysulfone present on the membrane surfaces. All of the FTIR spectra peaks match the 

peaks listed in Table 4. Therefore, the results also showed that the solvents used to fabricate 

the PSf membranes did not change the membrane chemistry.  
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Figure 5.11 FTIR Spectrum of a polysulfone membrane in the wavenumber range of 

1600-400 cm-1 
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Table 5.4 FTIR spectra of Polysulfone 

PSf spectra  Wavenumber (cm -1) 

Aromatic C-H bending  871, 850, 831 

C-SO2-C symmetric stretch  1149 

C-SO2-C asymmetric stretch 1319, 1292 

C-O asymmetric stretch 1238, 1012 

C6H6 ring stretch 1587-1489 

 Permeability and separation performance 

First of all, when M5 was used for pure water filtration, the pure water flux (PWF) 

was below 0.2 L/m2·h (LMH); therefore, M5 was not applicable to perform the filtration 

study. M5 was cast using the PSf/GVL dope solution, a Non-Newtonian fluid (Figure 5.5) 

that was found to be difficult to cast membranes manually. For M1-M3 and M6, the DI 

water flux values were 750, 300, 27 and 17 LMH, respectively; while for the 1 g/L BSA, 

flux values were 140, 115, 12 and 13 LMH, respectively. The hydrophilicity of membranes 

was similar, so flux curves observed were more related to the surface mean pore sizes, 

which for M1-M3 and M6, were 48.1, 21.8, 9.3 and 3.8 nm, respectively. When membranes 

M1, M2, M3 and M6 were used for BSA filtration, the flux of each membrane declined 

82%, 62%, 56% and 24% during filtration. Based on the characteristics of membranes, two 

factors might lead to the differences in flux decline. First, the surface roughness of M1 was 
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significantly higher than M2 and M3, which may favor the cake formation during BSA 

filtration and lead to a higher decline. Second, BSA is a negative molecule in the aqueous 

solution and the surface of M6 was more negative-charged than M1-M3 (Figure 5.11), 

which also reduced BSA accumulation on membrane surface. After the reserve filtration 

using DI water to remove any reversibly attached foulants, the flux recovery percentages 

of M1, M2, M3 and M6 were 30%, 66%, 70% and 91%, respectively. It is important to 

note that after while M6 showed the highest flux recovery percentage, the absolute flux 

values of M1, M2 and M3 were larger than M6. 
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Figure 5.12 Filtration study for different membranes 

BSA rejection using different membranes is shown in Figure 5.13. M1 rejected 

89.5±1.0 % BSA in the aqueous solution, M2 rejected 99.2±0.1 %, M3 rejected 96.0±2.2 

%, and M6 rejected 95.5±0.7%. BSA has a molecular weight of 66.5 kDa[261], and the 



121 

 

difference in BSA rejection is attributed first to the membrane active layer. The mean pore 

diameter of M1 surface was larger than M2, M3, and M6; thus, less BSA was rejected 

based on the mechanism of size exclusion. Second, the cross-sectional structures of these 

four membranes were different, as shown in Figure 5.14 M(a). M1(a) showed the spongy-

like structure with microvoids in the supporting layer; M2(a) and M3(a) showed spongy-

like structures without microvoids; M6(a) presented a finger-like supporting layer and 

microvoids. Besides the major influence of the dense layer on top of the membranes, the 

supporting layer also influenced the rejection rate of BSA because of the absorbance effect. 

Therefore, the spongy-like membrane without microvoids are able to absorb more solutes 

than the membranes with the finger-like structure and the spongy-like structure with 

microvoids.  
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Figure 5.13 BSA rejection rates for different membranes 

Figure 5.14 shows the evolution of the membranes from before filtration (labeled 

(a)), to after BSA filtration (labeled (b)) and ultimate reverse-flow filtration to emulate 

backwashing (labeled (c)). Figure 5.14 shows that using DMAc (M6) a finger-like support 

layer structure was developed, while using PolarClean and PolarClean/GVL as co-solvents, 

M1, M2 and M3 formed spongy-like support layer structures. This was likely due to the 

demixing speed of solvent and nonsolvent since that plays an important role in the 

formation of the structure of the support layers[232]. The fast exchange between solvent 

and nonsolvent results in the instantaneous demixing and a fast precipitation for the 

polymer film, which generally generates finger like structures. On the other hand, the slow 

exchange between solvent and nonsolvent generally leads to a delayed demixing and a slow 

precipitation, generating spongy like structures[252, 262-264]. Microvoids generally form 



123 

 

in a relative faster demixing process[262, 265], which indicates that PolarClean can diffuse 

in water faster than GVL, as shown in Figure 5.14 M1(a). Microvoids in the membranes 

disappeared with the addition of GVL, as shown in Figure 5.14 M2(a) and M3(a).  

For M1, PolarClean as sole solvent, the original membranes presented a spongy-

like structure with some microvoids, which is associated with membranes fabricated from 

dope solutions with high viscosities[266-268] (~ 5.50 Pa·s, Figure 5.3). The microvoids 

slightly collapsed after filtration and deformed after the backwash process, which was 

likely the cause for the low flux recovery percentage observed for M1 (30%, Figure 5.12). 

For M2 and M3, the original membranes showed spongy-like structures without 

microvoids, and thus, the membranes morphological structures did not experience 

deformation during filtration and backwash. These membranes were cast from dope 

solutions with viscosities lower than for PolarClean alone (Figure 5.3) to minimize the 

formation of microvoids, but still high enough to develop spongy structures. This might be 

the reason that these membranes showed higher rejection rates and higher flux recovery 

percentages as compared to M1. For M6, the membranes showed finger-like structures with 

microvoids, which is a characteristic of membranes formed from dopes with low viscosities 

(0.19 Pa·s for DMAc, Figure 5.3). During the filtration and backwash, the finger-like 

structures did not collapse but the microviods deformed significantly. However, the flux 

recovery percentage of M6 was high at 91%, which might have been due to the finger-like 

structures providing a more mechanically stable supportive layer[20, 232, 266].  
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Figure 5.14 Cross-sectional images of membranes: (a) original (i.e. before filtration); 

(b) after BSA filtration; (c) after backwash 

5.4 Conclusions 

To address the problem of hazardous/toxic solvents involved in casting polymeric 

membranes, low-hazard solvents, PolarClean, GVL and PolarClean/GVL as co-solvents, 

were compared to a traditional solvent, DMAc, in fabricating PSf membranes via NIPS. 

Based on calculated Hansen solubility values, PolarClean/GVL co-solvents were 

determined to be better solvents than PolarClean and GVL as sole solvents. Furthermore, 

PolarClean/GVL as co-solvents showed Newtonian fluid behavior since their viscosities 

did not change as a function of shear rate. Viscosity was also used to quantify the time 

required for completely mixing of polymer/solvent and the normalized viscosity (NV) was 

used as an indicator for the homogeneity of a dope solution. After 24 h, all the dope 

solutions reached or surpassed NV values of 90%, indicating that these dope solutions 
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reached homogeneity. FTIR results showed that the use of different solvents produced 

membranes that were structurally identical. The mean pore diameter of fabricated 

membranes decreased as the weight percent of GVL increased from 0, 25%, 50% to 75% 

in the dope solution, and observed changes in mean pore size followed the same trend as a 

function of changes in dope viscosity. In filtration studies, it was observed that the 

membrane flux decreased as the mean pore size of membranes decreased, as expected, 

while all membranes showed nearly complete rejection of BSA. Long-term studies using 

the identified optimal solvent mixtures should be performed in the future. Since the starting 

goal of this study was to use low-hazard solvents/co-solvents to fabricate membranes with 

similar operation as membranes fabricated using DMAc, it was deemed that dope solutions 

using equal weight fractions of PolarClean and GVL produced the best membranes. 

Therefore, PolarClean/GVL co-solvents provided a promising solution to replace 

traditional solvents.   
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CHAPTER 6. LOW-HAZARD SOLVENTS AND THEIR MIXTURE FOR THE FABRICATION OF 
POLYSULFONE ULTRAFILTRATION MEMBRANES: AN INVESTIGATION OF DOCTOR 

BLADE AND SLOT DIE CASTING METHODS 

The use of slot die in this chapter was co-supervised by Dr. Tequila Harris, and 

conducted in the Polymer Thin Film Processing (PTFP) group in the Georgia Institute of 

Technology.  

This chapter has been published in the following report and adapted with permission from: 

Dong, X.; Jeong, T.J.; Kline, E.; Banks, L.; Grulke, E.; Harris. T.; Escobar, I.C. Eco-

friendly solvents and their mixture for the fabrication of polysulfone ultrafiltration 

membranes: An investigation of doctor blade and slot die casting methods. Journal of 

Membrane Science. 2020. (614) 118510 [269] 

Copyright © 2020 Elsevier  

6.1 Introduction  

Water treatment membranes are thin sheets of material that can be used to separate 

particles from water based on size exclusion, charge or aromaticity [270-272]. Nonsolvent 

phase induced separation (NIPS) is a common method for casting of polymeric membranes. 

