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ABSTRACT OF DISSERTATION 

 
 
 

INVOLVEMENT OF THE RENIN ANGIOTENSIN SYSTEM IN MARFAN 
SYNDROME ASSOCIATED THORACIC AORTIC ANEURYSMS 

 
Thoracic aortic aneurysms (TAAs) are clinically-silent dilations of the aorta 

which greatly increase the risk of aortic rupture, a condition with 50-90% mortality. 
Marfan syndrome (MFS) is caused by mutations in fibrillin-1 (FBN1) and is 
associated with TAAs. Due to an absence of validated and effective pharmacologic 
therapies to prevent or reverse TAA, most MFS patients require surgical aortic 
repair. Understanding MFS associated TAA pathogenesis would direct 
development of new pharmacologic therapies. Previous research has implicated 
the renin angiotensin system in TAA. In both males and females, angiotensinogen 
(AGT) is cleaved serially to generate the main effector peptide angiotensin II 
(AngII). AngII is the main ligand of AngII receptor type 1a (AT1aR). However, the 
role of angiotensin II (AngII) receptor type 1a (AT1aR) in MFS associated TAA 
formation is unclear. Here, we test the hypothesis that AngII-dependent AT1aR 
stimulation is responsible for Marfan syndrome associated TAA. 

To study the contribution of the renin angiotensin system on MFS 
associated TAA, we used the fibrillin-1 haploinsufficient (Fbn1C1041G/+) and 
fibrillin-1 hypomorphic (Fbn1mgR/mgR) mouse models. TAA in MFS mice 
demonstrated sexual dimorphism. Compared to male Fbn1C1041G/+ mice, 
female Fbn1C1041G/+ mice exhibited less ascending aortic dilation. To study 
AT1aR in MFS associated TAA, we bred male and female AT1aR deficient 
(AT1aR-/-) x Fbn1C1041G/+ mice. We measured the ascending aorta up to 12 
months of age by high frequency ultrasound sequentially. We evaluated aortic 
medial structure at study termination. Compared to male AT1aR+/+ x 
Fbn1C1041G/+ mice, male AT1aR-/- x Fbn1C1041G/+ mice exhibited less 
ascending aortic dilation and reduced elastin fragmentation. Ascending aortic 
dilation was not significant between female AT1aR-/- x Fbn1C1041G/+ mice and 
female AT1aR+/+ x Fbn1C1041G/+ mice.  To study the contribution of angiotensin 
peptides, we administered angiotensinogen antisense oligonucleotides (AGT 
ASO) to male Fbn1C1041G/+ mice. Compared to male Fbn1C1041G/+ mice 



     
 

administered control ASO, mice administered AGT ASO exhibited less ascending 
aortic dilation and reduced elastin fragmentation. 

TAA in the mouse models of MFS is sexually dimorphic. Inhibition of the 
renin angiotensin system via either AT1aR deletion or AGT ASO is sufficient to 
attenuate ascending aortic dilation in male Fbn1C1041G/+ mice. However, the 
effect of AT1aR deletion was not detectable in female Fbn1C1041G/+ mice. 
Depletion of angiotensin ligands was efficacious in attenuating MFS associated 
TAA in male Fbn1C1041G/+ mice. However, factors that impact TAA of other 
etiologies have minimal impact on MFS associated TAA. These studies indicate 
that modulating the renin angiotensin system is highly effective to attenuate MFS 
associated TAA in males. 

 
KEYWORDS: Marfan syndrome, Thoracic Aortic Aneurysm, Renin Angiotensin 

System, Angiotensin II  
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CHAPTER 1. INTRODUCTION 

1.1 Marfan syndrome 
 
Marfan syndrome (MFS) is an autosomal dominant genetic disease 

caused by mutations in a large extracellular matrix protein, fibrillin-1 (FBN1). (1) It 
has an incidence of approximately 1:3000 live births and is associated with 
increased morbidity and mortality for a significant number of affected patients. As 
a syndromic disorder, Marfan syndrome is characterized by a constellation of 
features that forms the basis of diagnosis. Thoracic aortic aneurysms (TAAs) are 
a key feature in Marfan syndrome that drives both diagnosis and prognosis. This 
section will review the common clinical features seen in Marfan syndrome, the 
fibrillin-1 gene and protein, and Marfan syndrome mouse models. 

Clinical features of Marfan syndrome include dysmorphic features, ectopia 
lentis, and thoracic aortic aneurysms. Alongside genetic testing for pathologic 
mutations in the FBN1 gene and family history of Marfan syndrome, these form 
the basis of the 2010 Revised Ghent Nosology. (2) Dysmorphic features are 
tabulated as a systemic score. Characteristic features include hypermobility, 
skeletal deformations, skin features, and specific cardiopulmonary conditions. 
Another key phenotype is the presence of detached lenses in the eye or ectopia 
lentis. Evaluation of this feature requires an ophthalmologist. However, the most 
important criteria is the presence of aortic root dilation. Specifically, if the aortic z-
score (aortic root diameter normalized to body surface area) is greater than 2, 
only one additional of the above criteria is needed to make a definitive diagnosis 
of Marfan syndrome in patients without a family history. In patients with a positive 
family history of Marfan syndrome or known pathologic FBN1 mutation, aortic 
dilation alone is enough to make the diagnosis of Marfan syndrome. Male 
patients with Marfan syndrome develop more severe aortic dilation compared to 
female counterparts. (3-5) Because Marfan syndrome is inherited in an 
autosomal dominant fashion, it is unclear why this sexual dimorphism exists. 
Thoracic aortic aneurysm by itself is clinically silent and often asymptomatic. 
However, it is associated with an increased risk of aortic rupture and dissection 
due to loss of aortic wall integrity. This topic will be reviewed in a later section. 
Although Marfan syndrome is a systemic disease that affects multiple organ 
systems, TAA remains the leading cause of morbidity and mortality in patients 
with Marfan syndrome. 

Fibrillin-1 mutations form the basis of Marfan syndrome, a disorder 
characterized by connective tissue abnormalities and thoracic aortic 
aneurysms.(6) Aortic tissues from patients with Marfan syndrome display 
extensive elastin fragmentation (7) and strikingly decreased mature elastin - as 
detected by desmosine extraction - without changes in collagen content.(8)  
Fibrillin-1 is one of the most well characterized microfibrillar proteins in the 
context of aortic elastin stability. Members of the fibrillin protein family are found 
in elastic connective tissue where they serve as a critical component of the 
microfibrillar scaffold. In general, fibrillins are comprised of an identifying N-
terminal domain that distinguishes FBN1 from FBN2, structural calcium binding 
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epidermal growth factor domains and proline/glycine domains that provide 
flexibility and rigidity, and tumor growth factor β (TGFβ) binding domains that 
anchor cell-signaling elements. Other notable binding partners include growth 
factors, structure proteins (elastin and fibulins), as well as cells through integrin 
binding. (9, 10) (Table 1.1) Mutations in fibrilin-1 affect elastic tissue integrity by 
disrupting these interactions. 

Based on mutations in FBN1, several mouse models of Marfan syndrome 
have been developed to mimic the human disease. These mouse models display 
progressive aortic dilation of varying severity. The fibrillin-1 haploinsufficient 
(Fbn1C1041G/+) mouse model is based on a single nucleotide substitution that 
causes a missense mutation. This mouse model mimics the human FBN1C1039Y 
mutation, which impacts a calcium binding epidermal growth factor-like domain of 
fibrillin-1. (11) Fbn1C1041G/+ mice develop TAA over the course of 6 months. Our 
data indicates that aortic dilation can be detected as early as 1 month of age. 
The fibrillin-1 hypomorphic (Fbn1mgR/mgR) mouse model is a severe model of 
Marfan syndrome. (12) This mutation incorporates a targeting vector between 
exon 18 and 19. While native fibrillin-1 is expressed, protein levels are greatly 
diminished. These mice develop aggressive TAA and often die of aortic rupture. 
Our observations in this mouse model confirm that the median lifespan is 
approximately 3 months of age. Additionally, these mice develop dilated 
cardiomyopathy. The FBN1GT-8 mouse model expresses a green fluorescence 
protein tagged, truncated fibrillin-1. (13) These mice also develop TAA and 
extensive elastin fragmentation. Deletion of FBN1 is embryonic lethal while 
deletion of one copy induces TAA. (14) In summary disruption of either the 
structure or normal abundance of fibrillin-1 results in TAA of varying severity.  

Marfan syndrome was first described in 1896 and FBN1 was first linked to 
Marfan syndrome over 30 years ago, yet current therapies have not been shown 
to reverse TAA. Therefore, there is great need to investigate not only 
pathophysiology of Marfan syndrome associated TAA but also new therapies for 
this disease. 
 
1.2 Structure of the Thoracic Aortic Media 

 
The aorta is composed of three discrete layers: the intima, the media, and 

the adventitia. Of these, the aortic media occupies the majority of the aortic wall 
and is composed of vascular smooth muscle cells and elastin. In this section, we 
will outline the key characteristics of the major cellular and extracelluar 
components in the aortic media. 

Vascular smooth muscle cells found in the aortic media provide structural 
stability to the thoracic aorta. These cells are derived from the second heart field 
and cardiac neural crest. Second heart field derived cells traced with the Mef2c 
promoter driven cre were found closer to the aortic root. Cardiac neural crest 
cells traced with the Wnt1 promoter driven cre were found up to the ligamentum 
arteriosum. (15, 16) Within the ascending aorta, second heart field derived cells 
occupy the outer aortic media and cardiac neural crest traced cells occupy the 
inner media. (16) While the functional importance of these embryologic origins is 
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unknown, lineage traced cells correlate closely with pathological remodeling in 
aortopathy. Aortopathies often involve remodeling of the outer aortic media. This 
includes elastin fragmentation and medial hemorrhage. (17) Smooth muscle cells 
are also the source of aortic extracellular matrix proteins. In fact, genetic 
depletion of the gene encoding tropoelastin in vascular smooth muscle cells 
results in extensive loss of elastin. (18) interestingly, loss of elastin results in 
pathologic proliferation of smooth muscle cells and obstructive aortic disease 
(19-22)  Thus vascular smooth muscle cells influence and are influenced by 
extracellular matrix of the aortic media. 

Within the media, elastic fibers approximately 0.1µm thick are organized 
into discrete lamellar layers. The process of elastin fiber synthesis is highly 
orchestrated and requires multiple players. Elastin fiber synthesis requires 
formation of a microfibrillar complex composed of tropoelastin, fibrillins, fibulins, 
and EMILINs. Mutations and deficiencies of these components generally result in 
aortopathy. (Table 1.2) Elastin is more abundant in the ascending aorta and 
aortic arch compared to the descending and abdominal aorta. (23, 24).  In 
humans, the thoracic aorta is comprised of up to 60 elastin layers, whereas the 
descending and abdominal aorta consists of about 30 or less discrete elastin 
lamina -- with a corresponding decrease in aortic wall thickness.(24-26) The 
decrease in layers and thickness is also associated with a decrease in the 
amount of elastin from the proximal to the distal aorta.(27) This feature is also 
seen in smaller animals. In mice, the ascending and arch regions consists of 
about 8-12 lamellar units, while the abdominal aorta consists of 3-5 lamellar 
units. (28)  Likewise, comparative physiology studies revealed the number of 
aortic elastic lamella are directly and linearly proportional to aortic diameters. (25) 
Recent studies have indicated that the origins of elastic lamina are 
heterogenous. While smooth muscle cells generate the majority of elastin in the 
media, endothelial cells contribute to elastin in the internal elastic lamina. (18)  
Within the aorta, elastic lamina resist the cyclic force of blood throughout the 
cardiac cycle. The aorta slightly expands during systole, and this expansion is 
necessary to maintain perfusion pressure during diastole through the Windkessel 
effect. (29) By providing elasticity, elastin is a critical component to the structure 
and function of the aorta. When elastin is disrupted, vascular malformations 
occur. This suggests that the number of elastin lamina are adapted to cope with 
stress and strain on aortic tissue but does not explain why aneurysmal disease 
impacts the ascending and abdominal segments – the regions with the most and 
the least number of elastin lamina – while sparing the intervening descending 
segment. 

The aortic media is made of a complex network of vascular smooth 
muscle cells and extracellular matrix proteins. In Marfan syndrome, mutations in 
fibrillin-1 are thought to disrupt these interactions. Disruption of these interactions 
weakens the structural integrity of the aortic wall and results in aortopathy. 
 
1.3 Thoracic Aortic Aneurysms 
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Thoracic aortic aneurysms are expansions of the aortic lumen that weaken 
the aortic wall and increase the risk of catastrophic failure. Tools and mouse 
models developed to study and measure TAA must assay these disease features 
and replicate common etiologies in order to develop effective medical therapies. 
Aortic dilation and medial remodeling are two hallmarks of TAA. Thoracic aortic 
aneurysms are clinically defined as greater than 150% expansion of the normal 
aorta. This criterion is often not used in murine studies of the thoracic aorta 
because there is no evidence of a bimodal distribution of responders/non-
responders unlike in the abdominal aorta. TAA is characterized by expansion of 
the aortic lumen without separating layers of the aortic wall. Interestingly, TAA 
can affect both the aortic root and ascending aorta by separate, distinct 
mechanisms. (30, 31) TAAs of different etiologies give rise to a distinct pattern of 
aneurysms involving regions of the thoracic aorta. Due to this regional 
heterogeneity, standardization of measurements is important in order to make 
equivalent comparisons. Although there is currently no published 
recommendation in aortopathies, we may extrapolate suggestions from 
atherosclerosis studies. Specifically, both the sex of mouse and region of aorta 
analyzed should be similar across all groups. (32, 33) Thus standardization of 
measurement is important, and will be covered in a later chapter. We have 
developed and validated a protocol for the measurement of ascending aorta in 
mice by ultrasound. This standardized protocol states that measurements should 
be consistently imaged in diastole from the left parasternal view.(34) Additionally, 
we have correlated these measurements with other indicators of TAA such as 
elastin fragmentation. (35) Elastin fragmentation is a common feature of TAA. 
(17) It is defined as breaks in the elastic lamina as detected by histology. Normal 
aortic medial architecture displays continuous, concentric elastin layers. 
Concentric lamina are fragmented in TAA. Although its etiology is unknown, it 
may be caused by either malformation of elastic lamina or degradation of mature 
elastic lamina. Both aortic dilation and loss of aortic integrity weaken the aortic 
wall and increase risk of rupture or dissection. Ultimately, loss of normal aortic 
architecture increases risk of dissection and rupture. Thus, it is important to 
measure both the degree of aortic dilation and elastin fragmentation to determine 
the overall severity of TAA. 
 
1.4 Etiologies of Thoracic Aortic Aneurysms 

 
TAA can occur spontaneously or in context of syndromic disease, both of 

these etiologies are replicated in TAA mouse models. In humans, risk factors 
such as smoking and hypertension increase the risk of spontaneous TAA. (36) 
However, mouse models of spontaneous TAA, such as the AngII-infused, β-
Aminopropionitrile induced, and deoxycorticosterone acetate and salt induced 
TAA do not entirely mimic human disease. (37-39) While hypertension is seen in 
the AngII and DOCA-salt models, TAA occurs independently of hypertension. In 
fact, norepinephrine administered mice that develop increased systolic blood 
pressure equivalent to AngII-infusion do not develop TAA. (17) Thus, the 
mechanism by which spontaneous TAAs develop in both humans and mice is 
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unclear. TAA can also occur in context of syndromic disease. Fibrillin-1 mutations 
form the basis of Marfan syndrome, a disorder also characterized by connective 
tissue abnormalities and thoracic aortic aneurysms.(6) (6, 40) However, 
mutations in genes that encode proteins which interact with fibrillin-1, such as 
LOX and LTBP3, are also associated with syndromic TAA. (41, 42) Mutations in 
the TGFβ pathway also lead to syndromic TAA and specific mutations are 
defined as subtypes of Loeys-Dietz syndrome. (43, 44) Vascular Ehlers-Danlos 
Syndrome is caused by mutations in COL3A1. (45) Finally, next generation 
sequencing has elucidated several genes, such as FOXE3, ACTA2, and MYLK, 
involved in familial TAA and dissection. (46-49) Several mouse models have 
been developed to mimic human TAA. Although there are nuanced differences 
between TAA mouse models, the majority display some degree of luminal 
dilation and elastin fragmentation in the aortic media. (50) The Marfan syndrome 
mouse models, specifically the fibrillin-1 haploinsufficiency (Fbn1C1041G/+) and 
hypomorphic (Fbn1mgR/mgR) mouse models, display progressive aortic dilation of 
varying severity. (11, 12, 51, 52) Mice with loss of function mutations affecting 
TGFβ signaling develop TAA and dissections. (53-55) Ehlers-Danlos model mice 
display aortic defects. (45) This area of research is rapidly expanding with the 
ability to rapidly replicate human mutations in mice. Interestingly, most research 
has used male mice only or have only studied sex differences in these models in 
the context of pregnancy and nursing. (45, 56) Only one study in the Fbn1GT8/+ 
model of Marfan syndrome has shown sexual dimorphism in this context. (56) 
Thus mouse models of both spontaneous and syndromic TAA are valuable tools 
to study the pathogenesis of this disease. 
 
 
1.5 Current Therapies for Thoracic Aortic Aneurysms 

 
Currently, there is no proven medical therapy that reverses TAA. In 

Marfan syndrome, both beta- adrenergic blockers and renin angiotensin system 
inhibitors are used clinically. (57, 58) Despite widespread usage, evidence for the 
efficacy of beta-blockers in attenuating or reversing TAA is lacking. (59) Similarly, 
randomized control trials of losartan, an angiotensin receptor blocker, have 
shown mixed results. Losartan is a short acting, surmountable AT1aR antagonist, 
and may not be adequate to suppress the renin angiotensin system. Of the three 
largest trails of losartan, COMPARE demonstrated that losartan was superior to 
no additional treatment, the Pediatric Heart Network trial demonstrated no 
difference between losartan and atenolol, and MARFAN SARTAN demonstrated 
losartan added-on was not superior to placebo.  (60-62) Conversely, the AIMS 
trial demonstrated that use of an insurmountable AT1aR antagonist, irbesartan, 
resulted in a reduction of the rate of aortic dilation.(63) These studies were based 
on the observation that losartan attenuated TAA in a Marfan syndrome mouse 
model. (64) The efficacy of irbesartan, an insurmountable agonist, holds further 
promise that adequate and sustained inhibition of renin angiotensin system may 
be efficacious. The mechanism by which these pharmacologic agents attenuate 
TAA is not known. We will review the evidence for the involvement of the renin 
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angiotensin system in TAA in the next section. Conversely, several 
pharmacologic agents have been shown to exacerbate TAA. One observational 
study demonstrated that calcium channel blockers were associated with worse 
outcomes in patients with Marfan syndrome. (65) Additionally, patients exposed 
to fluoroquinolones, a common antibiotic, had increased risk for aortic rupture. 
(66) The mechanism for these observations is unclear. Due to a lack of 
understanding of TAA pathogenesis, there is a lack of effective medical therapies 
to reverse TAA. In this dissertation, we will focus on syndromic TAA by 
investigating the contribution of the renin angiotensin system to aortopathy in a 
mouse model of Marfan syndrome. We not only describe validation of key 
measurements that assay thoracic luminal dilation and elastin fragmentation but 
also test the efficacy of a novel modality of renin angiotensin system inhibition in 
attenuating Marfan syndrome associated TAA. 

