

University of Kentucky **UKnowledge**

International Grassland Congress Proceedings

21st International Grassland Congress / 8th International Rangeland Congress

Using ¹⁵N Isotopic Dilution Method to Quantify the Associative Nitrogen Fixing Bacteria from Grassland in Eastern Qilian Mountains

Lingiao Xi Tarim University, China

Juan Qi Gansu Agricultural University, China

Degang Zhang Gansu Agriculutral University, China

Tuo Yao Gansu Agricultural University, China

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/21/2-2/48

The 21st International Grassland Congress / 8th International Rangeland Congress took place in Hohhot, China from June 29 through July 5, 2008.

Proceedings edited by Organizing Committee of 2008 IGC/IRC Conference Published by Guangdong People's Publishing House

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Using 15 N isotopic dilution method to quantify the associative nitrogen fixing bacteria from grassland in eastern qilian mountains

 $Linqiao Xi^{1/2}$, $Juan Qi^2$, $Degang Zhang^2$, $Tuo Yao^2$

Key words: associative nitrogen-fixing bacteria, phosphate-solubilizing, auxins

Introduction N2-fixation carried out by associative and free-living microorganisms in the rhizosphere of oat has been recognized as an important factor in nitrogen nutrition of the plant . NFB can produce plant growth regulators (PGRs) .

Materials and methods The associative nitrogen fixation strains were isolated from the Rhizosphere of wheat and oat in Gansu (Table1) . The ¹⁵ N analyzer with optical principle was used to determine stable isotopes (NOI7) . ¹⁵ N isotopic dilution method was chosen to determine quantification of association nitrogen fixation bacteria in soil .

Table 1 The ability of different strains as nitrogen fixers, IAA producers and phosphate solubilizers

strains	nitrogenase activity (C2 H4 nmol/ml .h)	IAA	organic phosphoru (D/r)	s inorganic phosphorus(D/r)	P dissolution (ug/ml)
Azospirillus lipoferum 06	351 .6	19 2	ND	1 .67	82
Azotobacter sp 05	359 .4	16 2	1.4	ND	ND
Azotobacter sp W5	512 .7	12 2	2.27	ND	ND
Zoogloeasp C6	256 .9	15 .1	ND	1.25	76
$Pseudomonas\ s_{P}\ \mathrm{N4}$	940 .5	22 .3	1.6	ND	ND
Zoogloeasp W6	312 .1	6.33	2	1.07	58
Pseudomonas sp 03	453 .9	17.6	1.41	ND	ND

Results N concentration and 15 N atom% excess of above ground dry matter of different strains(Table 2) .

Table 2 N concentration and ¹⁵ N atom ⁹/₂ excess of above ground dry matter of different strains of Oats

strains	Above dry weight(kg/ha²)	N concentration $(\%)$	% Ndfa Fixation N	$^{15}\mathrm{N}\mathrm{atom^0/o}$ excess	Total N fixation kg/ha ²
Azospirillus lipoferum 06	5615 .0	0 .67	18 23	1 .131	6 .8582 ыв
Azotobacter sp O5	6302 .5	0.65	14 .11	1 .187	5 .7803 ^{ыв}
Azotobacter sp W5	8557 .5	0.49	11 .14	1 ,228	4 .6712 ыв
Zoogloea sp C6	5702 .5	0 .58	9.91	1 .245	3 2777 °C
CK	4700 .0	0.48	/	1 .381	ND
Pseudomonas sp 03	7215 .0	0 .63	4 .78	1 .316	2 .1727 ^{cC}
Pseudomonas sp N4	8565 .0	0 .58	21 .35	1 .087	10 .6060 ^{aA}
Zoogloeasp W6	7510 .0	0 .53	13.10	1 ,201	5 .2142 ^{ыв}

note :CK 148kg/ha urea a .e 2 24% 15 N urea atom% excess is 2 24% , dosage is149 kg/ha . ND not detector .

The amount of biological nitrogen fixation was determined to be N4>O6>O5>W6>W5>C6>O3; 15 N atom% ranged from 1 .0871% to 1 .3164% . The range of biological nitrogen fixation was 2 .17^10 .61 kg/ha; 15 N atom% content of above ground dry matter varied for different strains of Oats .

 $\textbf{Conclusion} \ N_2 \text{-fixing bacterial inoculation increased growth and development of oats} \ , particularly \ by increasing above ground \ dry-weight \ .$

References

Lethbridge G , Davidson MS . Root associated nitrogen fixing bacteria and their role in the nitrogen nutrition of wheat estimated by 15 N isotope dilution [J] . Soil Biological Biochemist , 1983 , 15:365 \sim 374 .

Lidija Halda-Alija . Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L . Can . J . Microbiol . Vol . 49 , 2003 :781~787 .

College of Animal Science and Technology, Tarim University, Alar, China, 843300, E-mail: gsxlq666@163 com.

² Grassland College, Gansu Agricultural University, Lanzhou, Gansu, 730070