In NIPS, polymer materials are first dissolved in a solvent/co-solvent mixture to produce a 

dope solution, which is then cast on a substrate as a liquid film. The liquid film is then 

immersed into a nonsolvent, often water, for phase inversion. During the phase inversion 

process, the solvents diffuse into water, and the polymer remains on the substrate as a 

membrane matrix.  
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As more applications are found for membranes, the environmental impacts of 

membrane production become more important to investigate. One associated concern is 

with respect to the solvents used to dissolve the polymers. Commonly used solvents, such 

as dimethylformamide (DMF), dimethylacetamide (DMAc), and N-Methyl-2-pyrrolidone 

(NMP), are generally toxic to humans and the environment [46], and regulations restricting 

their use during mass production are starting to appear. The European Legislation, 

Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) has 

labeled DMF, DMAc and NMP as substances of very high concern (SVHC), and it bans 

the use of DMAc and NMP after May 2020 [273, 274]. Therefore, the need to find less 

hazardous alternatives for these solvents is imperative. Rhodiasolv® PolarClean (PC) and 

γ-valerolactone (GVL) are two solvents being researched because of their low levels of 

toxicity [46, 224].   

Wang et al [38]  prepared polyethersulfone (PES), polysulfone (PSf), and cellulose 

acetate (CA) membranes using PolarClean as the solvent which compare with membranes 

fabricated by traditional solvents. With PolarClean as the solvent, PES and PSf membranes 

formed surface pores suitable for ultrafiltration (UF), while CA membranes formed pores 

acceptable for nanofiltration (NF) [38]. The performance of these membranes was 

comparable to membranes created using traditional solvents. Marino et al [130] similarly 

worked with PolarClean in the fabrication of PES membranes. They found the cross-

sectional structure of the membranes to be spongy, and that they performed well in 

permeability tests compared to membranes prepared with traditional solvents [2]. In 

addition to PolarClean, GVL is another low-toxicity solvent, and it is produced from 

biomass as a derivative of glucose [275, 276].  Rasool et al. [136] prepared membranes 
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using GVL and a variety of different polymers, most notably CA and cellulose triacetate 

(CTA). Specifically, 15% CA/GVL and 10% CTA/GVL dopes were used to cast 

nanofiltration (NF) that rejected 90% Rhodamine B, at permeances of 1.8 Lm-2h-1bar-1 

(LMH/bar) and 11.7 LMH/bar, respectively.   

PolarClean and GVL have been previously used to dissolve PSf to fabricate 

ultrafiltration membranes both as sole solvents and as co-solvents. When PolarClean was 

used as a solvent, it produced membranes with spongy-like pore structures that were 

different from finger-like structures observed when DMAc was used to cast PSf 

membranes [20]. Furthermore, the PSf/PolarClean pore structure was observed to collapse 

upon backwashing. Conversely, GVL alone was found not to be suitable to fabricate PSf 

membranes because the dope formed gel-like films instead of solid films during NIPS with 

water as the nonsolvent [46]. Under equal amounts of PolarClean and GVL as a co-solvent 

mixture, it was observed that membranes had similar structural, morphological and 

operational properties compared to membranes made using DMAc [224].  

At the laboratory scale, a doctor blade is a common tool to solution casting 

membranes; however, it is not scalable. In order to investigate the scale up abilities of the 

membranes cast using green solvent, slot die casting is introduced for this study, and used 

in combination with a roll-to-roll (R2R) system, which allows for continuous casting of 

polymeric membranes. An illustration of this system is shown in Figure 6.1.  
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Figure 6.1 Schematic of the combination setup of a simple R2R system and a slot die 

coater [277] 

Specifically, in this process, two die halves are set apart by a small gap (W) with a 

shim, and the fluid is pumped into the die at a chosen flow rate; then, the fluid is 

continuously cast onto a moving substrate. A zoomed in view of the casting region of the 

slot die coating process is shown in Figure 6.2. In this slot die process, the controlled 

casting thickness (h) is a function of the flow rate of solution per unit width (Q’) and 

substrate speed (uw) [48], which is h= Q’/ uw. Though to a lesser degree, the slot gap in the 

slot die (W) and the gap height (H) can also affect the quality of the films cast. In order to 

fabricate defect-free membranes, values of Q’, uw and H must be determined.  
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(a)      (b)  

Figure 6.2 (a) Schematic of the lower section of a slot die coater, (b) photo of the 

lower section of a slot die coater 

In this study, low-hazard solvents, PolarClean and GVL, are investigated to dissolve PSf 

into a solution that can be cast into ultrafiltration membranes at the laboratory scale using 

a doctor blade and at the production scale using a slot die casting integrated into a R2R 

system. Different fabrication techniques may result in membranes with different properties; 

therefore, the membranes are characterized with respect to their chemical and 

morphological structures, and are used to filter different solutions for comparison. It is 

important to note that in the procedure described here, the membranes were cast directly 
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onto a glass plate using both methods, doctor blade extrusion and slot die coating. However, 

typically large-scale production membranes are cast onto a nonwoven fabric. A glass plate 

was used here instead of nonwoven fabric to minimize structural and operational 

interactions between the dope and the substrate from one processing method to another, so 

that the effects of scalability could be more comparably accessed.    

 

6.2 Materials and Experimental: 

 Materials  

PSf (flakes, ground material for Ultrason E. 6020P Q691) provided by BASF 

Performance Materials (Wyandotte, Michigan, United States) is used as the polymer. Three 

solvents are used to dissolve the polymer, (1) GVL, purchased from Acros Organics (Fair 

Lawn, New Jersey, United States); (2) Rhodiasolv® PolarClean provided by Solvay 

Novecare (Princeton, New Jersey, United States); and (3) DMAc purchased from Tokyo 

Chemical Industry Co., Ltd. (Tokyo, Japan). To study the filtration performance of the 

membranes, Grade I deionized (DI) water with a resistivity of 18.2 mΩ·cm at 25 °C 

provided by the Chemical Engineering Undergraduate Laboratory at University of 

Kentucky, and bovine serum albumin (BSA) purchased from VWR Life Science (Radnor, 

PA, USA), are used.  

 Thermodynamics study  

6.2.2.1 Relative Energy Difference (RED) 
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The affinity of a polymer and a solvent is described as Ra was calculated by Hansen 

Solubility Parameter (HSP) theory, as equation 1: 

R𝑎𝑎 = �4(𝛿𝛿𝑑𝑑2−𝛿𝛿𝑑𝑑1)2 + �𝛿𝛿𝑝𝑝2−𝛿𝛿𝑝𝑝1�
2

+ (𝛿𝛿ℎ2−𝛿𝛿ℎ1)2  (1) 

Where 𝛿𝛿𝑑𝑑 is the dispersive force, 𝛿𝛿𝑝𝑝is the polar force, and 𝛿𝛿ℎ is hydrogen bonding[141]. A 

solvent is considered as a good solvent for a polymer when the value of Ra is small [136, 

141].  

In this study, PSf was not only dissolved using single solvents, but also a binary 

solvent mixture. Therefore, the corresponding parameters of the binary solvent mixture 

were calculated according to following procedure: first, the volume fraction of each solvent 

was calculated by equations 2 and 3; second, the values of solubility parameters were then 

calculated using equation 4, 5, and 6[141]: 

𝑉𝑉1 = 𝑊𝑊1 𝜌𝜌1⁄
𝑊𝑊1 𝜌𝜌1⁄ +𝑊𝑊2 𝜌𝜌2⁄   (2) 

𝑉𝑉2 = 𝑊𝑊2 𝜌𝜌2⁄
𝑊𝑊1 𝜌𝜌1⁄ +𝑊𝑊2 𝜌𝜌2⁄  (3) 

𝛿𝛿𝑑𝑑 = 𝑉𝑉1𝛿𝛿𝑑𝑑1 + 𝑉𝑉2𝛿𝛿𝑑𝑑2 (4) 

𝛿𝛿𝑝𝑝 = 𝑉𝑉1𝛿𝛿𝑝𝑝1 + 𝑉𝑉2𝛿𝛿𝑝𝑝2 (5) 

𝛿𝛿ℎ = 𝑉𝑉1𝛿𝛿ℎ1 + 𝑉𝑉2𝛿𝛿ℎ2 (6) 

Where 1, 2 represents solvent 1 and solvent 2; Vi represents the volume fraction, and Wi 

represents the weight fraction.   
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Three parameters of a polymer or solvent can be used to form a polymer-solvent 

affinity sphere[141] in HSP theory, and the relative energy difference (RED) is then 

introduced to describe the interaction between a polymer and a solvent[45]. A good solvent 

for a polymer can be theoretically defined if the RED value is less than or equal to 1, 

calculated by equation 7[20, 141]: 

RED = 𝑅𝑅𝑎𝑎
𝑅𝑅0

  (7) 

Where Ro represents the radius of the Hansen solubility parameter sphere for the polymer. 

