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Abstract 

A theoretical and numerical model for the degradation of solid materials in combustion is 
developed. As solid materials are heated by the flame, they undergo an internal thermo- chemical 
breakdown process known as pyrolysis. As the pyrolysis front propagates into the sample, a 
charring layer is left behind which contains voids, fractures and defects. Cracks propagate to 
release tensile stresses accumulated when the sample is losing mass. The crack front may 
precede the pyrolysis front into the sample. Crack patterns and fracture behaviors vary 
depending on material properties and heating level and distribution. Cracks cause loss of 
material integrity by forming isolated loops or fragments. Cracks concentrate the stresses and 
reduce material ability to withstand external loads. Cracks expose uncharred materials to flame, 
accelerating combustion. The process is highly nonlinear: crack patterns display fractal behavior. 
Dimensionless groups that define the model are examined: each yields different crack patterns. 

Keywords: Flame spread; Pyrolyzing materials; Crack formation; Dimensionless groups; 
Numerical analysis 

Nomenclature 

𝐿𝐿 domain width  
𝐻𝐻 domain height  
𝛼𝛼 thermal diffusivity  
T solid temperature  
𝜌𝜌 solid density  
𝜀𝜀 strain tensor  
E Young’s modulus  
k thermal conductivity 
𝛾𝛾 mass loss coefficient 
𝜈𝜈 Poisson’s ratio 
𝑙𝑙 length of heated region 
𝑞𝑞 heat flux parameter 

A pre-exponent factor 
𝜎𝜎 stress tensor 
𝑢𝑢 displacement in 𝑥𝑥 direction 
𝑣𝑣 displacement in 𝑦𝑦 direction 

Subscript 
a activation value 
0 initial 
c critical 
𝑥𝑥,𝑦𝑦 direction 
 

 
Introduction 

When solid materials like cellulose, rubber, and 
plastics are burned they release combustible gases via 
pyrolysis or evaporation of a liquid pool. The materials 
lose their structural integrity by charring, deforming 
and developing defects such as cracks, bubbles and 
voids. These defects enhance the combustion process 
by allowing oxygen to travel further into the material. 
They also allow pyrolysis gases to escape to the surface 
for subsequent combustion. For pyrolyzing materials, 
hot gases can force cracks to open by applying elevated 

hydrostatic pressures to lateral crack surfaces. The 
physical mechanism of crack and void formation is 
understood as follows: The burning sample develops 
cracks to relieve the tensile stress accumulated by 
nonuniform mass loss; when internal stresses appear 
in a sample not subject to external loading there exists 
a driving field such as temperature, moisture, or pore 
pressure. Sample constraints or inhomogeneity of the 
driving field inevitably generate tensile stresses. These 
crack the sample when specified limiting values are 
exceeded. 

https://doi.org/10.13023/psmij.2020.09
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Mathematical model 

Our model includes heat transfer in the solid, 
material breakdown (pyrolysis) under high tempera-
ture, elastic deformation, and crack formation in the 
solid material. Here, the gas phase provides the 
external heat flux for the solid phase, which is the focus 
of our study. We consider the problem over a 
rectangular 𝐿𝐿 × 𝐻𝐻 (𝐿𝐿  is length in the 𝑥𝑥 -direction, 𝐻𝐻 
is depth in the 𝑦𝑦-direction) domain. The temperature 
field 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  is described by the heat conduction 
equation 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼𝑥𝑥
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+ 𝛼𝛼𝑦𝑦
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

, (1) 

where 𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑦𝑦 are the thermal diffusivities in the 
𝑥𝑥  and 𝑦𝑦  directions, respectively. Under a high and 
constant external heat flux, the solid pyrolyzes 
according to the following single step reaction equation 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐴𝐴(𝜌𝜌 − 𝜌𝜌𝑐𝑐)𝑒𝑒−𝑇𝑇𝑎𝑎 𝑇𝑇⁄ , (2) 

where 𝐴𝐴  is the pre-exponential factor, 𝑇𝑇𝑎𝑎  is the 
activation temperature and 𝜌𝜌𝑐𝑐  is the lower bound of 
solid density, or the char density. Because of the two-
dimensional nature of the problem, the strain tensor 
contains only the components 𝜀𝜀𝑥𝑥𝑥𝑥 , 𝜀𝜀𝑥𝑥𝑥𝑥 , 𝜀𝜀𝑦𝑦𝑦𝑦 , 𝜀𝜀𝑦𝑦𝑦𝑦  and 
𝜀𝜀𝑧𝑧𝑧𝑧. The stress tensor, for the state of plane stress, only 
consists of 𝜎𝜎𝑥𝑥𝑥𝑥 , 𝜎𝜎𝑥𝑥𝑥𝑥 , 𝜎𝜎𝑦𝑦𝑦𝑦  and 𝜎𝜎𝑦𝑦𝑦𝑦 , i.e., we use the 
plane stress condition, 𝜎𝜎𝑧𝑧𝑧𝑧 = 0.  When the overall 
strain is taken to be equal to the sum of a mechanical 
strain and a shrinkage strain due to loss of mass, the 
stress-strain relations become 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝐸𝐸

1 + 𝜈𝜈
𝜀𝜀𝑖𝑖𝑖𝑖 + �

𝐸𝐸𝐸𝐸
1 − 𝜈𝜈2

(𝜀𝜀𝑘𝑘𝑘𝑘)

−
𝐸𝐸

1 − 𝜈𝜈
𝛾𝛾
𝜌𝜌 − 𝜌𝜌0
𝜌𝜌0

� 𝛿𝛿𝑖𝑖𝑖𝑖 

𝑖𝑖 = 1,2;   𝑗𝑗 = 1,2 

(3) 

where 𝑖𝑖  or 𝑗𝑗 = 1,2  represents 𝑥𝑥,𝑦𝑦 . Here 𝐸𝐸  is the 
Young’s modulus, 𝜈𝜈  is the Poisson’s ratio and the 
coefficient 𝛾𝛾 couples material mass loss and volume 
reduction. The displacement fields in the 𝑥𝑥  and 𝑦𝑦 
directions are denoted by 𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  and 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡), 
respectively. The strains in the (𝑥𝑥,𝑦𝑦)-plane are related 
to 𝑢𝑢  and 𝑣𝑣  by the standard relations 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ , 
𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  and 𝜀𝜀𝑥𝑥𝑥𝑥 = (1 2⁄ )(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ + 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) . The 
stress equations of equilibrium are 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 𝜕𝜕𝜕𝜕⁄ +
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 𝜕𝜕𝜕𝜕⁄ = 0 and 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥 𝜕𝜕𝜕𝜕⁄ + 𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦 𝜕𝜕𝑦𝑦⁄ = 0, where we 
have used 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦.  The stress tensor has three 
eigenvalues which represent the three principal 
stresses, 𝜎𝜎𝐼𝐼 , 𝜎𝜎𝐼𝐼𝐼𝐼  and 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 . It is assumed that cracks 
nucleate and grow whenever the maximum principal 
stress 𝜎𝜎𝑝𝑝 , defined as max(𝜎𝜎𝐼𝐼 ,𝜎𝜎𝐼𝐼𝐼𝐼,𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼),  attains a 
threshold value 𝜎𝜎𝑐𝑐 which is understood in this article 
as a material constant. Cracks form at locations where 
𝜎𝜎𝑝𝑝 ≥ 𝜎𝜎𝑐𝑐. 

We now write the initial and boundary conditions for 

the thermal-pyrolysis-stress problem. Initially, the 
sample has the uniform temperature 𝑇𝑇 = 𝑇𝑇0 which is 
maintained at the two sample lateral sides throughout 
heating. The lower surface 𝑦𝑦 = 𝐻𝐻  is insulated so 
𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0, while the upper surface is subjected at its 
surface to a constant heat flux 𝑞𝑞0  over the central 
region of length 𝑙𝑙 . Thus 𝑘𝑘𝑦𝑦 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 𝑞𝑞0  for |𝑥𝑥 −
𝐿𝐿 2⁄ | ≤ 𝑙𝑙 2⁄  , where 𝑘𝑘𝑦𝑦  is the 𝑦𝑦 -direction thermal 
conductivity. The solid density has uniform initial value 
𝜌𝜌 = 𝜌𝜌0 , which gradually decreases to its charring, or 
minimum value 𝜌𝜌𝑐𝑐 .  Regarding the imposed physical 
boundary conditions, the stress constraint on the lower 
surface is referred to as a ‘’roller” condition (no 
deflection in the 𝑦𝑦-direction, freedom of movement in 
the 𝑥𝑥-direction, while all three remaining sample sides 
are unconstrained, or traction free. 

Dimensionless groups 

The problem is characterized by three time scales. 
These scales correspond to heat conduction, heat flux, 
and chemical reaction. The heat conduction time scale 
that characterizes Eq. (1) is 𝑡𝑡ℎ𝑐𝑐 = 𝐻𝐻2 𝛼𝛼𝑦𝑦� . The heat flux 
time scale that characterizes the relation of thermal 
boundary conditions to the heat conduction equation 
Eq. (1) is defined as 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐻𝐻𝑇𝑇0𝑘𝑘𝑦𝑦 �𝛼𝛼𝑦𝑦𝑞𝑞0�⁄ .  The 
chemical reaction time scale characterizes the pyrolysis 
reaction as described by Eq. (2) and is taken as 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒 =
[𝐴𝐴 exp(−𝑇𝑇𝑎𝑎 𝑇𝑇0⁄ )]−1. 

