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ABSTRACT OF DISSERTATION 

SOIL CARBON DYNAMICS AND GREENHOUSE GAS EMISSIONS IN 
CONSERVATION TILLAGE SYSTEMS AT MULTIPLE SCALES 

Conservation tillage practices like no-tillage and reduced tillage have been widely 
implemented worldwide, with expectations they would provide multiple benefits (e.g., 
yield enhancement and soil carbon sequestration) for food security and climate adaptation 
and mitigation. However, the adoption of conservation tillage faces both opportunities and 
challenges. A knowledge gap still exists regarding the effects of conservation tillage on the 
carbon cycle in agroecosystems. This dissertation reflects a comprehensive evaluation of 
conservation tillage at multiple scales using an integrated systems approach, a combination 
of data synthesis, the agriculture ecosystem model, and field observations and 
measurements. I first conducted a meta-analysis to assess the effects of no-tillage (one 
widespread conservation tillage) on crop yield, greenhouse gas (i.e., CO2, CH4, and N2O) 
emissions, and the global warming potential of major cereal cropping systems in the world. 
Compared to conventional tillage, no-tillage reduced greenhouse gas emissions and 
increased crop yield in dry climate conditions. It reduced the global warming potential at 
sites with acidic soils. Considering the crucial role of soil organic carbon in providing 
ecosystem services, I further analyzed conservation tillage effects on soil carbon 
sequestration and the environmental controlling factors. Based on the meta-analysis 
review, I developed a conceptual tillage module accordingly and integrated it into a 
process-based agroecosystem model, the DLEM-Ag. At a long-term tillage experiment site 
in Lexington, KY, the improved model captured the changes and trends in soil organic 
carbon under different tillage treatments during 1970-2018, with no-tillage retaining more 
soil carbon than moldboard plow. Model factorial analyses revealed that this was mainly 
due to the lower CO2 emissions in no-tillage than in the moldboard plow treatments. Then, 
I expanded the simulation to the maize and soybean croplands in Kentucky to explore the 
conservation tillage effects on greenhouse gas emissions at the regional scale. Sensitivity 
analyses showed that, compared to conventional tillage, no-tillage significantly reduced 
CO2 and N2O emissions in both croplands. Lastly, the effects of conservation tillage on the 
coupled carbon and water cycles at the Ohio River Basin were examined using the 
improved DLEM-Ag model. Simulation results suggested higher crop water productivity 
in maize and soybean croplands under conservation tillage than under conventional tillage 
at the basin level. This dissertation is based on and adapted from three articles recently 
published in peer-review journals and two manuscripts prepared for publication.  

KEYWORDS: Conservation Tillage, Greenhouse Gas Emissions, Meta-analysis, 
Process-based Modeling, Soil Carbon 
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CHAPTER 1.  GENERAL INTRODUCTION 

The expanding global population, escalating food demands, and changing climate 

are putting tremendous pressure on agricultural production (Reicosky, 2015). Meanwhile, 

agriculture is one of the major sources of greenhouse gas (GHG) emissions, accounting 

for 12% of total anthropogenic GHG emissions, and non-point source pollution (IPCC, 

2014). The challenge of modern farming in response to climate change is to simultaneously 

improve crop yield and minimize environmental pollution, making the agriculture system 

resilient to climate risks and mitigating climate change where possible. It is, therefore, 

vitally important to develop strategies for sustainably improving agriculture production. 

 Among all the agriculture technologies and strategies, soil management plays a 

fundamental role in ensuring the sustainability of agriculture and the future of humankind 

(Powlson et al., 2011), as keeping our soil healthy and productive is of paramount 

importance in agriculture. Historically, tillage has been performed because of many 

benefits, including soil preparation for planting and cultivation, facilitating crop 

establishment, weed control, and incorporation of manure or fertilizer spread on the soil 

surface. However, by loosening soil and easing its transport by wind and water, soil erosion 

and degradation have been major concerns associated with the tillage practice. It has been 

suggested that we are losing soil faster than nature can make it (Montgomery, 2007).  

 Conservation tillage, the use of less intensive tillage methods than conventional 

tillage (CT), was initially promoted as soil and water conservation technology. 

Conservation tillage is defined as any tillage system that decreases the degree and 

frequency of tillage passes and maintains at least 30 percent residue cover at planting 

(CTIC, 2020). In the past several decades, conservation tillage systems, such as no-tillage 
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(NT) (the absence of mechanical disturbance), reduced tillage (RT), strip tillage, and mulch 

tillage, have been widely adopted worldwide. Globally, more than 155 million ha of 

cultivated land is currently under conservation tillage management (Kassam et al., 2014). 

In the US, conservation tillage accounts for 67% of total US acreage in wheat (2017), 65% 

in corn (2016), 70% in soybeans (2012), and 40% in cotton (2015; Claassen et al., 2018). 

 The implementation of conservation tillage can lead to responses of soil properties 

that differ from CT, thus affecting ecosystem services. While some advantages of 

conservation tillage are clear (e.g., soil erosion control and less fuel consumption), other 

effects can be varied (e.g., crop yield (Pittlow et al., 2015; Sun et al., 2020), soil carbon 

sequestration (Baker et al., 2007; Powlson et al., 2014; Bai et al., 2019; Ogle et al., 2019), 

GHG emissions (Huang et al., 2018), nutrient leaching (Daryanto et al., 2017), and water 

use (Skaalsveen et al., 2019)). Climate conditions, soil textural class, and duration of 

conservation tillage management are the main factors that affect conservation tillage effects 

on soil physical and chemical properties (Holland 2004; Busari et al., 2015; Sun et al., 

2020; Blanco-Canqui and Ruis, 2018). The companion agronomic practices, such as 

fertilizer use and cover crop use, also contribute to the inconsistent effects (Munawar et 

al.,1990; Petersen et al., 2011; Cook and Trlica, 2016). Nevertheless, one consensus 

regarding conservation tillage effects has been that it enhances surface water interception 

due to surface residues cover, which intercepts rainfall and reduces evaporation (Morris et 

al., 2010; Busari et al., 2015). It is likely that conservation tillage enhances soil hydraulic 

properties and plant available water through improving soil structural quality and soil 

carbon content (Blanco-Canqui and Ruis, 2018). However, conservation tillage does not 

always improve plant available water compared to CT. Fine-textured soils with high initial 
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organic carbon content can respond slower to NT management than coarse-textured soils 

with low organic carbon in improving plant available water (Blanco-Canqui and Ruis, 

2018).  

Changes in soil properties can ultimately affect soil organic carbon (SOC) 

dynamics, crop growth, and soil GHG emissions. Many have reviewed the effects of tillage 

on soil carbon (Six et al., 2002; Luo et al., 2010; Powlson et al., 2014; Haddaway et al., 

2017; Bai et al., 2019; Ogle et al., 2019). These reviews and meta-analyses have shown 

beneficial and null effects on SOC due to NT relative to conventional tillage. Compared to 

CT, conservation tillage reduces soil disturbance and the soil organic matter decomposition 

rate (Salinas-Garcia and Matocha, 1997) and promotes fungal and earthworm biomass 

(Lavelle et al., 1999; Brione and Schmidt, 2017), thereby improving SOC stabilization 

(Liang and Balser, 2012). However, there is a debate on whether conservation tillage 

practices can enhance SOC stocks or just alter SOC distribution in the soil profile (Baker 

et al., 2007; Powlson et al., 2014; Bai et al., 2019). It is suggested that crop carbon input 

differences largely determine the tillage effects on SOC stocks and vice versa (Virto et al., 

2012). If carbon input increases due to tillage management, SOC stocks are more likely to 

increase.  

The positive productivity responses to NT often occur for rainfed crops in dry 

climates (Pittelkow et al., 2015; Huang et al., 2018) and moderate- to well-drained soils 

(DeFelice et al., 2006; Triplett and Dick., 2008). However, in more mesic climates or 

poorly drained soils, the responses can be more varied. Soil water conservation and 

retention can be a benefit of NT management under water-limited conditions (Farooq et 

al., 2011). In contrast, the potential for soil waterlogging, delayed soil warming in spring, 
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and soil compaction can be detrimental to crop growth (Licht and Al-Kaisi, 2005; Ogle et 

al., 2012). Some studies have argued that, despite the unstable yield responses during the 

initial years of adopting NT, the long-term use of NT modifies the soil properties in a way 

(e.g., better soil aggregation and structure, increased SOC storage, and improved soil water 

availability) that ensures the consistent positive effects of NT (Sindelar et al., 2015; 

Blanco-Canqui and Ruis, 2018; Cusser et al., 2020).  

 The impacts of conservation tillage on soil GHG (i.e., CO2, CH4, and N2O) 

emissions also varies among studies (van Kessel et al., 2013; Zhao et al., 2016; Huang et 

al., 2018). For example, NT can decrease (Li et al., 2011; Drury et al., 2012; Lu et al., 

2016), increase or not affect (Oorts et al., 2007; Yao et al., 2013; Zhang et al., 2016b) soil 

GHG emissions. Mechanisms responsible for reduced soil CO2 emissions under 

conservation tillage include: 1) less soil disturbance that keeps SOC from oxidation 

(Rastogi et al., 2002); 2) improved soil aggregate stability that protects SOC from microbial 

attack (Abdalla et al., 2013); 3) a lower soil temperature (He et al., 2011; Lu et al., 2016). 

In contrast, the often-higher soil water availability with conservation tillage can also 

enhance the microbial activity, thus increasing CO2 emissions (Plaza-Bonilla et al., 2014b). 

Tillage practices affect CH4 fluxes by altering the soil structure, aeration, hydrological 

properties, microbial activities, and crop growth (Cai et al., 2003; Mangalassery et al., 

2014). Higher CH4 emissions associated with conservation tillage can be attributed to a 

greater abundance of organic substrates and coincident formation of anaerobic microsites 

(Zhang et al., 2015). Lower CH4 emissions under conservation tillage might be due to 

improved soil porosity and gas diffusivity, which facilitates the transport of CH4 to 

methanotrophs that consume CH4 (Ball et al., 1997; Prajapati and Jacinthe, 2014). Soils 
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under conservation tillage are often wetter and denser compared to CT soils, which 

potentially favors denitrification and, consequently, higher N2O emissions (Smith et al., 

2001; Ma et al., 2013; Sheehy et al., 2013). However, NT soils may have a slower N 

mineralization rate than CT soils, leading to less NH4
+ and NO3

- substrate in NT soils and, 

therefore, lower N2O production (Dick et al., 2008; Almaraz et al., 2009a). There is a 

tendency that the long-term use of NT substantially modifies soil physical properties with 

improved soil aggregation and aeration status, leading to a reduction in N2O emissions 

because of more completed denitrification (Six et al., 2004; van Kessel et al., 2013). 

 These contrasting effects of conservation tillage on SOC, crop yield, and GHG 

emissions warrant more efforts to compare how conservation tillage can effectively 

contribute to food security, climate change adaptation, and mitigation by increasing crop 

yield and decreasing GHG emissions. Field experiments, especially long-term ones, 

represent an invaluable approach to study the effects of management practices on 

agroecosystem variables with high credibility. However, findings from individual 

experiments are often confined to specific environmental conditions and management 

factors. Meta-analysis reviews are a useful tool to statistically test the linear relationship 

between site-specific conditions and the target variables. In addition, simulation tools such 

as the process-based model provide an opportunity to evaluate the effects of crop 

management practices at multiple scales, which can help illustrate the spatiotemporal 

heterogeneity associated with the practices’ effects. 

  This dissertation research generally followed a “top-down” approach. The main 

objective was to comprehensively assess the effects of conservation tillage on SOC, crop 

yield, and soil GHG emissions at multiple scales with an integrated systems approach: a 
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combination of data synthesis, the agriculture ecosystem model, and field observations and 

measurements. This research first conducted two meta-analysis reviews to summarize and 

quantify the effects of conservation tillage on the major agroecosystem variables, as well 

as the statistical relationship between these effects and environmental and management 

factors, based on data collected from worldwide field experiments. Chapter 2 focuses on 

NT effects on crop yield and GHG emissions and conservation tillage effects on SOC. 

Then, to further examine the conservation tillage effects at local and regional scales, this 

research improved an agroecosystem model by implementing a tillage module according 

to the concept developed from the meta-analysis reviews. Chapter 3 introduces the 

improved model and uses it to investigate NT effects on soil carbon dynamics in a 

continuous maize system in well-drained soils with a humid climate. Lastly, Chapters 4 

and 5 discuss the regional responses of crop yield, GHG emissions, and crop water 

productivity to conservation tillage using model simulations. 
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CHAPTER 2. GREENHOUSE GAS EMISSIONS, CROP YIELD, AND SOIL 
ORGANIC CARBON IN  CONSERVATION TILLAGE SYSTEMS1 

2.1 Abstract 

No-tillage (NT) has been touted as one of several climate-smart agriculture (CSA) 

management practices that improve food security and enhance agroecosystem resilience to 

climate change. However, the sustainable effectiveness of NT greatly depends on trade-

offs between NT-induced changes in crop yield and greenhouse gas (GHG, i.e., CH4, CO2, 

and N2O) emissions. Such trade-offs are regulated by climate fluctuations and 

heterogeneous soil conditions and have not been well addressed. Supporting CSA 

management decisions requires advancing our understanding of how NT affects crop yield 

and GHG emissions in different agroecological regions. In this study, a meta-analysis was 

conducted using 740 paired measurements from 90 peer-reviewed articles to assess the 

effects of NT on crop yield, GHG emissions, and the global warming potential (GWP) of 

major cereal cropping systems. Compared to conventional tillage (CT), NT reduced GHG 

emissions and increased crop yield in dry, but not humid, climates, and reduced the GWP 

at sites with acidic soils. Across different cropping systems, NT enhanced barley yield by 

49%, particularly in dry climates, and decreased the GWP of rice fields through a 22% 

reduction in both CO2 and CH4 emissions. Our synthesis suggests that NT is an effective 

CSA management practice because of its potential for climate change mitigation and crop 

 
1 Based on Huang, Yawen et al. (2018) “Greenhouse gas emissions and crop yield in no-tillage 

systems: A meta-analysis” Agriculture, Ecosystems and Environment 268, 144-153, and Bai, X.; Huang, 

Yawen, et al. (2019) “Responses of soil carbon sequestration to climate-smart agriculture practices: A 

meta-analysis” Global Change Biology 25, 2591-2606. 
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yield improvement. However, the net effect of NT (relative to CT) was influenced by 

several environmental and agronomic factors (climatic conditions, tillage duration, soil 

texture, pH, crop species). Therefore, an agroecological setting must be taken into 

consideration when conducting a comparative evaluation of different tillage practices. 

Conservation tillage has been widely adopted to enhance soil organic carbon (SOC) 

sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. 

However, current measurements regarding the influences of conservation tillage on SOC 

sequestration diverge widely, making it difficult to derive conclusions about individual and 

combined CSA management effects and bringing large uncertainties in quantifying the 

potential of the agricultural sector to mitigate climate change. We conducted a meta-

analysis of 3,049 paired measurements from 417 peer-reviewed articles to examine the 

effects of three common CSA management practices on SOC sequestration as well as the 

environmental controlling factors. We found that, on average, biochar applications 

represented the most effective approach for increasing SOC content (39%), followed by 

cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects 

of CSA management practices were more pronounced in areas with relatively warmer 

climates or lower nitrogen fertilizer inputs. Our meta-analysis demonstrated that, through 

adopting CSA practices, cropland could be an improved carbon sink. We also highlight the 

importance of considering local environmental factors (e.g., climate and soil conditions 

and their combination with other management practices) in identifying appropriate CSA 

practices for mitigating greenhouse gas emissions while ensuring crop productivity. 
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2.2 Introduction 

Greenhouse gas emissions and crop yield: Among all anthropogenic sources, 

agriculture is estimated to be responsible for 12% of total greenhouse gas (GHG) emissions 

(IPCC, 2014), particularly global anthropogenic CH4 (39%) and N2O (76%) emissions 

(FAO, 2014; WRI, 2014). With increasing demands on agriculture to feed a growing world 

population, GHG emissions from agroecosystems will likely continue to rise. Climate-

smart agriculture (CSA) focuses on methods to maintain or increase food production while 

simultaneously reducing agriculture’s GHG emissions and other environmental side effects 

under various climate scenarios (FAO, 2013). No-tillage (NT) management has been 

proposed as a component of CSA (Lipper et al., 2014). In NT, crop residues are left on the 

soil surface, and only in-row soil is disturbed during seeding (Dinnes, 2004). Compared to 

conventional tillage (CT), NT exhibits greater potential for soil carbon sequestration, soil 

quality improvement, and sustained crop productivity (Lal et al., 2007; Lal, 2015; Abdalla 

et al., 2016). No-tillage was practiced on approximately 111 million ha worldwide in 2009 

(Derpsch et al., 2010), and this number reached 155 million ha in 2014 (FAO, 2014). One 

may reasonably speculate that NT management can potentially have global-scale impacts 

on the magnitude and spatial patterns of soil GHG emissions and crop production (Figure 

2.1). However, from a sustainability perspective, the net effect of NT greatly depends on 

the trade-offs between NT-induced changes in crop yield and GHG emissions. These trade-

offs are regulated by a suite of climatic and soil factors, which have not been well addressed 

in past studies. 
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Figure 2.1 Conceptual framework of diverse tillage practices impact on soil processes 
(biophysical, biophysiological, and biogeochemical), greenhouse gas (GHG) emissions, 

and crop yields 
 

The precise effects of NT on soil GHG emissions remain controversial and greatly 

vary among past studies (van Kessel et al., 2013; Zhao et al., 2016). Some studies showed 

a substantial decrease in soil CO2, CH4, and N2O emissions with NT (e.g., Li et al., 2011; 

Drury et al., 2012; Lu et al., 2016), while others reported a significant increase or no 

difference (e.g., Oorts et al., 2007; Yao et al., 2013; Zhang et al., 2016b). For example, a 

long-term study in a Mediterranean dryland agroecosystem exhibited a 50% increase in 

CO2 emission but no difference in N2O emission in NT compared to CT (Plaza-Bonilla et 

al., 2014a, b). Kim et al. (2016) reported that total CH4 flux from NT rice fields decreased 

by 20–27% in the first and second years after NT imposition, but was approximately 36% 

higher than that from CT fields by the fifth year. Zhang et al. (2016a) also observed a 

substantial decline in CH4 and CO2 emissions from NT rice fields compared to CT fields. 

Another rice field experiment exhibited significant CO2 emission reduction but increased 

N2O emission in NT (Fangueiro et al., 2017). Therefore, the climate change mitigation 

efficacy of NT is still uncertain.  
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Several hypotheses have been proposed to explain the different soil GHG emission 

responses due to NT. For example, a decrease in soil CO2 emission in NT might be due to 

carbon protection associated with enhanced soil aggregation and decreased soil 

temperature (He et al., 2011; Lu et al., 2016), while an acceleration in soil CO2 emission 

might be due to enhanced microbial activity caused by greater soil moisture availability 

(Plaza-Bonilla et al., 2014b). Elevated CH4 emission could be attributed to greater 

abundance of organic substrates and coincident formation of anaerobic microsites (Zhang 

et al., 2015). Reduced CH4 emission might be associated with improved soil porosity and 

gas diffusivity, facilitating the transport of CH4 to methanotrophs (Ball et al., 1997; 

Prajapati and Jacinthe, 2014). NT-induced increases in soil carbon and water content (and 

therefore higher water-filled pore space) could favor denitrification, ultimately resulting in 

elevated soil N2O emission (Ma et al., 2013; Sheehy et al., 2013). In contrast, factors that 

may contribute to decreased N2O emission include improved soil structure, lower soil 

temperature, a limited pool of decomposable organic carbon and low availability of mineral 

nitrogen due to a slow rate of soil organic matter (SOM) mineralization (Grandy et al., 

2006; Chatskikh and Olesen, 2007; Ruan and Robertson, 2013).  

With regard to the response of crop productivity to NT, there is also little consensus 

from the literature (FAO, 2011; Pittelkow et al., 2015). Some studies concluded that crop 

yield in water-limited conditions often increases with NT adoption (Farooq et al., 2011; 

Rusinamhodzi et al., 2011). Other studies reported decreased crop productivity in NT due 

to cooler soil temperatures, soil compaction, and altered soil fertility requirements (e.g., 

micronutrient deficiencies; Ogle et al., 2012). These contradictory reports suggest that NT 

effects may be regulated by many variables, including environment (e.g., climate and soil 
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properties) and management (e.g., crop type, fertilization, tillage duration) factors 

(Daryanto et al., 2017a). These factors may determine the extent to which NT affects the 

soil carbon and nitrogen cycles and, consequently, soil GHG emissions and crop 

productivity. Climate, in particular, influences the frequency and amount of precipitation, 

soil moisture regime, and the production of soil GHGs. Several recent meta-analyses have 

synthesized data on GHG emissions and crop yield, but these syntheses focused largely on 

either one GHG species, a specific cropping system, or a specific geographical region. For 

example, Abdalla et al. (2016) examined CO2 emission in response to NT, and van Kessel 

et al. (2013) emphasized the central tendency of N2O emission and the decreasing crop 

yield trend in NT. While Zhao et al. (2016) assessed N2O and CH4 emissions in response 

to NT, their study was restricted to China. Pittelkow et al. (2015) evaluated the influence 

of crop species and environmental variables on NT and CT crop yields, but they did not 

account for soil GHG emissions. Assessing the efficacy of NT as a CSA practice requires 

a simultaneous examination of NT impacts on crop productivity and GHG emissions across 

different crops and climatic regions. 

In light of interest in NT as a CSA practice, and uncertainties associated with NT 

impacts, we conducted a meta-analysis to simultaneously evaluate NT effects on soil GHG 

(i.e., CH4, CO2, and N2O) emissions and crop yield. Specifically, we focused on four major 

cereal crops (barley, maize, rice, and wheat), which, combined, contribute more than half 

of all calories consumed by humans and cover more than 45% of global cropland (FAO, 

2014). Our objectives were to: (1) examine soil GHG emissions and crop yield with NT 

soil management in various environmental and management conditions; (2) identify factors 
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contributing to food security and climate change mitigation in support of NT as an effective 

CSA management practice. 

Soil organic carbon: Soil organic carbon (SOC) is a primary indicator of soil 

health and plays a critical role in food production, greenhouse gas balance, and climate 

change mitigation and adaptation (Lorenz and Lal, 2016). The dynamic of agricultural SOC 

is regulated by the balance between carbon inputs (e.g., crop residues and organic fertilizers) 

and outputs (e.g., decomposition and erosion) under long-term constant environment and 

management conditions. However, this balance has been dramatically altered by climate 

change, which is expected to enhance SOC decomposition and weaken the capacity of soil 

to sequester carbon (Wiesmeier et al., 2016). Generally, agricultural soils contain 

considerably less SOC than soils under natural vegetation due to land conversion and 

cultivation (Hassink, 1997; Poeplau and Don, 2015), with the potential to sequester carbon 

from the atmosphere through proper management practices (Lal, 2018). Therefore, it is 

crucial to seek practical approaches to enhance agricultural SOC sequestration without 

compromising the provision of ecosystem services such as food, fiber, or other agricultural 

products. 

The key to sequestering more carbon in soils lies in increasing carbon inputs and 

reducing carbon outputs. For example, conservation tillage practices, including no-tillage 

(NT) and reduced tillage (RT), are often recommended for SOC sequestration. 

Conservation tillage reduces soil disturbance and the soil organic matter decomposition 

rate (Salinas-Garcia et al., 1997) and promotes fungal and earthworm biomass (Lavelle et 

al., 1999; Briones and Schmidt, 2017), thereby improving SOC stabilization (Liang and 

Balser, 2012).  
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In recent decades, these management practices have been applied in major 

agricultural regions globally, and a large number of observations/measurements have been 

accumulated (e.g., Clark et al., 2017). However, their effects on SOC sequestration are 

variable and highly dependent on experiment designs and site-specific conditions such as 

climate and soil properties (Abdalla et al., 2016; Paustian et al., 2016). Some studies even 

suggested negative effects of CSA management practices on SOC (e.g., Liang et al., 2007). 

Also, most prior quantitative research focused on the effects of a single conservation tillage 

practice on SOC (e.g., Abdalla et al., 2016), very few studies estimated the combined 

effects of conservation tillage and other management practices like cover crops. Cover 

crops provide additional biomass inputs from above- and belowground (Blanco-Canqui et 

al., 2011), increase carbon and nitrogen inputs, and enhance the biodiversity of 

agroecosystems (Lal, 2004). Moreover, cover crops can promote soil aggregation and 

structure (Sainju et al., 2003), therefore indirectly reduce carbon loss from soil erosion (De 

Baets et al., 2011).  

Some recent studies reported that a combination of cover crops and conservation 

tillage could significantly increase SOC compared to a single management practice 

(Blanco-Canqui et al., 2013; Ashworth et al., 2014; Duval et al., 2016; Higashi et al., 2014). 