6.2.2.2 Cloud point curve 

In order to determine the compatibility of a solvent to fabricate membranes by the 

nonsolvent phase inversion method, a cloud point curve must be obtained for 

solvent/nonsolvent/polymer trinary system [37]. For the solvent/water/PSf system, a cloud 

point curve is experimentally determined by titration [38]. During the experiments, dope 

solutions are prepared using 1, 3, 5, 10, 15, 20, 25 wt % concentrations of PSf in DMAc, 

PolarClean, GVL and the mixture of 50% PolarClean with 50% GVL. Each dope solution 

is mixed using a sonicator (Elmasonic P70H, from Elma Electronic Inc., Munich, 

Germany) at 65 °C (with frequency of 80 kHz, power of 900 W under pulse mode) for 24 

h. All dope solutions are then cooled to room temperature, and DI water is gradually added 

into the dope solutions using a micropipette until the solutions visually became cloudy. 

The cloudy solution is then sonicated for one additional hour to determine if it returns to a 

clear state. If the solution remains cloudy, the composition of solvent/water/polymer is 

determined to be the cloud point. 
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 Preparation of dope solutions 

Three different PSf dope solutions are used in this study, 17 wt% PSf/DMAc, 17 

wt% PSf/PolarClean, and 17 wt% PSf/50 wt% PolarClean-50 wt% GVL. These three dope 

solutions were chosen based on results from previous studies [20, 46, 224]. Since the 

purpose of this study is to investigate the scaled fabrication of membranes using slot die as 

compared to a laboratory doctor blade, all the dope solutions are prepared in large 

quantities, i.e., liters. Therefore, a kinetic study of polymer dissolution in different solvents 

is conducted after preparation. 

 Kinetic study of polymer dissolution 

The polymer dissolution is studied in a high-pressure reactor (4540-600 mL, Parr 

Instrument, Moline, Illinois, United States). The reactor is equipped with a four-blade 

impeller. The dissolution process is conducted in a glass vessel under different rotation 

speeds of 300, 450, 600 rpm (revolutions per minute), separately. For each trial, 200 mL 

of solvent (DMAc, PolarClean, and the mixture of PolarClean and GVL with equal weight 

percent) is used and PSf flakes are mixed in the solvent, and time required for complete 

dissolution is measured. The flake form of PSf can minimize the influence of shape and 

size on the mixing process because compared to the common commercially available pellet 

form, the flake is thin and therefore provides more surface area to interact with the solvent.  

 Characteristics of dope solution 

6.2.5.1 Viscosity 
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Polymer dissolution is conducted in a transparent vessel so that it can be visually 

monitored; moreover, viscosity is used as a quantitative indicator to monitor dope solution 

mixing until completion, and is measured as a homogenous solution [224]. After 

homogenous dope solutions are obtained, the viscosity of each solution sample is measured 

using a rheometer (AG-G2, TA instrument, Delaware, United States). Dope solution 

viscosity as a function of changing shear rate is used to demonstrate the fluid behavior of 

these solutions to determine if they can be cast using a doctor blade or slot die. The 

viscosity of each sample is recorded over the change of shear rate from 0.01-100/s.  

6.2.5.2 Diffusion rate 

The diffusion rate is measured in a cuvette cell, is then positioned in a VWR UV-

6300PC spectrophotometer (Radnor, Pennsylvania, United States) [42]. 20 mL DI water is 

circulated in the spectrophotometer and the blank calibration is obtained. Then 1 mL dope 

solution is dropped into DI water and the light transmittance at 276 nm is recorded over 5 

minutes. The light transmittance data is then normalized and compared among dope 

solutions of PSf/DMAc, PSf/PolarClean and PSf/50% PolarClean-50% GVL. 

 Membrane fabrication 

To study the scale up of the membranes prepared using low-hazardous solvents, an 

aluminum doctor blade (AP-G10/10, Paul N. Gardner company, Florida, United States) is 

used to cast membranes in laboratory scale and an aluminum slot die is used to fabricate 

the membranes in a production scale, to understand the viability of scaling up the 

fabrication process. The dope solutions containing the three solvents in both casting scales 

are shown in Table 1. When the doctor blade method is used, the gap between the blade 
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and the glass plate is set at 200 μm. In the slot die casting method, the slot gap is set at 90 

μm, and the coating gap is set at 200 μm above the glass plate substrate, which is placed 

on top of the poly(ethylene terephthalate) (PET) film. The PET film is the moving conveyor 

that is pulled at a speed of 1.3 mm/s from a feed roller to the take-up roller [253]. A syringe 

pump is used to set the flow rate of the dope solution dispensed from the slot die to fabricate 

defect free membranes. A different 2-D flow rate is used for each dope solution, for 

PSf/DMAc, 0.17 mm2/s is used; for PSf/PolarClean, 0.75 mm2/s is used, and 0.70 mm2/s 

is used for PSf/50%PolarClean-50%GVL. All casting is performed at 25 ˚C and 48% 

humidity. 

The glass substrates are cleaned with DI water and are then rinsed using isopropyl 

alcohol to guarantee no residual water on the surface before casting. After casting, the 

liquid films are inversed into a solid film via the NIPS method. Membranes pieces are then 

cast in the shape of 305×100 mm×mm (length×width).  
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Table 6.1 Recipes of PSf/solvent membranes (all dope solutions are made using 17% 

PSf and 83% solvent) 

 Characterization of membranes 

6.2.7.1 Attenuated total reflectance-Fourier transform infrared spectroscopy 
(ATR-FTIR)  

ATR-FTIR (Thermo Nicolet iS50 FTIR Spectrometer, Thermo Scientific, 

Waltham, Massachusetts, USA) is performed to characterize the surface chemical structure 

of the six membranes and to determine if different solvents affect the surface chemical 

structure of membranes. A piece of each membrane sample is freeze-dried overnight to 

minimize the moisture in the membrane and is then placed on the ATR-FTIR crystal 

(diamond) for analysis. The absorbance spectra of these six different membranes are 

normalized [153-156] and are then adjusted in the same figure for comparison.  

Weight percent 

(%) 

M1 M2 M3 M4 M5 M6 

PSf 17 17 17 17 17 17 

DMAc 83 -- -- 83 -- -- 

PolarClean -- 83 50%×83 -- 83 50%×83 

GVL -- -- 50%×83 -- -- 50%×83 

 Slot Die Casting Lab casting 
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6.2.7.2 Scanning Electron Microscopy (SEM) morphology 

Scanning electron microscope (SEM) images of the surface and cross sections can 

directly provide the morphology difference of the membranes fabricated using different 

solvents and methods. The surfaces and the cross sections of the six different PSf 

membranes are observed by two different SEMs (Hitachi S-4300 from Hitachi Group, Troy, 

MI, USA and FEI Quanta 250 from Thermo Scientific, Hillsboro, OR, USA). To prepare 

membrane samples for SEM imaging, the PSf membranes are immersed and fractured in 

liquid nitrogen, freeze-dried overnight and then sputtered with palladium for 4 minutes. 

All the images are presented as a scale bar of 50 μm.  

6.2.7.3 Hydrophilicity and wettability  

Membrane hydrophilicity represents the water affinity of the material. It affects its 

water permeability [278]. The contact angle is characterized to represent hydrophilicity of 

the membranes. It is measured by the sessile drop method using a drop shape analyzer 

connected to a high-definition camera (DSA 100S, Kruss Company, Hamburg, Germany). 

One drop 12 μL of DI water is deposited on the membrane surface. The interface between 

the water drop and the membrane surface is recorded by the camera and the contact angle 

is calculated according to the image. For each membrane sample, the water contact angle 

is recorded after five minutes. The measurement is repeated three times and then the 

average values and deviations are calculated.    

6.2.7.4 Surface roughness and topology  

The topography of membranes is measured at the atomic scale to characterize the 

roughness on the surface. Surface roughness provides quantitative information to 
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investigate the influence of different factors shaping the topography of the membrane 

surface, for instance, solvent evaporation, solvent-nonsolvent diffusion rate, etc. The 

surface roughness values of the six membranes (M1-M6) are measured using an atomic 

force microscope (AFM, Quesant Instrument Co., Agoura Hills, California, United States). 

The surface roughness is measured under the tapping mode and is then evaluated by root-

mean-squared (RMS) roughness. Six areas of 20 × 20 μm on each membrane surface are 

randomly chosen and measured to calculate the average and standard deviation of the RMS 

roughness values.  