 
1.6 The Renin Angiotensin System in TAA 
 

The renin angiotensin system is a key mediator of aortic homeostasis that 
can be pharmacologically and genetically manipulated. These manipulations can 
be leveraged to impact TAA, but the mechanism by which this occurs is 
unknown. In this section, we will outline the ligand and receptor portions of the 
renin angiotensin system, genetic and pharmacologic modulators of the renin 
angiotensin system, and evidence for the involvement of the renin angiotensin 
system in TAA. 
 The renin angiotensin system can be separated into a ligand portion and a 
receptor portion. To generate angiotensin ligands, a series of enzymatic 
cleavages process angiotensinogen into its main effector peptide, angiotensin II 
(AngII). Angiotensinogen is the sole endogenous precursor to all angiotensin 
peptides. It contains 452 amino acids that is mainly synthesized by the liver. (67) 
Action of renin cleaves the 10 N-terminal residues to liberate the decapeptide 
angiotensin I from the parent AGT. Although the parent AGT molecule was 
historically thought to have few biologic functions independent of AngI and AngII, 
this concept has been recently challenged. (68) AngI is then processed by 
angiotensin converting enzyme into the main effector peptide of the renin 
angiotensin system, angiotensin II. AngII can be further processed into Ang(1-7) 
by angiotensin converting enzyme 2, but AngII is responsible for the majority of 
vascular effects. In humans, angiotensin peptides, and specifically AngII, acts on 
angiotensinII receptor type 1 (AT1R) and type 2 (AT2R). (69) Mice have two 
isoforms of AT1 receptors separated into AT1aR and AT1bR. AT1aR, AT1bR, 
and AT2R are seven transmembrane G-protein coupled receptors. While each 
isoform has specific functions, previous research indicates that AT1aR drives 
pathogenesis in the thoracic aorta. Specifically, deletion of either AT1bR or AT2R 
did not alter AngII induced atherosclerosis and aneurysms in either the thoracic 
or abdominal aortas. (70, 71) Genetic deletion of AT1aR attenuated AngII 
induced aortopathies. (72) Therefore, the main effector peptide of the renin 
angiotensin system in the aorta is derived from AGT and the main receptor 
isoform responsible for aortopathies is the AT1aR. 
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Modulation of the renin angiotensin system, through manipulations of 
angiotensin peptides and AT1aR, impacts TAAs. (Table 1.3) In general, 
activation of the renin angiotensin system exacerbates TAAs. Exogenous 
infusion of AngII induces TAA in C57BL/6J wild type mice and exacerbates TAA 
in FBN1C1041G/+ mouse model of Marfan syndrome. (37, 73) Conversely, inhibition 
of the renin angiotensin system attenuates TAAs. Losartan, an AT1 receptor 
blocker, attenuates TAA in two different mouse models of Marfan syndrome. (64, 
74) Endothelial specific deletion of AT1aR attenuated TAA and death by aortic 
rupture in the severe FBN1mgR/mgR mouse model of Marfan syndrome. (75) This 
effect is highly reproducible. (76-78) Additionally, this phenomenon is 
generalizable to other syndromic TAA mouse models, including fibulin-4 
deficiency, TGFβ receptor 1 and 2 mutants. (79-81) Therefore, inhibition of RAS 
by pharmacologic and genetic means is a promising avenue for ameliorating 
TAAs of multiple etiologies. 

However, recently published studies indicate that the involvement of the 
renin angiotensin system in Marfan syndrome associated TAA may be more 
nuanced than previously believed. One key controversy is the involvement of 
AT1aR in pathogenesis of Marfan syndrome associated TAA. While the site of 
action of AT1aR is still unknown, AT1aR deletion attenuated spontaneous, AngII-
induced TAA. Losartan was shown to be effective in attenuating TAA in a mouse 
model of Marfan syndrome. However, losartan is a surmountable prodrug that 
may have effects beyond AT1R inhibition. (82) One study claimed that 
pharmacologic inhibition of AT1aR using losartan attenuated TAA in a mouse 
model of Marfan syndrome through hyperstimulation of AT2R. (83) However, 
direct stimulation of AT2R, using a specific agonist compound 21, failed to 
attenuate Marfan syndrome associated TAA. (84, 85) This is consistent with 
research in spontaneous TAA outlined above and indicates that losartan’s 
primary protective effect may not be through AT2R hyperstimulation. Another 
study claimed that AT1aR deletion was unable to attenuate TAA in the 
FBN1C1041G/+ mouse model of Marfan syndrome. However, losartan was able to 
attenuate TAA in AT1aR deficient mice at 6 months of age. (86) This study was 
limited by non-standard use of ultrasound and impact was reduced by a failure to 
state the sex of mice studied. Small changes in measurement protocols such as 
use of different viewing angles in ultrasound can greatly affect reliability of TAA 
measurements. Based on studies in the Fbn1GT8/+ model, (56) male and non-
parous female have different thoracic aortic dimensions. If treatment groups 
included unequal distributions of female and male animals, sexual dimorphism 
would hinder comparisons between groups. Directly contradicting this study, 
AT1aR deletion in FBN1mgR/mgR mice attenuated both TAA and death by aortic 
rupture. (75) Therefore it is unclear whether inhibition of AT1aR alone is sufficient 
to attenuate Marfan syndrome associated TAA. 

Another controversy is the involvement of angiotensin peptides in 
pathogenesis of Marfan syndrome associated TAA. Inhibition of AngII production 
by angiotensin converting enzyme inhibitor enalapril attenuates AngII-induced 
aneurysms and atherosclerosis. (87) (88) However, AT1aR can be activated in a 
cell-stretch activated manner. This can occur by direct stimulation of the AT1 
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receptor and can be attenuated by an insurmountable AT1 receptor antagonist. 
(89) Activation of the AT1 receptor in this manner is completely independent of 
AngII. Cell stretch can also induce autocrine/paracrine release of AngII, thus 
activating the AT1 receptor. (90, 91) Evidence for ligand independent activation 
of AT1 receptors in Marfan syndrome revolve around the observation that 
deletion of AGT does not attenuate dilatated cardiomyopathy in FBN1mgR/mgR 
mice. (92) Additionally, ACE inhibitors minimally inhibited TAA in FBN1C1041G/+ 
mice. (83) Interestingly, clinical data on the efficacy of ACE inhibitors in human 
aneurysmal disease is mixed. (93-96) It is unclear whether angiotensin ligands 
are critical for the development of Marfan syndrome associated TAA. Ultimately, 
it is difficult to separate out ligand-dependent and ligand-independent effects of 
AT1aR using ACE inhibitors. ACE, also known as kininase II, can cleave 
numerous ligands in addition to AngI. (97) The kinin-kallikrein system plays a role 
in inflammation and can counteract the renin-angiotensin system. (98, 99) Thus, 
to deplete AngII alone, a novel modality targeting upstream of ACE is needed. 

The renin angiotensin system is a complex hormonal system with 
numerous players. The paradoxical observations of the benefits in modulating 
the renin angiotensin system in Marfan syndrome merit investigation. 
Specifically, it is unclear whether AT1aR is involved in development of Marfan 
syndrome associated TAA. If AT1aR is involved, it is unclear whether that occurs 
in an AngII-dependent or AngII-independent manner. 
 
1.7 Gaps in knowledge, hypotheses tested, and points discussed 

 
Due to lack of understanding in the pathogenesis of Marfan syndrome 

associated thoracic aortic aneurysms, there is no effective medical therapy to 
reverse aortic dilation. One promising area of investigation is the contribution of 
the renin angiotensin system through the action of AngII on AT1aR to 
development of Marfan syndrome associated TAAs. However, the gaps in 
knowledge include whether and how AT1aR activation is responsible for TAA. 
These gaps have remained unfilled due to inadequate standardization of 
measurement techniques assaying the ascending aorta. Previous studies have 
also been biased due to either exclusive use of male animals or failure to specify 
the sex of animals studied.  To address these gaps in knowledge this dissertation 
tests the overarching hypothesis that deletion of endogenous AngII attenuates 
Marfan syndrome associated thoracic aortic aneurysm through inhibition of 
ligand-dependent AT1aR activity. We tested this hypothesis by developing 
standardized measurements of TAA, investigating the role of the AngII-AT1aR 
axis in Marfan syndrome associated TAA, and exploring factors outside the renin 
angiotensin system that modulate TAA. 
 First, we developed and validated standardized methods to assay thoracic 
aortic aneurysms. In Chapter 2, we outline the effect of the cardiac cycle on 
measurements of the ascending aorta, demonstrating that the expansion of the 
aorta during systole is not equivalent between normal and aneurysmal aortas. 
Two-dimensional ultrasound is an accurate and precise modality to measure in 
vivo aortic diameters. We quantified the degree of expansion, showing that the 
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effect of cardiac cycle on aortic measurements can be a significant confounder in 
studies with small effect sizes. Additionally, we verify that assessment of elastin 
fragmentation by human observers blinded to group allocation is a reliable and 
reproducible method not subject to observer bias. Finally, we correlated these 
measurements to demonstrate that both luminal dilation and elastin 
fragmentation are complementary and consistent measurements of the severity 
of thoracic aortic aneurysms. Our subsequent studies benefitted from this 
development of standardized protocols for assaying TAAs.  
 Next, we studied the differential effects of inhibiting ligand-dependent and 
ligand-independent AT1aR activity of TAA in FBN1C1041G/+ mice. Our hypothesis 
was that inhibition of the AngII-AT1aR axis is sufficient to attenuate TAA in 
FBN1C1041G/+ mice. These studies are outlined in Chapter 3. Interestingly, we 
noticed striking sexual dimorphism in FBN1C1041G/+ mice, causing us to pursue 
studies in male mice to maximize study power. Next, we generated FBN1C1041G/+ 
mice with AT1aR deficiency alongside AT1aR intact mice to investigate the 
contribution of AT1aR. Using our validated methods of assaying TAA, we 
measured aortic diameters up to 12 months and elastin fragmentation in the 
ascending aorta at study termination. We found that ablation of both ligand-
dependent and ligand-independent attenuated TAA in male FBN1C1041G/+ mice. 
To distinguish between ligand-dependent and ligand-independent effects of 
AT1aR, we used a novel antisense oligonucleotide targeted against 
angiotensinogen to deplete plasma AGT. Depletion of AGT is male FBN1C1041G/+ 
mice was sufficient to attenuate TAA, indicating that angiotensin ligands play a 
critical role in TAA pathogenesis. 
 Finally, we explored and discussed modulating factors of TAA. Although 
the renin angiotensin system is a major mediator of vascular homeostasis, other 
systemic and cell-specific factors may increase or decrease severity of Marfan 
syndrome associated TAA. One hypothesis is that estrogens were protective and 
androgens exacerbated TAA. Sex hormone removal impacted sexual 
dimorphism in TAA mouse models. Gonadectomy reduces endogenous sex 
hormones and causes atrophy of sex responsive organs. Ovariectomy of female 
mice exacerbated AngII-induced TAA. Orchiectomy of male mice attenuated 
AngII-induced TAA. However, gonadectomy was unable to alter existing TAA in 
juvenile FBN1mgR/mgR mice due to the model’s aggressive TAA development. 
Another hypothesis is that AngII acts on AT1aR within the vascular wall, and 
specifically on adventitial fibroblasts to induce TAA. Previous research indicates 
that deletion of AT1aR on smooth muscle cells has no effect on TAA. (17, 75, 
100) Additionally, endothelial specific deletion of AT1aR had marginal attenuation 
of Marfan syndrome associated TAA. Our evidence indicates that fibroblast 
specific deletion of AT1aR (driven by s100a4-cre) attenuates AngII induced 
aortopathies but not Marfan syndrome associated TAA. Thus, the cell type 
responsible for TAA in Marfan syndrome is still elusive and may differ from TAA 
of other etiologies. Altogether, these modulating factors, both the impact of sex 
hormones and the contribution of cell specific AT1aRs, represent interesting 
associations that need further exploration. 
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The studies outlined in this dissertation reveal novel insights into factors 
that modulate TAA. In discussing the conclusions of these findings, we will 
critically inspect these studies for limitations as well as propose future directions 
that can be taken given these revelations. Possible future studies may include 
use of AGT ASOs in human trials, determining the source of increased AngII in 
Marfan syndrome aortas, and determining the cell type responsible for AT1aR 
stimulation in Marfan syndrome. These findings are significant not only for 
increasing our understanding of the pathogenesis of Marfan syndrome 
associated thoracic aortic aneurysms but also for outlining novel treatment 
modalities that we hope to ultimately blunt the progression of this disease.  
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Table 1.1 Conserved domains in fibrillin-1 
Conserved 

Domain 
Function Refs 

Fibrillin unique 
N-terminus 

domain 

Binding to fibrillin family C-terminus (101)  
(102) 

 Binding site for heparin sulfate proteoglycans  
 Fibronectin dependent microfibrillar assembly (103) 

EGF/cbEGF 
domains 

Calcium dependent structural rigidity under 
tension 

(102, 104) 

TGFβ binding-
like domain 

Integrins α5β1, αvβ3, and αvβ6 binding site (102, 105) 

 Weak calcium binding, structural rigidity  
Hybrid 

domains 
Calcium binding, structural rigidity  

Proline/glycine 
rich domains 

Unique identifiers between fibrillin family 
members 

(102) 

 tropoelastin binding (103) 
C-terminal 

and Aprosin 
Furin cleaved endocrine regulator of glucose 

homeostasis  
(102) 

 Latent TGFβ binding protein interaction site  
 ADAMTS interaction site  
 BMP family binding site  
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Table 1.2  Mutant microfibril mouse models and phenotypes 
Protein Mouse Models Mutation Aortic Phenotype Reference 
Elastin     

Tropoelastin ELN -/- Null Aortic occlusion 
and tortuosity 

(106) 

  ELN +/- Null Aortic occlusion 
and tortuosity 

(107) 

  SM22-ELN-/- Cell specific 
deletion 

Aortic occlusion 
and tortuosity 

(18) 

  Tie2-ELN-/- Cell specific 
deletion 

Disrupted IEL (18) 

  Cdh5-ELN-/- Cell specific 
deletion 

Disrupted IEL (18) 

Fibrillins     
Fibrillin-1  FBN1 

mgR/mgR 
Hypomorphic Severe TAA (12) 

  FBN1 
C1041G/+ 

Missense TAA (11) 

  FBN1 GT8/+ Truncation TAA (52) 
  FBN1 H1Δ Exon 7 

deletion 
Unknown - 

perinatal lethal 
(52) 

  FBN1mgΔ Exon 19-24 
deletion 

Unknown - 
perinatal lethal 

(51) 

  FBN1 -/- Null Perinatal systemic 
vascular 

compromise 

(108) 

Fibrillin-2 FBN2 -/- Null None (108) 
          

Fibulins     
Fibulin-1 FBLN1 -/- Null Aortic Rupture - 

perinatal lethal 
(109) 

Fibulin-2 FBLN2 -/- Null None (110) 
Fibulin-3 FBLN3 -/- Null None (111) 
Fibulin-4 FBLN4 -/- Null TAA, perinatal 

lethal 
(112, 113) 

Fibulin-5 FBLN5 -/- Null Tortuous Aorta  (114) 
EMILIN     

EMILIN-1 EMILIN-1 -/- Null Elastin 
fragmentation 

(115) 

EMILIN -2 EMILIN-2 -/- Null Not characterized; 
not expressed in 

aorta 

(116) 

EMILIN -3 EMILIN-3 -/- Null Not characterized; 
not expressed in 

aorta 

(117) 
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Table 1.3 Mouse Models Where AT1aR Inhibition Attenuates TAA 
TAA Model AT1 Inhibition Modality Reference 

FBN1C1041G/+ Losartan (64) 

AngII-infused AT1a receptor deletion (118) 

Transverse Aortic 
Constriction 

Losartan (119) 

DOCA-Salt Losartan (39) 

Tgfbr2G357W/+ Losartan (81) 

Fibulin4R/R Losartan (120) 

FBN1mgR/mgR Losartan (74) 

FBN1mgR/mgR AT1a receptor deletion (75) 
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CHAPTER 2. MAJOR METHODS OF MEASURING TAA 
 
This chapter is based on a previously published manuscript: 
Chen JZ, Sawada H, Moorleghen JJ, Weiland M, Daugherty A, Sheppard MB. 
Aortic strain correlates with elastin fragmentation in Fibrillin-1 hypomorphic mice. 
Circ Rep. 2019;1(5):199-205. doi: 10.1253/circrep.CR-18-0012. PubMed PMID: 
31123721; PMCID: PMC6528667. 

 
2.1 Synopsis 
 
Background:  High frequency ultrasound has facilitated in vivo measurements of 
murine ascending aortas, allowing aortic strains to be gleaned from two-
dimensional images. Thoracic aortic aneurysms associated with mutations in 
fibrillin-1 (FBN1) display elastin fragmentation, which may impact aortic strain. In 
this study, we determined the relationship between elastin fragmentation and 
aortic circumferential strain in wild type and fibrillin-1 hypomorphic (FBN1mgR/mgR) 
mice. 
 
Methods and Results:  Luminal diameters of the ascending aorta from wild type 
and FBN1 hypomorphic (FBN1mgR/mgR) mice were measured in systole and 
diastole. Expansion of the ascending aorta during systole in male and female 
wild type mice was 0.21±0.02 mm (16.3%) and 0.21±0.01 mm (17.0%) 
respectively, while expansion in male and female FBN1mgR/mgR mice was 
0.11±0.04 mm (4.9%) and 0.07±0.02 mm (4.5%) respectively. Reduced 
circumferential strain was observed in FBN1mgR/mgR mice compared to wild type 
littermates.  Elastin fragmentation was inversely correlated to circumferential 
strain (R^2 = 0.628 p = 0.004) and significantly correlated with aortic diameter. 
(R^2 = 0.397, p = 0.038 in systole and R^2 = 0.515, p =0.013 in diastole) 
 
Conclusions: FBN1mgR/mgR mice had increased aortic diameters, reduced 
circumferential strain, and increased elastin fragmentation. Elastin fragmentation 
in FBN1mgR/mgR and their wild type littermates was correlated with reduced 
circumferential strain. 

2.2 Introduction 
 
Thoracic aortic aneurysms (TAAs) are abnormal dilations of the aorta 

associated with increased risk of life-threatening aortic dissection and 
rupture.(36) While the majority of TAAs have not yet been associated with a 
specific mutation, TAAs often occur in the context of inherited genetic disorders 
such as Marfan syndrome. TAA tissues from patients with Marfan syndrome 
display decreased aortic elasticity.(121) Measurement of aortic diameter is a 
critical prognostic indicator as larger diameters are associated with higher risk of 
rupture.(36)  

Mouse models of spontaneous TAAs can be generated by systemic 
administration of chemicals such as angiotensin II (AngII) or β-
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aminopropionitrile.(37, 38) Mouse models of heritable TAAs can be generated by 
manipulation of genes responsible for extracellular matrix integrity or smooth 
muscle cell function such as fibrillin-1, fibulin-4, and ACTA-2.(11, 12, 47, 113, 
122) In this study we used the fibrillin-1 hypomorphic (FBN1mgR/mgR) mouse 
model, which aggressively develop TAA early in life. Previous studies in these 
mice have revealed decreased elastin expression and increased elastin 
fragmentation in aneurysmal tissue. (12, 77, 123-125) This elastin fragmentation 
may influence aortic circumferential strain. We hypothesized that vascular strain 
in the ascending aorta, measured by two-dimensional high frequency ultrasound, 
correlated with elastin fragmentation. To test this hypothesis, we compared 
circumferential aortic strains in the FBN1mgR/mgR mice, which naturally develop 
elastin fragmentation, versus sex-matched wild type littermates. 

Aortic diameter measurements are the primary endpoint to quantify TAA 
severity in disease models. Previously, ascending aortic measurements in mice 
were limited to terminal endpoints.(126, 127) This included measurements of 
aortic elasticity and sheer strain performed on ex vivo tissues. (77) Development 
of high frequency ultrasound, in the range of 40-50 MHz, has enabled resolution 
that distinguishes small changes of aortic dimension over sequential 
measurements.(17)  This resolution allows measurements of circumferential 
strain from two-dimensional images captured in vivo and enables investigation of 
the impact of elastin fragmentation on aortic strain. 

This study used two-dimensional, trans-thoracic ascending aortic 
ultrasound measurements of the ascending aorta in wild type mice and their 
FBN1mgR/mgR littermates to measure circumferential strain in vivo. When 
standardized, two-dimensional, trans-thoracic ascending aortic ultrasound 
measurements correlate closely with traditional ex vivo measurements and have 
low interobserver variability. (34) Finally, we determined the correlation of these 
findings to elastin fragmentation. 