For example, Sainju et al. (2006) suggested that soil carbon sequestration may increase 

0.267 Mg C ha−1 year−1 under a combination of NT and cover crop practices, where the 

latter was a mixed culture of hairy vetch (Vicia villosa) and rye (Secale cereale); in contrast, 

a carbon loss of 0.967 Mg C ha−1 year−1 occurred when only NT was used. These findings 

highlight the importance of quantitatively evaluating the combined effects of multiple 

management practices on SOC sequestration under different climate and soil conditions.  
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This study aims to fill the abovementioned knowledge gap through a meta-analysis 

to simultaneously examine the effects of conservation tillage (i.e., NT and RT) on SOC 

sequestration (Figure 2.2). Our scientific objectives were to: (a) evaluate the effects of 

conservation tillage on SOC; (b) examine how environmental factors (e.g., soil properties 

and climate) and other agronomic practices (e.g., cover crops, nitrogen fertilization, residue 

management, irrigation, and crop rotation) influence SOC in conservation tillage 

environments. 

 

Figure 2.2 Relationship between conservation tillage and soil processes. “+” means 
positive feedback or promotion effect; “−” means negative feedback or inhibition 

function; and “?” means the effect is unclear  
 

2.3 Materials and Methods 

2.3.1 Data Compilation for Greenhouse Gas and Crop Yield Analysis 

The data in this meta-analysis were collected from peer-reviewed publications 

reporting in situ soil GHG emissions and crop yield in both CT and NT soil management. 

A literature survey was performed using the Web of Science and Google Scholar (1900–
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2017). Keywords used for the initial search included “tillage,” “greenhouse gases,” “CO2,” 

“CH4,”, and “N2O.” The literature survey focused on GHG emissions from four cereal 

crops (barley, maize, rice, and wheat). Three criteria were considered to minimize bias and 

ensure database quality when selecting studies. First, GHG emissions were measured in 

situ for the entire cropping season. Second, the CT versus NT comparison was done under 

otherwise similar agronomic management practices. Third, information regarding means, 

standard deviations (or standard errors), replications, and the magnitude of seasonal 

cumulative GHG emissions was either available or could be calculated. 

 

Figure 2.3 Global distribution of the study sites 
 

Based on these criteria, 90 peer-reviewed articles with 139 comparisons for CO2 

emission, 65 for CH4 emission, 56 for CH4 uptake, 299 for N2O emission, and 181 for crop 

yield were collected for the meta-analysis (Data S2.1). These studies came from 20 

different countries (Figure 2.3). The GHG and crop yield data were either derived from 

tables or extracted from figures using WebPlotDigitizer (Rohatgi, 2012). Other related 

information, including location (longitude and latitude), mean annual temperature (MAT), 
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mean annual precipitation (MAP), land use, duration of the experiment, soil type, soil pH, 

crop residue management, and the rate and placement of N fertilizer inputs, was recorded. 

To disentangle the effects of other co-varying factors on GHG emissions and crop yield, 

we further analyzed data by considering two major categorical variables (i.e., environment 

and management), except when data availability constraints existed (Table 2.1). Climate 

regions were classified using global aridity values according to a generalized climate 

classification scheme (UNEP, 1997). The aridity index of each study site was extracted 

from the WorldClim database (Hijmans et al., 2005). Study sites with an aridity index > 

0.65 were considered “humid,” whereas study areas with a lower index (< 0.65) were 

grouped as “dry.” Soil pH was classified into three categories following Havlin et al. 

(2013): acidic (pH < 6.6), neutral (6.6 ≤ pH ≤ 7.3), and alkaline (pH > 7.3). Soil texture 

was classified according to the USDA soil texture triangle. Clay, sandy clay, and silty clay 

classes were designated “fine textured;” silt, silt loam, silty clay loam, loam, sandy clay 

loam, and clay loam were considered “medium-textured;” and sand, loamy sand, and sandy 

loam were grouped as “coarse textured” (Daryanto et al., 2017a, b). Nitrogen (N) 

fertilization rates were grouped into four categories: control (no fertilizer applied), low 

(less than 100 kg N ha−1yr−1), medium (between 100 and 200 kg N ha−1yr−1), and high 

(greater than 200 kg N ha−1yr−1). Fertilizer N placement was grouped into “surface 

application” and “subsurface application.” Methods such as injection, drilling, and side-

dressing (depths of placement were clearly described in the literature) were considered to 

be subsurface N fertilizer applications. Crop residue management was classified as either 

“removed” or “retained.” No-tillage management duration was determined according to 

NT establishment in each experiment. The NT treatment was considered “short” duration 
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when imposed for less than five years, “medium” duration when present for 5 to 10 years, 

and “long” duration when exceeding ten years. 

Table 2.1 Categories used in describing the environmental and management conditions 
Factors Categories 

Environmental factors 

Climate Dry Humid   

Soil texture Fine Medium Coarse  

Soil pH Acid 

(<6.6) 

Neutral 

(6.6-7.3) 

Alkaline 

(>7.3) 

 

Management practices 

Crop type Rice Wheat Maize Barley 

Tillage duration < 5 years 5-10 years > 10 years  

N fertilizer Control 

(0) 

Low 

(<100 kg N ha-

1yr-1) 

Medium 

(100-200 kg N 

ha-1yr-1) 

High 

(> 200 kg N 

ha-1yr-1) 

N placement Surface (SUR) Subsurface 

(SUB) 

  

Crop residue 

management 

Removed (RM) Retained (RT)   

 

The variation in observed emission and yield was recorded and converted to the 

standard deviation (SD). The SD values were computed from standard error (SE) by the 

equation: SD = SE × √𝑛𝑛 , where n is the number of replications. When SD and SE were 

missing, SD was estimated from the average coefficient of variation for the known data 

(Zhao et al., 2016). 
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2.3.2 Data Compilation for Soil Organic Carbon Analysis 

We extracted data from 297 peer-reviewed articles published from 1990 to May 

2017 (Data S2.2). Among all publications, 113 were conducted in the United States. All 

articles were identified from the Web of Science. The search keywords were “soil organic 

carbon” and “tillage.” All selected studies meet the following inclusion criteria: (a) SOC 

was measured in field experiments (to estimate the potential of biochar to increase soil 

carbon, we also included soil incubation and pot experiments with regard to biochar use); 

(b) observations were conducted on croplands excluding orchards and pastures; (c) 

ancillary information was provided, such as experiment duration, replication, and sampling 

depth; and (d) other agronomic management practices were included besides the three 

target management practices in this study. We considered conventional tillage as the 

control for NT and RT. Experiments that eliminated any tillage operation were grouped 

into the NT category, and experiments using tillage with lower frequency or shallower till-

depth or less soil disturbance in comparison to the paired conventional tillage (e.g., 

moldboard plow and chisel plow) were grouped into the RT category.  

SOC data were either derived from tables or extracted from figures using the 

GetData Graph Digitizer software v2.26 (http://getda ta-graph-digit izer.com/downl 

oad.php). Other related information from the selected studies were also recorded, including 

location (i.e., longitude and latitude), experiment duration, climate (mean annual air 

temperature and precipitation), soil properties (texture, depth, and pH), and other 

agronomic practices (crop residues, nitrogen fertilization, irrigation, and crop rotation). 

The study durations were grouped into three categories: short term (≤5 years), medium-

term (6–20 years), and long term (>20 years). Climate was grouped according to the aridity 
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index published by UNEP (1997) as either arid (≤0.65) or humid (>0.65). Study sites were 

grouped into cool (temperate and Mediterranean climates) and warm zones (semitropical 

and tropical climates; Shi et al., 2010). Soil texture was grouped as silt loam, sandy loam, 

clay and clay loam, loam, silty clay and silty clay loam, and loamy sand according to the 

USDA soil texture triangle. Soil depth was grouped as 0–10 cm, 10–20 cm, 20–50 cm, and 

50–100 cm. Soil pH was grouped as acidic (<6.6), neutral (6.6–7.3), and alkaline (>7.3). 

Crop residue management was grouped as “residue returned” and “residue removed.” We 

only included those studies that used the same residue management in the control and 

treatment groups. Similarly, nitrogen fertilization was grouped into no addition, low (1–

100 kg N/ha), medium (101–200), and high levels (>200). Irrigation management was 

grouped as irrigated or rainfed. Crop sequence was grouped as rotational or continuous 

crops (including crop-fallow systems). We also estimated the response of SOC in the 

whole-soil profiles (from the soil surface to 120 cm, with an interval of 10 cm) to tillage 

treatments. 

The standard deviation (SD) of selected variables, an important input variable to 

the meta-analysis, was computed as SD = SE × √n, where SE is the standard error, and 

n is the number of observational replications. If the results of a study were reported without 

SD or SE, SD was calculated based on the average coefficient of variation for the known 

data.  

2.3.3 Data Analysis 

A meta-analysis combines and compares results from pertinent independent studies 

by weighting these results according to their differences in precision. A random-effect 

meta-analysis was performed to explore environmental and management variables that 
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might explain the response of GHG emissions and crop yield to NT, and the response of 

SOC to conservation tillage. In this meta-analysis, response ratios (R) comparing NT and 

CT, for GHG emissions and crop yield, were calculated as follows: 

𝑅𝑅 = �𝑋𝑋𝑡𝑡
𝑋𝑋𝑐𝑐
�                                                                                                                         (2.1) 

where X is the variate (CO2, CH4, N2O, GWP, crop yield, or SOC) mean for either 

the treatment (NT/RT) or the control (CT) treatment. The natural logarithm of R (lnR), the 

effect size, was calculated for each treatment in every trial/experiment (Hedges et al., 1999; 

Deng et al., 2017). The variance (𝜐𝜐) of lnR was computed as:   

𝜐𝜐 = 𝑆𝑆𝑆𝑆𝑡𝑡2

𝑛𝑛𝑁𝑁𝑁𝑁𝑋𝑋𝑡𝑡2
+ 𝑆𝑆𝑆𝑆𝑐𝑐2

𝑛𝑛𝐶𝐶𝑁𝑁𝑋𝑋𝑐𝑐2
                                                                                                          (2.2) 

where SD and n are standard deviation and sample sizes, respectively, either in CT 

or NT. The weight of each effect size was:  

𝜔𝜔 = 1
𝜐𝜐
                                                                                                                                   (2.3) 

The mean effect sizes were estimated as:  

𝑙𝑙𝑛𝑛𝑅𝑅����� = ∑(𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖×𝜔𝜔𝑖𝑖)
∑𝜔𝜔𝑖𝑖

                                                                                                               (2.4)  

where 𝑙𝑙𝑛𝑛𝑅𝑅𝑖𝑖  and 𝜔𝜔𝑖𝑖  were the effect size and weight from the ith comparison, 

respectively. The 95% confidence interval (CI) of 𝑙𝑙𝑛𝑛𝑅𝑅�����  was computed as:  

95%𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑛𝑛𝑅𝑅�����  ± 1.96𝑆𝑆𝑆𝑆𝑙𝑙𝑛𝑛𝑙𝑙�����                                                                                             (2.5)  

where 𝑆𝑆𝑆𝑆𝑙𝑙𝑛𝑛𝑙𝑙����� is the standard error of 𝑙𝑙𝑛𝑛𝑅𝑅����� and was computed as:  

𝑆𝑆𝑆𝑆𝑙𝑙𝑛𝑛𝑙𝑙����� = �1/∑𝜔𝜔𝑖𝑖                                                                                                           (2.6) 

SAS software was used to analyze the data by applying the macros for the meta-

analysis procedure (Lipsey and Wilson, 2001). The effect size means were significantly 



22 
 

different if their 95% CI did not overlap with zero. The percent change in selected variables 

was computed using the equation:  

�𝑒𝑒𝑙𝑙𝑛𝑛𝑙𝑙����� − 1�  × 100%                                                                                                        (2.7) 

Global warming potential was calculated when fluxes for all three GHG species 

(i.e., CH4, CO2, and N2O) were reported in a single study. The units of soil CH4 and N2O 

fluxes were converted into CO2-equivalent units before GWP calculation. We used the 

IPCC factors (IPCC, 2013) to calculate GWP in CO2-equivalents ha-1 yr-1 over a 100-year 

time horizon:  

GWP= CO2 × 1 + CH4 × 34 + N2O × 298                                                                            (2.8) 

Each categorical environment and management variable was treated as a moderator 

in analyzing the whole dataset. The Chi-square test was then used to calculate the between-

group heterogeneity for a given variable across all the data to further analyze the NT effect 

for different sub-categories. Publication bias was tested by the funnel plot method and 

assessed using Kendell’s rank correlation (Begg and Mazumdar, 1994). If the mean effect 

exhibited a significant difference from zero (i.e., indicating publication bias), Rosenthal’s 

fail-safe or file drawer number was calculated (METAFOR package in R) to estimate if 

our conclusion was likely affected by nonpublished studies (Rosenberg, 2005). The meta-

analysis can be considered robust if the fail-safe number is larger than 5 × k + 10 (where k 

is the number of observed studies; Rothstein et al., 2005). 

2.4 Results 

2.4.1 Greenhouse Gas Emissions and Crop Yield 

2.4.1.1 Overall Effects of NT on GHG Emissions and Crop Yield 
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On average, the CO2 emission rate was not significantly different between NT and 

CT (CI overlapped with zero; Figure 2.4). In contrast, NT significantly increased N2O 

emission by 10.4% with a mean weighted lnR of 0.10 [CI = (0.02, 0.17)] (Figure 2.4). For 

locations exhibiting net CH4 uptake, we found no difference between NT and CT. Whereas 

for sites with net CH4 emission, NT reduced CH4 emission by 15.5%, with an lnR of -0.17 

[CI = (-0.30, -0.03)] (Figure 2.4). Therefore, a reduction in CH4 emission was the major 

contribution of NT management to GHG mitigation. Crop yields were similar between NT 

and CT (CI overlapped with zero, Figure 2.4), suggesting that yield loss should not be a 

deterrent to NT adoption as a CSA practice. Publication bias for CH4 uptake analysis was 

suggested by Rosenthal’s fail-safe number method, but it was not found for the other 

variables (Table S2.1). 

 

Figure 2.4 Overall changes in soil greenhouse gas (GHG) emissions and crop yields 
between NT and CT. Numerals indicate the number of observations. * represents p < 0.05 
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Our analysis revealed several environment and management variables affecting 

GHG emissions and crop yield in NT (versus CT) management. The response of soil CO2 

emission to NT varied significantly with crop species, climate regime, NT duration, soil 

pH, and crop residue management. No-tillage-induced changes in CH4 flux were 

significantly influenced by crop species, soil pH, and NT duration. No-tillage-induced 

changes in N2O flux were significantly impacted by N fertilizer placement. Differences in 

crop yield due to NT were significantly related to crop species, climate, and both N 

fertilizer rate and placement (Table 2.2).
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Table 2.2 Summary of the Chi-square test for the variables controlling the comparative effect of tillage (no-tillage vs. conventional 
tillage) on GHG emissions and crop yield 

 CO2 CH4 N2O GHG Yield 

Variables df χ2 df χ12 χ22 df χ2 df χ2 df χ2 

Crop types 3 18.24*** 2 9.56** 7.76* 3 1.14 3 13.77** 3 42.96*** 

Climate 1 5.42** 1 1.12 4.9* 1 0.22 1 0.2 1 10.95*** 

Duration 1 13.96*** 1 18.11*** 5.25 2 0.23 1 2.69 2 2.69 

Texture 2 1.07 2 0.74 1.71 2 5.92 2 2.57 2 1.85 

pH 2 11.71** 2 9.57** 18.4*** 2 2.42 2 7.6* 2 5.91 

N rate 3 0.53 3 3.88 6.9 3 2.56 3 2.21 3 10.08* 

N placement 1 0.6 1 0.13 0.56 1 10.44** 1 0.21 1 5.09* 

Residue 1 4.04* 1 0.63 2.46 1 0.15 1 0.8 1 0.16 

df represents degrees of freedom. χ12 represents CH4 emissions, χ22 represents CH4 uptakes. 

Statistical significance: *P< 0.05; **P< 0.01; ***P< 0.001.
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2.4.1.2 Effects of Environment on NT vs. CT Comparison 

2.4.1.2.1 Climate 

Compared to CT, NT significantly decreased CO2 emission (-9.9%) in dry climates, 

but not in humid climates (Figure 2.5a). However, significant reductions in soil CH4 

emission (-18.9%) with NT occurred in humid climates (Figure 2.5b). Similarly, NT 

increased soil CH4 uptake (47%) in humid climates (Figure S2.1a). Although climate did 

not significantly affect the difference in N2O emission between the tillage practices (Table 

2.2), N2O emission in NT was greater (12.3%) than in CT for humid climates (Figure 2.5c). 

The effect of NT on crop yield in different climates was not consistent. In arid climates, 

NT soil management caused 10.2% greater crop yield, but in humid climates, NT decreased 

yield by 7.5%, compared to CT (Figure 2.5d). 

2.4.1.2.2 Soil Texture and pH 

Generally, soil texture had no statistically significant effect on the difference 

between NT and CT in terms of soil GHG emissions or crop yield (Table 2.2). In fine-

textured soils, NT resulted in significantly higher (32.2%) N2O emission (Figure 2.4c). 

With NT, CO2 emission was significantly lower, by 15.3% and 18.4%, in acidic and neutral 

soils, respectively (Figure 2.4a). No-tillage also significantly reduced CH4 emission by 

25.2% in acidic soils (Figure 2.4b). We found a significant decrease (31.2%) in CH4 uptake 

in neutral soils with NT (Figure S2.1a). Differences in N2O emissions between NT and CT 

were not significantly influenced by soil pH, although there was a nearly 15% greater 

emission from acidic soils in NT (Figure 2.5c, Table 2.2). For crop yield, our results 

suggested that NT improved yield (13.1%) in alkaline soils (Figure 2.5d). 
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Figure 2.5 The effect of NT on soil greenhouse gas (GHG) emissions and crop yields 
differed with environmental factors (a) CO2 (b) CH4 (c) N2O (d) Yield. Numerals indicate 
the number of observations. * represents p < 0.05  
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2.4.1.3 Interactive Controls of Management Practices with CT and NT 

2.4.1.3.1 Nitrogen Fertilization 

Nitrogen fertilizer application rate did not significantly affect the difference in soil 

GHG emissions between NT and CT (Table 2.2). Compared to CT, NT significantly 

reduced CH4 emission (24.7%) at the medium N fertilizer rate (Figure 2.6b), and it resulted 

in significantly higher N2O emission (16.7%) at the high fertilizer rate (Figure 2.6c). 

However, N fertilizer rate played a significant role in crop yield differences between NT 

and CT (Table 2.2). Specifically, NT enhanced crop yield (25.2%) at the low fertilizer N 

rate (Figure 2.6d). Additionally, though the NT versus CT response patterns in N2O 

emission and crop yield due to N fertilizer placement were similar (Figure 2.6c, d), there 

was a significant difference between the two fertilization sub-groups (Table 2.2). 

Compared to CT, surface N fertilizer placement in NT exhibited 18.6% higher N2O 

emission (Figure 2.6c). Changes in N2O emission due to the tillage practices were not 

significant with subsurface N placement. Fertilizer N placement had no effect on the 

differences in CO2 emission or CH4 flux between the tillage practices (Table 2.2). 
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Figure 2.6 The effect of NT on soil greenhouse gas (GHG) emissions and crop yields 
differed with management factors. (a) CO2 (b) CH4 (c) N2O (d) Yield. Numerals indicate 
the number of observations. * represents p < 0.05 

 

2.4.1.3.2 Residue Management and Duration of No-Tillage 

Crop residue management only significantly affected CO2 emission (Table 2.2). 

With crop residue removal, CO2 emission was significantly lower (-15.8%) in NT (Figure 
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2.6a). However, with residue retention, there was no significant difference in CO2 emission 

between the tillage practices. Changes in CH4 and N2O fluxes and crop yield due to NT 

were not influenced by residue management. The duration of NT had inconsistent effects 

on CO2 and CH4 emissions. Emissions of CO2 and CH4 were reduced by 13.3% and 21.4%, 

respectively, with short NT duration (Figure 2.6a, b), but there was no difference between 

NT and CT for studies where NT duration was longer than five years. The duration of NT 

had no impact on the differences in CH4 uptake, N2O emission, or crop yield. 

2.4.1.3.3 Crop Species 

The crop species being grown played a significant role in the differences in GHG 

emissions and crop yield due to tillage (Table 2.2). The difference in CO2 emission between 

NT and CT was largest with rice, where NT soils emitted 22.5% less CO2 than CT soils 

(Figure 2.6a). No-tillage also reduced CH4 emission in rice production systems by 22.4% 

(Figure 2.6b) but increased CH4 uptake in wheat by 31.1% (Figure S2.1b). There were no 

significant differences in CO2 emission and CH4 flux between tillage practices in barley or 

maize production systems. Changes in N2O emission between NT and CT were only 

significantly different in wheat production, where a 15.2% increase in emission under NT 

was noted (Figure 2.6c). Crop yield differences between NT and CT were significant in 

barley and maize production systems, with barley yield being 49% higher and maize yield 

9.3% lower under NT (Figure 2.6d). 

2.4.1.4 Effects of No-Tillage on Global Warming Potential 

For those studies that measured fluxes of all three GHGs, NT exhibited no 

difference in GWP compared to CT (Figure 2.7). Further examination of the relevant 

environment and management variables showed that soil pH and crop species significantly 
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affected the difference in GWP between tillage systems (Table 2.2). No-tillage decreased 

GWP by 31.2% in acidic soils and by 24.8% in rice fields (Figure 2.7). This pattern 

generally matched the effect of NT on CO2 flux (Figure 2.5 and 2.6). However, with the 

realization that fluxes of all three GHGs and crop yield were reported in few studies 

comparing NT and CT, these results were likely affected by publication bias (Table S2.1), 

and therefore should be interpreted cautiously. 

 

Figure 2.7 The effect of NT on the global warming potential (GWP) of greenhouse gas 
(GHG) emissions. Numerals indicate the number of observations. * represents p < 0.05 

 

2.4.2 Soil Organic Carbon 

2.4.2.1 Overall SOC Responses to Conservation Tillage 

Overall, conservation tillage enhanced SOC storage by 5% (Figure 2.8). When 

investigating different types of conservation tillage, NT and RT had similar effects on SOC 
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(approximately 8% increase). All results were statistically significant (Figure 2.8). Across 

the whole dataset we compiled, the SOC varied widely in each tillage treatment (Figure 

S2.2). We calculated the distribution of the data points (the ratio of SOC of each treatment 

to that of the corresponding control, i.e., NT/RT vs. conventional tillage; Figure S2.2). 

Most of the studies used in this meta-analysis reported positive responses of SOC to NT 

and RT (60% and 65%, respectively). The SOC change rates were 0.38 ± 0.71 Mg ha−1 

year−1 (n = 56) and −0.29 ± 0.79 Mg ha−1 year−1 (n = 30) in NT and RT systems, 

respectively (Figure S2.3). 

 

Figure 2.8 Overall changes in soil organic carbon (SOC) between conservation tillage (no-
tillage (NT) and reduced tillage (RT)) and conventional tillage. Error bars represent 95% 
confidence intervals  

 

2.4.2.2 Effects of Conservation Tillage in Different Climate and Soil 

Climate: Overall, conservation tillage sequestered more SOC in arid areas than in 

humid areas (Figure 2.9a). The NT-induced SOC increase was slightly higher in arid areas 

than that in humid areas (9% and 8%, respectively). In comparison, the RT-induced SOC 

increment in arid areas was two times greater than that in humid areas. Our further analysis 
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suggested that conservation tillage significantly increased SOC in both cool and warm 

climate zones with diverse responses (Figure 2.9b). In warm areas, NT increased SOC by 

15% compared to 8% in cool areas. Reduced tillage increased SOC by 7% and 6% in warm 

and cool areas, respectively. 

 

Figure 2.9 The effect of NT (no-tillage) and RT (reduced tillage) on soil organic carbon 
(SOC) differed with climate zones (the climate zones were divided by a) aridity index; b) 
mean annual air temperature). Numbers in parentheses represent the number of 
observations. Error bars represent 95% confidence intervals 

 

Soil texture: The effects of conservation tillage on SOC were strongly influenced 

by soil texture (Figure 2.10a). No-till increased SOC by 16% in silty clay and silty clay 

loam soils, compared to 12% in sandy loam soils and 7% in loamy sand soils. Reduced 

tillage increased SOC by 21%, 7%, and 15% in silty clay and silty clay loam soils, loam 

soils, and loamy sand soils, respectively. Overall, NT and RT increased SOC more in fine-

textured soils than in coarse-textured soils. 
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Soil depth: The positive effects of conservation tillage on SOC decreased with soil 

depth (Figure 2.10b). Both NT and RT could significantly increase SOC most at 0–10 cm 

depth (22% and 17%, respectively). Although reduced SOC was observed in the 10–20 cm 

and 20–50 cm soil layers (−4% and −10%, respectively), NT could still enhance SOC 

sequestration in the entire soil profile up to 120 cm (Table S2.5). In comparison, RT could 

increase SOC in the 0–70 cm soil profile (Table S2.5), although decreased soil carbon (not 

statistically significant) was observed in the 10–50 cm soil layer (Figure 2.10b). 

Soil pH: The management-induced SOC uptake was generally higher in alkaline 

soils than in acid soils (Figure 2.10c). No-till increased SOC by 6% in acid soils and 13% 

in alkaline soils. The SOC increased by RT was greater in alkaline soils (9%) than in acid 

soils (6%), but RT had no significant influence on SOC in neutral soils.