 Filtration performance  

Filtration performance of membranes is characterized by using a crossflow 

apparatus Sterlitech HP4750 stirred cell (Kent, Washington, USA) to perform convective 

studies. The crossflow filtration cell is run at a flowrate of 1.2 L/min through the 

precompaction stage, fouling stage and tangential washing stage. DI water permeability is 

determined for each membrane by precompacting at 6.9 bar overnight and then measuring 

the volumetric flux of deionized ultrafiltered (DIUF) water at 1.4, 2.8, 4.1, 5.5, 6.9 bar, 

respectively. The linear correlations of membranes are analyzed accordingly. 50 mg/L BSA 

solution is then filtered through the membranes to investigate long-term filtration. At the 

fouling stage, the initial flux is measured. When the flux reached 70% of the initial value, 

the membrane surface is tangentially rinsed with DI water for 10 min. This process is 

repeated until the flux reaches 35% of the initial flux, and the overall filtration time is 

recorded. Then BSA solution is used to filter through the membrane again. This process is 

repeated three times. The permeate is collected and the BSA samples for the feed and 

permeate are analyzed using a VWR UV-6300PC Spectrophotometer (Radnor, 
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Pennsylvania, USA). The flux linearity study and the BSA filtration are duplicated for 

reproducibility.  

6.3 Results and Discussion  

 Thermodynamics  

6.3.1.1 Hansen solubility parameter calculation 

Using the Hansen solubility parameter model, RED values were calculated and are 

shown in Table 2 to verify whether it was thermodynamically possible to use the low-

hazardous solvents to dissolve PSf. As previously discussed, RED values are used as 

indicators to identify good solvents as defined by RED values between the polymer and 

solvent being close to or smaller than 1. Therefore, based on the calculated results of RED 

values, PolarClean, GVL, DMAc and the solvent mixture of 50% PolarClean and 50% 

GVL can all theoretically dissolve PSf. As shown in Table 2., the RED value of the solvent 

mixture of PolarClean and GVL was less than those of the individual solvents. This is 

because the dispersive force of the solvent mixture is closer to PSf than PolarClean, the 

polar force of the solvent mixture is closer to PSf than GVL, and the hydrogen bonding of 

the solvent mixture is the same to PSf. Therefore, from equation (1), the RED value of the 

solvent mixture is less than the two solvents individually, which makes it a potential solvent 

for PSf.  
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Table 6.2 RED values between PSf and different solvents/ water 

Polymer δd (MPa
1/2

) δp (MPa
1/2

) δh (MPa
1/2

) Ro (MPa
1/2

)  

PSf 19.7 8.3 8.3 8.0  

Solvent δd (MPa
1/2

) δp (MPa
1/2

) δh (MPa
1/2

) Ra (MPa
1/2

) RED 

PolarClean 15.8 10.7 9.2 8.2 1.03 

50% PolarClean-

50% GVL 
17.4 13.6 8.3 7.1 0.88 

GVL 19.0 16.6 7.4 8.5 1.06 

DMAc 16.8 11.5 10.2 6.9 0.86 

Water 15.5 16.0 42.4 36.0 4.49 

6.3.1.2 Ternary phase diagram 

The cloud point curve has been recognized as an important factor to determine the 

cross-sectional morphology of a polymeric membranes. More specifically, the curve 

represents the capacity that a dope solution has to absorb water. With 20% and 25% of PSf 

in the dope solutions, the capacities of the dope solutions to absorb water are similar. With 

lower contents of polymers, the curve of PSf/GVL/water was closest to the axis, as shown 

in Figure 6.3, meaning that even a small amount of water could lead to phase separation. 
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This observation agreed with previous studies that GVL might not be an ideal solvent for 

fabricating PSf membranes [46, 224]. The curve of PSf/DMAc/water shows the largest 

capacity to absorb water, which supports the ability of DMAc to dissolve PSf polymer. 

PSf/PolarClean/water is in between PSf/GVL/water and PSf/DMAc/water. The curve of 

PSf/50%PolarClean-50%GVL/water is in between PSf/GVL/water and 

PSf/PolarClean/water, but with no significant difference between the curves of 

PSf/50%PolarClean-50%GVL/water and PSf/PolarClean/water. Therefore, 

thermodynamically, the cross-sectional structures of these two membranes are expected to 

be similar; however, the diffusion rate of PolarClean and the solvent mixture should also 

be considered.  
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Figure 6.3 Cloud point curves of PSf/solvent/water: PSf/DMAc/water and 

PSf/GVL/water are on the opposite, curves of PSf/PolarClean/water and PSf/solvent 

mixture/water are in between 

 Characteristics of dope solution 

6.3.2.1 Diffusion rate of solvents into nonsolvents 

During phase separation, the solvent diffuses into the nonsolvent, which is DI 

water, and the solid polymeric film remains. The diffusion rate from solvent into 

nonsolvent is a direct factor that influences the cross-sectional morphology of the 

membranes. The diffusion into water curves for DMAc and PolarClean pure solvents and 

of PolarClean/GVL solvent mixture are shown in Figure 6.4. DMAc diffused into water at 

a linear speed until 90% of the DMAc had diffused, which occurred in 180 seconds. 
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PolarClean gradually diffused into water, and it took approximately 225 seconds for 90% 

of PolarClean to diffuse into water. It is hypothesized that the curve representing the 

solvent mixture of PolarClean/GVL diffusion into water can be discussed in two stages. 

First, GVL diffuses into water at a faster speed than PolarClean, and 50% of the solvent 

diffuses into water during the first 30 seconds. Then, the leftover solvent, mostly 

PolarClean, diffuses into water at a slower speed, and 90% of the solvent diffuses into the 

water within 150 seconds. The different diffusion rates between solvents and nonsolvent 

might lead to different cross-sectional morphologies of membranes.  

 

Figure 6.4 The kinetics study of dope solutions diffusion into DI water: light 

transmittance was measured at 276 nm over 5 minutes 

6.3.2.2 Dissolution kinetics 
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The mixing time required to fully dissolve PSf into different solvents on a large-

scale was measured individually and is shown in Figure 6.5. An impeller was used to 

continuously mix the solvent and polymer at room temperature. For DMAc, 4.67 hours 

were required to fully dissolve PSf at a rotation speed of 300 RPM, 4.42 hours to dissolve 

PSf at 450 RPM, and 3.83 hours to dissolve the polymer at 600 RPM. Due to the higher 

viscosity of PolarClean (9.78 mPa.s at 25 °C) in comparison to DMAc (0.92 mPa.s at 25 

°C), the rotation speed of 300 RPM was not sufficient to fully disperse the polymer in 

solvent because there was a dead zone observed during mixing. The polymer flakes piled 

at the bottom of the reaction vessel, and the rotating impeller was used to produce 

turbulence to fully suspend the flakes in the vessels. If the rotation speed was not fast 

enough for full suspension, a dead zone forms at the center of the bottom of the vessel. At 

the rotation speed of 450 RPM, 22 hours was needed to fully dissolve the PSf; and for 600 

RPM, 20 hours was needed to dissolve PSf, meaning that the rotation speed of the impeller 

was able to speed up the process. Adding GVL to the dope solution to replace half of the 

PolarClean was able to significantly decrease the viscosity of the dope solution, and 

therefore also sped up the mixing process. For the recipe using 50% PolarClean and 50% 

GVL, 300 RPM was again not sufficient to fully disperse the polymer into the solvent, 7.2 

hours were needed to dissolve at 450 RPM and 4.8 hours to dissolve at 600 RPM. At 600 

RPM, similar times to dissolve PSf were needed for both the solvent mixture of 50% 

PolarClean and 50% GVL, and for the pure DMAc solvent. Qualitatively, decreasing the 

viscosity of the solvent and increasing the rotation speed of the impeller was able to speed 

up the required mixing time to fully dissolve the polymer.  
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Figure 6.5 Kinetic study of dissolution PSf using different solvents under different 

rotation speeds of the impeller: Using DMAc requires least time while PolarClean 

requires longest time, adding GVL can decrease the time required 

6.3.2.3 Viscosity  

The viscosity data of the three dope solutions are presented in Figure 6.6. In the 

range of shear rate from 0.01-100 s-1, the viscosity did not change significantly, which 

means the dope solutions showed Newtonian fluid behavior. Though Newtonian fluids are 

more ideal for fabrication, casting non-Newtonian solutions is more amenable for slot die 

casting versus doctor blade extrusion. The viscosity of PSf/DMAc and PSf/PolarClean 

dope solutions are approximately 0.37 Pa.s and 13.6 Pa.s, respectively. The addition of 

GVL in the PSf/50%PolarClean-50%GVL decreases the viscosity to approximately 4.6 

Pa.s.  
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Figure 6.6 Viscosity of dope solutions change over shear rate: all the solutions 

showed Newtonian fluid behavior 

 Characterization of membranes 

6.3.3.1 FTIR 

Six membranes were characterized using FTIR and are shown in Figure 6.7. The 

peaks of the primary microstructures of PSf are listed in Table 3. The spectrum in Figure 

6.7 shows that the peaks of PSf membranes M1- M6 match the peaks listed in Table 3. 

