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ABSTRACT OF THESIS 
 
 
 
 

INFLUENCE OF SIZE EFFECTS ON SURFACE GENERATION DURING FINISH 
MACHINING AND SURFACE INTEGRITY IN TI-6AL-4V 

 
 

Finish machining is an essential manufacturing process that is used to enhance the 
mechanical characteristics of critical components. The deformation that occurs at the tool 
and workpiece interface in finish machining significantly affects a host of component 
properties, commonly referred to as “surface integrity” properties. Surface roughness is a 
machining deformation-affected characteristic that is of high relevance in contemporary 
manufacturing. However, over recent decades it has been made clear that the material 
properties of the deformed surface layers are relevant to component performance as well. 
Predicting the overall surface quality of a machined component is of great relevance to the 
manufacturing industry. 

Current state-of-the-art predictive models in the area of machining-induced surface 
integrity are typically founded in two-dimensional F.E.M. analysis. These investigations 
frequently show the advantages of tool geometry manipulation. However, most efforts 
focus solely on the prediction of two-dimensional surface integrity qualities such as those 
found in orthogonal machining. Indeed, most recent models largely ignore three-
dimensional properties such as surface roughness, and do not incorporate three-
dimensional machining parameters that are highly relevant to the surface integrity state of 
typical finished components. In light of these shortcomings, the nature of surface integrity 
in three-dimensional machining is explored, and a physics-based geometric model of 
surface generation is applied to some areas of surface integrity prediction.  

The main focus of this work is to investigate and model the relationship between 
the more dominant parameters in finish turning (feed, nose radius, and edge geometry) and 
the surface generation phenomena that occur in the application of tools with varied 
geometries of this scope. The presented geometric model is derived from unique 
assumptions that allow for the close approximation of surface generation. The model is 
subsequently validated with experiments that utilize modified turning inserts of precise 
edge geometry, as well as pedigreed data from previous literature. Good agreement with 



     
 

experimental roughness results is obtained, thus verifying the validity of the surface 
generation assumptions. In addition, subsurface properties are found to correlate well with 
the geometry of ploughed areas predicted by the modeling methodology presented in this 
text. 

 
KEYWORDS: Surface Integrity, Material Side Flow, Minimum Uncut Chip Thickness, 
Finishing, Multi-Path, Size Effect 
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CHAPTER 1. INTRODUCTION 

Finish machining is a longstanding process in the manufacturing industry that is 

dominant among all processes in the production of precise surfaces. This methodology 

allows manufacturers to create parts with specific surface qualities, typically tailored for 

use in precision applications such as aerospace, automotive, or biomedical industries. 

While the current practice of many manufacturers is to investigate and verify these critical 

qualities experimentally, research in recent decades has been focused on eliminating the 

time and cost of experimentally determining the most advantageous machining parameters 

by modeling machining-induced “surface integrity”. However, the finish machining 

process is complex, and is subject to the repercussions of many process-specific “size 

effects”, due to exacerbated material ploughing encountered at the cutting edge in the 

finishing regime. Thus, modeling of surface integrity in finish machining is non-trivial, as 

confirmed by the inaccuracies of many modern machining models [1]. 

Contemporary modeling of surface integrity in machining is most often 

investigated by simplifying the machining case to two dimensions: cutting and depth of cut 

directions. This simplification applies directly to orthogonal turning and allows for easier 

calculation and study of the thermo-mechanical phenomena that occur in this plane, that in 

turn affect surface integrity. F.E.M is the model type primarily employed in this way, and 

allows for the calculation of stresses, strains, and material alterations that arrive from these 

phenomena. While much progress has been made in the prediction capabilities of these 

models, the material constitutive relationships and assumptions applied within the 

framework of these models are difficult to obtain, and error prone. Moreover, the 

simplification of machining into two dimensions ignores process parameters that 

significantly influence surface integrity. Thus, F.E.M. or other two-dimensional methods 

have yet to be highly utilized in industry. Nonetheless, the pursuit of two-dimensional 

prediction capabilities for surface integrity values is certainly relevant as a basis for 

understanding machining process mechanics. 

Alternative to the two-dimensional case, prediction of surface integrity arriving 

from the nuances of three-dimensional processes has been studied very little, given its 

additional complications. While the general surface integrity trends predicted by two-
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dimensional models do carry over to the three-dimensional case, to what extent and form 

is practically unknown. Additionally, three-dimensional surface integrity metrics such as 

surface roughness, and subsurface material property variations in the feed direction have 

largely been ignored by contemporary efforts. Furthermore, surface roughness is highly 

influenced by cutting edge radius - one of the commonly varied factors of two-dimensional 

modeling - yet few recent roughness models have considered this highly relevant 

parameter. 

This thesis is focused on investigating the influence of machining parameters on 

surface generation phenomena in the finish machining of ductile materials. It is 

hypothesized that surface integrity values may be directly correlated to geometric 

machining parameters, and that a geometry-based surface generation model can predict the 

surface integrity behavior resulting from these varied conditions. Through the use of 

modified carbide turning tools, the parameters feed, corner/nose radius, and cutting edge 

radius are varied in a series of turning tests. A host of analysis techniques are utilized to 

illuminate the relevance of each parameter on the machined surface integrity found under 

these conditions. Concurrently, a geometrical model is developed which predicts the effects 

of feed, corner/nose radius, cutting edge radius, and material on surface generation 

phenomenon. Unique assumptions are utilized to closely approximate two phenomena of 

high relevance: side flow and elastic spring back. While limitations exist within this 

framework, the developed model is found to accurately predict surface roughness in 

multiple materials and shows the general effects of the varied parameters on near surface 

material hardness with some confidence. 
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CHAPTER 2. TECHNICAL BACKGROUND AND PREVIOUS WORK 

2.1 Finish Machining Principles 

2.1.1 Motivation 

Finish machining provides the ability to create surfaces of smooth topography and 

good resilience to deteriorative phenomena such as wear or fatigue failure. Engineered 

surface qualities like these are of great importance to industries including aerospace, 

biomedical, automotive, power generation, etc., which rely upon machined components to 

perform critical tasks in a cost effective manner. These components are often responsible 

for bearing various mechanical, thermal, and chemical loads. Prominent examples include 

bearing surfaces, aircraft engine rotors, and biomedical implants. As technological 

advances accelerate, machined components are challenged to possess ever-increasing 

functional performance and longer service life. Furthermore, this task of increasing the 

machining-induced reliability and functionality (surface integrity) of machined 

components has been made more difficult by the development of superalloys that are 

superior in their physical properties to common materials such as steel, aluminum, etc., 

thus increasing the apparent thermal and mechanical loads on both the workpiece and 

tooling during manufacturing. 

Historically, the topography of machined surfaces has been a key surface integrity 

specification of manufacturers. It is easily recognized that parts in high precision 

applications should not only fit well dimensionally, they must mate well tribologically in 

order to operate efficiently and without excess wear. Thus, creating components with 

appropriate surface roughness for the given application is paramount in manufacturing. 

However, investigations into component failure and function have revealed that the 

machining-affected material properties of this surface - as well as those of the subsurface 

layers - are of high importance to part performance. At this point it has been well 

established that the functional performance of machined parts is profoundly tied to the 

regularity and quality of both the topography and subsurface material properties of the 

produced surfaces. 
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A host of manufacturing processes are commonly utilized to produce surfaces of 

varying precision. Figure 2.1 shows some of the most common processes, as well as the 

roughness ranges that are achievable for each given process. Within the “mechanical 

finishes” section, it may be observed that conventional milling and turning operations are 

generally employed in operations requiring less stringent surface finish standards than finer 

processes like grinding. 

 

Figure 2.1.  Surface roughness produced by common methods (modified from [2] with 
permission of Elsevier Inc., submission ID 1035201). 

While this figure is dated, many of the relative relationships have remained fairly 

constant throughout manufacturing advances. The precision gap between grinding and 

processes like milling, turning, and shaping still exists today. Generally, with greater 

precision, comes greater expense; specialized processes like grinding require additional 
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equipment and personnel. Due to this, there is considerable drive to utilize relatively 

inexpensive processes like conventional turning and milling at progressively finer finish 

specifications. The finishing abilities of these processes are coupled with relatively high 

material removal rates (MRR) that make them even more desirable from an economic 

standpoint. Furthermore, it is known that machining processes like turning and milling can 

be manipulated in such a way to induce subsurface material alterations, which in turn 

improve the functional performance of the final product. This inherent ability of milling 

and turning contrasts with grinding, which cannot be manipulated in a similar manner. 

Inducing similar subsurface material alterations in a ground surface necessitates the use of 

additional processes like burnishing or shot peening, which adds additional expense to the 

creation of a given component. However, implementing conventional milling and turning 

at these fine finishes often leads to undesirable surface characteristics. At the lower 

extremes of turning and milling’s achievable roughness ranges (where the cost and time-

saving advantages are most relevant), machining mechanics become unpredictable due to 

the aforementioned size effects that occur in this regime. In order to more effectively 

implement conventional finish machining at these fine finishes, further investigation into 

the fundamental mechanics of surface generation is warranted. 

2.1.2 Surface Generation Basics 

Finish machining processes on which this work is focused are so called “three-

dimensional” processes such as turning, milling, shaping, etc., where the surface of the 

component being machined is created by multiple adjacent tool cutting edge paths, 

typically of non-linear nature. Each tool path intersects with the surface created by the 

previous tool path. These operations create surfaces that are formed primarily by the 

secondary edge of the tool. On the other hand, two-dimensional processes such as 

orthogonal turning, broaching, form turning, band-sawing, etc., create surfaces by primary 

edge only, meaning that the tool’s cutting edge never intersects the surface generated by 

the previous tool path. An example of a surface generated by a turning operation (three-

dimensional tool path) and a cross-section of the workpiece/tool geometry is shown in 

Figure 2.2. Note the intersection of the tool with the previously generated surface in Figure 

2.2b. 
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(a) (b) 

Figure 2.2.  (a) Three-dimensional model of basic turning geometry; (b) cross section of 
the three-dimensional model displayed on the left. Note the presence of affected 
subsurface area denoted by dashed lines. 

2.1.3 Surface Topography 

The end goal of finish machining is to produce a surface with characteristics that 

are within the specified limits for a particular part. Manufacturers often specify surface 

finish (topographical characteristics) as the only surface integrity specification. One of the 

most dominant parameters used to assign a standard value to surface topography is the 

“Arithmetical Mean Height”, denoted by the term Ra. This parameter quantifies the given 

roughness of a surface by integrating the area between a two-dimensional profile of the 

surface, and the arithmetic average of the entire profile, as shown in Figure 2.3. 

 

 
Figure 2.3.  Illustration for the calculation of Roughness Average Ra. 
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Surfaces of finish Ra < 1 µm are frequently called for in finish turning. In general, 

competent machining of surfaces with this level of roughness requires that certain 

conditions be met. The relevant conditions of individual processes vary, but the those that 

typically dominate the determination of surface roughness are generally geometric and 

vibration-related.  

 
Figure 2.4.  Basic turning surface generation geometry showing the replication of the tool 
corner radius onto the workpiece. 

At the most basic level, the turning process is the repeated projection of the tool 

surface onto a workpiece surface, which may be modeled as shown in Figure 2.4. Since the 

resulting theoretical surface is geometrically defined, the parameters that influence this 

geometry may be modified to reduce the perceived roughness. The two parameters 

affecting the geometry of the surface in the case of turning are feed (the spacing between 

adjacent tool path segments) and corner radius (the round portion of the tool profile which 

is responsible for the creation of the entire surface for finishing conditions). A “Kinematic” 

roughness equation (1), shown below, has been previously developed in order to 

understand the roughness predicted by only considering these parameters. 

𝑅𝑅𝑎𝑎 = 𝑓𝑓2

32𝑟𝑟𝑐𝑐
  (1) 

Where 𝑓𝑓 is feed, and 𝑟𝑟𝑐𝑐 is corner radius. It may be observed that the kinematic 

roughness Ra predicted by this equation will be small for smaller values of feed, and higher 

values of nose radius. Therefore, in order to achieve fine finishes, feed should be relatively 

small, while the parameter corner radius must be relatively large.  
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Additionally, vibration must be effectively eliminated from the machining process, 

as significant vibration will immediately create surfaces which possess a rough finish due 

to the movement of the tool. Chatter (high-impact vibration which induces a significant 

change in engagement between the tool and workpiece) is commonly caused by the forces 

arising from chip shearing behavior, machine tool error, tool wear, and tool/workpiece 

deflection. In order to reduce the forces that cause chatter, common practice is to reduce 

the tool nose radius, use a sharper/unworn tool, or decrease the depth of engagement of the 

tool in the workpiece. Stiffer machine, workpiece, and tool geometries are often employed 

to reduce the susceptibility of vibration prone processes by increasing the natural 

frequencies of the workpiece/machine tool system. 

Other machining variables can affect surface roughness as well. Workpiece 

material behavior (side flow, cracking, built up edge, pullouts, etc.), coolant/lubricant use, 

machine tool errors, tool wear, and tool edge roughness are among the most common 

factors that affect the roughness generated by machining processes. The culmination of all 

related variables gives way to the induced surface topography. It should be noted that due 

to all these factors, the kinematic equation is rarely an accurate representation of the final 

surface roughness, especially in finish machining. 

2.1.4 Subsurface Properties 

The surfaces imparted by finish machining are often desired to have properties 

which lead to increased performance and lifetime. The most common method of improving 

a machined surface in this respect is to eliminate any obvious surface defects such as 

cracking, excessive plastic flow, discoloring, etc. All such visual features signify a 

subsurface which has been altered in a way that is deteriorative to the component’s 

performance. However, investigations have shown that significant performance 

improvements in the material’s residual stress, hardness, etc. may be made past the point 

of no visual damage. 

Opposed to roughness phenomena, visual defects do not have easily identifiable 

geometric relationships to machining parameters. Nevertheless, some qualitative 

connections are identifiable. Often, visually observed phenomena can be reduced by 



 
 
9 

ensuring the quality and condition of the machining tool. Very blunt or worn tooling can 

encourage excessive plastic flow, higher thermal loading, and higher mechanical loading 

at the tool/workpiece interface. Other machining process parameters such as feed, depth of 

cut, nose radius, cutting edge radius, tool material, cutting speed, coolant/lubricant type, 

etc., can also lead to significant change in visual surface defects. 