  

Figure 2.10 The effect of NT (no-tillage) and RT (reduced tillage) on soil organic carbon 
(SOC) differed with soil texture (a), soil depth (b), and soil pH (c). Numbers in paratheses 
represent the number of observations. Error bars represent 95% confidence intervals. The 
average depth of each categorial group was presented in supplementary files (Tables S2.8-
S2.11) 
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2.4.2.3 Combined Effects of Experiment Duration and Other Agronomic 
Practices 

Conservation tillage practices are generally applied together with other agronomic 

practices such as residue return, nitrogen fertilizer use, and irrigation. These agronomic 

practices may interact with conservation tillage practices with positive or negative effects 

on the capacity of soils to sequester carbon. In this study, we considered experiment 

duration and five other agronomic practices, including residue return, nitrogen fertilization, 

irrigation, crop sequence, and cover crops, to quantify these effects. 

Duration: Our results demonstrated that NT significantly increased SOC by 13% 

in the long-term experiments, followed by medium-term (7%) and short-term experiments 

(6%; Figure 2.11a). Reduced tillage increased SOC by 12% in long-term studies, followed 

by medium-term (9%) and short-term experiments (3%). The average durations differed in 

each group (Table S2.6), which may influence the effect of CSA management practices on 

SOC. When excluding short and medium experiment durations (≤20 years) and shallow 

sampling (<20 cm), RT significantly increased SOC by 14%, while NT had no significant 

effect on SOC (Figure S2.4). 

Residues: When crop residues were returned, conservation tillage significantly 

increased SOC: 9% for NT and 5% for RT (Figure 2.11b). However, if crop residues were 

removed, RT had a significant effect on SOC, although there was a significant increase in 

SOC under NT (5%). 

Nitrogen fertilizer: Our results suggested that nitrogen fertilizer use could alter the 

magnitude of soil carbon uptake induced by conservation tillage practices. No-till tended 

to sequester more soil carbon when nitrogen fertilizer input was relatively lower (11%, 8%, 

and 6% for low-level, medium-level, and high-level nitrogen fertilization, respectively). 
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While RT increased SOC by 13% at the medium-level nitrogen fertilizer rate, 

approximately two times larger than those at the low-level and high-level nitrogen fertilizer 

use (Figure 2.11d). 

 

 

Figure 2.11 The effect of NT (no-tillage) and RT (reduced tillage) on soil organic carbon 
(SOC) differed with experiment duration (a), residue management (b), water management 
(c), nitrogen fertilizer use (d), and crop sequence (e). Numbers in paratheses represent the 
number of observations. Error bars represent 95% confidence intervals  
 

Irrigation: When investigating the irrigation effects, our results suggested that NT 

increased SOC by 15% in irrigated croplands, twice as much soil carbon as that in rainfed 

croplands. In contrast, the RT-induced SOC increase was 16% under the rainfed condition, 

5% higher than that in irrigated croplands (Figure 2.11c). 
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Crop rotation: Conservation tillage significantly promoted SOC in both rotational 

and continuous cropping systems (Figure 2.11e). No-tillage and RT induced SOC increases 

showed no obvious differences in the rotational and continuous cropping systems (9% and 

8% vs. 8% and 7%). 

Cover crops: Our results demonstrated that combining conservation tillage and 

cover crops might significantly enhance SOC sequestration. In warm regions, SOC 

increased by 13% with the combination of conservation tillage and cover crops (Figure 

2.12). In loamy sand and sandy clay loam soils, associated SOC uptakes increased to 31% 

and 21%, respectively. A similar effect was also observed in medium-term experiments. 

However, in clay soils, the combination of cover crops and conservation tillage 

significantly decreased SOC by 19%. 
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Figure 2.12 The combined effect of conservation tillage and cover crops on SOC (soil 
organic carbon) for different subcategories. Numbers in paratheses represent the number 
of observations. Error bars represent 95% confidence intervals. The vertical solid line 
represents 11%, which is the theoretical sum of the effect sizes of conservation tillage and 
cover crops (Bai et al., 2019) 
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2.5 Discussion 

2.5.1 Responses of GHG Emissions to NT 

Our meta-analysis found no significant effect of NT on CO2 emission. This 

contrasts with the results of an earlier meta-analysis documenting a significant decrease in 

CO2 emission (-21%) with NT (Abdalla et al., 2016). This discrepancy might be related to 

data source differences. In Abdalla et al. (2016), data were collected from experiments in 

which CO2 emission was only measured for a period immediately after tillage - not for the 

entire growing season. This shortened measurement period may have amplified the impact 

of tillage on CO2 emission, as it possibly captures the release of CO2 previously trapped in 

soil pores (Oorts et al., 2007). The immediate stimulation of tillage on CO2 production was 

likely due to the breakdown of aggregates and exposure of otherwise protected SOM 

(Fiedler et al., 2016). Thus, short-duration studies might not be sufficient to capture the 

magnitude of CO2 emission associated with season-long decay of surface crop residues in 

NT (Oorts et al., 2007). The response of GHG fluxes to NT varies considerably with GHG 

flux measurement timing (Regina and Alakukku, 2010). Although NT management has 

often been touted to reduce CO2 emission (Kessavalou et al., 1998), greater CO2 emission 

in NT has also been reported. This is likely due to the decomposition of crop residues 

accumulated in long-term NT (Oorts et al., 2007) or to enhanced soil respiration by a more 

abundant soil microbial population (Plaza-Bonilla et al., 2014b).  

No-tillage decreased soil CH4 emission by 15.5% and had no effect on soil CH4 

uptake, which is consistent with another meta-analysis reported for Chinese rice paddies 

(Zhao et al., 2016). Generally, rice paddies act as atmospheric CH4 sources, while upland 

soils are either CH4 sinks or sources, depending on the balance between soil methanogenic 
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and methanotrophic activities (Topp and Pattey, 1997). Soil properties such as SOC, 

temperature, and bulk density play a leading role in controlling the activity of methanogens 

and methanotrophs, affecting the direction of CH4 flux (Mitra et al., 2002). On the one 

hand, NT results in higher surface SOC, soil water content and bulk density (Ahmad et al., 

2009; Zhang et al., 2015), thus increasing the potential for CH4 production due to greater 

availability of organic substrates and formation of anaerobic microsites. On the other hand, 

NT increases soil macroporosity and soil pore continuity (Ball et al., 1999), thus improving 

gas diffusivity and increasing CH4 oxidation.  

Our meta-analysis found that NT significantly increased soil N2O emission by 

10.4%. Higher N2O emission in NT is usually ascribed to enhanced soil microbial activities, 

especially denitrification, due to increased soil moisture and decreased soil aeration 

(Venterea et al., 2005; Almaraz et al., 2009b; Ma et al., 2013). Our results were different 

from some other studies. For example, Gregorich et al. (2008) observed higher N2O 

emission from CT soils, and these authors suggested that nitrification (NO3
− formation) 

was controlling N2O emission from soils in CT due to greater soil aeration and lower soil 

water content. The contradictory findings might result from different microbial activity in 

responses to site-specific conditions. The microbial community may vary from site to site 

and interact with NT management, leading to different responses of N2O emission. 

2.5.2 Factors in Regulating GHG Emissions 

2.5.2.1 Environmental Factors 

Climate greatly influenced the differences in GHG emissions between tillage 

practices (Table 2.2). For instance, NT strongly reduced CO2 emission in dry climates. 

Similar trends in CO2 emission in NT have been reported (Abdalla et al., 2016). The larger 
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difference between NT and CT in dry climates can be attributed to the differences in soil 

temperature (Lu et al., 2016) and soil water availability (Álvaro-Fuentes et al., 2008). No-

tillage normally causes greater soil water content than does CT (Abdalla et al., 2013). The 

resulting difference in soil moisture between tillage practices tends to be large at dry sites 

(Feiziene et al., 2012), and so does the difference in soil temperature (Lu et al., 2016). In 

terms of the tillage effects on CH4 emission, although there was a great reduction with NT 

in humid climates, the climate regime had no significant influence (Table 2.2). A 90% 

decrease in the NT soil CH4 emission was observed by Sapkota et al. (2015) in a semi-arid 

rice field, which was largely attributed to a different water management strategy that 

caused a shorter flooding period in the NT plots. Continuous flooding can be a major factor 

controlling CH4 production because as soil redox potential falls below −150 mV, 

methanogenesis is favored (Masscheleyn et al., 1993). Considering that NT soils maintain 

an improved moisture regime, irrigation schedules with shortened flooding periods can be 

expected to reduce rice field CH4 emission, regardless of the climate regime. In regard to 

N2O, there was a significantly higher emission with NT, relative to CT, in humid climates. 

Humid climates, which exhibit higher precipitation frequency, together with greater NT 

soil moisture, promote denitrification driven N2O emission. Total N2O emission depends 

on how long favorable conditions persist (Hunt et al., 2016). This is supported by Almaraz 

et al. (2009b), who found that precipitation is the major driver of N2O emission and that 

difference between NT and CT in N2O emission is significantly larger in a wet year than a 

dry year. 

The significant increase in N2O emission in fine-textured NT soils (Figure 2.4c) is 

noteworthy and is consistent with previous studies (Rochette, 2008). Soil texture may 
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modify the effects of NT on N2O emission via differences in soil water content (Abdalla et 

al., 2013). Rochette (2008) reported increased N2O emission from poorly-drained fine-

textured soils under NT located in regions with humid climates. Implementing NT in fine-

textured soils in humid areas increased N2O emission by approximately 38% compared to 

CT (Table S2.2). This indicates that climate-soil interactions should be considered before 

adopting NT as a CSA practice in a certain region. 

The impact of NT on GHG emissions was sensitive to soil acidity. In acidic soils, 

CO2 and CH4 emissions were reduced, but N2O emission increased with NT management. 

Soil pH can affect GHG production in soils, and pH can also be affected by different tillage 

regimes. Microbial activity, the major source of soil CO2 emission and often globally 

expressed as respiration is sensitive to soil pH. Increased basal respiration with increased 

pH has been widely reported (Lundström et al., 2003). As NT management is known to 

result in reduced topsoil pH (Dick, 1983), decreased dissolved organic carbon and CO2 

emission is expected. The optimum soil pH for CH4 production is near neutrality. 

Considering methanogenic bacteria are acid-sensitive, a small decrease in soil pH can 

substantially reduce CH4 production, whereas a slight increase in soil pH can produce the 

opposite response (Wang et al., 1993). Higher N2O emission from acidic soils can be 

ascribed to the greater sensitivity of N2O reductase to low pH than that of the other 

denitrification reductases (Thomsen et al., 1994). This can result in a higher ratio of N2O 

to N2 as pH declines, and therefore greater N2O loss from low pH soils (Baggs et al., 2010). 

2.5.2.2 Management Factors 

Differences in CO2 emission between NT and CT did not differ with N fertilizer 

rate or placement, which agreed with Plaza-Bonilla et al. (2014b) and Snyder et al. (2009). 
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Similar results were reported by Abdalla et al. (2016) and may be attributed to the 

overriding impact of N fertilization in enhancing productivity and carbon inputs to both 

NT and CT soils. Similarly, N fertilization did not significantly alter the differences in CH4 

emission between the tillage practices. However, N fertilization is considered the main 

stimulus to increased agroecosystem N2O emission (Grace et al., 2011). A sharp rise in 

N2O emission within days of fertilization is commonly observed in both NT and CT 

(Halvorson et al., 2008; Sapkota et al., 2015). Compared with CT, soil environmental and 

physical conditions in NT are expected to be conducive to greater denitrifying activity and 

a greater likelihood of N2O emission following surface application of N fertilizer (Venterea 

et al., 2005). Soil organic matter and microbial population are usually more uniformly 

distributed with depth in CT. The vertical distribution of potential denitrifying activity 

varies with tillage, with higher facultative anaerobe populations and potential 

denitrification rates in the topsoil of NT compared to CT (Linn and Doran, 1984a; 

Groffman, 1985). 

The surface placement of N fertilizer likely provides adequate substrate to the more 

abundant population of denitrifiers in the NT soil surface. This, together with a wetter and 

denser soil environment, enhances denitrifying N2O emission. With subsurface N fertilizer 

application, less N2O emission under NT could result from lower denitrifier populations 

and/or available C concentration at the greater depth (Drury et al., 2006), relative to CT 

soils. The greater water-filled pore space observed in NT may also increase the probability 

of reduction of N2O to N2 during upward diffusion (Linn and Doran, 1984b), further 

reducing N2O emission with subsurface N fertilizer placement. 
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Tillage is often associated with residue management. There were indirect effects of 

residue management on differences in GHG emissions between the tillage practices. With 

residue removal, the reduction in CO2 emission was greater in NT than CT. This was 

expected considering that NT has little effect on the SOM turnover rate, while CT 

accelerates SOM turnover via thorough surface soil disturbance. However, large 

uncertainties in the responses of GHG emissions exist when considering the opposite 

operation, residue retention, as both residue quantity and quality are important to soil 

physical and chemical properties (Abdalla et al., 2016). For example, the quantity of maize 

residue is usually twice that of soybean, but soybean residue decomposes rapidly due to a 

lower C:N ratio. These, together, can lead to higher SOM with maize residues. Residue 

retained in NT remains at the soil surface with minimal disturbance, while CT causes some 

residue incorporation. Consequently, the content of SOM is higher in the uppermost 

surface 20 cm of NT soils, but it is relatively homogeneously distributed with depth in the 

surface 20 cm of CT soils (Ziadi et al., 2014). Therefore, the decomposition rate of SOM 

was largely affected by its distribution in the upper soil layer. As the duration of NT 

management increases, the contribution of older weathered residue to CO2 emission rises 

(Oorts et al., 2007). In our analysis, long-term NT with residue retention gave a nearly 26% 

greater CO2 emission (Table S2.3). 

Differences in CO2 and CH4 emissions between the tillage practices became non-

significant with time (Figure 2.5a, b). With short-term NT duration, CO2 and CH4 

emissions were significantly reduced relative to those with CT, but the differences 

decreased with longer NT duration. Significantly larger soil carbon stocks in long-term NT 

made carbon emissions equal to those from the smaller CT soil carbon stocks (Oorts et al., 
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2007). A new equilibrium, in both tillage systems, between carbon inputs and outputs may 

have formed. However, in experiments where NT was short-term, the CT and NT soils may 

not have yet reached the anticipated equilibrium.  

Differences in GHG emissions between the tillage practices varied with crop 

species. Rice production is more likely, among the four crop species evaluated, to exhibit 

reduced CO2 and CH4 emissions with NT adoption. The surface NT soil bulk density was 

significantly greater than that of CT soil (Ahmad et al., 2009; Li et al., 2013). Li et al. 

(2013) speculated that CH4 produced in NT soil might be better retained due to soil surface 

compaction, thereby making CH4 oxidation by methanotrophic bacteria more likely. 

Increased bulk density reduces macroporosity, which inhibits organic matter 

decomposition (Ahmad et al., 2009). This reduces dissolved organic carbon concentration 

that restricts substrate supply to methanogens and further reduces CH4 production. These 

NT effects are exclusively significant in paddy rice production because the waterlogged 

environment otherwise favors CH4 production. Wheat production can enhance SOC and 

total N sequestration, particularly in NT (Wright et al., 2007), which provides sufficient 

substrate for N2O production and possibly explains the larger increase in N2O emission 

with NT wheat production.  

2.5.3 Crop Yield and the GWP of GHG Emissions 

In general, our meta-analysis found no significant effect of NT, relative to CT, on 

crop yield. Previous studies reported a slight yield reduction (about 5%) with NT (van 

Kessel et al., 2013; Pittelkow et al., 2015). The difference might be because we only 

analyzed yield data from research trials that included GHG measurements. A great 

variation was found in the yield dataset. Much of the increased yield in NT was contributed 
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by studies in barley production (Figure 2.5d). Plaza-Bonilla et al. (2014a) reported six-fold 

greater NT barley yield in a rainfed Mediterranean climate due to better water use 

efficiency. Pittelkow et al. (2015) further suggested that NT performs better than CT in 

rainfed conditions in dry climates. Our results concur with these observations. Most (24 

out of 25) of the barley yield trials in this meta-analysis were in the dry climate subgroup. 

Considering there was less of an N2O emission increase, and a greater decrease in CO2 

emission in NT in dry climates (Figure 2.4a, c), NT would be the better management 

practice for climate change mitigation goals. Our observations that NT increased crop yield 

by 13.1% in alkaline soils (Figure 2.4d) and by 25.2% at the low N fertilizer rate (Figure 

2.5d) were also noteworthy. Additionally, NT exhibited similar GHG emissions to CT in 

alkaline soils or with low N fertilizer input. These observations suggest that NT can be the 

better choice under such circumstances. 

In terms of climate change mitigation, there is a general consensus that NT can 

enhance soil carbon sequestration. However, whether this benefit would be offset by NT’s 

stimulation of N2O emission is still under debate. In this meta-analysis, overall GWP was 

not different between NT and CT. This suggested that a balance between N2O emission 

and carbon sequestration under NT can be reached (Halvorson et al., 2008). Moreover, NT 

induced GWP reductions may not be coincident with yield loss, particularly on acidic soils 

and with rice production. Considering the other benefits that accompany NT adoption, such 

as lower labor and machinery inputs, NT may be an effective practice that further mitigates 

climate change through reduced fossil fuel consumption.  

Accordingly, NT implementation can contribute to food security and climate 

change mitigation. However, interactions between NT and site-specific conditions, 
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including other management practices, could offset NT’s benefits. Future NT research 

should include more field measurements chosen to consider other complicating 

environment or management factors. For example, measurements of GHG emissions 

should be for the whole year, as this may better reflect the full expression of emission 

differences between NT and CT. Due to the limitations in available data, this study focused 

only on the GHG emissions during the growing season. Emissions during the non-growing 

season, especially in regions that experience freeze-thaw cycles and snow cover, could be 

significant and should not be ignored at study sites in these regions. Moreover, analysis of 

the NT effect from different space and time scales is needed to better identify NT’s 

effectiveness in the context of global change. While meta-analysis is better positioned than 

individual studies as an effective methodology to generate more informed and accurate 

conclusions, it depends on data quality and quantity, especially for large scale assessment. 

The lack of certain meta-data (e.g., fertilization methods, residue management, and soil 

properties) in some studies made it difficult to include their results in this meta-analysis. 

Thus, publications should clearly describe weather conditions, site management field 

operations, and soil properties. In addition, more tillage research regarding all three GHG 

emissions, measured using similar methods, is needed to draw more representative 

conclusions regarding tillage choices and resulting GWP. 

2.5.4 Effects of Conservation Tillage on SOC 

Common approaches for enhancing SOC focus on increasing carbon inputs, 

decreasing losses, or simultaneously affecting both inputs and losses. All conservation 

tillage practices discussed here, that is, NT and RT, increase soil carbon sequestration to 

different extents. Previous studies show that conservation tillage increase SOC by only 
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3%–10% (Luo et al., 2010; Abdalla et al., 2016; Du et al., 2017; Zhao et al., 2017). Our 

results agree with these earlier findings that conservation tillage increases SOC by 5%. 

Conservation tillage practices may not necessarily add carbon; their contribution is 

primarily accomplished by protecting SOC from decomposition and erosion (Six et al., 

2000; Lal, 2005). Additionally, conservation tillage can potentially improve soil properties, 

thereby stimulating more carbon inputs from residue return and rhizodeposition due to 

promoted plant growth and reducing carbon losses via decreasing leaching and erosion. 

However, the effectiveness of conservation tillage on SOC sequestration and the 

mechanisms involved vary with environmental factors and other agronomic practices. 

2.5.4.1 Environmental Control in Conservation Tillage   

Environmental factors such as climate and soil properties may influence carbon 

inputs to the soil and affect the processes that regulate carbon loss, considering that all 

conservation tillage practices are implemented in site-specific climate and soil conditions. 

The effects on SOC could be affected by environmental factors. 

Climatic variability: Climate is one of the major driving forces that regulate SOC 

distribution. On average, SOC accumulation is greater than decomposition in cool, wet 

areas than in dry, warm regions (Jobbágy and Jackson, 2000). Soil carbon is positively 

related to precipitation and negatively correlated with temperature (Rusco et al., 2001), 

with the former correlation tending to be stronger (Martin et al., 2011; Meersmans et al., 

2011). High precipitation is usually associated with abundant growth and high rates of 

carbon inputs to soils (Luo et al., 2017), while low temperatures may remarkably reduce 

microbial activity, resulting in low rates of organic matter decomposition and measurable 

amounts of SOC accumulation (Castro et al., 1995; Garcia et al., 2018). No-tillage 
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increased SOC with no significant difference between aridity conditions (Table 2.3), 

although NT performed better at storing SOC in arid areas (Figure 2.9a). This result 

suggests that arid-region soils have a high potential to store carbon when using proper 

management practices (Tondoh et al., 2016). In addition, NT can enhance carbon 

sequestration more in warm areas than in cool areas. The temperature could affect the 

establishment and growth of cover crops (Akemo et al., 2000). In warm areas, cover crops 

may develop well and potentially capture more carbon dioxide (CO2) from the atmosphere, 

thus providing more carbon inputs into soils after they die (e.g., Bayer et al., 2009).  Tillage 

results in the breakdown of macroaggregates and the release of aggregate-protected SOC 

(Six et al., 2000; Mikha and Rice, 2004). Tillage-induced SOC decomposition usually 

proceeds at higher rates in warm than in cool areas. Implementing NT, with minimal soil 

disturbance, protects SOC from decomposition. As a result, SOC increases can be more 

significant in warm conditions considering the relatively higher baseline of the 

decomposition rate compared to that in cool areas. 

Soil properties: Soil organic carbon is strongly correlated with clay content, with 

an increasing trend toward more SOC in fine-textured soils (Stronkhorst and Venter, 2008; 

Meersmans et al., 2012). The SOC mineralization rate probably diminishes as clay 

concentrations increase (Sainju et al., 2002). Clay minerals can stabilize SOC against 

microbial attacks through the absorption of organic molecules (Ladd et al., 1996). By 

binding organic matter, clay particles help form and stabilize soil aggregates, imposing a 

physical barrier between decomposer microflora and organic substrates and limiting water 

and oxygen available for decomposition (Dominy et al., 2002). The ability of conservation 

tillage to enhance SOC differs with soil texture (Figure 2.10a). Considering conservation 
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tillage merely reduces soil disturbance and normally does not add extra materials to soils, 

it can be inferred that the effect of conservation tillage on SOC is texture dependent.  

Soil depth may potentially influence the effects of conservation tillage on SOC 

(Baker et al., 2007). Conservation tillage was most beneficial to SOC accumulation in 

surface soils. For example, NT increased SOC by 7% in the 0–3 cm soil layer (Abdalla et 

al., 2016) and by 3% at the 40 cm depth (Luo et al., 2010). Our findings suggested that 

conservation tillage can enhance SOC sequestration in the entire soil profile, although the 

positive effects vary with soil depths (Table S2.5). Conventional tillage breaks soil 

aggregates and increases aeration and thus enhances soil organic matter mineralization 

(Cambardella and Elliott, 1993). Conventional tillage also incorporates residues into 

deeper soil layers, resulting in a more uniform distribution of SOC (albeit at lower 

concentrations) in the soil profile (Sainju et al., 2006; Plaza-Bonilla et al., 2010). In contrast, 

conservation tillage keeps residues at the soil surface and reduces their degree of 

incorporation into the soil (Franzluebbers et al., 1995). Nevertheless, the positive effects 

of NT on SOC have been found in a deep soil profile (0–60 cm, Liu et al., 2014).  

Soil pH is recognized as a dominant factor governing the soil organic matter 

turnover rate, although its mode of impact is still unclear (Van Bergen et al., 1998). Soil 

pH affects selective presentation or metabolic modification of specific components (e.g., 

lignin-cellulose, lipids) during decomposition (Kemmitt et al., 2006) and, therefore, abiotic 

factors (e.g., carbon and nutrient availability) and biotic factors (e.g., the composition of 

the microbial community). Also, soil pH can change the decomposition rate of crop 

residues and SOC via its effect on SOC solubility and indirectly by altering microbial 

growth, activity, and community structure (Pietri and Brookes, 2009; Wang et al., 2017). 
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The levels of soluble organic carbon may increase with increasing acidity (Willett et al., 

2004; Kemmitt et al., 2006). Motavalli et al. (1995) suggested that increased soil acidity 

would cause greater soil organic matter accumulation due to reduced microbial 

mineralization; however, this was challenged by Kemmitt et al. (2006), who found no 

significant trend in SOC in response to pH changes. In this study, conservation tillage 

resulted in greater increases in SOC in neutral or alkaline soils compared to acid soils. 