2.3 Methods 
 
Mice  

Male and female wild type (WT) C57BL/6J and FBN1mgR/mgR littermates 
were generated at The Jackson Laboratory (Bar Harbor, ME) from stock # 
005704. Heterozygous FBN1mgR/+ males were bred with FBN1mgR/+  females to 
generate mice of desired genotypes. Mice were fed standard laboratory diet and 
water ad libitum and maintained on a 14:10 hour light:dark cycle. Mice were 
transferred to a barrier facility at the University of Kentucky. All protocols were 
approved by the University of Kentucky IACUC. 

 
Non-invasive blood pressure measurements 

Systolic blood pressure was measured by tail cuff using a Kent Scientific 
Coda 8 as described previously.(128) All measurements were performed at the 
beginning of the light cycle. Briefly, mice were restrained and placed on a 
warming platform. Twenty cycles of blood pressure measurements were obtained 
for each mouse. Measurements <50 mmHg and >220 mmHg were excluded. 
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Pulse rates <400 bpm were excluded from calculation. Blood pressures were 
measured on 3 consecutive days at the same time of day. Measurements 
represented means over 3 days.  
 
Ultrasound measurements 

Ultrasound images were acquired in wild type and FBN1mgR/mgR mice at 11 
weeks of age. Mice were anesthetized using isoflurane; dose was titrated 
between 2-3% wt/vol isoflurane with 2 L/min O2 to maintain a heart rate of 400 - 
500 beats per minute as monitored by concurrent three lead electrocardiogram 
(ECG). Ultrasound cine-loops were captured using a Vevo 2100 system with a 
MicroScan MS550 40 MHz transducer (VisualSonics, Toronto, ON). Frame rate 
was at least 300 frames per second and 300 frames were stored per cine-loop. 
Aortic images were acquired from a modified right parasternal long axis view (1 – 
2 ribs caudal to the right parasternal long axis view, Figure 2.1). The probe was 
angled 45 degrees relative to the chest to avoid sternum artefacts. Images were 
standardized to include visualization of two anatomical landmarks: the 
innominate artery and aortic valve (Figure 2.2A). The ascending aorta was 
defined as the region between the sinotubular junction and the innominate artery. 
The largest ascending aortic diameter was measured in both systole and diastole 
of 3 separate cardiac cycles for each mouse. To facilitate measurements, a 
center line was drawn on the acquired image at the midpoint between the aortic 
walls. Aortic diameters (AoD) were measured at the largest diameter 
perpendicular to the center line of the aorta (Figure 2.2B). AoD in systole 
(AoD;s) was measured at physiologic systole: when aorta was maximally dilated. 
AoD in diastole (AoD;d) was measured at the end of diastole: defined as during 
the R wave (Figure 2.2C). Aortic images were analyzed by two independent 
observers that were blinded to the experimental groups. Circumferential strain 
was calculated as previously described using Equation 1.(129) 
0.5 ��𝐴𝐴𝐴𝐴𝐴𝐴;𝑠𝑠

𝐴𝐴𝐴𝐴𝐴𝐴;𝑑𝑑
�
2
− 1� ∗ 100%     (1) 

 
Ex vivo aortic measurements 

Mice were terminated by overdose of ketamine:xylazine at 11 weeks of 
age followed by exsanguination via cardiac puncture and saline perfusion. Aortas 
were dissected away from surrounding tissue and Optimal Cutting Temperature 
Compound (Sakura Finetek, Torrance, CA) was slowly introduced via the left 
ventricle to maintain aortic patency. A black plastic sheet was inserted behind the 
aorta and heart to increase contrast and facilitate visualization of aortic borders. 
Aortas were immediately imaged using a Nikon SMZ800 stereoscope and 
measurements were recorded using NIS-Elements AR 4.51 software (Nikon 
Instruments Inc., Melville, NY). Fluid OCT maintained aortic patency to facilitate 
ex vivo and histologic analyses. Ascending aortic diameters were measured at 
the largest width perpendicular to the vessel. 
 
Quantification of elastin fragmentation 
 Three proximal thoracic aortas per group were selected randomly and at 
least nine tissue sections per aorta were generated using a cryostat. Tissue 
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sections (10 µm) were generated from the aortic root to the aortic arch at 100 µm 
intervals. Three sections corresponding to the region of largest dilation between 
the sinotubular junction and the arch were analyzed. Briefly, elastin was 
visualized by auto-fluorescence by an excitation spectrum of 460 – 500 nm. 
Multiple high magnification images were acquired of each section that were 
subsequently aggregated to a single image of the entire section using 
ImageJ.(130) Fragmentation was defined as the presence of discernable breaks 
of continuous elastin fiber. The number of elastin breaks was counted by two 
independent investigators who were blinded to the sample identification. 
Individual data were represented as the mean number of elastin breaks per aortic 
section calculated by two independent investigators. 
 
Statistics  

Data are reported as mean ± standard error. Statistical analyses were 
performed using SigmaPlot  (Systat Software Inc; San Jose, CA). For two-group 
comparisons, all data passed normality and equal variance tests. Paired 
Student’s t-tests were used to compare systole and diastole from the same 
mouse and unpaired Student’s t-tests were used between groups. P < 0.05 was 
considered statistically significant. Regression was calculated via Pearson’s 
Coefficient of Correlation. Bland-Altman analysis was performed by plotting the 
mean of aortic diameter measured ex vivo and by ultrasound versus the 
difference of aortic diameter measured ex vivo and by ultrasound with negative 
values indicated that ex vivo measurements are smaller than ultrasound 
measurements. (Equation 2) Bias and limits of agreement calculated for Bland-
Altman analyses compared measurements of the same biological variable that 
had been obtained using two different measurement methods.  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷 = 𝐷𝐷𝑒𝑒 𝑣𝑣𝐷𝐷𝑣𝑣𝐴𝐴 𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷 − 𝑢𝑢𝑢𝑢𝐴𝐴𝐷𝐷𝐷𝐷𝑢𝑢𝐴𝐴𝑢𝑢𝐷𝐷𝑑𝑑 𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷 (2) 
 
2.4 Results 
 
Wild type and FBN1mgR/mgR mice exhibited similar body weight and systolic blood 
pressure at 11 weeks of age. 
 Systolic and diastolic blood pressures were measured by tail-cuff at 11 
weeks of age in mice for 3 consecutive days before termination at similar times of 
the day. Blood pressure was not significantly different in wild type and 
FBN1mgR/mgR sex-matched littermates. In addition, body weights were not 
different between wild type and FBN1mgR/mgR sex-matched littermates (Table 2.1). 
During ultrasonography, anesthesia was titrated to maintain a heart rate of 400-
500 beats per minute. Therefore, heart rate was not significantly different 
between groups during ultrasonography (Heart rate wild type = 453 ± 27 bpm; 
FBN1mgR/mgR  = 439 ± 26 bpm; p = 0.86). Heart rates during ultrasound were 
lower than normal due to anesthesia effect. Heart rates were also not different 
between groups during non-invasive blood pressure measurements (Table 2.1). 
Two-dimensional ultrasound measurements of the ascending aorta in 
FBN1mgR/mgR mice. 
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Ultrasound measurements of ascending aortas of 11 week old male and 
female wild type mice and their FBN1mgR/mgR littermates in systole and diastole 
were measured via a standardized protocol described above (Figure 2.3, A – D). 
Ascending aortic diameters measured in systole were significantly greater than 
those measured in diastole (Figure 2.3, E and F) in both male and female mice. 
(Table 2.1) The difference between systole and diastole in wild type mice was 
larger than in FBN1mgR/mgR sex-matched littermates.  
Ascending aortas from FBN1mgR/mgR mice demonstrated less circumferential 
strain during systole. 

Fibrillin-1 hypomorphic mice exhibited significantly less circumferential 
expansion during systole compared to their wild type littermates. Green-
Lagrange strain was calculated using equation 1 from aortic diameters obtained 
from B-mode images of systole and diastole from each individual mouse. 
Increased circumferential strain was observed in WT ascending aortas compared 
to aortas from FBN1mgR/mgR mice (Figure 2.4, A and B). This effect was seen in 
both male and female mice. In male mice: mean percent strain wild type = 18.2 ± 
1.8%; FBN1mgR/mgR  = 5.9 ± 2.4%; p = 0.001. In female mice: mean percent strain 
wild type = 17.4 ± 1.9%; FBN1mgR/mgR  = 5.4 ± 1.8%; p = 0.001. 
Elastin fragmentation correlates inversely with circumferential strain and 
positively with aortic diameter.  

As expected, aortic sections from FBN1mgR/mgR mice displayed significantly 
greater elastin fragmentation compared to their wild type counterparts. (Figure 
2.5, A – C). Elastin fragmentation was also significantly inversely correlated to in 
vivo circumferential strain (R2 = 0.628 p = 0.004) and positively correlated to both 
systolic and diastolic aortic diameters (R2 = 0.397, p =  0.038 in systole and R2 = 
0.515, p =0.013 in diastole) (Figure 2.5, D – F). By fitting a multiple linear 
regression model, we also determined that the FBN1 genotype contributed 
significantly to differences in elastin fragmentation (p = 0.001) and that elastin 
fragmentation did not correlate with sex (p = 0.414). 
 
2.5 Discussion 

 
Previously, our group reported aortic diameters in aneurysm studies without 

specifying the cardiac phase during which these in vivo measurements were 
taken.(17, 70, 131, 132) In this study, we demonstrated that in vivo two 
dimensional ultrasound measurements are accurate and correlate with in situ 
measurements of exposed aortas. (Figure 2.6) Furthermore, we quantified the 
difference between measurements taken in systole and diastole in the thoracic 
aorta. (Figure 2.3) This suggested that two-dimensional trans-thoracic 
ultrasound can be used to calculate circumferential aortic strain, despite the fact 
that the thoracic aorta experiences increased longitudinal displacement due to its 
proximity to the beating heart.(129, 133) Using a mouse model of elastin 
fragmentation, we further investigated whether differences in aortic strain 
between FBN1mgR/mgR mice and their wild type littermates correlated with elastin 
fragmentation. 
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Previously, circumferential strain has been characterized in the AngII-
induced mouse model of aortic aneurysms.(134) However, these analyses have 
not been performed for mouse models of heritable thoracic aortic aneurysms, 
such as FBN1mgR/mgR mice. FBN1mgR/mgR mice were used in this study because of 
the rapid development of pronounced thoracic aneurysms. (12, 51) Mouse 
models with mutations in FBN1 exhibit decreased aortic elastin expression, 
elastin fragmentation, and TAAs.(77) Aortas from wild type mice experienced 
greater circumferential strain during systole compared to aortas from 
FBN1mgR/mgR mice. In this study, systolic blood pressure was acquired using a 
standardized protocol on a system that measures the variance in tail volume in 
conjunction with a pressure cuff.(128) We have demonstrated previously that 
there is good correlation between blood pressure measurements obtained by this 
process compared to those obtained by telemetry.(135) Although absolute blood 
pressure measurements can differ between instruments, there were no 
differences detected in systolic blood pressure between wild type and 
FBN1mgR/mgR mice. There was also no statistical significant difference in heart rate 
measured while conscious or under anesthesia. The correlation between blood 
pressure and circumferential strain was not significant. However, blood pressures 
were not measured during ultrasound. We cannot assume that blood pressure in 
the awake state is equal to blood pressures during ultrasound in the anesthetized 
state. While this suggests that the increase in aortic stiffness is a function of 
intrinsic aortic tissue mechanics, this point merits further study. Indeed, this 
increase in aortic stiffness has been measured in other mouse models of 
spontaneous thoracic and abdominal aortic aneurysm and dissection. In fact, 
circumferential aortic strain in the AngII-induced mouse model of abdominal 
aortic aneurysms is approximately 15% in control mice and 5% in AngII infused 
mice.(134) These strains are consistent when measured by speckle tracking 
technology.(136) Interestingly, AngII-induced thoracic aortic aneurysms also had  
reduced circumferential strain. Circumferential strains in this model decrease 
from 20% before infusion to 10% after AngII infusion.(137)  Data from AngII-
induced  aortic aneurysms are in agreement with our results in a heritable model 
of thoracic aortic aneurysm.  

Strains have been measured ex vivo in the FBN1mgR/mgR mouse model. 
Previously, Lee et al.(77) demonstrated that compressive forces, measured by 
atomic force microscopy acting on aortas from FBN1mgR/mgR mice, produced 
greater deformation under stress.(77) This was attributed to the loss of elasticity 
in FBN1mgR/mgR aortas as evidenced by reduced area fraction of elastic fibers. We 
quantified elastin fragmentation as a proxy of aortic elastic behavior. While 
elastin fragmentation was correlated with reduced circumferential strain in 
response to circumferential tensile forces in vivo, this analysis is limited by the 
assumption that loss of continuous elastin layers leads to loss of elasticity. 
Paradoxically, loss of elasticity can explain both the loss of resistance to 
compressive forces outlined by Lee et al.(77) and the increased resistance to 
circumferential tensile forces shown in this study via the Poisson effect. 
Together, these observations imply that increased elastin fragmentation in 
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FBN1mgR/mgR aortic tissue may be responsible for  reduced aortic strain observed 
during systole in  FBN1mgR/mgR mouse. 

The primary purpose of this study was to determine the relationship 
between circumferential aortic strain measured in vivo and elastin fragmentation. 
We additionally quantified aortic diameter increases during systole compared to 
diastole in both wild type and FBN1mgR/mgR mice. The significant size differences 
indicate that cardiac cycle influences interpretation of murine studies that report 
thoracic aortic diameters. Based on our data, the excursion of the aorta in systole 
can be as great as 0.2 mm in wild type aortas and 0.1 mm in aneurysmal aortas. 
This difference is larger than error attributable to interobserver variability in our 
dataset, where bias between observers was 0.08 ± 0.08 mm in systole and -0.07 
± 0.06 mm in diastole (Figure 2.7). Thus, specifying whether ascending aortic 
diameter were measured in either systole or diastole is especially important in 
studies in order to detect small differences, ensure accuracy, and increase study 
power. Accounting for this phenomenon is important when ascending aortic 
diameter measured across different studies. This discrepancy occurs because 
studies have reported aortic diameters in systole, diastole, both, or omit reporting 
cardiac cycle.(17, 137-140) In lieu of these data, a correction factor of 
approximately 17% in C57BL/6J wild type aortas and 5% in FBN1 mgR/mgR 
aneurysmal aortas may be taken to approximate measurements taken in systole 
compared to diastole.  

This study used mice that spontaneously develop elastin fragmentation to 
demonstrate that reduced circumferential strain is correlated with increased 
elastin fragmentation and that two- dimensional ultrasound data can be used to 
measure circumferential strain in vivo. 
  



 
 

Table 2.1  Characteristics of wild type and FBN1mgR/mgR mice 

Sex Genotype N Age at 
Ultrasound (d) 

Body 
Weight 

(g) 

Systolic 
Blood 

Pressure 
(mmHg) 

Pulse 
Rate 
(bpm) 

Aortic 
Diameter; 
Systole 
(mm) 

Aortic 
Diameter; 
Diastole 

(mm) 

AoD;s 
– 

AoD;d 
(mm) 

Male 
WT 8 74.8 ± 1.0 25.7 ± 

0.5 147 ± 7 506 ± 
23 1.50 ± 0.05 1.29 ± 

0.05*** 
0.21 ± 
0.02 

FBN1mgR/mgR 8 74.8 ± 1.0 26.2 ± 
0.8 139 ± 18 524 ± 

31 2.35 ± 0.13 2.24 ± 
0.15** 

0.11 ± 
0.04* 

Female 
WT 5 74.7 ± 1.3 20.5 ± 

0.7 137 ± 9 547 ± 
58 1.42 ± 0.03 1.23 ± 

0.04*** 
0.21 ± 
0.01 

FBN1mgR/mgR 7 75.2 ± 1.2 20.8 ± 
0.8 125 ± 13 443 ± 

23 1.64 ± 0.07 1.57 ± 
0.08** 

0.07 ± 
0.02* 

 
Male and female FBN1 wild type (WT) and FBN1mgR/mgR mice were aged to 11 weeks. Body weight was measured 

before performing ultrasonography. SBP and pulse rate were measured for 3 consecutive days using a tail cuff-based 
technique. No measurements were significantly different between wild type and FBN1mgR/mgR within sex. Aortic diameters 
in systole and diastole were measured as described above. Male mice: wild type p < 0.001; FBN1mgR/mgR p = 0.004. 
Female mice: wild type p < 0.001; FBN1mgR/mgR  p = 0.009. ***p<0.001, ** p<0.01 AoD;s vs AoD;d. AoD difference was 
calculated by AoD;s – AoD;d. In male mice: AoD difference between wild type and FBN1mgR/mgR, p = 0.03. Female mice, p 
= 0.01. * p<0.05 WT vs FBN1mgR/mgR . Measures are represented as mean ± SEM. p > 0.05 between groups via Student’s 
t-test. 
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Figure 2.1 Probe positions used to measure aortic diameter.  
Aortas from a 12 week old wild type (WT) mouse was imaged in A, C) right 
parasternal long axis and B, D) left parasternal long axis views. Modified long 
axis views were taken from a location that was one to two ribs above the long 
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axis view to optimize visualization of the ascending aorta. Red arrows point to the 
ascending aorta. 
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Figure 2.2 Modified right parasternal long axis view and measurement 
protocol of the ascending aorta. 
A) B-mode images were standardized to include visualization of two distinct 
anatomical landmarks in the same field: the aortic valves and the innominate 
artery. B) Center line was defined as the midpoint between aortic walls (blue 
line). Measurements were taken inner-edge to inner-edge at the largest diameter 
(red line) perpendicular to the center line between the aortic root and innominate 
artery. Yellow lines depicting the aortic vessel wall were included for clarity in this 
diagram, but were not used for measurement purposes. Green bar = 1 mm. C) 
Concurrent ECG monitoring allowed standardization of end-diastole (dashed red 
line one frame within the QRS complex) to facilitate imaging at a specific interval 
of the cardiac phase. Images at systole were taken at physiologic systole. 
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Figure 2.3 Effect of cardiac cycle on ascending aortic diameters. 
A – D) Representative B-mode images of ascending aortas from 11 week old 
wild type (WT) and FBN1mgR/mgR mice. Quantification of aortic diameters in 
systole and diastole of E) male and F) female littermates. There were significant 
differences in aortic diameters between systole and diastole within both sex and 
genotype. Red line = region measured, green bar = 1 mm. Male: n = 8 WT and 8 
FBN1mgR/mgR; Female: n = 5 WT and 7 FBN1mgR/mgR; ***p < 0.001, *p < 0.05 
between groups by paired Student’s t-test. 
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Figure 2.4 Circumferential Green-Lagrange strain of the aorta during 
cardiac cycle in wild type and FBN1mgR/mgR mice. 
Percent expansion was calculated by comparing aortic measurements between 
systole and diastole within a cardiac cycle. A) Male and B) female wild type (WT) 
mice exhibited greater percent expansion during the cardiac cycle compared to 
their FBN1mgR/mgR littermates. Male: n = 8 WT and 8 FBN1mgR/mgR; Female: n = 5 
WT and 7 FBN1mgR/mgR; **p < 0.01 between groups by Student’s t-test. 
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Figure 2.5 Elastin fragmentation of WT and FBN1mgR/mgR correlated with 
ascending aortic diameter. 
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A, B) Representative images of elastin fragmentation from WT and FBN1mgR/mgR 
mice acquired by elastin autofluorescence at the largest ascending aortic 
diameter. Green line = 100 µm. C) Elastin fragmentation quantified D) Correlation 
analysis of elastin fragmentation versus circumferential strain revealed an 
inverse relationship. (R2 = 0.628, p = 0.004). E, F) Correlation plots of elastin 
breaks compared to aortic diameter in systole and diastole. n = 3 male WT, male 
mgR, and female WT. n = 2 female mgR. R2 = 0.397, p = 0.038 in systole and R2 
= 0.515, p =0.013 in diastole. Male and female WT = blue and green circles. 
Male and female FBN1mgR/mgR = yellow and red triangles respectively. 
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Figure 2.6 Ultrasonographic measurements of aortic diameter in diastole 
closely reflected ex vivo aortic diameter measurements. 
Representative images of in situ aortas from A) WT and B) FBN1mgR/mgR mice in 
which measurements were recorded at the largest ascending aortic diameter. 
Red line = region measured, green line = 1 mm. C, D) Bland-Altman analyses 
demonstrated that in situ diameters correlated more closely to ultrasonographic 
measurements in diastole than systole. (Bias in systole = -0.21 mm; in diastole = 
-0.05 mm). Measurements were less reliable at larger aortic diameters as shown 
by the divergence from bias in the Bland-Altman plot in ascending aortic 
diameters greater than 1.8 mm. Center blue line represents bias and outer blue 
lines represents the 95% limits of agreement. Male and female WT = blue and 
green circles. Male and female FBN1mgR/mgR = yellow and red triangles 
respectively. 
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Figure 2.7 Bland-Altman analyses comparing measurements obtained by 
two independent observers that were blinded to the experimental design. 
A, B) Measurements between observers in both systole and diastole were highly 
correlated. Systole R2 = 0.976; Diastole R2 = 0.988; p <0.001 C, D) Bland-Altman 
analyses of ascending aortic B-mode image measurements acquired by two 
independent, observers, who were blinded to the image identification, 
demonstrated negligible bias in systole and diastole. Bias in systole = 0.08 ± 0.08 
mm ; diastole = -0.07 ± 0.06 mm. Limit of agreement 95% CI [-0.70, 0.26] mm in 
systole and [-0.19, 0.04] mm in diastole) n = Aggregate measurements from 28 
mice. The center blue line represents bias and outer blue lines represents the 
95% limits of agreement.  
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CHAPTER 3. INHIBITION OF ANGIOTENSIN II-DEPENDENT AT1A RECEPTOR 
STIMULATION ATTENUATES THORACIC AORTIC DILATATION IN FIBRILLIN-1C1041G/+ 

MICE 
 
This chapter contains information adapted from a provisional patent application 
titled “TREATMENT USING ANGIOTENSINOGEN ANTISENSE 
OLIGONUCLEOTIDE” to Alan Daugherty, Mary Sheppard, Hong Lu, and Jeff 
Chen for describing use of a pharmacologic agent in Marfan syndrome 
associated thoracic aortic aneurysms. 
 