Likewise, non-visual machining-induced surface integrity properties like residual 

stress, hardness, microstructure alterations, etc., are not easily correlated to specific 

geometric relationships, perhaps even less so. Generally, favorable mechanical 

compressive effects can be achieved by enlarging a typical “sharp” tool cutting edge radius 

slightly. However, this enlarging of the cutting edge may also lead to detrimental thermal 

effects which can induce thermal softening of the workpiece and yield tensile residual 

stress due to phase change. Tool wear is typically considered a negative condition in 

machining, yet in some cases, slight tool wear has been shown to improve the residual 

stress-state (bias towards compression) of the generated surface. Similar to visually 

observed defects, non-geometrical factors play a major role in the development of 

subsurface material properties as well; these factors include material behavior, interfacial 

friction, tool material, etc. Thus, the problem of predicting subsurface material properties 

is a complex one. 

2.2 Surface Generation and Surface Integrity in Finish Machining  

2.2.1 Surface Roughness 

It is well understood that size effects begin to dominate the produced surface 

roughness in the finish machining regime [3]. However, the phenomena that lead to these 

size effects are difficult to characterize. The most commonly investigated roughness-

related size effect is the increased surface roughness caused by the tool cutting edge 

roughness, however it is clear that this is not the only dominant size effect in finish 

machining surface generation [4]. The size effects caused by minimum uncut chip 

thickness and side flow on increasing surface roughness in finish turning have been 

acknowledged as being significant for some time. However, these two phenomena are not 

often considered to be related. 
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Moll [5] was perhaps the first to record the discrepancy between actual and 

kinematically predicted surface roughness values at low feeds. Sokolowski [6] introduced 

the premise of a minimum uncut chip thickness (hmin), defined formally as the chip 

thickness required to remove material from the workpiece. The hmin effect is now widely 

recognized as resulting from the finite sharpness of the cutting edge (cutting edge radius, 

re). Albrecht [7] was among the first to demonstrate the relevance of the cutting edge radius 

to process forces, as well as surface generation. Analytically determining the exact 

behavior of hmin has proven difficult, but it is generally understood to increase with edge 

radius [8]. Brammertz [9] applied the idea of hmin to turning, theorizing that, due to this 

phenomenon, there must be some part of the uncut chip thickness left on the surface of the 

workpiece, at the location where the chip thickness approaches zero on the secondary edge; 

Brammertz famously termed this area of uncut workpiece material the ”Spanzipfel”. In 

many subsequent studies, this material is assumed to behave elastically (spring back), 

which implies significant surface roughness increase at low-feed rate, high-nose radius 

conditions (i.e., low kinematic roughness) [10, 11]. The kinematic roughness equation was 

modified by Brammertz [9], as shown in the following equation, to account for the 

roughness increase caused by the Spanzipfel material left on the machined surface. 

𝐵𝐵𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚 𝑅𝑅𝑡𝑡/𝑅𝑅𝑧𝑧 = 𝑓𝑓2

8𝑟𝑟𝑐𝑐
+ ℎ𝑚𝑚𝑚𝑚𝑚𝑚

2
∙ �1 + ℎ𝑚𝑚𝑚𝑚𝑚𝑚∙𝑟𝑟𝑐𝑐

𝑓𝑓2
�  (1) 

where f is feed, rc is tool nose corner radius, and hmin represents the minimum uncut 

chip thickness. Note that the leftmost term in Equation (1) is the kinematic roughness 

equation, which predicts the roughness of a surface created by assuming perfect material 

removal, as shown in Figure 2.5a. While Equation (1) does predict the commonly observed 

discrepancy in actual and kinematically predicted surface roughness at low-feed rates, 

studies show that actual roughness values tend to be substantially smaller than those 

predicted by this equation at low kinematic roughness [12, 13]. Indeed, this discrepancy 

can be traced back to Brammertz’s underlying assumption that any material within the 

Spanzipfel region will spring back elastically, as indicated in Figure 2.5b. In reality, it is 

clear that some plastic deformation will occur to the uncut material, which is subject to 

significant deformation during movement underneath the cutting tool and/or side flow. 

Shaw and Cookson [14] hypothesized later that the hmin material will be plastically 
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deformed when it is pulled under the tool, and should not account for the roughness 

discrepancy at small feeds. However, an early (1961), almost forgotten landmark work by 

Lambert [15] ingeniously demonstrates that the material that is left behind due to 

Sokolowski’s hmin effect is not confined to Brammertz’s Spanzipfel region. Rather, 

Lambert found the material under hmin is left behind over the entire engaged cutting edge. 

Therefore, the commonly used surface generation assumptions utilized to arrive at the 

Brammertz-type models are not valid for workpiece materials responding in a plastic 

manner (i.e., most metals and plastics). 

 
(a) 

 
(b) 

Figure 2.5.  (a) Simulated surface from turning, created assuming perfect chip removal; 
(b) Simulated surface created by assuming material in the Spanzipfel region is left on the 
surface and behaves elastically. Adapted from author’s published work with permission 
from MDPI [16]. 

As an alternative cause for increased roughness at small feeds, material side flow 

(MSF) has been investigated to some extent. Sata [17] investigated MSF’s influence on 

roughness for different materials and found it to be more relevant in the machining of 

ductile materials. A few studies have noted that observed MSF is responsible for surface 

roughness deterioration in finish turning [18-21]. Finish turning conditions (high cutting 

speeds, low feeds and depth of cut) lead to high temperatures at the tool/workpiece 

interface, causing severe workpiece material plasticization, which then encourages MSF. 

Typical surface geometry indicative of MSF is shown below in Figure 2.6. 
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Figure 2.6.  Simulated surface created by assuming some constant amount of material is 
pushed to the side during each tool pass. Adapted from author’s published work with 
permission from MDPI [16]. 

Kishawy and Elbestawi [22] investigated the MSF phenomenon and noted that 

roughness was significantly influenced by cutting tool edge preparation, which in turn 

directly influences the value of hmin. However, Kishawy et al. did not include a cutting edge 

radius parameter when developing the FEA model presented in [21]. Liu and Melkote. [23] 

developed a model for surface roughness prediction that accounts for side flow in diamond 

turned surfaces, but considered edge radius to be negligible (a reasonable assumption for 

single crystal diamond tools at practical feeds). El-Wardany and Elbestawi [19] thoroughly 

investigated the occurrence of MSF and noted that it was influenced by tool nose radius, 

feed, tool wear, and hmin, mentioning that edge radius has a direct effect on hmin, and 

therefore MSF. Many similar studies look to tool edge surface roughness and tool wear to 

account for side flow. While these parameters are certainly relevant, little work has sought 

to define the evident relationship between roughness due to side flow, in light of hmin. 

More recent contributions in the study of machined roughness have focused some 

on this relationship. Ozel et al. [24] showed the condition of the edge is a relevant 

roughness parameter in the hard turning of H13 steel. Ozel and Karpat [25] subsequently 

demonstrated the effectiveness of an ANN model for predicting roughness within a single 

dataset. This model considered tool edge geometry on a limited basis. Thiele and Melkote 

[26] studied edge geometries in hard turning of AISI 52100 steel and concluded that larger 

tool edge radii increased roughness by ploughing phenomena. Zhao et al. [27] presented a 

limited investigation on the effect of tool edge radius on surface roughness in AISI 52100 
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steel. Childs et al. [4, 12] have experimentally investigated the effect of cutting edge radius 

on surface roughness in finish turning in multiple materials, and found that machine tool 

error can be a more dominating factor of finish turning roughness on conventional 

machines. Geometric modeling of surface roughness that accounts for tool edge geometry 

was performed in [28], but lacks significant validation and makes dubious assumptions. 

Schultheiss et al. [29] presented an analytical roughness model that takes into account hmin, 

but their definition and determination of hmin relies on questionable assumptions. 

Kountanya [30] developed a three-dimensional model that accounted for tool edge radius 

and roughness effects, and showed similar trends as previous two-dimensional efforts. 

Knuefermann [13] developed a geometric model to predict surface roughness based on tool 

geometry, edge defects and asynchronous error, yet ultimately does not consider side flow 

effects due to tool edge radius. Furthermore, many recent optimization studies of finish 

turning do not consider the effect of tool edge radius [31-33]. Hence, the relationship of 

roughness increase due to side flow (in light of tool edge radius) has been demonstrated to 

be relevant, yet is not commonly considered in recent works, and requires clarifying. 

Roughness models that do consider the effect of hmin are often concerned with 

microcutting or diamond turning, where edge chamfers/radii are so small (on the scale of 

nanometers, rather than micrometers) they may nearly be neglected at reasonable feeds, as 

stated in [20]. Zong et al. [34] developed a model to predict roughness in diamond turning 

and gave consideration to MSF. Chen and Zhao [35] established a roughness prediction 

model that demonstrated an increase in roughness due to side flow. He et al. [36] has 

developed a model for diamond turning that incorporates plastic side flow based on a 

minimum chip thickness value. However, the incorporation of side flow is rather simple 

and relies upon multiple fitting of constants for calibration. In diamond turning, edge 

roughness is often a more relevant parameter than the minute value of hmin found on 

diamond tools, yet is not highly relevant in the comparatively duller tooling of precision 

and conventional machining. Additionally, these previous works have been primarily 

concerned with mathematically investigating surface roughness phenomena, and generally 

do not approach the understanding of the geometry of surface generation mechanics.  

Little published work exists on the influence of tool edge radius on roughness due 

to process damping in turning. Alternatively, many studies have studied the evident link 
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between observed vibration and surface roughness [13, 37, 38]. However, predicting this 

small-scale vibrational error in industrial applications is not trivial. Chatter prediction has 

been studied in depth as noted by Altintas and Weck [39]. However, chatter is deemed 

outside the scope of this work, as it is generally not acceptable in finish machining. 

Recently, observations were made by Biermann and Baschin [40] in micromilling surfaces 

regarding improved roughness due to process damping related to tool edge radius. Yusoff 

et al. [41] remarked that the role of edge geometry was significant in the damping of 

‘macroscopic’ milling. Budak and Tunc [42] present an excellent approach to modeling 

process damping in turning. However, the effort is still primarily concerned with chatter. 

Generally, previous efforts have not considered tool edge geometry’s effects on small 

positional errors of the tool that lead to surface roughness increase in very fine finishing. 

2.2.2 Subsurface Properties 

The study of machined layer subsurface properties is considerably more 

contemporary than that of surface roughness. One of the foremost recognized studies in 

this field was conducted by Henriksen [43] in 1951. These efforts served to illuminate the 

apparent impact of machining processes on the final residual stress state of part surfaces. 

In addition to recognizing the presence of machining induced residual stresses, Henriksen 

made the observation that mechanical effects were of greater relevance than thermal 

stresses in the development of residual stress. Field et al. [44] at Metcut subsequently 

published a monumental work in 1964 that showed many other meaningful characteristics 

of a machined surface. They introduced the concept of surface integrity, otherwise known 

as “SI”. Their work in [45] presents a comprehensive evaluation of surface integrity 

phenomena that are encountered in the machined surface, including plastic deformation, 

microhardness, residual stress distribution, etc., and has largely set the stage for subsequent 

surface integrity analysis efforts. In 1972, Field et al. [2] introduced a table that lists the 

relevant phenomena an effort should investigate in order to conduct a wholesome review 

of the surface integrity of a particular parameter set, shown below. 
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Table 2.1.  Different levels of surface integrity data sets for the inspection of machined 
components (modified from [2] with permission of Elsevier Inc., submission ID 1035201).  

Ex
te

nd
ed

 S
et

 

St
an

da
rd

 S
et

 

M
in

im
um

 S
et

 

1) Surface Finish (topography) 
2) Macrostructure (10x) or less 

a) Macrocracks 
b) Macro-etch indications 

3) Microstructure 
a) Microcracks 
b) Plastic deformation 
c) Phase transformations 
d) Intergranular attack 
e) Pits, tears, laps, protrusions 
f) Built-up edge 
g) Melted and redeposited layers 
h) Selective etching 

4) Microhardness 
5) Fatigue tests (screening) 
6) Stress corrosion tests 
7) Residual Stress and distortion 

8) Fatigue tests (extended to obtain design data) 
9) Additional mechanical tests 

a) Tensile 
b) Stress rupture 
c) Creep 
d) Other specific tests (e.g., bearing performance, sliding 

friction evaluation, sealing properties of surfaces) 

The table is divided into minimum, standard, and extended data sets. Data that is 

considered mandatory for even the simplest of surface integrity investigations is shown 

under the minimum data set, which establishes a higher relevance of these parameters in 

typical machining. Within these sets, certain phenomena are studied with more frequency 

due to their complexity and relationship to component performance metrics like fatigue life 

(i.e. residual stress, roughness, cracks, etc.), wear resistance (i.e. hardness, roughness), and 

friction characteristics (roughness). 

Following Field et al.’s fundamental work in [2], Bailey and Jeelani [46, 47] 

investigated the machining-induced surface integrity, both in terms of altered material 

properties and metallurgical changes. Liu and Barash [48, 49] subsequently studied the 

formation of a machined part’s surface and subsurface, with regard to both sharp and worn 
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tools. Griffiths [50] made a major clarification on the occurrence and nature of the often 

cited near-surface ‘white layer’. The effect of workpiece hardness and other material 

properties has been investigated by Jeelani et al. in a series of publications [47, 51]. Jeelani 

et al.’s work within the regime of machining-induced residual stress analysis is of particular 

importance as it established a relationship to the resulting lifetime of machined parts which 

undergo fatigue failure. Tönshoff and Brinksmeier [52] published a survey of the relevance 

of each physical surface integrity property to the failure type of a given machined 

component. More recently, Griffiths [53] has brought together many aspects of surface 

integrity measurement, characterization, process parameter relationships and functional 

performance relationships. This survey verified many of the original results of Tönshoff 

and Brinksmeier, and added additional context as to the relationships between the 

subsurface material properties of machined components and the various types of failure. 

Griffiths modified a table originally published in [52] to summarize the results of this study, 

shown here as Figure 2.7. 