Table 2.3 Between-group variability (QM) of the variables controlling the effects of no-
tillage and reduced tillage on soil organic carbon 

Variables 
No-till Reduced tillage 
df QM df QM 

Duration 2 12.14** 2 13.69** 
Aridity index 1 0.13 1 10.99*** 
Mean annual air 
temperature 1 16.32*** 1 0.47 

Soil texture 5 20.98*** 5 32.15*** 
Soil depth 3 210.69*** 3 73.38*** 
Soil pH 2 9.8** 2 3.52 
Residue 1 6.56* 1 0.04 
Nitrogen 
fertilization 3 7.62 3 11.43* 

Irrigation 1 9.61** 1 0.92 
Crop rotation 1 1.72 1 0.26 

Statistical significance of QM: * P < 0.05; ** P < 0.01; *** P < 0.001 

2.5.4.2 Conservation Tillage and Other Agronomic Practices 

Crop residues provide substantial amounts of organic matter and may influence the 

effect of conservation tillage on SOC. Residue retention changes the formation of soil 

macroaggregates (Benbi and Senapati, 2010), promoting SOC preservation and 

accumulation (Six et al., 2002). Residue cover protects the soil surface from direct impact 

by raindrops (Blanco-Canqui et al., 2014). In addition, crop residues provide organic 

substrates to soil microorganisms that can produce binding agents and promote soil 
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aggregation (Guggenberger et al., 1999). Conversely, residue removal reduces carbon input 

to the soil system and ultimately decreases SOC storage (Manna et al., 2005; Koga and 

Tsuji, 2009). This suggests that the amount of carbon inputs predominantly controls 

changes in SOC stocks (Virto et al., 2012). For NT, enhancing SOC was significantly 

greater with residue return than with residue removal. Our study suggests that changes in 

SOC did not differ with residue management in RT (Table 2.3), although a slightly greater 

increase in SOC occurred with residue retention than with residue removal (Figure 2.11b). 

This unexpected result is likely due to the limited number of observations with residue 

removal. Another possible reason is that the interaction between residue management and 

soil type may lead to various responses in SOC stocks. For example, residue removal 

increased SOC by 3.6%, while residue retention had no effect on SOC in clay and clay 

loam soils. The decomposition of crop residues involves complex processes, which are 

controlled by multiple biogeochemical and biophysical conditions. 

Nitrogen fertilization noticeably increases SOC stock but with diminishing returns. 

For example, Blanco-Canqui et al. (2014) indicate that nitrogen fertilizer increases SOC 

when the nitrogen fertilization rate is below 80 kg N ha−1, above which it reduces 

aggregation and then decreases SOC stocks. Nitrogen fertilization can stimulate biological 

activity by altering carbon/nitrogen ratios, thereby promoting soil respiration and 

decreasing SOC content (Mulvaney et al., 2009); however, excessive nitrogen addition 

may reduce soil fungi populations, inhibit soil enzyme activity, and decrease CO2 

emissions (Wilson and Al Kazi, 2008). These findings suggest that nitrogen fertilization 

enhances the positive effect of conservation tillage on SOC, likely through increased plant 

biomass production (Gregorich et al., 1996). 
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Aridity can limit plant growth and crop residue return and ultimately compromise 

SOC accumulation (Moreno et al., 2006). Conservation tillage can potentially enhance soil 

water retention by improving soil porosity and erosion control. Irrigation ensures sufficient 

water for plant growth, resulting in more biomass production than in rainfed conditions 

(Shipitalo et al., 1990; Chan, 2004; Capowiez et al., 2009; Swanepoel et al., 2016). The 

crop root density is much higher in irrigated conditions compared to rainfed conditions 

(Jobbágy and Jackson, 2000), leading to higher organic matter input. Thus, CSA 

management practices, in combination with irrigation, could further increase SOC content.  

Rotational cropping potentially provides high carbon input to soils. Compared to 

continuous cropping systems, crops in rotational cropping systems have a greater 

belowground allocation of biomass (Van Eerd et al., 2014), resulting in more inputs of crop 

residue to the soil system. Enhancing rotation complexity can benefit carbon sequestration 

(West and Post, 2002). The present analysis suggests that conservation tillage can increase 

SOC sequestration regardless of the crop rotation system. 

Conservation tillage, together with cover crops, may enhance SOC storage more. 

For example, in sandy clay loam and loamy sand soils, the sum of the effect size was 21% 

and 31%, respectively. Coarse-textured soils are not carbon-saturated and have great 

potential for carbon uptake. Cultivated land tends to suffer from SOC degradation, and 

SOC accumulation could quickly increase upon initiating farming practices due to high 

carbon inputs to the soil system (Vieira et al., 2009). For example, in sandy loam soils, 

Higashi et al. (2014) showed that SOC increased by 22% with a combination of cover crops 

and NT. These results may be attributed to the stability of soil water-stable aggregates 

when cover crops are grown in sandy clay loam soils (McVay et al., 1989), given that 
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aggregate stability has been linked to the protection of SOC from mineralization (Unger, 

1997). The combination of cover crops and conservation tillage significantly decreased 

SOC in clay soils. The reason for this unexpected result may be due to the limited number 

of study sites where this combination of treatments was evaluated (a few data pairs in our 

meta-analysis), and the burning of cover crop biomass (Tian et al., 2005). 

2.6 Conclusion 

This study provided a comprehensive and quantitative synthesis of NT and CT 

effects on GHG emissions and crop yield in different cropping systems. In general, NT can 

reduce CH4 emission by 15.5%, with a concomitant increase in N2O emission of 10.4%. 

These effects seem to diminish with the long-term duration of NT. Thus, the combination 

of NT with other climate-smart agriculture (CSA) components might be needed. Although 

NT cannot reduce all three GHG emissions simultaneously, there is some evidence of a 

reduction in overall GWP in NT given specific conditions, which needs to be verified with 

further observations. The emission of CO2 can be significantly reduced, with a yield 

benefit, with NT adoption in dry climates. However, in humid climates, NT tended to 

increase N2O emission and reduce crop yield, suggesting careful consideration of NT 

adoption in humid regions. Soil pH was also important, and implementing NT can help 

mitigate climate change on acidic soils and enhance food security on alkaline soils because 

total GWP was reduced in NT without yield penalty on acidic soils, and NT increased crop 

yield without affecting GWP on alkaline soils. No-tillage and a low N fertilizer rate 

increased crop yield without exacerbating GHG emissions compared to CT. Furthermore, 

subsurface N fertilizer placement in NT should be considered to reduce N2O emission. 

Among the four cereal crops, there was a large reduction in GWP with NT rice production, 
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with no yield penalty. A yield benefit was only observed for barley, while there was a 

maize yield loss. These results credit NT for enhancing climate change mitigation and food 

security in rice and barley production, respectively. Overall, this study provides both 

support and caution to the adoption of NT as a CSA management practice. To identify 

other CSA management practices that are suitable at local, regional and/or global scales, 

future CSA research programs that systematically investigate agroecosystem responses 

(e.g., crop yield, GHG emissions) using diverse methods (e.g., observation, meta-analysis, 

and agroecosystem modeling) are needed. 

Based on 2,180-paired comparisons from 297 peer-reviewed articles, our meta-analysis 

quantitatively analyzed SOC changes as influenced by conservation tillage and associated 

environmental factors and other agronomic practices. Although our results present the 

positive effects of conservation tillage on soil carbon storage, it may have constraints 

regarding the ability to enhance soil carbon sequestration. The SOC benefit of conservation 

tillage strongly depends on environmental factors and other agronomic practices. 

Therefore, the choice of proper practices is potentially highly region-specific. Our results 

imply that conservation tillage has great potential for climate change mitigation when 

combined with cover crops.  
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CHAPTER 3. ASSESSING THE LONG-TERM EFFECTS OF NO-TILLAGE ON SOIL 
CARBON DYNAMICS IN A MAIZE-COVER CROP SYSTEM2 

3.1 Abstract 

Climate-smart agriculture management practices such as no-tillage (NT) and cover 

crops (CCs) have been widely applied and are expected to offer multiple environmental 

benefits (e.g., soil carbon sequestration, yield stability, and climate resilience). However, 

the long-term effects of these management practices, especially their synergistic 

interaction, have not been well addressed. This study used an improved agroecosystem 

model (DLEM-Ag) to explore the synergistic effects of NT and CCs on soil carbon 

dynamics in a continuous maize system in the middle south of the US for 1970-2099. 

Simulation results for 1970-2018 show that NT, relative to conventional tillage (CT), led 

to carbon gains (0.22 Mg C ha-1 yr-1) in the topsoil in a CC-inclusive continuing maize 

system; however, NT per se brought minor net carbon gains. This well captures the field 

observations. Model factorial analyses reveal that soil carbon sequestration was highly 

correlated with biomass carbon inputs from both the winter cereal CC and the summer 

maize. Elevated CO2 and warming effects were the main contributors to soil carbon gains, 

as these promote CC growth. Further model projections suggest that soil organic carbon 

would increase in the RCP 8.5 future scenarios (2019-2099), with greater gains under NT-

CCs than under CT-CCs (0.089 vs. 0.058 Mg C ha-1 yr-1), largely due to enhanced CC 

biomass production. Moreover, NT-CCs would reduce carbon loss compared to CT-CCs 

 
2 Based on Huang, Yawen, et al. (2020) “Assessing synergistic effects of no-tillage and cover crops 

on soil carbon dynamics in a long-term maize cropping system under climate change” Agricultural and 

Forest Meteorology, 291, 108090. 
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(-0.002 vs. -0.017 Mg C ha-1 yr-1) in the RCP 2.6 scenarios. Our study highlights the 

importance of CCs in enhancing cropland carbon sequestration and indicates that NT and 

CCs, taken together, can serve as a viable strategy to ensure crop production through 

promoting soil health in similar maize cropping systems. 

3.2 Introduction 

Soil organic carbon (SOC) is a key soil health indicator and plays a crucial role in 

providing soil ecosystem services (Lorenz and Lal, 2016). Estimating SOC changes with 

climate change has been receiving considerable attention because these changes 

significantly affect food production and soil biogeochemical cycles and drive climate 

change feedbacks by altering soil quality and accumulation rates of atmospheric CO2 (Lal, 

2014). Moreover, for both agronomic and environmental purposes, maintaining or 

increasing SOC stocks in agricultural soils represents an essential component of sustainable 

land management.  

Conservation tillage and cover crops are among the most popular management 

practices to mitigate soil erosion and degradation (Blanco-Canqui et al., 2015; Townsend 

et al., 2016; Kaye and Quemada, 2017). They are also recognized as two widely used 

climate-smart agriculture practices that aim to enhance food security and build resilience 

to climate change (Lipper et al., 2014; Bai et al., 2019). In general, conservation tillage 

alleviates soil disturbance and maintains soil surface residue cover, which helps improve 

soil aggregation and stability (He et al., 2011), conserve soil water (Plaza-Bonilla et al., 

2014), and reduce soil erosion (Puget and Lal, 2005). Cover crops have the potential to 

reduce erosion and nitrogen leaching and improve soil health (Blanco-Canqui et al., 2015; 

Poeplau and Don, 2015; Liu et al., 2019).  
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Many analyses have been conducted to assess the potential of these practices to 

improve SOC stocks. For example, SOC sequestration rates due to no-tillage (NT), 

compared to conventional tillage (CT), were estimated to be 0.40 ± 0.61 Mg C ha-1 yr-1 (n 

= 44) in the central USA (Johnson et al., 2005) and 0.45 ± 0.04 Mg C ha-1 yr-1 (n = 147) in 

the southeastern USA (Franzluebbers, 2010). Some recent meta-analyses have argued that 

NT often redistributes carbon nearer to the soil surface but does not increase SOC stocks 

as compared with CT (Olson et al., 2014; Powlson et al., 2014), whereas Bai et al. (2019) 

suggested that NT can enhance SOC sequestration in the whole soil profile, possibly due 

to greater root growth. The significant discrepancies in reported results have not been well 

addressed and could be attributed to experiment duration, soil sampling frequency and 

depth, and the analytical approach to SOC determination. Other factors, such as climate 

and soil properties interacting with management factors (e.g., crop rotation, cover crops, 

nitrogen, and drainage; Luo et al., 2010; Ugarte et al., 2014; Bai et al., 2019) have shown 

synergistic effects with tillage on SOC sequestration. Including cover crops in NT systems 

might lead to more SOC accumulation (Blanco-Canqui et al., 2013; Higashi et al., 2014; 

Bai et al., 2019). However, a knowledge gap still exists regarding the underlying 

mechanisms responsible for enhanced soil carbon sequestration. Information regarding the 

synergistic effects of conservation tillage and cover crops on soil carbon dynamics (such 

as various soil pools and fluxes) is also far from certain. Moreover, most reported results 

were based on relatively short-term field experiments (usually <10 years), and limited 

environmental control experiments. However, building and maintaining SOC stocks 

requires a sustained and consistent effort and the long-term examination of SOC stock 
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variation, as influenced by multiple management practices as well as associated underlying 

mechanisms in the context of climate change, is crucial.  

Recently, some crop (Basche et al., 2016; Iocola et al., 2017) and soil carbon (Maas 

et al., 2017; Nash et al., 2018) models have been used to evaluate the individual effects of 

tillage and cover crops on crop yield and SOC, but few of them addressed interactive effects 

of tillage and cover crops. Besides, most ecosystem models that are used to investigate 

terrestrial biogeochemical cycles have not included detailed representations of tillage 

practices (Lutz et al., 2019). These limitations might bring large uncertainties to estimating 

the role of agriculture in the global biogeochemical balance and in assessments to 

strengthening resilience to climate change.  

In this study, we applied an improved process-based agroecosystem model 

(DLEM-Ag), in which conservation tillage and cover crops were represented, to examine 

the long-term synergistic effects of NT and cover crops on soil carbon dynamics. We 

conducted a range of simulation experiments for a long-term continuous maize cropping 

system in the middle south of the US, where the NT and cover crop (NT-CC) were applied 

during the 1970-2018 period. The overarching objectives were to: (1) evaluate model 

performance against observed crop yield and SOC in the NT-CC system; (2) explore the 

underlying mechanisms responsible for synergistic effects of NT-CC on long-term soil 

carbon dynamics; (3) attribute long-term variation in SOC to major influencing factors 

during the historical period; and (4) perform trajectory prediction under future climate 

scenarios.   
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3.3 Materials and Methods 

3.3.1 Site Description 

The field experiment was established in 1970 at the Kentucky Agricultural 

Experiment Station farm (“Spindletop”) near Lexington, KY, USA (N 38°07′24″, W 

84°29′50″) with two tillage systems (moldboard plowing with secondary tillage, which is 

considered conventional tillage [CT]; no-tillage [NT]) and four mineral nitrogen 

application rates (0, 84, 168, and 336 kg N ha-1 yr-1). The experiment was laid out in a split-

block design with four replications. The soil is a moderately weathered, well-drained 

Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) on a 1 to 3% slope 

without evident rill erosion. Before establishing the experiment in 1970, the site had been 

a bluegrass (Poa pratensis L.) pasture for about 50 yr (Frye and Blevins, 1996). The 

experimental site is characterized by a rainfed moderate humid climate with a mean annual 

temperature of 13.1°C and mean annual precipitation of 1222 mm, though with slightly 

increasing trends of 0.03°C yr-1 and 3.8 mm yr-1 from 1970 to 2018 (Figure 3.1a, c 

respectively). Additional details about the site, sampling, and analysis not included in this 

paper are available in previous studies (Blevins et al., 1971; Blevins et al., 1977; Grove 

and Blevins, 1988; Ismail et al., 1994). 
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Figure 3.1 Annual and growing season average temperature (a), annual atmospheric CO2 
concentration, and nitrogen deposition (b), annual and growing season total precipitation 

(c) over Lexington from 1970 to 2018. Dashed lines represent the linear trends  
 

In the experiment, maize (Zea mays L.) was grown each year, followed by a winter 

cereal cover crop. Tilled plots were plowed and disked in mid-April, about 1-2 weeks 

before maize planting in early to mid-May. The average plowing depth was about 20 cm. 

Within one week after planting, ammonium nitrate was broadcast over the soil surface. 

Following harvest, maize residues were left on the soil surface. Previous work at this site 

has demonstrated that the consistent nitrogen-sufficient fertilizer rate for maximizing crop 

yields was 168 kg N ha-1 (Grove et al., 2009). In this study, we only considered the 

nitrogen-sufficient tillage treatments (i.e., NT-168 and CT-168), to exclude the influence 

of nitrogen fertilizer on the outcomes. 
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3.3.2 Datasets 

Site data collection: Soil samples were taken to varying depths in varying 

increments over the years. Soil data usable for this study were collected about every eight 

to nine years (Blevins et al., 1977; Blevins et al., 1983; Ismail et al., 1994; Grove et al., 

2009). Specifically, samples taken in 1975, 1980, 1985, and 1989 were from all plots at 

depths of 0 to 5, 5 to 15, and 15 to 30 cm (Blevins et al., 1977; Blevins et al., 1983; Ismail 

et al., 1994). Samples in 2008 were taken to a depth of 100 cm in 10 cm increments from 

plots receiving 0, 168, and 336 kg N ha-1 (Grove et al., 2009). In this study, we took samples 

from all plots to a depth of 30 cm in 2018. Sampling events occurred either in the spring 

pre-plant or in the fall post-harvest. SOC for the initial year (1970) is from the bluegrass 

pasture surrounding the experiment plots. In addition, SOC was determined by the 

Walkley-Black method before 1989 and by dry combustion thereafter. The data within 

each treatment were averaged to the depth of 30 cm each year. Crop yields were available 

from 1970 to 1990 (Ismail et al., 1994) and from 2013 to 2017. A carbon content factor 

(450 g C per Kg) was applied to convert the dry biomass to carbon (Prince et al., 2001). 

We also measured CO2 fluxes bi-weekly during the 2018 growing season using an FTIR-

based field gas analyzer (Gasmet DX4040, Gas Technologies Oy, Helsinki, Finland), with 

the static chamber method (Parkin and Venterea, 2010). The gas fluxes were calculated 

following the method of Iqbal et al. (2013). 

Model input data: To drive the model simulations, we collected historical climate 

data from the National Climate Data Center for the Lexington, KY, USA weather station. 

Historical CO2 and nitrogen deposition datasets were obtained from the Earth System 

Research Laboratory of NOAA (National Oceanic and Atmospheric Administration, 
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https://www.climate.gov/) and ISIMIP (Inter-sectoral Impact Model Intercomparison 

Project, https://esg.pik-potsdam.de/projects/isimip/), respectively. Atmospheric CO2 

concentration increased from 325 ppm in 1970 to 408 ppm in 2018, whereas there was no 

significant trend in nitrogen deposition over the study region (Figure 3.1b).  

Future climate scenarios were obtained from the Downscaled CMIP3 and CMIP5 

Climate and Hydrology Projections (https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/). We utilized 36 CMIP5 global climate 

model (GCM) outputs (Table S3.1) under the representative carbon pathway (RCP) 2.6 

and 8.5 scenarios to drive the model simulations through 2099. The RCP 2.6 represents a 

low emission scenario with significant climate action, aiming to limit the increase in global 

mean temperature to less than 2°C by 2100. The RCP 8.5 represents the business-as-usual 

high emission scenario, yielding a range of temperature outcomes of +4.0 to 6.1°C by 2100 

(IPCC, 2014). The corresponding RCP CO2 data was obtained from the recommended RCP 

CMIP5 datasets (Meinshausen et al., 2011), in which the projected atmospheric CO2 

concentrations would be 421 ppm and 927 ppm by 2099 under RCP 2.6 and RCP 8.5 

scenarios, respectively. 

3.3.3 Model Description 

The agricultural version of the Dynamic Land Ecosystem Model (DLEM-Ag) is a 

highly integrated process-based agroecosystem model which simulates: (1) the daily crop 

growth and exchanges of trace gases (CO2, CH4, and N2O) between agroecosystems and 

the atmosphere; and (2) fluxes and storage of carbon, water, and nitrogen within 

agroecosystem components that are affected by multiple factors like climate, atmospheric 

CO2, nitrogen deposition, tropospheric ozone, land use and land cover change, and 
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agriculture management practices (e.g., harvest, rotation, irrigation, and fertilizer use). The 

DLEM-Ag has been extensively used to study crop production, SOC, and exchanges of 

trace gases between agroecosystems and the atmosphere. The detailed structure and 

processes have been well documented in previous work (e.g., Tian et al., 2010; Ren et al., 

2011; Ren et al., 2012; Ren et al., 2016; Zhang et al., 2018). Here, we provide a brief 

introduction to the modules for plant growth and soil carbon-related processes, as well as 

the tillage module. 

3.3.3.1 Crop productivity 

The crop gross primary productivity (GPP, g C m-2 day-1) in the DLEM-Ag is 

calculated by scaling leaf assimilation rates (µmol CO2 m-2 s-1) up to the whole canopy 

(Farquhar et al., 1980). The canopy is divided into sunlit and shaded layers.  

𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑓𝑓(𝐺𝐺𝑃𝑃𝑅𝑅)𝑓𝑓(𝑇𝑇)𝑓𝑓(𝐺𝐺)𝑓𝑓(𝐶𝐶𝐶𝐶2)𝑓𝑓(𝐶𝐶3)𝑓𝑓(𝑁𝑁)                                                         (3.1) 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎  is the actual GPP derived from the potential GPP (𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜) under optimized 

conditions adjusted by environmental factors that directly or indirectly influence carbon 

assimilation and allocation, including photosynthetic active radiation 𝑓𝑓(𝐺𝐺𝑃𝑃𝑅𝑅) , air 

temperature 𝑓𝑓(𝑇𝑇) , precipitation 𝑓𝑓(𝐺𝐺) , atmospheric CO2 concentration 𝑓𝑓(𝐶𝐶𝐶𝐶2) , 

tropospheric O3 𝑓𝑓(𝐶𝐶3), and nitrogen availability 𝑓𝑓(𝑁𝑁) associated with nitrogen deposition 

and fertilization. More detailed information is provided in Text S3.1.  

3.3.3.2 Soil Carbon Processes 

In DLEM-Ag, soil organic matter consists of six soil carbon pools (i.e., three 

microbial pools, two slow organic matter pools, and one dissolved organic matter pool), 

plus two woody debris pools (above- and belowground woody debris), and four litter pools 

(above- and belowground, easy and resistant to decomposition). The size of each pool and 
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the carbon fluxes transferred between pools determine the source and loss of soil organic 

and inorganic carbon. Generally, all carbon inputs from tissue turnover and crop residue 

are allocated to litter pools according to the carbon/nitrogen ratio. Then the carbon fluxes 

are transferred between pools through biological decomposition, physical adsorption, 

desorption, surface runoff, and leaching. The decomposition rate of each pool is estimated 

using a first-order algorithm (Parton et al., 1994) that is influenced by soil temperature, 

water content, nutrient availability, and soil texture. Details can be found in previous 

studies (e.g., Banger et al., 2015; Ren et al., 2012, 2020; Tian et al., 2015). 

3.3.3.3 Tillage 

In this study, we improved the DLEM-Ag by incorporating a tillage sub-module to 

specifically examine the effects of NT on soil carbon balance in the agroecosystem (Figure 

3.2). The representation of cover crops in the model is simply to consider the growth of 

winter cereal rye, with all its biomass left in the field after termination. The primary input 

of organic carbon to the soil is vegetal, and SOC losses occur mainly through 

decomposition, runoff, and leaching. The incoming carbon at this site consists of three 

major pathways, i.e., growing season litterfall, dead cover crop materials, and maize 

residue (including shoots and roots) return after harvest. The outgoing carbon pathways 

include CO2 emissions, runoff, and leaching, as well as others, such as CH4 emissions and 

volatile organic compounds. In this study, we defined leaching carbon as the sum of 

particle organic carbon loss through surface runoff and dissolved organic carbon loss 

through subsurface drainage. 
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Figure 3.2 A diagram illustrating the carbon cycle at the experiment site (green arrows 
denote carbon input pathways, red arrows for carbon output pathways, and blue arrows 

for lateral carbon fluxes) 
 

The tillage sub-module in DLEM-Ag mainly considers mixing effects within the 

tilled soil layer and subsequent effects on soil water processes, as well as the direct effects 

on soil organic matter decomposition rates.  