Therefore, during the membrane fabrication process, different solvents do not affect the 

chemistry of membrane surface.  
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Figure 6.7 FTIR spectrum of PSf membranes M1- M6 

Table 6.3 FTIR spectra of Polysulfone 

PSf spectra  Wavenumber (cm -1) 

Aromatic C-H bending  871, 850, 831 

C-SO2-C symmetric stretch  1149 

C-SO2-C asymmetric stretch 1319, 1292 

C-O asymmetric stretch 1238, 1012 

C6H6 ring stretch 1587-1489 
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6.3.3.2 Surface and cross-sectional morphology 

SEM images of surface and cross-sectional morphology of PSf membranes made 

using different solvents and different casting methods are shown in Figures 6.8 and 6.9, 

respectively. The surface images show that all three dope solutions can be used to fabricate 

membranes without significant defects on the surface, both using the doctor blade and the 

slot die techniques. There were likely some impurities on the surface of membranes, but 

these did not affect the membrane properties.   
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Figure 6.8 Surface images of PSf membranes casting using different solvents and 

different methods: No obvious deficits observed 
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In Figure 6.9, it is shown that the thickness of membranes fabricated using the three 

recipes, which ranges from 125-150 μm. The thickness of the liquid films should have been 

similar for the different dope solutions. However, considering the wetting property, solvent 

evaporation, and the demixing process in the nonsolvent bath are different for these three 

dope solutions, thus the thickness values of formed membranes were not the same.  

Furthermore, it is shown in Figure 6.9 that the cross-section morphologies of 

membranes are different based on different fabrication methods and different solvents used. 

As observed, all six cross-sectional images of membranes are different. Using the 

traditional solvent DMAc, both M1 and M4, doctor blade and slot die, respectively, show 

similar cross-sectional structures with finger-like pores close to the active layer, and 

irregular microvoids in the supportive layer. When PolarClean is used, the membranes 

show different morphologies under the different casting methods. Using the slot die 

technique, the membrane exhibits patterned finger-like structures throughout the 

supportive layer of the membrane; on the other hand, while using the doctor blade, the 

membrane exhibits sponge-like structures. The solvent mixture of PolarClean and GVL 

also produced membranes with different morphologies under different casting techniques. 

Using slot die, M3 shows a unique structure, composed of a dense active layer on top, 

followed by a layer of finger-like microvoids and a sponge-like supportive layer. Using the 

doctor blade, M6 shows only a sponge-like structure in the supportive layer.  

Considering the demixing process thermodynamically and kinetically, the 

demixing path of the dope solutions in the nonsolvent bath is the dominant factor to shape 

the cross-section morphology [232, 279]. Specifically, an instantaneous demixing process 

can form finger-like structures while a delayed demixing process can form sponge-like 
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structures [232]. For the slot die membranes, M1 shows larger microvoids than M2 and 

M3 in the cross-section structures, while for the doctor blade membranes, M4 also shows 

finger-like structures while M5 and M6 show spongey-like structures. This might be due 

that the low viscosity of PSf/DMAc dope solution that caused an instantaneous demixing 

process in the nonsolvent bath, while the PSf/PolarClean and PSf/50% PolarClean-

50%GVL dope solutions had higher viscosity and hence caused a delayed demixing 

process.  
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Figure 6.9 Cross sectional SEM images of PSf membranes cast using different 

solvents and methods 
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6.3.3.3 Surface roughness and topology  

The average root mean square (RMS) roughness values of the six membranes are 

shown in Figure 6.10. Using slot die coating, the RMS roughness values of M1, M2 and 

M3 are 103±22 nm, 129±20 nm, and 89±17 nm, respectively. On the other hand, when 

using the doctor blade, the RMS roughness values of M4, M5, M6 are 27±10 nm, 31±18 

nm, 10±5 nm, respectively. The membranes cast using pure solvents are rougher than the 

membranes fabricated using the solvent mixtures, and it could be due to membrane 

formation being mostly dominated by the demixing process of dope solutions, which could 

be quantified by the diffusion rates of the solvent into the nonsolvent, water [46]. 

Considering the diffusion rate of different solvents, pure PolarClean diffuses into water 

slower than DMAc and PolarClean/GVL, resulting in the rougher surfaces of M2 and M5. 

It is also noticeable that when using slot die coating, the membranes are rougher than those 

cast using a doctor blade extrusion. This could be due to differences between these two 

manufacturing processes and different noise in the systems: for the doctor blade process, a 

blade is run over the top of the substrate to form a liquid film on a rigid countertop, while 

slot die coating is conducted on a roll-to-roll system.  The during the slot die coating 

process, the liquid film is pumped onto a moving substrate, which will be subjected to 

small vibration due to the motors [49, 280]. The smoother surface of M6 is due to both the 

doctor blade process and the instantaneous demixing process of the dope solution. 
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Figure 6.10 RMS roughness of membranes of M1- M6: Membranes cast using the 

slot die method are significantly rougher than those cast using lab casting 

6.3.3.4 Hydrophilicity and wettability  

The contact angle values of all six membranes were measured and monitored for 

five minutes and the results are shown in Figure 6.11. At 15 seconds, the average contact 

angle values of these membranes were in the range of 60-75 °. Theoretically, with the same 

membrane material, the contact angle should be in the same range. The contact angle values 

of M1 and M4 are slightly smaller than M3 and M6, and the values of M1 and M3 are 

smaller than M4 and M6, indicating that the contact angle might be correlated to the surface 

roughness, which would be expected. The smoother surfaces might lead to more 

hydrophobic membrane surfaces when the same membrane material is used.  The M2 

membrane, the slot die membrane fabricated using PolarClean, is an outlier.  
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Wettability was evaluated as the contact angle dropped over the time. M2 was the 

most hydrophobic at the beginning and then the contact angle drastically dropped over 5 

minutes, which also eventually led to the highest wettability. The reason for this might 

have been the slot die membranes fabricated using PolarClean form a regular finger-like 

water channel. The contact angle values of other membranes gradually decreased over time; 

therefore, the wettability of these membranes is similar.  

 

Figure 6.11 Contact angels and wettability of PSf membranes M1- M6 

 Filtration performance  

6.3.4.1 Filtration linear relations  

The flux linearity of these six membranes under crossflow filtration is shown in Figure 

6.12. After 20 hours of precompaction, all the membranes were assumed to be fully 

compacted, and the flux of membranes changed linearly over the pressure applied on the 

membranes. From Figure 6.12, the membranes fabricated using slot die casting and doctor 

blade extrusion show strong linear correlations between DI water flux and applied pressure. 

Moreover, all of the membranes show good reproducibility except M5. The DI water 
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permeability of M5 is linear to the applied pressure on the membrane in both trials, but the 

permeability values are different. It is observed that one of the M5 trials had a slightly 

lower flux, which might be due to the spongy-like pore structures of this membrane 

collapsing during precompaction, which affects the water channels of this membranes. It 

has been reported previously that when pure PolarClean was used to fabricate polymeric 

membranes, the sponge-like pore structures collapsed during filtration and cleaning 

process [20, 281], and the addition of GVL can increase the stability of the pore structures 

[281]. It was proved by the filtration data of M3 and M6 in Figure 6.12. 

Another finding here is that the flux values of membranes fabricated using 

PolarClean (M2 and M5) are larger than those of membranes made of DMAc (M1 and 

M4), and the flux values of membranes made of the PolarClean/GVL mixture are the 

smallest. The flux values also match the contact angle values of these membranes; that is, 

the more hydrophilic the membranes are the higher water permeability values the 

membranes can obtain.   
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Figure 6.12 DI water flux of PSf membranes over pressure: all the precompacted 

membranes showed linear correlations 

6.3.4.2 BSA Crossflow filtration  

The six membranes were evaluated for BSA filtration. The initial flux was 

recorded, and then the membrane sample was tangentially washed using DI water when 

the flux reached 70% of the previous starting flux. This continued until the final flux of 

membranes reached 35% of the initial flux value at the start of filtration. The flux of BSA 

solutions and BSA rejection are presented in Figure 6.13. For membranes fabricated using 

DMAc, the slot die membranes lasted for 10 hours and the rejection of BSA is maintained 

at a level of 85%-95%, while the membranes cast using the doctor blade lasted 

approximately 6 hours with a slight higher, but not significantly different, rejection of 90%-

95%. For membranes fabricated using PolarClean, the curves of M2 and M5 are compared. 