 

Figure 2.7.  Chart of material properties that are relevant to failure types. (reproduced 
from [53] with permission of Elsevier Books Limited, reference number 40346, 
originally modified from[52], with permission of Elsevier Inc., license number 
4875501237893).  
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It is therefore well understood that surface integrity is in large part due to machining 

operations, and that these induced properties have significant impacts on the lifetime of a 

machined component. However, the genesis of many surface integrity phenomena are still 

contested, with researchers often publishing conflicting results [54]. Ulutan [55] has shown 

that the effects of basic cutting parameters such as feed, cutting speed, and depth of cut on 

residual stress, strain hardening, and surface finish are still not well understood in the 

machining of Titanium and Nickel-based alloys. This implies that there is some other factor 

in surface generation that requires clarification. This missing factor is most likely edge 

geometry, and is mentioned in [55] as relevant to surface integrity, but has yet to be 

investigated as thoroughly as the other factors mentioned. Many relevant surface integrity 

threats arise due to the plastic deformation of material on the machined surface, which is 

highly influenced by the characteristics of the cutting edge geometry of a particular tool. 

This material is highly strained and results in a temperature increase, leading to mechanical 

effects from the apparent strain, and thermal softening of the surface due to the temperature 

increase. These deformations can be affected by a range of factors including cutting 

parameters, workpiece material properties, tool geometry and material properties. 

2.2.2.1 Hardness 

One of the earliest investigations into machining-induced microhardness and 

residual stress was that of Tondshoff and Brinksmeier. They have advised that the induced 

microhardness change seen in machining is relevant when considering failure due to plastic 

deformation, scuffing/adhesion, cavitation, and wear [52]. Griffiths and Furze [56] proved 

that the presence of a strain-hardened subsurface layer will lead to increased wear 

resistance. Surface hardness can also easily be five times the value of the bulk hardness, 

making a load bearing surface which is very brittle, and prone to failure [53]. Ground 

surfaces investigated in [52] showed that a tempered (thermally softened) layer extended 

further into the subsurface when the grit size was decreased, corresponding to an increase 

in thermal loading and a decrease in mechanical loading. This effect is easily observed in 

Figure 2.8, reproduced here from the same study. 



 
 

18 

 
Figure 2.8.  The effect of dressing conditions on observed microhardness induced by 
grinding (reproduced from [52] with permission of Elsevier Inc., license number 
4875501237893). 

Given a lack of microstructural change like grain refinement, twinning, or phase 

change, relative hardness of a material will generally decrease under tensile residual stress 

and increase under compressive stresses [57]. This further signifies the relevant use of 

microhardness to evaluate surface integrity. While some publications [58] have disagreed 

with the notion that optically observed indents (i.e. Vickers hardness tests) can capture 

residual stress behavior, the general consensus is that hardness in general has some 

correlation to increased residual stress, outside of microstructural changes. Hardness values 

derived from load/displacement tests (rather than optical) are typically recognized as more 

sensitive to residual stress. Lee [59] has shown that residual stress appears to have an 

approximately linear relationship with hardness increase when a bulk sample is placed 

under tensile and compressive loadings. Griffiths [53] has noted that generally, the depth 

of machining-induced residual stress penetration is usually on the order of tenths of 

millimeters, while measurable hardness alteration penetration depth is usually some 

fraction of the depth of residual stress. While hardness values may be used to qualitatively 

assess residual stress characteristics, care must be taken to recognize any major 

metallurgical changes which may lead to an observed increase in hardness, which does not 
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reflect a similar increase in compressive stress state. For example, a phase change due to 

thermally abusive conditions may lead to an increase in the observed hardness, while the 

residual stress state remains the same or is in fact made tensile by the phase change. 

It is possible to achieve enhanced surface integrity by using tools with rounded or 

chamfered cutting edges which induce compressive layers, without subjecting the 

workpiece surface to undue thermal stresses. Griffiths [60] noted that a tool with a 

burnishing wear land would create surfaces of increased surface integrity. Wardany [61] 

found that microhardness change was not observed more than 55 µm below the machined 

surface at feeds and speeds within the finishing regime in the machining of tool steel. More 

heavily worn tools were found to cause a slight softening of material below the surface, 

and a hardening effect near the surface, while sharper tools exhibited the opposite effect 

[61]. However, Wardany did not remark on any significant correlation between the tool 

macro and micro geometries’ role in the development of strain hardened material. 

While many studies have considered hardness as a function of depth below the 

machined surface, few, (if any) studies have pointed out the potential for material property 

variation in the direction of feed (perpendicular to both tool path and depth of cut direction). 

This is most likely due to the time and resolution required to achieve such data, however, 

nanoindentation (a relatively new method) is capable of easily generating this data. 

Nanoindentation has recently been applied to mapping the material property characteristics 

of a 2D section of material in polymers [62], however, this technique has yet to be explored 

in machined subsurfaces. Warren and Guo [63] have investigated the use of 

nanoindentation only to observe properties as a function of depth from the machined 

surface. They noted that in addition to estimation of hardness and material modulus, 

residual stress could be qualitatively predicted by the method. 

2.3 Closing Statements 

This literature review therefore makes clear that machining has been shown to have 

great impact on the surface integrity of machined surfaces. Many machining parameters 

have been previously revealed to be relevant to both topographical and subsurface 

phenomena. However, in spite of all previous work in studying and predicting machining-
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induced surface integrity in two dimensions, relatively little work has been done to 

understand and predict the development of surface integrity in three dimensions. Generally, 

in order to induce increased surface integrity in ductile materials (i.e., desired material 

properties like compressive residual stress depth, increased hardness, etc.), a larger tool 

cutting edge radius may be utilized. However, in three-dimensional machining processes 

this may lead to other undesirable affects such as increased roughness due to side flow, 

higher cutting forces, higher cutting temperatures, etc. An appropriate balance between all 

relevant surface integrity parameters must be found. Acknowledging this gap in literature, 

this thesis seeks to illuminate some aspects of surface integrity development in the surface 

generation of 3D machining processes such as turning and milling. While the scope of the 

presented work does not encompass all concerns and parameters that affect surface 

integrity, parameters relevant to the expansion of surface integrity prediction to three 

dimensions are considered. 
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CHAPTER 3. EQUIPMENT AND PROCEDURES 

3.1 Finish Turning 

Experimental work to illuminate relationships between process geometry and 

surface generation was conducted by means of face turning trials on a HAAS TL2 CNC 

lathe, as shown in Figure 3.1. Modified Kennametal TPGN (triangle) geometries of the 

uncoated, fine-grained carbide grade K-68 were used. The workpiece material was a 

cylindrical bar of Ti-6Al-4V (60 mm diameter, annealed condition, 35 HRC).  

  
(a)  (b)  

Figure 3.1.  (a) HAAS TL2 CNC lathe used to perform cutting tests; (b) Kennametal 
TPGN K-68 tool of rc = 0.8 mm tool being touched off the Ti-6Al-4V workpiece. 
Adapted from author’s published work with permission from MDPI [16]. 

A range of feeds and nose radii, outlined in Table 1 below, was selected to provide 

various combinations of uncut chip geometry and kinematic roughness. Beyond this table, 

differing conditions of nose radius and feed will be merged and often referred to as one 

factor: predicted kinematic roughness Rt/Rz and Ra, the equations for which are shown 

below. All other variable parameters were held constant during these trials. Constant 

parameters of some consequence include cutting speed (vc), held at 288 m/min, depth of 

cut (ap), held at 0.25 mm, and coolant/lubrication, which was not present. 

𝑅𝑅𝑡𝑡/𝑅𝑅𝑧𝑧 = 𝑓𝑓2

8𝑟𝑟𝑐𝑐
  (2) 

𝑅𝑅𝑎𝑎 = 𝑓𝑓2

32𝑟𝑟𝑐𝑐
  (3) 
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Table 3.1.  Experimental Parameters and Levels. 
Feed Nose Radius rc Predicted Kinematic Roughness Rt/Rz  Edge Radius re 

0.1 mm 3.2 mm 0.39 µm  12.5 µm 
20 µm 
30 µm 

0.1 mm 0.8 mm 1.56 µm  
0.1 mm 0.4 mm 3.13 µm  
0.2 mm 0.8 mm 6.25 µm  
0.2 mm 0.4 mm 12.5 µm  

 

 
Figure 3.2.  The three turning tool types used, and the face turned samples. 

Certain precautions were taken in the machining and parting of sample pieces. As 

can be noted from Figure 3.1, the stick-out of the toolholder and the length of the workpiece 

stickout from the chuck was kept to a minimum. This led to surfaces that were affected 

minimally by angular misalignment of the spindle, vibrations due to workpiece center of 

mass misalignment, deflections due to lever actions of forces on the workpiece, etc. Before 

each condition, a workpiece cleanup routine was followed which involved the facing of the 

to-be machined surface with a sharp tool (to eliminate surface irregularities left by the 

parting process), the chamfering of the exterior edge, and the cleaning of the entire 

workpiece with a solvent to eliminate any coolant residue that may have affected the 

following surface generation test condition. The parting off of each sample was a delicate 

process prone to tool breakage, therefore flood coolant was used to alleviate tool wear 

progression and the heating of the workpiece. The part-off width of the samples was kept 

thick at 6 mm in order to protect the samples against alteration of material properties by 

the potential intense heat and mechanical stress from the parting process. 
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3.1.1 Cutting Edge Honing 

As it has been established that the cutting edge geometry has a significant effect on 

surface generation in finish machining, a number of carbide cutting tool edges were 

modified to precise values in order to investigate their effects on surface integrity. The 

preparation of experimental cutting tool edges was accomplished by a novel honing method 

that creates tool edge radii with final geometry accuracy variance of less than 20%. This 

method relies upon the use of a HAAS VF-2 CNC milling machine equipped with a 

diamond-paste impregnated buffing wheel, shown in Figure 3.3b. In order to generate a 

moderately repeatable process, an adjustable program was designed in AutoCAD Inventor 

2019, the toolpath of which is shown in Figure 3.3a. 

  
(a) 

 
(b)  

Figure 3.3.  (a) Image of the tooling and workpiece geometry created for the tool honing 
program; (b) CNC milling machine interior, equipped with buffing wheel impregnated 
with 1 µm diamond paste, carbide turning tool is held in place by a tool and vise. 

An example of the tool edge radii generated by this methodology is shown in Figure 

3.4. The tools honed by this method exhibit very low edge roughness due to the high-nap 

nature of the buffing wheel and the small size of the abrasive. 

 

Cube/Buffing wheel interface 
approximates actual geometry 

Carbide turning tool 

Spindle 

Buffing 
Wheel 
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(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 3.4.  (a) Rake face view of modified edge of a Kennametal TPGN K-68 tool of rc 
= 3.2 mm, re = 30 µm; (b); Tool cloudmap produced via scanning white light 
interferometer; (c) Subsequent analysis of tool cloudmap via MATLAB; (d) Used tool 
exhibiting tool/workpiece contact discoloration and limited adhesion, but no tool- (edge- 
or nose-) wear. Adapted from author’s published work with permission from MDPI [16]. 

Throughout the honing of each tool, white light interferometer-generated 

pointcloud maps representing the honed geometry were created, and each edge was verified 

to be precise in this way. Some variation is encountered between each individual edge, and 

the edges were not always found to be of perfect radial geometry (as can be noticed in 

Figure 3.4c. Nonetheless, each edge was found to be fairly near the desired geometry, with 

radius values within 20% of the nominal value for each condition. 

3.2 Sample Characterization 

Characterization methods of the generated samples fall into two categories, 

topographical analysis and subsurface analysis. The preparation of samples for 

topographical analysis is fairly simple, as the surface produced by machining is being 

evaluated directly. Generally, cleaning with a solvent is adequate preparation for common 
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topographical analysis. On the other hand, preparation of samples for subsurface analysis 

is more involved, as well as more difficult to convey. In order to ensure understanding of 

the subsequently presented preparation, analysis, and data, visual aids of the sample 

preparation process are presented in Figure 3.5. Topographical analysis is performed 

immediately after the sample piece is created in Figure 3.5b, while subsurface analysis 

requires the additional preparation processes shown in Figure 3.5d and e. Examples of 

obtained topographical data and subsurface data are shown in Figure 3.5c and d, 

respectively. 
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(a) (b) 

  
(c) (d) 

  
(e)  (d)  

Figure 3.5.  Metallographic sample analysis geometry clarification. 
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3.2.1 Sample Cross Section Preparation 

After sectioning an appropriate piece of the sample from the bulk sample, similar 

to that shown in Figure 3.5d, the surface of interest is of a rough, saw-cut topography. To 

view the microstructure and perform accurate materials analysis of the subsurface, this 

surface is then polished to a fine finish. A Struers Rotopol-22 automatic polisher was 

utilized to polish the samples to this fine finish. The regimen of pads and abrasives used in 

conjunction with the machine are listed here. 

Table 3.2.  Polishing Regimen 
Step Pad Type Lubricant/Abrasive Force/Specimen Time Result 

Plane 
Grinding 

220-grit 
Silicon 
Carbide 

Water 30 N Till Plane 

 

Fine 
Grinding 

Low-Nap 
Woven 
Nylon 

9 µm Diamond 
Suspension 30 N 5 min 

 

Polishing 

High-Nap 
Chemical-
Resistant 

Cloth 

70% 0.05 µm 
Colloidal Silica 

/ 
30% H2O2 

30 N 10 min 

 
The results of this polishing were verified to be of high quality by viewing with 

polarized light. Samples were considered to be well polished upon the visibility of 

individual grains. This method eliminates the possibility of obtaining a polish with a 

heavily mechanically deformed surface layer. An example of a highly polished sample 

viewed under polarized light is shown in Figure 3.6a. 
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(e)  (d)  

Figure 3.6.  Typical results of polishing, (a) viewed optically with polarized light; (b) 
viewed optically after etching.  

The polished samples were also chemically etched to enable clearer view of the 

material microstructure in optical analysis, as well as to enable the more accurate gathering 

of data in microhardness evaluation. Details of the etchant process are listed in the 

following table, and an example of sample microstructure post-etching is shown in Figure 

3.6b. 

Table 3.3.  Kroll’s Reagent Use 
Recipe Precautions Method Time 

6 ml HF + 3 ml Nitric 
Acid + 

91 ml Water 

Appropriate 
PPE and 

Fume Hood 

Swab 10-15s 

 

Upon closer inspection it was found that the images yielded by etching gave an end 

result which was much clearer at higher magnifications. The viewing of samples with 

polarized light was then mostly utilized as a polish-checking tool. A comparison of the 

image quality of each microstructure-exposing method is displayed in Figure 3.7. 

 

     300 µm      300 µm 
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(a)  (b)  

Figure 3.7.  Comparison of two grain-viewing methods: (a) polarized light; (b) etching 
with Kroll’s Reagent. 