This chapter is also based on a publication in process titled “Inhibition of 
Angiotensin II Dependent AT1a Receptor Stimulation Attenuates Thoracic Aortic 
Pathology in Fibrillin-1C1041G/+ Mice” detailing the central finding that inhibition of 
the AngII- AT1a receptor axis attenuates Marfan syndrome associated thoracic 
aortic aneurysms. 

 
3.1 Synopsis 
 
Objective: 

A cardinal feature of Marfan syndrome is thoracic aortic aneurysm (TAA). 
The contribution of ligand-dependent stimulation of angiotensin II receptor type 
1a (AT1aR) to TAA progression remains controversial because the beneficial 
effects of angiotensin receptor blockers have been ascribed to off-target effects. 
This study used genetic and pharmacologic modes of attenuating angiotensin 
receptor and ligand, respectively, to determine their roles on TAA in mice with 
fibrillin-1 haploinsufficiency (Fbn1C1041G/+). 
 
Approach and Results: 
 TAA in Fbn1C1041G/+ mice were determined in both sexes and found to be 
strikingly sexually dimorphic. Males displayed progressive dilation over 12 
months while ascending aortic dilation in Fbn1C1041G/+ females did not differ 
significantly from wild type mice. To determine the role of AT1aR, Fbn1C1041G/+ 
mice that were either +/+ or -/- for AT1aR were generated. AT1aR deletion 
reduced progressive expansion of ascending aorta and aortic root diameter from 
1 to 12 months of age in males. Medial thickening and elastin fragmentation were 
attenuated. An antisense oligonucleotide against angiotensinogen (AGT-ASO) 
was administered to male Fbn1C1041G/+ mice to determine the effects of 
angiotensin II depletion. AGT-ASO administration, at doses that markedly 
reduced plasma AGT concentrations, attenuated progressive dilation of the 
ascending aorta and aortic root. AGT-ASO also reduced medial thickening and 
elastin fragmentation. 
 
Conclusions: 
 Genetic approaches to delete AT1aR and deplete AngII production 
exerted similar effects in attenuating pathology in the proximal thoracic aorta of 
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male Fbn1C1041G/+ mice. These data are consistent with ligand (AngII) dependent 
stimulation of AT1aR being responsible for aortic disease progression. 

3.2 Introduction 
 
Marfan syndrome is an autosomal dominant genetic disorder associated 

with thoracic aortic aneurysm (TAA) that enhance the risk for aortic rupture due 
to loss of aortic integrity.(141) The disease is caused by mutations in fibrillin-1; a 
protein incorporated into the microfibrils that decorate elastic fibers.(142) To gain 
insight into the mechanisms of the disease, mice have been developed with a 
heterozygous expression of the C1041G mutation of the mouse fibrillin-1 protein, 
which is analogous to the C1039Y mutation in humans.(11) These mice have a 
haploinsufficiency of fibrillin-1 and mimic some pathologies present in patients 
with Marfan syndrome including progressive expansion of the proximal thoracic 
aorta.  

The renin angiotensin system has been invoked as a mediator of TAA in 
patients with Marfan syndrome.(143) Experimental evidence for the role of the 
renin angiotensin system has been based predominantly on the observation that 
losartan inhibits aortic pathology in mice. This was demonstrated initially in 
Fbn1C1041G/+ mice administered losartan starting at the prenatal phase of life.(64) 
Additionally, it has been consistently demonstrated that losartan reduces aortic 
expansion in many other mouse models of TAA. (74, 81, 83, 86, 119, 120) 
However, losartan’s many well-characterized effects independent of AT1 
receptor antagonism potentially hinder its use as a pharmacologic tool to 
specifically study AT1 receptors.(144) Indeed, the benefit of losartan in inhibiting 
aortic root dilation in Fbn1C1041G/+ mice has been attributed to effects such as 
TGF-β antagonism or nitric oxide synthase stimulation.(64, 86) To overcome the 
limitations of pharmacological approaches, there is a critical need to determine 
the role of AT1aR using genetic deletion to specifically ascribe a function of AT1 
receptors in general and AT1aR specifically. 

Additionally, the mode by which AT1 receptors become activated in 
Marfan syndrome is uncertain. While activation of AT1 receptors is commonly 
due to engagement of the ligand, angiotensin II (AngII), the pathway can also be 
activated by conformational changes of the protein during cell stretch of 
myocytes and vascular smooth muscle cells.(145-147) This stretch activation of 
AT1 receptor is inhibited by pharmacological antagonists of the receptor. Based 
on studies in angiotensinogen deficient mice, dilated cardiomyopathy in the 
fibrillin-1 hypomorphic model of Marfan syndrome has been attributed to this 
AngII-independent activation of AT1aR.(92) The relative role of receptor 
activation of ligand versus stretch has not been evaluated in vascular disease. 

The aim of the present study was to define the contribution of ligand-
dependent activation of AT1aR to the progressive expansion of the proximal 
thoracic aorta in Fbn1C1041G/+ mice. Aortic diameters were measured for a 1 year 
interval using a standardized ultrasound protocol.(34, 35) In accord with current 
guidelines, the study was performed in both sexes of these mice. These studies 
demonstrated a strong sexual dimorphism with greater expansion in Fbn1C1041G/+ 
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males and minimal progressive expansion in Fbn1C1041G/+ females. Surprisingly, 
this disparity has not been reported previously. The role of AT1aR was 
determined subsequently using male mice with global AT1aR deletion. The role 
of the ligand was determined using an angiotensinogen antisense oligonucleotide 
(AGT-ASO) that depleted the unique precursor of AngII. This study demonstrated 
the importance of ligand-dependent activation of AT1aR to progression of aortic 
pathology. 

3.3 Methods 
 
Mice 

Studies were performed in accordance with recommendations for design 
and reporting of animal aortopathy studies.(32, 33) Studies were performed using 
littermate controls. Mice and genealogy were tracked with Mosaic Vivarium 
Laboratory Animal Management Software (Virtual Chemistry). Male and female 
AT1aR deficient (AT1aR-/-) (stock #002682) and Fbn1C1041G/+ (stock #012885) 
mice were obtained from The Jackson Laboratory. Male AT1aR heterozygous 
(AT1aR+/-) x Fbn1C1041G/+ were bred with female AT1aR+/- x fibrillin-1 wild type 
(Fbn1+/+) mice to generate four experimental groups per sex: male and female 
AT1aR wild type (AT1aR+/+) x Fbn1+/+, AT1aR-/- x Fbn1+/+, AT1aR+/+ x 
Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. Littermates were separated by 
sex and genotypes and were randomized when housing mice after weaning. For 
AGT ASO experiments, 2-month-old male Fbn1C1041G/+ mice were procured from 
The Jackson Laboratory and randomized into experimental groups using a 
random number generator. Mice were checked daily for health, and necropsy 
was performed to adjudicate cause of death. Mice were housed up to 5 per cage 
and maintained on a 14:10 hour light:dark cycle. Mice were fed Teklad Irradiated 
Global 18% Protein Rodent Diet # 2918 ad libitum and allowed ad libitum access 
to water via a Lixit system. Bedding was provided by P.J. Murphy (Coarse 
SaniChip) and changed weekly during the study. Cotton pads were provided as 
enrichment. The room temperature was maintained at 21°C and room humidity 
was maintained at 50%. All protocols were approved by University of Kentucky 
IACUC. 

 
Genotyping 
 Mice were genotyped twice using tail tissue. Group allocation was based 
on genotyping performed after weaning at postnatal day 28 and again after study 
termination to verify genotypes. AT1aR deletion was assayed using forward 
primer 5'-AAATGGCCCTTAACTCTTCTACTG-3' and reverse primer 5'-
ATTAGGAAAGGGAACA GGAAGC-3' covering a neo cassette that disrupts 
AT1aR spanning bps 110-635. The neo cassette removed approximately 0.5 kb 
and inserted approximately 1 kb of neo gene. AT1aR+/+ generated a 631 bp 
product. AT1aR-/- generated a ~1.1 kbp product. Fbn1C1041G/+ was assayed using 
forward primer 5'-CTCATCATTTTTGGCCAGTTG-3' and reverse primer 5'-
GCACTTGATGCACATTCACA-3' covering a single loxP intronic sequence within 
intron 24 which should not exist in wild type mice. The protocol used was as 
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described by The Jackson Laboratory. Fbn1+/+ generates a 164 bp product. 
Fbn1C1041G/+ generates a 212 bp product. Post-termination validation genotyping 
was performed by Transnetyx. 

 
Antisense Oligonucleotides 

 Scrambled control ASO (#549149) and AGT ASO (#109547) were 
provided by Ionis Pharmaceuticals. Lyophilized ASOs were diluted in PBS as 
recommended by the manufacturer. Mice were randomized to study group using 
a random number generator. Two-month-old male Fbn1C1041G/+ mice were 
administered control ASO or AGT ASO (80 mg/kg) subcutaneously at day 1 and 
3 of study. Mice were maintained on subcutaneous control ASO or AGT ASO (40 
mg/kg) every 7 days for the remainder of the study. 

 
Ultrasound Measurements 

Ultrasound was performed by standardized protocols that have been as 
described previously.(35, 148) Briefly, mice were anesthetized using inhaled 
isoflurane (2-3% vol/vol) and maintained at a heart rate of 450-550 beats per 
minute during image capture to reduce anesthesia exposure and maintain 
consistent heart rate between animals (Somnosuite, Kent Scientific). The order 
by which mice were subject to ultrasound was randomized. Ultrasound images 
were captured using a Vevo 3100 system with a 40 MHz transducer 
(Visualsonics). Images captured were standardized according to two anatomical 
landmarks: the innominate artery branch point and aortic valves. The largest 
luminal ascending aortic diameter between the sinotubular junction and the 
innominate artery were measured in end-diastole over three cardiac cycles by 
two independent observers. 

 
Measurement of in situ Aortic Diameters 

Mice were terminated by overdose of ketamine:xylazine followed by 
cardiac puncture and saline perfusion. The order in which mice were taken down 
was randomized. Aortas were dissected away from surrounding tissue and 
Optimal Cutting Temperature Compound (Sakura Finetek) was introduced into 
the left ventricle to maintain aortic patency. A black plastic sheet was inserted 
beneath the aorta and heart to increase contrast and facilitate visualization of 
aortic borders. Aortas were imaged using a Nikon SMZ800 stereoscope and 
measurements were recorded using NIS-Elements AR 4.51 software (Nikon 
Instruments Inc.). Ascending aortic diameters were measured at the largest width 
perpendicular to the vessel. 

 
Histology 

Mice were ranked according to their ascending aortic diameter by 
ultrasound, and the median five per group were selected for histology. Tissue 
sections (10 µm) were acquired from the aortic root to the aortic arch at 100 µm 
intervals using a cryostat. The section corresponding to a region of maximal 
dilation between the sinotubular junction and the arch was analyzed. Elastin 
fragmentation was visualized by Verhoeff elastin staining under 20x 
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magnification and images from three high powered fields per section were 
recorded for analysis. Individual data were represented as the mean of three high 
power fields. Fragmentation was defined as the presence of discernable breaks 
of continuous elastic lamina. Medial thickness was measured at the greatest 
thickness from inner to external elastic laminae in 3 images using NIS-Elements 
AR software. Measurements were verified by an independent investigator who 
was blinded to sample identification.  

 
AGT Western Blotting 

Reducing buffer (Bio-Rad 161-0737 and Sigma M7522) and plasma (0.3 
μL) from mice administered control or AGT ASO were heated to 95°C for 5 
minutes. Samples were fractionated on an SDS-PAGE gel (10% wt/vol; Bio-Rad 
456-8033). Proteins were transferred to a PVDF membrane via Trans-blot 
system (Bio-Rad 170-4256). Total proteins were detected by Ponceau S. 
Membranes were blocked by milk (5% wt/vol; Bio-Rad 170-6404) in TBS-T (0.1% 
wt/vol). Membranes were then incubated with antibodies against total AGT (0.1 
μg/mL; IBL 28101) for 1 hour at room temperature then with HRP-conjugated 
goat-antirabbit IgG (0.2 μg/mL; Vector Pi-1000). Membranes were developed 
with Clarity Max ECL (Bio-Rad 1705064) on a ChemDoc MP system. Blots were 
quantified using Bio-Rad CFX software. 

 
Statistics 
All animals that met pre-specified inclusion criteria, and were not excluded due to 
death by humane endpoint unrelated to aortic disease (fighting, infection), had 
cause of death adjudicated by necropsy. Statistical analyses were performed 
using SigmaPlot 14.0. Equal variance and normality of data determined whether 
non-linear, logarithmic transformation was performed and whether parametric or 
non-parametric tests were used. Two-way ANOVA or Student’s t-test was 
performed for parametric comparisons; Holm-Sidak was used for post-hoc tests. 
Kruskal-Wallis or Rank Sum was performed for non-parametric comparisons with 
Dunn’s method for post hoc tests. Data are represented as individual data points, 
mean ± SEM, or as box and whisker plots representing median and interquartile 
range where applicable. 
 
3.4 Results 
 
Progression of Aortic Dimensions was Sexually Dimorphic in Fbn1C1041G/+ Mice  
 In initial studies, the progression of aortic diameters over a 12-month 
interval was determined in both male and female Fbn1+/+ and Fbn1C1041G/+ mice. 
Because TAA in Fbn1C1041G/+ mice has variable pathology within the proximal 
thoracic aorta, several parameters were measured (Figure 3.1). This included 
the ascending aortic diameter, aortic root diameter, and ascending aortic length. 
In Fbn1+/+ mice, there was no statistical difference in the ascending aorta 
diameter, aortic root diameter, or ascending aortic length between female and 
male at any interval up to 12 months of age (Figure 3.2A, B, C). At one month of 
age, aortic root diameters and ascending aortic lengths were increased in both 
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male and female Fbn1C1041G/+ mice compared to Fbn1+/+ mice. However, only 
male Fbn1C1041G/+ mice exhibited statistically significant ascending aortic dilation 
compared to sex-matched littermates at one month of age. Despite differences at 
1 month of age in female mice, the subsequent increase in diameter of 
ascending aorta and aortic root, and length of the ascending region were not 
statistically different between Fbn1+/+ and Fbn1C1041G/+ mice (Figure 3.2D, E, F). 
In contrast, male Fbn1C1041G/+ mice had augmented increases in diameters of 
ascending aorta and aortic root and ascending aortic length, compared to male 
Fbn1+/+ littermates over the course of 12 months. Since female Fbn1C1041G/+ mice 
had no significant differences in the progression of aortic dimensions compared 
to their wild type littermates, subsequent experiments used predominantly male 
mice. 
 
AT1aR Deletion Attenuated Aortic Pathology in Male Fbn1C1041G/+ Mice 
 To study the effects of AT1aR on aortic dilation in Fbn1C1041G/+ mice, 
Fbn1C1041G/+ mice that were either AT1aR+/+ or AT1aR-/- were generated. 
Fbn1C1041G/+ mice were also compared against Fbn1+/+ mice that were also either 
AT1aR+/+ or AT1aR-/-. Aortic dimensions were measured using ultrasound images 
acquired from a right parasternal view at diastole (Figure 3.3A). Images were 
acquired from every mouse at the stated intervals up to 12 months of age, with 
no deaths of any cause occurring during the study.  

Male Fbn1+/+ mice had modest increases in diameters of the ascending 
aorta (Figure 3.3B), aortic root (Figure 3.3C), and lengths of the ascending aorta 
(Figure 3.3D) during the course of the 12-month study. These increases were 
not significantly different from increases seen in Fbn1+/+ mice that were also 
AT1aR-/-. These findings based on the ultrasound measurements were confirmed 
at the 12-month interval by direct measurements on in situ aortas (Figure 3.3E, 
F).  

At 1 month of age, male Fbn1C1041G/+ mice had increased diameters of 
ascending aorta and aortic root and lengths of ascending aorta compared to 
Fbn1+/+ mice. At this early age, deletion of AT1aR had no effect on aortic 
dimensions (Figure 3.4). In Fbn1C1041G/+ mice that were AT1aR+/+, there was a 
progressive increase in all 3 aorta dimensions acquired by ultrasound. In 
contrast, deletion of AT1aR markedly attenuated the progressive expansion of 
these dimensions to rates that were not statistically different from those in 
Fbn1+/+ mice (Figure 3.5). As with Fbn1+/+ mice, direct aortic measurements in 
situ at 12 months of age confirmed the data acquired by ultrasound. Consistent 
with previously published research,(17) body weight and systolic blood pressure 
were not correlated with ascending aortic dimensions in mice (Figure 3.6). 

Female Fbn1+/+ and Fbn1C1041G/+ mice that were with either AT1aR +/+ or -/- 
were also generated and aortic dimensions measured up to 12 months of age. 
As noted above, beyond the initial differences at 1 month of age, progressive 
changes in aortic dimensions were not different between Fbn1+/+ and 
Fbn1C1041G/+ female mice. The deletion of AT1aR had no effect on the age-
related changes in either group (Figure 3.7, 3.8). 
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 To determine if AT1aR deletion impacted the structure of the aortic media, 
histological characteristics were determined in aortic tissues acquired at 12 
months of age. Since the most dramatic differences in changes of dimensions 
described above were in the ascending aorta, this region was selected for tissue 
characterization using our validated and reproducible method (Figure 3.9). 
Ascending aortic tissues from Fbn1+/+ mice had elastic fibers with minimal 
fragmentation (Figure 3.10A). Neither the extent of fragmentation nor medial 
thickness were altered by the absence of AT1aR in Fbn1+/+ mice (Figure 3.10B, 
C). In contrast, Fbn1C1041G/+ x AT1aR+/+ mice had extensive fragmentation of 
elastic fibers and marked medial thickening. Deletion of AT1aR in these mice 
significantly reduced elastin fragmentation and medial thickening.  
 