The initial flux values of M2 and M5 are higher than those of the other membranes, and 

the slot die membranes lasted for approximately 6.5 hours while the doctor blade 

membranes lasted for approximately 4.5 hours. The rejection of BSA for M2 membranes 

fluctuates between 80%-90%, while that of M5 is significantly higher at a range of 90%-
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95%. Using PolarClean/GVL mixture, both membranes (M3 and M6) fabricated using slot 

die and the doctor blade operates for over 8 hours, and the BSA rejection of M3 and M6 

gradually increases until the rejection of M6 achieved over 95% and of M3 achieved 

around 85%.  

The crossflow filtration shows that the membranes cast using the slot die technique 

perform better or have at least equivalent flux to those cast using the doctor blade. 

However, it is observed that all the membranes cast using the doctor blade show higher 

BSA rejections than the slot die membranes, mostly due to the sponge-like support layers 

in the cross-sectional structures of the membranes, which were discussed previously 

(Figure 6.9).  
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(e)                                                                          

 

 (f) 

Figure 6.13 BSA filtration tests of PSf membranes: (a)flux of M1 and M4; (b) BSA 

rejection of M1 and M4; (c)flux of M2 and M5; (b) BSA rejection of M2 and M5; 

(a)flux of M3 and M6; (b) BSA rejection of M3 and M6.  

6.4 Conclusions   

In this study, a doctor blade extrusion at the laboratory scale and slot die casting on 

a R2R system (production scale) were used to fabricate PSf ultrafiltration membranes using 

low-hazard solvents. The properties and structure of the membranes were compared. 

Thermodynamically, the RED values showed that PolarClean and the solvent mixture of 
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curves showed that all solvents and co-solvents were fit for membrane fabrication through 

NIPS with water as the nonsolvent. In mixing dope solutions, dissolution kinetics studies 

showed that the addition of GVL to PolarClean decreased the required mixing time 

regardless of RPM speed, and all dope solutions showed Newtonian fluid behavior. With 

respect to characterization, the FTIR spectra of the membranes were similar, and 

membrane roughness values did not show significant changes with respect to solvent/co-

solvent and casting scale. On the other hand, cross-sectional images showed that the 

structures of the membranes were different, due to differences in the cloud point curves for 

the solvent/water/PSf and in the diffusion rate of solvents/co-solvents into nonsolvents. 

With respect to operation, all membranes fabricated using the slot die and doctor blade 

showed flux linearity, and during BSA filtration, all membranes performed similarly with 

respect to permeability and BSA rejection. Therefore, this study not only shows that co-

solvent mixtures of PolarClean and GVL were able to produce membranes with similar 

operational characteristics as a traditional solvent, but also that these membranes could be 

fabricated using slot die casting integrated into a production scale R2R system.   
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS  

7.1 Conclusions 

The overarching goal of this dissertation was to investigate greener/less toxic 

solvents, PolarClean and GVL, as sole solvents and as solvent mixtures to replace 

traditional petroleum-derived solvents, in this case DMAc, in fabrication of PSf 

membranes, along with the ability of scaling up the membranes using slot die-R2R systems. 

Objectives 1 and 2 focused on investigating PolarClean as a solvent to replace DMAc to 

cast PSf membranes, followed by characterizing the membranes and then comparing to 

membranes prepared with DMAc. PSf/PolarClean membranes were found to have sponge-

like pores that would collapse upon reverse-flow filtration. To address this drawback, 

Objectives 3 and 4 investigated PolarClean and GVL as cosolvents to replace DMAc in 

casting PSf membranes. Objective 5 used dope solution viscosity as an indicator to quantify 

the kinetics of dope solution mixing and to characterize the homogeneity of the dope 

solutions. Finally, in Objective 6, a slot die-R2R system was used to scale up the PSf 

membranes prepared using PolarClean and GVL sole solvents and cosolvents to show if 

membranes with similar morphological and operational properties to those made using 

DMAc would be fabricated.  

First, PolarClean was used as a NIPS solvent to cast PSf membranes and then 

compared with DMAc. Based on the trinary phase diagram, the cloud point curve of 

PSf/PolarClean/water was similar to that of PSf/DMAc/water. Dope solutions for 

PSf/PolarClean and PSf/DMAc were prepared at 65 °C and membranes were cast and 

characterized afterwards. The overall porosity, MWCO and hydrophobicity of membranes 

made using PolarClean and DMAc were not significantly different. However, the cross-
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sections images of the membranes were different, with PSf/DMAc membranes showing 

finger-like structures and PSf/PolarClean membranes showing sponge-like structures. 

Regarding membranes performance, PSf/PolarClean membranes showed slightly higher 

BSA rejection rates (99 ± 0.51%) as compared to PSf/DMAc membranes (96 ± 2.00%), 

which agreed with their sponge-like pores structures. Furthermore, PSf/PolarClean 

membranes also showed higher flux values (176.0 ± 8.8 LMH) than PSf/DMAc 

membranes (63.1 ± 12.4 LMH), which disagreed with the sponge-like structure theory and 

might have been due to evaporation time. However, pore collapsing was observed in the 

study, which means the stability of PolarClean membranes is uncertain.  

To address the pore collapse of PSf/PolarClean membranes during membrane 

cleaning, GVL was introduced as a cosolvent of PolarClean to fabricate PSf membranes 

via NIPS. Based on calculated Hansen solubility values, PolarClean/GVL co-solvents were 

determined to be better solvents than PolarClean and GVL as sole solvents. Furthermore, 

PolarClean/GVL as co-solvents showed Newtonian fluid behavior since their viscosities 

did not change as a function of shear rate. The mean pore diameter of fabricated membranes 

decreased as the weight percent of GVL increased from 0, 25%, 50% to 75% in the dope 

solution, and observed changes in isoelectric points followed the same trend as mean pore 

size as a function of changes in dope viscosity. In filtration studies, it was observed that 

the membrane flux decreased as the mean pore size of membranes decreased, as expected, 

while all membranes showed nearly complete rejection of BSA. Since the starting goal of 

this study was to use low-hazard solvents/co-solvents to fabricate membranes with similar 

operation as membranes fabricated using DMAc, it was deemed that dope solutions using 

equal weight fractions of PolarClean and GVL produced the best membranes. Therefore, 
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PolarClean/GVL co-solvents provided a promising solution to replace traditional solvents. 

Furthermore, PolarClean and GVL as sole solvents and cosolvents were used to dissolve 

PSf, and viscosity was used to quantify the time required for completely mixing of 

polymer/solvent and the related viscosity (RV) was used as an indicator for the 

homogeneity of a dope solution. After 24 h, all the dope solutions reached or surpassed RV 

values of 90%, indicating that these dope solutions reached homogeneity. 

Finally, a slot die-R2R system was used to fabricate PSf ultrafiltration membranes 

using low-hazard solvents at a production scale and compared to a doctor’s blade at the 

laboratory scale. Dope solutions were prepared in a large amount. In mixing dope solutions, 

dissolution kinetics studies showed that the addition of GVL to PolarClean decreased the 

required mixing time regardless of RPM speed. With respect to characterization, the FTIR 

spectra of the membranes were similar, and membrane roughness values did not show 

significant changes with respect to solvent/co-solvent and casting scale. On the other hand, 

cross-sectional images showed that the structures of the membranes were different and 

likely due to differences in the cloud point curves for the PSf/solvent/water and in the 

diffusion rate of solvents/co-solvents into nonsolvents. With respect to operation, all 

membranes fabricated using the slot die and doctor blade showed flux linearity, and during 

BSA filtration, all membranes performed similarly with respect to permeability and BSA 

rejection. Therefore, this study not only shows that co-solvent mixtures of PolarClean and 

GVL were able to produce membranes with similar operational characteristics as a 

traditional solvent, but also that these membranes could be scaled using slot die-R2R 

systems.   
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Overall, the solvent mixture of equal amounts of PolarClean and GVL was shown 

to be an alternative for DMAc to fabricate PSf membranes. Moreover, a slot die-R2R 

system could be used to scale up PSf membranes prepared with PolarClean/GVL cosolvent. 

The membranes prepared using the greener solvent mixture were comparable to the 

membrane prepared using DMAc in terms of structural and morphological characteristics 

and of filtration performance.  

7.2 Recommendations  

This work investigated the use of greener solvents, PolarClean and GVL, to replace 

a traditional petroleum-derived and toxic solvent, namely DMAc, in PSf membrane 

fabrication. It also used a slot die-R2R system to scale up the membranes. To continue on 

the study, suggestions follow to make the membrane fabrication process more 

environmentally friendly: 

1. Although both PolarClean and GVL have been investigated as greener solvents 

with respect to biodegradability, their actual biodegradability in the NIPS waste 

after membrane fabrication is unknown since the waste mixture contains a non-

negligible concentration of solvent. Therefore, their actual biodegradability of 

these two solvents should be investigated.  