3.2.2 Scanning White Light Interferometry 

A Zygo NewView 7300 scanning white light interferometer with a spatial 

resolution of approximately 2 nm was utilized throughout the experimental work. Initially, 

this equipment was used to verify the edge geometry of individual tools during honing, as 

mentioned above. Once each sample had been turned, roughness measurements were taken 

at multiple locations to determine an average surface roughness value for each surface. The 

extreme spatial resolution of this tool was also utilized in the verification of various other 

geometries that were integral to the surface integrity inspection that is described in this 

text. Geometries of particular importance that were checked on this instrument include the 

roughness of the polished sample surface, the amount of edge rounding on the polished 

samples, and the condition of the Vickers hardness tester. Each of these properties was 

verified at the beginning of study, and multiple times throughout the data collection process 

to ensure accuracy of results. 

3.2.3 Electron and Focused Ion Beam Microscopy 

A Helios NanoLab DualBeam 600 was utilized to observe near-surface material 

alterations within the machined samples. The focused ion beam (FIB) was utilized 

extensively in order to remove material from the mechanically polished surface. The use 

of this methodology allowed for the viewing of the near surface structure in a near virgin 

     25 µm      25 µm 
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state, not readily achievable by mechanical polishing and SEM viewing. A “skimming” 

method of revealing the near-surface microstructure was developed. This method proved 

more efficient and reliable relative to the typical “trenching” method usually employed in 

the viewing of near surface material structures. 

  
(a)  (b)  

Figure 3.8.  (a) Optical image of the geometry produced by the FIB “skimming” method 
of revealing the near surface microstructure; (b) SEM micrograph showing the resulting 
skimmed material in better definition. 

A custom sample holder was machined from aluminum to improve sample imaging 

in the SEM by stabilizing the sample both mechanically and electronically, by reducing 

charge buildup. The sample holder utilized set screws in addition to carbon tape to give 

maximum mechanical and electronic stabilization. 

3.2.4 Optical Microscopy 

While some images of sample subsurface characteristics were recorded using SEM, 

optical methods were the most often used investigation method in the characterization of 

the subsurface. A FUJI TX-2 camera was used in combination with a Nikon EPIPHOT 300 

metallographic optical microscope. The optical objectives used during this examination 

were 2.5x, 5x, 10x, 20x, and 50x objectives. This microscope was equipped standard with 

provisions for an array of different techniques. The most commonly used microscope 

special functions were darkfield lighting, polarized light filters, and Nomarksi filters. 

Darkfield and Nomarski methods were used primarily to highlight the surface roughness 

of the polished samples, i.e. to check for surface imperfections while polishing. Polarized 

light was utilized solely to check the quality of the polish, i.e., to establish whether the 
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polishing process had induced an undesirable plastic deformation layer on the sample 

surface, rather than expose a nearly untouched material microstructure. 

3.2.5 Microhardness Evaluation 

Microhardness evaluation of the near surface material was carried out on a Future 

Tech Group FM7 microhardness tester. A Vickers-type indenter was used for all 

microhardness testing. Indentations were made on mounted and polished sections of 

material cut perpendicular to the machining tool path. Hardness profiles of each surface 

were generated. Typical hardness testing (HRC, etc.) was not conducted as this study is 

primarily focused on the near surface characteristics which cannot be evaluated effectively 

by typical ‘macro’ hardness testers such as HRC. 

Hardness indents of any kind are affected by the support (or lack thereof) of the 

surrounding material matrix. In the case of indents made near the edge of the sectioned and 

polished sample material (as is the case of this study), care must be taken in order to indent 

in a manner in which the size of the indent is not dependent on the proximity of the sample 

edge. It follows that larger indents must be placed further to the interior of the sample, 

while smaller indents may be made closer to the area of interest. Common practice is to 

place the indent at least 2.5 times it’s diagonal length away from the sample edge, unless 

this edge is supported by a material of a similar modulus. Therefore, in order to enable the 

hardness testing of material very close to the edge, the lowest possible Vickers indent force 

was selected, 10 gf. The function of microhardness machines is subject to some variability 

(especially at forces as low as this), so the function of this machine was repeatedly checked. 

White light interferometer-generated pointcloud maps of the indenter geometry showed no 

wear at the beginning or end of trials, and calibration blocks were repeatedly used to test 

the relative accuracy of the microindenter. 

Initially, samples were mechanically polished to an extremely fine finish, one 

which showed no defects, and which was capable of showing grains under polarized light. 

It was found, however, that indentation of these surfaces led to values of high variability, 

even for a polished surface of impeccable quality. To address this, the samples were 

checked and further polished, however these finer samples yielded similar results. Multiple 
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causes were investigated for this phenomenon. Of all factors examined, grain size and 

indent placement (relative to grain boundaries) were found to have the most significant 

effect on hardness variability at a given depth. To showcase this variability, two indents of 

exact same depth are shown in Figure 3.9. In procuring a hardness profile, it is expected 

that these two values should generally be about the same, however, the indent placed in the 

larger grain is about 40 HV lower than the indent placed in the smaller grain. Therefore, to 

obtain results that would be most relevant to this study, Kroll’s Reagent was used to 

preliminarily expose the grain boundaries. Upon etching, indents could be accurately 

placed within a single grain of average size, away from grain boundaries. Similar 

revelations have been observed in [52].  

 
Figure 3.9.  Microhardness indents created by a Vickers indenter. One indent is placed 
within a large grain. The left indent, placed in an average grain of ~10 µm diameter, gave 
a hardness value of 297.1 HV, while the right indent gave a value of 262.2 HV. 

3.2.6 Nanoindentation 

Nanoindentation of multiple samples was performed with a Nanomechanics (now 

KLA-Tencor) iNano nanoindenter. This tool utilized a Berkovich-type indenter, controlled 

by a leadscrew-driven, servo-actuated system. Displacements are quantified on the level of 

angstroms and force is measured in milli-Newtons; hence extremely precise measurement 

is possible with this method. Grids of 4 by 10 indents (spaced 30 µm apart) were 

implemented near the surface. An example of an array of indents is shown in Figure 3.10. 
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Hardness values were extracted from the data collected during each indent (load, indenter 

displacement, and time), and hardness contour maps were constructed and imposed on the 

sample section geometry. This automatic instrument enabled the viewing of the subsurface 

property structure and gave qualitative insight into the residual stress state and strain 

hardening left in the final surfaces of the machined samples on a two-dimensional level. 

 
Figure 3.10.  Example of nanoindent matrix on a metallographically polished sample, 
representative of the indentation matrices performed on all investigated samples. 

3.3 Model Development 

The surface generation model was developed on a Dell Precision 3630 Desktop, 

with an Intel i9-9900 CPU. 40GB of random access memory (RAM) was utilized as well. 

Due to these performance-enhancing attributes, the developed model was easily developed 

and debugged. The model was developed in MATLAB, version 2019b. All functions and 

logic outside the basic MATLAB-supplied functions were developed in-house. No 

toolboxes or third party functions were used in any part of development. 
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CHAPTER 4. SURFACE GENERATION MODEL DEVELOPMENT 

4.1 Assumption Development 

In order to develop an accurate surface generation model, appropriate assumptions 

must be made. One key assumption that was incorporated relates to the behavior of material 

of the uncut chip along the cutting edge under hmin, i.e., the Spanzipfel region. Indeed, much 

of the current understanding is based on Brammertz’s Spanzipfel assumption, where 

material of chip thickness below hmin flows underneath the tool, while material of chip 

thickness above hmin is evacuated entirely from the workpiece [10, 11, 64-66]. This 

represents an on/off transition between ploughing and cutting, and in turn implies the 

creation of a perfect copy of the tool profile on the workpiece for all points along the tool 

edge where material is above hmin. These assumptions give rise to the pointed Spanzipfel 

region of material (as can be seen in Figure 2.5b), which is not generally observed on real 

machined surfaces. In order to realize more accurate modeling of surface roughness, it is 

imperative to (at least qualitatively) match the model mechanics to the actual physics of 

the cutting process. This includes the fact that some material does indeed flow under the 

tool, with spring back subsequently occurring along the flank/clearance face of the tool, as 

well as the occurrence of side flow of some magnitude—both phenomena having been 

qualitatively established by Lambert [15]. 

Arcona and Dow [67] have calculated the spring back of machined material to be a 

linear function of the tool edge radius for a given material, which follows logically from 

the hmin and conservation of volume considerations. However, in reality this proves to be a 

simplification of the matter. More experimental understanding of the effect of material 

properties and tool parameters on the size of this spring back is required for full 

understanding of its nature [8, 68, 69]. At this point, it seems clear that material less than 

the hmin flows and is deformed under the cutting edge, to be recovered after the tool passes 

over it. This recovery is often assumed to be largely due to the elastic properties of the bulk 

material. However, much of the material near the surface is plastically deformed as well, 

due to ploughing and shear deformation, as illustrated by Oxley and Challen’s [70] 

foundational work on the nature of polishing and wear mechanisms. Nevertheless, the work 
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presented here shall assume that full spring back will occur for any section of the tool edge 

where material in this region is well supported from either side to prevent side flow, i.e., 

where plane strain may be assumed. 

Material at the two extreme ends of the uncut chip region, i.e., near the free surfaces 

of the cut on the primary and the secondary cutting edges, is not under plane strain 

constraint, and will therefore be susceptible to being “squeezed” out sideways from in 

between the flank and workpiece, as mentioned in Pekelharing and Gieszen’s work [18]. 

As a result, the hypothetical Spanzipfel region, which is located at the extreme (secondary) 

edge of the uncut chip region, does not form. Rather, some material in this region is 

displaced sideways by the advancing tool edge, due to the high stresses and lack of plane 

stress. In the presented model, it is assumed that the amount of material which is displaced 

as side flow is directly related to the geometric area of the Spanzipfel. 

These assumptions lead to a side flow region which is dependent upon feed, nose 

radius, and edge radius, as well as a raised part surface that is established by the elastic 

spring back of hmin. Notably, side flow occurs due to hmin in a similar manner as the 

Brammertz effect is assumed to occur. However, the occurrence and transition between 

flow underneath the tool (not technically the Brammertz effect, but ploughing/severe 

plastic deformation akin to the mechanics of polishing and burnishing) and side flow is 

affected by the ‘boundary conditions’ of the deformation (i.e., presence or absence of rigid 

material constraints due to adjacent material in the uncut chip), as stated previously. 

4.2 Surface Roughness Simulation of Surfaces Generated by Lambert-Inspired 
Assumptions 

The proposed iterative geometric model (code shown in the appendix) initializes 

by assuming some starting workpiece surface geometry after a single workpiece revolution, 

as shown below in Figure 4.1a. Any tool geometry and feed may be defined for this model. 

However, to clearly represent the process in the following figures, the following parameters 

have been selected: rc = 0.4 mm, hmin = 6.5 µm, and f = 0.1 mm. 
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(a) 

 
(b) 

Figure 4.1.  (a) Initial model workpiece geometry; (b) Tool geometry imposed on the 
previously defined workpiece geometry. Adapted from author’s published work with 
permission from MDPI [16]. 

The curved region in the middle of Figure 4.1a is the ideal tool projection copied 

onto the workpiece surface, offset to the interior by hmin to account for the assumption that 

the material less than hmin will recover on the other side of the tool. It should be noted that 

the curved section in this and subsequent figures is represented as a circle in the model, yet 

appears to be elliptical here due to the scaling differential of the x and y axes. The lower 

linear region is somewhat arbitrary, but it is included as an initial condition necessary to 

simplify the computation of future iterations. The height of this linear region is again, 

arbitrary, but set equal to the value of kinematically predicted roughness Rt/Rz in order to 

approximate the geometry of any previously generated surface. The upper linear region is 

the existing material surface, to be machined. This will move vertically relative to the other 

geometry depending on the depth of cut. 

Once initial surface geometry has been created, the tool geometry is imposed on 

the workpiece geometry for the upcoming tool path segment, as shown in Figure 4.1b. The 

tool geometry is composed of two profiles, shown here as solid black and dashed black. 

The exterior solid profile represents the true tool profile, while the interior dashed profile 

represents the tool profile shape, offset by hmin. A profile has been added to this image to 

show where the uncut chip thickness drops below hmin, creating the Spanzipfel geometry 

discussed previously. The plane stress region which occurs at the opposing end of the uncut 
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chip (on the primary edge) is not typically considered relevant to the final surface 

geometry, and therefore is not considered in this model. 

In order to model the surface profile created by this new tool path segment, this 

Spanzipfel region is then transposed into the open space between the workpiece and tool, 

as shown in Figure 4.2. A transition surface profile is computed that begins at the peak of 

this transposed MSF area and gradually approaches the dashed hmin profile. This profile is 

formulated so that volume is conserved in this region, accounting for the displaced side 

flow volume. Once this profile reaches hmin, the newly generated surface will be found at 

the hmin profile (dashed black) over the remainder of the tool edge, not the full tool profile 

(solid black). 

 

(a)  
(b) 

Figure 4.2.  (a) Tool geometry imposed on new surface profile, altered by the current tool 
pass; (b) Magnified examples of the model geometry that clarify the side flow transition 
and surface profile construction. Adapted from author’s published work with permission 
from MDPI [16]. 

These profiles are then consolidated to form the new surface profile, and the tool 

geometry is translated by the feed to begin this process for the next path, shown in Figure 

4.3a. This iterative process is repeated until the altered surface profile reaches an adequate 

length and equilibrium is established, as shown below in Figure 4.3b. This figure also 

shows the ramifications of the assumption that material spring back will alter the surface 

profiles generated by the model, as can be seen in the workpiece model’s final surface 

being substantially higher than the tool nose minima at all points. 
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(a) 

 
(b) 

Figure 4.3.  (a) Tool geometry in new pass position imposed on the surface profile 
generated by the previous pass; (b) Surface profile created by the iterative model, shown 
at equilibrium. Adapted from author’s published work with permission from MDPI [16]. 

It was found, through comparison to experimental data, that these surface profiles 

overpredicted roughness. This follows logically from observation of machined surfaces as 

noted in previous efforts; roughness peaks are generally round, not sharp, as portrayed in 

Figure 4.3b. To address this discrepancy, profiles were subsequently filtered with a 

Gaussian filter—the window size of which was adjusted according to the square root of the 

feed at each condition. The result of this Gaussian filtering on the current profile is shown 

in Figure 4.4 below. 