Tillage mixing. The tillage operation redistributes residue and nutrients in the tilled 

soil layer, with a mixing efficiency, 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 (Table 3.1, adapted from Buckingham and Paul, 

1993), which depends on the tillage practice and defines the fraction of a 

residue/nutrient/SOC pool in each soil layer that is redistributed through the depth of soil 

that is mixed by the operation (Williams et al., 2012);  

𝑋𝑋(𝐿𝐿) = 𝑋𝑋0 × (1 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚) + 𝑆𝑆𝑆𝑆𝑋𝑋0 × 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 × 𝑍𝑍(𝐿𝐿)−𝑍𝑍(𝐿𝐿−1)
𝑆𝑆𝑡𝑡

                                                  (3.2) 

where 𝑋𝑋 is the amount of carbon or nitrogen in each pool in layer 𝐿𝐿 after mixing, and 𝑋𝑋0 is 

the original amount before mixing. The parameter 𝐷𝐷𝑡𝑡 is the tillage depth, SMX0 is the sum 

of X0 in 𝐷𝐷𝑡𝑡, and 𝑍𝑍 is the depth to the bottom of the tilled layer. 
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Residue coverage. Litter pools in the DLEM-Ag generally consist of two main 

components ( 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑏𝑏𝑎𝑎 , the aboveground and belowground litter pools, 

respectively). Crop residues left on the field are transferred to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎. Root residues are 

transferred to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑏𝑏𝑎𝑎.  The fraction of the soil surface covered by the remaining residue 

(𝑅𝑅𝑒𝑒𝑅𝑅𝑓𝑓𝑓𝑓) is calculated by adapting the equation from Gregory (1982): 

𝑅𝑅𝑒𝑒𝑅𝑅𝑓𝑓𝑓𝑓 = 1.0 − 𝑒𝑒−𝐴𝐴𝐴𝐴×𝐿𝐿𝑖𝑖𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎                                                                                           (3.3) 

where 𝑃𝑃𝑆𝑆  is the area covered per unit dry weight of residue (ha kg-1, Table 3.1) and 

depends on residue type (e.g., crop, density). The 𝑃𝑃𝑆𝑆 values in this study are adapted from 

Dadoun (1993). A fraction of residue from 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎 is transferred to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝑏𝑏𝑎𝑎 due to the 

mixing effect of tillage. The total thickness of surface residue (𝑅𝑅𝑒𝑒𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖 ) is estimated 

following Dadoun (1993): 

𝑅𝑅𝑒𝑒𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖 =  ∑ 𝑆𝑆𝑖𝑖 ×𝑛𝑛
𝑖𝑖=1 𝑃𝑃𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖                                                                                            (3.4) 

𝑆𝑆𝑖𝑖 =  𝑆𝑆𝑖𝑖−1 × �1.0 −  𝑒𝑒
�−𝐴𝐴𝐴𝐴∗

𝑀𝑀𝑖𝑖
𝑆𝑆𝑖𝑖−1

�
�                                                                                      (3.5) 

𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖−1 − 𝑆𝑆𝑖𝑖−1/𝑃𝑃𝑆𝑆                                                                                                      (3.6) 

The algorithm assumes that the residues are arranged in layers with the coverage of 

layer by equation (3.3). The mass of residue (𝑆𝑆𝑖𝑖, kg/ha) overlying an adjacent lower layer 

(𝐿𝐿 − 1) is the difference between the overlying biomass from the previous calculation step 

(𝑆𝑆𝑖𝑖−1) and the biomass needed to cover the underlying residue layer (𝑆𝑆𝑖𝑖−1, ha residue per 

ha ground surface). 𝑃𝑃𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖 is the average thickness of a residue layer with 100% coverage 

(1.5 cm), and 𝑛𝑛 is the number of layers. These calculations are iterated until no surface 

residues are left. 
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Rainfall interception. Crop residues intercept a significant amount of rainfall. The 

maximum residue water storage capacity ( 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟_𝑚𝑚𝑎𝑎𝑚𝑚 ) is a crop-specific parameter. 

According to Kozak et al. (2007), a quadratic equation was fitted to the maximum 

interception amounts giving:  

𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟_𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑎𝑎𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟 − 𝑏𝑏𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟
2                                                                                            (3.7) 

where 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟  is the residue mass, and 𝑎𝑎  and 𝑏𝑏  are crop-specific parameters (Table 3.1, 

Kozak et al., 2007). The amount of precipitation intercepted is a balance of the amount of 

water currently held (𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟) and the maximum residue storage. All the 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟 is assumed to be 

available for evaporation.  

Evaporation. The effect of surface residues on evaporation is adapted from Andales 

(1998). The energy available for soil evaporation, i.e., soil potential evaporation (𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙) 

is budgeted for two processes; evaporation of water contained in the residues and 

evaporation of water contained in the soil. For evaporation of water in the residues, the 

𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙 is decreased by the amount of water evaporating from the residues, and the residue 

water content is updated: 

�
𝐿𝐿𝑓𝑓 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 < 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟: 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟𝑓𝑓 − 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖  𝑎𝑎𝑛𝑛𝑎𝑎 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑓𝑓 = 0
𝐿𝐿𝑓𝑓 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 ≥ 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟: 𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟𝑓𝑓 = 0 𝑎𝑎𝑛𝑛𝑎𝑎 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑓𝑓 = 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 −  𝑆𝑆𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖

                                             (3.8) 

where the subscripts i and f designate initial and final values (before and after evaporation 

from residues), respectively. For evaporation from the soil, surface residues that serve as a 

physical barrier further reduce soil potential evaporation. The following function is used to 

calculate the decrease in 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙 from a surface partially covered by residues relative to bare 

soil (𝑅𝑅𝑓𝑓𝑜𝑜𝑐𝑐, Dadoun, 1993):  

𝑅𝑅𝑓𝑓𝑜𝑜𝑐𝑐 = 1 − 0.807 × 𝑅𝑅𝑒𝑒𝑅𝑅𝑓𝑓𝑓𝑓                                                                                              (3.9) 
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For higher residue loads that provide a full cover, the thickness of the residue layer 

is used to predict the relative decrease in soil evaporation (𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖, Dadoun, 1993):  

𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖 = 𝑒𝑒−0.5×𝑙𝑙𝐿𝐿𝑟𝑟𝑡𝑡ℎ𝑖𝑖𝑐𝑐𝑖𝑖                                                                                                      (3.10) 

The reduced soil potential evaporation is: 

𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙_𝑓𝑓 = min (𝑅𝑅𝑓𝑓𝑜𝑜𝑐𝑐,𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑓𝑓𝑖𝑖) × 𝐺𝐺𝑆𝑆𝑟𝑟𝑜𝑜𝑖𝑖𝑙𝑙_𝑖𝑖                                                                       (3.11) 

where the subscripts i and f indicate values before and after reduction due to residue 

barriers, respectively. 

Effects on decomposition. In DLEM-Ag, the decomposition rate for each soil 

carbon pool (𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙) is influenced by soil temperature, water content, nutrient availability, 

and texture: 

𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙 = 𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙 × 𝑓𝑓(𝑇𝑇) × 𝑓𝑓(𝑊𝑊) × 𝑓𝑓(𝑁𝑁) × 𝑓𝑓(𝑐𝑐𝑙𝑙𝑎𝑎𝑐𝑐)                                                        (3.12) 

𝑓𝑓(𝑇𝑇) = 4.89 × 𝑒𝑒−3.432+0.1×𝑇𝑇×(1−0.5×𝑇𝑇/36.9)                                                                              (3.13) 

𝑓𝑓(𝑊𝑊) =

⎩
⎨

⎧
1−𝐿𝐿−𝜃𝜃/𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡

1−𝐿𝐿−𝜃𝜃𝑓𝑓𝑐𝑐/𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡
                                         𝜃𝜃 ≤ 𝜃𝜃𝑓𝑓𝑓𝑓

1.0044 − 0.0044

𝐿𝐿
−5

𝜃𝜃/𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡−𝜃𝜃𝑓𝑓𝑐𝑐/𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡
1−𝜃𝜃𝑓𝑓𝑐𝑐/𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡

                𝜃𝜃 > 𝜃𝜃𝑓𝑓𝑓𝑓
                                                      (3.14) 

𝑓𝑓(𝑐𝑐𝑙𝑙𝑎𝑎𝑐𝑐) = 1 − 0.75𝐺𝐺𝑓𝑓𝑙𝑙𝑎𝑎𝑐𝑐/100                                                                                                     (3.15) 

𝑓𝑓(𝑁𝑁𝑚𝑚𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧ 1 − 𝑎𝑎𝑐𝑐𝑛𝑛−𝑎𝑎𝑐𝑐𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡

𝑎𝑎𝑐𝑐𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡
                                       𝑎𝑎𝑎𝑎𝑛𝑛 > 𝑎𝑎𝑎𝑎𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡

1                                                𝑎𝑎𝑎𝑎𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡/2 ≤ 𝑎𝑎𝑎𝑎𝑛𝑛 ≤ 𝑎𝑎𝑎𝑎𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡
1 + 0.5𝑎𝑎𝑐𝑐𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡−𝑎𝑎𝑐𝑐𝑛𝑛

𝑎𝑎𝑐𝑐𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡
                            𝑎𝑎𝑎𝑎𝑛𝑛 ≤ 𝑎𝑎𝑎𝑎𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡/2

                             (3.16) 

𝑓𝑓(𝑁𝑁𝑖𝑖𝑚𝑚) = 𝑎𝑎𝑎𝑎𝑛𝑛/𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚                                                                                                                  (3.17) 

where 𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙 is the actual decomposition rate for each pool derived from the potential 

decomposition rate ( 𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙)  under optimized conditions, adjusted by 

environmental factor scalars, including soil temperature 𝑓𝑓(𝑇𝑇), soil moisture 𝑓𝑓(𝑊𝑊), soil 
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nitrogen 𝑓𝑓(𝑁𝑁) , and soil texture 𝑓𝑓(𝑐𝑐𝑙𝑙𝑎𝑎𝑐𝑐) . The 𝑓𝑓(𝑁𝑁𝑚𝑚𝑖𝑖) and 𝑓𝑓(𝑁𝑁𝑖𝑖𝑚𝑚)  are different 

calculations of 𝑓𝑓(𝑁𝑁)  due to mineralization and immobilization, respectively. 𝜃𝜃  is soil 

water content (mm); 𝑇𝑇 is soil temperature (°C); 𝜃𝜃𝑟𝑟𝑎𝑎𝑡𝑡  is soil water content at saturation 

(mm); 𝜃𝜃𝑓𝑓𝑓𝑓  is soil water content at field capacity (mm); 𝐺𝐺𝑓𝑓𝑙𝑙𝑎𝑎𝑐𝑐  is the percentage of clay 

content (%); 𝑎𝑎𝑎𝑎𝑛𝑛 is the available soil nitrogen (g N/m2); 𝑎𝑎𝑎𝑎𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡 is the optimum available 

soil nitrogen (g N/m2); 𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚  is the potential nitrogen immobilization estimated by the 

tentative decomposition procedure. A fraction of the decomposed carbon from each pool 

is converted to CO2 through heterotrophic respiration, and the left is transferred to other 

pools.  

In the tillage module, tillage directly affects soil organic matter decomposition rates 

within the tilled depth. Once a tillage operation is executed, a tillage scalar is added to the 

equation (3.12). Then, 

 𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙 = 𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙 × 𝑓𝑓(𝑇𝑇) × 𝑓𝑓(𝑊𝑊) × 𝑓𝑓(𝑁𝑁) × 𝑓𝑓(𝑐𝑐𝑙𝑙𝑎𝑎𝑐𝑐) × 𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙                                            (3.18) 

According to Neitsch et al., (2011), tillage can enhance the decomposition rate 

through the factor 𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 . This factor is calculated independently for each soil layer and 

depends on the tillage mixing efficiency (𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚) and the soil texture. The 𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 basal value is 

1, and it is enhanced immediately after a tillage event based on the estimated cumulative 

𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 (or 𝑓𝑓𝑓𝑓𝑚𝑚): 

𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙,𝑖𝑖 = 1 + 𝑓𝑓𝑓𝑓𝑚𝑚,𝑖𝑖                                                                                                                           (3.19) 

𝑓𝑓𝑓𝑓𝑚𝑚,1 = (3 + 5𝑒𝑒−5.5𝑓𝑓𝑙𝑙𝑎𝑎𝑐𝑐)( 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚
𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚+𝐿𝐿1−2𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚

)                                                                                 (3.20) 

𝑓𝑓𝑓𝑓𝑚𝑚,𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑚𝑚,𝑖𝑖−1 × �1 − 0.02 × 𝜃𝜃
𝜃𝜃𝑠𝑠𝑎𝑎𝑡𝑡

�，𝐿𝐿 > 1                                                                                       (3.21) 
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where θ and 𝜃𝜃𝑟𝑟𝑎𝑎𝑡𝑡 are the current and saturated soil moisture contents of a given layer at day 

i. The factor 𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙is reduced daily based on soil moisture (Eq. 3.21), to simulate soil settling. 

If 𝑓𝑓𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙> 1 and a tillage operation is executed, the corresponding 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 must be added to the 

current 𝑓𝑓𝑓𝑓𝑚𝑚.  

Table 3.1 List of parameters for tillage submodules to drive the DLEM-Ag model 
Operation  Mixing 

efficiency of 
tillage (0-1) 

Mixing 
depth of 
tillage 
(cm) 

Litter coverage 
(m2 g-1) 

Litter interception 
coefficient  
(10-4 mm ha kg-1) 

   Maize Winter 
rye 

Maize Winter 
rye 

NT 0.1 5 0.004 0.005 3.46, 1.05 3.55, 0 

CT 1 20 0.004 0.005 3.46, 1.05 3.55, 0 

 

3.3.4 Model Calibration and Evaluation 

The simulated results were validated against available data for grain yield, SOC, 

and CO2 fluxes at the study site. We followed an iterative process in which we assessed 

how well the measured data fit model simulations by parameter optimization. We 

optimized the major parameters that govern photosynthesis, respiration, tissue turnover and 

turnover of soil organic matter to obtain a close match between the observed and predicted 

values for total biomass, grain yield, SOC, and CO2 fluxes. These parameters include, but 

not limited to, the maximum rate of carboxylation (Vmax25); the Michaelis-Menten constants 

for CO2 and O2 (Kc, Ko); the nitrogen uptake speed (Nup, max); the maximum turnover rate 

for each soil carbon pool (kmaxpool), the mixing efficiency of tillage (fmix), etc. The DLEM-

Ag has been intensively calibrated for different natural functional types and crop types 

across regions (e.g., Tian et al., 2010; Ren et al., 2011, 2012, 2016; Zhang et al., 2018). 

Here, we first used the default parameters to run the model and refined the parameter values 
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to get a better match between simulated and measured results for grain yield, SOC, and 

CO2 fluxes. The model performance was estimated following quantitative methods 

(Janssen and Heuberger, 1995), including the root mean square error (RMSE, Eq. 3.22), 

modeling efficiency (EF, Eq. 3.23), the coefficient of determination (R2), and linear 

regression. The RMSE is a measure of the mean error between model simulation and 

observation. 

RMSE = �∑ (𝑆𝑆𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                       (3.22) 

where 𝐶𝐶𝑖𝑖 and 𝑆𝑆𝑖𝑖 denote observed and simulated values, respectively, and n is the number 

of measurements. Modeling efficiency (EF) suggests how efficiently the model reproduces 

observations relative to the mean of observation (Karhu et al., 2012). The EF values can 

be positive or negative, with a maximum value of 1. The closer the value is to 1, the better 

the fit between simulated results and observations. If EF is negative, the model-predicted 

values do not capture the dynamics in time. 

EF = ∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1 −∑ (𝑆𝑆𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

                                                                                          (3.23) 

3.3.5 Model Simulation Experiment Design 

The model was run at a daily time step when simulating crop development and 

growth. The model simulation began with an equilibration run, using 30-year (1970-1999) 

mean climate datasets, to get close to the initial states of carbon, nitrogen, and water pools 

in 1970. The equilibrium state was defined such that the year-to-year changes in carbon, 

nitrogen, and water pools at the site would be less than 0.1 g C m-2, 0.1 g N m-2, and 0.1 

mm H2O, respectively. In this procedure, we used the available SOC data as a benchmark 

and ran the model to get other initial datasets that were not measured. After the equilibrium 
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run, we executed a 10-year spin-up run using climate data randomly selected between 1970 

and 1999 to remove sudden changes caused by the shift from equilibrium to transient mode.  

We then designed sixteen experiments to separate the contributions of multiple 

influencing factors to SOC in the long-term NT-CC system (Table 3.2). To examine the 

model fluctuation resulting from internal system dynamics, we first performed two 

“Reference” simulations driven by all factors remaining constant at 1970 levels through 

the 1970-2018 period under CT-CC (S1) and NT-CC (S2) treatments. The “All” simulation 

experiments S3 and S4 aimed to fit the historical observations for the two treatments, 

respectively. To attribute the relative contributions of each driving factor (i.e., 

precipitation, temperature, CO2, and nitrogen deposition) to annual variations of SOC, we 

then designed four factorial simulation experiments (S5, S6, S7, S8). In each factorial 

experiment, this single factor was allowed to change over time, while other factors were 

kept constant at the level of 1970, to determine the relative importance of the climate 

(precipitation and temperature), CO2, and nitrogen deposition. We used a simulated 

attributed analysis approach (Ren et al., 2016) to calculate the relative contributions of 

these factors. The overall change in SOC, ∆SOC, was defined as the difference between 

the “All” simulations and the “Reference” baseline simulations (i.e., S1 vs. S3, and S2 vs. 

S4). The change due to each factor was the difference between the factor-specific 

experiments (S5, S6, S7, S8) and the baseline (S2). In addition, we defined the single factor 

of tillage as the difference between S1 and S2. For predictions of the future SOC 

trajectories, we further designed eight scenario experiments, with experiments S9, S10, 

S11, and S12 for four different treatments (i.e., CT-CC, CT, NT-CC, and NT) under the 
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RCP 2.6 scenario, and experiments S13, S14, S15, and S16 for the same four treatments 

under the RCP 8.5 scenario, respectively.  

Table 3.2 Simulation experiments design in this study 
Simulations Abbr. Treatment* Precp. Temp. CO2 N-Dep. 

Reference_a S1 CT-CC 1970 1970 1970 1970 

Reference_b S2 NT-CC 1970 1970 1970 1970 

All_a S3 CT-CC Varying1# Varying1 Varying1 Varying1 

All_b S4 NT-CC Varying1 Varying1 Varying1 Varying1 

Precp-only S5 NT-CC Varying1 1970 1970 1970 

Temp-only S6 NT-CC 1970 Varying1 1970 1970 

CO2-only S7 NT-CC 1970 1970 Varying1 1970 

Ndep-only S8 NT-CC 1970 1970 1970 Varying1 

RCP2.6_a S9 CT-CC Varying2∆ Varying2 Varying2 Varying2 

RCP2.6_b S10 CT Varying2 Varying2 Varying2 Varying2 

RCP2.6_c S11 NT-CC Varying2 Varying2 Varying2 Varying2 

RCP2.6_d S12 NT Varying2 Varying2 Varying2 Varying2 

RCP8.5_a S13 CT-CC Varying2 Varying2 Varying2 Varying2 

RCP8.5_b S14 CT Varying2 Varying2 Varying2 Varying2 

RCP8.5_c S15 NT-CC Varying2 Varying2 Varying2 Varying2 

RCP8.5_d S16 NT Varying2 Varying2 Varying2 Varying2 
* Treatment including conventional tillage and cover crop (CT-CC), no-tillage and cover 
crop (NT-CC), conventional tillage (CT), and no-tillage only (NT). The CT and NT 
treatments were only applied to the future period (2019-2099) in experiment S10, S12, S14, 
and S16. In the historical period (1970-2018), these four experiments all were cover 
cropped. In other words, for example, the S9 and S10 were only different during the future, 
2019-2099, period. 
# Varying1 means historical time period, 1970-2018. 
∆ Varying2 means full time period, 1970-2099. 
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3.4 Results 

3.4.1 Model Evaluation against Field Observations 

We evaluated the DLEM-Ag model by considering three variables: crop yield, 

SOC, and CO2 fluxes. There were 50 pairs of simulated and observed crop yield values for 

annual tillage treatments, which spanned the historical 1970 to 2018 time period (Figure 

4.3a). The regression analysis exhibited an R2 of 0.86, a slope of 0.913, and an RSME of 

1.1 Mg ha-1 (P < 0.001), with a modeling EF of 0.79. The model yield data were reasonably 

well fit the measured yield data. The total SOC simulation was validated against eight 

observed values from 1975 to 2018 (Figure 3.3b). The regression analysis had an R2 of 

0.58, a slope of 0.995, and an RSME of 3.0 Mg C ha-1 (P = 0.027). Considering that changes 

in SOC can occur slowly, the purpose of this validation was to determine if the simulated 

trend was in line with the observed one. The individual fitting of simulated and actual CO2 

flux data for each tillage system is shown in Figure 3.3c. Simulated CO2 flux values were 

mostly within the SDs for the observed 2018 growing season CO2 fluxes. 

Figure 3.3d shows the results of the historical SOC model outcomes against the 

considerable scatter of historical SOC data points for the site. The simulated SOC values 

show a statistically significant correlation with observed data. Our results indicate that the 

DLEM-Ag model is able to capture the overall SOC trend. It should be noted that the 

measurements of ~13 Mg C ha-1 (NT) and 15 Ma C ha-1 (CT) gain and subsequent loss 

within a few years are likely not a realistic numerical depiction of soil carbon change in 
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this soil. 

 

Figure 3.3 Comparison of simulated and observed (a) crop yield and (b) SOC at the 0-
30cm soil depth for NT and CT systems. The dotted line represents equal values for 

simulated and observed data. The solid line is the linear fit of simulated versus observed 
data. Comparison of simulated and observed (c) CO2 flux in the 2018 maize growing 

season and (d) SOC (0-30 cm) with time during the historical period 
 

3.4.2 Soil Organic Carbon Balance under No-till and Cover Crop Management 

During 1970-2018, the observed SOC showed a slightly increasing trend under NT-

CC treatment and a decreasing trend under CT-CC treatment (Figure 3.3d). Our S3 and S4 

simulation results caught these trends. Overall, the difference in the simulated rate of SOC 

change between NT-CC and CT-CC was about 0.22 Mg C ha-1 yr-1 during this historical 

period, which was similar to measured observations (Table 3.3 and Figure 3.3d). The 

simulation further showed that such differences between the two tillage systems diminished 
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with time (Table 3.3). By analyzing carbon pathways in the model, we found that maize 

residues accounted for approximately over 65% of carbon entering the soil, followed by 

litterfall and cover crop biomass (Table 3.3, Figure 3.4a). The average carbon input from 

each pool exhibited an increasing trend from the 1970s to the 2010s, indicating growing 

productivity in the study. Moreover, our simulation also caught the significant decline of 

SOC in both systems and the low carbon input from cover crops during the 1970s. The 

simulated total carbon inputs were similar in NT-CC and CT-CC systems. According to 

the simulated pathway analysis, most of the incoming carbon was lost through CO2 

emissions, with higher rates in the CT-CC system than in the NT-CC system (Figure 3.4a). 

This discrepancy led to different carbon sequestration rates between the CT-CC and NT-

CC systems (Figure 3.4b), although carbon loss through leaching was higher with NT-CC 

compared with CT-CC (Figure 3.4b). It should be noted that the magnitude of leached 

carbon was higher than that of the net SOC change rates, suggesting the potential to 

enhance SOC sequestration by better soil water management. However, the leached carbon 

showed an increasing trend over the past several decades, corresponding to the increased 

precipitation at the site. In addition, the tillage-only experiment showed that tillage 

decreased SOC by about 0.18 Mg C ha-1 yr-1 compared to the NT due to greater soil CO2 

emission (Figure 3.5a).  
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Table 3.3 Simulated results of decade-averaged major carbon input (i.e., litterfall (LF-C), 
cover crop (CC-C), and maize residues (CR-C)), output (i.e., CO2 (CO2-C), leaching 
organic carbon (L-C) pools), and net SOC changes 

NT-CC 

(Mg C ha-1 

yr-1) 

C input C output C sequestered 

LF-C CC-C CR-C CO2-C L-C Others ∆SOC 

1970s 0.81 0.24 2.64 3.56 0.18 0.22 -0.27 

1980s 0.81 0.64 3.31 4.33 0.10 0.23 0.11 

1990s 0.84 0.92 3.21 4.47 0.22 0.22 0.07 

2000s 0.87 1.01 3.36 4.71 0.16 0.24 0.13 

2010s 0.93 1.30 3.51 5.06 0.23 0.27 0.18 

1970~2018 0.85 0.82 3.21 4.43 0.18 0.24 0.05 

CT-CC 

(Mg C ha-1 

yr-1) 

C input C output C sequestered 

LF-C 

CC-

C CR-C CO2-C L-C Others ∆SOC 

1970s 0.81 0.24 2.65 3.98 0.15 0.21 -0.65 

1980s 0.81 0.62 3.28 4.63 0.06 0.21 -0.19 

1990s 0.84 0.89 3.21 4.62 0.16 0.21 -0.06 

2000s 0.86 0.96 3.34 4.86 0.12 0.21 -0.03 

2010s 0.93 1.28 3.51 5.21 0.16 0.26 0.09 

1970~2018 0.85 0.80 3.20 4.66 0.13 0.22 -0.16 
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Figure 3.4 (a) Simulated results of 49-year averaged change in each carbon pool with NT 
and CT production systems, and (b) the associated differences between NT and CT for 

each carbon pool  
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3.4.3 Relative Contribution of Environmental Factors to Long-term Variations in 
SOC During the 1970-2018 Time Period 

The single-factor simulation experiments enabled an examination of SOC changes 

induced by temperature, precipitation, CO2, and nitrogen deposition (Figure 3.5a). Our 

results indicated that the relative contributions of the four environmental factors varied 

greatly over the historical period. Atmospheric CO2 enhanced SOC by 0.036 Mg C ha-1 yr-

1 in NT-CC over the 49-year period, as compared to the baseline (Figure 3.5a). Annual 

temperature and precipitation in the study area both exhibited an increasing trend over the 

past several decades (Figure 3.1a, c). However, the temperature-only and precipitation-

only experiments showed contrasting SOC responses (Figure 3.5a). Compared with 

precipitation, changes in temperature better stimulated winter cover crop growth, resulting 

in more carbon entering the soil (Figure 3.5b). This suggested that temperature was more 

pronounced than precipitation as a factor limiting winter cover crop growth at this site. 