Depletion of Plasma AGT Concentrations by AGT ASO Attenuated Aortic 
Pathology in Male Fbn1C1041G/+ Mice  
 We have demonstrated previously that administration of AGT ASO 
markedly reduces plasma concentration of AGT and attenuates AngII responses 
in mice.(68, 149) Using ASO against the same target as previous publications, 
male Fbn1C1041G/+ mice received a loading dose (80 mg/kg) of either AGT or 
control ASO on day 1 and day 4 of the study. Starting on day 7, mice received a 
maintenance dose (40 mg/kg) every 7 days for 6 months. (Figure 3.11A). Mice 
tolerated the ASO well and displayed minimal hepatic and renal toxicity after 
administration of loading doses (Figure 3.12) AGT ASO effectively depleted AGT 
in plasma (Figure 3.11B).  

Aortic dimensions were acquired starting at 2 months of age, and every 
month for a further 6 months using the same process described above (Figure 
3.11C) with in situ aortic measurements at termination confirming the ultrasound 
measurement. (Figure 3.11D). AGT depletion achieved by the ASO 
administration led to statistically significant reductions in expansion of diameters 
of ascending aorta (Figure 3.11E) and aortic root (Figure 3.11F) and length of 
ascending aorta (Figure 3.11G) in male Fbn1C1041G/+ mice. 

To determine whether AGT ASO impacted aortic medial structure, 
histology was performed on ascending aortic tissue. Consistent with our previous 
observation, we detected aortic medial remodeling in 8-month-old male 
Fbn1C1041G/+ mice administered control ASO (Figure 3.13A). Compared to male 
Fbn1C1041G/+ mice administered control ASO, male Fbn1C1041G/+ mice 
administered AGT ASO exhibited less elastin fragmentation and medial 
thickening (Figure 3.13B, C). 
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3.5 Discussion 

 
Using pharmacological tools to manipulate the renin angiotensin system, 

there have been consistent demonstrations that losartan attenuates aortic 
pathology in mice with fibrillin-1 manipulations.(64, 74, 76, 83, 86, 150, 151) 
However, it has been proposed that losartan may exert these beneficial actions 
independent of AT1 receptor antagonism.(74, 83, 86) Additionally, it has been 
suggested that AngII may not be responsible for cardiovascular pathology in 
mice with genetically manipulated fibrillin-1.(92) However, the present study 
demonstrates that both genetic deletion of AT1aR and techniques to reduce 
AngII availability led to reduced aortic pathology in Fbn1C1041G/+ mice. These 
findings are consistent with ligand activation of AT1aR being the basis for aortic 
expansion in fibrillin-1 haploinsufficient mice. 

The sequential measurement of aortic dimensions over a protracted 
interval in multiple groups required development of a standardized ultrasound 
protocol for image acquisition. We have noted previously the variance imparted 
by the differences acquiring dimension at systole or diastole.(35) Given that this 
excursion can be as much as 0.2 mm, lack of consistency in acquiring data could 
have a profound effect on data interpretation. The approach used in this study 
also consistently imaged the aorta from the right parasternal view.(34) While this 
view is optimal for determining dimensions of the ascending aorta, we 
acknowledge that this reduces accuracy of aortic root measurements. In the 
present study, there was strenuous adherence to a standardized protocol. In 
addition, the measurements acquired from ultrasound images were validated at 
termination by direct measurement of aorta in situ. This degree of measurement 
validation allows us to not only produce reliable data but also reduces the 
variability between sequential measurements.  

Since we were not aware of any previous study that defined the effects of 
sex on the aortic pathology in Fbn1C1041G/+ mice, the initial studies used both 
males and females. The present study demonstrates a striking effect of sex on 
the aorta in these mice, with the female Fbn1C1041G/+ mice exhibiting minimal 
progression of thoracic aortic expansion compared to sex-matched Fbn1+/+ 
littermates. In mice with genetic manipulations of Fbn1, there had been only one 
study indicating that sexual dimorphism existed in the Fbn1GT8/+ mouse model of 
Marfan syndrome.(56) However, sexual dimorphism of the Fbn1GT8/+ mouse was 
only defined in the context of pregnancy. In addition to revealing that female 
Fbn1C1041G/+ mice resist aortic dilation, we outlined the consequences of this 
sexual dimorphism on the role of AT1aR deletion. While the mechanism of this 
sexual dimorphism is beyond the scope of the present study, it illustrates the 
need for studies to report data on studies in these mice in a sex-specific manner.  

Deletion of AT1aR markedly reduced progression of aortic pathology in 
male Fbn1C1041G/+ mice. AT1 receptors in mice have two isoforms, AT1aR and 
AT1bR, that resulted from chromosomal duplication. While there is strong 
sequence homology between the two isoforms, they have different tissue 
distribution and different signaling mechanisms. Absence of AT1bR has modest 



48 
 

effects in vivo, although it is responsible for AngII induced contractions of the 
infrarenal mouse aorta.(70, 152) Absence of AT1bR has no effect on AngII-
induced aortopathies.(70) AT1aR deficient mice were initially demonstrated to 
have lower blood pressure.(153) However, in agreement with the present study, 
there has also been several publications showing no difference in blood pressure 
between AT1aR+/+ and -/- mice.(154) While the present study was ongoing, the 
genetic deletion of AT1aR was reported in Fbn1 hypomorphic mice. While global 
deletion of AT1aR in Fbn1 hypomorphic mice had no significant effect on the 
survival, there was decreased aortic expansion in mice that survived to 90 
days.(75) This emphasizes the need for further study on the divergent roles of 
the renin angiotensin system in aneurysm versus rupture/dissection. The early 
acquisition of ultrasound data in this study also illustrated that there are changes 
in aortic dimension in the early postnatal interval. Despite the dramatic reduction 
of progression of aortic dimensions in AT1aR-/- mice following this postnatal 
interval, the absence of AT1aR failed to affect early changes. This is consistent 
with temporal-dependent mechanisms of the disease as have been 
demonstrated previously in Fbn1 hypomorphic mice.(75)  

Others have noted that AT1aR deficiency had no effect on expansion of 
the aortic root at 3 and 6 months of age in Fbn1C1041G/+ mice, whereas losartan 
had a divergent effect and was able to decrease aortic root expansion in these 
mice.(86) The beneficial effects of losartan were attributed to preservation of 
endothelial function in an AT1aR independent manner through an alternative 
VEGFR2/eNOS pathway. The basis for the disparity relative to the present study 
are not clear. Comparisons are hampered by the paucity of data on the protocol 
for ultrasound acquisition and on the sex of the mice in each group. Other studies 
suggested that losartan’s protective effect may be due to tumor growth factor β 
inhibition or AngII receptor type 2 hyperstimulation.(64, 83) However, our data 
indicated that blockade of the AT1aR attenuates Marfan syndrome associated 
TAA. While the pleotropic effects of losartan may contribute to attenuating 
thoracic aortopathies, the present study is consistent with the postulate that its 
benefit is due to inhibition of AT1aR activation. 

We used an ASO to decrease the synthesis of the unique precursor of all 
angiotensin peptides to determine whether AT1aR stimulation in aortopathies 
required AngII as a ligand. This approach is advantageous over the more common 
mode of reducing AngII production by inhibiting angiotensin-converting enzyme, 
which regulates other pathways including the kinin-kallikrein system. Additionally, 
the protracted half-life of ASO leads to persistent inhibition of AGT synthesis and 
profound reductions in plasma AGT concentrations. Use of this pharmacologic 
modality also avoids adverse consequences of genetic deletion of the renin 
angiotensin system components. Previous genetic approaches have included the 
use of mice with global deficiencies of AGT. However, these mice have several 
major developmental abnormalities include poor growth and cardiomyopathy.(155) 
Inhibition of AGT synthesis by an ASO reduces plasma concentrations by 
approximately 90% in the postnatal phase with no observable toxicity as 
demonstrated in the present study and other reports.(68, 156) Therefore, the use 



49 
 

of ASO to deplete AGT demonstrated the need for the presence of angiotensin 
ligands to augment aortic pathology in Fbn1C1041G/+ mice. 

In humans, randomized control trials of angiotensin receptor blockers have 
yielded mixed results in Marfan syndrome associated TAA, in contrast to the 
consistent results that have been generated using mouse models of the 
disease.(64, 74, 76, 83, 86, 150, 151) Most of the mouse and human studies have 
been performed using losartan, which is characterized by a relatively short half-life 
and surmountable antagonism. The deficiencies of this drug were likely to have 
been ameliorated in mouse studies by consistent delivery, via osmotic pumps and 
diet, leading to a persistent inhibition. AT1 receptor antagonists with enhanced 
pharmacological profiles, such as irbesartan and candesartan, would be preferable 
to test the role of AT1 receptor inhibition in humans. Indeed, it has been 
demonstrated recently that irbesartan significantly attenuated aortic root 
expansion in individuals with Marfan syndrome.(63) Conversely, ASO affords 
chronic and persistent inhibition of AGT synthesis to effect long term depletion of 
angiotensin ligands. These durable effects of ASO enables inhibition of AGT 
synthesis to be tested as a possible approach to reduce thoracic aortic dilation in 
Marfan syndrome. 
Our study provided strong evidence that both AT1aR deletion and AGT depletion 
resulted in significant attenuation of aortic dilation and lengthening. These data are 
consistent with AngII signaling through AT1aR being necessary for TAA 
progression in male Fbn1C1041G/+ mice and that profound and persistent depletion 
of either component is sufficient to attenuate TAA. This study enables future 
studies to focus on cell types(s) expressing AT1aR that are stimulated to promote 
the disease. These studies would give great insight into the role of AT1aR on key 
spatial and temporal events during TAA development but would require generation 
of cell-specific and lineage traced AT1aR knockouts in a Marfan mouse model. 
Collectively, these data indicate that renin angiotensin system blockade holds 
promise in treating Marfan syndrome associated TAA when durable inhibition is 
achieved. Durable inhibition would encompass use of angiotensin receptor 
blockers with long half-lives and unsurmountable modes of inhibition as well as 
ASO based approaches. 
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Figure 3.1 Regional heterogeneity of TAA in Fbn1C1041G/+ mice 
TAAs in one year old Fbn1C1041G/+ mice have a variable phenotype of pathology 
location. Examples include aneurysmal presence in; A) ascending aorta only, B) 
aortic root only, or C) both segments. Green bar = 1 mm. 
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Figure 3.2 TAA in Fbn1C1041G/+ mice is sexually dimorphic 
Sequential ultrasound measurements of the A) ascending aorta, B) aortic root, 
and C) aortic length in diastole from 1 month to 12 months of age of male and 
female Fbn1+/+ and Fbn1C1041G/+ mice. Data represented as change in 
dimensions over baseline at 1 month of age of the D) ascending aorta, E) aortic 
root, and F) aortic length. * p<0.05 of male Fbn1C1041G/+ versus female 
Fbn1C1041G/+ mice; n = 9-15/group. 
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Figure 3.3 AT1aR deletion attenuated ascending aortic dilation in male 
Fbn1C1041G/+ mice 
A) Representative ultrasound images of the thoracic aorta in male AT1aR+/+ x 
Fbn1+/+, AT1aR-/- x Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ 
mice. Green bar = 1 mm. Sequential ultrasound measurements of the B) 
ascending aorta C) aortic root and D) aortic length. * p<0.05 of AT1aR+/+ x 
Fbn1+/+ versus AT1aR+/+ x Fbn1C1041G/+; † p<0.05 of AT1aR+/+ x Fbn1C1041G/+ 
versus AT1aR-/- x Fbn1C1041G/+; n = 11-15/group. E) Representative in situ images 
of the thoracic aorta. F) Measurement of in situ aortic dimensions taken at the 
maximal aortic diameter. † p<0.01; ‡ p<0.001; n = 10-15 / group.  
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Figure 3.4 Aortic dimensions at 1 month of age and aortic growth in male 
mice 
Ultrasound measurements of the A) ascending aorta, C) aortic root, and E) aortic 
length in diastole at 1 month of age from male AT1aR+/+ x Fbn1+/+, AT1aR-/- x 
Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. Mean 
monthly ascending B) ascending aorta growth, D) aortic root growth, and F) 
aortic length growth from 1 month to 12 months in male AT1aR+/+ x Fbn1+/+, 
AT1aR-/- x Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. * 
p<0.05, † p<0.01, ‡ p<0.001; n = 11-15/group. 
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Figure 3.5 Growth from 1 month of age in male AT1aR deficient, Fbn1C1041G/+ 
mice 
Data are represented as change in dimensions over the measurement at 1 
month of age of the A) ascending aorta, B) aortic root, and C) aortic length. * 
p<0.05 of AT1aR+/+ x Fbn1C1041G/+ versus AT1aR-/- x Fbn1C1041G/+; n = 11-
11/group. 
  



55 
 

 
Figure 3.6 Confounding factors did not contribute to TAA phenotype in 
male Fbn1C1041G/+ mice 
 
A) Systolic blood pressure measured by a tail cuff based technique in 12 month 
old male mice. * p<0.05, † p<0.01, ‡ p<0.001; n = 5-10/group. B) Sequential 
body weight of male mice. C) Correlation between systolic blood pressure and 
aortic diameters at 12 months of age between male mice. n = 5-10/group. Black 
= AT1aR+/+ x Fbn1+/+, green = AT1aR-/- x Fbn1+/+, red = AT1aR+/+ x Fbn1C1041G/+, 
and yellow = AT1aR-/- x Fbn1C1041G/+. 
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Figure 3.7 AT1aR deletion had no effect on aortic measurements in female 
Fbn1C1041G/+ mice 
Sequential ultrasound measurements of the; A) ascending aorta, B) aortic root, 
and C) aortic length in diastole from 1 month to 12 months of age of female 
AT1aR+/+ x Fbn1+/+, AT1aR-/- x Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x 
Fbn1C1041G/+ mice. * p<0.05 of AT1aR+/+ x Fbn1+/+ versus AT1aR+/+ x 
Fbn1C1041G/+; † p<0.05 of AT1aR+/+ x Fbn1C1041G/+ versus AT1aR-/- x Fbn1C1041G/+; 
n = 7-11/group. 
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Figure 3.8 Aortic dimensions at 1 month of age and aortic growth in female 
mice 
  
Ultrasound measurements of the; A) ascending aorta, C) aortic root, and E) 
aortic length in diastole at 1 month of age from female AT1aR+/+ x Fbn1+/+, 
AT1aR-/- x Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. 
Mean monthly ascending B) ascending aorta growth, D) aortic root growth, and 
F) aortic length growth from 1 month to 12 months in female AT1aR+/+ x Fbn1+/+, 
AT1aR-/- x Fbn1+/+, AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. * 
p<0.05, † p<0.01, ‡ p<0.001; n = 7-11/group. 
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Figure 3.9 Generation of ascending aortic sections to measure elastin 
fragmentation and medial thickening 
A) Generation of serial sections of ascending aortas used for histology. (blue 
lines) Three high powered fields / section were imaged and quantified per 
biological replicate. (red boxes) B) Quantification of elastin fragmentation 
(triangle) and medial thickening (inverted double arrow) by two independent 
observers demonstrated good agreement in both measures via Bland-Altman 
analysis. C) Low magnification images of aortic sections stained with Verhoeff 
elastin stain in 12 month old male AT1aR+/+ x Fbn1+/+, AT1aR-/- x Fbn1+/+, 
AT1aR+/+ x Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. D) Low magnification 
images of aortic sections stained with Verhoeff elastin stain in 8 month old male 
Fbn1C1041G/+ mice after 6 months of control ASO or AGT ASO. 
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Figure 3.10 AT1aR deletion attenuated medial remodeling in male 
Fbn1C1041G/+ mice 
A) Representative images of Verhoeff’s elastin staining in ascending aortic 
sections from male AT1aR+/+ x Fbn1+/+, AT1aR-/- x Fbn1+/+, AT1aR+/+ x 
Fbn1C1041G/+, and AT1aR-/- x Fbn1C1041G/+ mice. Green bar = 100 μm. B) Number 
of breaks per high powered field detected in aortic sections. C) Medial thickness 
as measured by the distance between the inner elastic lamina and external 
elastic lamina in aortic sections. * p<0.05, ‡ p<0.001; n = 5/group. 
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Figure 3.11 AGT ASOs depleted AGT and attenuated TAA in male 
Fbn1C1041G/+ mice 
A) Study design and administration schedule of ASOs in male Fbn1C1041G/+ mice. 
A loading dose of control ASO or AGT ASO (80 mg/kg) was administered day 1 
and 4 of study. Maintenance doses of control ASO or AGT ASO (40 mg/kg) was 
administered every 7 days. B) Western blot of plasma AGT and total plasma 
protein in 8 month old male Fbn1C1041G/+ mice administered either control ASO or 
AGT ASOs. Blot represents one of two experiments. ‡ p<0.001; n = 6/group. 
Representative C) ultrasound and D) in situ images of aortas from 8 month old 
Fbn1C1041G/+ mice administered either control ASO or AGT ASO. Green bar = 1 
mm. Sequential ultrasound measurements of the E) ascending aorta, F) aortic 
root, and G) aortic length in diastole from 2 months to 8 months of age in male 
Fbn1C1041G/+ mice dosed with either control ASO or AGT ASO. * p<0.05, † 
p<0.01, ‡ p<0.001; n = 8-10/group.  
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Figure 3.12 AGT ASOs have low toxicity and effectively reduce circulating 
AGT 
Plasma concentrations of; A) albumin, B) alanine transaminase (AST), C) 
aspartate aminotransferase (ALT), D) total bilirubin E) blood urea nitrogen (BUN) 
in mice administered either PBS, AGT ASO (40 mg/kg), or AGT ASO (80 mg/kg) 
at days 1 and 4. Plasma was taken at days 3 and 7. n = 4/group. F) Plasma AGT 
concentrations at days 3 and 7 detected by Western blotting after AGT ASO was 
administered at days 1 and 4. 
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Figure 3.13 AGT ASOs attenuated medial remodeling in male Fbn1C1041G/+ 
mice 
A) Representative images of Verhoeff’s elastin staining in aortic sections from 
male Fbn1C1041G/+ mice administered either control ASO or AGT ASO for 6 
months. Green bar = 100 μm. B) Number of breaks per high powered field 
detected in aortic sections. C) Medial thickness as measured by the distance 
between the inner elastic lamina and external elastic lamina in aortic sections. † 
p<0.01, ‡ p<0.001; n = 5/group.  
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CHAPTER 4. ENDOGENOUS SEX HORMONE REMOVAL ATTENUATES ACQUIRED 

THORACIC AORTIC ANEURYSMS 
 

This chapter is based on a publication in preparation titled “Endogenous Sex 
Hormone Removal Attenuates Acquired Thoracic Aortic Aneurysms” detailing 
findings that endogenous sex hormone removal attenuates spontaneous but not 
syndromic thoracic aortic aneurysms. 

 
4.1 Synopsis 
 
Objective:  

Thoracic aortic aneurysm (TAA) of various etiologies have been shown to 
be sexually dimorphic. In general, sexually mature females have higher levels of 
circulating estrogens and males have higher levels of circulating androgens. 
These endogenous sex hormones may remodel tissue. Here, we investigate the 
impact of removing endogenous sex hormones on TAA development in the 
angiotensin II (AngII)-infused mouse model of acquired TAA and the fibrillin-1 
hypomorphic (FBN1mgR/mgR) mouse model of syndromic TAA. 
 