2. Besides the biodegradability of these solvents, recyclability and reusability of the 

solvents are unknown. Absorbents should be investigated to determine the 

feasibility of recycling the organic solvents. Distillation could be another method 

to recycle the solvents. Moreover, an economic analysis should also be performed 

to determine if the recycling is economically acceptable.  
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3. In this study, the pores of PSf/PolarClean membranes collapsed during membrane 

cleaning. The mechanical strengthen of the membranes should be studied further. 

The analysis of mechanical properties has the potential to guide future membrane 

fabrication.  

4. In this study, only the polymer and solvents were considered to minimize 

variables. With this work as a foundation, other factors can take into 

consideration. Additives should be studied to enhance the selectivity of 

membranes or improve the antifouling properties of the membranes. Casting 

conditions, for example, humidity, temperature, nonsolvent composition, should 

also be studied in the future.   
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APPENDICES 

APPENDIX 1 FILTRATION DATA 

Table A1. The original filtration data in Chapter 3, a comparison between PSf/DMAc 

membranes and PSf/PolarClean membranes. All the dead-end filtration experiments were 

performed at room temperature, at pressure of 4.14 bar (60 psi).  

  

17 PSf/DMAc 17 PSf/PolarClean  

Permeate 
volume (mL) 

Flux (LMH) STD Flux (LMH) STD 

DI Water 2 73.22 11.30 3466.70 306.24  

4 72.08 10.31 3066.23 82.13  

6 74.86 8.06 2649.52 137.39  

8 81.72 10.24 2605.74 31.78  

10 82.27 9.98 2578.88 26.37  

12 83.26 11.18 2543.66 92.24  

14 84.68 8.92 2569.48 90.46  

16 84.95 9.07 2400.49 72.65  

18 84.98 9.97 2462.80 215.57  

20 83.96 8.46 2423.19 124.88 

BSA 22 63.14 12.43 176.49 8.84  

24 57.85 16.47 132.53 41.10  

26 52.10 13.19 144.89 5.76  

28 46.80 21.84 135.37 7.68  

30 48.37 21.12 138.15 7.04  

32 44.64 16.95 134.28 6.65  

34 42.24 15.43 125.16 7.81  

36 43.49 14.18 109.73 29.41  

38 40.61 13.77 104.67 31.89  

40 39.93 13.61 125.25 4.52 

back wash 42 56.63 15.72 740.42 54.39 
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Table A2. The original filtration data in Chapter 5, a comparison among PSf membranes, 

M1 (PSf/PolarClean), M2 (PSf/75% PolarClean), M3 (PSf/50% PolarClean 50% GVL), 

M6 (PSf/DMAc).  All the dead-end filtration experiments were performed at room 

temperature, at pressure of 4.14 bar (60 psi).  

  

 

M1 

 

M2 

 

M3 

 

M6 

 

  Permeate 
volume 
(mL) 

Flux 
(LMH) 

STD Flux 
(LMH) 

STD Flux 
(LMH) 

STD Flux 
(LMH) 

STD 

DI 
Water 

2 1842.9 140.1 511.6 132.
7 

52.8 9.4 21.6 2.3 

  4 1414.0 186.4 468.3 91.0 40.8 5.0 19.5 3.1 

  6 1008.4 91.7 424.3 39.7 38.7 4.2 18.8 2.4 

  8 938.6 131.7 366.0 36.5 38.0 9.0 18.4 2.5 

  10 861.8 70.6 360.5 55.1 37.1 6.5 17.0 2.8 

  12 867.2 98.4 326.4 31.7 31.9 4.8 17.4 3.1 

  14 847.1 147.9 324.9 50.0 29.6 3.7 17.7 2.6 

  16 790.1 67.7 315.0 43.7 28.2 2.8 17.1 3.0 

  18 750.5 94.6 317.5 40.8 29.1 3.2 17.0 3.8 

  20 743.2 107.3 297.7 32.0 26.9 0.7 16.9 3.4 

BSA 22 265.1 37.4 137.8 24.4 14.8 0.7 15.0 1.9 

  24 165.9 12.9 127.9 23.7 14.7 1.4 14.5 2.7 

  26 151.6 20.3 130.8 22.7 12.6 1.6 13.8 2.4 

  28 150.8 13.3 117.5 26.4 12.9 1.6 13.3 2.5 

  30 136.9 16.9 116.0 17.7 12.5 1.7 14.1 3.5 

  32 135.0 12.6 117.7 31.9 12.2 1.6 13.5 2.3 

  34 135.0 20.9 129.3 22.3 11.7 0.9 13.1 2.0 

  36 139.3 21.3 114.4 20.0 11.9 1.3 13.2 2.2 

  38 139.1 23.9 118.5 14.5 11.4 1.3 13.6 2.4 

  40 141.0 17.1 115.1 19.6 11.9 1.3 13.3 1.8 

back 
wash 

42 228.3 8.6 196.9 4.0 19.0 1.9 15.5 2.2 
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Table A3. The original crossflow filtration data in Chapter 6. The flux linearity data of 

membranes prepared using DMAc, PolarClean, and 50% PolarClean/ 50% GVL, and using 

the slot die and doctor blade were compared.   

 Slot die       

 PSf/DMAc (LMH) PSf/PC (LMH) PSf/50PolarClean 50GVL (LMH) 

△P (psi) Trail 1 Trail 2 Trail 1 Trail 2 Trail 1 Trail 2 

0 0.00 0.00 0.00 0.00 0.00 0.00 

20 39.03 47.48 114.76 115.92 28.54 29.42 

40 79.22 83.88 199.22 210.00 54.47 55.34 

60 108.35 120.87 295.63 310.78 80.68 80.97 

80 138.93 149.71 392.04 400.78 105.44 108.93 

100 178.25 188.74 494.27 508.54 130.49 141.55 
 

Doctor blade  

    

 PSf/DMAc (LMH) PSf/PC (LMH) PSf/50PolarClean 50GVL (LMH) 

△P (psi) Trail 1 Trail 2 Trail 1 Trail 2 Trail 1 Trail 2 

0 0.00 0.00 0.00 0.00 0.00 0.00 

20 59.42 56.80 109.22 83.30 40.49 41.65 

40 115.05 112.43 210.29 154.37 77.48 80.39 

60 157.57 153.50 298.25 221.07 111.55 112.43 

80 198.06 191.65 378.06 276.12 141.26 141.84 

100 235.92 226.60 466.60 340.49 168.35 172.72 
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Table A4. The original crossflow filtration data in Chapter 6. The flux data of membranes 

prepared using DMAc, PolarClean, and 50% PolarClean/ 50% GVL, and using the slot die 

and doctor blade were compared.  The pressure applied on membranes used was constant 

at 100 psi (6.9 bar). The membranes were cleaned using DI water when the flux hits the 

70% of the original flux, and this procedure repeated until the flux reached at 35% of the 

starting original flux.  

Slot die membranes:  

 PSf/DMAc  PSf/ 50PC 50GVL  PSf/ PolarClean 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

0.25 80.62 85.26 0.25 94.25 93.96 0.25 127.6 122.09 

0.5 78.88 82.36 0.75 77.72 73.08 0.5 106.43 98.31 

1 74.53 75.4 1.5 69.02 64.09 1 82.07 76.27 

2 56.55 56.84 2 61.77 59.74 1.25 85.55 80.33 

2.5 50.46 49.59 2.75 70.18 68.44 2 70.76 70.18 

2.75 65.25 62.93 3.5 46.98 44.66 2.5 73.66 66.7 

3.5 55.68 52.49 3.75 56.55 55.1 3 67.57 65.83 

4.5 44.95 42.92 4 44.66 42.63 4 51.91 50.17 

4.75 51.04 52.2 4.5 39.44 37.7 4.25 54.23 53.65 

5 48.72 49.01 4.75 46.11 43.79 5 43.79 41.18 

5.5 45.82 44.08 5.25 37.41 35.96 6 36.54 35.38 

6 42.34 39.44 6 36.25 34.51 6.25 46.98 46.11 

6.5 40.02 36.54 6.5 36.54 35.38 6.5 41.18 39.15 

6.75 46.69 48.43 7 35.96 34.51 7 34.8 31.9 

7.5 42.63 41.47 7.5 35.96 33.64    

8.5 37.41 34.51 8 33.06 31.03    

9 35.67 33.06       

10 30.45 33.06       
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Doctor blade casting membranes: 

 PSf/DMAc  PSf/50PC 50GVL  PSf/PolarClean  

Time 
(h) 

Cell 1 

(LMH) 

Cell 2 

 (LMH) 
Time 
(h) 

Cell 1 

(LMH) 