 
Figure 4.4.  Surface profile created by the iterative model, shown at equilibrium after 
gaussian filtering. Adapted from author’s published work with permission from MDPI 
[16]. 
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The model then calculates roughness values Rt/Rz and Ra for the profiles under 

different conditions of nose radius, edge radius and feed. The modeled roughness values 

are then plotted against the predicted kinematic roughness equation as a function of feed 

to show the relationship between tool edge radius and kinematically predicted surface 

roughness on the model predicted values of Ra and Rt/Rz. 

4.2.1 Validation of Simulated Surface Roughness 

While most of the parameters utilized in this model are easily determined, hmin is 

dependent upon thermomechanical variables and difficult to predict for a given condition. 

Empirical measurement of hmin is most directly achieved by measuring the workpiece 

spring back on the flank face under plane strain conditions, i.e., orthogonal turning or 

shaping cuts. Ongoing efforts of in situ characterization are carried out to further improve 

the accuracy of the hmin characterization for different workpiece materials. From such 

observations, there seems to exist a minimum effective rake angle (yeff) that remains 

constant as edge radius is varied for a given machining condition. This phenomena has 

been previously investigated in recent literature [71], and has often been termed as a ratio 

of hmin/re, rather than yeff [72, 73]. From these investigations, as well as inverse 

determination of hmin from pedigreed surface roughness data, yeff values and corresponding 

hmin/re values, shown in Table 2, were determined. It should be noted that these values are 

not purely material constants, as they largely vary with cutting interface temperature, which 

depends on a few variables—of which, material properties and cutting speed are typically 

deemed most relevant. The cutting speeds used with the materials Al 1075, 51CrV4, and 

Ti-6Al-4V are 200, 200, and 288 m/min, respectively. 

Table 4.1.  Material properties, and empirically determined material-specific yeff and 

hmin/re values for the workpieces studied. 

Material yeff 
hmin/re 

(+/−0.05) 
Ultimate Tensile 

Strength 
Young’s 
Modulus 

Thermal 
Conductivity 

AL 1075 −71° 0.06 90 MPa 69 GPa 236 W/mK 
51CrV4 −68° 0.07 1950 MPa 190 GPa 46.6 W/mK 

Ti-6Al-4V −67° 0.08 1100 MPa 115 GPa 7.2 W/mK 

The measured roughness values from cutting trials described in section 3.1 are 

shown below in Figure 4.5, compared to the modeled roughness output. The model was 
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found to be in good agreement with the experimental results for the given range of tool 

edge radii, with initial deviation from kinematic roughness occurring between 0.8 and 2 

µm Rz. Surface finish in all samples was free of major defects when observed optically at 

up to 50x magnification. As has often been reported by other efforts, larger tool edge radii 

produced a higher surface roughness at low feeds than small tool edge radii, while 

generating essentially the same roughness when the measured values approached the 

conventional, predicted kinematic values. It may be noted that the model slightly 

underpredicts roughness values across the board, especially as feed increases. This is most 

likely due to process instability found at higher chip thicknesses. 

 
Figure 4.5.  Roughness (Rz) model (lines) compared to data gathered through 
experimental investigation in Ti-6Al-4V. Adapted from author’s published work with 
permission from MDPI [16]. 

As mentioned above, a key finding of the proposed model is its deviation from the 

predicted kinematic roughness at a point very near to where actual (measured) roughness 

values deviate, as shown in Figure 4.5. However, when compared to the data in Figure 4.6, 

the as-developed model (dashed line) begins to predict values below what is measured, at 

least when proper ISO surface roughness measurement standards are maintained (i.e., using 

long evaluation lengths). The causes of this discrepancy are twofold: edge roughness and 
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machine tool error. The large roughness deviation found by the data from longer evaluation 

lengths in can be attributed to machine tool error that plays a significant role at low 

predicted kinematic roughness. While the as-developed, unadjusted surface generation 

model developed here is still valid for short roughness evaluation lengths (that eliminate 

the effect of machine tool error/waviness) at these feed rates, the additional 

(machine/dynamic) error introduces waviness among other artifacts to the standard 

measurement of Rt/Rz and Ra. This discrepancy is relevant, but not resolved without 

considering machine dynamics. 

 

Figure 4.6.  Model compared to data adapted from Knuefermann [13], roughness 
measurements were taken in both long and short formats to show waviness influence on 
the typical long measurements. Material: 51CrV4. Adapted from author’s published work 
with permission from MDPI [16]. 

The use of shorter roughness evaluation lengths is more relevant when evaluating 

surface generation phenomena (rather than strictly roughness), as the model assumes 

perfectly spaced, planar toolpaths, unlike those that occur under a dynamically oscillating 

machine tool/workpiece interface. In comparing the unadjusted model output to the data 

found by the short evaluation length measurement data in Figure 4.6, it is apparent that 

some discrepancy still exists at extremely small feed rates (lower than those typically 

adopted in ‘macroscopic’ finish machining of metals). It is posited this is due to the lack 

of edge roughness incorporated in the surface profiles generated by the proposed model. 

This tool edge roughness will cause a relative increase in short evaluation roughness as the 
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actual roughness reduces past some level. However, as the short evaluation length data in 

shows, the point at which the roughness begins to deviate is at an extremely low feed, 

leading to the conclusion that the presented model is likely valid for most new tools of 

commercial quality. Tool edge roughness does not seem to be a significant factor at the 

parameter levels found in this work. 

Moreover, Knuefermann [13] showed that turning is often capable of creating 

surfaces that have lower roughness than the tool edge itself. This effect is most likely due 

to the tool becoming approximately smooth when cutting, as posited in [4]. Upon the 

entrance of the tool to the cut, small tool defects (typical of new or slightly worn tools) will 

act as small cutting edges themselves. The material cut by these small edges will be 

displaced into the defect, promptly filling this region, leading to a much smoother tool 

edge. 

It follows that this unadjusted model is accurate for surfaces generated by tools in 

even slightly worn condition, when evaluated by short evaluation length roughness 

methods. It should be noted that while tool edge roughness will play a role in surface 

roughness generation, it will not be a significant factor until the roughness caused by the 

tool edge itself is of the same magnitude as the roughness generated by kinematic and side 

flow effects. Due to machine tool error and side flow effects, it is unlikely that this 

roughness (under benign tool edge roughness conditions) would contribute significantly to 

standard roughness measurements of long evaluation length in non-precision applications 

due to the other effects’ heights dwarfing the height of the small surface variations caused 

by the tool edge roughness. 

4.2.2 Incorporation and Validation of Machine Tool Error Dynamic Offset 

In comparison to the data gathered by the finish machining of aluminum in [12], 

the present model’s raw output predicts significantly lower surface roughness at low 

kinematic roughness. As hypothesized by Childs et al., this relative rise in roughness for 

this dataset is again most likely due to machine tool/vibrational error. Indeed, this data 

mirrors the roughness trends due to machine tool error (MTE) found over longer evaluation 

lengths in similar work performed by Knuefermann [13]. Childs et al. [4, 12] utilized rather 
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long evaluation lengths, similar to the length used in the long assessments in Figure 4.6. 

Over such an interval, waviness caused by MTE will contribute a substantially to the 

overall surface roughness measurement. Had these roughness measurements been analyzed 

with a shorter evaluation length to eliminate waviness components, it is likely the data 

would be more significantly related to the surface generation-induced roughness, rather 

than MTE. Visualization of the influence of the typical waviness caused by MTE over low 

kinematic roughness conditions is seen below in Figure 4.7.  

 
Figure 4.7.  Surface profile altered by MTE, typical of way axis-induced error. Adapted 
from author’s published work with permission from MDPI [16]. 

 Inspection of the difference between short and long evaluation length roughness 

values reveals that MTE (over a given evaluation length) causes a constant offset value of 

roughness deviation for a given tool/machine combination, as shown in [13]. To correct 

the model for this discrepancy, MTE was quantified by taking the difference between the 

model and measured roughness values in very fine finishing conditions (where the relative 

magnitude of MTE is highest) and added to the model’s roughness at every point. This 

calibration methodology enables the model to approximate MTE-induced roughness 

deviation for a given machine, tool, and workpiece in light of asynchronous spindle error, 

way travel error, servo instability, hydraulic vibration, etc. Previous methodologies have 

performed this calibration by utilizing a vibration sensor placed somewhere near the 

tool/workpiece interface. This presented method eliminates the need for such measurement 

by utilizing retroactive surface roughness measurement instead. However, this necessary 

calibration reduces the efficiency of the roughness model in cases affected by MTE, yet no 
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accessible technique exists for predicting roughness increases caused by MTE for an 

unknown machine, tool, and workpiece combination. All such parameter combinations 

would necessitate independent calibrations. 

Upon inspection of different MTE constants for various tool edge radii (while 

holding all other parameters constant), a logarithmic trend of MTE-induced roughness with 

respect to re was revealed, whereby increasing re leads to less MTE-induced roughness in 

the affected machining regimes. It is thought that the reason for this trend is that of 

positional error damping caused by increased ploughing forces and vibrational error 

damping caused by viscoelastic shear-damping behavior, as depicted below in Figure 4.8. 

A roughness-reducing effect similar to this has also been noted in milling [40]. 

 
(a) 

 
(b) 

Figure 4.8.  (a) Tool/workpiece interface model depicting the tendency of a small edge 
radius to promote less MTE damping (b) Tool/workpiece interface model depicting the 
tendency of a large edge radius to result in more MTE damping, proportional to the 
increase in hmin. Adapted from author’s published work with permission from MDPI [16]. 
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The mechanism of ploughing forces in the damping of MTE-induced roughness is 

thought to be due to the reaction of the machine tool to the revolving workpiece and 

induced via cyclical cutting force variation. Commonly, MTE is found in the spindle or 

ways. When cutting with these imperfect tools, the engagement of the tool and workpiece 

in the cut will vary by some amount. When utilizing a small tool edge radius, this 

engagement variance does not change the ploughing forces appreciably due to the small 

area where ploughing forces can be developed. The negligible increase in ploughing force 

causes very little deflection in the machine tool when this small engagement variance is 

encountered. Therefore, the position of the tool is accurate to the ways and spindle of the 

machine, and whatever error exists in these elements is “copied” to the workpiece.  

Alternatively, when a tool of larger edge radius is utilized on the same machine, an 

increase in engagement between the tool and workpiece (caused by MTE) will cause more 

ploughing force, due to the increased amount of material being required to flow under the 

tool edge. The increased ploughing force will in turn present substantial resistance to 

dynamic force variations associated with the machine tool and workpiece (Fdyn). As the 

engagement variance is caused by imperfections within the machine tool, deflection 

response to these engagement variances shall lead to a surface that is a slightly smoother 

“copy” of the instrument’s axes. Additionally, viscoelastic shear-damping behavior caused 

by the increased amount of material being plasticly deformed under the tool will 

substantially dampen sudden positional changes or vibration, such as machine tool 

harmonic frequencies or asynchronous spindle error. Increased shear damping can also 

eliminate chatter by inhibiting the progression of vibrational excitation. After this damping 

trend was incorporated into the model, it was found that it was in good agreement with 

results from [4], as shown below in Figure 4.9. 
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Figure 4.9.  Model compared to data adapted from Childs [4], MTE-induced roughness 
is predicted with some accuracy. Material: Al 1075. Adapted from author’s published 
work with permission from MDPI [16]. 

These results verify the suggested damping phenomena described previously. The 

often-noted trend of a large edge radius to increase surface roughness relative to a small 

tool edge radius is shown to be inaccurate for machining processes heavily affected by 

MTE. The incorporation of MTE damping effects due to edge radii is shown in Figure 4.9 

by the relative difference between the (dashed) unadjusted model values and the (solid) 

adjusted model values. Smaller edge radii show a significant increase in roughness when 

adjusted for MTE-induced roughness, while larger radii exhibit a lesser increase when 

adjusted for MTE-induced roughness. These findings demonstrate that in some cases, 

surface roughness may actually be improved by utilizing a larger edge radius. While this 

model appears to capture the data well on the lower end of the feed regime observed here, 

there is considerable discrepancy at higher feeds. This is also likely caused by MTE as well 

as some additional instability due to larger uncut chip thickness generally encountered at 

these conditions. Notwithstanding these small discrepancies, the model approximates the 
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deviation of surface roughness at low kinematic roughness in 51CrV4 steel, AL 1075, and 

Ti-6Al-4V. 

A major advantage of this model lies in that it may be calibrated to any machine in 

a trivial manner. This may be achieved by performing a single finish cut with a tool of 

known cutting edge radius (preferably approximately 10–20 µm, so that the MTE-induced 

roughness is of a higher relative amplitude) and subsequently measuring the long 

evaluation length surface roughness of the generated surface. Comparing this measured 

surface roughness to the value predicted by the unadjusted model will reveal the MTE-

induced roughness for this tool edge radius, whereby all other surface roughness values 

may be predicted for varying finishing parameters, outside of excessive chatter or 

roughness increasing effects such as inclusions or grain pullout. 

4.3 Subsurface Integrity Case Study Correlated to Surface Generation Model Geometry 

Further investigation of this geometric model enabled the discovery of 

geometrically defined multi-pass effects. In Figure 4.10, it may be observed that for a given 

edge radius, different kinematic roughness values lead to quite different surface conditions. 

Figure 4.10a shows a surface that has very little overlap between the ploughing areas, 

indicated by the dashed profiles in the sub-surface; most of the surface is comprised of 

material that has only been ploughed once, indicating a surface that has been machined 

efficiently, i.e. with relatively limited ploughing. In Figure 4.10b, the model geometry 

exhibits a sub-surface that has been heavily ploughed. The entire surface is shown to have 

been ploughed multiple times as evidenced by the coincident dashed line profiles. While 

the surface appears to be smoother due to the larger nose radius, this surface has been 

ploughed to a much greater extent, which is known to generate additional heat and strain 

hardening, which may lead to altered sub-surface characteristics. 

What follows is an investigation into the relationship between the model geometry 

and the observed subsurface material alteration in Ti-6Al-4V. While this investigation only 

gives insight into the nature of subsurface alteration in this particular metal, the 

relationships between the subsurface characteristics to the various model geometries 

implicate that similar effects may occur in the machining of other metals. 
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(a) 

 
(b) 

Figure 4.10.  (a) Surface model showing the tool profile depth and light overlapping of 
previous passes, modeled with rc = 0.4 mm, hmin = 5 µm, and f = 0.1 mm; (b) Surface 
model showing heavy multi-pass condition, modeled with rc = 1.6 mm, hmin = 5 µm, and f 
= 0.1 mm. Adapted from author’s published work with permission from MDPI [16]. 