Approach and Results:  

In situ aortic diameter measurements demonstrated that both male AngII-
infused and FBN1mgR/mgR mice exhibited increased aortic dimensions compared 
to their female counterparts. Ovariectomy in female and orchiectomy in male 
mice was employed to remove endogenous estrogen and testosterone, 
respectively. In AngII-infused females, ovariectomy exacerbated ascending aortic 
dilation. In AngII infused males, orchiectomy abrogated aortic root and ascending 
aortic dilation. Gonadectomy failed to modulate established TAA in FBN1mgR/mgR 
mice. AngII-induced ascending aortic elastin fragmentation was exacerbated in 
ovariectomized females and attenuated in orchiectomized males. There was no 
effect of gonadectomy on FBN1mgR/mgR mice with established TAA. Furthermore, 
expression of α-smooth muscle actin in the aortic media were altered by removal 
of endogenous sex hormones. 
 
Conclusions: 

AngII-induced TAA in mice was exacerbated by ovariectomy of female 
mice and ameliorated by orchiectomy of male mice. This effect was not seen in 
female or male mice with established TAA. These data indicate that endogenous 
estrogens are protective against and endogenous androgens are detrimental to 
the development of TAA but may have limited effect on reversing established, 
syndromic TAA. 
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4.2 Introduction 
 

Previous observational studies in patients with Marfan syndrome 
demonstrated that males displayed greater aortic dilation and were more likely to 
require aortic repair compared to their female counterparts.(157) However, 
observational studies in human TAAs reveal that female patients have worse 
outcomes associated with increased aortic stiffness. (158) It is unclear how 
sexual dimorphism in TAA occurs and why females resist TAA while males are 
susceptible to TAA. However, females generally have higher concentrations of 
circulating estrogens and males generally have higher concentrations of 
circulating androgens. In fact, changes in 17β-estradiol during pregnancy impact 
Marfan syndrome associated TAA.(56) Thus differences in sex hormones may 
contribute to sexual dimorphism of TAAs. 

To study both acquired and syndromic TAA, we utilized two models with 
divergent etiologies. First described by our group, the AngII infusion mouse 
model is a widely used model of acquired TAA.(37) TAA in this mouse model 
occurs through the action of AngII on AT1a receptors.(28) The FBN1mgR/mgR 

Marfan syndrome mouse model aggressively develops TAA early in the peri-
natal period and exhibits death by aortic rupture. (12) Previous work in LDL 
receptor-/- x AngII-induced abdominal aortic aneurysms revealed that having a 
female sex chromosome complement and exposure to endogenous female sex 
hormone attenuates initiation, progression, and extent of abdominal aortic 
aneurysms. (159-161) As both the AngII-induced and FBN1mgR/mgR mouse 
models occur without underlying hypercholesteremia and hyperlipidemia, it is 
unclear if removal of endogenous sex hormones affects the thoracic aorta in the 
same manner as the abdominal aorta. 

Based on the literature, we hypothesized that sexual dimorphism exists in 
mouse models of acquired and syndromic TAA. Furthermore, we hypothesized 
that female mice were protected from TAA due to their exposure to estrogens 
and that males were more susceptible to TAA due to their exposure to 
androgens. Based on our previous work, we hypothesized that these changes 
were also reflected in degradation or preservation of aortic medial structure. To 
test these hypotheses, we first measured aortic diameters in male and female 
mice of both AngII-infused and FBN1mgR/mgR mice compared to natural sexual 
dimorphism in non-TAA, vehicle treated or wild type littermates. We then 
investigated the effect of removing endogenous sex hormones, before sexual 
maturity, on TAA development and progression. In addition to measuring aortic 
dilatation, we also characterized the medial structure of the aorta to determine if 
removing endogenous sex hormones directly impacted aortic tissue structure and 
function by preserving elastin structure and vascular smooth muscle cell 
contractile phenotype. 
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4.3 Methods 
 
Mice 

Female and male C57BL/6J (stock #000664) mice were obtained from 
The Jackson Laboratory (Bar Harbor, ME). FBN1mgR/mgR mice (stock #005704) 
were obtained from The Jackson Laboratory (Bar Harbor, ME) and bred in 
house. Female and male FBN1mgR/mgR mice and their wild type littermates were 
generated by F1 cross of female and male FBN1mgR/+ mice. To induce acquired 
TAA, C57BL/6J mice were infused with 1000ng/kg/min AngII (Bachem H-1705, 
Lot 1046885) for 28 days by osmotic minipump (Alzet 1004, Lot 10217-08). Mice 
were housed up to 5/cage and maintained on a 14:10 light:dark cycle. Mice were 
fed Teklad Irradiated Global 18% Protein Rodent Diet # 2918 ad libidum and 
allowed ad libidum access to water via a Lixit system. Bedding was provided by 
P.J. Murphy (Coarse SaniChip) and changed weekly during the study. 
Shreddable cotton pads were provided as enrichment. The room temperature 
was set at 22°C throughout the study. The room was also set at 50% humidity. 
All mice survived to end of study. All protocols were approved by the University 
of Kentucky IACUC. 
 
Gonadectomy 

Gonadectomies were performed at 6 weeks of age in AngII TAA studies 
and 8 weeks of age in FBN1mgR/mgR mice according to established protocols.(159, 
161) Mice were allowed to recover for two weeks before AngII infusion. Post 
termination, female uteri and male seminiferous vesicles were dissected free and 
preserved in 10% formalin. Remaining gonads were weighed. 
 
Ultrasound measurements 

Mice were anesthetized and maintained at a heart rate of 450-550 beats 
per minute. Ultrasound images were captured using a Vevo 3100 system with a 
40 MHz transducer according to published protocols.(34, 134) Images captured 
were standardized according to two anatomical landmarks: the innominate artery 
branch point and aortic valves. The largest luminal ascending aortic diameter 
between the sinotubular junction and the innominate artery were measured in 
mid-systole and end-diastole by two blinded, independent observers. 
 
Histology 

The three ascending aortas per group, as determined by the group 
median aortic diameter, were selected and fresh frozen sections were generated. 
Tissue sections (10 µm) were generated from the aortic root to the aortic arch at 
100 µm intervals. The section corresponding to the region of largest dilation 
between the sinotubular junction and the arch were analyzed. Briefly, elastin was 
visualized by Verhoeff elastin staining under 20x magnification. Three images per 
section were taken. Fragmentation was defined as the presence of discernable 
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breaks of continuous elastin lamina. Elastin breaks per high powered field were 
counted. Medial thickening was measured using NIS-Elements AR software 
(Nikon). Measurements were verified by an independent investigator who was 
blinded to the sample group. To detect α-smooth muscle actin, slides were fixed 
with acetone for 15 minutes at room temperature; blocked with non-immune goat 
serum (15µL/mL, sigma G9023); incubated with anti α-smooth muscle actin 
(10µg/mL, abcam #ab5694) for 15 minutes at 40°C; incubated with biotinylated 
goat anti rabbit IgG (2 µg/mL, vector #BA1000) for 15 minutes at 40°C; 
developed with AEC (Vector #PK6100 and #SK4205). 
 
Statistics 

Mice were randomized to sham or gonadectomy and to saline or AngII 
pump. FBN1mgR/mgR mice were randomly housed with their wild type littermates. 
Primary data were assessed and then verified by an independent observer 
blinded to group. Statistical analyses were performed using SigmaPlot. Equal 
variance and normality of data determined whether parametric, non-linear 
transformation followed by parametric, or non-parametric tests were used. 
Two-way ANOVA was performed and Holm-Sidak post-hoc test was used. Data 
are represented as individual data points, mean ± SEM, or median with 
interquartile range as appropriate. 

 
4.4 Results 
 
Sexual dimorphism is observed in both AngII-induced and FBN1mgR/mgR mouse 
models of thoracic aortic aneurysms. 
 We first noticed sexual dimorphism in our thoracic aortic aneurysm mouse 
models due to an inability to elicit severe aortic dilation in female mice. Thus, we 
investigated the aortic phenotype of female and male littermates to quantify the 
degree of sexual dimorphism in our TAA mouse models.  
 To determine if sexual dimorphism existed in an acquired model of TAA, 
we infused AngII into male and female C57BL/6J mice for 28 days. At the end of 
28 days, we dissected the aortas in situ and measured the dimensions of the 
ascending aorta. (Figure 4.1). Male mice exhibited greater thoracic aortic dilation 
after AngII infusion compared to their female littermates. (Female = 1.42 ± 0.04 
mm, male = 1.70 ± 0.05 mm; p < 0.001) Interestingly, saline infused mice did not 
exhibit sexual dimorphism. (Female = 1.22 ± 0.04 mm, male = 1.35 ± 0.04 mm; p 
= 0.052). During this study, 1/11 male AngII-infused mice expired due to aortic 
rupture. Cause of death verified by necropsy; all others survived to study 
termination. (Figure 4.1) 
 Next, to determine if sexual dimorphism existed in a syndromic model of 
TAA, we generated female and male FBN1mgR/mgR littermates and measured their 
ascending aortic dimension at 120 days. (Figure 4.1). Survivors were terminated 
and ex vivo aortic diameters were measured. Male FBN1mgR/mgR mice exhibited 
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greater thoracic aortic dilation compared to their female littermates. (Female = 
1.54 ± 0.09 mm, male = 1.97 ± 0.0 8mm; p = 0.008) Wild type mice did not 
exhibit sexual dimorphism. (Female = 1.18 ± 0.09 mm, male = 1.15 ± 0.07 mm; p 
= 0.81) (Figure 4.1) 6/21 male FBN1mgR/mgR mice and 3/18 female FBN1mgR/mgR 
mice died due to TAA rupture. (Figure 4.1) 
 
Removal of endogenous sex hormones modulates AngII induced acquired 
thoracic aortic aneurysm model. 
 As endogenous sex hormones play a role in aortic remodeling, we 
investigated the effect of sex hormone removal in the AngII-induced acquired 
thoracic aortic aneurysm model. We performed gonadectomy of male and female 
C57BL/6J at 8 weeks of age, allowed two weeks to recover, then induced TAA by 
AngII-infusion for 28 days. (Figure 4.2) Ovariectomy of female mice and 
orchiectomy of male mice reduced levels of endogenous sex hormones, leading 
to secondary sex organ atrophy. (Figure 4.3) We then used high frequency 
ultrasound to measure the ascending aorta and aortic root dimensions in vivo of 
female and male mice. (Figure 4.2) Confounding features such as blood 
pressure and body weight did not correlate with aortic diameters in either female 
or male mice infused with AngII. (Figure 4.4 and 4.5) 
 Gonadectomy exacerbated TAA in female mice and attenuated TAA in 
male mice. Female mice infused with AngII and subjected to sham surgery 
showed significant dilation after 4 weeks of AngII (Ascending aorta: Sham Saline 
= 1.16 ± 0.03 mm versus Sham AngII = 1.30 ± 0.03 mm; p = 0.004), 
demonstrating that TAA was established. However, dilation was increased in 
ovariectomized female mice (Ascending aorta: OVX Saline = 1.23 ± 0.03 mm 
versus OVX AngII = 1.42 ± 0.03 mm; p<0.001). Ovariectomy of AngII infused 
female mice exacerbated ascending aortic dilation (p = 0.007). (Figure 4.2) Male 
mice subject to sham surgery were also susceptible to ascending aortic dilation 
after AngII infusion and showed significant dilation after 4 weeks of AngII 
(Ascending aorta: Sham Saline = 1.27 ± 0.04 mm versus Sham AngII = 1.53 ± 
0.04 mm; p<0.001). However, ascending aortic dilation was not seen in 
orchiectomized males infused with AngII (Ascending aorta: ORCH Saline = 1.27 
± 0.04 mm versus ORCH AngII = 1.36 ± 0.04 mm; p = 0.12). Orchiectomized 
males infused with AngII demonstrated attenuated ascending aortic dilation (p = 
0.004). (Figure 4.2) 
 Interestingly, both sham and ovariectomized female mice infused with 
AngII exhibited aortic root dilation (Sham Saline = 1.43 ± 0.03 mm versus Sham 
AngII = 1.52 ± 0.03 mm; p<0.05; OVX Saline = 1.43 ± 0.04 mm versus OVX 
AngII = 1.59 ± 0.04 mm; p = 0.004). However, ovariectomy did not exacerbate 
aortic root dilation. (Figure 4.2) Conversely, orchiectomy attenuated aortic root 
dilation in male AngII infused mice (Aortic root: ORCH Saline = 1.40 ± 0.05 mm 
versus ORCH AngII = 1.54 ± 0.05 mm; p = 0.07). (Figure 4.2) During the course 
of study, one orchiectomized male mice implanted with a miniosmotic pump 
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delivering AngII died due to rupture of the abdominal aorta and was excluded 
from analysis of thoracic aortic aneurysms according to pre-specified exclusion 
criteria. 
 
Removal of endogenous sex hormones in FBN1mgR/mgR mice 
 To determine if gonadectomy affects syndromic TAA, we performed 
gonadectomy of female and male FBN1mgR/mgR mice. Gonadectomies were 
performed at 8 weeks of age, before sexual maturity but after TAA was 
established. Aortic dimensions were measured 4 weeks later by high frequency 
ultrasound. (Figure 4.6) 
 Ovariectomy did not exacerbate ascending aortic dilation in female 
FBN1mgR/mgR mice (Sham = 1.92 IQR 0.41 mm, OVX = 2.13 IQR 0.38 mm; p = 
1.0). Orchiectomy did not attenuate aortic dilation in male FBN1mgR/mgR mice 
(Sham = 2.40 IQR 0.40 mm, ORCH = 2.12 IQR 0.63 mm; p = 1.0). (Figure 4.6) 
Similarly, aortic root dimensions were not altered by gonadectomy in female 
(Sham = 2.41 IQR 0.28 mm, OVX = 2.13 IQR 0.37 mm; p = 1.0) or male (Sham = 
2.44 IQR 0.21 mm, ORCH = 2.50 IQR 0.68 mm; p = 1.0) FBN1mgR/mgR mice. 
(Figure 4.6) During the course of study, one sham operated female FBN1mgR/mgR 
mouse died of TAA rupture and two orchiectomized female FBN1mgR/mgR mice 
died with no evidence of TAA rupture. Additionally, one male sham operated and 
one male orchiectomized FBN1mgR/mgR mouse showed evidence of TAA rupture. 
These mice were excluded from analysis of in vivo thoracic aortic diameters by 
ultrasound according to pre-specified analysis criteria. 
 
Gonadectomy modulates AngII-induced medial remodeling. 
 TAA is associated with loss of extracellular matrix structure. To determine 
if gonadectomy modulates remodeling of the extracellular matrix in the ascending 
aorta during TAA, we sectioned and stained ascending aortas for elastin.  

First, we measured fragmentation of the elastic lamina in female and male 
AngII infused mice. (Figure 4.7) Female mice subject to sham surgery did not 
exhibit increased elastin fragmentation after AngII infusion (Sham Saline = 0.6 ± 
0.5 breaks/HPF, Sham AngII = 1.6 ± 0.5 breaks/HPF; p = 0.2). However, female 
mice subject to OVX exhibited increased elastin fragmentation after AngII 
infusion (OVX Saline = 0.4 ± 0.5 breaks/HPF, OVX AngII = 3.0 ± 0.5 breaks/HPF; 
p = 0.009). (Figure 4.7) Male mice subject to sham surgery exhibited increased 
elastin fragmentation after AngII infusion (Sham Saline = 0.7 ± 0.7 breaks/HPF, 
Sham AngII = 4.7 ± 0.7 breaks/HPF; p = 0.003). Male mice subject to ORCH did 
not exhibit increased elastin fragmentation after AngII infusion (ORCH Saline = 
0.1 ± 0.7 breaks/HPF, ORCH AngII = 1.7 ± 0.7 breaks/HPF; p = 0.1). AngII 
induced elastin fragmentation in male mice was attenuated by orchiectomy (p = 
0.02). (Figure 4.7)  
 Next, we measured fragmentation of the elastic lamina in female and male 
FBN1mgR/mgR mice. (Figure 4.7) OVX and ORCH did not have a significant effect 
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on elastin fragmentation in female (Sham = 5.8 ± 1.0 breaks/HPF, OVX = 6.4 ± 
1.0 breaks/HPF; p = 0.63) and male (Sham = 9.1 ± 0.9 breaks/HPF, ORCH = 7.4 
± 0.9 breaks/HPF; p = 0.24) FBN1mgR/mgR mice. (Figure 4.7)  

TAA is associated with vascular smooth muscle cell dysfunction and loss 
of contractile phenotype. Staining was concurrently performed with negative 
controls to demonstrate specificity. (Figure 4.8) To determine if gonadectomy 
altered cellular residents of the aortic media, ascending aortic sections were 
stained for α-smooth muscle actin to detect contractile smooth muscle cells. 
(Figure 4.9) 
 
4.5 Discussion 

 
These findings give strong evidence that removal of endogenous sex 

hormones can modulate AngII-induced acquired TAA. This study suggests that 
estrogens are protective against development of acquired thoracic aortic 
aneurysms and androgens exacerbate acquired thoracic aortic aneurysms. 
However, the effect of sex hormones may be limited in established, syndromic 
TAAs. 

Divergent results seen in the AngII-infused model of acquired TAA and the 
FBN1mgR/mgR model of syndromic TAA can be explained by the differences in TAA 
pathogenesis. Because we detected sexual dimorphism in both models, 
gonadectomies were performed at 8 weeks of age in both TAA models to 
attenuate exposure to sex hormones following sexual maturity. The AngII-
infusion mouse model develops TAA in normolipidemic conditions and 
independent of blood pressure changes.(28, 37) Aortic pathology can be 
detected as early as 3 days after AngII-infusion but do not start unless AngII is 
infused. However, gonadectomies were performed before AngII was infused and 
before TAA developed. Thus, both initial and progressive TAA was affected. 
Conversely, FBN1mgR/mgR mice exhibit rapid dilation and death by aortic rupture 
early in life. We chose this model due to its rapid TAA development. By 8 weeks 
of age, approximately 10% of male FBN1mgR/mgR mice expired due to TAA 
rupture. Gonadectomies were performed at a timepoint when FBN1mgR/mgR mice 
normally exhibited TAA. Thus, sex hormone removal would only impact 
progressive TAA with minimal impact on dilation occurring before 8 weeks of 
age. The severity of TAA coupled with a short follow-up period in FBN1mgR/mgR 
mice limits interpretation of the effect of sex hormones in syndromic TAA. To 
address these limitations, future experiments should investigate the effect of 
gonadectomy in the milder FBN1 C1041G/+ or GT8/+ models to allow 
measurement over a longer course.(11, 52)  

While this study revealed that gonadectomy alters acquired TAA, the 
aortic targets of sex hormones are unknown. One possibility is that removal of 
endogenous sex hormones directly alters the renin angiotensin system. 
However, this study did not test components of the renin angiotensin system. 
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This is due to a lack of validated reagents able to detect components of the renin 
angiotensin system such as tissue angiotensin receptor levels.(162, 163) In fact, 
several custom anti-angiotensin receptor antibodies generated by our group 
failed to show specificity. (118) Another possibility is that sex hormone removal 
impacts renin angiotensin system independent processes. A study of the effects 
of gonadectomy in AngII and hyperlipidemia induced abdominal aortic 
aneurysms revealed a myriad of changes in the aortic tissue.(161) However, it is 
unclear which of these targets contribute to the disease process or are merely 
correlative. Future studies may make use of transcriptomic or proteomic 
techniques to elucidate differentially regulated genes. Ultimately, we do not 
advocate gonadectomy of male patients with TAA. However, future research may 
reveal the molecular mechanism on how estrogens protect against TAA and 
androgens exacerbate TAA. We hope that this will lead to effective therapies for 
patients of both sexes. 
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Figure 4.1 Sexual dimorphism occurs in both acquired and syndromic 
mouse models of thoracic aortic aneurysms 
A) Representative images of in situ ascending aortas from female and male mice 
infused with either saline or AngII for 28 days. Green bar = 1 mm. B) In situ 
dimensions of ascending aortas from female and male mice infused with either 
saline or AngII for 28 days. n = 9-10/group. *p<0.01, †p<0.001. C) Survival 
curves of female and male mice infused with either saline or AngII for 28 days. 
1/11 male mice infused with AngII died due to TAA rupture at day 27. D) 
Representative images of in situ ascending aortas from female and male 



72 
 

FBN1mgR/mgR mice at 16 weeks of age. Green bar = 1 mm. E) In situ dimensions 
of ascending aortas from female and male FBN1mgR/mgR mice at 16 weeks of age. 
n = 6-8/group. F) Survival curves of female and male FBN1mgR/mgR mice at 16 
weeks of age aggregated from four separate cohorts. n = 16-21/group. *p<0.01, 
†p<0.001. 