Increased temperature ultimately resulted in positive effects of warming on SOC, although 

the warming trend also increased CO2 emissions (Figure 3.5b). Increased precipitation led 

to negative effects on SOC. Considering the treatments are crop nitrogen nutrition 

sufficient, the negligible impacts of nitrogen deposition on SOC were no surprise (Figure 

3.5).  
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Figure 3.5 (a) The accumulated SOC change from 1970 to 2018 driven by single factor 
simulation; (b) Annual carbon change in each carbon pool for each single factor 

simulation as compared to the baseline simulation (CC-C, CR-C, LF-C, CO2-C, L-C 
represent cover crop, maize residues, litterfall, CO2, and leached carbon pools, 

respectively)  
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3.4.4 Potential Trajectories of SOC under Future Climate Scenarios   

For the future, predicted SOC at the 0-30 cm depth exhibited significant differences 

due to tillage (p<0.0001) under the RCP 2.6 scenarios (Figure 3.6a), losing 0.017 ± 0.014 

Mg C ha-1 yr-1 and 0.002 ± 0.016 Mg C ha-1 yr-1 in the CT-CC and NT-CC treatments, 

respectively. This represents a 3% decline in SOC in the CT-CC treatment and 0.3% in the 

NT-CC treatment over the 2019-2099 period. In addition, 17 out of 36 simulations under 

the GCM-generated RCP 2.6 scenarios predicted an increasing trend in SOC with the NT-

CC treatment. In comparison, only four simulations predicted a slight growing trend in 

SOC with the CT-CC treatment. Under the GCM-generated RCP 8.5 scenarios, all 

simulations predicted an increase in SOC at the 0-30 cm depth in both treatments, although 

the increases are not uniform (Figure 3.6b). On average, the predictions showed that SOC 

would increase at a rate of 0.089 ± 0.021 Mg C ha-1 yr-1 with the NT-CC treatment, 

significantly higher than that with the CT-CC treatment (0.058 ± 0.017 Mg C ha-1 yr-1). We 

found the main reason leading to SOC increases under RCP 8.5 scenarios could be 

enhanced winter cover crop growth, although carbon loss through decomposition showed 

an increasing trend (Figure S3.3). During the simulated period, the predicted incoming 

carbon from cover crop biomass increased in both CT-CC and NT-CC plots (0.026 ± 

0.0034 and 0.023 ± 0.0032 Mg C ha-1 yr-1, respectively, Figure S3.1). The incoming carbon 

from maize residues also increased but at relatively lower rates (0.007 ± 0.0006 and 0.006 

± 0.0039 Mg C ha-1 yr-1
 with CT-CC and NT-CC treatments, respectively, Figure S3.2). 

We further conducted sensitivity experiments by excluding winter cover crops from the 

system and found that SOC declined in all treatments and climate scenarios (Figure 3.7). 

This indicates that if cover crops were not applied, the higher temperature would induce 
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greater SOC loss regardless of tillage, and the combination of cover crops and NT can be 

effective management for climate change mitigation in terms of enhancing SOC 

sequestration. 

 

Figure 3.6 Predicted SOC changes during 2019-2099 at the 0-30 cm depth for NT and CT 
(with cover crop) under (a) RCP2.6 and (b) RCP8.5 scenarios. Blue lines are average 

trends 
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Figure 3.7 Predicted SOC changes during 2019-2099 at the 0-30 cm depth for NT and CT 
(without cover crop) under (a) RCP2.6 and (b) RCP8.5 scenarios. Blue lines are average 

trends 
 

3.5 Discussion 

3.5.1 Synergistic Effects of No-tillage and Cover Crops on SOC 

Generally, our simulated changes in SOC caught the observed overall trend at this 

site, although they did not reflect the high variability in observations over the years. In fact, 

changes in SOC can occur slowly (Maas et al., 2017). In such a long-term study that 

includes various people collecting and analyzing samples, many factors could possibly lead 

to the variability in measurements. For example, how the surface residue was scraped off 

can affect SOC determination (Maas et al., 2017). Although all samples went to a common 

depth of 30 cm, the samples were divided into different depth increments in different years. 

Using different SOC analysis laboratory/methods and disregarding spatial variability 
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during the sampling scheme can also lead to errors in reporting SOC (Olson et al., 2014). 

In addition, the stratification of SOC can add variability to the results.  

Changes in soil carbon stocks are determined by the balance between carbon 

entering the soil via plant detritus and carbon losses through microbial decomposition, 

leaching, and erosion. The model simulated annual change in SOC was highly correlated 

to annual carbon input (r = 0.84, p < 0.0001, data not presented). This result parallels 

studies that report a positive correlation between the amounts of carbon input and SOC 

stock (Kong et al., 2005; Nash et al., 2018). Averaged over 49-year simulations, the 

incoming carbon from maize residues showed little differences due to tillage treatment 

yield differences, with the NT soil receiving slightly more carbon than the CT plots (Table 

3.3). This reflects better plant growth in the NT system, which corresponds with earlier 

results published for the study area (Grove et al., 2009). No-till soils usually contain a 

greater amount of soil water than tilled soils due to less evaporation and higher infiltration 

(Phillips, 1984), which can carry crops through periods of short-term drought without 

detrimental stress (Blevins et al., 1971). The simulated cover crops also had greater 

biomass production in the NT system than in the CT system (Figure 3.5b). The cause of 

this difference in cover crop biomass production due to tillage is unclear. One possible 

explanation could be that the higher soil moisture content with NT, as compared to CT, 

also benefited winter cover crop growth. In addition, greater SOC build-up in NT could 

provide greater mineralizable N. This may be important for cover crop growth because 

cover crops are not fertilized - they just receive some residual fertilizer N and N 

mineralized from SOM. Apart from tillage, other management practices, including 

nitrogen fertilizer rate, were identical in the two tillage system treatments.  
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Considering the evidence in the literature showing that NT usually results in greater 

SOC sequestration than for tilled soils (Franzluebbers, 2010; Bai et al., 2019), the 

corroborative evidence in this study is no surprise. However, the early years of the 

experiment witnessed a decline in SOC in both systems, with a greater loss with the CT 

than the NT (Figure 3.3b, Table 3.3). One possible reason for the carbon loss could be due 

to the conversion from perennial grass to annual crop production. Moreover, there were 

very poor stands of cover crops in the 1970s because of hand broadcast seeding (Blevins 

et al., 1977), which would have resulted in low carbon input from cover crops. The 

simulated results caught this declining trend of SOC during the early years with lower 

cover crop biomass inputs (Figure 3.3b, Table 3.3). We further found that when the cover 

crops were excluded from the system in the simulations under future scenarios, the 

projected SOC would significantly decrease (Figure 3.7). This is consistent with findings 

that crop rotation management has a greater impact on SOC than tillage management (Nash 

et al., 2018) because cover crops increase crop rotation diversity and provide additional 

carbon. However, what applies to this study site should be cautiously interpreted, as the 

effectiveness in promoting productivity and carbon sequestration through NT and cover 

crops is spatiotemporally heterogeneous (Liu et al., 2014; Pittelkow et al., 2015; Poeplau 

and Don, 2015; Paustian et al., 2016; Bai et al., 2019). 

Our simulation results showed that CO2 emission was the main pathway accounting 

for carbon loss from the soil. Compared with NT, tillage causes incorporation of crop 

residues in the soil, breakdown of soil aggregates, and exposure of protected SOC, which 

all render the organic matter more accessible to decomposers (Fiedler et al., 2016) and 

results in higher CO2 emission. The amount of cover crop biomass is, to some extent, a 
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reflection of its growth stage. Cover crops at termination in the CT system will be at an 

earlier, perhaps more succulent growth stage (i.e., lower C:N) than that of cover crops at 

termination in the NT system. This would result in a faster rate of cover crop residue 

decomposition in the CT system (Munawar et al., 1990). The lower CO2 emission from the 

NT treatment largely accounts for the lower soil carbon loss compared with the CT 

treatment, although leaching of organic carbon is greater in NT than in CT (Figure 3.4b).  

Greater leached carbon loss in NT can be ascribed to the frequent occurrence of 

macropores (Kleinman et al., 2009) and a general improvement in soil infiltration capacity 

(So et al., 2009). Further, there is better surface water interception under NT in such well-

drained and moderately permeable soils, which would drive additional water infiltration. 

This is supported by studies showing NT soil had higher saturated hydraulic conductivity 

than tilled soil (Blevins et al., 1983). However, NT impacts on soil hydraulic properties 

can be highly site-specific (Blanco-Canqui et al., 2017; Schwartz et al., 2019; Stone and 

Schlegel, 2010); depending on soil texture, the measurement time, the duration of NT 

implementation, cropping system, and interactions with other management practices. In a 

recent meta-analysis, Daryanto et al. (2017) reported that NT soil management tended to 

increase leachate nitrate load, relative to tillage, but with similar leachate nitrate 

concentration, suggesting greater soil water infiltration flux in NT.  

3.5.2 Climate Change (CO2, temperature, and precipitation) Effects on SOC 

CO2 effects: Climate change could alter soil carbon storage because changes in 

atmospheric CO2 concentration, temperature, and precipitation will affect plant biomass 

carbon inputs and soil carbon decomposition rates. The single factor simulations suggested 

a slight positive effect of increasing CO2 on SOC over the past 49 years, consistent with 
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previous model results (e.g., Ren et al., 2012; Banger et al., 2015; Tian et al., 2011, 2012, 

2015). Elevated CO2 (eCO2) benefited plant biomass production in the NT-CC treatment, 

and subsequent carbon input to the soil as the substrate for decomposition (Figure 3.5b), 

which confirmed the idea that conservation management in the eCO2 environment 

increases soil carbon storage by increasing cumulative residue input (Prior et al., 2005). 

There is much evidence that eCO2 stimulates plant carbon accumulation (Kimball, 1983; 

Luo et al., 2006; Jones et al., 2014; Wijewardana et al., 2016), with more consistent positive 

effects with C3, as opposed to C4, plants (Kimball, 2016; Leakey et al., 2009). Maize, as a 

C4 plant, is indirectly stimulated by eCO2 and usually occurs in situations of drought 

(Leakey et al., 2009). One possible explanation for the stimulation of maize residue under 

the CO2-only experiment could be that the maize growing season in 1970 was relatively 

drier than the average (Figure 3.1c), and 1970 was used as the reference weather year.  

Another possible mechanism might be that the stimulation of rye cover crop due to 

eCO2 synergistically benefited maize growth because the cover crop provided more carbon 

input to soils and a greater supply of easily metabolized substrates. This may stimulate the 

decomposition of native SOC due to the priming effect (Blagodatskaya and Kuzyakov, 

2008), giving faster decomposition rates (Van Groenigen et al., 2014). A recent review by 

Kuzyakov et al. (2018) suggested that an annual increase in plant productivity by 13-20% 

yr-1 with eCO2 would give total SOC increases of only 1.2 to 2.2%. However, some studies 

show that eCO2 would shift the quality of plant shoot and root residue to higher C/N ratios 

(Norby et al., 2001; Luo et al., 2006; Feng et al., 2015), thereby lowering decomposition 

rates (Marhan et al., 2008). As atmospheric CO2 concentration elevated from 325 ppm to 

408 ppm in the CO2-only simulation, the incoming carbon from maize and cover crop 
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residue biomass increased by 0.35 Mg C ha-1 and the C/N ratio of litter increased by 5.1% 

while CO2 emission increased by 0.32 Mg C ha-1.  

In addition, the priming effect, i.e., enhanced mineralization of nitrogen from native 

SOM, can be more pronounced when soil inorganic nitrogen content is limited but be 

alleviated if it is sufficient (Kuzyakov et al., 2018). Generally, eCO2 can promote SOC 

accumulation in the presence of nitrogen fertilizer application rates above the typical rates 

from atmospheric nitrogen inputs (Van Groenigen et al., 2006). The sufficient nitrogen rate 

in this study would retard the priming effect on SOM decomposition. Crop residues in the 

NT treatment were left on the soil surface, minimizing contact with soil microbes, and 

often resulting in lower residue decomposition rates compared with those for residues in 

tilled soils. Therefore, it could be expected that the retardation of the priming effect in the 

NT treatment would otherwise have a positive effect on SOC accumulation.    

Temperature effects: The warming effects on SOC stocks have been reported to be 

various, with positive, negative, and neutral impacts across observations (Crowther et al., 

2016). The elevated temperature would enhance soil heterotrophic respiration, hence 

increased soil carbon loss (Black et al., 2017), and would also stimulate plant growth and 

greater subsequent soil carbon input (Cowles et al., 2016). Warming generally enhances 

carbon fluxes to and from the soil (Lu et al., 2013). Crowther et al. (2016) found that 

warming effects on organic carbon in the top 10 cm soil depend on the size of the initial 

carbon stock, with a threshold of 20-50 Mg C ha-1 below which minor losses due to 

accelerated decomposition may be offset by concurrent increases in soil carbon from 

enhanced plant growth. Additionally, temperature affects evapotranspiration and 

subsequent soil water content, which indirectly influences decomposition rates. A meta-



90 
 

analysis showed that warming-induced soil moisture deficits could partly offset the positive 

impacts of warming on soil respiration (Wang et al., 2014).  

Our results from the temperature-only simulation showed a positive SOC response 

to elevated temperature, which can largely be attributed to the significant increase in winter 

cover crop growth due to warming (Figure 3.5b). Ruis et al. (2019) found that winter cover 

crop biomass production increased as temperature increased in a humid region, winter rye 

commonly produced 5.42 Mg ha-1 in the warm zone as compared to 2.9 Mg ha-1 in the cold 

zone. They suggested that tillage did not generally affect cover crop biomass production. 

This would support our findings that rye biomass production increased under the high 

emission scenarios (RCP 8.5). Considering carbon input is positively correlated with SOC 

content (Nash et al., 2018), there would be a high probability that the changes in SOC are 

sensitive to cover crop production. Basche et al. (2016) also modeled growth in a winter 

rye cover crop in Iowa under RCP 4.5 scenarios. The simulated SOC stock decreased in 

the NT-CC system but at a significantly lower rate than that in the NT without cover crops. 

One reason could be an inadequate supply of biomass (~1.3 Mg ha-1 yr-1) due to the relative 

dryer and cooler weather in their study area. Additionally, their simulations did not 

consider the effect of eCO2 on cash crops and cover crop growth, which has the potential 

to offset the effects of future climate change to some degree. 

However, we acknowledge that our model simulation might overestimate the effect 

of cover crop on SOC to some extent. For example, the DLEM-Ag considers a linear 

negative effect of CO2 on stomatal conductance, according to Ainsworth and Long (2005). 

While the knowledge of how elevated CO2 will affect photosynthesis is still under debate, 

the linear model might overestimate the CO2-fertilization effects. In addition, uncertainties 
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exist in the model because we considered cover crops as a rotational species that leaves all 

its biomass in the field at termination. We did not account for the annual growth of weeds, 

which was difficult to be quantified due to the lack of observations. When the cover crops 

were removed from the system in the future sensitive scenarios, there was only carbon 

output but no input during the fall-winter time period after maize harvesting and until the 

next maize planting. This would also cause an overestimate of SOC loss in simulations 

without cover crops.  

Precipitation effects: Moisture facilitates accelerated decomposition rates and 

stimulates plant productivity. Because of the complex effects of soil moisture on the 

production and decomposition of plant biomass, its influence on SOC stocks is still unclear 

(Falloon et al., 2011). A meta-analysis of precipitation manipulation experiments showed 

that increased precipitation stimulated soil respiration and plant biomass by an average of 

45% and 12%, respectively (Wu et al., 2011). Our results from the precipitation-only 

simulation showed that the increased decomposition with precipitation exceeds that of the 

plant biomass carbon inputs (Figure 3.5b), probably because precipitation is less limiting 

to plant growth at the study site. The timing and frequency of precipitation can also have 

large effects on plant growth and decomposition (Knapp et al., 2008). The GCMs projects 

that much of the precipitation increase will occur in heavier events in the southeastern U.S. 

(Melillo et al., 2014), suggesting more frequent flood and drought events. Excessive 

rainfall and excessive drought could both reduce crop productivity (Li et al., 2019) and 

subsequently reduce biomass carbon inputs. Therefore, the negative impact of precipitation 

on SOC could be amplified by changes in future precipitation regimes. Our simulations 
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under future scenarios, however, did not consider the effect of these extreme events on crop 

growth, which might offset some of the negative impacts.  

3.5.3 Uncertainties 

This study quantified the long-term synergistic effects of NT and cover crops in 

building the capacity of agricultural soils to sequester carbon. However, due to the scarcity 

of observational SOC data from deeper soil profile at this site, we were unable to calibrate 

the model and evaluate performance at deeper soil depths. This hinders us from 

understanding whether their synergetic benefit on SOC is limited to the surface layer at 

this site. Although Grove et al. (2009) reported SOC stocks to 1 m, with NT exhibited 

higher than CT in 2008, this issue is still under debate (Bai et al., 2019; Powlson et al., 

2014) and needs to be addressed with more consistent measurements deeper in soil profiles 

in future field research.  

There are also several limitations in this study that may bring uncertainties to our 

SOC change estimates. Some ecosystem processes are not well represented in the current 

model due to a lack of observations/measurements and associated knowledge of 

mechanisms. For example, root-derived carbon (root biomass C plus rhizodeposition C) 

significantly contributes to SOC stocks (Johnson et al., 2006). However, it is still 

challenging to accurately estimate the amount of carbon allocated belowground as this 

relies on systematic measurements of root biomass. Additionally, there is a lack of 

information regarding the direct effects of eCO2 on soil carbon turnover rate, i.e., the 

priming effect (Van Groenigen et al., 2014), and DLEM-Ag might underestimate 

decomposition. Besides, eCO2 would significantly promote mycorrhizal growth (Treseder, 

2004), which potentially enhances soil aggregation and thereby protects SOM from 
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microbial decomposition (Rillig, 2004). The increase in mycorrhizal growth with eCO2 

will also co-metabolically accelerate SOM decomposition for nitrogen assimilation 

(Lindahl and Tunlid, 2015). The model uses three microbial carbon pools to represent 

microbial growth but has not included the description of mycorrhizal-associated processes. 

Future experiments and observations on soil microbial community development are 

urgently needed to narrow this knowledge gap.  

Our future prediction did not account for changes in planting dates and cultivars for 

either maize or winter rye cover crops, which are among the essential factors affecting crop 

production (Sacks and Kucharik, 2011). A warming climate might shift maize planting to 

earlier dates (Sacks and Kucharik, 2011), implying earlier termination of winter cover 

crops and less biomass accumulation. In this case, our results might overestimate cover 

crop production under RCP8.5 scenarios. Furthermore, given more frequent and severe 

climate extreme events predicted for the future, model improvement with a rational 

representation of extreme climate effects on crop growth and soil could further improve 

model simulations of carbon dynamics in response to different management practices. In 

addition, higher N2O emissions can occur with NT or cover crops (Huang et al., 2018; 

Basche et al., 2014), which may partially offset positive effects on SOC balances. Future 

studies are needed to further emphasize these concerns.    

3.6 Conclusions 

This study offers the first attempt to examine the synergistic effects of no-tillage 

and cover crops on soil carbon dynamics in a continuous maize cropping system by 

integrating long-term field observations, agroecosystem modeling, and future climate 

scenarios. Our results show that the improved model is able to simulate soil organic carbon 
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dynamics with different tillage practices and environmental conditions in agroecosystems. 

Our results demonstrate that NT and cover crops work synergistically to increase SOC, 

mainly via slowing down soil carbon decomposition rates and increasing cumulative 

carbon inputs, respectively. Therefore, combining NT and cover crops could serve as a 

viable adaptive strategy to mitigate climate change through soil carbon sequestration in 

agroecosystems. Factorial analyses suggest that soil carbon sequestration is highly 

associated with carbon inputs from retained crop residues. Our predictions for future 

climate scenarios also suggest that cover crops are crucial to maintaining or increasing 

SOC stocks as NT alone is not enough, even in a continuous maize system with large 

residue inputs. Nevertheless, the extent to which NT and cover crops benefit SOC 

sequestration is temporally variable and depends on other management factors and site-

specific environmental conditions. There is a large impact of spatial heterogeneity on the 

capability of NT and cover cropping to enhance crop productivity and reduce other 

greenhouse gas emissions (e.g., CH4 and N2O). Therefore, regional assessments regarding 

NT and cover crop effects on soil biogeochemical dynamics are essential to better 

understand and quantify the role of land management practices in the global effort to 

combat climate change.  
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CHAPTER 4. MODELING CROP YIELD AND GREENHOUSE GAS EMISSIONS IN 
KENTUCKY CORN AND SOYBEAN CROPPING SYSTEMS DURING 1980-

2018 

4.1 Introduction 

The challenge of modern farming in response to climate change and population 

growth is to simultaneously improve crop yield and reduce greenhouse gas (GHG) 

emissions. Among the portfolio of management options for climate change adaptation and 

mitigation, conservation management practices, such as no-tillage (NT), have been 

promoted to decrease environmental side effects (e.g., GHG emissions and soil 

degradation) while ensuring agricultural productivity in the long-term (Lal, 2013). No-

tillage is a system that avoids tillage of the soil and leaves crop residues on the soil surface. 

It can benefit the function and quality of soil in many situations and, therefore, crop 

production (Blanco-Canqui and Ruis, 2018; Skaalsveen et al., 2019). However, NT effects 

on crop yield and GHG emissions are highly variable (Pittellow et al., 2015; Huang et al., 

2018). With the growing adoption of NT worldwide, it is becoming controversial whether 

sustainable crop production and its management practices can effectively enhance food 

security and mitigate GHG emissions in the long term (Powlson et al., 2014; 

VandenBygaart, 2016).  

No-tillage can reduce risks of soil degradation from erosion (Montgomery et al., 

2007; Derpsch et al., 2010), thus holding more soil organic carbon (SOC) and water to 

maintain or improve soil quality compared to conventional tillage (CT) practices (Huggins 

and Reganold, 2008). This is especially important in Kentucky because soils in this region 

are vulnerable to water erosion under intensive tillage, considering higher amounts and 

more intense rainfall that are characteristic of the region (Triplett and Dick, 2008; USDA, 
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2015). The adoption of NT continues rising in recent decades. According to the USDA 

Agricultural Resource Management Survey, NT accounts for 68% of the total acreage of 

Kentucky’s cropland (2017).  

Many studies have reported positive yield responses to NT for rainfed crops in dry 

climates (Pittelkow et al., 2015; Huang et al., 2018) or in humid conditions with moderate- 

to well-drained soils (DeFelice et al., 2006; Triplett and Dick., 2008). However, in more 

mesic climates or poorly drained soils, the yield responses could be more variable. Soil 

water conservation and retention can be a benefit for NT management under water-limited 

conditions (Farooq et al., 2011). Still, the potential for soil waterlogging and delayed soil 

warming in spring can be detrimental to crop growth (Licht and Al-Kaisi, 2005). While 

studies in Kentucky generally have reported improved productivity with NT at several sites 

(Blevins et al., 1971; Díaz‐Zorita et al., 2004; Grove et al., 2009), NT yield outcomes have 

not been quantified at the state level. 

No-tillage can reduce soil CO2 emissions primarily due to: 1) less soil disturbance 

that keeps SOC unexposed (Rastogi et al., 2002); 2) improved soil aggregate stability that 

protects SOC from microbial attack (Abdalla et al., 2013); 3) a lower soil temperature (Lu 

et al., 2016). However, greater soil moisture availability with NT could also enhance the 

microbial activity, thus increasing CO2 emissions (Plaza-Bonilla et al., 2014b). A recent 

global meta-analysis suggested that the reduced CO2 under NT could diminish with the 

increasing duration of NT management when the system reaches a new equilibrium at 

higher SOC stocks (Huang et al., 2018).  

Because soil water status and bulk density in NT soils are usually higher compared 

to CT soils, it has been claimed that higher N2O emissions can occur with NT (Smith et al., 
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2001). In contrast, NT soils may have a slower N mineralization rate than CT soils, leading 

to less NH4
+ and NO3

- contents in NT soils and, therefore, lower N2O emissions (Dick et 

al., 2008; Almaraz et al., 2009a). In the long-term, the adoption of NT substantially 

modifies soil physical properties with improved soil aggregation and aeration status, and 

consequently reduce N2O emissions (Six et al., 2004; van Kessel et al., 2013).  

Generally, climate conditions, soil texture classes, and duration of NT management 

could be the major factors that affect the responses of agricultural systems to NT 

management (Pittellow et al., 2015; Blanco-Canqui and Ruis, 2018; Cusser et al., 2020). 

However, a knowledge gap still exists regarding NT effects on crop yield and GHG 

emissions at large spatial scales. Field experiments are an invaluable approach in revealing 

the impact of management practices on agronomic and environmental variables with great 

credibility (Plaza-Bonilla et al., 2018). However, there are limitations when interpreting 

and applying site-specific findings. Although meta-analysis is a useful tool to test the linear 

relationship between site-specific conditions and crop yield/GHG emissions, it cannot 

assess the spatiotemporal magnitude and pattern as affected by management practices. 

Process-based models provide an opportunity to overcome these limitations (Lutz et al., 

2019) and to help establish management decisions (Ludwig et al., 2011). Therefore, the 

objective of this study was to: 1) assess the NT effects on crop yield and GHG emissions 

in Kentucky croplands during 1980-2018 using an agroecosystem model (DLEM-Ag); 2) 

examine the environmental factors (i.e., climate and soil) that regulating the NT effects. 
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4.2 Materials and Methods 

4.2.1 Description of the Study Area 

Kentucky lies in the east-central portion of the United States. The Ohio River forms 

a northern border and the Mississippi River a western border. Kentucky experiences a 

humid subtropical climate with an oceanic climate in the highlands of the southeast. Hot 

summers and cold winters occur typically, with a gradual increase in warmth in the 

southern regions. It receives a high amount of rainfall, with an average of 1143 mm of 

annual rainfall and an increase from the north to south. Soybean and corn are the two major 

row crops grown in Kentucky, accounting for about 25% of the total cropland. 