Cell 2 

 (LMH) 
Time 
(h) 

Cell 1 

(LMH) 

Cell 2 

 (LMH) 

0.25 103.82 104.4 0.25 64.96 67.28 0.25 139.49 123.25 

0.5 94.83 94.25 0.75 55.97 55.68 0.5 115.42 102.37 

1 75.69 74.82 1 51.91 50.75 1 90.48 84.39 

1.25 72.79 72.21 1.5 45.53 46.69 1.25 93.67 86.13 

1.5 78.01 78.3 1.75 47.56 47.85 2 77.14 64.09 

2.25 58.58 59.74 2.5 39.15 38.86 2.25 69.31 65.25 

2.5 56.26 57.13 3 36.83 37.41 2.75 58.29 55.68 

2.75 66.99 72.21 3.5 33.93 34.51 3.25 51.04 50.75 

3.25 56.55 57.71 4 33.06 33.64 3.75 45.53 43.21 

3.5 52.49 53.07 4.25 37.12 37.41 4 55.39 52.78 

4 46.98 47.27 4.75 33.35 33.35 4.25 53.07 51.33 

4.25 57.42 57.71 5.5 31.9 32.19 4.5 52.49 49.88 

4.75 46.11 48.14 6 29.29 29 5 51.62 49.3 

5 42.92 43.5 6.5 26.68 26.1 5.25 48.43 46.11 

5.25 40.89 41.47 6.75 35.67 35.38    

6 34.8 35.38 7.5 27.84 28.13    

   8 23.78 23.2    

   9 22.91 22.33    
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Table A5. The original crossflow filtration data in Chapter 6. The BSA rejection of 

membranes prepared using DMAc, PolarClean, and 50% PolarClean/ 50% GVL, and using 

the slot die and doctor blade were compared.  The pressure applied on membranes used 

was constant at 100 psi (6.9 bar). The membranes were cleaned using DI water when the 

flux hits the 70% of the original flux, and this procedure repeated until the flux reached at 

35% of the starting original flux.  

Slot die membranes:  

 

PSf/DMAc 

 

PSf/ 50PC 50GVL 

 

PSf/ PolarClean 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 1 
(LMH) 

Cell 2 
(LMH) 

0.25 90.1% 84.8% 0.25 63.6% 73.9% 0.25 89.5% 79.3% 

0.5 89.1% 85.4% 0.75 78.5% 84.5% 0.5 86.7% 82.0% 

1 92.2% 87.7% 1.5 83.3% 82.1% 1 88.2% 90.7% 

2 86.4% 86.4% 2 85.5% 79.7% 1.25 82.0% 76.5% 

2.5 88.5% 87.3% 2.75 63.0% 67.6% 2 79.3% 78.3% 

2.75 86.7% 86.7% 3.5 87.0% 89.4% 2.5 89.8% 92.3% 

3.5 87.7% 87.7% 3.75 59.4% 64.2% 3 94.7% 93.8% 

4.5 91.4% 91.4% 4 87.9% 89.4% 4 69.0% 80.2% 

4.75 90.6% 90.6% 4.5 85.5% 90.0% 4.25 75.2% 79.9% 

5 93.2% 93.2% 4.75 77.9% 84.8% 5 94.7% 88.9% 

5.5 91.0% 91.0% 5.25 90.3% 85.8% 6 91.0% 79.6% 

6 91.0% 91.0% 6 85.5% 90.0% 6.25 77.1% 90.7% 

6.5 87.7% 87.7% 6.5 76.7% 86.7% 6.5 90.7% 84.2% 

6.75 94.5% 94.5% 7 89.4% 88.5% 7 87.3% 77.7% 

7.5 93.2% 93.2% 7.5 87.3% 84.5% 

   

8.5 90.6% 90.6% 8 87.0% 83.6% 

   

9 91.6% 91.6% 

      

10 87.9% 87.9% 
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Doctor blade casting membranes: 

 
PSf/DMAc 

 
PSf/50PC 
50GVL 

 
PSf/PolarClean  

Time 
(h) 

Cell 
1(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 
1(LMH) 

Cell 2 
(LMH) 

Time 
(h) 

Cell 
1(LMH) 

Cell 2 
(LMH) 

0.25 84.6% 88.8% 0.25 70.9% 78.5% 0.25 93.7% 93.7% 

0.5 91.8% 92.1% 0.75 78.9% 80.9% 0.5 90.6% 93.7% 

1 91.8% 90.8% 1 71.1% 76.1% 1 90.3% 95.4% 

1.25 91.8% 91.3% 1.5 76.3% 81.1% 1.25 90.6% 95.4% 

1.5 88.6% 90.8% 1.75 77.1% 86.1% 2 84.3% 85.5% 

2.25 91.8% 92.1% 2.5 79.1% 76.3% 2.25 92.0% 94.9% 

2.5 87.6% 94.0% 3 85.3% 83.1% 2.75 92.3% 94.9% 

2.75 95.0% 93.8% 3.5 88.0% 89.2% 3.25 90.3% 89.7% 

3.25 87.6% 93.8% 4 89.4% 89.2% 3.75 92.0% 91.7% 

3.5 95.0% 97.8% 4.25 86.7% 88.6% 4 93.2% 93.2% 

4 97.0% 98.0% 4.75 90.2% 91.2% 4.25 91.7% 88.9% 

4.25 94.3% 95.3% 5.5 86.1% 88.4% 4.5 88.6% 94.0% 

4.75 96.8% 95.8% 6 86.3% 85.9% 5 89.5% 94.3% 

5 93.8% 96.0% 6.5 92.4% 93.2% 5.25 88.9% 85.5% 

5.25 95.0% 96.5% 6.75 96.8% 97.0% 
   

6 95.0% 91.3% 7.5 92.8% 92.2% 
   

   
8 96.6% 96.6% 

   

   
9 96.8% 95.8% 
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 APPENDIX 2. DISSOLUTION DYNAMIC STUDY RAW DATA  

In Chapter 5, the viscosity was used as a parameter to determine if the dope solutions are 
homogenous. The change of viscosity over time was recorded for 72 hours.  

Table B1. Viscosity of dope solutions change over time. Five different dope solutions were 
compared.  

  Average Viscosity (Pa.s) 

  1h  2h 3h 4h 6h 8h 16h  24h  72h 

DMAc 0.069 0.156 0.176 0.179 0.182 0.196 0.181 0.190 0.193 

PolarClean 0.048 0.052 0.096 0.130 0.320 0.452 1.594 5.496 5.834 

75PC25GVL 0.253 0.102 0.116 0.302 0.526 0.747 1.929 3.430 3.983 

50PC50GVL 0.175 0.137 0.197 0.313 0.500 0.856 1.677 2.569 2.673 

GVL 0.143 0.116 0.458 0.674 1.181 1.120 1.466 1.487 1.551 

  
Standard Diviation  

  1h  2h 3h 4h 6h 8h 16h  24h  72h 

DMAc 0.036 0.022 0.007 0.008 0.010 0.011 0.016 0.008 0.011 

PolarClean 0.023 0.007 0.038 0.021 0.138 0.124 0.423 0.260 0.372 

75PC25GVL 0.362 0.050 0.005 0.096 0.093 0.208 0.084 0.242 0.310 

50PC50GVL 0.247 0.045 0.102 0.089 0.098 0.197 0.196 0.152 0.323 

GVL 0.153 0.052 0.115 0.079 0.225 0.094 0.042 0.021 0.093 
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Table B2. Normalized viscosity was introduced as a parameter to represent the 
homogeneity of dope solutions.  

  Normalized viscosity 

  1h  2h 3h 4h 6h 8h 16h  24h  72h 

DMAc 0.359 0.807 0.912 0.924 0.942 1.014 0.938 0.984 1.000 

PolarClean 0.008 0.009 0.017 0.022 0.055 0.077 0.273 0.942 1.000 

75PC25GVL 0.064 0.026 0.029 0.076 0.132 0.188 0.484 0.861 1.000 

50PC50GVL 0.065 0.051 0.074 0.117 0.187 0.320 0.627 0.961 1.000 

GVL 0.092 0.075 0.295 0.435 0.761 0.722 0.946 0.959 1.000 

  
Standard Diviation  

  1h  2h 3h 4h 6h 8h 16h  24h  72h 

DMAc 0.188 0.113 0.035 0.041 0.051 0.058 0.083 0.042 0.059 

PolarClean 0.004 0.001 0.006 0.004 0.024 0.021 0.073 0.045 0.064 

75PC25GVL 0.091 0.013 0.001 0.024 0.023 0.052 0.021 0.061 0.078 

50PC50GVL 0.092 0.017 0.038 0.033 0.037 0.074 0.073 0.057 0.121 

GVL 0.099 0.034 0.074 0.051 0.145 0.061 0.027 0.014 0.060 
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