4.3.1 Subsurface Microhardness 

In order to view the relationship between the model geometry and the subsurface 

quality, the microhardness depth profile of each sample was investigated. While not an all-

encompassing metric, hardness is used here as a prominent quality which displays the 

nature of the surface alteration, and gives insight into how manufacturers might adjust 

machining parameters in order to generate subsurfaces of differing quality. The material 

microstructure of each sample was relatively unchanged; therefore, the perceived hardness 

alteration is considered to be caused by strain hardening and residual stress alone. 

Representative sample images showing the lack of major microstructure alteration in both 

gentle and relatively abusive conditions are shown in Figure 4.11. 
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(a)  (b)  

Figure 4.11  Etched and FIB-skimmed samples showing the relative lack of 
microstrucural damage occuring at (a) gentle conditions and; (b) relatively abusive 
conditions. 

Figure 4.12a shows a microhardness profile generated by machining parameters 

representative of conventional finish machining operations. The profile displays a slight 

softening very near the surface, but quickly transitions to the bulk hardness value (~247 

HV). This is similar to results previously obtained in literature [61, 74]. The decrease in 

hardness near the surface is generally well-accepted as being caused by thermal activity 

due to the deformation of metal near the tool-workpiece interface. Turning to Figure 4.12b, 

we see that this softening effect is now obscured due to some phenomena caused by an 

increase in the cutting edge radius, re. While a section of the subsurface depth is certainly 

seen to be thermally softened, this softened region is extended deeper into the workpiece, 

and approaches the bulk microhardness value around 300 µm. This is an implication that 

the material removal process has been performed such a manner which exacerbates the 

thermal softening mechanism of the material removal process. However, despite this 

increased thermal load, there exists a small region nearest to the surface which was found 

to be harder than the bulk. This implies that significant strain hardening has occurred within 

     5 µm      5 µm 

     50 µm      50 µm 
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the workpiece material, relative to the sharper condition in Figure 4.12a. This phenomenon 

is well documented in previous literature [61, 75-77]. Investigations on the influence of 

cutting edge radius on subsurface hardness by orthogonal machining reports that edge 

radius is highly significant in determining the magnitude and behavior of this phenomenon. 

However, this study found that other factors are relevant in workpiece hardness alteration, 

and in some cases, dwarfed the significance of cutting edge radius’ influence on subsurface 

hardness. 

 
(a) 

 
(b) 

Figure 4.12.  (a) Microhardness profile of surface with slight thermal softening;(b) 
microhardness profile of surface with moderate strain hardnening. 

Microhardness profiles for surfaces generated by carbide tools of the same 

geometry as those used in Figure 4.12, but with coarser feed, are shown in Figure 4.13. An 

overall trend of softening near the surface may be noticed, with neither of the profiles 
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displaying a hardened region near the surface. Indeed, it is apparent that both machined 

surfaces experienced thermal softening near the machined surface, but the hardness profile 

of the surface generated with the sharper tool shows softening of greater magnitude as 

depth increases. However, the hardness profile of the workpiece machined with the larger 

cutting edge radius (Figure 4.13b) remains relatively harder near the surface than the 

profile found in the workpiece machined by a sharper tool (Figure 4.13a). Therefore, the 

trend of the larger cutting edge radius to create relatively harder near-surface material still 

exists, but the increase in feed value diminishes the relevance of this factor. 

 

 
(a) 

 
(b) 

Figure 4.13.  (a) Microhardness profile of surface with thermal softening;(b) 
microhardness profile of surface with slight thermal softening. 
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On the other hand, a trend of increasing hardness corresponding to increasing nose 

radius was found when the tool nose radius was increased, and feed remained the same. 

Contrasting Figure 4.14b with Figure 4.12b reveals that the same cutting edge radius value 

creates surfaces of significantly higher surface hardness. This workpiece also displays a 

lack of thermal softening through the depth as has been seen in all other samples shown 

here. It is hypothesized that this is due to the higher levels of strain incurred in the material 

near the machined surface. Alternatively, the surface machined by a sharper tool of the 

same nose radius led to a hardness profile (Figure 4.14a) that appears similar to the profiles 

previously generated by the 12.5 µm cutting edge radius tools. However, the thermally 

softened material is of lower hardness, and extends into the depth of the workpiece far 

deeper than the profiles observed previously. 
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(a) 

 
(b) 

Figure 4.14.  (a) Microhardness profile of surface with substantial thermal softening;(b) 
microhardness profile of surface with significant apparent strain hardnening. 

Thus, there exist various relationships between the subsurface material hardness 

and the finish machining parameters varied in this study. Generally, increases in cutting 

edge radius, corner/nose radius, and decreases in feed lead to apparent hardness increases 

at the surface. These trends also generally cause an increase in side flow, and overall 

ploughed material within the current surface generation model. It was hypothesized that 

the length of the side flow modeled within the geometric model would correlate well to 

increases in hardness. Similar to the observed hardness behavior, this length increases with 

cutting edge radius and corner/nose radius and decreases with feed. However, this side 

flow length corresponds to the ploughing conditions of just one machine tool path segment. 

Considering that each adjacent machine tool path segment would incur an additional 
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amount of strain hardening, and that each feed value would have differing path segments 

for a given area, this side flow length was multiplied by the number of paths per millimeter 

(or divided by feed). The values generated by this method were then normalized, as this 

value is simply a geometrical relative quantity, with no direct numerical relationship to 

actual strain or other material properties. Consequently, this quantity is termed a 

‘ploughing constant’. In Figure 4.16b and Figure 4.17b, this predicted ‘ploughing constant’ 

is plotted against tool edge radius for the various conditions discussed, so that its behavior 

may be compared to that of the subsurface hardness increase for these same conditions. An 

example of the determination of this value is shown in Figure 4.15. 

 
Figure 4.15.  Determination of the ploughing constant for a given surface. 

Based on the results shown in Figure 4.16, the trends displayed by the ‘ploughing 

constant’ model agree with the observed microhardness behavior for feed = 0.2 mm. While 

the representation is not exact and does not indicate any numeric hardness value, the 

increase of hardness for decrease in corner radius and slight increase in hardness for 

increases in tool edge radius are well captured by the model. 
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(a) (b) 

Figure 4.16.  Hardness trends plotted against tool edge radius for f = 0.2 mm (a) model 
predicted ‘ploughing constant’ and (b) observed microhardness data. Relative hardness 
alteration is of small magnitude due to large f. 

Comparing the ‘ploughing constant’ model to data captured at feed = 0.2 (Figure 

4.17a and b), the trends of the model relative to the machining parameters capture the 

hardness behavior very well. The increase in hardness due to tool cutting edge radius is 

apparent in both the model and data, as is the hardness increase due to the increase in corner 

radius. It should be noted that the axes in all graphs listed in Figure 4.16 and Figure 4.17 

are static, and the relative magnitudes (locations) of each point are preserved. Comparing 

each of these figure sets, it is obvious that the model predicts that the hardness increase 

will be much more variable when finer feed conditions are used. The data gathered from 

each sample’s surface hardness increase showed this predicted trend with very good 

agreement. 
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(a) (b) 

Figure 4.17.  Hardness trends plotted against tool edge radius for f = 0.1 mm (a) model 
predicted ‘ploughing constant’ and (b) observed microhardness data. Relative hardness 
alteration is of large magnitude due to small f. 

Therefore, all selected parameters significantly affect near surface hardness. Higher 

machining-induced hardness in Ti-6Al-4V may be achieved by increasing the cutting edge 

radius, increasing corner/nose radius, and decreasing feed. In the data gathered in this 

investigation, higher feeds lead to less distinction between edge conditions, indicating an 

interaction between edge radius and feed. Nose radius did not affect the increase in 

hardness between different cutting edge radius conditions, yet generally caused a static 

offset increase when enlarged. 

Thus, the geometric parameters elaborated on here are all of importance to surface 

integrity and should be considered when selecting machining parameters in finish 

machining when subsurface integrity is considered relevant. Moreover, the geometry of the 

currently developed model (already verified in the prediction of surface roughness) 

correlates well with the observed strain hardening trends. While this ‘ploughing constant’ 

model analysis does not necessarily lead to specific values of hardness, it does allow for 

improved relative understanding of hardness behavior in Ti-6Al-4V, and may be used as a 

framework for future works seeking to establish more exact predictions of material 

properties. 
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4.3.2 Subsurface Hardness Variations in Feed Direction 

In order to further investigate the presence of three-dimensional effects in finish 

machining, nanoindentation fields (and their subsequent contour maps) were used to 

analyze the near surface hardness of the machined subsurfaces. Previous studies in 

machining-induced microhardness have solely investigated the variation in microhardness 

as it relates to depth (distance away from the machined surface). The previous section 4.3.1 

is an example of the scope of such analysis. Figure 4.18 shows both model predicted 

surface profile topography, and a contour map of the hardness values of the material over 

the presented two-dimensional subsurface, attained by nanoindentation. Please see section 

3.2.1 and Figure 4.10 for orientation to the machined subsurface geometry presented here. 

The contour map topography reveals that near surface hardness does in fact vary 

substantially in the feed direction. Most of the conditions investigated by this method in 

Ti-6Al-4V showed a similar pattern as can be seen here. That is, there exists some 

concentrated area of hardened material directly under the feed mark troughs. Figure 4.18a 

shows that in the conditions with machining parameters which induced less overall 

ploughing (low nose radius, high feed and low cutting edge radius), periodic variation of 

hardness congruent with the feed value persists in the material subsurface all through the 

area measured here. However, the absolute magnitude of the variation can be seen to drop 

quickly with increasing workpiece depth. On the other hand, Figure 4.18b shows a surface 

that maintains harder material values through the depth of the sampled area, while still 

showing the periodic variation of hardness with feed as noted previously. These overall 

hardness results agree well with previously established trends discussed in section 4.3.1. 



 
 

58 

 

 
Figure 4.18.  Three-dimensional subsurface hardness profile for machining conditions: 
(a) rc = 0.4 mm, f = 0.1 mm, re = 12.5 µm; (b) rc = 0.8 mm, f = 0.2 mm, re = 30 µm. 

However, in samples where the overall subsurface hardness showed a marked 

increase relative to the overall data set observed here, it was found that the subsurface 

hardness variation behavior changes substantially. Figure 4.19 shows one such sample. 

Similar to the trends observed in Figure 4.18b, the hardness behavior in Figure 4.19a shows 

that machining-induced material hardness increase extends far into the depth of the 

evaluated material. However, the periodic nature of the hardness is found to have been 

altered due to additional ploughing phenomena. Rather than vary at a period equal to the 

feed value, it seems that in cases of surfaces with higher calculated ‘ploughing constants’, 

the period of near surface hardness variation was double the feed value. It is hypothesized 

that this additional hardness spike at the peak of the feed marks is caused by excessive 

‘double ploughing’ of the material in these regions, as shown in Figure 4.19b. It is theorized 

that this mechanism is partially responsible for the observed increase of one dimensional 

hardness profiles at higher corner radius and lower feed, as found previously in section 

4.3.1. 
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Figure 4.19.  (a) Three-dimensional subsurface hardness profile for machining 
conditions: rc = 1.6 mm, f = 0.2 mm, re = 20 µm; (b) magnified model subsurface 
geometry for this condition. 

While it is thought that the periodic hardness variation noted here has implications for 

surface integrity, no published work has yet provided any data correlating this variation to 

fatigue life, wear, or corrosion resistance. At minimum, this data gives insight into how the 

hardness increase near the surface is distributed, and therefore a better understanding of 

the causes of measurement inaccuracies of microhardness testing is attained. In order to 

improve the statistical significance of results in future microhardness efforts which follow 

the conventional method of solely investigating the behavior as a function of depth, it is 

recommended that microhardness be evaluated at the same position on each trough. 

However, considering the discovery of periodic hardness variation in the subsurface of all 

samples, it should be acknowledged that one dimensional hardness inspections do not give 

the full picture of subsurface phenomena induced in finish machining of Ti-6Al-4V, and 

most likely all other ductile-machining metals. Though typical one dimensional ‘depth’ 

analysis of hardness behavior is useful for determining overall trends, it appears that 

hardness behavior in the feed direction is also relevant in the analysis of more 

geometrically complex operations such as turning or milling. Full surface integrity analysis 

should include geographical observations of the subsurface material variations when 

possible, in order to deconvolute their relationships to process parameters, as well as the 

performance of the machined part.  
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CHAPTER 5. CONCLUSIONS AND OUTLOOK 

While this work is not the first to identify the relevant size effects in surface 

generation during finish machining, the role that each effect plays with respect to surface 

integrity has been clarified. In particular, the effects of side flow and material spring back 

have been shown to be of high importance to finish machining induced surface integrity. 

Hence, the influences of three-dimensional parameters are significant, both in the observed 

surface roughness in finish machining in general, and in the machining-induced subsurface 

characteristics in Ti-6Al-4V. 

Varied cutting edge geometry was discovered to affect the final machined 

topography in multiple ways. In many cases, increased cutting edge radius was found to 

increase surface roughness due to the occurrence of side flow at the free edges of the cut. 

However, while cutting edge radius generally increases roughness in high-precision 

machines, in machines affected by machine tool error, edge radius was shown to decrease 

observed roughness. This effect was investigated and is considered to be caused by process 

damping that results from viscoelastic shear-damping, as well as elastic damping that 

propagates through the machine/workpiece dynamic system. 

By adjusting machining parameters, it was found that near surface hardness can be 

changed with some degree of confidence in the finish machining of Ti-6Al-4V. Generally, 

increases in corner radius, increases in cutting edge radius, and decreases in feed were all 

found to increase the hardness value of the material near the machined surface. The effects 

of feed and cutting edge radius were prone to interaction, whereby a decrease in feed caused 

the hardening/softening effect of increased/decreased cutting edge radius to be of greater 

magnitude for a given edge radius change. While these effects are still apparent to some 

extent in rougher machining regimes, it was found to be of much greater relevance in fine 

finishing conditions.  

Additionally, two-dimensional subsurface hardness behavior was observed and 

analyzed. In addition to the usually investigated depth-direction hardness variation, 

variations of hardness in the feed direction were discovered, and found to vary significantly 

with multiple machining parameters. Strain hardened regions were typically observed 
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directly below the feed mark troughs in most conditions. While the variation was seen to 

directly correlate with feed for conditions which induced relatively little ploughing, other 

conditions led to a halving of the variation period. These additional hardened regions 

occurred under the peaks of the feed marks and are hypothesized to be caused by “double-

ploughing” of material occurring in these areas. 