Our heat conduction- pyrolysis- elasticity problem 
contains sixteen constants, in which the Poisson’s ratio 
𝜈𝜈  and the mass loss coefficient 𝛾𝛾  are already 
dimensionless. The other fourteen have units 
composed of four basic units. Of these fourteen, 𝑞𝑞0 
and 𝑘𝑘𝑦𝑦  only appears as a ratio, leaving thirteen 
constants. These constants are 𝐿𝐿 , 𝐻𝐻 , 𝛼𝛼𝑥𝑥 , 𝛼𝛼𝑦𝑦 , 𝑇𝑇0 , 
𝑞𝑞0 𝑘𝑘𝑦𝑦⁄ , 𝑙𝑙, 𝜌𝜌𝑐𝑐 , 𝐴𝐴, 𝑇𝑇𝑎𝑎, 𝜌𝜌0, 𝐸𝐸, 𝜎𝜎𝑐𝑐. 

The four basic units can be taken as either length/ 
time/temperature/energy or length/time/tempera-
ture/mass. By using the Buckingham 𝜋𝜋 theorem, the 
thirteen dimensional constants are combined to form 
nine dimensionless 𝜋𝜋 groups. We choose the following 
nine 𝜋𝜋  groups to characterize our problem: Π1 =
𝐻𝐻 𝐿𝐿⁄ ,  Π2 = 𝑙𝑙 𝐿𝐿⁄ ,  Π3 = 𝛼𝛼𝑦𝑦 𝛼𝛼𝑥𝑥⁄ ,  Π4 = 𝑞𝑞0𝐻𝐻 �𝑘𝑘𝑦𝑦𝑇𝑇0�⁄ , 
Π5 = 𝑇𝑇𝑎𝑎 𝑇𝑇0⁄ ,  Π6 = 𝐻𝐻2𝐴𝐴𝑒𝑒−𝑇𝑇𝑎𝑎/𝑇𝑇0/𝛼𝛼𝑦𝑦,  Π7 = 𝜌𝜌𝑐𝑐 𝜌𝜌0⁄ ,  Π8 =
𝐸𝐸 [𝜌𝜌0(𝐴𝐴𝐴𝐴)2]⁄ ,  Π9 = 𝜎𝜎𝑐𝑐 𝐸𝐸⁄  . The first two groups, Π1 
and Π2,  represent the problem geometry. The next 
two groups, Π3 and Π4, are properties of the thermal 
subproblem in which Π4  equals 𝑡𝑡ℎ𝑐𝑐 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁄  . The sixth 
group is equal to 𝑡𝑡ℎ𝑐𝑐 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒⁄ . This group, along with Π5, 
describes the relationship between the thermal and 
pyrolysis subproblems. The seventh group defines the 
extent of pyrolysis while the ninth group specifies the 
element removal or crack growth criterion. Group Π8 
relates material pyrolysis to the stress subproblem. 
Group Π9, the ratio of the cracking stress to the elastic 
modulus, can also be interpreted as the crack resistance 
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parameter. When Π9 is sufficiently large, no cracks can 
form. 

The field of fracture mechanics often separates two 
distinct process, crack initiation and crack propagation. 
The theory of thermoelasticity suggests that materials 
having a high crack initiation resistance also have a 
high tensile strength, a high thermal diffusivity, a low 
Young’s modulus and undergo low thermal expansion 
[1] during heating. During cooling, most materials 
contract, or shrink, just as the pyrolyzing solid in this 
study contracts when it loses mass. Thus, the thermal 
contraction coefficient in cooling is analogous to the 
current mass loss coefficient because both function as 
coefficients of the shrinkage stress. 