4.2.2 Input Driving Data 

4.2.2.1 Climate, CO2 and Nitrogen Deposition Data 

The daily climate data we used to drive the model were derived from the Daymet 

Version 3 model output data at a resolution of 1-km × 1-km covering Kentucky from 1980 

to 2018 (Thornton et al., 2016), including maximum and minimum temperature, 

precipitation, shortwave radiation, and vapor pressure. The historical CO2 concentration 

dataset was retrieved from NOAA/GML (www.esrl.noaa.gov/gmd/ccgg/trends/). Gridded 

N deposition maps were adapted from the North American Climate Integration and 

Diagnostics – Nitrogen Deposition Version 1 (NACID-NDEP1) dataset (Hember 2018). 

4.2.2.2 Crop Distribution Map 

The crop distribution map used in Kentucky was created by using the USDA-NASS 

Cropland Data Layer (CDL) datasets. Using the available CDL datasets for Kentucky 

(2008-2018), we first estimated the maximum distribution of corn and soybean between 
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2008 and 2018 at the 30-m layers. Then, we calculated the fractions of corn and soybean, 

respectively, at each 1-km pixel based on the 30-m layers (Figure 4.1). We eliminated grids 

with less than 5% of corn or soybean area during the model simulation and assumed that 

corn and soybean had the maximum cultivated area during the simulation period. 

 

Figure 4.1 Fractional distribution of corn and soybean in Kentucky  
 

4.2.2.3 Tillage and Other Agricultural Management Practices 

We obtained county-level tillage information from the Conservation Technology 

Information Center’s (CTIC; https://www.ctic.org/) National Crop Residue Management 

Survey (CRM). The tabular data provides the acreages and percentages of five tillage types 

implemented for all crops, including corn and soybean. For simplification, we grouped the 

five major tillage types into three categories, i.e., no-tillage (NT), reduced tillage (RT, 

including ridge tillage, mulch tillage, and reduced tillage), and conventional tillage (CT). 

We used county acreages in combination with the CDL-derived cropland layer to estimate 

the spatial distribution of conventional and conservation tillage percentages for corn and 

soybean, assuming each pixel within a county has the same portions of the tillage-specific 

area. We reconstructed annual tillage maps from 1989-2011 based on the CRM dataset and 

made the assumptions that the tillage maps of other years are similar to the nearest year. In 
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addition, we also generated two ideal tillage maps (all NT vs. all CT) with all the 

corn/soybean under one tillage regime for sensitivity analysis. Crop specific N fertilizer 

use data at the state level were derived from the USDA ERS statistics on fertilizer use 

(https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx), covering the 

period of 1960-2018. The irrigation map used was reconstructed at a 1-km resolution based 

on the MODIS irrigated agriculture dataset for the United States (MIrAD-US) (Pervez and 

Brown, 2010). 

4.2.3 Model Description 

The agricultural module of the dynamic land ecosystem model (DLEM-Ag) is a 

highly integrated process-based agroecosystem model. The DLEM-Ag is capable of 

simulating the daily crop growth and exchanges of trace gases (CO2, CH4, and N2O) 

between agroecosystems and the atmosphere; and quantifying fluxes and storage of carbon, 

water, and nitrogen within agroecosystem components as affected by multiple factors such 

as climate, atmospheric CO2, nitrogen deposition, tropospheric ozone, land use and land 

cover change, and agriculture management practices (e.g., harvest, rotation, irrigation, and 

fertilizer use). This model has been extensively used to study crop production, SOC, 

exchanges of trace gases between agroecosystems and the atmosphere. The detailed 

structure and processes have been well documented in previous work (e.g., Tian et al., 

2010; Ren et al., 2011; Ren et al., 2012; Ren et al., 2016; Zhang et al., 2018). 

As we described in Huang et al. (2020), the implementation of tillage in DLEM-

Ag focuses mainly on two processes directly affected by tillage: 1) the redistribution of 

surface residues with tillage practice and subsequent effects on soil water properties and 

water-related processes; 2) the increase in decomposition rates. The effect of tillage is 
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implemented in combination with residue management, as these management practices are 

often interrelated (Strudley et al., 2008). Tillage incorporates surface residues into the soil, 

altering the coverage of residues on top of the soil. Crop residues left on soil surface 

intercept rainfall, facilitating water infiltration. Surface residues also serve as a barrier that 

lowers soil evaporation and reduces water losses to the atmosphere. Therefore, residues 

help maintain or improve soil moisture. Soil moisture affects primary production by 

regulating the amount of available water for plants, and vice versa. Soil moisture is also 

intimately associate with soil temperature. 

4.2.4 Model Experiments Design 

In this study, we designed three simulation experiments for assessing the magnitude 

and spatiotemporal patterns of crop yield and GHG emissions from 1980-2018, and for 

analyzing the difference caused by different tillage systems (Table 4.1). The model 

simulation began with an equilibrium run using 30-year (1980 -2009) mean climate 

datasets to develop the simulation baseline, in which the yearly variations of carbon, 

nitrogen, and water pools in each grid were less than 0.1 g C/m2/yr, 0.1 mm H2O/yr, and 

0.1 g N m2/yr, respectively. Before the transient run, the model was run for another 100 

years for the spin-up to remove system fluctuations caused by the shift from equilibrium 

to transient mode, using climate data randomly selected from 1980-2008. The first 

simulation (S1) was designed to produce the near-real crop yield/GHG emissions and their 

changes in Kentucky, which was driven by historical varying tillage types and other input 

drivers (e.g., climate, CO2, N deposition, fertilizer use, irrigation). In the second to third 

simulations (S2 – S3), we assumed that all the croplands were fixed under one tillage 

system since 1980 (Table 4.1). 
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Table 4.1 Experiments design in this study 
  Drivers used 

Experiments Abbr Tillage Othersa 

Historical varying tillage S1 1980 - 2018 Varying 

Conventional tillage  S2 1980b Varying 

No tillage S3 1980c Varying 

Note: a Others include climate data (e.g., air temperature, precipitation, and radiation from 
1980 to 2018), agricultural N fertilizer (i.e., N fertilizer from 1980 to 2018), and 
atmospheric conditions (i.e., CO2 and N deposition from 1980 to 2018); b Tillage intensity 
across Kentucky for the entire period was consistent as conventional tillage (CT); c Tillage 
intensity across Kentucky for the entire period was consistent as no-tillage (NT). 

 

4.3 Results and Discussion 

4.3.1 Historical Climate Changes in Kentucky 

The climate in Kentucky was generally becoming warmer and wetter from 1980 to 

2018. Overall, the air temperature has been increasing at 0.02 °C/year (R2=0.11, p=0.04) 

in Kentucky since 1980 (Figure 4.2c). The most rapid warming occurred in the west and 

east regions of Kentucky (Figure 4.2a). Similarly, the annual precipitation showed a 

significant increasing trend (7.05 mm/year, R2=0.15, p=0.02) across the state (Figure 4.2d), 

with the most rapid wetting occurred in the north-central regions of Kentucky (Figure 

4.2b). The decadal mean annual precipitation increased from about 1226 mm in the 1980s 

to 1448 mm in the 2010s. Most of the corn and soybean croplands located in western and 

central regions have experienced moderate warming and wetting climate compared to other 

areas. There were four relative droughts (large increase in temperature and decrease in 

precipitation) that occurred in 1987, 1999, 2005, and 2012 and six abnormally wet periods 

(large increase in precipitation and small change in temperature) in 1989, 1996, 2003, 2009, 

2011, and 2018. 
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Figure 4.2 Spatial and temporal change in annual air temperature (a, c), and precipitation 
(b, d) (air temperature and precipitation trends are from 1980 to 2018)  

 

4.3.2 Evaluation of DLEM-Ag Simulated Results 

We first compared the model simulated crop yields against the reported USDA crop 

yields for corn and soybean at the state level from 1980 to 2018 (Figures 4.3 and 4.4a). The 

simulated results well captured the increasing trends in corn and soybean yields during the 

study period, with slightly lower rates than those from the USDA data (4.03 g C m-2 year-

1 vs. 5.27 g C m-2 year-1
 for corn, 1.17 g C m-2 year-1 vs. 1.65 g C m-2 year-1 for soybean). 

As presented in Figure 4.4a, the simulated yields by DLEM-Ag agreed well with the USDA 

crop yield (R2=0.88). We also compared the simulated yields with the estimated yield from 

USDA inventory at the county level during 1980-2018. The county-level comparisons also 
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showed high correlation coefficients (R2=0.85). The calibration procedure used is 

responsible for this good agreement.  

The simulated crop yields at the state level also well captured the temporal patterns 

in the survey data, with a correlation coefficient of 0.81 and 0.75 for corn and soybean, 

respectively (Figure 4.3). Although changes in production technology (improved hybrids 

and management practices) were mainly responsible for the upward trend in crop yields 

(Egli, 2008; Fischer et al., 2014), environmental factors, such as climate changes, were 

likely responsible for the annual variations (Hatfield et al., 2011). Some suggested that the 

increases in crop yield were also associated with changes in rainfall and temperature 

(Anderson et al., 2001; Lobell and Asner, 2003). The simulated results showed similar 

annual yield change pattern, but lower variance, compared to the survey data. The possible 

reason could be due to the uncertainties of climate data. In addition, the model simulation 

assumed that corn and soybean were planted in late-April in western Kentucky and early-

May in central and eastern areas throughout the study period, which represented the 

optimal planting period of Kentucky (Lee et al., 2007). Compared to the large variation in 

planting dates in reality, the relatively stable and optimal planting dates could lead to less 

change in the simulated annual crop yields.  
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Figure 4.3 Changes in annual crop yield (relative to the average for 1980-1989) of 
Kentucky’s corn (a) and soybean (b) estimated by DLEM-Ag model and USDA-NASS 

survey (the solid and dashed lines are linear trends for simulated and survey yield, 
respectively) 

 

 

Figure 4.4 Comparison between the DLEM-Ag simulated crop yields and the USDA-
NASS survey estimated crop yields for corn and soybean from 1980 to 2018 at (a) state- 

and (b) county- level. Counties are randomly selected  
 

4.3.3 Tillage Effects on Crop Yield and GHG Emissions 

In general, our simulations showed that adopting NT slightly increased corn yield 

(0.2%) and decreased soybean yield (-2.4%) on average (Figure 4.5a, b). These differences 

suggested that the yield differences between NT and CT were minimal in Kentucky, mostly 

due to the humid climate and medium- to well-drained farmland soils. In terms of tillage 
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effects on GHG emission, our simulated results showed that CO2 emissions under NT 

compared to CT were generally reduced by -1.6% for corn and by -4.53% for soybean 

(Figure 4.5c, d). Switching from CT to NT management decreased N2O emissions by an 

average of -10.49% for corn and by -19.64% for soybean (Figure 4.5e, f). The spatial 

patterns of tillage effects on GHG emissions were similar, with the relatively more 

substantial reduction in CO2 and N2O emissions in the central and northern areas and 

relatively smaller reductions in the western regions.  

The decrease in CO2 emissions under the NT scenario compared to CT is consistent 

with previous findings (Abdalla et al., 2013; Lutz et al., 2019; Huang et al., 2020), as NT 

decreases the organic matter decomposition rates with less soil disturbance and lower soil 

temperature (Rastogi et al., 2002; Lu et al., 2016). However, the NT effects on reducing 

CO2 emissions diminished with the duration of NT (Figure 4.6), suggesting that the soil 

and litter C stocks were increasing to enable rising CO2 emissions under NT (Huang et al., 

2018; Lutz et al., 2019), which gradually decrease the differences between tillage systems. 

Our results of reduced N2O emissions due to NT agrees with some previous studies 

(Omonode et al., 2011; Yoo et al., 2016; Plaza-Bonilla et al., 2018) but contradicts several 

literature studies (Huang et al., 2018; Mei et al., 2018; Lutz et al., 2019). The reduction in 

N2O emissions may be due to the well-aerated farmland soils (Rochette 2008). The 

sequential nitrification and denitrification that are responsible for N2O emissions were in 

the optimal soil temperature and moisture conditions under NT (Doran 1980; Williams et 

al., 1992). Higher levels of inorganic N could lead to higher N2O emissions. However, N 

mineralization rates are often lower under NT  than under CT due to the leaving of crop 

residues on the soil surface (Rice et al., 1986; Franzluebbers et al., 1995; Dick et al., 2008).  
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Figure 4.5 Relative changes in yield-C (a, b; carbon content of grain yield), soil CO2-C 
(c, d; carbon content of CO2) and N2O-N (e, f; nitrogen content of N2O) emissions for NT 

vs. CT comparisons for corn (left panel) and soybean (right panel)   
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Figure 4.6 Relative changes in CO2 and N2O for NT vs. CT comparisons for corn and 
soybean during 1980-2018 

 

4.3.4 Climate and Tillage Effects on GHG Emissions 

We evaluated tillage effects on GHG emissions as affected by spatial climate 

characteristics (i.e., annual precipitation and temperature) across Kentucky for corn and 

soybean croplands. Generally, annual precipitation did not significantly influence the 

tillage effects on either CO2 and N2O emissions in Kentucky corn and soybean croplands 

(Figure 4.7a, c, e, g). In comparison, the differences in GHG emissions between NT and 

CT tended to decrease with increasing annual temperature in both cropping systems (Figure 

4.7b, d, f, h). Such correlations were more pronounced for changes in CO2 emissions than 

those in N2O emissions. The results suggest that spatial air temperature pattern, but not 
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precipitation, is a dominant factor affecting the spatial heterogeneity in NT effects on GHG 

emissions in Kentucky. No-tillage can lead to more reduction in GHG emissions in cooler 

(i.e., northern Kentucky) than warmer (western and southern Kentucky) regions. Our 

results agreed with a recent study in northern Kentucky that NT effects on SOC were more 

controlled by temperature than precipitation (Huang et al., 2020), as soil GHG emissions 

and SOC are highly correlated. 

4.3.5 Soil Texture and Tillage Effects on GHG Emissions 

Our simulation results showed that the relative N2O changes for NT vs. CT 

comparisons significantly increased with the increasing clay content in soils (Figure 4.8g, 

j), but tended to decrease with rising sand and silt contents (Figure 4.8h-i, k-l). In 

comparison, the differences in CO2 emissions between NT and CT management were not 

significantly affected by soil texture (Figure 4.8a-f). Clay content in the soil is strongly 

correlated with SOC (Meersmans et al., 2012). By binding organic matter, clay particles 

help form and stabilize soil aggregates, imposing a physical barrier between decomposer 

and organic substrates (Dominy et al., 2002). Compared to CO2, the production of N2O in 

the soil is more sensitive to soil clay content.  
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Figure 4.7 Linear regression of relative CO2 emission (a-d) and N2O emission (e-h) 
changes for NT vs. CT comparisons on annual precipitation (left panel) and temperature 

(right panel). (a, b, e, f) are for corn and (c, d, g, h) are for soybean   
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Figure 4.8 Linear regression of relative CO2 emission (a-f) and N2O emission (g-l) 
changes for NT vs. CT comparisons on clay content (left panel), sand content (middle 

panel), and silt content (right panel). (a, b, c, g, h, i) are for corn and (d, e, f, j, k, l) are for 
soybean   

 

4.4 Conclusions 

This study provided the first attempt to quantify the effects of NT on crop yield and 

soil GHG emissions at the regional scale by using an agroecosystem modeling approach. 

Overall, the model showed reasonable performance in Kentucky. By conducting the 

sensitivity simulation, we found that NT had no significant effect on corn and soybean 

yield but decreased soil CO2 emissions (-1.6% for corn and -4.53% for soybean) and N2O 

emissions (-10.49% for corn and -19.64% soybean) compared to CT in Kentucky. 
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Temperature and soil clay content are the two important factors that govern the 

effectiveness of NT in reducing soil GHG emissions. The increasing temperature would 

lead to less NT benefit in decreasing soil GHG emissions. There is a tendency that NT 

reduces soil N2O emissions more in high clay content soils in Kentucky. Finally, our work 

gives some evidence that NT is a useful option in climate change adaptation and mitigation 

in Kentucky.  
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CHAPTER 5. SIMULATING THE EFFECTS OF TILLAGE ON CROP WATER 
PRODUCTIVITY IN CORN AND SOYBEAN SYSTEMS ACROSS THE OHIO 

RIVER BASIN 

5.1 Abstract 

Improvement in management practices is imperative for building agroecosystems’ 

resilience and climate change adaptation and for ensuring food security and agriculture 

sustainability in the long term. The past half-century has witnessed a revolution in tillage 

methods (i.e., conservation tillage) to combat soil erosion and degradation in the United 

States. However, its effects on crop productivity and water use patterns remain 

controversial from local trials, with more uncertainty from the macro-scale perspective. 

Here, we used a process-based agroecosystem model in combination with spatial-explicit 

gridded data to quantify the long-term effects of conservation tillage (e.g., no-tillage (NT) 

and reduced tillage (RT)) on crop water productivity (CWP = crop production / 

evapotranspiration) of corn and soybean in the Ohio River Basin during 1979-2018. We 

found an average of 4.76% and 5.87% CWP increase for corn and soybean, respectively, 

if all the fields employed NT treatment. When compared to the conventional tillage 

scenario, NT and RT both would enhance CWP, primarily due to reduced 

evapotranspiration under NT and RT scenarios. Simulation results showed that although 

NT and RT reduced surface runoff, they could potentially increase subsurface drainage and 

nutrient leaching from corn and soybean farmland. Our study demonstrates that along with 

conservation tillage, water and nutrient management should be further considered to 

enhance soil water retention and nutrient use in the study region. Our findings also provide 

insight into optimizing management practices for other areas where conservation tillage is 

widely applied.  
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5.2 Introduction 

Water deficits and surpluses are the primary perils to agriculture worldwide, 

especially in rain-fed regions (Shekhar and Shapiro, 2019). As water competition between 

cities and agriculture increases and climate change exacerbates water stresses (Brauman et 

al., 2013; Drum et al., 2017), there has been an ongoing search for strategies to maximize 

crop yield and biomass for each drop of water in agriculture. The key to achieving this goal 

is to enhance crop water productivity (CWP), which is defined as the ratio of crop carbon 

gain (e.g., gross primary production) to water consumption (e.g., evapotranspiration). Crop 

water productivity couples the carbon and water cycles in the agroecosystem (van Halsema 

and Vincent, 2012) and is a vital indicator in the evaluation of agricultural performance.  

Conservation tillage is a promising practice that helps conserve soil moisture and 

reduce soil erosion, thus helping crops under water stress (Busari et al., 2015; Holland 

2004; Phillips et al., 1980). Conservation tillage is any tillage system with a seedbed 

preparation technique in which at least 30% of the soil surface is covered by crop residue 

(Lal et al., 2017), including no-tillage (NT), reduced tillage (RT), mulch tillage, and ridge 

tillage. Compared to conventional tillage (CT), conservation tillage can lead to less soil 

disturbance and more surface residues. The advantage of conservation tillage in improving 

CWP has been widely reported across different agroecosystems (Cantero-Martínez et al. 

2007; Jabro et al., 2014; Li et al., 2018; Su et al., 2007; Tang et al., 2015). However, some 

studies argue that conservation tillage led to negligibly different (Irmak et al., 2019) or 

lower (Guan et al., 2015; Liu et al., 2013) CWP than CT. Tillage effects on CWP may vary 

in several ways, depending on tillage type and duration, as well as its interaction with a 

different climate, soil, management, and cropping systems (Strudley et al., 2008). Although 
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it is essential to assess the suitability and effectiveness of conservation tillage prior to its 

implementation at local scales, there is an urgent need to evaluate its performance at the 

macroscale, considering its widespread use in the past several decades. 

Field observations, including eddy covariance methods (Chi et al., 2016; 

Lampurlanés et al., 2016; Schwartz et al., 2019; Tang et al., 2015), have been used to 

estimate CWP at specific sites accurately. However, new efforts are needed to determine 

the spatial heterogeneity of CWP. Besides, previous CWP studies tended to focus more on 

inefficiency under arid/semi-arid conditions and neglect evaluation of how well 

conservation tillage affects crop water use in humid conditions. Additionally, remote 

sensing products (e.g., MODIS GPP and ET) are often used to quantify large-scale CWP 

(Ai et al., 2020; Lu and Zhuang; 2010). However, these products cannot provide crop-

specific CWP because they do not consider crop spatial distribution. Previously, regional 

and global CWP simulations generally ignored the key anthropic factor of tillage, in part 

because of the under-representation of tillage in global ecosystem models (Lutz et al., 

2019). It is critical to integrate crop type and tillage distribution into ecosystem models to 

simulate the spatiotemporal CWP of different crops accurately.  

The Ohio River Basin (ORB) is in the Eastern Corn Belt of the U.S., and almost 

98% of its cropland is cultivated with corn and soybean according to the 2018 National 

Cropland Data Layer. The ORB is one of the earliest regions in the world to implement 

conservation tillage (e.g., NT and RT). Specifically, the adoption of conservation tillage 

systems has been continually increasing during the past several decades. As of 2018, more 

than 60% of corn and almost 80% of soybean in the ORB were under different forms of 

conservation tillage (CTIC, 2018). The widespread alterations in tillage systems in the 
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ORB justifies the need for scientific investigation of the impacts of these practices on water 

resources, including evapotranspiration, productivity, and CWP. However, knowledge 

gaps still exist regarding the long-term and spatial-explicit effects of different tillage 

practices on CWP in the corn and soybean cropping systems of the ORB region. Here we 

used a process-based model (DLEM-Ag) to quantify the magnitude and spatial-temporal 

pattern of CWP in the ORB croplands during 1979-2018. Specific objectives were to: 1) 

investigate the magnitude and long-term trend in CWP; 2) quantitatively examine the 

changes in CWP as affected by different tillage systems in the ORB corn and soybean 

cropping systems. 

5.3 Materials and Methods 

5.3.1 Description of the Study Area 

The Ohio River Basin (ORB) covers 421,966 km2 within 11 states. The Ohio River 

starts at the confluence of the Allegheny and the Monongahela in Pittsburgh, Pennsylvania, 

and ends in Cairo, Illinois, where it flows into the Mississippi River. The humid continental 

climate is prevalent in the upper half of the basin, and a humid subtropical climate is 

dominant in the lower half of the basin. The whole ORB receives a high amount of rainfall, 

with an average annual rainfall of 1250 mm. About half of the land cover in this basin is 

forested land, primarily of deciduous trees. Cultivated cropland (~ 30%) is dominant on 

the northern side of the Ohio River and the western part of the basin. Corn and soybean are 

the major crops grown here (Santhi et al., 2014). 

5.3.2 Input Driving Data 

5.3.2.1 Climate, CO2, and Nitrogen Deposition Data 
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The daily climate data used to drive the model were derived from the gridMET 

dataset at a resolution of 4 km × 4 km covering the United States from 1979-2018 

(Abatzoglou 2013), including maximum, minimum, and average temperature; 

precipitation; shortwave radiation; wind; and relative humidity. The historical CO2 

concentration dataset was retrieved from NOAA/GML 

(www.esrl.noaa.gov/gmd/ccgg/trends/). Gridded N deposition maps were adapted from the 

North American Climate Integration and Diagnostics – Nitrogen Deposition Version 1 

(NACID-NDEP1) dataset (Hember 2018).  

5.3.2.2 Crop Rotation Map and Crop Phenology Data 

The crop rotations used in the ORB were created by using the USDA-NASS 

Cropland Data Layer (CDL) datasets. Following a similar approach by Panagopoulos et al. 

(2015) and Srinivasan et al. (2010), we overlaid multi-years of CDL information to produce 

crop rotation maps. The 2018 CDL data showed that approximately 98% of the ORB 

cropland was cultivated with corn and soybean. Based on a three-year rotation pattern in 

the ORB from 2015-2017, we derived eight cropland rotation types involving corn and 

soybean: 1) corn/soybean, 2) corn/soybean/soybean, 3) corn/corn/soybean, 4) 

soybean/corn, 5) soybean/corn/corn, 6) soybean/soybean/corn, 7) continuous corn, and 8) 

continuous soybean. These eight rotation types constitute approximately 90% of all the 

three-year rotations that involve corn or soybean in the ORB. Thus, we assumed that minor 

rotations at each 30-m pixel, such as corn/soybean/wheat or corn/corn/wheat, were 

eliminated and replaced with one of the eight rotations within the nearest pixel. The 

percentages of corn and soybean at each 4-km pixel were then calculated based on the 30-

m layers.  