This work also presents an iterative geometric surface generation model for the 

prediction of surface integrity in finish machining, built upon unique assumptions about 

the size effect in machining. The presented model considers the engagement and geometry 

of the tool and workpiece in light of complex ploughing mechanisms that give rise to side 

flow and material spring back. In this sense, it is fitting to consider this model qualitatively 

‘physics based’, as it incorporates the dominating physical phenomena which lead to the 

generation of the machined surface. The model establishes a novel method for modeling 

relatively complex, MTE-influenced surface roughness values that are dampened by tool 

edge radius. Complex surface integrity effects, such as strain hardening, thermal softening, 

recrystallization, and residual stress evolution are intimately tied to the surface generation 

mechanics, which the present model appears to accurately capture. 

Within the cutting parameter range under investigation, comparisons with 

experimental data showed that the presented model predicts surface roughness with good 

agreement. Given precise roughness data, estimation of minimum uncut chip thickness is 

possible via reverse fitting of the model. While not a direct method, the results achieved 

by this methodology correlate well with the observed minimum uncut chip thickness, and 

give insight into the relative differences of minimum uncut chip thickness between 

different materials. Additionally, the geometry of this model was also found to correlate 

very well with subsurface phenomena. In particular, the calculated ‘ploughing constant’ 

matched the relative overall hardness increase behavior with good agreement. Furthermore, 

the presence of strain hardened regions directly below the feed mark troughs, as well as 

peaks (when substantial double ploughing was present there) verified the relevance of the 

model’s geometrical assumptions. 

Altogether, three-dimensional finish machining processes like turning and milling 

are shown to have the potential to be more than substitutes for costly machining processes 
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such as grinding. Rather, given a better understanding of surface generation size effects, 

conventional finish machining may also be employed as a means to create longer-lasting 

parts and eliminate costly post-processing steps, both of which lead to increased 

sustainability. Two size effects, material side flow and spring back, significantly influence 

the surface integrity of finish-machined surfaces and are directly affected by geometric 

machining parameters. In many cases, improved surface integrity at fine feeds may be 

reliably achieved by altering machining parameters in a trivial manner. The model resulting 

from this study allows for increased understanding of the mechanisms leading to surface 

integrity in three-dimensional finish machining processes, and should provide a basis for 

selecting parameters that produce surfaces of smooth, resilient topography.  

5.1 Future Work 

While the quantitative prediction of subsurface material properties like hardness 

and residual stress lies outside the scope of the present study, the geometric ‘boundary 

conditions’ of the tool/workpiece engagement are predicted quite well with the proposed 

geometric model. Therefore, subsequent work will focus on expanding the current model 

to provide inputs to the author’s research group’s concurrently developed thermo-

mechanical surface integrity models, which require knowledge of multi-path effects and 

full-surface ploughing insight identified in this work.  

Additionally, further investigation of the newly discovered “two-dimensional” 

hardness variation is warranted. It is hypothesized that this behavior will be present for all 

materials machined in a plastic manner, and that this material property will in fact influence 

component performance substantially. Therefore, subsequent work will focus on 

identifying this behavior in multiple materials, as well as identifying any relationships this 

behavior has with fatigue failure, wear, or corrosion resistance. 

1Sections 2.2.1, 3.1, 3.3, 4.1, and 4.2 are partially adapted from author’s previously 

published work with permission from MDPI [16]  
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APPENDIX 

%Surface generation model 
  
% Version 10 mods 
% Cleaned up 
  
clc 
clear variables 
  
figure(2) 
clf 
figure(1) 
clf 
figure(3) 
clf 
figure(4) 
clf 
  
colorpalette = [86,125,156;15,65,98;28,38,65;144,163,180;184 15 
10]/255; 
  
%INPUTS@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@ 
  
% This program is adaptable to a variety of inputs. Measurements begin 
% breaking down when too high a hone is created, giving way to 
burnishing. 
  
% Input hones and nose radius values here 
hone_list = [5;10;20;80];% [µm] 
noserad_list = [0.4]; % [mm] 
  
% desired upper feed bound? [mm] 
upfeed = .2; 
% desired lower feed bound? [mm] 
lowfeed = .01; 
% desired resolution of feed vs roughness model? 
res = 10; 
% How many passes should you allow at max? (Program exits after 
equilibruim 
% is established, however this will serve as a hard stop if that does 
not 
% occur.) 
MaxPasses = 10000; 
% DOC for the cut 
doc = .25; 
% resolution of model profiles 
profileres = 300000; 
% Critical effective angle, different for different materials and 
speeds 
crityeff = -70; %degrees 
% Give one or two values to average for the estimation of 
DMTErz(1) = 0; 
DMTErz(2) = 0; 
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% what edge radius were these measurements taken from? 
DMTErz_re = hone_list(1); 
%what percent of the sideflow chip will become true sideflow? That 
is... 
%will exit to the side of the tool(i,j), on top of the surface. 
sideflowsusceptability = 1.00; % 1 is 100 percent 
  
% 
CALCULATIONS@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@ 
% Preallocating 
honelevels = length(hone_list); 
noselevels = length(noserad_list); 
hmin(1:honelevels) = NaN; 
DMTEdamped(1:honelevels) = NaN; 
  
% Calculation of average dynamic machine tool error 
DMTEdamped(1) = mean(DMTErz); 
  
% Assuming that this data will always be the smallest edge (because it 
should 
% be in order to get the most accurate measurement) we calculate the 
% relative damping of the other edges 
  
for er = 1:honelevels 
hmin(er) =(hone_list(er)-hone_list(er)*cosd(90+crityeff))/1000; 
if er > 1 
relativehonediff = hmin(1)/hmin(er); 
DMTEdamped(er) = log(relativehonediff-.06)/log(2.6) + 5.2; 
end 
end 
  
  
% Keep this updated for documentation purposes 
DMTEdampedchar = "log(relativehonediff-.06)/log(2.6) + 5.2"; 
% Creating logspace of desired feed range in mm. 
doe(:,2) = logspace(log10(lowfeed),log10(upfeed),res); 
  
  
%initial setup of data file, put at beginning of program 
%to simplify 
Model8_fullfactorial{1,1} = 'ModelData'; 
Model8_fullfactorial_Profiles{1,1} = 'ProfileData'; 
for p = 1:noselevels 
Model8_fullfactorial{p+1,1} = strcat('rc = ', 
num2str(noserad_list(p))); 
Model8_fullfactorial_Profiles{p+1,1} = strcat('rc = ', 
num2str(noserad_list(p))); 
end 
for p = 1:honelevels 
Model8_fullfactorial{1,p+1} = strcat('re = ', num2str(hone_list(p))); 
Model8_fullfactorial_Profiles{1,p+1} = strcat('re = ', 
num2str(hone_list(p))); 
end 
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% Computation 
for hone_r = 1:honelevels 
for nose_r = 1:noselevels 
 
%doe construction for a given tool geometry 
for b = 1:res 
doe(b,1) = noserad_list(nose_r); 
doe(b,3) = hone_list(hone_r); 
end 
 
 
%Preallocating for feeds loop: t = 1:res 
 
figure(5) 
clf 
figure(6455147) 
clf 
 
theta(1:res)=0; 
ltheta(1:res)=0; 
sideflowtot(:,:)=0; 
figur = 0; 
psharp(:) = 0; 
 
RaModel(1:res,1) = NaN; 
RzModel(1:res,1) = NaN; 
RaTh(1:res,1) = NaN; 
RzTh(1:res,1) = NaN; 
RaTh(1:res,1) = NaN; 
RaBrammertz(1:res,1) = NaN; 
psharp(1:res,1) = NaN; 
surfacemean(1:res,1) = NaN; 
Profilematrix(1:profileres,1:3*res) = NaN; 
del_xp(1:res,1) = NaN; 
 
for t=1:res 
 
figur = figur +1; 
%Hone in um 
hone = doe(t,3)/1000; 
%Tool nose radius in mm 
R = doe(t,1); 
%Feed in mm 
F = doe(t,2); 
 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % smoothing 
length adjust in [mm] 
smoothlength =F^(1/2)/12*(R/.4) + hone/100; 
% Keep this updated for documentation purposes 
smoothlengthchar = "F^(1/2)/12*(R/.4) + hone/100"; 
  
 
% Preallocating for the passes loop 
tool(:,:) = 0; 
surf(:,:) = 0; 
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surface(:,:) = 0; 
angle(:,:) = 0; 
xp(:) = 0; 
xpangle(:,:) = 0; 
ypangle(:,:) = 0; 
THsideflowarealengthx(:,:) = 0; 
sideflowextgapvol(:,:) = 0; 
startiroughpre = 0; 
stopirough = 0; 
startirough = 0; 
cv = 0; 
skip = 0; 
SFRPTRACKx(:)=0; 
SFRPTRACKy(:)=0; 
SFRPTRACKi(:)=0; 
 
%Minimum Chip thickness in mm: 
 
h =(hone-hone*cosd(90+crityeff)); 
 
%angle to show where the sideflow chip begins 
ltheta(t) = asin(F/(R-h)/2); 
%angle used to line the sideflow chip segment up to the y axis, to make 
%calculations easier, this theta transposes the system to some 
orientation. 
 
for j = 1:MaxPasses 
if skip == 0 
pk = 0; 
pk2 = 1; 
sideflowstopx=0; 
sideflowstopy=0; 
sideflowstartx=0; 
sideflowstarty=0; 
sideflowintcount = 0; 
sideflowint = 0; 
sideflowextintcount = 0; 
sideflowextint = 0; 
sideflowextgapheight = 0; 
sideflowextlength = 0; 
sideflowextgapvoltemp = 0; 
 
% OLD SURFACE, tool and sideflow vol 
for i=1:profileres 
 
  
if j == 1 %one of these vectors is created for each radius and feed 
setup. 
xp(i)= (i-1)/profileres*(R*3+50*F)-(R); 
xpsub(i)= (i-1)/profileres*(R*3+50*F)+smoothlength/2; 
if i == 3 
del_xp(t) = xp(3)-xp(2); 
 
% Figures out how many i's are necesary to get to the specified length, 
% smoothlength 
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gausscurvelengthi = ceil(smoothlength/del_xp(t)/2); 
gstd = gausscurvelengthi/3; 
 
% creating gaussian curve with normpdf 
ig = (-gausscurvelengthi:1:gausscurvelengthi); 
yg = normpdf(ig,0,gstd); 
 
  
figure(6455147) 
hold on 
plot(yg) 
end 
end 
 
%Loop to create starting workpiece model 
if xp(i) > 0 && j == 1 && cv == 0 && ((R-h)^2-(xp(i)-F/2)^2) >= 0 
surface(i,j) = -sqrt((R-h)^2-(xp(i)-F/2)^2) + (R - 0); 
 
if surface(i,j) >= doc 
surface(i,j) = doc; 
cv = 1; 
end 
 
 
elseif xp(i) <= 0 && j == 1 && ((R-h)^2 - (F/2)^2) >=0 
surface(i,j) = R-((R-h)^2 - (F/2)^2)^.5; 
elseif cv == 1 && j == 1 
surface(i,j) = surface(i-1,j); 
end 
 
 
% creating tool(i,j) geometry for this pass 
if xp(i)>(F*(j+.5)-R) && xp(i)<(F*(j+.5)+R) && ((R-h)^2-(xp(i)-
F*(j+.5))^2) >= 0 
tool(i,j) = -sqrt(R^2-(xp(i)-F*(j+.5))^2)+R; 
surf(i,j) = -sqrt((R-h)^2-(xp(i)-F*(j+.5))^2)+R; 
else 
tool(i,j) = NaN; 
surf(i,j) = NaN; 
end 
if tool(i,j) > doc*1.05 
tool(i,j) = NaN; 
end 
if surf(i,j) > doc*1.05 
surf(i,j) = NaN; 
end 
 
 
%creating new workpiece surface 
 
 
%creating a line drawn from the center of the current toolpass radius 
%to the beginning of non-hydrostatic pressure on the toolpass aka the 
%beginning of the sideflow chip element 
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angle(i,j) = R-(xp(i)-F*(j+.5))/tan(-ltheta(t)); 
 
%creates a x for plotting only relevant values of angle 
if angle(i,j) < doc && angle(i,j) > -.15 
xpangle(i,j) = xp(i); 
ypangle(i,j) = angle(i,j); 
else 
xpangle(i,j) = NaN; 
ypangle(i,j) = NaN; 
end 
 
 
ifsurface(i,j) > tool(i,j) && surface(i,j) < surf(i,j) && pk == 0 && 
angle(i,j) < tool(i,j) 
sideflowint = sideflowint + surface(i,j) - tool(i,j); 
sideflowintcount = sideflowintcount + 1; 
end 
% determining start of length to multiply average sideflow chip value 
over 
ifsideflowintcount == 1 
sideflowstartx = xp(i); 
sideflowstarty = surface(i,j); 
end 
 
if sideflowintcount > 1 && surf(i,j) < surface(i,j) && pk == 0 
sideflowstopx = xp(i); 
sideflowstopy = surf(i,j); 
stopi = i; 
pk=1; 
  
 
%sideflow length has been verified graphically 
THsideflowarealengthx(t,j) = sideflowstopx-sideflowstartx; 
 
%sideflow tot has been verified graphically 
sideflowtot(t,j) = 
sideflowint/sideflowintcount*THsideflowarealengthx(t,j); 
  
end 
 
 
end 
 
% announcing failure and skipping to next tool 
if pk == 0 
fprintf('Failure to generate sideflow volume in previous pass OR The 
entire uncut chip thickness is less than hmin. \rIncrease model 
resolution to get results that are near kinematic roughness. \r') 
skip = 1; 
else 
% NEW SURFACE 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i = 1:profileres 
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%calculating sideflow extension and surface of the previous pass, hence 
%the need for the above if statement. 
 