  



73 
 

 

Figure 4.2 Gonadectomy modulated ascending aortic and aortic root 
dimensions in AngII-infused female and male mice 
A) Study design to investigate sex hormone removal on AngII-induced model of 
acquired TAA. Representative diastolic ultrasound images of B) female and C) 
male mice subjected to castration or sham surgery and implanted with 
miniosmotic pump delivering saline or AngII. Green bar = 1 mm. Ascending aortic 
diameters measured by ultrasound in D) female and E) male mice. Aortic root 
diameters measured by ultrasound in F) female and G) male mice. n = 8-
11/group. *p<0.05 †p<0.01 ‡p<0.001. 
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Figure 4.3 Atrophy of sex responsive organs after gonadectomy of female 
and male AngII-infused mice 
Representative images of A) uteri from female mice after sham or ovariectomy 
and B) testes and seminiferous vesicles from male mice after sham or 
orchiectomy. Gonad weight of C) female and D) male mice after gonadectomy 
and 28 day infusion of either saline or AngII. n = 8-11/group. *p<0.05 †p<0.01 
‡p<0.001. 
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Figure 4.4 Systolic blood pressure was not altered by gonadectomy and did 
not correlate with aortic diameter 
Systolic blood pressure was not significantly different between groups in A) 
female or B) male mice. Systolic blood pressure was not significantly correlated 
with aortic diameter in C) female or D) male mice. n = 8-11/group 
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Figure 4.5 Body weight of mice was not altered by gonadectomy 
Body weights of A) female and B) male AngII-infused mice and their wildtype 
littermates subject to sham or gonadectomy were not significantly different 
between groups at the end of study. Gonadectomy was performed 2 weeks prior 
to study (blue arrow), pump implantation (red arrow). Body weights of C) female 
and D) male FBN1mgR/mgR mice subject to sham or gonadectomy were not 
significantly different between groups at the end of study. 

  



77 
 

 

Figure 4.6 Gonadectomy did not alter aortic dilation after 4 weeks in 
FBN1mgR/mgR mice 
A) Study design to investigate sex hormone removal on FBN1mgR/mgR model of 
syndromic TAA. Representative diastolic ultrasound images of B) female and C) 
male FBN1mgR/mgR mice subjected to castration or sham surgery. Ascending 
aortic diameters measured by ultrasound in D) female and E) male mice. Aortic 
root diameters measured by ultrasound in F) female and G) male mice. n = 4-8 / 
group. *p<0.001. 
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Figure 4.7 Gonadectomy modulated elastin fragmentation in ascending 
aorta of male and female mice 
Representative images of ascending aortic sections from A) female and B) male 
AngII-infused mice stained with Verhoeff elastin stain demonstrating aortic elastin 
lamina structure and medial thickness. Quantification of number of elastin breaks 
per high powered field in C) female and D) male AngII-infused mice. n = 3 
mice/group. *p<0.05, †p<0.01. Representative images of ascending aortic 
sections from E) female and F) male FBN1mgR/mgR mice stained with Verhoeff 
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elastin stain demonstrating aortic elastin lamina structure and medial thickness. 
Quantification of number of elastin breaks per high powered field in G) female 
and H) male FBN1mgR/mgR mice. n = 3 mice/group. †p<0.01, ‡p<0.001. 
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Figure 4.8 Controls for α-smooth muscle actin immunostaining 
Negative controls for α-smooth muscle actin include preimmune IgG (Rabbit IgG, 
Sigma, I8140), no primary, and no secondary control performed concurrently. 
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Figure 4.9 Gonadectomy modulates aortic medial expression of contractile 
smooth muscle markers in ascending aorta of AngII-infused male mice 
Staining of α-smooth muscle actin in the ascending aorta of A) female and B) 
male mice demonstrated that AngII infusion led to areas of medial smooth 
muscle loss. This was not altered by ovariectomy of female mice and attenuated 
by orchiectomy of male mice. Staining of α-smooth muscle actin in the ascending 
aorta of C) female and D) male FBN1mgR/mgR mice shows no difference after 
gonadectomy in females or males. 
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CHAPTER 5. S100A4-CRE MEDIATED EXCISION OF AT1A RECEPTORS ATTENUATES 

SPONTANEOUS BUT NOT SYNDROMIC AORTIC ANEURYSMS IN MICE 
 

This chapter is based on a publication in process titled “S100A4-Cre Mediated 
Excision of AT1a Receptors Attenuates AngII-induced but not FBN1C1041G/+ 

Associated Aortic Aneurysms” detailing findings of the effect of fibroblast specific 
deletion of AT1aR on aortopathies. 

 

5.1 Synopsis 
 
Objective: 
 Thoracic aortic aneurysms (TAA) and aortopathies can have either 
spontaneous or syndromic etiologies. In general, inhibition of the angiotensin II 
(AngII) receptor type 1a (AT1aR) attenuates TAA of various etiologies. While this 
implies that AT1aR stimulation is responsible for TAA, the cell type where AT1aR 
become stimulated in TAA formation is unknown. Here, we generated fibroblast 
specific deletion of AT1aR and measured TAA development in an AngII-induced 
mouse model of spontaneous TAA and in the Fbn1C1041G/+ mouse model of 
syndromic TAA.  
 
Approach and Results: 

Fibroblast specific deletion of AT1aR was accomplished by breeding mice 
expressing Cre under control of the S100A4 promoter (S100A4-Cre) to AT1a 
receptor floxed mice. Lineage tracing experiments demonstrated that S100A4-
Cre was active in fibroblast rich organs and the aorta but not fibroblast poor 
organs. Aortic cross sections from S100A4-Cre +/0 ROSA26-LacZ mice infused 
with either saline or AngII demonstrated that AngII infusion increased the number 
of LacZ traced cells in aortic media. LDL receptor -/- mice with depletion of AT1a 
receptors was used to assess spontaneous TAA and atherosclerosis. Eight week 
old, male, littermates were fed a fat-enriched diet for 1 week before and during 
AngII infusion for 28 days. AngII-induced expansion of ascending aorta area and 
abdominal aortic width were attenuated significantly in Cre+/0 mice. However, 
there was no significant difference in AngII-augmented atherosclerosis. S100A4-
Cre driven deletion of AT1aR failed to modulate ascending aorta and aortic root 
dilation in Fbn1C1041G/+ mice. 

 
Conclusions: 
 Fibroblast specific deletion of AT1aR had divergent effects on 
spontaneous and syndromic TAA. Additionally, AT1aR deletion failed to 
attenuate atherosclerosis. This indicates that the action of AT1aR in TAA 
development is heterogenous in aortopathies of different etiologies. 
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5.2 Introduction 
 

Fibroblasts are a prominent cell type in the adventitia that have been 
proposed to be active participants in aortic aneurysms and atherosclerosis. 
During aneurysm formation, adventitial thickening and inflammation are key 
histological hallmarks seen in disease. (17, 100) Fibroblasts may play a key role 
in aortic remodeling during aortopathy. 

Based on our own data as well as other publications, genetic targeting of 
AT1 receptors, or pharmacological inhibition by administration of an antagonist, 
losartan, ablated development of AngII-induced aortic aneurysms and 
atherosclerosis as well as TAA in male Fbn1C1041G/+ mice. (64) In male 
Fbn1C1041G/+ mice, AT1aR is activated in a ligand dependent manner during TAA 
development. However, the site of action of AT1aR is unknown. Previous studies 
deleted AT1a receptors in specific cellular subpopulations of the aortic vessel 
wall using AT1a receptor floxed mice. Subpopulations tested include smooth 
muscle residents of the aortic media and endothelial cell residents of the aortic 
intima. Unexpectedly, deletion of AT1a receptors in smooth muscle cells had no 
effect on AngII-induced aortic pathologies or atherosclerosis. (118, 132, 164) 
AT1a receptors deleted in endothelial cells have resulted in none or minimal 
effects on aortic aneurysms and atherosclerosis. (118) In addition to AngII-
infusion models, deletion of AT1a receptors in smooth muscle and endothelium 
also had minimal effects on aortic aneurysms in the genetic fibrilin1 hypomorphic 
models of the disease. (75) This model had been previously shown to respond to 
pharmacologic AT1 receptor inhibition.(74) Therefore, despite the profound 
effects of global AT1a receptor deletion and inhibition on vascular diseases, the 
cell type stimulated by AngII necessary to promote these diseases has not been 
identified. 
 Therefore, to determine the cell type responsible for AT1aR induced 
aortopathies, we tested the hypothesis that fibroblast specific deletion of AT1aR 
attenuated both spontaneous and syndromic aortopathy. First we determined the 
specificity of the S100A4-Cre through lineage tracing in fibroblast rich and 
fibroblast poor organs. Interestingly, we observed that the traced population in 
the aorta expanded after AngII infusion. Next, we observed that S100A4-Cre 
mediated AT1a receptor deletion attenuated AngII-induced TAA and AAA but did 
not attenuate atherosclerosis. Finally, we observed that S100A4-Cre mediated 
AT1a receptor deletion failed to attenuated TAA in Fbn1C1041G/+ mice. This 
indicates that the site of action of AT1aR in aortopathies are heterogenous and 
specific to each disease process. 

5.3 Methods 
 
Mice 
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 AT1a receptor floxed mice were developed by InGenious Targeting, Inc. 
(Ronkonkoma, NY) using a C57BL/6 embryonic stem cell line and are now 
available at The Jackson Laboratory (C57BL/6N - Agtr1atm1Uky/J; stock # 
016211). S100A4-Cre [BALB/c-Tg(S100a4-cre)1Egn/YunkJ; stock #: 012641)] to 
induce fibroblast-specific deletion, ROSA26-LacZ [B6.129S4-
Gt(ROSA)26Sortm1Sor/J; stock # 003474] for lineage tracing, and LDL receptor -/- 
(B6;129S7-Ldlrtm1Her/J; stock # 002077) mice for inducing hypercholesteremia, 
and Fbn1C1041G/+ (stock #012885) mice were purchased from The Jackson 
Laboratory (Bar Harbor, ME).  Mice were bred by the following breeding harems: 
male S100A4-Cre hemizygous (+/0) x AT1a receptor floxed x LDL receptor -/- to 
female AT1a receptor floxed x LDL receptor -/- mice; male S100A4-Cre to female 
ROSA26-LacZ; male S100A4-Cre hemizygous (+/0) x AT1a receptor floxed x 
female AT1a receptor floxed x Fbn1C1041G/+ mice. 
 Mice were housed in ventilated cages with negative air pressure 
(Allentown Inc.; Allentown, NJ).  Drinking water filtered by reverse osmosis and 
normal mouse diet (Global 18% protein rodent diet; Diet # 2918; Harlan Teklad; 
Madison, WI) were provided ad libitum.  Rooms were set with light/dark cycles 
(14 hr, 10 hr), and temperature (20-23oC) and humidity (50-60%) controlled.  
 The studies followed the recommendations of The Guide for the Care and 
Use of Laboratory Animals (National Institutes of Health).  All procedures were 
approved by the University of Kentucky’s Institutional Animal Care and Use 
Committee (Protocol # 2006-0009).  Necropsies were performed on mice within 
12 hours of death.  
 
Detection of β-galactosidase expression during S100A4-Cre excision 
 Male S100A4-Cre +/0 x ROSA26 mice were infused with saline or AngII 
(1,000 ng/kg/min; N=3-6/group) for 28 days.  After termination and 
exsanguination, aortas were flushed with saline and then perfused with low 
melting point agarose containing green dye by introducing a 23 gauge needle 
attached to a 1 ml syringe filled with the agarose into the ventricle of the heart. 
For sections of ascending aorta, the upper fourth of the heart was left on the 
aorta and the aorta was severed 3 mm distal to the common carotid.  The 
descending aorta sections started 3 mm below the common carotid.  The 
abdominal aortic sections started 3 mm above the right renal branch.  These 
three regions of aorta were placed in OCT, frozen and sectioned on a cryostat.  
Tissue sections were arranged serially on sets of 10 slides with 9 sections per 
slide.  Twenty to thirty slides were required to completely section the ascending 
and abdominal regions of interest. To detect S100A4-Cre positive cells, one slide 
from each series of 10 slides (9 sections/slide; 2-3 slides) was fixed in 
paraformaldehyde (4%) for 10 min at 4oC, and stained for β-galactosidase using 
X-gal protocol above. Then the sections were stained with eosin and 
coverslipped.  Blue stained cells were counted in all 9 sections per slide of each 
mouse. 
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AngII Induced Aneurysm induction 
 Male mice (8-10 weeks old) were fed a diet enriched in saturated fat 
containing milk fat (21% wt/wt) and cholesterol (0.2% wt/wt) for 12 weeks (Diet# 
TD.88137; Harlan Teklad; Indianapolis, IN).  Male mice were used due to their 
greater susceptibility to AngII-induced aneurysms formation. (160, 161)  After 1 
week of feeding, mini-osmotic pumps (Model #2004; Durect Corp; Cupertino, CA) 
infusing either saline or AngII (1,000 ng/kg/min; Cat # H-1705; Bachem; 
Torrance, CA) were implanted subcutaneously on the right flank of mice. (165) 
The continuous infusion lasted 28 days.  
 
Atherosclerosis induction 
 Male and female mice (8-10 weeks old) were fed the saturated fat 
enriched diet listed above for 5 weeks. 
 
Quantification of TAA, AAA, and atherosclerosis 
 Mice were terminated by an overdose of ketamine/xylazine mixture (90 
mg, 10 mg/kg, respectively).  After exsanguination via cardiac puncture, the right 
atrium of the heart was cut to allow perfusate drainage.  Then aortas were 
perfused with saline, dissected free, and placed in 10% neutral buffered formalin 
overnight.  Twenty-four hours later, aortas were transferred to saline.  Adventitia 
was removed using a forceps and aortas were cut in half at the diaphragm.  
Thoracic aortas were opened en face, pinned, and photographed. 
Atherosclerosis was measured in accord with recent recommendations. 
Abdominal aortas were pinned and photographed. Abdominal aortic diameter, 
ascending aortic area, and atherosclerotic lesion area were measured using 
ImagePro Plus software (Media Cybernetics, Inc.; Bethesda, MD) (166) (17, 167) 
  
Statistics 
 Appropriate statistical analyses were based on numbers of groups 
compared and parametric characteristics of the data using SigmaPlot (Systat 
Software Inc.; San Jose, CA).  Data are represented as mean ± SEM.  P<0.05 
was considered statistically significant. 
 
5.4 Results 
 
S100A4-Cre traced cells are abundant in fibroblast rich tissue and are increased 
in aortas of AngII infused mice. 

We demonstrated that S100A4-Cre is active in fibroblast rich tissues but 
absent in fibroblast poor tissues. (Figure 5.1) However, both the thoracic and 
abdominal aortas of S100A4-Cre+/0 x ROSA26-LacZ mice were not uniformly 
positive. Histologic sections of both ascending and abdominal aortas 
demonstrated scant positively traced cells in mice infused with saline. However, 
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this population expanded after AngII infusion. An increased number of β-
galactosidase-positive cells after AngII infusion were found in both aortic 
segments 
 
AT1a Receptor Excision by S100A4-Cre Significantly Attenuated AngII-induced 
Thoracic and Abdominal Aortic Aneurysms But Did Not Protect Against AngII-
induced Atherosclerosis 
 Aortic rupture occurred in 5/28 Cre 0/0 and 5/32 Cre+/0 mice within 5 to 
22 days of AngII infusion. There were no deaths in saline-infused mice of either 
genotype. Location of aortic rupture was mixed; there were 3 thoracic and 2 
abdominal aortic ruptures in both groups. As expected, AngII infusion 
significantly increased aortic arch area compared to saline-infused mice in both 
genotypes (P<0.001).  However, the S100A4-Cre +/0 genotype had a significant 
reduction in AngII-induced aortic arch dilation compared to 0/0 mice (P=0.003; 
Figure 5.2).  AngII infusion also significantly increased abdominal aortic diameter 
compared to saline-infused mice in both genotypes (P<0.001). There was a 
modest but significant decrease of abdominal aortic diameter in Cre +/0 mice 
compared to 0/0 mice (P=0.029) AngII-induced atherosclerotic lesion area was 
also measured in the arch (Figure 5.2). Saline-infused mice fed a fat-enriched 
diet for 5 weeks had barely detectable atherosclerotic lesions; while AngII 
infusion significantly increased atherosclerotic lesion area (P<0.001).  
Atherosclerotic lesion areas were not different between genotypes. 
 
AT1a Receptor Excision by S100A4-Cre Did Not Protect Against TAA in 
Fbn1C1041G/+ mice 
 Male and female Fbn1C1041G/+ mice with fibroblast specific deletion of 
AT1aR were generated. Mice were subject to ultrasound to measure both the 
aortic root and ascending aorta. (Figure 5.3) Both male and female Fbn1C1041G/+ 
mice exhibited significant aortic dilation at 6 months of age. However, fibroblast 
specific deletion of AT1aR failed to attenuate dilation in either segment. 
 
5.5 Discussion 

Our studies revealed seemingly disparate paradoxes about the role of 
AT1aR on fibroblasts. S100A4-Cre mediated excision of the AT1a receptor 
significantly attenuated AngII induced thoracic and abdominal aneurysm 
formation but not TAA in Fbn1C1041G/+ mice. This occurred despite lifelong 
deficiency of AT1aR in fibroblasts. The divergent role of AT1aR in spontaneous 
versus syndromic aneurysms merits investigation. Additionally, rupture incidence 
was not altered in these studies. Further studies may focus on the differences 
between aortic dilation and aortic rupture as well as the mechanisms behind how 
dilation may progress to rupture. Additionally, we have now systematically 
demonstrated that excision of AT1a receptor within the aortic intima, media, or 
adventitia fails to attenuate either AngII induced atherosclerosis despite whole 
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body AT1a receptor being necessary for atherosclerosis formation. Despite the 
majority of aneurysmal pathology and tissue remodeling affecting the smooth 
muscle cell rich aortic media, we have now shown that Tie2 and S100A4-Cre 
mediated depletion of AT1a receptors in endothelial cells and fibroblasts can 
attenuate aneurysm formation whereas SM22-Cre mediated depletion cannot. 
Thus, AT1aR dependent aortopathies rely on activation of AT1a receptors in 
different cell types. 

Surprisingly, cross-sections revealed that most β-galactosidase positive 
cells were located in the media rather than the adventitial region of the aorta in 
both saline and AngII-infused mice. The S100A4 promoter may encompass 
fibroblasts actively remodeling in disease rather than quiescent fibroblasts in the 
aorta. The S100A4 promoter was identified by comparative transcript analysis of 
fibroblasts from different micro environments and other cell types and termed 
fibroblast specific protein-1 (FSP1). (168) Recently, its specificity has been 
questioned. Kong et al demonstrated that FSP1+ cells increased during 
myocardial infarction, and >30% of these cells were identified as hematopoietic 
or endothelial cells. (169) Rather than a marker for fibroblasts, FSP1 may be a 
driver of fibrosis itself and deletion of AT1a receptor in actively remodeling 
tissues -- rather than resident adventitial fibroblasts -- may be responsible for 
protection against thoracic and abdominal aortic aneurysms. While we have 
previously demonstrated S100A4-Cre mediated AT1a receptor deletion reduced 
AT1a receptor mRNA, detection of AT1a receptor protein levels at this time has 
been hampered by lack of specific AT1a receptor antibodies. This may also 
signify that protection afforded by S100A4-Cre mediated AT1a receptor deletion 
corresponds to the degree of AT1a receptor depletion within the whole aorta 
rather than a cell-specific effect. 