Our problem, characterized by nine 𝜋𝜋  groups, will 
employ characteristic units from the parameters 𝐻𝐻, 
𝑡𝑡ℎ𝑐𝑐, 𝑇𝑇0 and 𝜌𝜌0 (length, time, mass and temperature). 
We let 𝑥̅𝑥 = 𝑥𝑥/𝐻𝐻,  𝑦𝑦� = 𝑦𝑦/𝐻𝐻,  𝜏𝜏 = 𝑡𝑡/𝑡𝑡ℎ𝑐𝑐 ,  𝜃𝜃 = (𝑇𝑇 − 𝑇𝑇0)/
𝑇𝑇0. Then Eq. (1) can be written as: 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = (Π3𝜕𝜕2𝜃𝜃/
𝜕𝜕𝑥̅𝑥2 + 𝜕𝜕2𝜃𝜃/𝜕𝜕𝑦𝑦�2).  The initial condition for the 
dimensionless temperature 𝜃𝜃  is 𝜃𝜃 = 0 , which is also 
the boundary condition at the two sides, 𝑦𝑦 = 0, 𝐿𝐿. The 
boundary condition for 𝜃𝜃  on the insulated side is: 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑦𝑦� = 0, and on the heated side is:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

=

⎩
⎨

⎧ 0 if �𝑥𝑥 −
1

2Π1
� >

Π2
2Π1

 

Π4 if �𝑥𝑥 −
1

2Π1
� ≤

Π2
2Π1

.
 

The pyrolysis equation (2) becomes 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −(𝜌𝜌 − Π7)
1
Π6

𝑒𝑒Π5�
𝜃𝜃

1+𝜃𝜃�. 

Finally, the stresses are non-dimensionalized with 
respect to Young’s modulus 𝐸𝐸  using 𝐸𝐸 = (Π8/
Π62) exp(2Π5)𝜌𝜌0𝐻𝐻2/𝑡𝑡ℎ𝑐𝑐2  , viz. 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥/𝐸𝐸,  𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑦𝑦𝑦𝑦/
𝐸𝐸,  𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥/𝐸𝐸,  𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜎𝜎𝑧𝑧𝑧𝑧/𝐸𝐸,  𝜎𝜎𝑝𝑝 = 𝜎𝜎𝑝𝑝/𝐸𝐸,  where 𝜎𝜎𝑝𝑝 
is the relevant principal stress. 

Numerical results 

We use thermo-mechanical properties of a rubber-
like material. Also, we use 𝑞𝑞0 𝑘𝑘𝑦𝑦⁄ =  1.2 × 105 K/m as 
standard values. Subsequently we vary the parameter 
groups with these as reference values. The sample size 
is taken to be 5 cm × 2 cm so Π1 = 0.4. For rubber-
like materials we use 𝜈𝜈 = 4.5 × 10−1 and 𝛾𝛾 = 1. The 
reference values of the groups become: Π30 = 1.0, 
Π40 = 4 × 101,  Π50 = 3.15 × 101,  Π60 = 1.0 × 10−3, 
Π70 = 3 × 10−1,  Π80 = 1.8 × 10−18,  Π90 = 3.33 × 10−2. 

   
Fig. 1. Vary Π2 = 𝑙𝑙/𝐿𝐿. Left, Π2 = 0.01, Π6 = 100Π60; Middle, Π2 = 0.1, Π6 = Π60; Right, Π2 = 1.0, Π6 = Π60. 

   
Fig. 2. Vary Π3 = 𝛼𝛼𝑦𝑦/𝛼𝛼𝑥𝑥. Left, Π3 = 0.1Π30; Right, Π3 = 10Π30. 

   
Fig. 3. Vary Π3 = 𝛼𝛼𝑦𝑦/𝛼𝛼𝑥𝑥. Left, Π3 = 0.1Π30 and Π6 = 10Π60; Right, Π3 = 10Π30 and Π6 = 0.1Π60. 



PSMIJ, Vol. 1 (2020) Article 9, pp. 1–5  Y. Nguyen et al. 

– 4 – 

All of the images below show the maximum principal 
stress field evaluated at the simulation time 𝑡𝑡 = 3000 
sec = 50 min. In all cases, the maximum stress is 𝜎𝜎𝐼𝐼. 

Vary Π2.  Group Π2  describes the length 𝑙𝑙  of the 
surface over which heat flux is applied. When the heat 
flux is centered, the cracks propagate radially (Fig. 1 
middle, Π2 = 0.1). On the other hand, a uniform heat 
flux over the surface causes crack growth to be vertical 
(Fig. 1 right, Π2 = 1.0). When Π2 = 0.1, the heat flux 
may represent a flame whose tip width is ≈ 5 mm. In 
Fig. 1 left, Π2 = 0.01, a very small heated width, only a 
small slit forms at the center region of the surface, even 
with a very high value of Π6 = 100Π60 (if Π6 were as 

small as the other two figures, there would be no cracks 
at all). 