% ir is the reverse of i, allowing for easier integration of the volume 
% that is moving right to left 
ir = profileres-i+1; 
if tool(ir,j) >= surface(ir,j) && pk2 == 1 && surface(ir,j) < doc 
sideflowextgapheight = tool(ir,j)-surface(ir,j); 
sideflowextlength = xp(ir)-sideflowstartx; 
sideflowextint = sideflowextint + sideflowextgapheight; 
sideflowextintcount = sideflowextintcount + 1; 
 
sideflowextgapvoltemp = -
sideflowextint/sideflowextintcount*sideflowextlength; 
 
% moves to the next if statement when 
% sideflow volume exceeds the susceptible 
% region's volume 
if sideflowextgapvoltemp >= sideflowtot(t,j) 
sideflowextgapvol(t,j) = sideflowextgapvoltemp; 
pk2=2; 
 
end 
% gets the i that occurs at the feed 
% centermark. Useful for indexing profiles. 
if tool(ir,j) < tool(ir-1,j) 
Feedcenteri(j) = ir; 
end 
end 
% Determines how far up the tool in the feed direction that the flow 
% will slip due to the loss of the side flow chip 
if pk2 == 2 
% Sideflowtheoreticalstop 
SFTSx = sideflowstopx; 
SFTSTRACKi(j) = ir; 
 
% Sideflow real peak 
SFRPx = xp(ir); 
SFRPy = tool(ir,j); 
SFRPTRACKx(j) = SFRPx; 
SFRPTRACKy(j) = SFRPy; 
SFRPa = atan(((SFRPx-F*(j+.5))/(R-SFRPy))); 
 
% Side flow real stop 
SFRSa = (-ltheta(t)-SFRPa)-ltheta(t); 
SFRSx = R*sin((-ltheta(t)-SFRPa)-ltheta(t))+F*(j+.5); 
SFRSy = R - (R-h)*cos((-ltheta(t)-SFRPa)-ltheta(t)); 
% Sideflowrealstart (based on the volume of triangle it would take 
% to achieve the same area taken away past the start of theoretical 
% side flow chip thickness. 
 
% simply the y value at the point found above 
 
if SFRPy >= doc 
skip = 1; 
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end 
 
rchangeperang = h/(SFRSa-SFRPa); 
 
% Modified length of the deformed sideflow 
% volume 
REALsideflowlength(t,j) = ((SFRPx-SFRSx)^2+(SFRPy-SFRSy)^2)^.5; 
THsideflowlength(t,j) = ((SFRSx-sideflowstartx)^2+(SFRSy-
sideflowstarty)^2)^.5; 
Sideflowstrain(t,j) = REALsideflowlength(t,j)/THsideflowlength(t,j); 
Thermaleffect(t,1) = 
REALsideflowlength(t,j)*Sideflowstrain(t,j)*13/13/F; 
  
  
pk2 = 3; 
 
end 
%line equation creation' 
 
end 
if pk2 == 3 
for k = 1:profileres 
if xp(k) <= SFRPx 
surface(k,j+1) = surface(k,j); 
elseif xp(k) < SFRSx && xp(k) > SFRPx 
currentang = atan((xp(k-1)-F*(j+.5))/(R-surface(k-1,j+1))); 
angdiff = currentang - SFRPa; 
surface(k,j+1) = -sqrt((R-angdiff*rchangeperang)^2-(xp(k)-
F*(j+.5))^2)+R; 
else 
surface(k,j+1) = surf(k,j); 
if surface(k,j+1)>doc || isnan(surface(k,j+1)) 
surface(k,j+1)=doc; 
end 
end 
 
% diagnosis of imaginary num issue 
if 0 == isreal(surface) 
fprintf('Imaginary number encountered \r') 
skip = 1; 
break 
 
end 
end 
else 
skip = 1; 
fprintf('Skipping this condition due to pure burnishing condition\r') 
break 
end 
 
end 
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%checker 
figure(999) 
hold off 
subplot(2,1,1) 
plot(xp,surf(:,j),xp,tool(:,j),xp,surface(:,j),sideflowstartx,sideflows
tarty,'o',sideflowstopx,sideflowstopy,'x',SFRPx,SFRPy,'o',SFRSx,SFRSy,'
x') 
subplot(2,1,2) 
plot(xp,surf(:,j),xp,tool(:,j),xp,surface(:,j+1),SFRPx,SFRPy,'o',SFRSx,
SFRSy,'x') 
 
 
%if the last 20 of the SFRPTRACKy values are level, then exit loop to 
%save time 
if j >= 51 %does at least 20 loops 
shortavg = mean(SFRPTRACKy((j-3:j))); 
longavg = mean(SFRPTRACKy((j-50:j))); 
if shortavg >=longavg*.995 && shortavg <=longavg*1.005 
startiroughpre = Feedcenteri(j-35); 
startirough = Feedcenteri(j-25); 
stopirough = Feedcenteri(j-12); 
%Sideflow smoothing multiplier. Everything should be smoother for 
%higher values of this because the peaks are very tall and 
%to the antifeed side of the tool 
psharp(t) = SFRPa; 
jhigh = j; 
break 
end 
end 
end 
 
end 
 
 
if skip == 1 
RaModel(t,1) = NaN; 
RzModel(t,1) = NaN; 
RaTh(t,1) = NaN; 
RzTh(t,1) = NaN; 
RaTh(t,1) = F^2/R/32*1000; 
RaBrammertz(t,1) = 
(doe(t,2)^2/doe(t,1)/32+h/2*(1+h*doe(t,1)/(doe(t,2))^2))*1000; 
else 
%calculation of surface roughness 
RaTh(t,1) = F^2/R/32*1000; 
RzTh(t,1) = F^2/R/8*1000; 
RaBrammertz(t,1) = 
(doe(t,2)^2/doe(t,1)/32+h/2*(1+h*doe(t,1)/(doe(t,2))^2))*1000; 
 
roughcurve = surface((1:stopirough),j); 
rcx = xp((1:stopirough)); 
  
roughcurvepreseg = roughcurve((startiroughpre:stopirough)); 
rcpsx = rcx((startiroughpre:stopirough)); 
preseglength = length(roughcurvepreseg); 
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roughcurvepreseg_mean = mean(roughcurvepreseg); 
roughcurvepreseg_zeroed = roughcurvepreseg-roughcurvepreseg_mean; 
% Smoothing the resultant curve 
roughcurvesmoothpreseg = filter(yg, 1 ,roughcurvepreseg_zeroed); 
% Shortening to actual evaluation length 
roughcurvesmoothrealseg = roughcurvesmoothpreseg((preseglength-
(stopirough-startirough)):preseglength); 
rcsrsx = rcx((preseglength-(stopirough-startirough)):preseglength); 
 
  
%Finding values for peak and valley (Rz/Rt evaluation) 
Peak = max(roughcurvesmoothrealseg); 
Valley = min(roughcurvesmoothrealseg); 
% Calculating the mean surface height (Ra evaluation) 
surfacemean(t) = mean(roughcurvesmoothrealseg); 
% Calculating the deviation from the average surface height at 
% each point 
roughzfunc = abs(roughcurvesmoothrealseg-surfacemean(t)); 
% Mean of the deviation from the average surface height 
RaModel(t,1) = mean(roughzfunc)*1000; 
% Distance from the highest peak to the lowest along evaluation 
% length (Rz = Rt because it is a model) 
RzModel(t,1) = (Peak-Valley)*1000; 
% Kinematic equations for Rz/Rt and Ra, as well as Brammertz's 
% equation 
 
% Creating the geometry for subsurface characteristic 
% derivation 
 
% the yg filter creates an offset, calculated here, to be used 
% subsequently in xp 
gioffset = ceil(length(yg)/2); 
  
roughcurvesmoothrealseginplace = roughcurvesmoothrealseg + 
roughcurvepreseg_mean; 
 
subxp(1:profileres,1:jhigh-12)=NaN; 
subsurface(1:profileres,1:jhigh-12)=NaN; 
%Loop to create workpiece subsurface model 
tpcount = 0; 
totalplough = 0; 
 
for j = jhigh-30:jhigh-12 
cv = 0; 
subtool(1:profileres,j)=NaN; 
subsurf(1:profileres,j)=NaN; 
 
for i = (startirough:stopirough) 
  
if (R)^2-(xp(i)-smoothlength/2-F*(j)+F/2)^2>0 
subsurface(i,j) = -sqrt((R)^2-(xp(i)-smoothlength/2-F*(j)+F/2)^2) + (R 
- 0); 
  
if subsurface(i,j)>=roughcurvesmoothrealseginplace(i-startirough +1) 
subsurface(i,j) = NaN; 
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end 
if subsurface(i,j)<=roughcurvesmoothrealseginplace(i-startirough +1) 
totalplough = totalplough - subsurface(i,j)+ 
roughcurvesmoothrealseginplace(i-startirough +1); 
tpcount = tpcount + 1; 
end 
end 
  
% creating tool(i,j) geometry for this pass 
if (R^2-(xp(i)-smoothlength/2-F*(j)+F/2)^2) >= 0 && ((R-
hmin(hone_r))^2-(xp(i)-smoothlength/2-F*(j)+F/2)^2) >= 0 
subtool(i,j) = -sqrt(R^2-(xp(i)-smoothlength/2-F*(j)+F/2)^2)+R; 
subsurf(i,j) = -sqrt((R-hmin(hone_r))^2-(xp(i)-smoothlength/2-
F*(j)+F/2)^2)+R; 
else 
subtool(i,j) = NaN; 
subsurf(i,j) = NaN; 
end 
if subtool(i,j) > doc*.1 
subtool(i,j) = NaN; 
end 
if subsurf(i,j) > doc*.1 
subsurf(i,j) = NaN; 
end 
  
end 
end 
 
% gives the ploughed volume per mm 
Mechanicaleffect(t,1) = totalplough/13/F; 
 
figure(16) 
clf 
hold on 
plot(xp(startirough:stopirough),subsurface(startirough:stopirough,:),'-
-','Linewidth',3,'color',[0 0 0]) 
plot(xp(startirough:stopirough),roughcurvesmoothrealseginplace,'Linewid
th',3,'color',[0, 0.4470, 
0.7410])%xp(startirough:stopirough),subtool((startirough:stopirough),j)
, 
  
% set(gcf, 'Color', 'None'); 
% set(gca, 'Color', 'None'); 
% set(gcf,'units','inches','position',[1,1,14,5]) 
xlim([3 3.5]) 
ylim([-.004 .005]) 
set(gca,'FontSize',16) 
xlabel('Feed mm','fontname','Arial','FontSize', 24)  
ylabel('Depth of Cut mm','fontname','Arial','FontSize', 24) 
% axis equal 
  
% plots every profile generated for a given condition 
figure(5) 
gridsize1 = ceil(sqrt(res)); 
gridsize2 = ceil(res/gridsize1); 
subplot(gridsize2,gridsize1,figur) 
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plot(xp,surface(:,1),xp,surface(:,jhigh),xp(startirough-
gioffset:stopirough-gioffset),roughcurvesmoothrealseginplace) 
%axis equal 
legend('Pass 1','End pass') 
ylim([-.02 inf]) 
 
end 
 
if skip == 0 
Profilematrix(1:(1-startirough+stopirough),-1+(t)*3)=xp(startirough-
gioffset:stopirough-gioffset); 
Profilematrix(1:(1-startirough+stopirough),(t)*3)= 
roughcurvesmoothrealseg; 
Profilematrix(1,-2+(t)*3) = t; 
 
end 
 
end 
 
% Settings Documentation 
Model8_fullfactorial{noselevels+3,1}="User Inputs:"; 
Model8_fullfactorial{noselevels+4,1}="Yeff Critical"; 
Model8_fullfactorial{noselevels+4,2}="Profile Resolution"; 
Model8_fullfactorial{noselevels+4,3}="Upper Feed Limit"; 
Model8_fullfactorial{noselevels+4,4}="Lower Feed Limit"; 
Model8_fullfactorial{noselevels+6,1}="DOC"; 
Model8_fullfactorial{noselevels+10,1}="Model Tweaks:"; 
Model8_fullfactorial{noselevels+11,1}="Smoothing window equation"; 
Model8_fullfactorial{noselevels+11,2}="DMTE damping equation"; 
 
Model8_fullfactorial{noselevels+5,1}=crityeff; 
Model8_fullfactorial{noselevels+5,2}=profileres; 
Model8_fullfactorial{noselevels+5,3}=upfeed; 
Model8_fullfactorial{noselevels+5,4}=lowfeed; 
Model8_fullfactorial{noselevels+7,1}=doc; 
Model8_fullfactorial{noselevels+12,1}=smoothlengthchar; 
Model8_fullfactorial{noselevels+12,2}=DMTEdampedchar; 
 
for y = 1:10 
for e = 1:4 
Model8_fullfactorial_Profiles{(noselevels+2+y),e}=Model8_fullfactorial{
(noselevels+2+y),e}; 
end 
end 
 
%organizing and labelling of data into one file 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,1} = 'LogFeed'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,1} = doe(:,2); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,2} = 'Ra Kinematic'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,2} = RaTh(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,3} = 'Rz Kinematic'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,3} = RzTh(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,4} = 'Ra Brammertz'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,4} = RaBrammertz(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,5} = 'Ra Model'; 
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Model8_fullfactorial{nose_r+1,hone_r+1}{2,5} = RaModel(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,6} = 'Rz Model'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,6} = RzModel(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,7} = 'Rz Model with DMTE'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,7} = 
RzModel(:,1)+DMTEdamped(hone_r); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,8} = 'Mechanical Effect'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,8} = Mechanicaleffect(:,1); 
Model8_fullfactorial{nose_r+1,hone_r+1}{1,9} = 'Thermal Effect'; 
Model8_fullfactorial{nose_r+1,hone_r+1}{2,9} = Thermaleffect(:,1); 
Model8_fullfactorial_Profiles{nose_r+1,hone_r+1} = Profilematrix; 
  
figure(nose_r) 
clf 
loglog(Model8_fullfactorial{nose_r+1,hone_r+1}{2,3},Model8_fullfactoria
l{nose_r+1,hone_r+1}{2,3},'HandleVisibility','off','color',[0 0 0]) 
hold on 
%plotting the unadjusted model R_ vs Feed 
loglog(Model8_fullfactorial{nose_r+1,hone_r+1}{2,3},Model8_fullfactoria
l{nose_r+1,hone_r+1}{2,6},'HandleVisibility','off') 
% %plotting the MTE-adjusted model R_ vs Feed 
% 
loglog(Model8_fullfactorial{nose_r+1,hone_r+1}{2,3},Model8_fullfactoria
l{nose_r+1,hone_r+1}{2,7},'HandleVisibility','off') 
end 
end 
  
set(gca,'FontSize',16) 
xlabel('f^2/r_c*8 µm','fontname','Arial','FontSize',24) 
ylabel('R_z µm','fontname','Arial','FontSize',24) 
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