Future experiments should address alternate hypotheses and sites of 
AT1aR action in aortopathies. Equally interesting may be the source of renin 
angiotensin components, and whether components such as renin and 
angiotensinogen derive from aortic tissue or from major body sources such as 
the juxtaglomerular cells or liver respectively. Disparate cell types within the aorta 
may have synergistic action through the AT1aR via autocrine/paracrine signaling. 
Additionally, activation of extra-aortic AT1a receptors seems necessary for 
atherosclerosis formation while activation of vascular AT1a receptors contributes 
to aneurysm formation. In both cases, more research is needed to address the 
exact cell types and signaling networks responsible for both atherosclerosis and 
aneurysm formation. Future experiments in aneurysm formation should address 
the crosstalk between endothelial and adventitial AT1a receptor activation and 
medial aortic remodeling. Future experiments investigating the role of renin 
angiotensin signaling in atherosclerosis should focus on AngII-responsive extra-
aortic tissues and organs such as the brain and kidney. 
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Figure 5.1 S100A4-Cre traced cells were preferentially enriched in fibroblast 
rich tissues 
 β-galactosidase activity (depicted by blue color) by S100A4-Cre mediated 
excision of ROSA26 in selected whole organs from S100A4-Cre 0/0 x Rosa26-
LacZ (left side of each panel) and S100A4-Cre +/0 x Rosa26-LacZ  (right side of 
each panel) in A) fibroblast-rich tissue B) non-fibrotic tissue and the C) thoracic 
and abdominal aortas. Cre transgene is identified as +/0. D) Representative 
sections from series of ascending and abdominal aortas from S100A4-Cre x 
ROSA26-LacZ mice infused with saline. Stained with β-galactosidase activity and 
imaged at 200x magnification. AngII infusion changed distribution of lineage 
traced cells in the ascending and abdominal aortas. 
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Figure 5.2 AT1a receptor deletion attenuated AngII-induced TAA and AAA 
but not AngII-exacerbated atherosclerosis 

Representative images of A) enface ascending aortas and B) ex vivo 
aortas from fibroblast specific AT1aR deficient x LDL receptor -/- mice infused 
with either saline or AngII. S100A4-Cre mediated excision of AT1a receptors 
reduced aortic dilation in C) ascending D) and abdominal aortas of AngII-infused 
male LDL receptor -/- mice, but had no effect on E) AngII-augmented 
atherosclerosis despite reductions in F) total plasma cholesterol. For C):  * 
denotes P<0.001 comparing saline versus AngII within genotypes by Holm-
Sidak.  # denotes P=0.007 comparing AngII infused 0/0 versus +/0 by Holm-
Sidak.  For D): * denotes P<0.001 when comparing infusions within 0/0 genotype 
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by Holm-Sidak.  # denotes P=0.029 comparing AngII infused 0/0 vs +/0 by 
Student’s t-test. For E) * denotes P<0.001 for saline versus AngII infusion within 
Cre 0/0 and +/0 by Holm-Sidak. For F) # denotes P<0.05 comparing AngII 
infused 0/0 vs +/0 
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Figure 5.3 Fibroblast specific AT1aR deletion failed to modulate TAA in 
Fbn1C1041G/+ mice 
 Representative ultrasound images in A) male and D) female mice with 
fibroblast specific deletion of AT1aR. S100A4-Cre driven deletion failed to 
attenuate B,E) aortic root and C, F) ascending aortic dilation. * p<0.05 when 
comparing Fbn1+/+ vs. Fbn1C1041G/+. 

  



92 
 

CHAPTER 6. DISCUSSION AND FUTURE DIRECTIONS 
 

The overarching goal of these projects was to elucidate factors that were 
responsible for and can modulate development of Marfan syndrome associated 
thoracic aortic aneurysms. In accomplishing this goal, we not only developed and 
validated new methods but also defined the contributions of the AngII-AT1aR 
axis, sex hormones, and AT1aR on fibroblast to pathogenesis. 

6.1 Key Methods 
 

To trace the development of TAA sequentially, we needed a non-invasive, 
in-vivo method of assessing the ascending aorta over the course of the study. 
We utilized high frequency ultrasound as it had key advantages over other 
techniques of assessing the ascending aorta. Overall, strengths of ultrasound 
include low cost and rapid data acquisition compared to more resource intensive 
imaging modalities such as computed tomography (CT) and magnetic resonance 
imaging that have been used in studies of aortopathies. (134, 137, 170, 171) No 
contrast agent is needed for imaging small vessels and imaging data can be 
acquired much more rapidly with less resources. Additionally, data analysis for 
three-dimensional (3D) computed tomography and magnetic resonance imaging 
modalities is much more labor intensive. Despite these advantages, ultrasound 
has key limitations. Accurately imaging and measuring eccentric aortic dilation is 
difficult in two-dimensional (2D) ultrasonography. In fact, techniques such as 
phase contrast X-ray tomographic microscopy and contrast enhanced micro-CT 
have been proposed as a gold standard for 3D imaging of murine aortas because 
they are able to detect eccentric dilation. The trans-thoracic ultrasound 
acquisition and analysis protocol used in this study operates under the 
assumption that the maximum point of the aorta is imaged and that the aorta 
expands concentrically with the cardiac cycle. In the aneurysmal state, the 
dilation is eccentric. In fact, ulceration, dilation, and rupture preferentially occur 
along the greater curvature. (17) The point of greatest dilation may not occur 
perpendicular to the aortic valves and innominate artery where this study 
measures the ascending aorta. Therefore, 3D modalities are useful to elucidate 
small effect sizes while less accurate 2D methods may be sufficient if effects 
sizes are large. Advent of 3D ultrasound reconstruction may play a key role by 
utilizing the advantages of both techniques by decreasing acquisition times. In 
the lieu of 3D imaging modalities, ex vivo measurements may be valuable in 
illustrating aortic eccentricity in mice but is not feasible in longitudinal studies. 
While we did not assess if non-invasive 3D imaging modalities are indeed 
superior or more accurate, those interested in performing aortic imaging studies 
should balance the resource requirements against the desired accuracy and 
precision of the data. 
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To overcome the limitations of ultrasound, we additionally performed aortic 
histology to determine if our interventions directly impacted the ascending aorta. 
This allowed direct measurement of changes to the structure of aortic tissue but 
are also subject to limitations. We observed that aortas from Marfan syndrome 
mice exhibit extensive elastin fragmentation and fibrosis, suggesting a loss of 
elasticity and increase in stiffness. (12, 124) This is consistent with observations 
made in aneurysmal tissue from AngII-induced TAAs. (37) However, key 
limitations of histologic assessment of the aorta include the section of aorta 
measured and the subjective nature of measurement. The American Heart 
Association recommends that aortopathy studies keep consistent the region of 
aorta analyzed within a study. (33) As we measured aortic dilation at the area of 
maximal expansion, this means that histologic sections should be taken at area 
of maximal expansion as well. This is logistically difficult. While care was taken to 
quantify elastin fragmentation in the aortic section of largest dilation, aortic 
sections still are a two-dimensional representation of a tortuous three-
dimensional structure. Additionally, assessment of elastin fragmentation and 
degree of staining was performed by human observers blinded to group 
assignment. While randomization and blinding reduce bias, use of human 
observers reduce both the resolution and throughput of measurements. Indeed, it 
is possible to train an agnostic computer program or artificial intelligence program 
to perform any measurement of image data in an unbiased manner. However, 
this would require not only development and deployment of this resource but also 
training data. Because of the small sample sizes and raw data, it would be 
difficult to generate both a training and test set of data. By including raw data 
available in our publications, we may enable future researchers to use our data 
as a training set for their experiments. Ultimately, these measurements do not 
stand alone but rather complement measurements from other modalities; we are 
confident in our observations due to the correlation and agreement of multiple 
modalities for measuring TAA severity. 

6.2 Role of AngII-AT1aR axis in Marfan syndrome 
 
We determined that inhibition of the AngII-AT1aR axis, by either 

pharmacologic depletion of the unique precursor of angiotensin ligands or 
genetic deletion of the main AT1 isoform in the aorta, attenuated TAA in the male 
Fbn1C1041G/+ mice. Previous studies claimed that the protective effects of losartan 
in TAA stem from its pleiotropic or non-AT1aR dependent effects. Sellers et al 
claimed that losartan, an AT1aR blocker, had divergent effects on Marfan 
syndrome associated TAA compared to AT1aR deletion. (86) Specifically, 
losartan attenuated TAA through preservation of endothelial function in an 
AT1aR independent manner through an alternative VEGFR2/eNOS pathway. 
Other studies suggested that losartan’s protective effect may be due to tumor 
growth factor β inhibition or AngII receptor type 2 hyperstimulation. (64, 83) 
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However, our data indicated that blockade of the AngII-AT1aR axis is sufficient to 
attenuate Marfan syndrome associated TAA. Consistent with our observations, a 
recently published study in the severe Fbn1mgR/mgR model indicated that deletion 
of endothelial AT1aR reduced death by TAA rupture.(75)  

Additionally, the contribution of angiotensin receptor ligands was unclear. 
Neither ACE inhibitors nor angiotensinogen knockout were efficacious in 
attenuating dilated cardiomyopathy in the Fbn1mgR/mgR mouse model.(74) 
Unfortunately, use of either modality in aortopathy research is difficult due to 
pleotropic effects of ACE inhibitors on the kinin-kallikren system and cardio-renal 
developmental defects of AGT knockout.(155) Therefore, we used a systemic, 
post-natal inhibition of AGT synthesis via AGT ASO to deplete AGT.(149) This 
resulted in sustained AGT depletion and corresponded to reduction in Marfan 
syndrome associated TAA in male mice. We concluded that angiotensin receptor 
ligands are critical in TAA and that depletion of AGT is sufficient to attenuate 
Marfan syndrome associated TAA. These findings expanded previous 
understanding of the role of the renin angiotensin system in Marfan syndrome 
associated TAA and challenged the previous paradigm that non-AT1aR effects 
modulated TAA. While we do not discount the pleotropic effects of losartan and 
its metabolites, inhibition of AngII dependent AT1aR stimulation may be a key 
component in attenuating TAA. 

However, the direct link between fibrillin-1 and the renin angiotensin 
system is not clear. It is unexpected that mutations in an extracellular matrix 
protein would impact the production of ligands responsible for blood pressure 
control. Angiotensin ligands are mainly synthesized in the liver, an organ not 
known to have abundant connective tissue. Thus fibrillin-1 may either act on local 
synthesis of angiotensin peptides or act on extra-aortic tissues in a yet undefined 
manner. To establish causal links between these two components, future studies 
should leverage inducible mutations of fibrillin-1 to trace progressive 
dysregulation of both the aortic and systemic renin angiotensin system. 

6.3 Role of endogenous sex hormones in aortopathy 
 
We demonstrated that removal of endogenous sex hormones was able to 

modulate spontaneous TAA. The AngII infusion mouse model induces thoracic 
aortic aneurysms in normolipidemic conditions and independent of blood 
pressure changes. (28, 37) Thoracic aortic aneurysms in AngII induced mice 
impact the ascending aorta more than the aortic root. While TAAs are 
characterized as a disease that preferentially impacts the aortic root, our group 
and others have demonstrated that TAA mouse models also involved the 
ascending aorta - defined as the segment proximal to the innominant artery. (31, 
51, 64) Interestingly, gonadectomies did not affect lengthening of the ascending 
aorta in AngII infused mice, pointing to marked anisontropy of the ascending 
aorta. Indeed, this observation is consistent with those in abdominal aortic 
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aneurysms between male and female mice. Previous work in LDL receptor-/- x 
AngII-induced abdominal aortic aneurysms (AAAs) revealed that having a female 
sex chromosome complement and exposure to endogenous female sex hormone 
attenuates initiation, progression, and extent of AAAs. (160, 161, 172)  
 Conversely, our data suggests that removal of endogenous sex hormones 
was unable to modulate established TAA in Fbn1mgR/mgR mice. The FBN1mgR/mgR 
mice exhibit rapid dilation and death by aortic rupture early in life. Indeed, by 56 
days old – when our gonadectomy studies were initiated, approximately 10% of 
male FBN1mgR/mgR mice would have expired due to TAA rupture. This mortality 
makes working with FBN1mgR/mgR mice difficult as interventions would need to 
have dramatic effect to alleviate already present aortic dilation. Thus, the effect of 
gonadectomy in modulating TAA in FBN1mgR/mgR mice may be masked by both 
existing TAA and mortality due to TAA rupture. Future experiments should 
investigate the effect of gonadectomy in the milder FBN1 C1041G/+ or GT8/+ 
models that do not have marked mortality to allow measurement over a longer 
course.(11, 52) Before we can make the conclusion that gonadectomy is 
ineffective in syndromic TAA, we must first establish if it acts on the initiation or 
progression of TAA. 
 
6.4 Role of AT1aR on fibroblasts in aortopathy 

 
S100A4-Cre mediated deletion of AT1aR on fibroblasts had divergent 

effects on AngII-induced TAA versus Fbn1C1041G/+ mediated TAA. While we have 
discussed the limitations of using S100a4-Cre as a fibroblast specific Cre, the 
divergent effects on spontaneous and syndromic aortopathies merit discussion. 
The mechanism by which this occurs is unclear. All components necessary for 
the deletion of AT1aR were present in germ line cells. However, we make the 
assumption that deletion of AT1aR was equivalent between C57BL/6J mice and 
Fbn1C1041G/+ mice. This may not be true as AngII infusion increases S100A4-Cre 
traced cells in the aortic media. On future experiment that would allow us to 
interpret these results would be to lineage trace S100A4-Cre positive cells in the 
Fbn1C1041G/+ mice in a lineage tracing experiment.  
 Initially, the obvious hypothesis was that AT1aR on cells of the aortic wall 
were responsible for aortopathy. In conjunction with other published studies, 
AT1aR deletion on all major cell types in the aorta have been performed. 
Endothelial specific AT1aR deletion has marginal effect on TAA. Smooth muscle 
specific AT1aR has no effect. Fibroblast specific deletion has partial effect on 
AngII induced aortopathies and no effect of syndromic TAA. Thus, the cell type 
where AT1aR is stimulated is still unknown. Altogether, there are two alternate 
hypotheses. First, it is possible that extra-aortic AT1aR is responsible for 
aortopathies. Indeed, promising results show that renal specific AT1aR deletion 
modulates atherosclerosis through yet undefined means. Additionally, the base 
assumption that a single cell type is responsible for TAA becomes increasingly 
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untenable. While breeding multiple cell lineage specific deletions in a single 
animal requires novel mouse models and heroic efforts, new targeted gene 
editing technologies and pharmacologic agents may allow a combination of cell 
specific knockdowns. For example, it is now possible to target antisense 
oligonucleotides to both the liver and the kidney independently. The responsible 
cell(s) type for TAA will eventually be discovered. 
 
6.5 Future directions 

 
Several avenues of promising research stem from the studies outlined here. 

The overarching goals should remain increasing understanding of and 
developing therapies for Marfan syndrome associated TAA. 
 It is unclear whether the contribution of disparate systems, such as the 
renin angiotensin system and endogenous sex hormones, to Marfan syndrome 
associated TAA occur in isolation or have cross talk. The renin angiotensin 
system effects some functions through regulation of aldosterone, a 
minerocorticoid hormone. While its main function is to regulate salt and water 
balance as well as blood pressure, pleiotropic effects on endogenous sex 
hormones is less well known. Conversely, it is known that circulating sex 
hormone levels regulate liver protein synthesis. As angiotensinogen in the 
plasma is mainly synthesized by the liver, it is unknown if gonadectomy alters the 
renin angiotensin system in a manner that would affect aortopathies. Finally, as 
both the renin angiotensin system and sex hormones have many downstream 
effectors, it is unclear where these pathways intersect. Future studies may 
leverage unbiased multi-omics to uncover these interaction networks. The goal of 
those studies should focus on common up or downstream regulators that can be 
pharmacologically targeted. 
 Future mouse studies should also aim to resolve controversy and 
divergent effects seen between spontaneous and syndromic TAA. Differences 
may stem from differences in the timing of initiating events. The aorta develops 
between embryonic day 14 and postnatal day 21. Many spontaneous TAAs rely 
on an investigator-initiated administration of a causative agent. This usually 
occurs much later, at around 8 weeks of age. Absent a vascular insult, the aortas 
from baseline mice can be considered normal and non-aneurysmal. Indeed, it is 
rare for C57BL/6J mice to spontaneously develop TAA even at advanced ages. 
In contrast, syndromic models rely on a germline mutation, and thus the initiating 
event occurs in utero. The consequences of difference in timing may underly the 
divergent effects of gonadectomy as this is after sexual maturity. Therefore, 
inducible models of syndromic TAA, using an inducible Cre-Lox system to mutate 
or delete causative genes such as Fbn1, can be used to control the timing of the 
vascular insult. Conversely, it may be possible for investigators to initiate 
administration of TAA causing agents earlier.  
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It is critical to test observations and paradigms elucidated in mouse 
studies in a human population. Observations to be tested include the role of the 
AngII-AT1aR axis on Marfan syndrome associated TAA and the effects of sex on 
spontaneous and syndromic TAA. We may leverage clinical data by performing a 
retrospective observational study looking at the association of either 
pharmacologic agents or sex and TAA and aortic dissection. To study if TAA is 
also modulated by AT1aR in a ligand dependent manner, we can test the 
association between ACE inhibitors, ARBs, and aortic phenotypes. To study if 
sex hormones modulate TAA, we may look at the incidence of TAA and 
dissection in pre- versus post- menopausal females, males and females currently 
receiving hormone therapy, or males and females who have received surgical 
oophorectomy or orchiectomy. However, the populations of these patients may 
be small thus these studies would have difficulty achieving power. Unfortunately, 
it is difficult to perform lineage tracing and developmental biology experiments in 
humans. However, primary cell lines or induced pluripotent stem cells may be 
leveraged to test AT1aR dependent signaling pathways in humans. Ultimately, 
the cell type to be tested would depend on the cell type elucidated in mouse 
studies. Thus, the studies outlined here as well as future studies can be 
leveraged to generate hypotheses to be tested in humans. 
 Development of an effective pharmacologic agent hinges on the 
demonstrating superiority to current standard of care. However, current standard 
of care varies between institutions and providers. Patients with Marfan syndrome 
are generally treated with beta-adrenocorticoreceptor blockers and angiotensin 
receptor blockers. However, evidence for the efficacy of either agent is lacking. 
Evidence for use of beta-adrenocorticoreceptor blockers is based on one 
underpowered study that had strong predisposition to bias. (59) Evidence for use 
of angiotensin receptor blockers is mixed, with several studies of losartan 
showing minimal effect. (58) The widespread use of either agent means that any 
new agents would be trialed as an add-on agent to standard of care. Promising 
agents include AGT-ASOs and – if demonstrated in future experiments – agents 
that modulate estrogens or androgens or their targets in the aorta.  
 Ultimately, these avenues of research should be performed concurrently 
and in an iterative manner. Novel observations in mouse studies can be 
confirmed in retrospective human data and further refined by developing more 
specific and targeted pharmacologic agents. Associations seen in humans 
studies can be tested in the optimized environment using validated mouse 
models to discover their mechanism of action. Granting agencies and 
foundations should champion research programs in both areas concurrently. 
Trainees and faculty should aim to collaborate across disciplines if not receive 
training in interdisciplinary techniques themselves. Momentum behind this 
research is building. Marfan syndrome was first described in 1896. The gene 
responsible, FBN1, was discovered in 1995. The first promising agent in mice 
and humans was described in 2006. Throughout this timeline, life expectancy in 
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patients living with Marfan syndrome has increased. It is hoped that the studies 
outline here provide a platform to continue this momentum. 
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