Vary Π3 = 𝛼𝛼𝑦𝑦 𝛼𝛼𝑥𝑥⁄ . As seen from Fig. 2, increasing Π3 
enhances heat transfer toward the in-depth (𝑦𝑦) 
direction, leading to dramatically different crack 
patterns (crack growth in-depth) as well as a decrease 
in the crack spacing in the 𝑦𝑦 -direction. On the other 
hand, when Π3  is decreased, heat transfer in the 
horizontal (𝑥𝑥)  direction is dominant, and the cracks 
spread horizontally. In Fig. 2 left (right), Π3 decreases 
(increases) by a factor of 10, the other 𝜋𝜋  groups 
remaining unchanged. This corresponds to letting the 
thermal diffusivity in the horizontal direction 𝛼𝛼𝑥𝑥 

   
Fig. 4. Vary Π4 = 𝑞𝑞0𝐻𝐻/�𝑘𝑘𝑦𝑦𝑇𝑇0�. Left, Π4 = 2Π40; Right, Π4 = 0.5Π40. 

   
Fig. 5. Vary 𝑇𝑇𝑎𝑎. Π5 = 𝑇𝑇𝑎𝑎/𝑇𝑇0, Π6 = 𝐻𝐻2𝐴𝐴𝑒𝑒−𝑇𝑇𝑎𝑎/𝑇𝑇0/𝛼𝛼𝑦𝑦. Left, Π5 = 0.9Π50, Π6 = Π60; Right, Π5 = 1.1Π50, Π6 = Π60. 

   
Fig. 6. Vary Π6 = 𝐻𝐻2𝐴𝐴𝑒𝑒−𝑇𝑇𝑎𝑎/𝑇𝑇0/𝛼𝛼𝑦𝑦 by varying 𝐴𝐴. Left, Π6 = 10Π60; Right, Π6 = 0.1Π60. 

   
Fig. 7. Vary Π9 = 𝜎𝜎𝑐𝑐/𝐸𝐸.  Left, Π9 = Π90;  Right, Π9 = 1.4Π90.  As Π9  increases, fewer cracks form. For very large 
𝜎𝜎𝑐𝑐/𝐸𝐸 no cracks will form. 



PSMIJ, Vol. 1 (2020) Article 9, pp. 1–5  Y. Nguyen et al. 

– 5 – 

increase (decrease) by a factor of 10. 
Another way to change Π3  is to change 𝛼𝛼𝑦𝑦 , which 

also changes Π6 = 𝑡𝑡ℎ𝑐𝑐 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒⁄ . From Fig. 2 and Fig. 3, it 
can be seen that Π3 determines the shape of the crack 
pattern: both Fig. 2 (Left) and Fig. 3 (Left) have the 
same Π3. By contrast, cracks caused by a decrease in 
𝛼𝛼𝑦𝑦 or 𝛼𝛼𝑥𝑥 lead to more cracks (Fig. 2 (Right) and Fig. 3 
(Left)). Fig. 3 (Right) increases 𝛼𝛼𝑦𝑦  by a factor of 10, 
keeping 𝛼𝛼𝑥𝑥 constant. 

Vary Π4 = 𝑞𝑞0𝐻𝐻 �𝑘𝑘𝑦𝑦𝑇𝑇0�⁄  . Group Π4  represents heat 
flux strength. Higher heat fluxes raise the temperature 
faster, enhance pyrolysis and produce more cracks, see 
Fig. 4. 

Vary activation energy 𝑇𝑇𝑎𝑎.  Changing 𝑇𝑇𝑎𝑎  changes 
both Π5 and Π6. In Fig. 5 (Left), 𝑇𝑇𝑎𝑎 is lower by 10 %, 
whereas in Fig. 5 (Right) it is increased by 10 % over its 
standard value. As expected, a lower 𝑇𝑇𝑎𝑎  produces 
more damage to the sample because it pyrolyzes at a 
faster rate. 

Vary Π6. Group Π6 characterizes the pyrolysis rate. 
As Π6 increases, pyrolysis happens at a faster rate, and 
so does crack propagation as seen from Fig. 6. 

Vary Π9. Since the group Π9 characterizes material 
strength, samples with higher Π9  produce fewer 
cracks with larger crack spacing compared with lower 
strength samples, see Fig. 7. 

Conclusion 

This model for crack formation in a pyrolyzing elastic 
solid generates nine 𝜋𝜋  dimensionless parameter 
groups. Some are related to geometry, others to heat 
transfer, some to material chemical breakdown, some 
to elastic strength parameters, and several linking or 
coupling these effects. For this reason, the spectrum of 
material response to heating can be dramatically 
altered. The heating length scale l appears only in the 
ratio Π2 = 𝑙𝑙 𝐿𝐿⁄ .  Since the flame scale varies solely 
through this parameter, this model can potentially be 
adapted to problems that span the range between very 
small flames (micro-flames) and very large flames 
(macro-flames). 
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