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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The phenology of corn and soybean were derived by using the crop phenology 

dataset from Yang et al. (2020) in combination with the CDL datasets. Information from 

the phenology dataset includes the planting and harvesting date of crops. Specifically, we: 

1) calculated the percentage of corn and soybean, respectively, at each 500-m pixel to 

match the phenology dataset; 2) overlaid the central coordinate of each 4-km pixel on the 

500-m phenology map to assign the index of the 500-m pixel to the nearest 4-km pixel; 3) 

searched within 10 km around the central coordinate on the 4-km map to find the pixels 

with more than 55% of corn or soybean; 4) assigned the planting/harvesting date of corn 

and soybean at the nearest pixel to the central coordinated of the 500-m pixel. For 

unassigned pixels, we replaced the value with the most adjacent pixels. Overall, the 

planting dates in the ORB were from 97-177 (day of the year) for corn and soybean. The 

harvesting dates were from 289-330 and 277-290 for corn and soybean, respectively.  

5.3.2.3 Tillage and Other Agricultural Management Practices 

We obtained county-level ORB tillage information from the Conservation 

Technology Information Center’s (CTIC; https://www.ctic.org/) National Crop Residue 

Management Survey (CRM). The tabular data provides the acreages and percentages of 

five tillage types adopted in all crops, including corn and soybean. For simplification, we 

grouped the five major tillage types into three categories, i.e., no-tillage (NT), reduced 

tillage (RT, including ridge tillage, mulch tillage, and reduced tillage), and conventional 

tillage (CT). We used county acreages in combination with the CDL-derived cropland layer 

to estimate the spatial distribution of conventional and conservation tillage percentages for 

corn and soybean, assuming each pixel within a county has the same percentages of tillage-

specific area. We reconstructed annual tillage maps from 1989-2011 based on the CRM 

https://www.ctic.org/
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dataset and made the assumptions that the tillage maps of other years are similar to the 

nearest year. Moreover, we also generated three ideal tillage maps with all the corn/soybean 

under a unique tillage regime (be it NT, RT, or CT) for sensitivity analysis.  

Crop specific N fertilizer use data were derived from the USDA ERS statistics on 

fertilizer use (https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx), 

covering 1960-2018. An irrigation map was reconstructed at a 4-km resolution based on 

the MODIS irrigated agriculture dataset (2012) for the United States (MIrAD-US, Pervez 

and Brown, 2010). 

5.3.3 Model Description 

5.3.3.1 The DLEM-Ag 

The agricultural module of the dynamic land ecosystem model (DLEM-Ag) is a 

highly integrated process-based agroecosystem model. The DLEM-Ag is capable of 

simulating the daily crop growth and exchanges of trace gases (CO2, CH4, and N2O) 

between agroecosystems and the atmosphere; and quantifying fluxes and storage of carbon, 

water, and nitrogen within agroecosystem components as affected by multiple factors such 

as climate, atmospheric CO2, nitrogen deposition, tropospheric ozone, land use and land 

cover change, and agriculture management practices (e.g., harvest, rotation, irrigation, and 

fertilizer use). This model has been extensively used to study crop production, SOC, 

exchanges of trace gases between agroecosystems and the atmosphere. The detailed 

structure and processes have been well documented in previous work (e.g., Tian et al., 

2010; Ren et al., 2011; Ren et al., 2012; Ren et al., 2016; Zhang et al., 2018). 

5.3.3.2 Model Representation of Tillage Impacts 

https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx
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As described in Huang et al. (2020), the implementation of tillage in DLEM-Ag 

mainly focuses on two processes that are directly affected by tillage: 1) the redistribution 

of surface residues with tillage practice and subsequent effects on soil water properties and 

water-related processes; 2) the increase in decomposition rates. The effect of tillage is 

implemented in combination with residue management, as these management practices are 

often interrelated (Strudley et al., 2008). Tillage incorporates surface residues into the soil, 

altering the coverage of residues on top of the soil. Crop residues left on soil surface 

intercept rainfall, facilitating water infiltration. Surface residues also serve as a barrier that 

lowers soil evaporation and reduces water losses to the atmosphere. Therefore, residues 

help maintain or improve soil moisture. Soil moisture affects primary production by 

regulating the amount of available water for plants, and vice versa. Soil moisture is also 

intimately associate with soil temperature.  

5.3.4 Model Evaluation 

In the previous studies, the DLEM-Ag model has been extensively calibrated and 

validated against both site-level and regional-scale data. More details can be found in 

published studies (Ren et al., 2011, 2012, 2015; Tian et al., 2010; Zhang et al., 2018). Given 

that we used different model driving force from previous regional studies and we mainly 

focus on corn and soybean systems, we specifically calibrated and validated the simulated 

crop GPP and ET against published results from cropland sites in the AmeriFlux Network 

in and close to the ORB region. Generally, the model simulated GPP and ET showed good 

agreement with the measurements at flux towers (Figure 5.1a, b).  
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Figure 5.1 Comparison of the model estimated and observed gross primary productivity 
(GPP; a) and evapotranspiration (ET; b) for corn and soybean in and near the ORB region 
(dashed line is the regression of observed data and modeled results. The solid line is the 

1:1 line) 
 

5.3.5 Model Experiments Design 

In this study, we designed four simulation experiments for assessing the magnitude 

and spatiotemporal patterns of corn and soybean CWP during 1979-2018, and for analyzing 

the difference caused by different tillage systems (Table 5.1). The model simulation began 

with an equilibrium run using 30-years (1979 -2008) mean climate datasets to develop the 

simulation baseline, in which the year-to-year variations of carbon, nitrogen, and water 

pools in each grid were less than 0.1 g C/m2/yr, 0.1 mm H2O/yr, and 0.1 g N m2/yr, 

respectively. Before the transient run, the model was run for another 100 years for the spin-

up to remove system fluctuations caused by the shift from equilibrium to transient mode, 

using climate data randomly selected from 1979-2008. The first simulation (S1) was 

designed to produce CWP that close to reality and its changes in the ORB, which was 

driven by historically varying tillage types and other input drivers (e.g., climate, CO2, N 

deposition, fertilizer use, irrigation, and crop rotation). In the second to fourth simulations 
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(S2 – S4), we assumed that all the croplands were fixed under one tillage system since 

1979. A comparison of four experiments provides the potential CWP change of adopting 

conservation tillage in the ORB corn and soybean systems.  

Table 5.1 Experiments design in this study 
  Drivers used 

Experiments Abbr Tillage Othersa 

Historical varying tillage S1 1979 - 2018 Varying 

Conventional tillage  S2 1979b Varying 

Reduced tillage S3 1979c Varying 

No-tillage S4 1979d Varying 

Note: a Others include climate data (e.g., air temperature, precipitation, and radiation 
from 1979 to 2018), agricultural N fertilizer (i.e., N fertilizer from 1979 to 2018), and 
atmospheric conditions (i.e., CO2 and N deposition from 1979 to 2018); b Tillage 
intensity across the ORB for the entire period was consistent as conventional tillage (CT); 
c Tillage intensity across the ORB for the entire period was consistent as reduced tillage 
(RT); d Tillage intensity across the ORB for the entire period was consistent as no-tillage 
(NT). 

 

5.4 Results  

5.4.1 Historical Changes in Air Temperature and Precipitation in the ORB 

The ORB has experienced substantial changes and variability in climate (i.e., 

temperature and precipitation) during 1979-2018. A warming trend dominated the entire 

study area, with the most rapid warming occurring in the periphery of the ORB region, 

including western Kentucky, southern and eastern Indiana, and western Ohio (Figure 5.2a). 

Over the entire ORB region, air temperature has been increasing at 0.02 °C/year (R2 = 0.16, 

p < 0.05) since 1979 (Figure 5.2b). In comparison, a wetting trend dominated the entire 

ORB with the most rapid precipitation increase occurring in the center of the ORB, along 

both sides of the middle Ohio River, especially in southeastern Indiana and 
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northern/eastern Kentucky (Figure 5.2c). The average precipitation increased at 3.9 

mm/year (R2 = 0.10, p < 0.05) since 1979 (Figure 5.2d). There were two severe droughts 

(large increase in temperature and decrease in precipitation) that occurred in 1987 and 2012 

and two abnormally wet periods (large increases in precipitation with small changes in 

temperature) in 1996 and 2018. 

 

Figure 5.2 Spatial and temporal change of annual (a, b) air temperature, (c, d) 
precipitation (air temperature and precipitation trends are from 1979 to 2018) 
 

5.4.2 Tillage Effects on GPP and ET over the ORB Region 

In the ORB region, the mean annual GPP was 1091± 144g C/m2/yr and 747 ± 199 

g C/m2/yr for corn and soybean, respectively (Figure 5.3a, b). The spatial distribution 

patterns of GPP for corn and soybean are similar to each other, with higher GPP in the 

northwest of the ORB region, where the ORB’s primary croplands are located. Compared 

to the baseline simulation (S1), tillage scenario experiments (S2, S3, and S4) showed that 
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the effect of tillage on GPP was negligible for both crops (Figure 5.3 c-h). Nevertheless, 

NT and RT tended to have a slight positive effect on GPP relative to CT. 

The spatial distribution patterns of annual ET showed an increasing trend from the 

northeast toward the southwest for both crops in the ORB region (Figure 5.4a, b), with the 

average annual ET of 601 ± 37 mm/yr for corn and 508 ± 33 mm/yr for soybean. The 

sensitivity scenario experiments showed that CT increased corn ET by 2.8 ± 1.2% and 

soybean ET by 7.2 ± 2.4% (Figure 5.4c, d), while NT decreased corn ET by 3.9 ± 1.7% 

and soybean ET by 5.3 ± 3.1% (Figure 5.4g, h), compared to the baseline experiment (S1). 

The effect of RT on ET relative to S1 was somewhat neutral (-0.6 ± 1.4% and 1.1 ± 2.2% 

for corn and soybean, respectively, Figure 5.4e, f). 
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Figure 5.3 Spatial distribution of the mean annual (1979 - 2018) gross primary 
productivity (GPP) in the ORB region (a, b), and the percentage change from the baseline 
GPP owing to CT (c, d), RT (e, h), and NT (g, h) (Left panel is for corn and right panel is 

for soybean)
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Figure 5.4 Spatial distribution of the mean annual (1979 - 2018) evapotranspiration (ET) 
in the ORB region (a, b), and the percentage change from the baseline ET owing to CT 

(c, d), RT (e, h), and NT (g, h) (Left panel is for corn and right panel is for soybean)
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5.4.3 Tillage Effects on CWP over the ORB Region 

The baseline simulation (S1) showed that the mean annual CWP was 1.79 ± 0.24 

kg C/m3 and 1.44 ± 0.37 kg C/m3 for corn and soybean, respectively, across the ORB region 

during 1979 - 2018 (Figure 5.5a, b). The spatial patterns for the annual CWP were similar 

between corn and soybean. Higher CWP areas occurred in the northwest ORB and 

decreased southeastward. The sensitivity simulations (S2, S3, and S4) revealed that the 

tillage-induced CWP change varied among different tillage scenarios. Compared to the 

baseline experiment (S1), CT decreased the mean annual CWP by 2.95 ± 1.09% for corn 

and 6.41 ± 1.77% for soybean (Figure 5.5c, d), while NT increased CWP by 4.76 ± 2.28% 

and 5.87 ± 3.24% for corn and soybean, respectively (Figure 5.5g, h). However, the impact 

of RT on CWP was relatively neutral (0.50 ± 1.42% and -1.01 ± 1.92% for corn and 

soybean, respectively, Figure 5.5e, f).  

The baseline temporal dynamics of the annual CWP showed that there was a 

significant increasing trend for soybean (0.006 kg C/m3/yr, p < 0.05, Figure 5.6b) but not 

for corn (0.003 kg C/m3/yr, p = 0.12, Figure 5.6a). Generally, throughout the simulation 

period, the NT scenario resulted in the highest annual CWP for both crops in the ORB 

region (1.88 ± 0.12 kg C/m3 and 1.50 ± 0.17 kg C/m3 for corn and soybean, respectively). 

In comparison, the CT experiment led to the lowest annual CWP (1.74 ± 0.17 kg C/m3 and 

1.32 ± 0.21 kg C/m3 for corn and soybean, respectively, Figure 5.6a, b), despite the 

variations in the annual CWP. No significant difference in the annual CWP was observed 

between the RT and the baseline experiments.  
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Figure 5.5 Spatial distribution of the mean annual (1979 - 2018) crop water productivity 
(CWP) in the ORB region (a, b), and the percentage change from the baseline CWP 

owing to CT (c, d), RT (e, h), and NT (g, h) (Left panel is for corn and right panel is for 
soybean)
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Figure 5.6 Temporal changes in crop water productivity (CWP) under different 
simulation experiments for corn (a) and soybean (b) over the ORB region. S1, S2, S3, 

and S4 are different simulation scenarios as shown in Table 5.1 
 

5.5 Discussion 

All forms of tillage alter soil characteristics in the affected zone, mostly in relation 

to soil water content (O’Brien and Daigh, 2019). Changes in climate and management 

practices, as well as their interactions, affect soil water dynamics, surface energy balance, 

and consequently, GPP, ET, and CWP. While it is crucial to investigate the impacts of 

different tillage systems on these parameters at local sites with the specific environment 

and management conditions, there is an urgent need to understand their regional responses 

considering the widespread adoption of conservation tillage during the past several 

decades. The present study addresses knowledge gaps by presenting average CWP, GPP, 

and ET values and their changes under different tillage scenarios among corn and soybean 

systems in a spatially explicit manner, using an agroecosystem modeling approach. To the 
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authors’ knowledge, this is the first study to compare long-term CWP among different 

tillage systems for corn and soybean at a regional scale. 

5.5.1 Tillage Management and CWP Issues  

The results of the present study showed that, on average, across the ORB region, 

different tillage regimes had indistinguishable effects on GPP for corn or soybean 

croplands (Figure 5.3). This is not surprising considering that the ORB is often “water-

rich” (Figure 5.2d, Adler et al., 2003) with plentiful rainfall as well as numerous major 

rivers and impoundments. Alterations in soil water dynamics caused by different tillage 

methods would probably not limit the crop available water in the basin. Soil and water 

conservation technologies do not always lead to enhanced crop productivity (Hellin and 

Schrader, 2003). Previous studies suggested that dry areas where crop productivity is 

limited by soil water could potentially benefit from NT, but this is not the case for humid 

areas (Huang et al., 2018; Pittelkow et al. 2015). Kumar et al. (2012) found that although 

NT and RT increased soil water capacity compared to CT in two long-term sites at eastern 

and northern Ohio, there was a slight trend with higher crop yield under conservation tillage 

than under CT on the well-drained soil but no significant difference among tillage systems 

at the poorly drained site. Climate and soil may be major factors influencing crop 

productivity response to tillage (Toliver et al., 2012). In southern Illinois, Kapusta et al. 

(1996) also observed no difference in corn yield among CT, NT, and RT on a silt loam soil 

after 20 years of each tillage treatment. Moreover, similar annual winter wheat GPP 

between CT and NT systems was recently reported in the inland Pacific Northwest region 

with a Mediterranean climate (Chi et al., 2016) and in the Southern Great Plains with a 

humid subtropical climate (Kandel et al., 2020) using the eddy covariance method.  
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In terms of ET, our results were consistent with current knowledge that 

conservation tillage decreases soil ET compared to CT in the study region (Figure 5.4). NT 

and RT decreasing ET by 7 ~ 12% and 4 ~ 6% relative to CT, respectively, in corn and 

soybean systems. This is an important finding in the ORB region, considering the definition 

of CWP. The enhancement in CWP found in NT and RT scenarios (Figure 5.5) was mainly 

due to the decrease in ET and minor change in GPP. In addition, our results showed that 

NT and RT reduced evaporation compared with CT (Figure 5.4). They did not alter 

transpiration, which also explained the negligible distinctions in GPP among different 

tillage scenarios. Surface residues create a barrier that reduces evaporation and increases 

infiltration (Irmak et al., 2019). As conservation tillage, especially NT, rendered more 

residue coverage on the soil surface than CT, less evaporation was allowed. Besides, tillage 

typically increases surface roughness, therefore, reducing albedo (Cierniewski et al., 2015) 

and increasing net radiation to the soil (Schwartz et al., 2010). However, the mechanisms 

of how different tillage types would affect surface albedo and the associated legacy effect 

on evaporation are still far from being clear. Our current results might underestimate or 

overestimate the decrease in evaporation due to conservation tillage. Soil water evaporation 

is generally not favorable to crop productivity, although evaporation does slightly cool the 

surface microenvironment (Klocke et al., 2009), altering the soil energy balance (O’Brien 

and Daigh, 2019). Thus, adopting conservation tillage can reduce non-beneficial water loss 

via evaporation and make the soil more productive by maintaining soil moisture. One 

concern that exists regarding residue cover in the conservation tillage systems is that it 

would retard spring seed germination because of slower soil warming (Blanco-Canqui and 

Lal, 2009) and subsequently may lead to reductions in crop productivity. For example, 
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long-term tillage studies in Illinois (Kapusta et al., 1996) and Indiana (Griffith et al., 1988) 

reported less corn population in NT and RT systems than in CT systems. However, they 

suggested that population differences among tillage systems did not translate into a yield 

deduction when N fertilizer was applied.  

The present study also showed that the difference in CWP between NT and CT 

scenarios was slightly higher in soybean systems (~ 14%) than that in corn systems (~ 8%, 

Figure 5.5). Tang et al. (2015) observed similar results using both eddy covariance 

measurement and MODIS products in Minnesota. The greater response of soybean CWP 

could be due to that soybean has a less water-efficient photosynthesis pathway than corn 

(C3 vs. C4, Dietzel et al., 2016), and enhanced soil water content due to NT and RT would 

benefit soybean water use more than corn water use. 

5.5.2 Tillage Management’s Role in the Carbon and Water Cycles under Climate 
Change  

Increasing CWP under climate change will largely rely on management practices 

that will reduce soil water evaporation and shift the water use to more transpiration 

(Hatfield and Dold, 2019). Soil preparation plays a critical role in ensuring crop 

productivity and CWP in response to climate change. Our results support the theory that 

conservation tillage can make agroecosystem less susceptible to the negative impacts of 

climate change by partitioning more water into infiltration to maintain soil moisture, thus 

potentially reducing crop water stress during drought conditions. In addition, soils in the 

ORB are vulnerable to water erosion, particularly during heavy spring rains under CT 

systems. We found that compared to CT, NT, and RT decreased surface runoff but 

increased subsurface drainage in the study region (Figure 5.7). However, the sum of runoff 

and drainage did not vary among different tillage scenarios. This finding is consistent with 
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that of Daryanto et al. (2017). The shift in water fluxes (i.e., ET, runoff, and drainage) 

among tillage systems further suggested the advantages of NT and RT in enhancing soil 

water storage. In addition, it is generally perceived that NT and RT can reduce soil carbon 

loss compare to CT, which will help maintain or build up soil carbon storage and improve 

soil structure for the long run, hence making the soil more sustainable. However, it should 

be noted that as NT and RT also increased subsurface drainage, they may potentially lead 

to more nutrient leaching. Daryanto et al. (2017) reported that leachate nitrate amount was 

greater under NT than under CT despite the similar nitrate concentration under both 

systems. Considering the plentiful rainfall amount with a high probability of an increasing 

trend in the ORB region, such a problem should be stressed in NT systems in terms of 

implementing necessary remedial measures. For example, water harvesting technologies 

(e.g., terrace farming and drainage ditches) can help further increase available water for 

crops and lower the risk of nutrient leaching (Liu et al., 2020).   
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Figure 5.7 Temporal changes in surface runoff (a, b) and subsurface drainage (c, d) under 
different simulation experiments for corn (left panel) and soybean (right panel) over the 

ORB region (S1, S2, S3, and S4 are different simulation scenarios as shown in Table 5.1) 
 

5.6 Conclusions 

Process-based agroecosystem models provide an effective tool for quantifying 

CWP dynamics and underlying mechanisms as affected by different tillage management 

scenarios. To the best of our understanding, this study offered the first attempt to quantify 

tillage effects on crop-type-specific CWP at the regional scale. Model simulation results 

showed that if all the cropland in the ORB region were under the NT system, the corn and 

soybean CWP would increase by 2-7% and 2-9%, respectively. However, if all the 

cropland were under the CT system, the corn and soybean CWP would decrease ~3% and 

~6%, respectively. Our results indicate that conservation tillage can be an effective 
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management practice to enhance CWP in the ORB corn and soybean cropping systems, 

maintaining soil productivity. This benefit is mainly due to lower water loss through non-

beneficial evaporation under conservation tillage systems. However, additional 

management practices, along with conservation tillage, are needed to control nitrogen loss. 

Future research should give more attention to the synergic effects of conservation tillage 

and other management (e.g., nutrient and water management) on agroecosystems. 
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CHAPTER 6. CONCLUDING REMARKS 

6.1 Summary 

In this dissertation research, conservation tillage effects on crop yield, SOC, soil 

GHG emissions, and crop water productivity have been investigated at multiple scales, 

from local site to regional level (state and river basin). Different analytical methods and 

techniques, including meta-analysis, process-based models, field observations, and data 

synthesis, were utilized to evaluate the effectiveness of conservation tillage in ensuring 

crop productivity, promoting soil health, and mitigating and adapting to climate change. 

In general, climate conditions, soil texture classes, and the duration of conservation 

tillage are the main factors influencing conservation tillage effects on agronomic and 

environmental variables. Through meta-analysis, this dissertation found that, overall, NT 

reduced soil GHG emissions and increased crop yield in dry climates compared to CT. No-

tillage can reduce soil CH4 emissions by 15.5%, with a concomitant increase in soil N2O 

emissions of 10.4%. These effects tended to diminish with the long-term duration of NT. 

Soil CO2 emissions can be significantly reduced, with a yield benefit, under NT in dry 

climates. However, in humid climates, NT tended to increase soil N2O emissions and 

reduce crop yield, suggesting careful consideration of NT adoption in humid regions. 

Although NT cannot mitigate all three GHG emissions simultaneously, there was some 

evidence of a reduction in overall GWP under NT treatments given specific conditions, 

which needs to be verified with further investigations. 

This dissertation also found that, generally, conservation tillage practices can 

enhance SOC stocks by 5% compared to CT. Such enhancement in SOC can be found in 

the entire soil profile (deep to 1.2 m). The SOC increment due to conservation tillage was 
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higher in arid/warm than in humid/cool areas. In addition, soil texture was a major factor 

affecting the effectiveness of conservation tillage in enhancing SOC stocks. Such 

enhancement of SOC stocks due to conservation tillage tended to be higher in fine-textured 

soils than in coarse-textured soils. 

Although the benefits of conservation tillage were well observed, it was not always 

the case due to the highly different site-specific conditions. In this dissertation, case studies 

have been conducted to explore the conservation tillage effects at the site and regional 

scales by using a modeling approach. The DLEM-Ag with a newly developed tillage 

module was first calibrated and validated against field observations of crop yield, SOC, 

and GHG emissions at a long-term site in Lexington, Kentucky. The improved model was 

then applied to explore the effects of NT on soil carbon dynamics in a continuous maize 

cropping system. The simulated results suggested that NT, together with cover crops, 

would significantly enhance soil carbon sequestration in the context of climate change, 

gaining much more carbon benefits than those from NT alone. The factorial analysis further 

showed that elevated CO2 and warming effects were the main contributors to soil carbon 

gains due to the promotion in cover crop growth. Finally, the model was applied to the 

regional level (i.e., Kentucky and the Ohio River Basin) for quantifying changes in carbon 

and water cycles in response to conservation tillage practices. The results suggested that 

NT can reduce GHG emissions in Kentucky and enhance crop water productivity in the 

Ohio River Basin.  

This dissertation research demonstrates the integration of multiple quantitative 

approaches, such as meta-analyses and process-based simulations, for examining the 

comprehensive effects of conservation tillage. Results derived from this dissertation 
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highlights the importance of fully quantifying the effectiveness of conservation tillage for 

food production and climate change adaptation and mitigation at multiple scales. More 

accurate predictions using the present approaches are dependent on more systematic data 

from additional tillage studies in the future and further development of the process-based 

models.  

 

6.2 Outlook 

This dissertation research mainly investigated the effectiveness of conservation 

tillage in enhancing crop production and mitigating GHG emissions at multiple scales. 

Although meta-analyses were carried out based on a large number of field studies, field 

experiments, especially long-term ones, are an invaluable tool in revealing the mechanisms 

and impact of management practices on agronomic and environmental variables. However, 

long-term measurements of soil GHG emissions are time- and resource-consuming, and 

consequently scarce in the literature. Also, long-term measures of GHG emissions and 

SOC can potentially involve artificial uncertainties, which may cause variation. Therefore, 

future research should involve well-designed experiments to discuss tillage effects on GHG 

emissions and SOC. A more systematic effort is needed to provide valuable data that can 

be used for data synthesis and meta-analyses. 

Statistical methods are useful tools to test the relationship between environmental 

conditions (e.g., climate and soil properties) and target variables (e.g., crop yield, SOC, 

and GHG). They are essential supplements to field experiments that can save time, labor, 

and monetary investment. With more data available from field experiments, it is possible 
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to develop more accurate statistical models to analyze and predict the performance of each 

practice in its field applications.  

Process-based models provide a useful tool to analyze and predict the performance 

of management practices at multiple scales and to help establish management decisions. 

However, the accuracy of the simulation results depends not only on the embedded 

structure and processes in the model but also plentiful observation data. Field experiments 

and statistical methods contribute actual bases to the process-based model. They also 

provide valuable datasets for model calibration and validation. Therefore, future modeling 

studies should intimately be coupled with field observations to improve the representation 

of the management practices in models. 
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